
Chainer Documentation
Release 4.0.0

Preferred Networks, inc. and Preferred Infrastructure, inc.

Apr 17, 2018

Chainer Documents

1 Installation 3
1.1 Recommended Environments . 3
1.2 Dependencies . 3
1.3 Install Chainer . 4
1.4 Uninstall Chainer . 5
1.5 Upgrade Chainer . 5
1.6 Reinstall Chainer . 6
1.7 Run Chainer with Docker . 6
1.8 Install Issues . 6

2 Guides 7
2.1 Define-by-Run . 7
2.2 Variables and Derivatives . 7
2.3 Links . 9
2.4 Define your own function . 10
2.5 Creating Models . 19
2.6 Optimizer . 21
2.7 Trainer . 22
2.8 Trainer Extensions . 22
2.9 Using GPU(s) in Chainer . 26
2.10 Type Checks . 32
2.11 Serializers – saving and loading . 36

3 Neural Net Examples 39
3.1 MNIST using Trainer . 39
3.2 MNIST with a Manual Training Loop . 47
3.3 Convolutional Network for Visual Recognition Tasks . 55
3.4 Recurrent Nets and their Computational Graph . 61
3.5 RNN Language Models . 67
3.6 Word2Vec: Obtain word embeddings . 77
3.7 Write a Sequance to Seqeunce (seq2seq) Model . 85

4 Reference 101
4.1 Variable and Parameter . 101
4.2 Functions . 119
4.3 Link and Chains . 257
4.4 Optimizers . 595

i

4.5 Weight Initializers . 626
4.6 Training Tools . 634
4.7 Datasets . 670
4.8 Iterator . 691
4.9 Serializers . 695
4.10 Utilities . 704
4.11 Configuring Chainer . 716
4.12 Debug Mode . 721
4.13 Visualization of Computational Graph . 722
4.14 Caffe Reference Model Support . 725
4.15 Caffe Model Export Support . 725
4.16 Assertion and Testing . 727

5 API Compatibility Policy 737
5.1 Targeted Versions . 737
5.2 Versioning and Backward Compatibility . 737
5.3 Breaking the Compatibility . 737
5.4 Experimental APIs . 738
5.5 Supported Backward Compatibility . 738
5.6 Model Format Compatibility . 740
5.7 Installation Compatibility . 740

6 Contribution Guide 741
6.1 Classification of Contributions . 741
6.2 Development Cycle . 741
6.3 Issues and Pull Requests . 743
6.4 Coding Guidelines . 745
6.5 Unit Testing . 746

7 Tips and FAQs 749
7.1 It takes too long time to compile a computational graph. Can I skip it? 749
7.2 MNIST example does not converge in CPU mode on Mac OS X . 749
7.3 How do I accelerate my model using iDeep on Intel CPU? . 750
7.4 My training process gets stuck when using MultiprocessIterator . 751

8 Upgrade Guide 753
8.1 Chainer v4 . 753
8.2 Chainer v3 . 755
8.3 Chainer v2 . 756

9 Comparison with Other Frameworks 771
9.1 A table for quick comparison . 771
9.2 Benchmarks . 773

10 License 775

11 Indices and tables 777

Bibliography 779

Python Module Index 781

ii

Chainer Documentation, Release 4.0.0

Welcome to the Chainer documentation.

• Certified 99% Python code!

• Define-by-run approach for flexibility and understandable errors

• Standard Numpy syntax

• NVIDIA GPU acceleration, thanks to CuPy

Chainer Documents 1

https://chainer.org
https://cupy.chainer.org

Chainer Documentation, Release 4.0.0

2 Chainer Documents

CHAPTER 1

Installation

1.1 Recommended Environments

We recommend these Linux distributions.

• Ubuntu 14.04/16.04 LTS 64bit

• CentOS 7 64bit

The following versions of Python can be used: 2.7.6+, 3.4.3+, 3.5.1+, and 3.6.0+.

Note: We are testing Chainer automatically with Jenkins, where all the above recommended environments are tested.
We cannot guarantee that Chainer works on other environments including Windows and macOS (especially with
CUDA support), even if Chainer looks running correctly.

1.2 Dependencies

Before installing Chainer, we recommend to upgrade setuptools if you are using an old one:

$ pip install -U setuptools

The following Python packages are required to install Chainer. The latest version of each package will automatically
be installed if missing.

• NumPy 1.9, 1.10, 1.11, 1.12, 1.13

• Six 1.9+

The following packages are optional dependencies. Chainer can be installed without them, in which case the corre-
sponding features are not available.

• CUDA/cuDNN support

3

https://www.ubuntu.com/
https://www.centos.org/
http://www.numpy.org/
https://pythonhosted.org/six/

Chainer Documentation, Release 4.0.0

– cupy 4.0+

• Caffe model support

– protobuf 3.0+

• Image dataset support

– pillow 2.3+

• HDF5 serialization support

– h5py 2.5+

• iDeep (performance acceleration for Intel CPU) support (experimental)

– ideep 1.0.3+

1.3 Install Chainer

1.3.1 Install Chainer via pip

We recommend to install Chainer via pip:

$ pip install chainer

Note: Any optional dependencies (including CuPy) can be added after installing Chainer. Chainer automatically
detects the available packages and enables/disables the optional features appropriately.

1.3.2 Install Chainer from source

The tarball of the source tree is available via pip download chainer or from the release notes page. You can
install Chainer from the tarball:

$ pip install chainer-x.x.x.tar.gz

You can also install the development version of Chainer from a cloned Git repository:

$ git clone https://github.com/chainer/chainer.git
$ cd chainer
$ pip install .

1.3.3 When an error occurs. . .

Use -vvvv option with pip command. That shows all logs of installation. It may help you:

$ pip install chainer -vvvv

4 Chapter 1. Installation

https://cupy.chainer.org/
https://developers.google.com/protocol-buffers/
https://pillow.readthedocs.io/
http://www.h5py.org/
https://github.com/intel/ideep
https://github.com/chainer/chainer/releases

Chainer Documentation, Release 4.0.0

1.3.4 Enable CUDA/cuDNN support

In order to enable CUDA support, you have to install CuPy manually. If you also want to use cuDNN, you have
to install CuPy with cuDNN support. See CuPy’s installation guide to install CuPy. Once CuPy is correctly set up,
Chainer will automatically enable CUDA support.

You can refer to the following flags to confirm if CUDA/cuDNN support is actually available.

chainer.backends.cuda.available True if Chainer successfully imports cupy.

chainer.backends.cuda.cudnn_enabled True if cuDNN support is available.

1.3.5 Support image dataset

Install Pillow manually to activate image dataset feature:

$ pip install pillow

Note that this feature is optional.

1.3.6 Support HDF5 serialization

Install h5py manually to activate HDF5 serialization:

$ pip install h5py

Before installing h5py, you need to install libhdf5. The way to install it depends on your environment:

Ubuntu 14.04/16.04
$ apt-get install libhdf5-dev

CentOS 7
$ yum -y install epel-release
$ yum install hdf5-devel

Note that this feature is optional.

1.4 Uninstall Chainer

Use pip to uninstall Chainer:

$ pip uninstall chainer

Note: When you upgrade Chainer, pip sometimes install the new version without removing the old one in
site-packages. In this case, pip uninstall only removes the latest one. To ensure that Chainer is com-
pletely removed, run the above command repeatedly until pip returns an error.

1.5 Upgrade Chainer

Just use pip with -U option:

1.4. Uninstall Chainer 5

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/latest/install.html
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

$ pip install -U chainer

1.6 Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it. We recommend to use --no-cache-dir
option as pip sometimes uses cache:

$ pip uninstall chainer
$ pip install chainer --no-cache-dir

1.7 Run Chainer with Docker

We are providing the official Docker image. Use nvidia-docker command to run Chainer image with GPU. You can
login to the environment with bash, and run the Python interpreter:

$ nvidia-docker run -it chainer/chainer /bin/bash

Or run the interpreter directly:

$ nvidia-docker run -it chainer/chainer /usr/bin/python

1.8 Install Issues

1.8.1 The installer says “hdf5.h is not found”

You don’t have libhdf5. Please install it first. See Support HDF5 serialization.

1.8.2 Examples say “cuDNN is not enabled”

You failed to build CuPy with cuDNN. If you don’t need cuDNN, ignore this message. Otherwise, retry to install
CuPy with cuDNN. -vvvv option helps you. There is no need of re-installing Chainer itself. See CuPy’s installation
guide for more details.

6 Chapter 1. Installation

https://github.com/NVIDIA/nvidia-docker
https://docs-cupy.chainer.org/en/latest/install.html
https://docs-cupy.chainer.org/en/latest/install.html

CHAPTER 2

Guides

2.1 Define-by-Run

As mentioned on the top page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it
must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined
and fixed, and then the user periodically feeds it with mini-batches of training data. Since the network is statically
defined before any forward/backward computation, all the logic must be embedded into the network architecture as
data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note
that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based
frameworks, and TensorFlow).

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined dynamically via the actual forward
computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy
enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic
to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of
Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.

2.2 Variables and Derivatives

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers

(continues on next page)

7

Chainer Documentation, Release 4.0.0

(continued from previous page)

from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

As described previously, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network.
In order to start forward computation, we have to set the input array to a Variable object. Here we start with a simple
ndarray with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)

A Variable object has basic arithmetic operators. In order to compute 𝑦 = 𝑥2 − 2𝑥 + 1, just write:

>>> y = x**2 - 2 * x + 1

The resulting y is also a Variable object, whose value can be extracted by accessing the data attribute:

>>> y.data
array([16.], dtype=float32)

What y holds is not only the result value. It also holds the history of computation (or computational graph), which
enables us to compute its derivative. This is done by calling its backward() method:

>>> y.backward()

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is
computed and stored in the grad attribute of the input variable x:

>>> x.grad
array([8.], dtype=float32)

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays
of intermediate variables for memory efficiency. In order to preserve gradient information, pass the retain_grad
argument to the backward method:

>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward(retain_grad=True)
>>> z.grad
array([-1.], dtype=float32)

All these computations are can be generalized to a multi-element array input. While single-element arrays are auto-
matically initialized to [1], to start backward computation from a variable holding a multi-element array, we must set
the initial error manually. This is done simply by setting the grad attribute of the output variable:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([[0., 2., 4.],

[6., 8., 10.]], dtype=float32)

Note: Many functions taking Variable object(s) are defined in the functions module. You can combine them

8 Chapter 2. Guides

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

to realize complicated functions with automatic backward computation.

2.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You
can use the class Link to do this. A Link is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their
parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the Linear link (a.k.a. fully-connected layer or affine transformation). It
represents a mathematical function 𝑓(𝑥) = 𝑊𝑥 + 𝑏, where the matrix 𝑊 and the vector 𝑏 are parameters. This
link corresponds to its pure counterpart linear(), which accepts 𝑥,𝑊, 𝑏 as arguments. A linear link from three-
dimensional space to two-dimensional space is defined by the following line:

>>> f = L.Linear(3, 2)

Note: Most functions and links only accept mini-batch input, where the first dimension of the input array is considered
as the batch dimension. In the above Linear link case, input must have shape of (𝑁, 3), where 𝑁 is the mini-batch
size.

The parameters of a link are stored as attributes. Each parameter is an instance of Variable. In the case of the
Linear link, two parameters, W and b, are stored. By default, the matrix W is initialized randomly, while the vector b is
initialized with zeros. This is the preferred way to initialize these parameters.

>>> f.W.data
array([[1.0184761 , 0.23103087, 0.5650746],

[1.2937803 , 1.0782351 , -0.56423163]], dtype=float32)
>>> f.b.data
array([0., 0.], dtype=float32)

An instance of the Linear link acts like a usual function:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.data
array([[3.1757617, 1.7575557],

[8.619507 , 7.1809077]], dtype=float32)

Note: Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of
(de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch.

For example, the following line creates a linear link whose output dimension is two:

>>> f = L.Linear(2)

If we feed a mini-batch of shape (2,𝑀), the input dimension will be inferred as M, which means l.W will be a 2 x M
matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, l does not have W
attribute if no data is put to the link.

2.3. Links 9

Chainer Documentation, Release 4.0.0

Gradients of parameters are computed by the backward() method. Note that gradients are accumulated by the
method rather than overwritten. So first you must clear the gradients to renew the computation. It can be done by
calling the cleargrads() method.

>>> f.cleargrads()

Note: cleargrads() is introduced in v1.15 to replace zerograds() for efficiency. zerograds() is left only
for backward compatibility.

Now we can compute the gradients of parameters by simply calling the backward method and access them via the
grad property.

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[5., 7., 9.],

[5., 7., 9.]], dtype=float32)
>>> f.b.grad
array([2., 2.], dtype=float32)

2.4 Define your own function

In this section, you will learn about the following things:

• How to define a function on variables

• Useful tools to write a function using a GPU

• How to test the function definition

After reading this section, you will be able to:

• Write your own functions

• Define simple kernels in the function definition

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

2.4.1 Differentiable Functions

Chainer provides a collection of functions in the functions module. It covers typical use cases in deep learning,
so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly and we
cannot cover all possible functions to define unseen architectures. So it is important to learn how to define your own
functions.

10 Chapter 2. Guides

Chainer Documentation, Release 4.0.0

First, suppose we want to define an elementwise function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 * 𝑦 + 𝑧. While it is possible to implement
this equation using a combination of the * and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Any function must inherit the Function class. The skeleton
of a function looks like:

class MulAdd(Function):
def forward_cpu(self, inputs):

do forward computation on CPU
return some_tuple

def backward_cpu(self, inputs, grad_outputs):
do backward computation on CPU
return some_tuple

We must implement forward_cpu() and backward_cpu()methods. The non-self arguments of these functions
are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows

class MulAdd(Function):
def forward_cpu(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward_cpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

As per the warning above, the forward_cpu method returns a tuple of single element. Note that all arrays appear-
ing in CPU functions are numpy.ndarray. The forward function is straightforward: It unpacks the input tuple,
computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of
differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in same order and returns them.

By just defining the core computation of forward and backward, Function class provides a chaining logic on it (i.e.
storing the history of computation, etc.).

Note: Assuming we implement a (forward) function 𝑦 = 𝑓(𝑥) which takes as input the vector 𝑥 ∈ R𝑛 and produces
as output a vector 𝑦 ∈ R𝑚. Then the backward method has to compute

𝜆𝑖 =

𝑚∑︁
𝑗=1

𝜕𝑦𝑗
𝜕𝑥𝑖

𝛾𝑗 for 𝑖 = 1 . . . 𝑛

where 𝛾 is the grad_outputs. Note, that the resulting vector 𝜆 must have the same shape as the arguments of the
forward method.

2.4. Define your own function 11

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named
forward_gpu() and backward_gpu():

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
x, y, z = inputs
w = x * y + z
return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

In GPU methods, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class. These
operators implement the basic elementwise arithmetics.

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can
reduce them to forward() and backward() methods

class MulAdd(Function):
def forward(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function is used as follows:

x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

12 Chapter 2. Guides

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

def muladd(x, y, z):
return MulAdd()(x, y, z)

w = muladd(x, y, z)

2.4.2 Unified forward/backward methods with NumPy/CuPy functions

CuPy also implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function 𝑓(𝑥, 𝑦) = exp(𝑥) + exp(𝑦). We name
it ExpAdd here. It can be written straight-forward as follows

from chainer.backends import cuda

class ExpAdd(Function):
def forward_cpu(self, inputs):

x, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def backward_cpu(self, inputs, grad_outputs):
x, y = inputs
gz, = grad_outputs

gx = gz * np.exp(x)
gy = gz * np.exp(y)
return gx, gy

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y = inputs
z = cupy.exp(x) + cupy.exp(y)
return z,

def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
x, y = inputs
gz, = grad_outputs

gx = gz * cupy.exp(x)
gy = gz * cupy.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note: Here we used cuda.cupy instead of directly accessing cupy. This is because the cupy module cannot be
imported if the CUDA is not installed. In order to keep the implementation valid in non-CUDA environment, we have
to defer the access to the cupy module. Note that the chainer.backends.cuda module can be imported even
if the CUDA is not installed. Of course, the module in such environment is almost useless, but if the interpreter does
not run through the code accessing CUDA-dedicated functions, the code is still valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in GPU methods.
We can unify these functions using the chainer.backends.cuda.get_array_module() function. This
function accepts arbitrary number of arrays, and returns an appropriate module for them. See the following code

2.4. Define your own function 13

https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

class ExpAdd(Function):
def forward(self, inputs):

xp = cuda.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, inputs, grad_outputs):
xp = cuda.get_array_module(*inputs)
x, y = inputs
gz, = grad_outputs

gx = gz * xp.exp(x)
gy = gz * xp.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module function always returns numpy. We often use the name xp for the variadic module name, which is
analogous to the abbreviation np for NumPy and cp for CuPy.

2.4.3 Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward and backward computations. It might hurt performance, since the interme-
diate temporary arrays are read and written by possibly different GPU cores, which consumes much bandwidth. We
can reduce the number of invocations by defining our own kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define ele-
mentwise kernels, the cupy.elementwise.ElementwiseKernel class, and Chainer wraps it by cuda.
elementwise() function. Our MulAdd implementation can be improved as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'float32 x, float32 y, float32 z',
'float32 w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

(continues on next page)

14 Chapter 2. Guides

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 4.0.0

(continued from previous page)

gx, gy = cuda.elementwise(
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

chainer.backends.cuda.elementwise() function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.

3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
cuda.elementwise().

The first one is binary caching: chainer.backends.cuda.elementwise() function caches the compiled
binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise() function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'T x, T y, T z',
'T w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
(continues on next page)

2.4. Define your own function 15

Chainer Documentation, Release 4.0.0

(continued from previous page)

x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'T x, T y, T gw',
'T gx, T gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.4.4 Write a function with training/test mode

We sometimes want to make a function behave differently in training and test modes. The training/test mode in
Chainer is configured by chainer.config. This is a thread-local configuration object, and users can substitute
True or False to its train attribute. You can refer to Configuring Chainer to see how to configure this flag as well as
other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the
value of the boolean flag chainer.config.train and branch appropriately.

For example, consider the following simple dropout function:

def dropout(x):
xp = cuda.get_array_module(x.data)
mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
return x * mask

This function applies dropout to each element and doubles survived elements to preserve the scale. The above imple-
mentation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

def dropout(x):
if not chainer.config.train:

return x

xp = cuda.get_array_module(x.data)
mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
return x * mask

The function now supports test mode. Note that you usually do not have to implement your own dropout function
because dropout() is officially provided.

2.4.5 Links that wrap functions

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps
the function. We have already seen how to define a chain that wraps other links (by inheriting Chain class). Here we

16 Chapter 2. Guides

https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel
https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel

Chainer Documentation, Release 4.0.0

study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and
the parameter array. It can be defined as follows:

class EltwiseParamProduct(Link):
def __init__(self, shape):

super(EltwiseParamProduct, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(initializers.Normal(scale=1.), shape)

def __call__(self, x):
return self.W * x

For another example, assume we want to define a simple linear layer. It is already defined as Linear, so this is an
educational example. The linear layer is divided into two parts: a function and its wrapper link. First, we have to
define a function on variables:

class LinearFunction(Function):
def forward(self, inputs):

x, W, b = inputs
return x.dot(W.T) + b,

def backward(self, inputs, grad_outputs):
x, W, b = inputs
gy, = grad_outputs

gx = gy.dot(W)
gW = gy.T.dot(x)
gb = gy.sum(axis=0)
return gx, gW, gb

def linear(x, W, b):
return LinearFunction()(x, W, b)

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is
inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient
module, let’s wrap it into a link:

class Linear(Link):
def __init__(self, in_size, out_size):

super(Linear, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(
initializers.Normal(1. / math.sqrt(in_size)),
(out_size, in_size))

self.b = chainer.Parameter(0, (out_size,))

def __call__(self, x):
return linear(x, self.W, self.b)

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase
the memory consumption during the whole forward-backward computation. If you want to train very large networks
on a GPU with limited memory, it is not recommended to cache arrays between forward and backward. There is one

2.4. Define your own function 17

Chainer Documentation, Release 4.0.0

exception for this: caching the output arrays does not change the memory consumption, because they are also held by
the output Variable objects.

Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

2.4.6 Testing Function

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implemen-
tations. Chainer provides simple utilities to help writing unit tests. They are defined in the gradient_check
module.

The most important test utility is the numerical_grad() function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows

x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))

f is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
numerical_grad() are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of sum(f(x)), where sum indicates the summation over all elements. The summation can
be weighted by changing gy. numerical_grad() function also accepts additional eps argument, which indicates
the quantization width of finite differences.

Note: numerical_grad() function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

Another utility is chainer.testing.assert_allclose() function. This is similar to numpy.testing.
assert_allclose() function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We
can mix them in one invocation of chainer.testing.assert_allclose(). The default values of optional
arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of functions.relu() function

import unittest

from chainer import testing

class TestReLU(unittest.TestCase):
def test_backward_cpu(self):

x = Variable(np.random.randn(3, 2).astype(np.float32))
y = F.relu(x)
y.grad = np.random.randn(3, 2).astype(np.float32)
y.backward()

def f():
return F.relu(x).data,

gx, = gradient_check.numerical_grad(f, (x.data,), (y.grad,))
testing.assert_allclose(gx, x.grad)

18 Chapter 2. Guides

https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose

Chainer Documentation, Release 4.0.0

The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines
compute numerical gradient using the same forward function without backward routine. And at last, we compare these
two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing
CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function chainer.
gradient_check.check_backward() that follows this procedure.

import unittest

from chainer import gradient_check

class TestReLU(unittest.TestCase):
def test_backward_cpu(self):

def f(x):
return F.relu(x)

x = np.random.randn(3, 2).astype(np.float32)
y_grad = np.random.randn(3, 2).astype(np.float32)

gradient_check.check_backward(f, x, y_grad, atol=1e-4, rtol=1e-4)

You can find many examples of function tests under tests/chainer_tests/functions_tests directory.

2.5 Creating Models

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple
linear layers. We can write complex procedures with parameters by combining multiple links like this:

>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)

>>> def my_forward(x):
... h = l1(x)
... return l2(h)

Here the L indicates the links module. A procedure with parameters defined in this way is hard to reuse. More
Pythonic way is combining the links and procedures into a class:

>>> class MyProc(object):
... def __init__(self):

(continues on next page)

2.5. Creating Models 19

https://github.com/chainer/chainer/tree/v4.0.0/tests/chainer_tests/functions_tests

Chainer Documentation, Release 4.0.0

(continued from previous page)

... self.l1 = L.Linear(4, 3)

... self.l2 = L.Linear(3, 2)

...

... def forward(self, x):

... h = self.l1(x)

... return self.l2(h)

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible
save/load features, etc. These features are all supported by the Chain class in Chainer. Then, what we have to do
here is just define the above class as a subclass of Chain:

>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def __call__(self, x):
... h = self.l1(x)
... return self.l2(h)

It shows how a complex chain is constructed by simpler links. Links like l1 and l2 are called child links of MyChain.
Note that Chain itself inherits Link. It means we can define more complex chains that hold MyChain objects as
their child links.

Note: We often define a single forward method of a link by the __call__ operator. Such links and chains are
callable and behave like regular functions of Variables.

Note: In Chainer v1, we could also register the trainable layers (i.e., Link s) to the model by putting them to the
__init__() of Chain or registering them via add_link(). But as these ways are deprecated in Chainer v2,
users are recommended to use the way explained above.

Another way to define a chain is using the ChainList class, which behaves like a list of links:

>>> class MyChain2(ChainList):
... def __init__(self):
... super(MyChain2, self).__init__(
... L.Linear(4, 3),
... L.Linear(3, 2),
...)
...
... def __call__(self, x):
... h = self[0](x)
... return self[1](h)

ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above
case, the Chain class is recommended as a base class.

20 Chapter 2. Guides

Chainer Documentation, Release 4.0.0

2.6 Optimizer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

From the previous guide on Creating Models, let’s use the MyChain class:

>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def __call__(self, x):
... h = self.l1(x)
... return self.l2(h)

To tune parameters values to minimize loss, etc., we have to optimize them by the Optimizer class. It runs a
numerical optimization algorithm on a given link. Many algorithms are implemented in the optimizers module.
Here we use the simplest one, called Stochastic Gradient Descent (SGD):

>>> model = MyChain()
>>> optimizer = optimizers.SGD().setup(model)

The method setup() prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook func-
tions to the optimizer. Hook functions are called after the gradient computation and right before the actual update of
parameters. For example, we can set weight decay regularization by running the next line beforehand:

>>> optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0005))

Of course, you can write your own hook functions. It should be a function or a callable object.

There are two ways to use the optimizer. One is using it via Trainer, which we will see in the following sections.
The other way is using it directly. We here review the latter case. To use the optimizer in an automated fashion, see
the Trainer guide.

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the
update() method with no arguments. Do not forget to clear the gradients beforehand!

>>> x = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> model.cleargrads()
>>> # compute gradient here...
>>> loss = F.sum(model(chainer.Variable(x)))
>>> loss.backward()
>>> optimizer.update()

2.6. Optimizer 21

Chainer Documentation, Release 4.0.0

The other way is just passing a loss function to the update()method. In this case, cleargrads() is automatically
called by the update method, so the user does not have to call it manually.

>>> def lossfun(arg1, arg2):
... # calculate loss
... loss = F.sum(model(arg1 - arg2))
... return loss

>>> arg1 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))

See Optimizer.update() for the full specification.

2.7 Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times. A
typical training loop consists of the following procedures:

1. Iterations over training datasets

2. Preprocessing of extracted mini-batches

3. Forward/backward computations of the neural networks

4. Parameter updates

5. Evaluations of the current parameters on validation datasets

6. Logging and printing of the intermediate results

Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop
abstraction mainly consists of two components:

• Dataset abstraction. It implements 1 and 2 in the above list. The core components are defined in the dataset
module. There are also many implementations of datasets and iterators in datasets and iterators mod-
ules, respectively.

• Trainer. It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by Trainer.
The way to update parameters (3 and 4) is defined by Updater, which can be freely customized. 5 and 6 are
implemented by instances of Extension, which appends an extra procedure to the training loop. Users can
freely customize the training procedure by adding extensions. Users can also implement their own extensions.

2.8 Trainer Extensions

In this section, you will learn about the following topics:

• How to create your own trainer extension

– by defining a simple function

– by defining a function decorated with @make_extension

– by defining a class inherited from Extension class

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

22 Chapter 2. Guides

https://docs.python.org/3/reference/compound_stmts.html#function

Chainer Documentation, Release 4.0.0

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

2.8.1 What is trainer Extension?

Extension is a callable object that takes a Trainer object as an argument. By adding an Extension to a
Trainer using the extend() method, the Extension will be called according to the schedule specified by using
a trigger object (See the details in 1. trigger)

The Trainer object contains all information used in a training loop, e.g., models, optimizers, updaters, iterators, and
datasets, etc. This makes it possible to change settings such as the learning rate of an optimizer.

2.8.2 Write a simple function

You can make a new Extension by writing a simple function which takes a Trainer object as its argument.
For example, when you want to reduce the learning rate periodically during training, an lr_drop extension can be
written as follows:

def lr_drop(trainer):
trainer.updater.get_optimizer('main').lr *= 0.1

Then you can add this function to a Trainer object via extend() method.

trainer.extend(lr_drop, trigger=(10, 'epoch'))

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

2.8.3 Write a function decorated with @make_extension

make_extension() is a decorator that adds some attributes to a given function. For example, the simple extension
we created above can be written in this form:

@training.make_extension(trigger=(10, 'epoch'))
def lr_drop(trainer):

trainer.updater.get_optimizer('main').lr *= 0.1

The difference between the above example and this is whether it has a default trigger or not. In the latter case,
lr_drop() has its default trigger so that unless another trigger is specified via extend() method, the
trigger specified in make_extension() is used by default. The code below acts the same as the former exam-
ple, i.e., it reduces the learning rate every 10 epochs.

trainer.extend(lr_drop)

There are several attributes you can add using the make_extension() decorator.

2.8. Trainer Extensions 23

Chainer Documentation, Release 4.0.0

1. trigger

trigger is an object that takes a Trainer object as an argument and returns a boolean value. If a tuple in the form
(period, unit) is given as a trigger, it will be considered as an IntervalTrigger that invokes the extension
every period unit. For example, when the given tuple is (10, 'epoch'), the extension will run every 10
epochs.

trigger can also be given to the extend() method that adds an extension to a Trainer object. The priority of
triggers is as follows:

• When both extend() and a given Extension have triggers, the trigger given to extend() is used.

• When None is given to extend() as the trigger argument and a given Extension has trigger, the
trigger given to the Extension is used.

• When both trigger attributes in extend() and Extension are None, the Extension will be fired
every iteration.

See the details in the documentation of get_trigger() for more information.

2. default_name

An Extension is kept in a dictionary which is a property in a Trainer. This argument gives the name of the
Extension. Users will see this name in the keys of the snapshot which is a dictionary generated by serialization.

3. priority

As a Trainer object can be assigned multiple Extension objects, the execution order is defined according to the
following three values:

• PRIORITY_WRITER: The priority for extensions that write some records to the observation dictionary. It
includes cases that the extension directly adds values to the observation dictionary, or the extension uses the
chainer.report() function to report values to the observation dictionary. Extensions which write something to
reporter should go first because other Extensions which read those values may be added.

• PRIORITY_EDITOR: The priority for extensions that edit the observation dictionary based on already reported
values. Extensions which edit some values of reported ones should go after the extensions which write values
to reporter but before extensions which read the final values.

• PRIORITY_READER: The priority for extensions that only read records from the observation dictionary. This
is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the
reported values should be fired after all the extensions which have other priorities, e.g, PRIORITY_WRITER
and PRIORITY_EDITOR because it should read the final values.

See the details in the documentation of Trainer for more information.

4. finalizer

You can specify a function which takes a Trainer object as an argument to finalize the extension. It is called once
at the end of the training loop, i.e., when run() has finished.

5. initializer

You can specify a function which takes a Trainer object as an argument to initialize the extension. It is called once
before the training loop begins.

24 Chapter 2. Guides

Chainer Documentation, Release 4.0.0

2.8.4 Write a class inherited from the Extension class

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside
of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this
equation:

𝜂 = 𝜂init

(︂
1− 𝑡

𝑡max

)︂power

The learning rate will be dropped according to the curve below with power = 0.5:

class PolynomialShift(training.Extension):

def __init__(self, attr, power, stop_trigger, batchsize=None,
len_dataset=None):

self._attr = attr
self._power = power
self._init = None
self._t = 0
self._last_value = 0

if stop_trigger[1] == 'iteration':
self._maxiter = stop_trigger[0]

elif stop_trigger[1] == 'epoch':
if batchsize is None or len_dataset is None:

raise ValueError(

(continues on next page)

2.8. Trainer Extensions 25

Chainer Documentation, Release 4.0.0

(continued from previous page)

'When the unit of \'stop_trigger\' is \'epoch\', '
'\'batchsize\' and \'len_dataset\' should be '
'specified to calculate the maximum iteration.')

n_iter_per_epoch = len_dataset / float(batchsize)
self._maxiter = float(stop_trigger[0] * n_iter_per_epoch)

def initialize(self, trainer):
optimizer = trainer.updater.get_optimizer('main')
ensure that _init is set
if self._init is None:

self._init = getattr(optimizer, self._attr)

def __call__(self, trainer):
self._t += 1

optimizer = trainer.updater.get_optimizer('main')
value = self._init * ((1 - (self._t / self._maxiter)) ** self._power)
setattr(optimizer, self._attr, value)
self._last_value = value

def serialize(self, serializer):
self._t = serializer('_t', self._t)
self._last_value = serializer('_last_value', self._last_value)
if isinstance(self._last_value, np.ndarray):

self._last_value = np.asscalar(self._last_value)

stop_trigger = (10000, 'iteration')
trainer.extend(PolynomialShift('lr', 0.5, stop_trigger)

This extension PolynomialShift takes five arguments.

• attr: The name of the optimizer property you want to update using this extension.

• power: The power of the above equation to calculate the learning rate.

• stop_trigger: The trigger given to the Trainer object to specify when to stop the training loop.

• batchsize: The training mini-batchsize.

• len_dataset: The length of the dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed during training by using stop_trigger,
batchsize, and len_dataset, then stores it as a property _maxiter. This property will be used in the
__call__() method to update the learning rate. The initialize() method obtains the initial learning rate
from the optimizer given to the Trainer object. The serialize() method stores or recovers the properties, _t
(number of iterations) and _last_value (the latest learning rate), belonging to this extension.

2.9 Using GPU(s) in Chainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable

(continues on next page)

26 Chapter 2. Guides

Chainer Documentation, Release 4.0.0

(continued from previous page)

from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this section, you will learn about the following topics:

• Relationship between Chainer and CuPy

• Basics of CuPy

• Single-GPU usage of Chainer

• Multi-GPU usage of model-parallel computing

• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:

• Use Chainer on a CUDA-enabled GPU

• Write model-parallel computing in Chainer

• Write data-parallel computing in Chainer

2.9.1 Relationship between Chainer and CuPy

Note: From v2.0.0, CuPy is turned into a separate package and repository. Even if you have CUDA installed in your
environment, you have to install CuPy separately to use GPUs. See Enable CUDA/cuDNN support for the way to set
up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy.ndarray class is the GPU array
implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables
us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which
enables us to write fast implementations dedicated to GPU.

Note: The chainer.backends.cuda module imports many important symbols from CuPy. For example, the
cupy namespace is referred as cuda.cupy in the Chainer code. Note that the chainer.backends.cudamodule
can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and
destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since
memory allocation and release in CUDA (i.e. cudaMalloc and cudaFree functions) synchronize CPU and GPU
computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation,
Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy
to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

2.9.2 Basics of cupy.ndarray

See the document of CuPy for the basic usage of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy.ndarray class is in its core,
which is a compatible GPU alternative of numpy.ndarray. CuPy implements many functions on cupy.ndarray

2.9. Using GPU(s) in Chainer 27

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most
features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy.ndarray from numpy.ndarray is that the content is allocated on the device mem-
ory. The allocation takes place on the current device by default. The current device can be changed by cupy.cuda.
Device object as follows:

with cupy.cuda.Device(1):
x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])

Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a
non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the
chainer.backends.cuda.to_gpu() function copies a numpy.ndarray object to a specified device:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)

It is equivalent to the following code using CuPy:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):

x_gpu = cupy.array(x_cpu)

Moving a device array to the host can be done by chainer.backends.cuda.to_cpu() as follows:

x_cpu = cuda.to_cpu(x_gpu)

It is equivalent to the following code using CuPy:

with x_gpu.device:
x_cpu = x_gpu.get()

Note: The with statements in these codes are required to select the appropriate CUDA device. If user uses only one de-
vice, these device switching is not needed. chainer.backends.cuda.to_cpu() and chainer.backends.
cuda.to_gpu() functions automatically switch the current device correctly.

Chainer also provides a convenient function chainer.backends.cuda.get_device_from_id() and
chainer.backends.cuda.get_device_from_array() to select a device. The former function accepts
an integer or None. When None is given, it returns a dummy device object. Otherwise, it returns a corresponding
device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a
dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device
object also supports with statements like the above example but does nothing. Here are some other examples:

cuda.get_device_from_id(1).use()
x_gpu1 = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_id(1):
x_gpu1 = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_array(x_gpu1):
y_gpu1 = x_gpu + 1

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device
switching:

28 Chapter 2. Guides

https://docs-cupy.chainer.org/en/stable/reference/index.html#cupy-reference
https://docs.scipy.org/doc/numpy/index.html
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

def add1(x):
with cuda.get_device_from_array(x):

return x + 1

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the
chainer.backends.cuda.get_array_module() function. This function returns the numpy or cupymod-
ule based on arguments. A CPU/GPU generic function is defined using it like follows:

Stable implementation of log(1 + exp(x))
def softplus(x):

xp = cuda.get_array_module(x)
return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

2.9.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand.
In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_gpu() method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu() method also accepts
a device ID like model.to_gpu(0). In this case, the link object is transferred to the appropriate GPU device. The
current device is used by default.

If we use chainer.training.Trainer, what we have to do is just let the updater know the device ID to send
each mini-batch.

updater = training.updaters.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')

We also have to specify the device ID for an evaluator extension as well.

trainer.extend(extensions.Evaluator(test_iter, model, device=0))

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]]))
t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))
optimizer.update(model, x, t)

2.9.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”.
Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means paral-
lelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs
in Chainer.

2.9. Using GPU(s) in Chainer 29

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers
with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two
GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

(GPU0) input --+--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+--> output
| | |

(GPU1) +--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+

We can use the above MLP chain as following diagram:

(GPU0) input --+--> mlp1 --+--> mlp2 --+--> output
| | |

(GPU1) +--> mlp1 --+--> mlp2 --+

Let’s write a link for the whole network.

class ParallelMLP(Chain):
def __init__(self):

super(ParallelMLP, self).__init__()
with self.init_scope():

the input size, 784, is inferred
self.mlp1_gpu0 = MLP(1000, 2000).to_gpu(0)
self.mlp1_gpu1 = MLP(1000, 2000).to_gpu(1)

the input size, 2000, is inferred
self.mlp2_gpu0 = MLP(1000, 10).to_gpu(0)
self.mlp2_gpu1 = MLP(1000, 10).to_gpu(1)

def __call__(self, x):
assume x is on GPU 0
z0 = self.mlp1_gpu0(x)
z1 = self.mlp1_gpu1(F.copy(x, 1))

sync
h0 = F.relu(z0 + F.copy(z1, 0))
h1 = F.relu(z1 + F.copy(z0, 1))

y0 = self.mlp2_gpu0(h0)
y1 = self.mlp2_gpu1(h1)

sync
y = y0 + F.copy(y1, 0)
return y # output is on GPU0

Recall that the Link.to_gpu() method returns the link itself. The copy() function copies an input variable to
specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely
transfers an output gradient to the input device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the
above code run asynchronously to the host CPU.

An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py.

30 Chapter 2. Guides

https://github.com/chainer/chainer/blob/v4.0.0/examples/mnist/train_mnist_model_parallel.py

Chainer Documentation, Release 4.0.0

2.9.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it
means that a different device does computation on a different subset of the input data. In this subsection, we review
the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The
most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define
a model and optimizer instances:

model = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred
optimizer = optimizers.SGD()
optimizer.setup(model)

Recall that the MLP link implements the multi-layer perceptron, and the Classifier link wraps it to provide a clas-
sifier interface. We used StandardUpdater in the previous example. In order to enable data-parallel computation
with multiple GPUs, we only have to replace it with ParallelUpdater.

updater = training.updaters.ParallelUpdater(train_iter, optimizer,
devices={'main': 0, 'second': 1})

The devices option specifies which devices to use in data-parallel learning. The device with name 'main' is used
as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above
example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every
backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the
updated parameters are sent to GPU 1 again.

See also the example code in examples/mnist/train_mnist_data_parallel.py.

2.9.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer. Most users can skip
this section. If you are interested in how to write a data-parallel computation by yourself, this section should be
informative. It is also helpful to, e.g., customize the ParallelUpdater class.

We again start from the MNIST example. At this time, we use a suffix like _0 and _1 to distinguish objects on each
device. First, we define a model.

model_0 = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred

We want to make two copies of this instance on different GPUs. The Link.to_gpu() method runs in place, so we
cannot use it to make a copy. In order to make a copy, we can use Link.copy() method.

model_1 = model_0.copy()
model_0.to_gpu(0)
model_1.to_gpu(1)

The Link.copy() method copies the link into another instance. It just copies the link hierarchy, and does not copy
the arrays it holds.

Then, set up an optimizer:

optimizer = optimizers.SGD()
optimizer.setup(model_0)

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be
aggregated to those of model_0.

2.9. Using GPU(s) in Chainer 31

https://github.com/chainer/chainer/blob/v4.0.0/examples/mnist/train_mnist_data_parallel.py

Chainer Documentation, Release 4.0.0

Then, we can write a data-parallel learning loop as follows:

batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

x_batch = x_train[indexes[i : i + batchsize]]
y_batch = y_train[indexes[i : i + batchsize]]

x0 = Variable(cuda.to_gpu(x_batch[:batchsize//2], 0))
t0 = Variable(cuda.to_gpu(y_batch[:batchsize//2], 0))
x1 = Variable(cuda.to_gpu(x_batch[batchsize//2:], 1))
t1 = Variable(cuda.to_gpu(y_batch[batchsize//2:], 1))

loss_0 = model_0(x0, t0)
loss_1 = model_1(x1, t1)

model_0.cleargrads()
model_1.cleargrads()

loss_0.backward()
loss_1.backward()

model_0.addgrads(model_1)
optimizer.update()

model_1.copyparams(model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU 0, the
other half to GPU 1. Then the gradients are accumulated by the Link.addgrads() method. This method adds the
gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual
way. Note that the update only modifies the parameters of model_0. So we must manually copy them to model_1
using Link.copyparams() method.

Note: If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the
number of models, when we aggregate gradients from all models by chainer.Link.addgrads(). So you need
to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please
refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define
a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple
(elementwise) CUDA kernel using Chainer’s CUDA utilities.

2.10 Type Checks

In this section, you will learn about the following things:

• Basic usage of type check

• Detail of type information

• Internal mechanism of type check

32 Chapter 2. Guides

https://github.com/chainer/chainer/tree/v4.0.0/examples

Chainer Documentation, Release 4.0.0

• More complicated cases

• Call functions

• Typical type check example

After reading this section, you will be able to:

• Write a code to check types of input arguments of your own functions

2.10.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result
by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such
problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is
called just before the forward() method of the Function class. You can override this method to check the
condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

def check_type_forward(self, in_types):
...

in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the
first argument, use in_types[0]. If the function gets multiple arguments, we recommend to use new variables for
readability:

x_type, y_type = in_types

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type
equals to 2, write this code:

utils.type_check.expect(x_type.ndim == 2)

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message
like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

2.10.2 Detail of type information

You can access three information of x_type.

• .shape is a tuple of ints. Each value is size of each dimension.

• .ndim is int value representing the number of dimensions. Note that ndim == len(shape)

• .dtype is numpy.dtype representing data type of the value.

2.10. Type Checks 33

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect(x_type.shape[0] > 0)

You can also check data types with .dtype:

utils.type_check.expect(x_type.dtype == np.float64)

And an error is like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].dtype == <class 'numpy.
→˓float64'>
Actual: float32 != <class 'numpy.float64'>

You can also check kind of dtype. This code checks if the type is floating point

utils.type_check.expect(x_type.dtype.kind == 'f')

You can compare between variables. For example, the following code checks if the first argument and the second
argument have the same length:

utils.type_check.expect(x_type.shape[1] == y_type.shape[1])

2.10.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If x_type is an object containing ndim
member variable, we cannot show such an error message because this equation is evaluated as a boolean value by
Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself. Expr represents a syntax
tree. x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim'). x_type.ndim ==
2 makes an object like (eq, (getattr, x_type, 'ndim'), 2). type_check.expect() gets a Expr
object and evaluates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a
readable error message.

If you want to evaluate a Expr object, call eval() method:

actual_type = x_type.eval()

actual_type is an instance of TypeInfo, while x_type is an instance of Expr. In the same way, x_type.
shape[0].eval() returns an int value.

2.10.4 More powerful methods

Expr class is more powerful. It supports all mathematical operators such as + and *. You can write a condition that
the first dimension of x_type is the first dimension of y_type times four:

utils.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)

When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

34 Chapter 2. Guides

Chainer Documentation, Release 4.0.0

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1].
→˓shape[0] * 4
Actual: 3 != 4

To compare a member variable of your function, wrap a value with Variable to show readable error message:

x_type.shape[0] == utils.type_check.Variable(self.in_size, "in_size")

This code can check the equivalent condition below:

x_type.shape[0] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter
code shows unreadable error message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4 # what does
→˓'4' mean?
Actual: 3 != 4

Note that the second argument of utils.type_check.Variable is only for readability.

The former shows this message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size # OK,
→˓`in_size` is a value that is given to the constructor
Actual: 3 != 4 # You can also check actual value here

2.10.5 Call functions

How to check summation of all values of shape? Expr also supports function call:

sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)

Why do we need to wrap the function numpy.sum with utils.type_check.Variable? x_type.shape is
not a tuple but an object of Expr as we have seen before. Therefore, numpy.sum(x_type.shape) fails. We
need to evaluate this function lazily.

The above example produces an error message like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10

2.10.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate Expr and get
its result value with eval() method. Then check the condition and show warning message by hand:

2.10. Type Checks 35

Chainer Documentation, Release 4.0.0

x_shape = x_type.shape.eval() # get actual shape (int tuple)
if not more_complicated_condition(x_shape):

expect_msg = 'Shape is expected to be ...'
actual_msg = 'Shape is ...'
raise utils.type_check.InvalidType(expect_msg, actual_msg)

Please write a readable error message. This code generates the following error message:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: Shape is expected to be ...
Actual: Shape is ...

2.10.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect(in_types.size() == 2)

in_types.size() returns a Expr object representing the number of arguments. You can check it in the same
way.

And then, get each type:

x_type, y_type = in_types

Don’t get each value before checking in_types.size(). When the number of argument is illegal, type_check.
expect might output unuseful error messages. For example, this code doesn’t work when the size of in_types is
0:

utils.type_check.expect(
in_types.size() == 2,
in_types[0].ndim == 3,

)

After that, check each type:

utils.type_check.expect(
x_type.dtype == np.float32,
x_type.ndim == 3,
x_type.shape[1] == 2,

)

The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.

2.11 Serializers – saving and loading

Serializer is a simple interface to serialize or deserialize an object. Link, Optimizer, and Trainer support
serialization.

Concrete serializers are defined in the serializers module. It supports NumPy NPZ and HDF5 formats.

For example, we can serialize a link object into NPZ file by the serializers.save_npz() function:

36 Chapter 2. Guides

Chainer Documentation, Release 4.0.0

Assuming we have defined a model:

>>> from chainer import serializers
>>> serializers.save_npz('my.model', model)

This saves the parameters of model into the file 'my.model' in NPZ format. The saved model can be read back
from my.model back into model by the serializers.load_npz() function:

>>> serializers.load_npz('my.model', model)

Note: Note that only the parameters and the persistent values are serialized by this serialization code. Other attributes
are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values by the
Link.add_persistent() method. The registered values can be accessed by attributes of the name passed to the
add_persistent method.

The state of an optimizer can also be saved by the same functions:

>>> serializers.save_npz('my.state', optimizer)
>>> serializers.load_npz('my.state', optimizer)

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum
vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to
explicitly save the target link with the optimizer to resume the optimization from saved states.

Support of the HDF5 format is enabled if the h5py package is installed. Serialization and deserialization with the
HDF5 format are almost identical to those with the NPZ format; just replace save_npz() and load_npz() by
save_hdf5() and load_hdf5(), respectively.

2.11. Serializers – saving and loading 37

Chainer Documentation, Release 4.0.0

38 Chapter 2. Guides

CHAPTER 3

Neural Net Examples

3.1 MNIST using Trainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

By using Trainer, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides
many useful extensions that can be used with Trainer to visualize your results, evaluate your model, store and
manage log files more easily.

This example will show how to use the Trainer to train a fully-connected feed-forward neural network on the
MNIST dataset.

Note: If you would like to know how to write a training loop without using the Trainer, please check MNIST with
a Manual Training Loop instead of this tutorial.

3.1.1 1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

39

Chainer Documentation, Release 4.0.0

from chainer.datasets import mnist

train, test = mnist.get_mnist()

Note: You can use a Python list as a dataset. That’s because Iterator can take any object as a dataset whose
elements can be accessed via [] accessor and whose length can be obtained with len() function. For example,

train = [(x1, t1), (x2, t2), ...]

a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in datasets. It’s recommended to utilize them in the actual applica-
tions.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those
data into a list like above. In that case, you can use ImageDataset, which just keeps the paths to image files. The
actual image data will be loaded from the disk when the corresponding element is requested via [] accessor. Until
then, no images are loaded to the memory to reduce memory use.

3.1.2 2. Prepare the dataset iterations

Iterator creates a mini-batch from the given dataset.

batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize, False, False)

3.1.3 3. Prepare the model

Here, we are going to use the same model as the one defined in MNIST with a Manual Training Loop.

class MLP(Chain):

def __init__(self, n_mid_units=100, n_out=10):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(None, n_mid_units)
self.l3 = L.Linear(None, n_out)

def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

gpu_id = 0 # Set to -1 if you use CPU

model = MLP()
if gpu_id >= 0:

model.to_gpu(gpu_id)

40 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

3.1.4 4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown
below.

Basically, all you need to pass to Trainer is an Updater. However, Updater contains an Iterator and
Optimizer. Since Iterator can access the dataset and Optimizer has references to the model, Updater can
access to the model to update its parameters.

So, Updater can perform the training procedure as shown below:

1. Retrieve the data from dataset and construct a mini-batch (Iterator)

2. Pass the mini-batch to the model and calculate the loss

3. Update the parameters of the model (Optimizer)

Now let’s create the Updater object !

max_epoch = 10

Wrap your model by Classifier and include the process of loss calculation within
→˓your model.
Since we do not specify a loss function here, the default 'softmax_cross_entropy'
→˓is used.
model = L.Classifier(model)

(continues on next page)

3.1. MNIST using Trainer 41

Chainer Documentation, Release 4.0.0

(continued from previous page)

selection of your optimizing method
optimizer = optimizers.MomentumSGD()

Give the optimizer a reference to the model
optimizer.setup(model)

Get an updater that uses the Iterator and Optimizer
updater = training.updaters.StandardUpdater(train_iter, optimizer, device=gpu_id)

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier,
which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you
give the input data and the corresponding class labels to the model by the () operator,

1. __call__() of the model is invoked. The data is then given to predictor to obtain the output y.

2. Next, together with the given labels, the output y is passed to the loss function which is determined by lossfun
argument in the constructor of Classifier.

3. The loss is returned as a Variable.

In Classifier, the lossfun is set to softmax_cross_entropy() as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the
MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses
the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

3.1.5 5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that
we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like
(length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is
given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will
never be stopped.

Setup a Trainer
trainer = training.Trainer(updater, (max_epoch, 'epoch'), out='mnist_result')

The out argument specifies an output directory used to save the log files, the image files of plots to show the time
progress of loss, accuracy, etc. when you use PlotReport extension. Next, we will explain how to display or save
those information by using trainer Extension.

3.1.6 6. Add Extensions to the Trainer object

The Trainer extensions provide the following capabilities:

• Save log files automatically (LogReport)

• Display the training information to the terminal periodically (PrintReport)

• Visualize the loss progress by plotting a graph periodically and save it as an image file (PlotReport)

• Automatically serialize the state periodically (snapshot() / snapshot_object())

• Display a progress bar to the terminal to show the progress of training (ProgressBar)

42 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

• Save the model architecture as a Graphviz’s dot file (dump_graph())

To use these wide variety of tools for your training task, pass Extension objects to the extend() method of your
Trainer object.

from chainer.training import extensions

trainer.extend(extensions.LogReport())
trainer.extend(extensions.snapshot(filename='snapshot_epoch-{.updater.epoch}'))
trainer.extend(extensions.snapshot_object(model.predictor, filename='model_epoch-{.
→˓updater.epoch}'))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy',
→˓'validation/main/loss', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], x_key=
→˓'epoch', file_name='loss.png'))
trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], x_
→˓key='epoch', file_name='accuracy.png'))
trainer.extend(extensions.dump_graph('main/loss'))

LogReport

Collect loss and accuracy automatically every epoch or iteration and store the information under the log
file in the directory specified by the out argument when you create a Trainer object.

snapshot()

The snapshot() method saves the Trainer object at the designated timing (default: every epoch) in the directory
specified by out. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make
inferences using the previously trained model later.

snapshot_object()

However, when you keep the whole Trainer object, in some cases, it is very tedious to retrieve only the inside of
the model. By using snapshot_object(), you can save the particular object (in this case, the model wrapped
by Classifier) as a separate snapshot. Classifier is a Chain object which keeps the model that is also a
Chain object as its predictor property, and all the parameters are under the predictor, so taking the snapshot
of predictor is enough to keep all the trained parameters.

This is a list of commonly used trainer extensions:

LogReport This extension collects the loss and accuracy values every epoch or iteration and stores in a log file.
The log file will be located under the output directory (specified by out argument of the Trainer object).

snapshot() This extension saves the Trainer object at the designated timing (defaut: every epoch) in the output
directory. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or
make inferences using the previously trained model later.

snapshot_object() snapshot() extension above saves the whole Trainer object. However, in some
cases, it is tedious to retrieve only the inside of the model. By using snapshot_object(), you can save the
particular object (in the example above, the model wrapped by Classifier) as a separeted snapshot. Taking
the snapshot of predictor is enough to keep all the trained parameters, because Classifier (which is a
subclass of Chain) keeps the model as its predictor property, and all the parameters are under this property.

3.1. MNIST using Trainer 43

Chainer Documentation, Release 4.0.0

dump_graph() This extension saves the structure of the computational graph of the model. The graph is saved in
Graphviz dot format under the output directory of the Trainer.

Evaluator Iterators that use the evaluation dataset and the model object are required to use Evaluator
extension. It evaluates the model using the given dataset (typically it’s a validation dataset) at the specified
timing interval.

PrintReport This extension outputs the spcified values to the standard output.

PlotReport This extension plots the values specified by its arguments and saves it as a image file.

This is not an exhaustive list of built-in extensions. Please take a look at Extensions for more of them.

3.1.7 7. Start Training

Just call run() method from Trainer object to start training.

trainer.run()

epoch main/loss main/accuracy validation/main/loss validation/main/accuracy
→˓ elapsed_time
1 1.53241 0.638409 0.74935 0.835839
→˓ 4.93409
2 0.578334 0.858059 0.444722 0.882812
→˓ 7.72883
3 0.418569 0.886844 0.364943 0.899229
→˓ 10.4229
4 0.362342 0.899089 0.327569 0.905558
→˓ 13.148
5 0.331067 0.906517 0.304399 0.911788
→˓ 15.846
6 0.309019 0.911964 0.288295 0.917722
→˓ 18.5395
7 0.292312 0.916128 0.272073 0.921776
→˓ 21.2173
8 0.278291 0.92059 0.261351 0.923457
→˓ 23.9211
9 0.266266 0.923541 0.253195 0.927314
→˓ 26.6612
10 0.255489 0.926739 0.242415 0.929094
→˓ 29.466

Let’s see the plot of loss progress saved in the mnist_result directory.

44 Chapter 3. Neural Net Examples

http://www.graphviz.org/

Chainer Documentation, Release 4.0.0

How about the accuracy?

Furthermore, let’s visualize the computational graph saved with dump_graph() using Graphviz.

% dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png

3.1. MNIST using Trainer 45

Chainer Documentation, Release 4.0.0

46 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and
parameters are passed to the Functions.

3.1.8 8. Evaluate a pre-trained model

Evaluation using the snapshot of a model is as easy as what explained in the MNIST with a Manual Training Loop.

import matplotlib.pyplot as plt

model = MLP()
serializers.load_npz('mnist_result/model_epoch-10', model)

Show the output
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.show()
print('label:', t)

y = model(x[None, ...])

print('predicted_label:', y.data.argmax(axis=1)[0])

label: 7
predicted_label: 7

The prediction looks correct. Success!

3.2 MNIST with a Manual Training Loop

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

3.2. MNIST with a Manual Training Loop 47

Chainer Documentation, Release 4.0.0

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in
the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example
is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are
10 classes for the labels.

Chainer provides a feature called Trainer that can simplify the training procedure of your model. However, it is
also good to know how the training works in Chainer before starting to use the useful Trainer class that hides the
actual processes. Writing your own training loop can be useful for learning how Trainer works or for implementing
features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. Prepare a dataset

2. Create a dataset iterator

3. Define a network

4. Select an optimization algorithm

5. Write a training loop

(a) Retrieve a set of examples (mini-batch) from the training dataset.

(b) Feed the mini-batch to your network.

(c) Run a forward pass of the network and compute the loss.

(d) Just call the backward() method from the loss Variable to compute the gradients for all trainable
parameters.

(e) Run the optimizer to update those parameters.

6. Save the trained model

7. Perform classification by the saved model and check the network performance on validation/test sets.

3.2.1 1. Prepare a dataset

Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can
automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to
make sure the images are correctly obtained.

from __future__ import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

Download the MNIST data if you haven't downloaded it yet
train, test = mnist.get_mnist(withlabel=True, ndim=1)

(continues on next page)

48 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

Display an example from the MNIST dataset.
`x` contains the inpu t image array and `t` contains that target class
label as an integer.
x, t = train[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('5.png')
print('label:', t)

label: 5

The saved image 5.png will look like:

3.2.2 2. Create a dataset iterator

Although this is an optional step, we’d like to introduce the Iterator class that retrieves a set of data and labels
from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in
different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use SerialIterator, which is also a subclass of Iterator in the example code below. The
SerialIterator can provide mini-batches with or without shuffling the order of data in the given dataset.

All Iterators produce a new mini-batch by calling its next() method. All Iterators also have properties to
know how many times we have taken all the data from the given dataset (epoch) and whether the next mini-batch
will be the start of a new epoch (is_new_epoch), and so on.

The code below shows how to create a SerialIterator object from a dataset object.

from chainer import iterators

Choose the minibatch size.
batchsize = 128

(continues on next page)

3.2. MNIST with a Manual Training Loop 49

Chainer Documentation, Release 4.0.0

(continued from previous page)

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,

repeat=False, shuffle=False)

Note: iterators can take a built-in Python list as a given dataset. It means that the example code below is able to
work,

train = [(x1, t1), (x2, t2), ...] # A list of tuples
train_iter = iterators.SerialIterator(train, batchsize)

where x1, x2, ... denote the input data and t1, t2, ... denote the corresponding labels.

Details of SerialIterator

• SerialIterator is a built-in subclass of Iterator that can retrieve a mini-batch from a given dataset in
either sequential or shuffled order.

• The Iterator’s constructor takes two arguments: a dataset object and a mini-batch size.

• If you want to use the same dataset repeatedly during the training process, set the repeat argument to True
(default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.

• If you want to shuffle the training dataset every epoch, set the shuffle argument to True. Otherwise, the
order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set batchsize = 128 in both train_iter and test_iter. So, these
iterators will provide 128 images and corresponding labels at a time.

3.2.3 3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-
layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is
corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of Chain. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be
instantiated and assigned to a property in the scope specified by init_scope():

2. Define a __call__() method that represents the actual forward computation of your network. This method
takes one or more Variable, numpy.array, or cupy.array as its inputs and calculates the forward pass
using them.

class MyNetwork(Chain):

def __init__(self, n_mid_units=100, n_out=10):
super(MyNetwork, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_mid_units)

(continues on next page)

50 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

self.l2 = L.Linear(n_mid_units, n_mid_units)
self.l3 = L.Linear(n_mid_units, n_out)

def __call__(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
return self.l3(h)

model = MyNetwork()

Link, Chain, ChainList, and those subclass objects which contain trainable parameters should be registered
to the model by assigning it as a property inside the init_scope(). For example, a FunctionNode does not
contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want
to use relu() in your network, using it as a function in __call__() works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words,
we can conceptually think of the computation graph for our network being constructed dynamically as this forward
computation code executes. This allows Chainer to describe networks in which different computations can be per-
formed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key
feature of Chainer that we call Define-by-Run.

3.2.4 4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during
training. They are located in optimizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by
MomentumSGD. To use the optimizer, we give the network object (typically it’s a Chain or ChainList) to the
setup() method of the optimizer object to register it. In this way, the Optimizer can automatically find the
model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example,
you could try to change MomentumSGD to Adam, RMSprop, etc.

from chainer import optimizers

Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)

Give the optimizer a reference to the model so that it
can locate the model's parameters.
optimizer.setup(model)

Note: In the above example, we set lr to 0.01 in the constructor. This value is known as the “learning rate”, one
of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various
optimizers may each have different hyperparameters and so be sure to check the documentation for the details.

3.2.5 5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use
softmax_cross_entropy() as the loss function for the optimizer to minimize. For other types of problems,

3.2. MNIST with a Manual Training Loop 51

Chainer Documentation, Release 4.0.0

such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed
information on the various loss functions for more details.

Our training loop will be structured as follows.

1. We will first get a mini-batch of examples from the training dataset.

2. We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute
the forward-pass code that are written in the __call__() method.

3. This will return the network output that represents class label predictions. We supply it to the loss function along
with the true (that is, target) values. The loss function will output the loss as a Variable object.

4. We then clear any previous gradients in the network and perform the backward pass by calling the backward()
method on the loss variable which computes the parameter gradients. We need to clear the gradients first because
the backward() method accumulates gradients instead of overwriting the previous values.

5. Since the optimizer already has a reference to the network, it has access to the parameters and the computed
gradients so that we can now call the update() method of the optimizer which will update the model param-
eters.

In addition to the above steps, you might want to check the performance of the network with a validation dataset. This
allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to
the training data. The code below checks the performance on the test set at the end of each epoch. The code has the
same structure as the training code except that no backpropagation is performed and we also compute the accuracy on
the test data using the accuracy() function.

The training loop code is as follows:

import numpy as np
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu

max_epoch = 10

while train_iter.epoch < max_epoch:

---------- One iteration of the training loop ----------
train_batch = train_iter.next()
image_train, target_train = concat_examples(train_batch, gpu_id)

Calculate the prediction of the network
prediction_train = model(image_train)

Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy(prediction_train, target_train)

Calculate the gradients in the network
model.cleargrads()
loss.backward()

Update all the trainable paremters
optimizer.update()
--------------------- until here ---------------------

Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the

→˓current epoch

Display the training loss

(continues on next page)

52 Chapter 3. Neural Net Examples

../reference/functions.html#loss-functions
../reference/functions.html#loss-functions

Chainer Documentation, Release 4.0.0

(continued from previous page)

print('epoch:{:02d} train_loss:{:.04f} '.format(
train_iter.epoch, float(to_cpu(loss.data))), end='')

test_losses = []
test_accuracies = []
while True:

test_batch = test_iter.next()
image_test, target_test = concat_examples(test_batch, gpu_id)

Forward the test data
prediction_test = model(image_test)

Calculate the loss
loss_test = F.softmax_cross_entropy(prediction_test, target_test)
test_losses.append(to_cpu(loss_test.data))

Calculate the accuracy
accuracy = F.accuracy(prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.data)

if test_iter.is_new_epoch:
test_iter.epoch = 0
test_iter.current_position = 0
test_iter.is_new_epoch = False
test_iter._pushed_position = None
break

print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
np.mean(test_losses), np.mean(test_accuracies)))

Output

epoch:01 train_loss:0.8072 val_loss:0.7592 val_accuracy:0.8289
epoch:02 train_loss:0.5021 val_loss:0.4467 val_accuracy:0.8841
epoch:03 train_loss:0.3539 val_loss:0.3673 val_accuracy:0.9007
epoch:04 train_loss:0.2524 val_loss:0.3307 val_accuracy:0.9067
epoch:05 train_loss:0.4232 val_loss:0.3076 val_accuracy:0.9136
epoch:06 train_loss:0.3033 val_loss:0.2910 val_accuracy:0.9167
epoch:07 train_loss:0.2004 val_loss:0.2773 val_accuracy:0.9222
epoch:08 train_loss:0.2885 val_loss:0.2679 val_accuracy:0.9239
epoch:09 train_loss:0.2818 val_loss:0.2579 val_accuracy:0.9266
epoch:10 train_loss:0.2403 val_loss:0.2484 val_accuracy:0.9307

3.2.6 6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the
HDF5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to
save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

serializers.save_npz('my_mnist.model', model)

3.2. MNIST with a Manual Training Loop 53

Chainer Documentation, Release 4.0.0

3.2.7 7. Perform classification by the saved model

Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform
the following two steps:

1. Instantiate the same network as what you trained.

2. Overwrite all parameters in the model instance with the saved weights using the load_npz() function.

Once the model is restored, it can be used to predict image labels on new input data.

from chainer import serializers

Create an instance of the network you trained
model = MyNetwork()

Load the saved paremeters into the instance
serializers.load_npz('my_mnist.model', model)

Get a test image and label
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('7.png')
print('label:', t)

label: 7

The saved test image looks like:

Change the shape of the minibatch.
In this example, the size of minibatch is 1.
Inference using any mini-batch size can be performed.

print(x.shape, end=' -> ')
x = x[None, ...]

(continues on next page)

54 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

print(x.shape)

forward calculation of the model by sending X
y = model(x)

The result is given as Variable, then we can take a look at the contents by the
→˓attribute, .data.
y = y.data

Look up the most probable digit number using argmax
pred_label = y.argmax(axis=1)

print('predicted label:', pred_label[0])

(784,) -> (1, 784)
predicted label: 7

The prediction result looks correct. Yay!

3.3 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

• A small convolutional network with a model class that is inherited from Chain,

• A large convolutional network that has several building block networks with ChainList.

After reading this section, you will be able to:

• Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly
used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object
classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmen-
tation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is (𝑁,𝐶,𝐻,𝑊), where

• 𝑁 denotes the number of images in a mini-batch,

• 𝐶 denotes the number of channels of those images,

• 𝐻 and 𝑊 denote the height and width of those images,

respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes.
It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task,
etc.

Note: The below example code assumes that some packages are already imported.

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 55

Chainer Documentation, Release 4.0.0

(continued from previous page)

from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

3.3.1 LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer. This is a ConvNet model that has 5 layers comprised of 3
convolutional layers and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In
Chainer, the model can be written as follows:

class LeNet5(Chain):
def __init__(self):

super(LeNet5, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(
in_channels=1, out_channels=6, ksize=5, stride=1)

self.conv2 = L.Convolution2D(
in_channels=6, out_channels=16, ksize=5, stride=1)

self.conv3 = L.Convolution2D(
in_channels=16, out_channels=120, ksize=4, stride=1)

self.fc4 = L.Linear(None, 84)
self.fc5 = L.Linear(84, 10)

def __call__(self, x):
h = F.sigmoid(self.conv1(x))
h = F.max_pooling_2d(h, 2, 2)
h = F.sigmoid(self.conv2(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.sigmoid(self.conv3(h))
h = F.sigmoid(self.fc4(h))
if chainer.config.train:

return self.fc5(h)
return F.softmax(self.fc5(h))

A typical way to write your network is creating a new class inherited from Chain class. When defining your model in
this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects
of Link as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors
simply by calling the model object like a function, __call__() is usually defined in the model class. This method
performs the forward computation of the model. Chainer uses the powerful autograd system for any computational
graphs written with FunctionNodes and Links (actually a Link calls a corresponding FunctionNode inside
of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the
data, then give it to the model. The way this works is the resulting output Variable from the forward computation
has a backward() method to perform autograd. In the above model, __call__() has a if statement at the end
to switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as
a global variable chainer.config.train. When it’s in training mode, __call__() returns the output value
of the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating softmax().

Note: In Chainer v1, if a function or link behaved differently in training and other modes, it was common that it held
an attribute that represented its running mode or was provided with the mode from outside as an argument. In Chainer

56 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

v2, it is recommended to use the global configuration chainer.config.train to switch the running mode.

If you don’t want to write conv1 and the other layers more than once, you can also write the model like in this way:

class LeNet5(Chain):
def __init__(self):

super(LeNet5, self).__init__()
net = [('conv1', L.Convolution2D(1, 6, 5, 1))]
net += [('_sigm1', F.Sigmoid())]
net += [('_mpool1', F.MaxPooling2D(2, 2))]
net += [('conv2', L.Convolution2D(6, 16, 5, 1))]
net += [('_sigm2', F.Sigmoid())]
net += [('_mpool2', F.MaxPooling2D(2, 2))]
net += [('conv3', L.Convolution2D(16, 120, 4, 1))]
net += [('_sigm3', F.Sigmoid())]
net += [('_mpool3', F.MaxPooling2D(2, 2))]
net += [('fc4', L.Linear(None, 84))]
net += [('_sigm4', F.Sigmoid())]
net += [('fc5', L.Linear(84, 10))]
net += [('_sigm5', F.Sigmoid())]
with self.init_scope():

for n in net:
if not n[0].startswith('_'):

setattr(self, n[0], n[1])
self.forward = net

def __call__(self, x):
for n, f in self.forward:

if not n.startswith('_'):
x = getattr(self, n)(x)

else:
x = f(x)

if chainer.config.train:
return x

return F.softmax(x)

This code creates a list of all Links and FunctionNodes after calling its superclass’s constructor. Then the elements
of the list are registered to this model as trainable layers when the name of an element doesn’t start with _ character.
This operation can be freely replaced with many other ways because those names are just designed to select Links
only from the list net easily. FunctionNode doesn’t have any trainable parameters, so that we can’t register it to
the model, but we want to use FunctionNodes for constructing a forward path. The list net is stored as an attribute
forward to refer it in __call__(). In __call__(), it retrieves all layers in the network from self.forward
sequentially regardless of what types of object (Link or FunctionNode) it is, and gives the input variable or
the intermediate output from the previous layer to the current layer. The last part of the __call__() to switch its
behavior by the training/inference mode is the same as the former way.

Ways to calculate loss

When you train the model with label vector t, the loss should be calculated using the output from the model. There
also are several ways to calculate the loss:

model = LeNet5()

Input data and label
x = np.random.rand(32, 1, 28, 28).astype(np.float32)

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 57

Chainer Documentation, Release 4.0.0

(continued from previous page)

t = np.random.randint(0, 10, size=(32,)).astype(np.int32)

Forward computation
y = model(x)

Loss calculation
loss = F.softmax_cross_entropy(y, t)

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation
can be included in the model itself by wrapping the model object (Chain or ChainList object) with a class inherited
from Chain. The outer Chain should take the model defined above and register it with init_scope(). Chain
is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain.
Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually,
there is already a Classifier class that can be used to wrap the model and include the loss computation as well. It
can be used like this:

model = L.Classifier(LeNet5())

Foward & Loss calculation
loss = model(x, t)

This class takes a model object as an input argument and registers it to a predictor property as a trained parameter.
As shown above, the returned object can then be called like a function in which we pass x and t as the input arguments
and the resulting loss value (which we recall is a Variable) is returned.

See the detailed implementation of Classifier from here: chainer.links.Classifier and check the im-
plementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many
different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

3.3.2 VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block
networks, ChainList is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

class VGG16(chainer.ChainList):
def __init__(self):

super(VGG16, self).__init__(
VGGBlock(64),
VGGBlock(128),
VGGBlock(256, 3),
VGGBlock(512, 3),
VGGBlock(512, 3, True))

def __call__(self, x):
for f in self.children():

x = f(x)
if chainer.config.train:

return x
return F.softmax(x)

class VGGBlock(chainer.Chain):
def __init__(self, n_channels, n_convs=2, fc=False):

(continues on next page)

58 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

w = chainer.initializers.HeNormal()
super(VGGBlock, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(None, n_channels, 3, 1, 1, initialW=w)
self.conv2 = L.Convolution2D(

n_channels, n_channels, 3, 1, 1, initialW=w)
if n_convs == 3:

self.conv3 = L.Convolution2D(
n_channels, n_channels, 3, 1, 1, initialW=w)

if fc:
self.fc4 = L.Linear(None, 4096, initialW=w)
self.fc5 = L.Linear(4096, 4096, initialW=w)
self.fc6 = L.Linear(4096, 1000, initialW=w)

self.n_convs = n_convs
self.fc = fc

def __call__(self, x):
h = F.relu(self.conv1(x))
h = F.relu(self.conv2(h))
if self.n_convs == 3:

h = F.relu(self.conv3(h))
h = F.max_pooling_2d(h, 2, 2)
if self.fc:

h = F.dropout(F.relu(self.fc4(h)))
h = F.dropout(F.relu(self.fc5(h)))
h = self.fc6(h)

return h

That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since
then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so
it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists
of several building blocks that have the same architecture, we can build the whole network by re-using the building
block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu())
following them, and max_pooling_2d() operations. This block is written as VGGBlock in the above example
code. And the whole network just calls this block one by one in sequential manner.

3.3.3 ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16,
having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as
VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNet152(chainer.Chain):
def __init__(self, n_blocks=[3, 8, 36, 3]):

w = chainer.initializers.HeNormal()
super(ResNet152, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(None, 64, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.BatchNormalization(64)
self.res2 = ResBlock(n_blocks[0], 64, 64, 256, 1)
self.res3 = ResBlock(n_blocks[1], 256, 128, 512)
self.res4 = ResBlock(n_blocks[2], 512, 256, 1024)
self.res5 = ResBlock(n_blocks[3], 1024, 512, 2048)
self.fc6 = L.Linear(2048, 1000)

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 59

http://www.image-net.org/challenges/LSVRC/2014/results#clsloc

Chainer Documentation, Release 4.0.0

(continued from previous page)

def __call__(self, x):
h = self.bn1(self.conv1(x))
h = F.max_pooling_2d(F.relu(h), 2, 2)
h = self.res2(h)
h = self.res3(h)
h = self.res4(h)
h = self.res5(h)
h = F.average_pooling_2d(h, h.shape[2:], stride=1)
h = self.fc6(h)
if chainer.config.train:

return h
return F.softmax(h)

class ResBlock(chainer.ChainList):
def __init__(self, n_layers, n_in, n_mid, n_out, stride=2):

super(ResBlock, self).__init__()
self.add_link(BottleNeck(n_in, n_mid, n_out, stride, True))
for _ in range(n_layers - 1):

self.add_link(BottleNeck(n_out, n_mid, n_out))

def __call__(self, x):
for f in self.children():

x = f(x)
return x

class BottleNeck(chainer.Chain):
def __init__(self, n_in, n_mid, n_out, stride=1, proj=False):

w = chainer.initializers.HeNormal()
super(BottleNeck, self).__init__()
with self.init_scope():

self.conv1x1a = L.Convolution2D(
n_in, n_mid, 1, stride, 0, initialW=w, nobias=True)

self.conv3x3b = L.Convolution2D(
n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True)

self.conv1x1c = L.Convolution2D(
n_mid, n_out, 1, 1, 0, initialW=w, nobias=True)

self.bn_a = L.BatchNormalization(n_mid)
self.bn_b = L.BatchNormalization(n_mid)
self.bn_c = L.BatchNormalization(n_out)
if proj:

self.conv1x1r = L.Convolution2D(
n_in, n_out, 1, stride, 0, initialW=w, nobias=True)

self.bn_r = L.BatchNormalization(n_out)
self.proj = proj

def __call__(self, x):
h = F.relu(self.bn_a(self.conv1x1a(x)))
h = F.relu(self.bn_b(self.conv3x3b(h)))
h = self.bn_c(self.conv1x1c(h))
if self.proj:

x = self.bn_r(self.conv1x1r(x))
return F.relu(h + x)

In the BottleNeck class, depending on the value of the proj argument supplied to the initializer, it will conditionally

60 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

compute a convolutional layer conv1x1r which will extend the number of channels of the input x to be equal to the
number of channels of the output of conv1x1c, and followed by a batch normalization layer before the final ReLU
layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in
__class__() by flags but also the parameter registration. In this case, when proj is False, the BottleNeck
doesn’t have conv1x1r and bn_r layers, so the memory usage would be efficient compared to the case when it registers
both anyway and just ignore them if proj is False.

Using nested Chains and ChainList for sequential part enables us to write complex and very deep models easily.

3.3.4 Use Pre-trained Models

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as
general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer
provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these
models as follows:

from chainer.links import VGG16Layers

model = VGG16Layers()

When VGG16Layers is instantiated, the pre-trained parameters are automatically downloaded from the author’s
server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the
details of this model here: chainer.links.VGG16Layers.

In the case of ResNet models, there are three variations differing in the number of layers. We have chainer.links.
ResNet50Layers, chainer.links.ResNet101Layers, and chainer.links.ResNet152Layers
models with easy parameter loading feature. ResNet’s pre-trained parameters are not available for direct down-
loading, so you need to download the weight from the author’s web page first, and then place it into the dir
$CHAINER_DATSET_ROOT/pfnet/chainer/models or your favorite place. Once the preparation is finished,
the usage is the same as VGG16:

from chainer.links import ResNet152Layers

model = ResNet152layers()

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: chainer.links.
ResNet50Layers

References

3.4 Recurrent Nets and their Computational Graph

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import numpy as np
import chainer
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

3.4. Recurrent Nets and their Computational Graph 61

Chainer Documentation, Release 4.0.0

In this section, you will learn how to write

• recurrent nets with full backprop,

• recurrent nets with truncated backprop,

• evaluation of networks with few memory.

After reading this section, you will be able to:

• Handle input sequences of variable length

• Truncate upper stream of the network during forward computation

• Use no-backprop mode to prevent network construction

3.4.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an
input stream 𝑥1, 𝑥2, . . . , 𝑥𝑡, . . . and the initial state ℎ0, a recurrent net iteratively updates its state by ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1),
and at some or every point in time 𝑡, it outputs 𝑦𝑡 = 𝑔(ℎ𝑡). If we expand the procedure along the time axis, it looks
like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence
of words, we want to predict the next word at each position without peeking the successive words. Suppose there
are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word
embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the chainer.
links.LSTM link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-
connected layer. On construction, you pass the input and output size to the constructor:

>>> l = L.LSTM(100, 50)

Then, call on this instance l(x) executes one step of LSTM layer:

>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds
its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the
internal state. Then, the next input can be directly fed to the LSTM instance:

>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)

Based on this LSTM link, let’s write our recurrent network as a new chain:

class RNN(Chain):
def __init__(self):

super(RNN, self).__init__()
with self.init_scope():

self.embed = L.EmbedID(1000, 100) # word embedding
self.mid = L.LSTM(100, 50) # the first LSTM layer
self.out = L.Linear(50, 1000) # the feed-forward output layer

def reset_state(self):
self.mid.reset_state()

(continues on next page)

62 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

def __call__(self, cur_word):
Given the current word ID, predict the next word.
x = self.embed(cur_word)
h = self.mid(x)
y = self.out(h)
return y

rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)

Here EmbedID is a link for word embedding. It converts input integers into corresponding fixed-dimensional embed-
ding vectors. The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it
to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_list. Then, we can compute loss values for the word sequence by simple
for loop.

def compute_loss(x_list):
loss = 0
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
return loss

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its
backward() method to compute gradients of the total loss according to the model parameters:

Suppose we have a list of word variables x_list.
rnn.reset_state()
model.cleargrads()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()

Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state()
optimizer.update(compute_loss, x_list)

3.4.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence
is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This
technique is called truncated backprop. It is heuristic, and it makes the gradients biased. However, this technique
works well in practice if the time range is long enough.

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called back-
ward unchaining. It is implemented in the Variable.unchain_backward() method. Backward unchaining
starts from the Variable object, and it chops the computation history backwards from the variable. The chopped vari-
ables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are
no longer a part of computation history, and are not involved in backprop anymore.

3.4. Recurrent Nets and their Computational Graph 63

Chainer Documentation, Release 4.0.0

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsec-
tion. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We
can write truncated backprop using the model defined above:

loss = 0
count = 0
seqlen = len(x_list[1:])

rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
count += 1
if count % 30 == 0 or count == seqlen:

model.cleargrads()
loss.backward()
loss.unchain_backward()
optimizer.update()

State is updated at model(), and the losses are accumulated to loss variable. At each 30 steps, backprop takes
place at the accumulated loss. Then, the unchain_backward() method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance
holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize
this method to different situations. For example, we can easily extend the above code to use different schedules
between backprop timing and truncation length.

3.4.3 Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables
us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation
history. This is enabled by just calling no_backprop_mode() context:

with chainer.no_backprop_mode():
x_list = [Variable(...) for _ in range(100)] # list of 100 words
loss = compute_loss(x_list)

Note that we cannot call loss.backward() to compute the gradient here, since the variable created in the no-
backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.

We can combine a fixed feature extractor network and a trainable predictor network using no_backprop_mode().
For example, suppose we want to train a feed-forward network predictor_func, which is located on top of another
fixed pre-trained network fixed_func. We want to train predictor_func without storing the computation
history for fixed_func. This is simply done by following code snippets (suppose x_data and y_data indicate
input data and label, respectively):

with chainer.no_backprop_mode():
x = Variable(x_data)
feat = fixed_func(x)

y = predictor_func(feat)
y.backward()

At first, the input variable x is in no-backprop mode, so fixed_func does not memorize the computation history.
Then predictor_func is executed in backprop mode, i.e., with memorizing the history of computation. Since

64 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

the history of computation is only memorized between variables feat and y, the backward computation stops at the
feat variable.

3.4.4 Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use
Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set
of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word
sequence, in which each sentence is separated by a special word <eos>, which stands for “End of Sequence”. This
dataset is easily obtained by chainer.datasets.get_ptb_words(). This function returns train, validation,
and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different
locations to form mini-batches. It means we maintain 𝐵 indices pointing to different locations in the sequence, read
from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the
end of the whole sequence, we turn the index back to 0.

In order to implement this training procedure, we have to customize the following components of Trainer:

• Iterator. Built-in iterators do not support reading from different locations and aggregating them into a mini-
batch.

• Update function. The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface
is not fixed. On the other hand, the iterator must support the Iterator interface. The important methods and
attributes to implement are batch_size, epoch, epoch_detail, is_new_epoch, iteration, __next__,
and serialize. Following is a code from the official example in the examples/ptb directory.

from __future__ import division

class ParallelSequentialIterator(chainer.dataset.Iterator):
def __init__(self, dataset, batch_size, repeat=True):

self.dataset = dataset
self.batch_size = batch_size
self.epoch = 0
self.is_new_epoch = False
self.repeat = repeat
self.offsets = [i * len(dataset) // batch_size for i in range(batch_size)]
self.iteration = 0

def __next__(self):
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:

raise StopIteration
cur_words = self.get_words()
self.iteration += 1
next_words = self.get_words()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list(zip(cur_words, next_words))

(continues on next page)

3.4. Recurrent Nets and their Computational Graph 65

https://github.com/chainer/chainer/tree/v4.0.0/examples/ptb

Chainer Documentation, Release 4.0.0

(continued from previous page)

@property
def epoch_detail(self):

return self.iteration * self.batch_size / len(self.dataset)

def get_words(self):
return [self.dataset[(offset + self.iteration) % len(self.dataset)]

for offset in self.offsets]

def serialize(self, serializer):
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)

train_iter = ParallelSequentialIterator(train, 20)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)

Although the code is slightly long, the idea is simple. First, this iterator creates offsets pointing to positions
equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset.
The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of
integer arrays by the concat_examples function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.

class BPTTUpdater(training.updaters.StandardUpdater):

def __init__(self, train_iter, optimizer, bprop_len):
super(BPTTUpdater, self).__init__(train_iter, optimizer)
self.bprop_len = bprop_len

The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0
When we pass one iterator and optimizer to StandardUpdater.__init__,
they are automatically named 'main'.
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')

Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

Get the next batch (a list of tuples of two word IDs)
batch = train_iter.__next__()

Concatenate the word IDs to matrices and send them to the device
self.converter does this job
(it is chainer.dataset.concat_examples by default)
x, t = self.converter(batch)

Compute the loss at this time step and accumulate it
loss += optimizer.target(chainer.Variable(x), chainer.Variable(t))

optimizer.target.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters

updater = BPTTUpdater(train_iter, optimizer, bprop_len) # instantiation

In this case, we update the parameters on every bprop_len consecutive words. The call of unchain_backward

66 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost
same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to man-
age the history of computation (a.k.a. computational graph). The example in the examples/ptb directory implements
truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will
review how to use GPU(s) in Chainer.

3.5 RNN Language Models

3.5.1 0. Introduction

The language model is modeling the probability of generating natural language sentences or documents. You can
use the language model to estimate how natural a sentence or a document is. Also, with the language model, you can
generate new sentences or documents.

Let’s start with modeling the probability of generating sentences. We represent a sentence as X = (x0,x1, ...,x𝑇), in
which x𝑡 is a one-hot vector. Generally, x0 is the one-hot vector of BOS (beginning of sentence), and x𝑇 is that of
EOS (end of sentence).

A language model models the probability of a word occurrence under the condition of its previous words in a sentence.
Let X[𝑖,𝑗] be (x𝑖,x𝑖+1, ...,x𝑗), the occurrence probability of sentence X can be represented as follows:

𝑃 (X) = 𝑃 (x0)

𝑇∏︁
𝑡=1

𝑃 (x𝑡|X[0,𝑡−1])

So, the language model 𝑃 (X) can be decomposed into word probabilities conditioned with its previous words. In this
tutorial, we model 𝑃 (x𝑡|X[0,𝑡−1]) with a recurrent neural network to obtain a language model 𝑃 (X).

3.5.2 1. Basic Idea of Recurrent Neural Net Language Model

1.1 Recurrent Neural Net Language Model

Recurrent Neural Net Language Model (RNNLM) is a type of neural net language models which contains the RNNs
in the network. Since an RNN can deal with the variable length inputs, it is suitable for modeling the sequential data
such as sentences in natural language.

We show one layer of an RNNLM with these parameters.

Symbol Definition
x𝑡 the one-hot vector of 𝑡-th word
y𝑡 the 𝑡-th output
h
(𝑖)
𝑡 the 𝑡-th hidden layer of 𝑖-th layer

p𝑡 the next word’s probability of 𝑡-th word
E Embedding matrix
Wℎ Hidden layer matrix
W𝑜 Output layer matrix

3.5. RNN Language Models 67

https://github.com/chainer/chainer/tree/v4.0.0/examples/ptb

Chainer Documentation, Release 4.0.0

The process to get a next word prediction from 𝑖-th input word x𝑡

1. Get the embedding vector: h(0)
𝑡 = Ex𝑡

2. Calculate the hidden layer: h(1)
𝑡 = tanh

(︃
Wℎ

[︃
h
(0)
𝑡

h
(1)
𝑡−1

]︃)︃

3. Calculate the output layer: y𝑡 = W𝑜h
(1)
𝑡

4. Transform to probability: p𝑡 = softmax(y𝑡)

Note:

• Note that tanh in the above equation is applied to the input vector in element-wise manner.

• Note that
[︂

a
b

]︂
denotes a concatenated vector of a and b.

• Note that softmax in the above equation converts an arbitrary real vector to a probability vector which the
summation over all elements is 1.

1.2 Perplexity (Evaluation of the language model)

Perplexity is the common evaluation metric for a language model. Generally, it measures how well the proposed
probability model 𝑃model(X) represents the target data 𝑃 *(X). Let a validation dataset be 𝐷 = {X(𝑛)}|𝐷|

𝑛=1, which is
a set of sentences, where the 𝑛-th sentence length is 𝑇 (𝑛), and the vocabulary size of this dataset is |𝒱|, the perplexity

68 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

is represented as follows:

𝑏𝑧 𝑠.𝑡. 𝑧 = − 1

|𝒱|

|𝐷|∑︁
𝑛=1

𝑇 (𝑛)∑︁
𝑡=1

log𝑏 𝑃model(x
(𝑛)
𝑡 ,X

(𝑛)
[𝑎,𝑡−1])

We usually use 𝑏 = 2 or 𝑏 = 𝑒. The perplexity shows how much varied the predicted distribution for the next word is.
When a language model represents the dataset well, it should show a high probability only for the correct next word,
so that the entropy should be high. In the above equation, the sign is reversed, so that smaller perplexity means better
model.

During training, we minimize the below cross entropy:

ℋ(𝑃 , 𝑃model) = −𝑃 (X) log𝑃model(X)

where 𝑃 is the empirical distribution of a sequence in the training dataset.

3.5.3 2. Implementation of Recurrent Neural Net Language Model

There is an example of RNN language model in the official repository, so we will explain how to implement a
RNNLM in Chainer based on that: examples/ptb

2.1 Model Overview

The RNNLM used in this notebook is depicted in the above figure. The symbols appeared in the figure are defined as
follows:

Symbol Definition
x𝑡 the one-hot vector of 𝑡-th word
y𝑡 the 𝑡-th output
h
(𝑖)
𝑡 the 𝑡-th hidden layer of 𝑖-th layer

p𝑡 the next word’s probability of 𝑡-th word
E Embedding matrix
Wℎ Hidden layer matrix
W𝑜 Output layer matrix

LSTMs (long short-term memory) are used for the connection of hidden layers. A LSTM is one of major recurrent
neural net modules. It is designed for remembering the long-term memory, so that it should be able to consider

3.5. RNN Language Models 69

https://github.com/chainer/chainer/tree/v4.0.0/examples/ptb

Chainer Documentation, Release 4.0.0

relationships of distant words, such that a word at beginning of sentence and it at the end. We also use Dropout
before both LSTMs and linear transformations. Dropout is one of regularization techniques for preventing overfitting
on training dataset.

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 1: train_ptb.py

import numpy as np

import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions

2.2.2 Define Training Settings

Define all training settings here.

Listing 2: train_ptb.py

parser.add_argument('--batchsize', '-b', type=int, default=20,
help='Number of examples in each mini-batch')

parser.add_argument('--bproplen', '-l', type=int, default=35,
help='Number of words in each mini-batch '

'(= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=39,

help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,

help='GPU ID (negative value indicates CPU)')
parser.add_argument('--gradclip', '-c', type=float, default=5,

help='Gradient norm threshold to clip')
parser.add_argument('--out', '-o', default='result',

help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',

help='Resume the training from snapshot')
parser.add_argument('--test', action='store_true',

help='Use tiny datasets for quick tests')
parser.set_defaults(test=False)
parser.add_argument('--unit', '-u', type=int, default=650,

help='Number of LSTM units in each layer')
parser.add_argument('--model', '-m', default='model.npz',

help='Model file name to serialize')

2.2.3 Define Network Structure

An RNNLM written in Chainer is shown below. It implements the model depicted in the above figure.

70 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

Listing 3: train_ptb.py

class RNNForLM(chainer.Chain):

def __init__(self, n_vocab, n_units):
super(RNNForLM, self).__init__()
with self.init_scope():

self.embed = L.EmbedID(n_vocab, n_units)
self.l1 = L.LSTM(n_units, n_units)
self.l2 = L.LSTM(n_units, n_units)
self.l3 = L.Linear(n_units, n_vocab)

for param in self.params():
param.data[...] = np.random.uniform(-0.1, 0.1, param.data.shape)

def reset_state(self):
self.l1.reset_state()
self.l2.reset_state()

def __call__(self, x):
h0 = self.embed(x)
h1 = self.l1(F.dropout(h0))
h2 = self.l2(F.dropout(h1))
y = self.l3(F.dropout(h2))
return y

• When we instantiate this class for making a model, we give the vocabulary size to n_vocab and the size of
hidden vectors to n_units.

• This network uses chainer.links.LSTM , chainer.links.Linear, and chainer.functions.
dropout as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

• You can access all the parameters in those layers by calling self.params().

• In the constructor, it initializes all parameters with values sampled from a uniform distribution 𝑈(−1, 1).

• The __call__ method takes an word ID x, and calculates the word probability vector for the next word by
forwarding it through the network, and returns the output.

• Note that the word ID x is automatically converted to a |𝒱|-dimensional one-hot vector and then multiplied with
the input embedding matrix in self.embed(x) to obtain an embed vector h0 at the first line of __call__.

2.2.4 Load the Penn Tree Bank Long Word Sequence Dataset

In this notebook, we use Penn Tree Bank dataset that contains number of sentences. Chainer provides an utility func-
tion to obtain this dataset from server and convert it to a long single sequence of word IDs. chainer.datasets.
get_ptb_words() actually returns three separated datasets which are for train, validation, and test.

Let’s download and make dataset objects using it:

Listing 4: train_ptb.py

Load the Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()

3.5. RNN Language Models 71

Chainer Documentation, Release 4.0.0

2.2.5 Define Iterator for Making a Mini-batch from the Dataset

Dataset iterator creates a mini-batch of couple of words at different positions, namely, pairs of current word and its next
word. Each example is a part of sentences starting from different offsets equally spaced within the whole sequence.

Listing 5: train_ptb.py

class ParallelSequentialIterator(chainer.dataset.Iterator):

def __init__(self, dataset, batch_size, repeat=True):
self.dataset = dataset
self.batch_size = batch_size # batch size
Number of completed sweeps over the dataset. In this case, it is
incremented if every word is visited at least once after the last
increment.
self.epoch = 0
True if the epoch is incremented at the last iteration.
self.is_new_epoch = False
self.repeat = repeat
length = len(dataset)
Offsets maintain the position of each sequence in the mini-batch.
self.offsets = [i * length // batch_size for i in range(batch_size)]
NOTE: this is not a count of parameter updates. It is just a count of
calls of ``__next__``.
self.iteration = 0
use -1 instead of None internally
self._previous_epoch_detail = -1.

def __next__(self):
This iterator returns a list representing a mini-batch. Each item
indicates a different position in the original sequence. Each item is
represented by a pair of two word IDs. The first word is at the
"current" position, while the second word at the next position.
At each iteration, the iteration count is incremented, which pushes
forward the "current" position.
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:

If not self.repeat, this iterator stops at the end of the first
epoch (i.e., when all words are visited once).
raise StopIteration

cur_words = self.get_words()
self._previous_epoch_detail = self.epoch_detail
self.iteration += 1
next_words = self.get_words()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list(zip(cur_words, next_words))

@property
def epoch_detail(self):

Floating point version of epoch.
return self.iteration * self.batch_size / len(self.dataset)

(continues on next page)

72 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

@property
def previous_epoch_detail(self):

if self._previous_epoch_detail < 0:
return None

return self._previous_epoch_detail

def get_words(self):
It returns a list of current words.
return [self.dataset[(offset + self.iteration) % len(self.dataset)]

for offset in self.offsets]

def serialize(self, serializer):
It is important to serialize the state to be recovered on resume.
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)
try:

self._previous_epoch_detail = serializer(
'previous_epoch_detail', self._previous_epoch_detail)

except KeyError:
guess previous_epoch_detail for older version
self._previous_epoch_detail = self.epoch + \

(self.current_position - self.batch_size) / len(self.dataset)
if self.epoch_detail > 0:

self._previous_epoch_detail = max(
self._previous_epoch_detail, 0.)

else:
self._previous_epoch_detail = -1.

2.2.6 Define Updater

We use Backpropagation through time (BPTT) for optimize the RNNLM. BPTT can be implemented by overrid-
ing update_core() method of StandardUpdater. First, in the constructor of the BPTTUpdater, it takes
bprop_len as an argument in addition to other arguments StandardUpdater needs. bprop_len defines the
length of sequence 𝑇 to calculate the loss:

ℒ = −
𝑇∑︁

𝑡=0

|𝒱|∑︁
𝑛=1

𝑃 (x
(𝑛)
𝑡+1) log𝑃model(x

(𝑛)
𝑡+1 | x

(𝑛)
𝑡)

where :math‘hat{P}({bf x}_t^n)‘ is a probability for 𝑛-th word in the vocabulary at the position 𝑡 in the training data
sequence.

Listing 6: train_ptb.py

class BPTTUpdater(training.updaters.StandardUpdater):

def __init__(self, train_iter, optimizer, bprop_len, device):
super(BPTTUpdater, self).__init__(

train_iter, optimizer, device=device)
self.bprop_len = bprop_len

The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0
When we pass one iterator and optimizer to StandardUpdater.__init__,

(continues on next page)

3.5. RNN Language Models 73

Chainer Documentation, Release 4.0.0

(continued from previous page)

they are automatically named 'main'.
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')

Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

Get the next batch (a list of tuples of two word IDs)
batch = train_iter.__next__()

Concatenate the word IDs to matrices and send them to the device
self.converter does this job
(it is chainer.dataset.concat_examples by default)
x, t = self.converter(batch, self.device)

Compute the loss at this time step and accumulate it
loss += optimizer.target(chainer.Variable(x), chainer.Variable(t))

optimizer.target.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters

2.2.7 Define Evaluation Function (Perplexity)

Define a function to calculate the perplexity from the loss value. If we take 𝑒 as 𝑏 in the above definition of perplexity,
calculating the perplexity is just to give the loss value to the power of 𝑒:

Listing 7: train_ptb.py

def compute_perplexity(result):
result['perplexity'] = np.exp(result['main/loss'])
if 'validation/main/loss' in result:

result['val_perplexity'] = np.exp(result['validation/main/loss'])

2.2.8 Create Iterator

Here, the code below just creates iterator objects from dataset splits (train/val/test).

Listing 8: train_ptb.py

train_iter = ParallelSequentialIterator(train, args.batchsize)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)
test_iter = ParallelSequentialIterator(test, 1, repeat=False)

2.2.9 Create RNN and Classification Model

Instantiate RNNLM model and wrap it with chainer.links.Classifier because it calculates softmax cross
entropy as the loss.

74 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

Listing 9: train_ptb.py

rnn = RNNForLM(n_vocab, args.unit)
model = L.Classifier(rnn)
model.compute_accuracy = False # we only want the perplexity

Note that Classifier computes not only the loss but also accuracy based on a given input/label pair. To learn the
RNN language model, we only need the loss (cross entropy) in the Classifier because we calculate the perplexity
instead of classification accuracy to check the performance of the model. So, we turn off computing the accuracy by
giving False to model.compute_accuracy attribute.

2.2.10 Setup Optimizer

Prepare an optimizer. Here, we use GradientClipping to prevent gradient explosion. It automatically clips the
gradient to be used to update the parameters in the model with given constant gradclip.

Listing 10: train_ptb.py

optimizer = chainer.optimizers.SGD(lr=1.0)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer_hooks.GradientClipping(args.gradclip))

2.2.11 Setup and Run Trainer

Let’s make a trainer object and start the training! Note that we add an eval_hook to the Evaluator extension
to reset the internal states before starting evaluation process. It can prevent to use training data during evaluating the
model.

Listing 11: train_ptb.py

updater = BPTTUpdater(train_iter, optimizer, args.bproplen, args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

eval_model = model.copy() # Model with shared params and distinct states
eval_rnn = eval_model.predictor
trainer.extend(extensions.Evaluator(

val_iter, eval_model, device=args.gpu,
Reset the RNN state at the beginning of each evaluation
eval_hook=lambda _: eval_rnn.reset_state()))

interval = 10 if args.test else 500
trainer.extend(extensions.LogReport(postprocess=compute_perplexity,

trigger=(interval, 'iteration')))
trainer.extend(extensions.PrintReport(

['epoch', 'iteration', 'perplexity', 'val_perplexity']
), trigger=(interval, 'iteration'))
trainer.extend(extensions.ProgressBar(

update_interval=1 if args.test else 10))
trainer.extend(extensions.snapshot())
trainer.extend(extensions.snapshot_object(

model, 'model_iter_{.updater.iteration}'))
if args.resume:

(continues on next page)

3.5. RNN Language Models 75

Chainer Documentation, Release 4.0.0

(continued from previous page)

chainer.serializers.load_npz(args.resume, trainer)

trainer.run()

2.2.12 Evaluate the trained model on test dataset

Let’s see the perplexity on the test split. Trainer’s extension can be used as just a normal function outside of
Trainer.

Listing 12: train_ptb.py

print('test')
eval_rnn.reset_state()
evaluator = extensions.Evaluator(test_iter, eval_model, device=args.gpu)
result = evaluator()
print('test perplexity:', np.exp(float(result['main/loss'])))

2.3 Run Example

2.3.1 Training the model

You can train the model with the script: examples/ptb/train_ptb.py

$ pwd
/root2chainer/chainer/examples/ptb
$ python train_ptb.py --test # run by test mode. If you want to use all data, remove
→˓"--test".
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓train.txt...
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓valid.txt...
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓test.txt...
#vocab = 10000
test
test perplexity: 29889.9857364

2.3.2 Generating sentences

You can generate the sentence which starts with a word in the vocabulary. In this example, we generate a sen-
tence which starts with the word apple. We use the script in the PTB example of the official repository: exam-
ples/ptb/gentxt.py

$ pwd
/root2chainer/chainer/examples/ptb
$ python gentxt.py -m model.npz -p apple
apple a new u.s. economist with <unk> <unk> fixed more than to N the company said who
→˓is looking back to

76 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/blob/v4.0.0/examples/ptb/train_ptb.py
https://github.com/chainer/chainer/blob/v4.0.0/examples/ptb/gentxt.py
https://github.com/chainer/chainer/blob/v4.0.0/examples/ptb/gentxt.py

Chainer Documentation, Release 4.0.0

3.6 Word2Vec: Obtain word embeddings

3.6.1 0. Introduction

Word2vec is the tool for generating the distributed representation of words, which is proposed by Mikolov et al[1].
When the tool assigns a real-valued vector to each word, the closer the meanings of the words, the greater similarity
the vectors will indicate.

Distributed representation means assigning a real-valued vector for each word and representing the word by the
vector. When representing a word by distributed representation, we call the word embeddings. In this tutorial, we
aim at explaining how to get the word embeddings from Penn Tree Bank dataset.

Let’s think about what the meaning of word is. Since we are human, we can understand that the words “animal” and
“dog” are deeply related each other. But what information will Word2vec use to learn the vectors for words? The
words “animal” and “dog” should have similar vectors, but the words “food” and “dog” should be far from each other.
How to know the features of those words automatically?

3.6.2 1. Basic Idea

Word2vec learns the similarity of word meanings from simple information. It learns the representation of words from
sentences. The core idea is based on the assumption that the meaning of a word is affected by the words around it.
This idea follows distributional hypothesis[2].

The word we focus on to learn its representation is called center word, and the words around it are called context
words. The window size 𝐶 determines the number of context words which is considered.

Here, let’s see the algorithm by using an example sentence: “The cute cat jumps over the lazy dog.”.

• All of the following figures consider “cat” as the center word.

• According to the window size 𝐶, you can see that the number of context words is changed.

3.6.3 2. Main Algorithm

Word2vec, the tool for creating the word embeddings, is actually built with two models, which are called Skip-gram
and CBoW.

To explain the models with the figures below, we will use the following symbols.

3.6. Word2Vec: Obtain word embeddings 77

Chainer Documentation, Release 4.0.0

Symbol Definition
|𝒱| The size of vocabulary
𝐷 The size of embedding vector
v𝑡 A one-hot center word vector
𝑉𝑡±𝐶 A set of 2𝐶 context vectors around v𝑡, namely, {v𝑡+𝑐}𝐶𝑐=−𝐶∖v𝑡

l𝐻 An embedding vector of an input word vector
l𝑂 An output vector of the network
W𝐻 The embedding matrix for inputs
W𝑂 The embedding matrix for outputs

Note: Using negative sampling or hierarchical softmax for the loss function is very common, however, in this
tutorial, we will use the softmax over all words and skip the other variants for the sake of simplicity.

2.1 Skip-gram

This model learns to predict context words 𝑉𝑡±𝐶 when a center word v𝑡 is given. In the model, each row of the
embedding matrix for input W𝐻 becomes a word embedding of each word.

When you input a center word v𝑡 into the network, you can predict one of context words v̂𝑡+𝑐 ∈ 𝑉𝑡±𝐶 as follows:

1. Calculate an embedding vector of the input center word vector: l𝐻 = W𝐻v𝑡

2. Calculate an output vector of the embedding vector: l𝑂 = W𝑂l𝐻

3. Calculate a probability vector of a context word: v̂𝑡+𝑐 = softmax(l𝑂)

Each element of the |𝒱|-dimensional vector v̂𝑡+𝑐 is a probability that a word in the vocabulary turns out to be a context
word at position 𝑐. So, the probability 𝑝(v𝑡+𝑐|v𝑡) can be estimated by a dot product of the one-hot vector v𝑡+𝑐 which
represents the actual word at the position 𝑐 and the output vector v̂𝑡+𝑐.

𝑝(v𝑡+𝑐|v𝑡) = v𝑇
𝑡+𝑐v̂𝑡+𝑐

The loss function to predict all the context words 𝑉𝑡±𝐶 given a center word v𝑡 is defined as follows:

𝐿(𝑉𝑡±𝐶 |v𝑡;W𝐻 ,W𝑂) =
∑︁
𝑉𝑡±𝐶

− log (𝑝(v𝑡+𝑐 | v𝑡))

=
∑︁
𝑉𝑡±𝐶

− log(v𝑇
𝑡+𝑐v̂𝑡+𝑐)

2.2 Continuous Bag of Words (CBoW)

This model learns to predict center word v𝑡 when context words 𝑉𝑡±𝐶 is given. When you give a set of context words
𝑉𝑡±𝐶 to the network, you can estimate the probability of the center word v̂𝑡 as follows:

1. Calculate a mean embedding vector over all context words: l𝐻 = 1
2𝐶

∑︀
𝑉𝑡±𝐶

W𝐻v𝑡+𝑐

2. Calculate an output vector of the embedding vector: l𝑂 = W𝑂l𝐻

3. Calculate a probability vector of a center word: v̂𝑡 = softmax(l𝑂)

Each element of the |𝒱|-dimensional vector v̂𝑡 is a probability that a word in the vocabulary turns out to be a center
word. So, the probability 𝑝(v𝑡|𝑉𝑡±𝐶) can be estimated by a dot product of the one-hot vector v𝑡 which represents the
actual center word and the output vector v̂𝑡.

𝑝(v𝑡|𝑉𝑡±𝐶) = v𝑇
𝑡 v̂𝑡

78 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

The loss function to predict the center word v𝑡 given context words 𝑉𝑡±𝐶 is defined as follows:

𝐿(v𝑡|𝑉𝑡±𝐶 ;W𝐻 ,W𝑂) = − log (𝑝(v𝑡 | 𝑉𝑡±𝐶))

= − log(v𝑇
𝑡 v̂𝑡)

3.6.4 3. Details of Skip-gram

In this tutorial, we mainly explain Skip-gram model because

1. It is easier to understand the algorithm than CBoW.

2. Even if the number of words increases, the accuracy is largely maintained. So, it is more scalable.

So, let’s think about a concrete example of calculating Skip-gram under this setup:

• The size of vocabulary |𝒱| is 10.

• The size of embedding vector 𝐷 is 2.

• Center word is “dog”.

• Context word is “animal”.

Since there should be more than one context word, repeat the following process for each context word.

1. The one-hot vector of “dog” is [0 0 1 0 0 0 0 0 0 0] and you input it as the center word.

2. The third row of embedding matrix W𝐻 is used for the word embedding of “dog” l𝐻 .

3. Then, multiply W𝑂 with l𝐻 to obtain the output vector l𝑂.

4. Give l𝑂 to the softmax function to make it a predicted probability vector v̂𝑡+𝑐 for a context word at the position
𝑐.

5. Calculate the error between v̂𝑡+𝑐 and the one-hot vector of “animal”; [1 0 0 0 0 0 0 0 0 0 0].

6. Propagate the error back to the network to update the parameters.

3.6. Word2Vec: Obtain word embeddings 79

Chainer Documentation, Release 4.0.0

3.6.5 4. Implementation of Skip-gram in Chainer

There is an example of Word2vec in the official repository of Chainer, so we will explain how to implement Skip-gram
based on this: examples/word2vec

4.1 Preparation

First, let’s import necessary packages:

Listing 13: train_word2vec.py

import argparse
import collections

import numpy as np
import six

import chainer
from chainer.backends import cuda
import chainer.functions as F
import chainer.initializers as I
import chainer.links as L
import chainer.optimizers as O
from chainer import reporter
from chainer import training
from chainer.training import extensions

4.2 Define a Skip-gram model

Next, let’s define a network for Skip-gram.

Listing 14: train_word2vec.py

class SkipGram(chainer.Chain):
"""Definition of Skip-gram Model"""

def __init__(self, n_vocab, n_units, loss_func):
super(SkipGram, self).__init__()

with self.init_scope():
self.embed = L.EmbedID(

n_vocab, n_units, initialW=I.Uniform(1. / n_units))
self.loss_func = loss_func

def __call__(self, x, contexts):
e = self.embed(contexts)
batch_size, n_context, n_units = e.shape
x = F.broadcast_to(x[:, None], (batch_size, n_context))
e = F.reshape(e, (batch_size * n_context, n_units))
x = F.reshape(x, (batch_size * n_context,))
loss = self.loss_func(e, x)
reporter.report({'loss': loss}, self)
return loss

80 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/v4.0.0/examples/word2vec

Chainer Documentation, Release 4.0.0

Listing 15: train_word2vec.py

class SoftmaxCrossEntropyLoss(chainer.Chain):
"""Softmax cross entropy loss function preceded by linear transformation.

"""

def __init__(self, n_in, n_out):
super(SoftmaxCrossEntropyLoss, self).__init__()
with self.init_scope():

self.out = L.Linear(n_in, n_out, initialW=0)

def __call__(self, x, t):
return F.softmax_cross_entropy(self.out(x), t)

Note:

• The weight matrix self.embed.W is the embedding matrix for input vector x.

• The function call __call__ takes the word ID of a center word x and word IDs of context words contexts as
inputs, and outputs the error calculated by the loss function loss_func s.t. SoftmaxCrossEntropyLoss.

• Note that the initial shape of x and contexts are (batch_size,) and (batch_size, n_context),
respectively.

• The batch_size means the size of mini-batch, and n_context means the number of context words.

First, we obtain the embedding vectors of contexts by e = self.embed(contexts). Then F.
broadcast_to(x[:, None], (shape[0], shape[1])) performs broadcasting of x (its shape is
(batch_size,)) to (batch_size, n_context) by copying the same value n_context time to fill the
second axis, and then the broadcasted x is reshaped into 1-D vector (batchsize * n_context,) while e is re-
shaped to (batch_size * n_context, n_units). In Skip-gram model, predicting a context word from the
center word is the same as predicting the center word from a context word because the center word is always a context
word when considering the context word as a center word. So, we create batch_size * n_context center word
predictions by applying self.out linear layer to the embedding vectors of context words. Then, calculate softmax
cross entropy between the broadcasted center word ID x and the predictions.

4.3 Prepare dataset and iterator

Let’s retrieve the Penn Tree Bank (PTB) dataset by using Chainer’s dataset utility get_ptb_words() method.

train, val, _ = chainer.datasets.get_ptb_words()
counts = collections.Counter(train)

Then define an iterator to make mini-batches that contain a set of center words with their context words. train and
val means training data and validation data. Each data contains the list of Document IDs:

>>> train
array([0, 1, 2, ..., 39, 26, 24], dtype=int32)
>>> val
array([2211, 396, 1129, ..., 108, 27, 24], dtype=int32)

3.6. Word2Vec: Obtain word embeddings 81

Chainer Documentation, Release 4.0.0

Listing 16: train_word2vec.py

class WindowIterator(chainer.dataset.Iterator):
"""Dataset iterator to create a batch of sequences at different positions.

This iterator returns a pair of the current words and the context words.
"""

def __init__(self, dataset, window, batch_size, repeat=True):
self.dataset = np.array(dataset, np.int32)
self.window = window # size of context window
self.batch_size = batch_size
self._repeat = repeat
order is the array which is shuffled ``[window, window + 1, ...,
len(dataset) - window - 1]``
self.order = np.random.permutation(

len(dataset) - window * 2).astype(np.int32)
self.order += window
self.current_position = 0
Number of completed sweeps over the dataset. In this case, it is
incremented if every word is visited at least once after the last
increment.
self.epoch = 0
True if the epoch is incremented at the last iteration.
self.is_new_epoch = False

def __next__(self):
"""This iterator returns a list representing a mini-batch.

Each item indicates a different position in the original sequence.
"""
if not self._repeat and self.epoch > 0:

raise StopIteration

i = self.current_position
i_end = i + self.batch_size
position = self.order[i:i_end]
w = np.random.randint(self.window - 1) + 1
offset = np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)])
pos = position[:, None] + offset[None, :]
contexts = self.dataset.take(pos)
center = self.dataset.take(position)

if i_end >= len(self.order):
np.random.shuffle(self.order)
self.epoch += 1
self.is_new_epoch = True
self.current_position = 0

else:
self.is_new_epoch = False
self.current_position = i_end

return center, contexts

@property
def epoch_detail(self):

return self.epoch + float(self.current_position) / len(self.order)

(continues on next page)

82 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

def serialize(self, serializer):
self.current_position = serializer('current_position',

self.current_position)
self.epoch = serializer('epoch', self.epoch)
self.is_new_epoch = serializer('is_new_epoch', self.is_new_epoch)
if self._order is not None:

serializer('_order', self._order)

• In the constructor, we create an array self.order which denotes shuffled indices of [window, window
+ 1, ..., len(dataset) - window - 1] in order to choose a center word randomly from dataset
in a mini-batch.

• The iterator definition __next__ returns batch_size sets of center word and context words.

• The code self.order[i:i_end] returns the indices for a set of center words from the random-ordered
array self.order. The center word IDs center at the random indices are retrieved by self.dataset.
take.

• np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)]) creates a set of offsets to re-
trieve context words from the dataset.

• The code position[:, None] + offset[None, :] generates the indices of context words for each
center word index in position. The context word IDs context are retrieved by self.dataset.take.

4.4 Prepare model, optimizer, and updater

Listing 17: train_word2vec.py

model = SkipGram(n_vocab, args.unit, loss_func)

Listing 18: train_word2vec.py

optimizer = O.Adam()
optimizer.setup(model)

Listing 19: train_word2vec.py

train_iter = WindowIterator(train, args.window, args.batchsize)
val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)

Set up an updater
updater = training.updaters.StandardUpdater(

train_iter, optimizer, converter=convert, device=args.gpu)

Listing 20: train_word2vec.py

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

trainer.extend(extensions.Evaluator(
val_iter, model, converter=convert, device=args.gpu))

trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(

(continues on next page)

3.6. Word2Vec: Obtain word embeddings 83

Chainer Documentation, Release 4.0.0

(continued from previous page)

['epoch', 'main/loss', 'validation/main/loss']))
trainer.extend(extensions.ProgressBar())
trainer.run()

4.5 Start training

$ pwd
/root2chainer/chainer/examples/word2vec
$ python train_word2vec.py --test # run by test mode. If you want to use all data,
→˓remove "--test".
GPU: -1
unit: 100
Window: 5
Minibatch-size: 1000
epoch: 20
Training model: skipgram
Output type: hsm

n_vocab: 10000
data length: 100
epoch main/loss validation/main/loss
1 4233.75 2495.33
2 1411.14 4990.66
3 4233.11 1247.66
4 2821.66 4990.65
5 4231.94 1247.66
6 5642.04 2495.3
7 5640.82 4990.64
8 5639.31 2495.28
9 2817.89 4990.62
10 1408.03 3742.94
11 5633.11 1247.62
12 4221.71 2495.21
13 4219.3 4990.56
14 4216.57 2495.16
15 4213.52 2495.12
16 5616.03 1247.55
17 5611.34 3742.78
18 2800.31 3742.74
19 1397.79 2494.95
20 2794.1 3742.66

4.5 Search the similar words

$ pwd
/root2chainer/chainer/examples/word2vec
$ python search.py
>> apple
query: apple
compaq: 0.6169619560241699
chip: 0.49579331278800964
retailer: 0.4904134273529053

(continues on next page)

84 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

maker: 0.4684058427810669
computer: 0.4652436673641205
>> animal
query: animal
beauty: 0.5680124759674072
human: 0.5404794216156006
insulin: 0.5365156531333923
cell: 0.5186758041381836
photographs: 0.5077002048492432

3.6.6 5. Reference

• [1] Mikolov, Tomas; et al. “Efficient Estimation of Word Representations in Vector Space”. arXiv:1301.3781

• [2] Distributional Hypothesis

3.7 Write a Sequance to Seqeunce (seq2seq) Model

3.7.1 0. Introduction

The sequence to sequence (seq2seq) model[1][2] is a learning model that converts an input sequence into an output
sequence. In this context, the sequence is a list of symbols, corresponding to the words in a sentence. The seq2seq
model has achieved great success in fields such as machine translation, dialogue systems, question answering, and text
summarization. All of these tasks can be regarded as the task to learn a model that converts an input sequence into an
output sequence.

3.7.2 1. Basic Idea of Seq2seq Model

1.1 Overview of Seq2seq Model

The Notations of Sequence

The seq2seq model converts an input sequence into an output sequence. Let the input sequence and the output sequence
be X and Y. The 𝑖-th element of the input sequence is represented as x𝑖, and the 𝑗-th element of the output sequence
is also represented as y𝑗 . Generally, each of the x𝑖 and the y𝑗 is the one-hot vector of the symbols. For example, in
natural language processing(NLP), the one-hot vector represents the word and its size becomes the vocabulary size.

Let’s think about the seq2seq model in the context of NLP. Let the vocabulary of the inputs and the outputs be 𝒱(𝑠) and
𝒱(𝑡), all the elements x𝑖 and y𝑗 satisfy x𝑖 ∈ R|𝒱(𝑠)| and y𝑖 ∈ R|𝒱(𝑡)|. The input sequence X and the output sequence
Y are represented as the following equations:

X = (x1, ...,x𝐼) = (x𝑖)
𝐼
𝑖=1

Y = (y1, ...,y𝐽) = (y𝑗)
𝐽
𝑗=1

𝐼 and 𝐽 are the length of the input sequence and the output sequence. Using the typical NLP notation, y0 is the one-hot
vector of BOS, which is the virtual word representing the beginning of the sentence, and y𝐽+1 is that of EOS, which
is the virtual word representing the end of the sentence.

3.7. Write a Sequance to Seqeunce (seq2seq) Model 85

https://arxiv.org/abs/1301.3781
https://aclweb.org/aclwiki/Distributional_Hypothesis

Chainer Documentation, Release 4.0.0

The Notations of Conditional Probability 𝑃 (Y|X)

Next, let’s think about the conditional probability 𝑃 (Y|X) generating the output sequence Y when the input sequence
X is given. The purpose of seq2seq model is modeling the probability 𝑃 (Y|X). However, the seq2seq model does not
model the probability 𝑃 (Y|X) directly. Actually, it models the probability 𝑃 (y𝑗 |Y<𝑗 ,X), which is the probability
of generating the 𝑗-th element of the output sequence y𝑗 given the Y<𝑗 and X. Y<𝑗 means the output sequence from
1 to 𝑗 − 1, or (y𝑗)

𝑗−1
𝑗=1. In this notation, you can write the model 𝑃𝜃(Y|X) with the product of 𝑃𝜃(y𝑗 |Y<𝑗 ,X):

𝑃𝜃(Y|X) =

𝐽+1∏︁
𝑗=1

𝑃𝜃(y𝑗 |Y<𝑗 ,X)

Processing Steps in Seq2seq Model

Now, let’s think about the processing steps in seq2seq model. The feature of seq2seq model is that it consists of the
two processes:

1. The process that generates the fixed size vector z from the input sequence X

2. The process that generates the output sequence Y from z

In other words, the information of X is conveyed by z, and 𝑃𝜃(y𝑗 |Y<𝑗 ,X) is actually calculated by 𝑃𝜃(y𝑗 |Y<𝑗 , z).

First, we represent the process which generating z from X by the function Λ:

z = Λ(X)

The function Λ may be the recurrent neural net such as LSTMs.

Second, we represent the process which generating Y from z by the following formula:

𝑃𝜃(y𝑗 |Y<𝑗 ,X) = Υ(h
(𝑡)
𝑗 ,y𝑗)

h
(𝑡)
𝑗 = Ψ(h

(𝑡)
𝑗−1,y𝑗−1)

Ψ is the function to generating the hidden vectors h(𝑡)
𝑗 , and Υ is the function to calculate the generative probability of

the one-hot vector y𝑗 . When 𝑗 = 1, h(𝑡)
𝑗−1 or h(𝑡)

0 is z generated by Λ(X), and y𝑗−1 or y0 is the one-hot vector of
BOS.

1.2 Model Archtecture of Seq2seq Model

In this section, we describe the architecture of seq2seq model. To simplify the explanation, we use the most basic
architecture. The architecture of seq2seq model can be separated to the five major roles.

1. Encoder Embedding Layer

2. Encoder Recurrent Layer

3. Decoder Embedding Layer

4. Decoder Recurrent Layer

5. Decoder Output Layer

86 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

The encoder consists of two layers: the embedding layer and the reccurent layer, and the decoder consists of three
layers: the embedding layer, the reccurent layer, and the output layer.

In the explanation, we use the following symbols:

Symbol Definition
𝐻 the size of the hidden vector
𝐷 the size of the embedding vector
x𝑖 the one-hot vector of 𝑖-th word in the input sentence
x̄𝑖 the embedding vector of 𝑖-th word in the input sentence
E(𝑠) Embedding matrix of the encoder
h
(𝑠)
𝑖 the 𝑖-th hidden vector of the encoder

y𝑗 the one-hot vector of 𝑗-th word in the output sentence
ȳ𝑗 the embedding vector of 𝑗-th word in the output sentence
E(𝑡) Embedding matrix of the decoder
h
(𝑡)
𝑗 the 𝑗-th hidden vector of the encoder

1.2.1 Encoder Embedding Layer

The first layer, or the encoder embedding layer converts the each word in the input sentence to the embedding vector.
When processing the 𝑖-th word in the input sentence, the input and the output of the layer are the following:

• The input is x𝑖 : the one-hot vector which represents 𝑖-th word

3.7. Write a Sequance to Seqeunce (seq2seq) Model 87

Chainer Documentation, Release 4.0.0

• The output is x̄𝑖 : the embedding vector which represents 𝑖-th word

Each embedding vector is calculated by the following equation:

x̄𝑖 = E(𝑠)x𝑖

E(𝑠) ∈ R𝐷×|𝒱(𝑠)| is the embedding matrix of the encoder.

1.2.2 Encoder Recurrent Layer

The encoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the 𝑖-th
embedding vector, the input and the output of the layer are the following:

• The input is x̄𝑖 : the embedding vector which represents the 𝑖-th word

• The output is h(𝑠)
𝑖 : the hidden vector of the 𝑖-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
Ψ(𝑠):

h
(𝑠)
𝑖 = Ψ(𝑠)(x̄𝑖,h

(𝑠)
𝑖−1)

= tanh

(︂
W(𝑠)

[︂
h
(𝑠)
𝑖−1

x̄𝑖

]︂
+ b(𝑠)

)︂
In this case, we use the tanh as the activation function.

1.2.3 Decoder Embedding Layer

The decoder embedding layer converts the each word in the output sentence to the embedding vector. When processing
the 𝑗-th word in the output sentence, the input and the output of the layer are the following:

• The input is y𝑗−1 : the one-hot vector which represents the (𝑗 − 1)-th word generated by the decoder output
layer

• The output is ȳ𝑗 : the embedding vector which represents the (𝑗 − 1)-th word

Each embedding vector is calculated by the following equation:

ȳ𝑗 = E(𝑡)y𝑗−1

E(𝑡) ∈ R𝐷×|𝒱(𝑡)| is the embedding matrix of the encoder.

1.2.4 Decoder Recurrent Layer

The decoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the 𝑗-th
embedding vector, the input and the output of the layer are the following:

• The input is ȳ𝑗 : the embedding vector

• The output is h(𝑡)
𝑗 : the hidden vector of 𝑗-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
Ψ(𝑡):

h
(𝑡)
𝑗 = Ψ(𝑡)(ȳ𝑗 ,h

(𝑡)
𝑗−1)

= tanh

(︂
W(𝑡)

[︂
h
(𝑡)
𝑗−1

ȳ𝑗

]︂
+ b(𝑡)

)︂

88 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

In this case, we use the tanh as the activation function. And we must use the encoder’s hidden vector of the last
position as the decoder’s hidden vector of first position as following:

h
(𝑡)
0 = z = h

(𝑠)
𝐼

1.2.5 Decoder Output Layer

The decoder output layer generates the probability of the 𝑗-th word of the output sentence from the hidden vector.
When processing the 𝑗-th embedding vector, the input and the output of the layer are the following:

• The input is h(𝑡)
𝑗 : the hidden vector of 𝑗-th position

• The output is 𝑝𝑗 : the probability of generating the one-hot vector y𝑗 of the 𝑗-th word

𝑝𝑗 = 𝑃𝜃(y𝑗 |Y<𝑗) = softmax(o𝑗) · y𝑗

= softmax(W(𝑜)h
(𝑡)
𝑗 + b(𝑜)) · y𝑗

Note: There are a lot of varieties of seq2seq models. We can use the different RNN models in terms of: (1) directional-
ity (unidirectional or bidirectional), (2) depth (single-layer or multi-layer), (3) type (a vanilla RNN, a Long Short-term
Memory (LSTM), or a gated recurrent unit (GRU)), and (4) aditional functionality (s.t. Attention Mechanism).

3.7.3 2. Implementation of Seq2seq Model

The official Chainer repository includes a neural machine translation example using the seq2seq model. We
will now provide an overview of the example and explain its implementation in detail. chainer/examples/seq2seq

2.1 Model Overview

In this simple example, an input sequence is processed by a stacked LSTM-RNN (long short-term memory reccurent
neural networks) and it is encoded as a fixed-size vector. The output sequence is also processed by another stacked
LSTM-RNN. At decoding time, an output sequence is generated using argmax.

3.7. Write a Sequance to Seqeunce (seq2seq) Model 89

https://github.com/chainer/chainer/tree/master/examples/seq2seq

Chainer Documentation, Release 4.0.0

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

90 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

Listing 21: seq2seq.py

from nltk.translate import bleu_score
import numpy
import progressbar
import six

import chainer
from chainer.backends import cuda
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions

2.2.2 Define Training Settings

Define all training settings here.

Listing 22: seq2seq.py

parser.add_argument('SOURCE', help='source sentence list')
parser.add_argument('TARGET', help='target sentence list')
parser.add_argument('SOURCE_VOCAB', help='source vocabulary file')
parser.add_argument('TARGET_VOCAB', help='target vocabulary file')
parser.add_argument('--validation-source',

help='source sentence list for validation')
parser.add_argument('--validation-target',

help='target sentence list for validation')
parser.add_argument('--batchsize', '-b', type=int, default=64,

help='number of sentence pairs in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,

help='number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,

help='GPU ID (negative value indicates CPU)')
parser.add_argument('--resume', '-r', default='',

help='resume the training from snapshot')
parser.add_argument('--unit', '-u', type=int, default=1024,

help='number of units')
parser.add_argument('--layer', '-l', type=int, default=3,

help='number of layers')
parser.add_argument('--min-source-sentence', type=int, default=1,

help='minimium length of source sentence')
parser.add_argument('--max-source-sentence', type=int, default=50,

help='maximum length of source sentence')
parser.add_argument('--min-target-sentence', type=int, default=1,

help='minimium length of target sentence')
parser.add_argument('--max-target-sentence', type=int, default=50,

help='maximum length of target sentence')
parser.add_argument('--log-interval', type=int, default=200,

help='number of iteration to show log')
parser.add_argument('--validation-interval', type=int, default=4000,

help='number of iteration to evlauate the model '
'with validation dataset')

parser.add_argument('--out', '-o', default='result',
help='directory to output the result')

3.7. Write a Sequance to Seqeunce (seq2seq) Model 91

Chainer Documentation, Release 4.0.0

2.2.3 Define Network Structure

The Chainer implementation of seq2seq is shown below. It implements the model depicted in the above figure.

Listing 23: seq2seq.py

class Seq2seq(chainer.Chain):

def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
super(Seq2seq, self).__init__()
with self.init_scope():

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID(n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.W = L.Linear(n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

def __call__(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

Both xs and ys_in are lists of arrays.
exs = sequence_embed(self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)
None represents a zero vector in an encoder.
hx, cx, _ = self.encoder(None, None, exs)
_, _, os = self.decoder(hx, cx, eys)

It is faster to concatenate data before calculating loss
because only one matrix multiplication is called.
concat_os = F.concat(os, axis=0)
concat_ys_out = F.concat(ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy(

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report({'loss': loss.data}, self)
n_words = concat_ys_out.shape[0]
perp = self.xp.exp(loss.data * batch / n_words)
chainer.report({'perp': perp}, self)
return loss

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode(), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]
exs = sequence_embed(self.embed_x, xs)
h, c, _ = self.encoder(None, None, exs)
ys = self.xp.full(batch, EOS, numpy.int32)
result = []

(continues on next page)

92 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

for i in range(max_length):
eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)
h, c, ys = self.decoder(h, c, eys)
cys = F.concat(ys, axis=0)
wy = self.W(cys)
ys = self.xp.argmax(wy.data, axis=1).astype(numpy.int32)
result.append(ys)

Using `xp.concatenate(...)` instead of `xp.stack(result)` here to
support NumPy 1.9.
result = cuda.to_cpu(

self.xp.concatenate([self.xp.expand_dims(x, 0) for x in result]).T)

Remove EOS taggs
outs = []
for y in result:

inds = numpy.argwhere(y == EOS)
if len(inds) > 0:

y = y[:inds[0, 0]]
outs.append(y)

return outs

• In Seq2seq, three functions are defined: the constructor __init__, the function call __call__, and the
function for translation translate.

Listing 24: seq2seq.py

def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
super(Seq2seq, self).__init__()
with self.init_scope():

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID(n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.W = L.Linear(n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

• When we instantiate this class for making a model, we give the number of stacked lstms to n_layers, the
vocabulary size of the source language to n_source_vocab, the vocabulary size of the target language to
n_target_vocab, and the size of hidden vectors to n_units.

• This network uses chainer.links.NStepLSTM , chainer.links.EmbedID, and chainer.
links.Linear as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

• You can access all the parameters in those layers by calling self.params().

• In the constructor, it initializes all parameters with values sampled from a uniform distribution 𝑈(−1, 1).

Listing 25: seq2seq.py

def __call__(self, xs, ys):
xs = [x[::-1] for x in xs]

(continues on next page)

3.7. Write a Sequance to Seqeunce (seq2seq) Model 93

Chainer Documentation, Release 4.0.0

(continued from previous page)

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

Both xs and ys_in are lists of arrays.
exs = sequence_embed(self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)
None represents a zero vector in an encoder.
hx, cx, _ = self.encoder(None, None, exs)
_, _, os = self.decoder(hx, cx, eys)

It is faster to concatenate data before calculating loss
because only one matrix multiplication is called.
concat_os = F.concat(os, axis=0)
concat_ys_out = F.concat(ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy(

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report({'loss': loss.data}, self)
n_words = concat_ys_out.shape[0]
perp = self.xp.exp(loss.data * batch / n_words)
chainer.report({'perp': perp}, self)
return loss

• The __call__ method takes sequences of source language’s word IDs xs and sequences of target language’s
word IDs ys. Each sequence represents a sentence, and the size of xs is mini-batch size.

• Note that the sequences of word IDs xs and ys are converted to a vacaburary-size one-hot vectors and then
multiplied with the embedding matrix in sequence_embed to obtain embedding vectors exs and eys.

Listing 26: seq2seq.py

def sequence_embed(embed, xs):
x_len = [len(x) for x in xs]
x_section = numpy.cumsum(x_len[:-1])
ex = embed(F.concat(xs, axis=0))
exs = F.split_axis(ex, x_section, 0)
return exs

• self.encoder and self.decoder are the encoder and the decoder of the seq2seq model. Each element
of the decoder output os is ℎ(𝑡)

[1:𝐽] in the figure above.

• After calculating the reccurent layer output, the loss loss and the perplexity perp are calculated, and the
values are logged by chainer.report.

Note: It is well known that the seq2seq model learns much better when the source sentences are reversed. The
paper[1] says that “While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not reversed). By doing
so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU scores of its decoded translations increased
from 25.9 to 30.6.” So, at the first line in the __call__, the input sentences are reversed xs = [x[::-1] for
x in xs].

94 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

Listing 27: seq2seq.py

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode(), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]
exs = sequence_embed(self.embed_x, xs)
h, c, _ = self.encoder(None, None, exs)
ys = self.xp.full(batch, EOS, numpy.int32)
result = []
for i in range(max_length):

eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)
h, c, ys = self.decoder(h, c, eys)
cys = F.concat(ys, axis=0)
wy = self.W(cys)
ys = self.xp.argmax(wy.data, axis=1).astype(numpy.int32)
result.append(ys)

Using `xp.concatenate(...)` instead of `xp.stack(result)` here to
support NumPy 1.9.
result = cuda.to_cpu(

self.xp.concatenate([self.xp.expand_dims(x, 0) for x in result]).T)

Remove EOS taggs
outs = []
for y in result:

inds = numpy.argwhere(y == EOS)
if len(inds) > 0:

y = y[:inds[0, 0]]
outs.append(y)

return outs

• After the model learned the parameters, the function translate is called to generate the translated sentences
outs from the source sentences xs.

• So as not to change the parameters, the codes for the translation are nested in the scope chainer.
no_backprop_mode() and chainer.using_config('train', False).

2.2.4 Load French-English Corpus from WMT15 Dataset

In this tutorial, we use French-English corpus from WMT15 website that contains 10^9 documents. We must prepare
additional libraries, dataset, and parallel corpus. To understand the pre-processing, see 2.3.1 Requirements.

After the pre-processing the dataset, let’s make dataset objects:

Listing 28: seq2seq.py

Load pre-processed dataset
source_ids = load_vocabulary(args.SOURCE_VOCAB)
target_ids = load_vocabulary(args.TARGET_VOCAB)
train_source = load_data(source_ids, args.SOURCE)
train_target = load_data(target_ids, args.TARGET)
assert len(train_source) == len(train_target)

(continues on next page)

3.7. Write a Sequance to Seqeunce (seq2seq) Model 95

http://www.statmt.org/wmt15/translation-task.html

Chainer Documentation, Release 4.0.0

(continued from previous page)

train_data = [
(s, t)
for s, t in six.moves.zip(train_source, train_target)
if (args.min_source_sentence <= len(s) <= args.max_source_sentence and

args.min_target_sentence <= len(t) <= args.max_target_sentence)]

train_source_unknown = calculate_unknown_ratio(
[s for s, _ in train_data])

train_target_unknown = calculate_unknown_ratio(
[t for _, t in train_data])

print('Source vocabulary size: %d' % len(source_ids))
print('Target vocabulary size: %d' % len(target_ids))
print('Train data size: %d' % len(train_data))
print('Train source unknown ratio: %.2f%%' % (train_source_unknown * 100))
print('Train target unknown ratio: %.2f%%' % (train_target_unknown * 100))

target_words = {i: w for w, i in target_ids.items()}
source_words = {i: w for w, i in source_ids.items()}

• This code uses utility functions below:

Listing 29: seq2seq.py

def load_vocabulary(path):
with open(path) as f:

+2 for UNK and EOS
word_ids = {line.strip(): i + 2 for i, line in enumerate(f)}

word_ids['<UNK>'] = 0
word_ids['<EOS>'] = 1
return word_ids

Listing 30: seq2seq.py

def load_data(vocabulary, path):
n_lines = count_lines(path)
bar = progressbar.ProgressBar()
data = []
print('loading...: %s' % path)
with open(path) as f:

for line in bar(f, max_value=n_lines):
words = line.strip().split()
array = numpy.array([vocabulary.get(w, UNK)

for w in words], numpy.int32)
data.append(array)

return data

96 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

Listing 31: seq2seq.py

def calculate_unknown_ratio(data):
unknown = sum((s == UNK).sum() for s in data)
total = sum(s.size for s in data)
return unknown / total

2.2.5 Define Evaluation Function (Bleu Score)

BLEU[3] (bilingual evaluation understudy) is the evaluation metric for the quality of text which has been machine-
translated from one natural language to another.

Listing 32: seq2seq.py

class CalculateBleu(chainer.training.Extension):

trigger = 1, 'epoch'
priority = chainer.training.PRIORITY_WRITER

def __init__(
self, model, test_data, key, batch=100, device=-1, max_length=100):

self.model = model
self.test_data = test_data
self.key = key
self.batch = batch
self.device = device
self.max_length = max_length

def __call__(self, trainer):
with chainer.no_backprop_mode():

references = []
hypotheses = []
for i in range(0, len(self.test_data), self.batch):

sources, targets = zip(*self.test_data[i:i + self.batch])
references.extend([[t.tolist()] for t in targets])

sources = [
chainer.dataset.to_device(self.device, x) for x in sources]

ys = [y.tolist()
for y in self.model.translate(sources, self.max_length)]

hypotheses.extend(ys)

bleu = bleu_score.corpus_bleu(
references, hypotheses,
smoothing_function=bleu_score.SmoothingFunction().method1)

chainer.report({self.key: bleu})

2.2.6 Create Iterator

Here, the code below just creates iterator objects.

3.7. Write a Sequance to Seqeunce (seq2seq) Model 97

Chainer Documentation, Release 4.0.0

Listing 33: seq2seq.py

train_iter = chainer.iterators.SerialIterator(train_data, args.batchsize)

2.2.7 Create RNN and Classification Model

Instantiate Seq2seq model.

Listing 34: seq2seq.py

model = Seq2seq(args.layer, len(source_ids), len(target_ids), args.unit)

2.2.8 Setup Optimizer

Prepare an optimizer. We use chainer.optimizers.Adam.

Listing 35: seq2seq.py

optimizer = chainer.optimizers.Adam()
optimizer.setup(model)

2.2.9 Setup and Run Trainer

Let’s make a trainer object.

Listing 36: seq2seq.py

updater = training.updaters.StandardUpdater(
train_iter, optimizer, converter=convert, device=args.gpu)

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(extensions.LogReport(

trigger=(args.log_interval, 'iteration')))
trainer.extend(extensions.PrintReport(

['epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/perp', 'validation/main/perp', 'validation/main/bleu',
'elapsed_time']),

trigger=(args.log_interval, 'iteration'))

Setup the trainer’s extension to see the BLEU score on the test data.

Listing 37: seq2seq.py

test_source = load_data(source_ids, args.validation_source)
test_target = load_data(target_ids, args.validation_target)
assert len(test_source) == len(test_target)
test_data = list(six.moves.zip(test_source, test_target))
test_data = [(s, t) for s, t in test_data if 0 < len(s) and 0 < len(t)]
test_source_unknown = calculate_unknown_ratio(

[s for s, _ in test_data])
(continues on next page)

98 Chapter 3. Neural Net Examples

Chainer Documentation, Release 4.0.0

(continued from previous page)

test_target_unknown = calculate_unknown_ratio(
[t for _, t in test_data])

print('Validation data: %d' % len(test_data))
print('Validation source unknown ratio: %.2f%%' %

(test_source_unknown * 100))
print('Validation target unknown ratio: %.2f%%' %

(test_target_unknown * 100))

@chainer.training.make_extension()
def translate(trainer):

source, target = test_data[numpy.random.choice(len(test_data))]
result = model.translate([model.xp.array(source)])[0]

source_sentence = ' '.join([source_words[x] for x in source])
target_sentence = ' '.join([target_words[y] for y in target])
result_sentence = ' '.join([target_words[y] for y in result])
print('# source : ' + source_sentence)
print('# result : ' + result_sentence)
print('# expect : ' + target_sentence)

trainer.extend(
translate, trigger=(args.validation_interval, 'iteration'))

trainer.extend(
CalculateBleu(

model, test_data, 'validation/main/bleu', device=args.gpu),
trigger=(args.validation_interval, 'iteration'))

Let’s start the training!

Listing 38: seq2seq.py

trainer.run()

2.3 Run Example

2.3.1 Requirements

Before running the example, you must prepare additional libraries, dataset, and parallel corpus.

• See the detail description: chainer/examples/seq2seq/README.md

2.3.1 Training the model

You can train the model with the script: chainer/examples/seq2seq/seq2seq.py

$ pwd
/root2chainer/chainer/examples/seq2seq
$ python seq2seq.py --gpu=0 giga-fren.preprocess.en giga-fren.preprocess.fr \
vocab.en vocab.fr \

(continues on next page)

3.7. Write a Sequance to Seqeunce (seq2seq) Model 99

https://github.com/chainer/chainer/tree/master/examples/seq2seq/README.md
https://github.com/chainer/chainer/tree/master/examples/seq2seq/seq2seq.py

Chainer Documentation, Release 4.0.0

(continued from previous page)

--validation-source newstest2013.preprocess.en \
--validation-target newstest2013.preprocess.fr > log
100% (22520376 of 22520376) |#############| Elapsed Time: 0:09:20 Time: 0:09:20
100% (22520376 of 22520376) |#############| Elapsed Time: 0:10:36 Time: 0:10:36
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
epoch iteration main/loss validation/main/loss main/perp validation/main/
→˓perp validation/main/bleu elapsed_time
0 200 171.449 991.556
→˓ 85.6739
0 400 143.918 183.594
→˓ 172.473
0 600 133.48 126.945
→˓ 260.315
0 800 128.734 104.127
→˓ 348.062
0 1000 124.741 91.5988
→˓ 436.536
...

Note: Before running the script, be careful the locale and the python’s encoding. Please setup them to use utf-8
encoding.

2.3.1 Validate the model

While you are training the model, you can get the validation results:

...
source : We knew the Government had tried many things , like launching <UNK> with
→˓<UNK> or organising speed dating evenings .
result : Nous savions que le gouvernement avait <UNK> plusieurs fois , comme le
→˓<UNK> <UNK> , le <UNK> ou le <UNK> <UNK> .
expect : Nous savions que le gouvernement avait tenté plusieurs choses comme lancer
→˓des parfums aux <UNK> ou organiser des soirées de <UNK>
...

3.7.4 3. Reference

• [1] Sequence to Sequence Learning with Neural Networks

• [2] Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

• [3] BLEU

100 Chapter 3. Neural Net Examples

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
https://en.wikipedia.org/wiki/BLEU

CHAPTER 4

Reference

4.1 Variable and Parameter

chainer.Variable Array with a structure to keep track of computation.
chainer.as_variable Converts an array or a variable into Variable.
chainer.Parameter Parameter variable that can be registered to a link.
chainer.variable.VariableNode Node in the backward computational graph representing a

variable.

4.1.1 chainer.Variable

class chainer.Variable(data=None, *, name=None, grad=None, requires_grad=True)
Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy.ndarray or cupy.ndarray.

A variable object holds a data array and a VariableNode object of a computational graph. If the variable
is constructed by the user, the node is root and does not hold any parent. If the variable is constructed by a
FunctionNode object (i.e., by calling functions under chainer.functions or user-defined functions),
or by using operators (see the list below), the node holds a reference to its parent called creator_node. This
reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling no_backprop_mode() (resp.
force_backprop_mode()). In the former context, a variable never creates a computational graph, whereas
in the latter context, it is forced to create.

Note: The following operators are defined for variable(s).

• Indexing: a[slices] (__getitem__())

• Addition: a + b (__add__(), __radd__())

• Subtraction: a - b (__sub__(), __rsub__())

101

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

• Multiplication: a * b (__mul__(), __rmul__())

• Division: a / b (__div__(), __rdiv__(), __truediv__(), __rtruediv__())

• Floor Division: a // b (__floordiv__(), __rfloordiv__())

• Exponentiation: a ** b (__pow__(), __rpow__())

• Matirx Multiplication: a @ b (__matmul__(), __rmatmul__())

• Negation (Arithmetic): - a (__neg__())

Warning: volatile argument is not supported anymore since v2. Instead, use chainer.
no_backprop_mode().

Parameters

• data (numpy.ndarray or cupy.ndarray) – Initial data array.

• name (str) – Name of the variable.

• grad (numpy.ndarray or cupy.ndarray) – Initial gradient array.

• requires_grad (bool) – Boolean indicating whether grad will be set in backward
calculation.

Methods

__getitem__(slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy document for details of indexing.

Example

102 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Chainer Documentation, Release 4.0.0

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[0, 1, 2],

[3, 4, 5]],

[[6, 7, 8],
[9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],

[8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

__len__()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

__copy__()

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of data is () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients of
parameters, not of all variables, and therefore it is recommended to set this flag False.

4.1. Variable and Parameter 103

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata(var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable) – Source variable.

debug_print()
Display a summary of the stored data and location of the Variable

reshape(*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

set_creator_node(fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) – Function node that has this variable as an output.

summary()

to_cpu()
Copies the data and gradient arrays to CPU.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

to_intel64()
Copies the data and gradient arrays to intel64 specific mdarray.

104 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

If the array is not suited for intel64, it will be converted to numpy.ndarray.

transpose(*axes)
Permute the dimensions of an input variable without copy.

See also:

chainer.functions.transpose() for full documentation.

unchain()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward(), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

zerograd()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use cleargrad() instead.

__eq__(other)
This operator is not defined for Variable.

__ne__(other)
This operator is not defined for Variable.

__lt__(other)
This operator is not defined for Variable.

__le__(other)
This operator is not defined for Variable.

__gt__(other)
This operator is not defined for Variable.

__ge__(other)
This operator is not defined for Variable.

__nonzero__()
This operator is not defined for Variable.

__bool__()
This operator is not defined for Variable.

__neg__()
Element-wise negation.

Returns Output variable.

Return type Variable

4.1. Variable and Parameter 105

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

__abs__()
Element-wise absolute.

Returns Output variable.

Return type Variable

__add__()
Element-wise addition.

Returns Output variable.

Return type Variable

__radd__()
Element-wise addition.

Returns Output variable.

Return type Variable

__sub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__rsub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__mul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__rmul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__div__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__truediv__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__rdiv__(rhs)
Element-wise division.

Returns Output variable.

106 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

Return type Variable

__rtruediv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__floordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__rfloordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__pow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__rpow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__matmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

__rmatmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes

T
Transposition of this variable.

array
The underlying data array.

It is either numpy.ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

creator
Function implementation that created this variable.

4.1. Variable and Parameter 107

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Function), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain(); it purges the variable from the function that created this variable.

The setter also accepts the original FunctionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode() object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode() object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array , you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

grad_var
Gradient variable.

label
Short text that represents the variable.

name

ndim

node

rank

requires_grad
It indicates that grad will be set in backward calculation.

shape

size

xp
Array module for this variable.

Depending on which of CPU/GPU this variable is on, this property returns numpy or cupy.

108 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

4.1.2 chainer.as_variable

chainer.as_variable(obj)
Converts an array or a variable into Variable.

This is a convenient function to get a Variable object transparently from a raw array or a variable.

Note that this function should only be used for type consistency (i.e., to enforce the return value of an API
having type Variable). The requires_grad flag is kept as is; if obj is a raw array, the newly created
variable has requires_grad = False. In order to make a variable w.r.t. which you want to compute the
gradient, you should use Variable directly.

Parameters obj (numpy.ndarray or cupy.ndarray or Variable) – An array or a
variable that you want to convert to Variable.

Returns A variable converted from obj. If obj is a raw array, this is a new Variable object that
wraps the array. If obj is already a Variable object, this function returns obj as is.

Return type Variable

4.1.3 chainer.Parameter

class chainer.Parameter(initializer=None, shape=None, name=None)
Parameter variable that can be registered to a link.

Parameter is a subclass of Variable. It almost behaves as same as a usual variable except that a parameter
can be registered to a Link object just by assigning it to an attribute of the link within an init_scope()
context.

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and
the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and
the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to an GradientMethod, an update rule is
set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient
array.

Parameters

• initializer (Initializer or numpy.ndarray or cupy.ndarray) – Ini-
tializer of the data array. If shape is given, this initializer is immediately used to initial-
ize the data array. Otherwise, if it is an array, it is immediately used as the data array,
and otherwise the data array is left uninitialized and will be initialized by this initializer in
initialize(). It can also be a scalar, in which case the data array will be filled by this
scalar. Note that float32 is used in this case.

• shape (int or tuple of int or None) – Shape of the parameter. If it is None,
the initialization is deferred to the call of initialize().

• name (str) – Name of the parameter.

Variables

• initializer – Initializer of the data array. It is used for initializing the data array of an
uninitialized variable.

• update_rule – UpdateRule instance that updates this variable as a parameter. This
argument is set to update_rule.

4.1. Variable and Parameter 109

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Methods

__getitem__(slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy document for details of indexing.

Example

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[0, 1, 2],

[3, 4, 5]],

[[6, 7, 8],
[9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],

[8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

__len__()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

__copy__()

110 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of data is () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients of
parameters, not of all variables, and therefore it is recommended to set this flag False.

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata(var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable) – Source variable.

4.1. Variable and Parameter 111

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

debug_print()
Display a summary of the stored data and location of the Variable

initialize(shape)
Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and
initializes the data array. The shape of the variable can be left unknown until this method is called.

Parameters shape (tuple of int) – Shape of the data array.

reshape(*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

set_creator_node(fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) – Function node that has this variable as an output.

summary()

to_cpu()
Copies the data and gradient arrays to CPU.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

to_intel64()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy.ndarray.

transpose(*axes)
Permute the dimensions of an input variable without copy.

See also:

chainer.functions.transpose() for full documentation.

unchain()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward(), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward()
Deletes references between variable nodes and functions backward.

112 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

update()
Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

zerograd()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use cleargrad() instead.

__eq__(other)
This operator is not defined for Variable.

__ne__(other)
This operator is not defined for Variable.

__lt__(other)
This operator is not defined for Variable.

__le__(other)
This operator is not defined for Variable.

__gt__(other)
This operator is not defined for Variable.

__ge__(other)
This operator is not defined for Variable.

__nonzero__()
This operator is not defined for Variable.

__bool__()
This operator is not defined for Variable.

__neg__()
Element-wise negation.

Returns Output variable.

Return type Variable

__abs__()
Element-wise absolute.

Returns Output variable.

Return type Variable

__add__()
Element-wise addition.

Returns Output variable.

Return type Variable

__radd__()
Element-wise addition.

4.1. Variable and Parameter 113

Chainer Documentation, Release 4.0.0

Returns Output variable.

Return type Variable

__sub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__rsub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__mul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__rmul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__div__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__truediv__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__rdiv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__rtruediv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__floordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

114 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

__rfloordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__pow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__rpow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__matmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

__rmatmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes

T
Transposition of this variable.

array
The underlying data array.

It is either numpy.ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Function), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain(); it purges the variable from the function that created this variable.

The setter also accepts the original FunctionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

4.1. Variable and Parameter 115

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Note: Setting an irrelevant FunctionNode() object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode() object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array , you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

grad_var
Gradient variable.

initializer = None

label
Short text that represents the variable.

name

ndim

node

rank

requires_grad
It indicates that grad will be set in backward calculation.

shape

size

xp
Array module for this variable.

Depending on which of CPU/GPU this variable is on, this property returns numpy or cupy.

4.1.4 chainer.variable.VariableNode

class chainer.variable.VariableNode(variable, name, **kwargs)
Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation
(a.k.a. backprop) to determine which gradient to be passed to each function.

A variable node is held by the corresponding Variable object, which is managed by users. FunctionNode
objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually
accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a
weak reference to the variable object, and thus the data array is accessible via the weak reference.

116 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

2. If retain_data() is called, the node holds a reference to the data array. It is mainly called by a
function that needs the input or output data array in its backprop procedure. See FunctionNode.
retain_inputs() and FunctionNode.retain_outputs() for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed
by Chainer, and any interface that is beneficial for users is also provided by Variable.

Parameters

• variable (Variable) – The corresponding variable object.

• name (str) – Name of the variable node.

Variables

• dtype – Data type of the data array.

• shape – Shape of the data array.

• name (str) – Name of the variable node.

Methods

get_variable()
Returns the corresponding Variable object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by
this property. Otherwise, this property creates a new Variable object from this node object and returns
it.

Returns The variable object that refers this node.

Return type Variable

get_variable_or_none()
Returns the holding Variable object or None.

VariableNode object holds a weak reference of the variable object.If the reference is alive, it is returned by
this property. Otherwise, returns None.

Returns The variable object that refers this node.

Return type Variable

retain_data()
Lets the node hold a reference to the underlying data array.

This method gets the data array of the corresponding variable and keeps it. If the weak reference to the
corresponding variable is dead, it raises an error.

set_creator(creator)
Sets a Function object that created this node.

This method is equivalent to self.creator = creator. A FunctionNode object can also be
passed.

Parameters creator (Function or FunctionNode) – Function that has created this
variable.

set_creator_node(creator_node)
Sets a FunctionNode object that created this node.

This method is equivalent to self.creator_node = creator_node. A Function object can
also be passed, in which case the Function.node attribute is used.

4.1. Variable and Parameter 117

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters creator_node (FunctionNode or Function) – Function node that has
this variable as an output.

unchain()
Deletes the reference to the creator of this variable node.

This method is equivalent to self.creator_node = None.

Attributes

creator
Function object that created this variable node.

When the function is implemented with the old-style API (i.e., it uses Function class), this property
returns the Function object. The object is extracted from the FunctionAdapter object, so the
returned object is not the function node, but instead the actual implementation of forward and backward
procedures.

When the function is implemented with the new-style API (i.e., it uses FunctionNode class), this prop-
erty returns the function node object. In this case, the returned object is same as creator_node.

Warning: As of v3.0.0, when the creator is an old-style function, the following code is invalid:

creator = v.creator
v.creator = None
...
v.creator = creator

The point is that FunctionNode objects are used as nodes in the computational graph instead
of Function, and each Function object only holds a weak reference to the corresponding
FunctionNode. Since creator returns the Function object, the FunctionNode object is
not kept by preserving creator.

The above code should be fixed as follows.

creator_node = v.creator_node
v.creator_node = None
...
v.creator_node = creator_node

creator_node
Function node that has this variable as an output.

See FunctionNode for the definition of a function node.

data
Data array of the corresponding variable.

If the data is not available, it returns None.

grad
Gradient array of the corresponding variable.

If the variable is not available, it returns None.

grad_var
Gradient variable of the corresponding variable.

If the corresponding variable is not available, it return None.

118 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

label
Short text that represents the variable node.

rank

requires_grad
It indicates that grad will be set in backward calculation.

4.2 Functions

Chainer provides basic FunctionNode implementations in the chainer.functions package. Most of them
are wrapped by plain Python functions, which users should use.

Note: As of v1.5, the concept of parameterized functions are gone, and they are replaced by corresponding Link
implementations. They are found in the links namespace.

4.2.1 Arithmetic functions

chainer.functions.add Element-wise addition.

chainer.functions.add

chainer.functions.add(*xs)
Element-wise addition.

Returns Output variable.

Return type Variable

4.2.2 Activation functions

chainer.functions.clipped_relu Clipped Rectifier Unit function.
chainer.functions.crelu Concatenated Rectified Linear Unit function.
chainer.functions.elu Exponential Linear Unit function.
chainer.functions.hard_sigmoid Element-wise hard-sigmoid function.
chainer.functions.leaky_relu Leaky Rectified Linear Unit function.
chainer.functions.log_softmax Channel-wise log-softmax function.
chainer.functions.lstm Long Short-Term Memory units as an activation function.
chainer.functions.maxout Maxout activation function.
chainer.functions.prelu Parametric ReLU function.
chainer.functions.relu Rectified Linear Unit function.
chainer.functions.selu Scaled Exponential Linear Unit function.
chainer.functions.sigmoid Element-wise sigmoid logistic function.
chainer.functions.slstm S-LSTM units as an activation function.
chainer.functions.softmax Softmax function.
chainer.functions.softplus Element-wise softplus function.
chainer.functions.swish Swish activation function.
chainer.functions.tanh Elementwise hyperbolic tangent function.

Continued on next page

4.2. Functions 119

Chainer Documentation, Release 4.0.0

Table 3 – continued from previous page
chainer.functions.tree_lstm TreeLSTM unit as an activation function.

chainer.functions.clipped_relu

chainer.functions.clipped_relu(x, z=20.0)
Clipped Rectifier Unit function.

For a clipping value 𝑧(> 0), it computes

ClippedReLU(𝑥, 𝑧) = min(max(0, 𝑥), 𝑧).

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float array.

• z (float) – Clipping value. (default = 20.0)

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float array.

Return type Variable

Example

>>> x = np.random.uniform(-100, 100, (10, 20)).astype(np.float32)
>>> z = 10.0
>>> np.any(x < 0)
True
>>> np.any(x > z)
True
>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.data < 0)
False
>>> np.any(y.data > z)
False

chainer.functions.crelu

chainer.functions.crelu(x, axis=1)
Concatenated Rectified Linear Unit function.

This function is expressed as follows

𝑓(𝑥) = (max(0, 𝑥),max(0,−𝑥)).

Here, two output values are concatenated along an axis.

See: https://arxiv.org/abs/1603.05201

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• axis (int) – Axis that the output values are concatenated along. Default is 1.

120 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1603.05201
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Returns Output variable of concatenated array. If the axis is 1, A (𝑠1, 𝑠2 × 2, ..., 𝑠𝑁)-shaped float
array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1., 0.],

[2., -3.]], dtype=float32)
>>> y = F.crelu(x, axis=1)
>>> y.data
array([[0., 0., 1., 0.],

[2., 0., 0., 3.]], dtype=float32)

chainer.functions.elu

chainer.functions.elu(x, alpha=1.0)
Exponential Linear Unit function.

For a parameter 𝛼, it is expressed as

𝑓(𝑥) =

{︂
𝑥 if 𝑥 ≥ 0
𝛼(exp(𝑥)− 1) if 𝑥 < 0,

See: https://arxiv.org/abs/1511.07289

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• alpha (float) – Parameter 𝛼. Default is 1.0.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1., 0.],

[2., -3.]], dtype=float32)
>>> y = F.elu(x, alpha=1.)
>>> y.data
array([[-0.63212055, 0.],

[2. , -0.95021296]], dtype=float32)

chainer.functions.hard_sigmoid

chainer.functions.hard_sigmoid(x)
Element-wise hard-sigmoid function.

4.2. Functions 121

https://arxiv.org/abs/1511.07289
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

This function is defined as

𝑓(𝑥) =

⎧⎨⎩ 0 if 𝑥 < −2.5
0.2𝑥 + 0.5 if − 2.5 < 𝑥 < 2.5
1 if 2.5 < 𝑥.

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.array([-2.6, -1, 0, 1, 2.6])
>>> x
array([-2.6, -1. , 0. , 1. , 2.6])
>>> F.hard_sigmoid(x).data
array([0. , 0.3, 0.5, 0.7, 1.])

chainer.functions.leaky_relu

chainer.functions.leaky_relu(x, slope=0.2)
Leaky Rectified Linear Unit function.

This function is expressed as

𝑓(𝑥) =

{︂
𝑥 if 𝑥 ≥ 0
𝑎𝑥 if 𝑥 < 0,

where 𝑎 is a configurable slope value.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• slope (float) – Slope value 𝑎.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> x
array([[-1., 0.],

[2., -3.],
[-2., 1.]], dtype=float32)

>>> F.leaky_relu(x, slope=0.2).data
array([[-0.2, 0.],

[2. , -0.6],
[-0.4, 1.]], dtype=float32)

122 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

chainer.functions.log_softmax

chainer.functions.log_softmax(x)
Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝐷) be the slice of
x along with the second axis. For each slice 𝑐, it computes the logarithm of the function 𝑓(𝑐) defined as

𝑓(𝑐) =
exp(𝑐)∑︀
𝑑 exp(𝑐𝑑)

.

This method is theoretically equivalent to log(softmax(x)) but is more stable.

Note: log(softmax(x)) may cause underflow when x is too small, because softmax(x) may returns
0. log_softmax method is more stable.

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A 𝑛-
dimensional (𝑛 ≥ 2) float array.

Returns Output variable. A 𝑛-dimensional (𝑛 ≥ 2) float array, which is the same shape with x.

Return type Variable

See also:

softmax()

Example

>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],

[0., 2., 4.]], dtype=float32)
>>> F.log_softmax(x).data
array([[-2.407606 , -1.4076059 , -0.4076059],

[-4.1429315 , -2.1429315 , -0.14293146]], dtype=float32)
>>> np.allclose(F.log_softmax(x).data, F.log(F.softmax(x)).data)
True

chainer.functions.lstm

chainer.functions.lstm(c_prev, x)
Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state c_prev and the input array
x.

First, the input array x is split into four arrays 𝑎, 𝑖, 𝑓, 𝑜 of the same shapes along the second axis. It means that
x ‘s second axis must have 4 times the c_prev ‘s second axis.

The split input arrays are corresponding to:

• 𝑎 : sources of cell input

• 𝑖 : sources of input gate

4.2. Functions 123

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

• 𝑓 : sources of forget gate

• 𝑜 : sources of output gate

Second, it computes the updated cell state c and the outgoing signal h as:

𝑐 = tanh(𝑎)𝜎(𝑖) + 𝑐prev𝜎(𝑓),

ℎ = tanh(𝑐)𝜎(𝑜),

where 𝜎 is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or
smaller than that of the previous one. When mini-batch size of x is smaller than that of c, this function only
updates c[0:len(x)] and doesn’t change the rest of c, c[len(x):]. So, please sort input sequences in
descending order of lengths before applying the function.

Parameters

• c_prev (Variable or numpy.ndarray or cupy.ndarray) – Variable that holds the
previous cell state. The cell state should be a zero array or the output of the previous call of
LSTM.

• x (Variable or numpy.ndarray or cupy.ndarray) – Variable that holds the
sources of cell input, input gate, forget gate and output gate. It must have the second di-
mension whose size is four times of that of the cell state.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.

See also:

LSTM

Example

Assuming y is the current incoming signal, c is the previous cell state, and h is the previous outgoing signal
from an lstm function. Each of y, c and h has n_units channels. Most typical preparation of x is:

>>> n_units = 100
>>> y = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(n_units, 4 * n_units)
... model.v = L.Linear(n_units, 4 * n_units)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)

It corresponds to calculate the input array x, or the input sources 𝑎, 𝑖, 𝑓, 𝑜, from the current incoming signal y
and the previous outgoing signal h. Different parameters are used for different kind of input sources.

Note: We use the naming rule below.

124 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
http://www.felixgers.de/papers/phd.pdf
http://www.felixgers.de/papers/phd.pdf

Chainer Documentation, Release 4.0.0

• incoming signal The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of
lower RNN layer). The input of chainer.links.LSTM is the incoming signal.

• input array The array which is linear transformed from incoming signal and the previous outgoing signal.
The input array contains four sources, the sources of cell input, input gate, forget gate and output gate.
The input of chainer.functions.LSTM is the input array.

chainer.functions.maxout

chainer.functions.maxout(x, pool_size, axis=1)
Maxout activation function.

It accepts an input tensor x, reshapes the axis dimension (say the size being M * pool_size) into two
dimensions (M, pool_size), and takes maximum along the axis dimension.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A 𝑛-
dimensional (𝑛 ≥ axis) float array. In general, its first dimension is assumed to be the
minibatch dimension. The other dimensions are treated as one concatenated dimension.

• pool_size (int) – The size used for downsampling of pooling layer.

• axis (int) – The axis dimension to be reshaped. The size of axis dimension should
be M * pool_size.

Returns Output variable. The shape of the output is same as x except that axis dimension is
transformed from M * pool_size to M.

Return type Variable

See also:

Maxout

Example

Typically, x is the output of a linear layer or a convolution layer. The following is the example where we use
maxout() in combination with a Linear link.

>>> in_size, out_size, pool_size = 10, 10, 10
>>> bias = np.arange(out_size * pool_size).astype(np.float32)
>>> l = L.Linear(in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((1, in_size), np.float32) # prepare data
>>> x = l(x)
>>> y = F.maxout(x, pool_size)
>>> x.shape
(1, 100)
>>> y.shape
(1, 10)
>>> x.reshape((out_size, pool_size)).data
array([[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.],

[10., 11., 12., 13., 14., 15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24., 25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34., 35., 36., 37., 38., 39.],
[40., 41., 42., 43., 44., 45., 46., 47., 48., 49.],
[50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],
[60., 61., 62., 63., 64., 65., 66., 67., 68., 69.],

(continues on next page)

4.2. Functions 125

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

(continued from previous page)

[70., 71., 72., 73., 74., 75., 76., 77., 78., 79.],
[80., 81., 82., 83., 84., 85., 86., 87., 88., 89.],
[90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]], dtype=float32)

>>> y.data
array([[9., 19., 29., 39., 49., 59., 69., 79., 89., 99.]], dtype=float32)

chainer.functions.prelu

chainer.functions.prelu(x, W)
Parametric ReLU function.

It accepts two arguments: an input x and a weight array W and computes the output as 𝑃𝑅𝑒𝐿𝑈(𝑥) =
max(𝑥,𝑊 * 𝑥), where * is an elementwise multiplication for each sample in the batch.

When the PReLU function is combined with two-dimensional convolution, the elements of parameter 𝑊 are
typically shared across the same filter of different pixels. In order to support such usage, this function supports
the shape of parameter array that indicates leading dimensions of input arrays except the batch dimension.

For example, if 𝑊 has the shape of (2, 3, 4), 𝑥 must have the shape of (𝐵, 2, 3, 4, 𝑆1, ..., 𝑆𝑁) where 𝐵 is the
batch size and the number of trailing 𝑆‘s 𝑁 is an arbitrary non-negative integer.

Parameters

• x (Variable) – Input variable. Its first argument is assumed to be the minibatch dimen-
sion.

• W (Variable) – Weight variable.

Returns Output variable

Return type Variable

See also:

PReLU

chainer.functions.relu

chainer.functions.relu(x)
Rectified Linear Unit function.

𝑓(𝑥) = max(0, 𝑥).

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> np.any(x < 0)
True
>>> y = F.relu(x)

(continues on next page)

126 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> np.any(y.data < 0)
False
>>> y.shape
(3, 2)

chainer.functions.selu

chainer.functions.selu(x, alpha=1.6732632423543772, scale=1.0507009873554805)
Scaled Exponential Linear Unit function.

For parameters 𝛼 and 𝜆, it is expressed as

𝑓(𝑥) = 𝜆

{︂
𝑥 if 𝑥 ≥ 0
𝛼(exp(𝑥)− 1) if 𝑥 < 0,

See: https://arxiv.org/abs/1706.02515

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• alpha (float) – Parameter 𝛼.

• scale (float) – Parameter 𝜆.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

chainer.functions.sigmoid

chainer.functions.sigmoid(x)
Element-wise sigmoid logistic function.

𝑓(𝑥) = (1 + exp(−𝑥))−1.

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.sigmoid(x)
variable([0.11920291, 0.5 , 0.8807971])

4.2. Functions 127

https://arxiv.org/abs/1706.02515
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

chainer.functions.slstm

chainer.functions.slstm(c_prev1, c_prev2, x1, x2)
S-LSTM units as an activation function.

This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function
is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states c_prev1
and c_prev2, and input arrays x1 and x2.

First both input arrays x1 and x2 are split into eight arrays 𝑎1, 𝑖1, 𝑓1, 𝑜1, and 𝑎2, 𝑖2, 𝑓2, 𝑜2. They have the same
shape along the second axis. It means that x1 and x2 ‘s second axis must have 4 times the length of c_prev1
and c_prev2.

The split input arrays are corresponding to:

• 𝑎𝑖 : sources of cell input

• 𝑖𝑖 : sources of input gate

• 𝑓𝑖 : sources of forget gate

• 𝑜𝑖 : sources of output gate

It computes the updated cell state c and the outgoing signal h as:

𝑐 = tanh(𝑎1 + 𝑎2)𝜎(𝑖1 + 𝑖2) + 𝑐prev1𝜎(𝑓1) + 𝑐prev2𝜎(𝑓2),

ℎ = tanh(𝑐)𝜎(𝑜1 + 𝑜2),

where 𝜎 is the elementwise sigmoid function. The function returns c and h as a tuple.

Parameters

• c_prev1 (Variable or numpy.ndarray or cupy.ndarray) – Variable that holds
the previous cell state of the first child node. The cell state should be a zero array or the
output of the previous call of LSTM.

• c_prev2 (Variable or numpy.ndarray or cupy.ndarray) – Variable that holds
the previous cell state of the second child node.

• x1 (Variable or numpy.ndarray or cupy.ndarray) – Variable that holds the
sources of cell input, input gate, forget gate and output gate from the first child node. It
must have the second dimension whose size is four times of that of the cell state.

• x2 (Variable or numpy.ndarray or cupy.ndarray) – Variable that holds the input
sources from the second child node.

Returns Two Variable objects c and h. c is the cell state. h indicates the outgoing signal.

Return type tuple

See detail in paper: Long Short-Term Memory Over Tree Structures.

Example

Assuming c1, c2 is the previous cell state of children, and h1, h2 is the previous outgoing signal from children.
Each of c1, c2, h1 and h2 has n_units channels. Most typical preparation of x1, x2 is:

>>> n_units = 100
>>> h1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h2 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c2 = chainer.Variable(np.zeros((1, n_units), np.float32))

(continues on next page)

128 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1503.04881

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> model1 = chainer.Chain()
>>> with model1.init_scope():
... model1.w = L.Linear(n_units, 4 * n_units)
... model1.v = L.Linear(n_units, 4 * n_units)
>>> model2 = chainer.Chain()
>>> with model2.init_scope():
... model2.w = L.Linear(n_units, 4 * n_units)
... model2.v = L.Linear(n_units, 4 * n_units)
>>> x1 = model1.w(c1) + model1.v(h1)
>>> x2 = model2.w(c2) + model2.v(h2)
>>> c, h = F.slstm(c1, c2, x1, x2)

It corresponds to calculate the input array x1, or the input sources 𝑎1, 𝑖1, 𝑓1, 𝑜1 from the previous cell state of
first child node c1, and the previous outgoing signal from first child node h1. Different parameters are used for
different kind of input sources.

chainer.functions.softmax

chainer.functions.softmax(x, axis=1)
Softmax function.

This function computes its softmax along an axis. Let 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝐷) be the slice of x along with the axis.
For each slice 𝑐, it computes the function 𝑓(𝑐) defined as 𝑓(𝑐) = exp(𝑐)∑︀

𝑑 exp(𝑐𝑑)
.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A 𝑛-
dimensional (𝑛 ≥ 2) float array.

• axis (int) – The axis along which the softmax is to be computed.

Returns Output variable. A 𝑛-dimensional (𝑛 ≥ 2) float array, which is the same shape with x.

Return type Variable

Example

>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],

[0., 2., 4.]], dtype=float32)
>>> y = F.softmax(x, axis=1)
>>> y.data
array([[0.09003057, 0.24472848, 0.66524094],

[0.01587624, 0.11731043, 0.86681336]], dtype=float32)
>>> F.sum(y, axis=1).data
array([1., 1.], dtype=float32)

chainer.functions.softplus

chainer.functions.softplus(x, beta=1.0)
Element-wise softplus function.

4.2. Functions 129

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

The softplus function is the smooth approximation of ReLU.

𝑓(𝑥) =
1

𝛽
log(1 + exp(𝛽𝑥)),

where 𝛽 is a parameter. The function becomes curved and akin to ReLU as the 𝛽 is increasing.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• beta (float) – Parameter 𝛽.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.softplus(x, beta=1.0).data
array([0.126928 , 0.6931472, 2.126928], dtype=float32)

chainer.functions.swish

chainer.functions.swish(x, beta)
Swish activation function.

𝑓(𝑥, 𝛽) = 𝑥 · 𝜎(𝛽𝑥),

where 𝜎(·) is the sigmoid function. It has the following properties:

𝑓(𝑥, 0) =
𝑥

2
,

lim
𝛽→∞

𝑓(𝑥, 𝛽) = max(0, 𝑥).

Parameters

• x (Variable) – Input variable of shape (𝑠𝐵 , 𝑠1, 𝑠2, ..., 𝑠𝑁), where 𝑠𝐵 is assumed to be
the minibatch dimension.

• beta (Variable) – Parameter variable 𝛽 of shape (𝑠1, 𝑠2, ..., 𝑠𝑀), where 𝑀 is an arbi-
trary integer between 0 ≤ 𝑀 ≤ 𝑁 . The number of dimensions of beta will be matched
with x by reshaping it as (1, 𝑠1, ..., 𝑠𝑀 , 1, ...1), then beta and x are multiplied together in
an element-wise manner.

Returns Output variable of the same shape as x.

Return type Variable

See also:

chainer.links.Swish

130 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

chainer.functions.tanh

chainer.functions.tanh(x)
Elementwise hyperbolic tangent function.

𝑓(𝑥) = tanh(𝑥).

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.arange(-1, 4, 2).astype(np.float32)
>>> x
array([-1., 1., 3.], dtype=float32)
>>> F.tanh(x).data
array([-0.7615942, 0.7615942, 0.9950548], dtype=float32)

chainer.functions.tree_lstm

chainer.functions.tree_lstm(*inputs)
TreeLSTM unit as an activation function.

This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the chil-
dren cell states 𝑐1, 𝑐2, . . . , 𝑐N, and the incoming signal 𝑥.

First, the incoming signal 𝑥 is split into (3 + N) arrays 𝑎, 𝑖, 𝑜, 𝑓1, 𝑓2, ..., 𝑓N of the same shapes along the second
axis. It means that 𝑥 ‘s second axis must have (3 + N) times of the length of each 𝑐𝑛.

The splitted input signals are corresponding to:

• 𝑎 : sources of cell input

• 𝑖 : sources of input gate

• 𝑜 : sources of output gate

• 𝑓𝑛 : sources of forget gate for n-th ary

Second, it computes outputs as:

𝑐 = tanh(𝑎)sigmoid(𝑖)

+ 𝑐1sigmoid(𝑓1),

+ 𝑐2sigmoid(𝑓2),

+ ...,

+ 𝑐Nsigmoid(𝑓N),

ℎ = tanh(𝑐)sigmoid(𝑜).

These are returned as a tuple of (N + 1) variables.

4.2. Functions 131

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Parameters inputs (list of Variable) – Variable arguments which include all cell vectors from
child-nodes, and an input vector. Each of the cell vectors and the input vector is Variable.
The input vector must have the second dimension whose size is (N + 3) times of that of each
cell, where N denotes the total number of cells.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. only has one 𝑊 matrix to be applied to 𝑥, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

Example

Assuming y is the current input signal, c is the previous cell state, and h is the previous output signal from an
tree_lstm() function. Each of y, c and h has n_units channels. Using 2-ary (binary) TreeLSTM, most
typical preparation of x is:

>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(10, 5 * 10)
... model.v1 = L.Linear(10, 5 * 10)
... model.v2 = L.Linear(10, 5 * 10)
>>> y = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h1 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c1 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> x = model.w(y) + model.v1(h1) + model.v2(h2)
>>> c, h = F.tree_lstm(c1, c2, x)

It corresponds to calculate the input sources 𝑎, 𝑖, 𝑜, 𝑓1, 𝑓2 from the current input y and the children’s outputs h1
and h2. Different parameters are used for different kind of input sources.

4.2.3 Array manipulations

chainer.functions.broadcast Broadcast given variables.
chainer.functions.broadcast_to Broadcast a given variable to a given shape.
chainer.functions.cast Cast an input variable to a given type.
chainer.functions.concat Concatenates given variables along an axis.
chainer.functions.copy Copies the input variable onto the specified device.
chainer.functions.depth2space Computes the depth2space transformation for subpixel cal-

culations.
chainer.functions.dstack Concatenate variables along third axis (depth wise).
chainer.functions.expand_dims Expands dimensions of an input variable without copy.
chainer.functions.flatten Flatten a given array into one dimension.
chainer.functions.flip Flips an input variable in reverse order along the given axis.

Continued on next page

132 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf

Chainer Documentation, Release 4.0.0

Table 4 – continued from previous page
chainer.functions.fliplr Flip array in the left/right direction.
chainer.functions.flipud Flip array in the up/down direction.
chainer.functions.get_item Extract elements from array with specified shape, axes and

offsets.
chainer.functions.hstack Concatenate variables horizontally (column wise).
chainer.functions.im2col Extract patches from an image based on the filter.
chainer.functions.pad Pad an input variable.
chainer.functions.pad_sequence Pad given arrays to make a matrix.
chainer.functions.permutate Permutates a given variable along an axis.
chainer.functions.repeat Construct an array by repeating a given array.
chainer.functions.reshape Reshapes an input variable without copy.
chainer.functions.resize_images Resize images to the given shape.
chainer.functions.rollaxis Roll the axis backwards to the given position.
chainer.functions.scatter_add Adds given values to specified elements of an array.
chainer.functions.select_item Select elements stored in given indices.
chainer.functions.separate Separates an array along a given axis.
chainer.functions.space2depth Computes the space2depth transformation for subpixel cal-

culations.
chainer.functions.
spatial_transformer_grid

2D Spatial Transformer grid.

chainer.functions.
spatial_transformer_sampler

2D Spatial Transformer sampler.

chainer.functions.split_axis Splits given variables along an axis.
chainer.functions.squeeze Remove demensions of size one from the shape of a ndar-

ray.
chainer.functions.stack Concatenate variables along a new axis.
chainer.functions.swapaxes Swap two axes of a variable.
chainer.functions.tile Construct an array by tiling a given array.
chainer.functions.transpose Permute the dimensions of an input variable without copy.
chainer.functions.transpose_sequence Transpose a list of Variables.
chainer.functions.vstack Concatenate variables vertically (row wise).
chainer.functions.where Choose elements depending on condition.

chainer.functions.broadcast

chainer.functions.broadcast(*args)
Broadcast given variables.

Parameters args (Variable or numpy.ndarray or cupy.ndarray) – Input variables to be
broadcasted. Each dimension of the shapes of the input variables must have the same size.

Returns Variable or tuple of Variable objects which are broadcasted from given arguments.

Return type Variable

Example

>>> x = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y = F.broadcast(x)
>>> np.all(x == y.data)
True
>>> z = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y, w = F.broadcast(x, z)

(continues on next page)

4.2. Functions 133

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> np.all(x == y.data) & np.all(z == w.data)
True

chainer.functions.broadcast_to

chainer.functions.broadcast_to(x, shape)
Broadcast a given variable to a given shape.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable be broadcasted.
A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• shape (tuple) – Tuple of int of the shape of the output variable.

Returns Output variable broadcasted to the given shape.

Return type Variable

Example

>>> x = np.arange(0, 3)
>>> x
array([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.data
array([[0, 1, 2],

[0, 1, 2],
[0, 1, 2]])

chainer.functions.cast

chainer.functions.cast(x, typ)
Cast an input variable to a given type.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable to be casted. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• typ (str of dtype or numpy.dtype) – Typecode or data type to cast.

Returns Variable holding a casted array.

Return type Variable

Example

>>> x = np.arange(0, 3, dtype=np.float64)
>>> x.dtype
dtype('float64')
>>> y = F.cast(x, np.float32)
>>> y.dtype

(continues on next page)

134 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Chainer Documentation, Release 4.0.0

(continued from previous page)

dtype('float32')
>>> y = F.cast(x, 'float16')
>>> y.dtype
dtype('float16')

chainer.functions.concat

chainer.functions.concat(xs, axis=1)
Concatenates given variables along an axis.

Parameters

• xs (tuple of Variable or numpy.ndarray or cupy.ndarray) – Input variables to
be concatenated. The variables must have the same shape, except in the dimension corre-
sponding to axis.

• axis (int) – The axis along which the arrays will be joined. Default is 1.

Returns The concatenated variable.

Return type Variable

Example

>>> x = np.arange(0, 12).reshape(3, 4)
>>> x
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> y = np.arange(0, 3).reshape(3, 1)
>>> y
array([[0],

[1],
[2]])

>>> z = F.concat((x, y), axis=1)
>>> z.data
array([[0, 1, 2, 3, 0],

[4, 5, 6, 7, 1],
[8, 9, 10, 11, 2]])

chainer.functions.copy

chainer.functions.copy(x, dst)
Copies the input variable onto the specified device.

This function copies the array of input variable onto the device specified by dst. When dst == -1, it copies
the array onto the host memory. This function supports copies from host to host, from host to device, from
device to device and from device to host.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Variable to be copied.

• dst (int) – Target device specifier.

4.2. Functions 135

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Returns Output variable.

Return type Variable

Example

>>> import chainer.backends.cuda as cuda
>>> x = np.random.uniform(-1, 1, (5, 10))
>>> cuda.get_device_from_array(x).id
-1
>>> y = F.copy(x, 0) # from host to device0
>>> cuda.get_device_from_array(y.data).id
0
>>> z = F.copy(y, -1) # from device0 to host
>>> cuda.get_device_from_array(z.data).id
-1

chainer.functions.depth2space

chainer.functions.depth2space(X, r)
Computes the depth2space transformation for subpixel calculations.

Parameters

• X (Variable or numpy.ndarray or cupy.ndarray) – Variable holding a 4d array
of shape (batch, channel * r * r, dim1, dim2).

• r (int) – the upscaling factor.

Returns A variable holding the upscaled array from interspersed depth layers. The shape is
(batch, channel, dim1 * r, dim2 * r).

Return type Variable

Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for
details.

See also:

space2depth()

Example

>>> X = np.arange(24).reshape(1, 4, 2, 3).astype(np.float32)
>>> X.shape
(1, 4, 2, 3)
>>> X
array([[[[0., 1., 2.],

[3., 4., 5.]],

[[6., 7., 8.],
[9., 10., 11.]],

[[12., 13., 14.],
[15., 16., 17.]],

(continues on next page)

136 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158

Chainer Documentation, Release 4.0.0

(continued from previous page)

[[18., 19., 20.],
[21., 22., 23.]]]], dtype=float32)

>>> y = F.depth2space(X, 2)
>>> y.shape
(1, 1, 4, 6)
>>> y.data
array([[[[0., 6., 1., 7., 2., 8.],

[12., 18., 13., 19., 14., 20.],
[3., 9., 4., 10., 5., 11.],
[15., 21., 16., 22., 17., 23.]]]], dtype=float32)

chainer.functions.dstack

chainer.functions.dstack(xs)
Concatenate variables along third axis (depth wise).

Parameters xs (list of Variable or numpy.ndarray or cupy.ndarray) – Input variables
to be concatenated. The variables must have the same ndim. When the variables have the third
axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 3), the variables must have the same shape along all but the third axis. When
the variables do not have the third axis(i.e. 𝑛𝑑𝑖𝑚 < 3), the variables must have the same shape.

Returns Output variable. When the input variables have the third axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 3), the shapes
of inputs and output are the same along all but the third axis. The length of third axis is the sum
of the lengths of inputs’ third axis. When the shape of variables are (N1, N2) (i.e. 𝑛𝑑𝑖𝑚 = 2),
the shape of output is (N1, N2, 2). When the shape of variables are (N1,) (i.e. 𝑛𝑑𝑖𝑚 = 1),
the shape of output is (1, N1, 2). When the shape of variables are () (i.e. 𝑛𝑑𝑖𝑚 = 0), the
shape of output is (1, 1, 2).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.dstack((x1, x2))
>>> y.shape
(1, 3, 2)
>>> y.data
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> x1 = np.arange(0, 6).reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array([[0, 1],

[2, 3],

(continues on next page)

4.2. Functions 137

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

[4, 5]])
>>> x2 = np.arange(6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[6, 7],

[8, 9],
[10, 11]])

>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 2)
>>> y.data
array([[[0, 6],

[1, 7]],

[[2, 8],
[3, 9]],

[[4, 10],
[5, 11]]])

>>> x1 = np.arange(0, 12).reshape(3, 2, 2)
>>> x2 = np.arange(12, 18).reshape(3, 2, 1)
>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 3)
>>> y.data
array([[[0, 1, 12],

[2, 3, 13]],

[[4, 5, 14],
[6, 7, 15]],

[[8, 9, 16],
[10, 11, 17]]])

chainer.functions.expand_dims

chainer.functions.expand_dims(x, axis)
Expands dimensions of an input variable without copy.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• axis (int) – Position where new axis is to be inserted. The axis parameter is acceptable
when −𝑛𝑑𝑖𝑚 − 1 ≤ 𝑎𝑥𝑖𝑠 ≤ 𝑛𝑑𝑖𝑚. (ndim is the dimension of input variables). When
𝑎𝑥𝑖𝑠 < 0, the result is the same with 𝑛𝑑𝑖𝑚 + 1− |𝑎𝑥𝑖𝑠|.

Returns Variable that holds a expanded input. The ndim of output is one grater than that of x.

Return type Variable

Example

138 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

>>> x = np.array([1, 2, 3])
>>> x.shape
(3,)
>>> y = F.expand_dims(x, axis=0)
>>> y.shape
(1, 3)
>>> y.data
array([[1, 2, 3]])
>>> y = F.expand_dims(x, axis=1)
>>> y.shape
(3, 1)
>>> y.data
array([[1],

[2],
[3]])

>>> y = F.expand_dims(x, axis=-2)
>>> y.shape
(1, 3)
>>> y.data
array([[1, 2, 3]])

chainer.functions.flatten

chainer.functions.flatten(x)
Flatten a given array into one dimension.

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

Returns Output variable flatten to one dimension.

Return type Variable

Note: When you input a scalar array (i.e. the shape is ()), you can also get the one dimension array whose
shape is (1,).

Example

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.flatten(x)
>>> y.shape
(4,)
>>> y.data
array([1, 2, 3, 4])

>>> x = np.arange(8).reshape(2, 2, 2)
>>> x.shape
(2, 2, 2)
>>> y = F.flatten(x)
>>> y.shape
(8,)

(continues on next page)

4.2. Functions 139

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> y.data
array([0, 1, 2, 3, 4, 5, 6, 7])

chainer.functions.flip

chainer.functions.flip(x, axis)
Flips an input variable in reverse order along the given axis.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• axis (int) – Axis along which the input variable is reversed.

Returns Output variable.

Return type Variable

chainer.functions.fliplr

chainer.functions.fliplr(a)
Flip array in the left/right direction.

Parameters xs (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.flipud

chainer.functions.flipud(a)
Flip array in the up/down direction.

Parameters xs (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.get_item

chainer.functions.get_item(x, slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the selection
of elements.

Returns A Variable object which contains sliced array of x.

140 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice

Chainer Documentation, Release 4.0.0

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64
and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy document for details of indexing.

Example

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[0, 1, 2],

[3, 4, 5]],

[[6, 7, 8],
[9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],

[8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

chainer.functions.hstack

chainer.functions.hstack(xs)
Concatenate variables horizontally (column wise).

Parameters xs (list of Variable or numpy.ndarray or cupy.ndarray) – Input variables to
be concatenated. The variables must have the same ndim. When the variables have the second
axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the variables must have the same shape along all but the second axis.
When the variables do not have the second axis(i.e. 𝑛𝑑𝑖𝑚 < 2), the variables need not to have
the same shape.

Returns Output variable. When the input variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the shapes
of inputs and output are the same along all but the second axis. The length of second axis is the
sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e.
𝑛𝑑𝑖𝑚 < 2), the shape of output is (N,) (N is the sum of the input variables’ size).

Return type Variable

Example

4.2. Functions 141

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.hstack((x1, x2))
>>> y.shape
(6,)
>>> y.data
array([1, 2, 3, 2, 3, 4])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x2 = np.arange(12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],

[14, 15],
[16, 17]])

>>> y = F.hstack([x1, x2])
>>> y.shape
(3, 6)
>>> y.data
array([[0, 1, 2, 3, 12, 13],

[4, 5, 6, 7, 14, 15],
[8, 9, 10, 11, 16, 17]])

chainer.functions.im2col

chainer.functions.im2col(x, ksize, stride=1, pad=0, cover_all=False, dilate=1)
Extract patches from an image based on the filter.

This function rearranges patches of an image and puts them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of stride from the first position -pad for each spatial
axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.

• 𝑛 is the batch size.

• 𝑐 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

• 𝑠𝑌 and 𝑠𝑋 are the strides of the filter.

• 𝑝𝐻 and 𝑝𝑊 are the spatial padding sizes.

• 𝑑𝑌 and 𝑑𝑋 are the dilation factors of filter application.

142 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

The output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations when cover_all = False:

ℎ𝑂 = (ℎ + 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1))/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1))/𝑠𝑋 + 1.

When cover_all = True, the output size is determined by the following equations:

ℎ𝑂 = (ℎ + 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1) + 𝑠𝑌 − 1)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1) + 𝑠𝑋 − 1)/𝑠𝑋 + 1.

Parameters

• x (Variable) – Input variable of shape (𝑛, 𝑐, ℎ, 𝑤).

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• cover_all (bool) – If True, all spatial locations are rearranged into some output pixels.
It may make the output size larger.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

Returns Output variable whose shape is (𝑛, 𝑐 · 𝑘𝐻 · 𝑘𝑊 , ℎ𝑂, 𝑤𝑂)

Return type Variable

chainer.functions.pad

chainer.functions.pad(x, pad_width, mode, **keywords)
Pad an input variable.

Parameters

• x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input data.

• pad_width (int or array-like) – Number of values padded to the edges of each
axis.

• mode (str) – Specifies how the function fills the periphery of the array. The mode is
passed to numpy.pad() or cupy.pad(). If it is 'constant', the input is padded by
a constant value specified by constant_values.

• constant_values (int or array-like) – Constant values to fill the periphery in
the 'constant' mode.

Returns Output variable.

Return type Variable

chainer.functions.pad_sequence

chainer.functions.pad_sequence(xs, length=None, padding=0)
Pad given arrays to make a matrix.

4.2. Functions 143

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html#numpy.pad
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.pad.html#cupy.pad
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Parameters

• xs (list of ~chainer.Variable) – Variables you want to concatenate.

• length (None or int) – Size of the first dimension of a padded array. If it is None,
the longest size of the first dimension of xs is used.

• padding (int or float) – Value to fill.

Returns A padded matrix. Its shape is (n, length, ...), where n == len(xs).

Return type Variable

chainer.functions.permutate

chainer.functions.permutate(x, indices, axis=0, inv=False)
Permutates a given variable along an axis.

This function permutate x with given indices. That means y[i] = x[indices[i]] for all i. Note
that this result is same as y = x.take(indices). indices must be a permutation of [0, 1, ...,
len(x) - 1].

When inv is True, indices is treated as its inverse. That means y[indices[i]] = x[i].

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Variable to permutate. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• indices (Variable or numpy.ndarray or cupy.ndarray) – Indices to extract
from the variable. A one-dimensional int array.

• axis (int) – Axis that the input array is permutate along.

• inv (bool) – If True, indices is treated as its inverse.

Returns Output variable.

Return type Variable

Example

>>> x = np.arange(6).reshape((3, 2)).astype(np.float32)
>>> x
array([[0., 1.],

[2., 3.],
[4., 5.]], dtype=float32)

>>> indices = np.array([2, 0, 1], np.int32)
>>> y = F.permutate(x, indices)
>>> y.data
array([[4., 5.],

[0., 1.],
[2., 3.]], dtype=float32)

>>> y = F.permutate(x, indices, inv=True)
>>> y.data
array([[2., 3.],

[4., 5.],
[0., 1.]], dtype=float32)

>>> indices = np.array([1, 0], np.int32)
>>> y = F.permutate(x, indices, axis=1)
>>> y.data

(continues on next page)

144 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

(continued from previous page)

array([[1., 0.],
[3., 2.],
[5., 4.]], dtype=float32)

chainer.functions.repeat

chainer.functions.repeat(x, repeats, axis=None)
Construct an array by repeating a given array.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• repeats (int or tuple of int s) – The number of times which each element of x is
repeated.

• axis (int) – The axis along which to repeat values.

Returns The repeated output Variable.

Return type Variable

Example

>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.repeat(x, 2)
>>> y.shape
(6,)
>>> y.data
array([0, 0, 1, 1, 2, 2])
>>> x = np.array([[1,2], [3,4]])
>>> x.shape
(2, 2)
>>> y = F.repeat(x, 3, axis=1)
>>> y.shape
(2, 6)
>>> y.data
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])
>>> y = F.repeat(x, (1, 2), axis=0)
>>> y.shape
(3, 2)
>>> y.data
array([[1, 2],

[3, 4],
[3, 4]])

chainer.functions.reshape

chainer.functions.reshape(x, shape)
Reshapes an input variable without copy.

4.2. Functions 145

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• shape (tuple of int s) – Expected shape of the output array. The number of elements
which the array of shape contains must be equal to that of input array. One shape dimen-
sion can be -1. In this case, the value is inferred from the length of the array and remaining
dimensions.

Returns Variable that holds a reshaped version of the input variable.

Return type Variable

See also:

numpy.reshape(), cupy.reshape()

Example

>>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> y = F.reshape(x, (8,))
>>> y.shape
(8,)
>>> y.data
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> y = F.reshape(x, (4, -1)) # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.data
array([[1, 2],

[3, 4],
[5, 6],
[7, 8]])

>>> y = F.reshape(x, (4, 3)) # the shape of input and output are not consistent
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Reshape (Forward)

Expect: prod(in_types[0].shape) == prod((4, 3))
Actual: 8 != 12

chainer.functions.resize_images

chainer.functions.resize_images(x, output_shape)
Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the
sampling method.

Notatition: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image.

146 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.reshape.html#cupy.reshape

Chainer Documentation, Release 4.0.0

Parameters

• x (Variable) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• output_shape (tuple) – This is a tuple of length 2 whose values are (h_O, w_O).
Note that the order of height and width is opposite of the one in OpenCV.

Returns Resized image whose shape is (𝑛, 𝑐𝐼 , ℎ𝑂, 𝑤𝑂).

Return type Variable

chainer.functions.rollaxis

chainer.functions.rollaxis(x, axis, start=0)
Roll the axis backwards to the given position.

Parameters

• x (Variable) – Input variable.

• axis (int) – The axis to roll backwards.

• start (int) – The place to which the axis is moved.

Returns Variable whose axis is rolled.

Return type Variable

chainer.functions.scatter_add

chainer.functions.scatter_add(a, slices, b)
Adds given values to specified elements of an array.

This function adds b to the specified elements of the copy of a, and returns the copy. The value of the original
a is not changed.

Parameters

• a (Variable) – A variable.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – It is an integer, a slice, an
ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

• b (Variable) – A variable that is scatter added to a. Its shape has to equal a[slices]
because broadcasting of variables is not supported.

Returns A Variable object which is the result of scatter addition.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64
and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

See also:

numpy.add.at() and cupyx.scatter_add().

4.2. Functions 147

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice

Chainer Documentation, Release 4.0.0

chainer.functions.select_item

chainer.functions.select_item(x, t)
Select elements stored in given indices.

This function returns t.choose(x.T), that means y[i] == x[i, t[i]] for all i.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Variable storing arrays. A
two-dimensional float array.

• t (Variable or numpy.ndarray or cupy.ndarray) – Variable storing index num-
bers. A one-dimensional int array. Length of the t should be equal to x.shape[0].

Returns Variable that holds t-th element of x.

Return type Variable

Example

>>> x = np.array([[0, 1, 2], [3, 4, 5]], np.float32)
>>> t = np.array([0, 2], np.int32)
>>> y = F.select_item(x, t)
>>> y.shape
(2,)
>>> y.data
array([0., 5.], dtype=float32)

chainer.functions.separate

chainer.functions.separate(x, axis=0)
Separates an array along a given axis.

This function separates an array along a given axis. For example, shape of an array is (2, 3, 4). When it
separates the array with axis=1, it returns three (2, 4) arrays.

This function is an inverse of chainer.functions.stack().

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Variable to be separated. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• axis (int) – Axis along which variables are separated.

Returns Output variables.

Return type tuple of chainer.Variable

See also:

chainer.functions.stack()

Example

148 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

>>> x = np.arange(6).reshape((2, 3)).astype(np.float32)
>>> x
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> x.shape
(2, 3)
>>> y = F.separate(x) # split along axis=0
>>> isinstance(y, tuple)
True
>>> len(y)
2
>>> y[0].shape
(3,)
>>> y[0].data
array([0., 1., 2.], dtype=float32)
>>> y = F.separate(x, axis=1)
>>> len(y)
3
>>> y[0].shape
(2,)
>>> y[0].data
array([0., 3.], dtype=float32)

chainer.functions.space2depth

chainer.functions.space2depth(X, r)
Computes the space2depth transformation for subpixel calculations.

Parameters

• X (Variable or numpy.ndarray or cupy.ndarray) – Variable holding a 4d array
of shape (batch, channel, dim1 * r, dim2 * r).

• r (int) – the downscaling factor.

Returns A variable holding the downscaled layer array from subpixel array sampling. The shape is
(batch, channel * r * r, dim1, dim2).

Return type Variable

Note: This can be used to compute inverse super-resolution transformations. See https://arxiv.org/abs/1609.
05158 for details.

See also:

depth2space()

Example

>>> X = np.arange(24).reshape(1, 1, 4, 6).astype(np.float32)
>>> X.shape
(1, 1, 4, 6)
>>> X
array([[[[0., 1., 2., 3., 4., 5.],

(continues on next page)

4.2. Functions 149

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1609.05158

Chainer Documentation, Release 4.0.0

(continued from previous page)

[6., 7., 8., 9., 10., 11.],
[12., 13., 14., 15., 16., 17.],
[18., 19., 20., 21., 22., 23.]]]], dtype=float32)

>>> y = F.space2depth(X, 2)
>>> y.shape
(1, 4, 2, 3)
>>> y.data
array([[[[0., 2., 4.],

[12., 14., 16.]],

[[1., 3., 5.],
[13., 15., 17.]],

[[6., 8., 10.],
[18., 20., 22.]],

[[7., 9., 11.],
[19., 21., 23.]]]], dtype=float32)

chainer.functions.spatial_transformer_grid

chainer.functions.spatial_transformer_grid(theta, output_shape, **kwargs)
2D Spatial Transformer grid.

This function generates coordinates of the points sampled from an image to perform warping described in Spatial
Transformer Networks.

Given a coordinate in the warped image (𝑥𝑡
𝑖, 𝑦

𝑡
𝑖), the point sampled from the source image (𝑥𝑠

𝑖 , 𝑦
𝑠
𝑖) are calculated

by the following equation.

Note: cuDNN supports SpatialTransformerGrid from version 5.0.0.

(︂
𝑥𝑠
𝑖

𝑦𝑠𝑖

)︂
=

(︂
𝜃11 𝜃12 𝜃13
𝜃21 𝜃22 𝜃23

)︂⎛⎝𝑥𝑡
𝑖

𝑦𝑡𝑖
1

⎞⎠
Notatition: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• ℎ𝑂 and 𝑤𝑂 are the height and the width of the output image.

Parameters

• theta (Variable) – An array of shape (𝑛, 2, 3). This is a batch of 2× 3 matrix used for
the warping described above.

• output_shape (tuple) – A tuple of 2 elements: ℎ𝑂, 𝑤𝑂.

Returns A variable of shape (𝑛, 2, ℎ𝑂, 𝑤𝑂). In the 2nd dimension, the first element is the coordinate
along the x axis, and the second element is the coordinate along the y axis. All the coordinates in
the image are scaled to fit range [−1, 1]. This means that the coordinate (−1,−1) corresponds
to the upper-left corner of the input image.

150 Chapter 4. Reference

https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1506.02025
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

Return type Variable

chainer.functions.spatial_transformer_sampler

chainer.functions.spatial_transformer_sampler(x, grid, **kwargs)
2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points grid and an input feature map x, this
produces a sampled output feature map.

This function currently only supports bilinear interpolation as a sampling kernel.

When coordinates in grid is outside range [−1, 1], values are sampled from a zero padded input image.

Notatition: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image.

See detail in the following paper: Spatial Transformer Networks.

Note: cuDNN supports SpatialTransformerSampler from version 5.0.0.

Parameters

• x (Variable) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• grid (Variable) – Coordinate variable of shape (𝑛, 2, ℎ𝑂, 𝑤𝑂). Each coordinate defines
the spatial location in the input where a sampling kernel is applied to get the value at a
particular pixel in the output. grid[idx, :, i, j] corresponds to the coordinate
that is used to sample the values for an output pixel at location (𝑖, 𝑗).

In the second dimension, the first coordinate corresponds to the location along the horizontal
axis, and the second coordinate corresponds to the location along the vertical axis.

The coordinate (−1,−1) corresponds to the upper-left corner of the input image.

Returns Output feature map of shape (𝑛, 𝑐𝐼 , ℎ𝑂, 𝑤𝑂).

Return type Variable

chainer.functions.split_axis

chainer.functions.split_axis(x, indices_or_sections, axis, force_tuple=True)
Splits given variables along an axis.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – A variable to be split.

• indices_or_sections (int or 1-D array) – If this argument is an integer, N,
the array will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers,
it indicates the positions where the array is split.

• axis (int) – Axis that the input array is split along.

4.2. Functions 151

https://arxiv.org/abs/1506.02025
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• force_tuple (bool) – If True (the default) this method returns a tuple even when the
number of outputs is one. Otherwise, if False a Variable will be returned when the number
of outputs is one.

Returns Tuple of Variable objects if the number of outputs is more than 1 or Variable other-
wise. When force_tuple is True, returned value is always a tuple regardless of the number
of outputs.

Return type tuple or Variable

Note: This function raises ValueError if at least one of the outputs is split to zero-size (i.e. axis-th value
of its shape is zero).

chainer.functions.squeeze

chainer.functions.squeeze(x, axis=None)
Remove demensions of size one from the shape of a ndarray.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• axis (None or int or tuple of ints) – A subset of the single-dimensional en-
tries in the shape to remove. If None is supplied, all of them are removed. The dimension
index starts at zero. If an axis with dimension greater than one is selected, an error is raised.

Returns Variable whose dimensions of size 1 are removed.

Return type Variable

Example

>>> x = np.array([[[[0, 1, 2]]], [[[3, 4, 5]]]], np.float32)
>>> x.shape
(2, 1, 1, 3)
>>> y = F.squeeze(x)
>>> y.shape
(2, 3)
>>> y.data
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> y = F.squeeze(x, axis=1)
>>> y.shape
(2, 1, 3)
>>> y.data
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)
>>> y = F.squeeze(x, axis=(1, 2))
>>> y.shape
(2, 3)
>>> y.data
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)

152 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.functions.stack

chainer.functions.stack(xs, axis=0)
Concatenate variables along a new axis.

Parameters

• xs (list of Variable or numpy.ndarray or cupy.ndarray) – Input variables to be
concatenated. The variables must have the same shape.

• axis (int) – The axis along which the arrays will be stacked. The axis parameter is
acceptable when −𝑛𝑑𝑖𝑚− 1 ≤ 𝑎𝑥𝑖𝑠 ≤ 𝑛𝑑𝑖𝑚. (ndim is the dimension of input variables).
When 𝑎𝑥𝑖𝑠 < 0, the result is the same with 𝑛𝑑𝑖𝑚 + 1− |𝑎𝑥𝑖𝑠|.

Returns Output variable. Let x_1, x_2, ..., x_n and y be the input variables and the output
variable, y[:, ..., 0, ..., :] is x_1, y[:, ..., 1, ..., :] is x_2 and
y[:, ..., n-1, ..., :] is x_n (The indexed axis indicates the axis).

Return type Variable

Example

>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x2 = np.arange(12, 24).reshape(3, 4)
>>> x2.shape
(3, 4)
>>> x2
array([[12, 13, 14, 15],

[16, 17, 18, 19],
[20, 21, 22, 23]])

>>> y = F.stack([x1, x2], axis=0)
>>> y.shape
(2, 3, 4)
>>> y.data
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y = F.stack([x1, x2], axis=1)
>>> y.shape
(3, 2, 4)
>>> y.data
array([[[0, 1, 2, 3],

[12, 13, 14, 15]],

[[4, 5, 6, 7],
[16, 17, 18, 19]],

[[8, 9, 10, 11],

(continues on next page)

4.2. Functions 153

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

(continued from previous page)

[20, 21, 22, 23]]])
>>> y = F.stack([x1, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.data
array([[[0, 12],

[1, 13],
[2, 14],
[3, 15]],

[[4, 16],
[5, 17],
[6, 18],
[7, 19]],

[[8, 20],
[9, 21],
[10, 22],
[11, 23]]])

>>> y = F.stack([x1, x2], axis=-1)
>>> y.shape
(3, 4, 2)

chainer.functions.swapaxes

chainer.functions.swapaxes(x, axis1, axis2)
Swap two axes of a variable.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• axis1 (int) – The first axis to swap.

• axis2 (int) – The second axis to swap.

Returns Variable whose axes are swapped.

Return type Variable

Example

>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.swapaxes(x, axis1=0, axis2=1)
>>> y.shape
(2, 1, 3)
>>> y.data
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)

154 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.functions.tile

chainer.functions.tile(x, reps)
Construct an array by tiling a given array.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. Let the length
of reps be d. If x.ndim < d, x is treated as d-dimensional array by prepending new
axes. For example, when the shape of x is (2,) and tiled with 2-dim repetitions, x is
treated as the shape (1, 2). If x.ndim > d, reps is treated as x.ndim-dimensional
by pre-pending 1’s. For example, when the shape of x is (2, 3, 2, 3), the 2-dim reps
of (2, 2) is treated as (1, 1, 2, 2).

• reps (int or tuple of int s) – The number of times which x is replicated along each
axis.

Returns The tiled output Variable. Let the length of reps be d, the output has the dimension of
max(d, x.ndim).

Return type Variable

Example

>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.tile(x, 2)
>>> y.shape
(6,)
>>> y.data
array([0, 1, 2, 0, 1, 2])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(2, 6)
>>> y.data
array([[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2]])
>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 1, 6)
>>> y.data
array([[[0, 1, 2, 0, 1, 2]],

[[0, 1, 2, 0, 1, 2]]])

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.tile(x, 2)
>>> y.shape
(2, 4)
>>> y.data
array([[1, 2, 1, 2],

[3, 4, 3, 4]])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(4, 4)

(continues on next page)

4.2. Functions 155

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> y.data
array([[1, 2, 1, 2],

[3, 4, 3, 4],
[1, 2, 1, 2],
[3, 4, 3, 4]])

>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 2, 4)
>>> y.data
array([[[1, 2, 1, 2],

[3, 4, 3, 4]],

[[1, 2, 1, 2],
[3, 4, 3, 4]]])

chainer.functions.transpose

chainer.functions.transpose(x, axes=None)
Permute the dimensions of an input variable without copy.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable to be trans-
posed. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• axes (tuple of ints) – By default, reverse the dimensions, otherwise permute the
axes according to the values given.

Returns Variable whose axes are permuted.

Return type Variable

Example

>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.transpose(x) # reverse the dimensions
>>> y.shape
(3, 2, 1)
>>> y.data
array([[[0.],

[3.]],

[[1.],
[4.]],

[[2.],
[5.]]], dtype=float32)

>>> y = F.transpose(x, axes=(1, 0, 2)) # swap 1st and 2nd axis
>>> y.shape
(2, 1, 3)
>>> y.data
array([[[0., 1., 2.]],

(continues on next page)

156 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

[[3., 4., 5.]]], dtype=float32)

chainer.functions.transpose_sequence

chainer.functions.transpose_sequence(xs)
Transpose a list of Variables.

This function transposes a list of Variables and returns a list of Variables. For example a user gives [(0,
1, 2, 3), (4, 5), (6)], the function returns [(0, 4, 6), (1, 5), (2), (3)]. Note that a
given list needs to be sorted by each length of Variable.

Parameters xs (list of ~chainer.Variable) – Variables to transpose.

Returns Transposed list.

Return type tuple or Variable

chainer.functions.vstack

chainer.functions.vstack(xs)
Concatenate variables vertically (row wise).

Parameters xs (list of Variable or numpy.ndarray or cupy.ndarray) – Input variables to
be concatenated. The variables must have the same ndim. When the variables have the second
axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the variables must have the same shape along all but the first axis. When
the variables do not have the second axis(i.e. 𝑛𝑑𝑖𝑚 < 2), the variables must have the same
shape.

Returns Output variable. When the input variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the shapes
of inputs and output are the same along all but the first axis. The length of first axis is the sum of
the lengths of inputs’ first axis. When the variables do not have the second axis (i.e. 𝑛𝑑𝑖𝑚 < 2),
the shape of output is (2, N) (N is the size of the input variable).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.vstack((x1, x2))
>>> y.shape
(2, 3)
>>> y.data
array([[1, 2, 3],

[2, 3, 4]])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1

(continues on next page)

4.2. Functions 157

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x2 = np.arange(12, 20).reshape(2, 4)
>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],

[16, 17, 18, 19]])
>>> y = F.vstack([x1, x2])
>>> y.shape
(5, 4)
>>> y.data
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])

chainer.functions.where

chainer.functions.where(condition, x, y)
Choose elements depending on condition.

This function choose values depending on a given condition. All condition, x, and y must have the same
shape.

Parameters

• condition (Variable or numpy.ndarray or cupy.ndarray) – Input variable
containing the condition. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped boolean array. Only boolean array is
permitted.

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable chosen when
condition is True. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• y (Variable or numpy.ndarray or cupy.ndarray) – Input variable chosen when
condition is False. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

Returns Variable containing chosen values.

Return type Variable

Example

>>> cond = np.array([[1, 0], [0, 1]], dtype=np.bool)
>>> cond
array([[True, False],

[False, True]])
>>> x = np.array([[1, 2], [3, 4]], np.float32)
>>> y = np.zeros((2, 2), np.float32)
>>> F.where(cond, x, y).data
array([[1., 0.],

[0., 4.]], dtype=float32)

158 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

4.2.4 Neural network connections

chainer.functions.bilinear Applies a bilinear function based on given parameters.
chainer.functions.convolution_2d Two-dimensional convolution function.
chainer.functions.convolution_nd N-dimensional convolution function.
chainer.functions.deconvolution_2d Two dimensional deconvolution function.
chainer.functions.deconvolution_nd N-dimensional deconvolution function.
chainer.functions.
depthwise_convolution_2d

Two-dimensional depthwise convolution function.

chainer.functions.
dilated_convolution_2d

Two-dimensional dilated convolution function.

chainer.functions.embed_id Efficient linear function for one-hot input.
chainer.functions.linear Linear function, or affine transformation.
chainer.functions.local_convolution_2d Two-dimensional local convolution function.
chainer.functions.n_step_bigru Stacked Bi-directional Gated Recurrent Unit function.
chainer.functions.n_step_bilstm Stacked Bi-directional Long Short-Term Memory function.
chainer.functions.n_step_birnn Stacked Bi-directional RNN function for sequence inputs.
chainer.functions.n_step_gru Stacked Uni-directional Gated Recurrent Unit function.
chainer.functions.n_step_lstm Stacked Uni-directional Long Short-Term Memory func-

tion.
chainer.functions.n_step_rnn Stacked Uni-directional RNN function for sequence inputs.
chainer.functions.shift Shift function.

chainer.functions.bilinear

chainer.functions.bilinear(e1, e2, W, V1=None, V2=None, b=None)
Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables
and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by 𝑒1 ∈ R𝐼·𝐽 , 𝑒2 ∈ R𝐼·𝐾 , 𝑊 ∈ R𝐽·𝐾·𝐿, 𝑉 1 ∈ R𝐽·𝐿,
𝑉 2 ∈ R𝐾·𝐿, and 𝑏 ∈ R𝐿, where 𝐼 is mini-batch size. In this document, we call 𝑉 1, 𝑉 2, and 𝑏 linear parameters.

The output of forward propagation is calculated as

𝑦𝑖𝑙 =
∑︁
𝑗𝑘

𝑒1𝑖𝑗𝑒
2
𝑖𝑘𝑊𝑗𝑘𝑙 +

∑︁
𝑗

𝑒1𝑖𝑗𝑉
1
𝑗𝑙 +

∑︁
𝑘

𝑒2𝑖𝑘𝑉
2
𝑘𝑙 + 𝑏𝑙.

Note that V1, V2, b are optional. If these are not given, then this function omits the last three terms in the above
equation.

Note: This function accepts an input variable e1 or e2 of a non-matrix array. In this case, the leading
dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

Note: In the original paper, 𝐽 and 𝐾 must be equal and the author denotes [𝑉 1𝑉 2] (concatenation of matrices)
by 𝑉 .

Parameters

• e1 (Variable) – Left input variable.

4.2. Functions 159

Chainer Documentation, Release 4.0.0

• e2 (Variable) – Right input variable.

• W (Variable) – Quadratic weight variable.

• V1 (Variable) – Left coefficient variable.

• V2 (Variable) – Right coefficient variable.

• b (Variable) – Bias variable.

Returns Output variable.

Return type Variable

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

chainer.functions.convolution_2d

chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, cover_all=False, *, dilate=1,
groups=1)

Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image
x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• ℎ𝐼 and 𝑤𝐼 are the height and width of the input image, respectively.

• ℎ𝐾 and 𝑤𝐾 are the height and width of the filters, respectively.

• ℎ𝑃 and 𝑤𝑃 are the height and width of the spatial padding size, respectively.

Then the Convolution2D function computes correlations between filters and patches of size (ℎ𝐾 , 𝑤𝐾) in x.
Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at
positions shifted by multiples of stride from the first position (-h_P, -w_P) for each spatial axis. The
right-most (or bottom-most) patches do not run over the padded spatial size.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following
equations:

ℎ𝑂 = (ℎ𝐼 + 2ℎ𝑃 − ℎ𝐾)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤𝐼 + 2𝑤𝑃 − 𝑤𝐾)/𝑠𝑋 + 1.

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In
this case, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ𝐼 + 2ℎ𝑃 − ℎ𝐾 + 𝑠𝑌 − 1)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤𝐼 + 2𝑤𝑃 − 𝑤𝐾 + 𝑠𝑋 − 1)/𝑠𝑋 + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-
ministic algorithm.

160 Chapter 4. Reference

https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion

Chainer Documentation, Release 4.0.0

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

When the dilation factor is greater than one, cuDNN is not used unless the version is 6.0 or higher.

Warning: deterministic argument is not supported anymore since v2. Instead, use chainer.
using_config('cudnn_deterministic', value) (value is either True or False). See
chainer.using_config().

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape
(𝑛, 𝑐𝐼 , ℎ𝐼 , 𝑤𝐼).

• W (Variable or numpy.ndarray or cupy.ndarray) – Weight variable of shape
(𝑐𝑂, 𝑐𝐼 , ℎ𝐾 , 𝑤𝐾).

• b (Variable or numpy.ndarray or cupy.ndarray) – Bias variable of length 𝑐𝑂
(optional).

• stride (int or pair of int s) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of int s) – Spatial padding width for input arrays. pad=p and pad=(p,
p) are equivalent.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.

• dilate (int or pair of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

See also:

Convolution2D

Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> h_i, w_i = 30, 40
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40)
>>> W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o,)).astype(np.float32)
>>> b.shape
(1,)

(continues on next page)

4.2. Functions 161

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> s_y, s_x = 5, 7
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 1, 7, 6)
>>> h_o = int((h_i + 2 * h_p - h_k) / s_y + 1)
>>> w_o = int((w_i + 2 * w_p - w_k) / s_x + 1)
>>> y.shape == (n, c_o, h_o, w_o)
True
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p), cover_
→˓all=True)
>>> y.shape == (n, c_o, h_o, w_o + 1)
True

chainer.functions.convolution_nd

chainer.functions.convolution_nd(x, W, b=None, stride=1, pad=0, cover_all=False)
N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in
ConvNets. It takes three variables: the input x, the filter weight W and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑙1, 𝑙2, ..., 𝑙𝑁 are the size of each axis of the output’s spatial dimensions, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

Then the convolution_nd function computes correlations between filters and patches of size (𝑘1, 𝑘2, ..., 𝑘𝑁)
in x. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are
extracted at positions shifted by multiples of stride from the first position (-p_1, -p_2, ..., -p_N)
for each spatial axis.

Let (𝑠1, 𝑠2, ..., 𝑠𝑁) be the stride of filter application. Then, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁) is determined by the
following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In
this case, the output size is determined by the following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛 + 𝑠𝑛 − 1)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

The N-dimensional convolution function is defined as follows.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape
(𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁).

162 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

• W (Variable or numpy.ndarray or cupy.ndarray) – Weight variable of shape
(𝑐𝑂, 𝑐𝐼 , 𝑘1, 𝑘2, ..., 𝑘𝑁).

• b (Variable or numpy.ndarray or cupy.ndarray) – One-dimensional bias vari-
able with length 𝑐𝑂 (optional).

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁).
pad=p is equivalent to (p, p, ..., p).

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use cuDNN.

Returns Output variable of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁).

Return type Variable

Note: This function uses cuDNN implementation for its forward and backward computation if ALL of the
following conditions are satisfied:

• cuda.cudnn_enabled is True

• chainer.config.use_cudnn is 'always' or 'auto'

• The number of spatial dimensions is more than one.

• cover_all is False

• The input’s dtype is equal to the filter weight’s.

• The dtype is FP16, FP32 or FP64. (FP16 is only available when cuDNN version ≥ v3.)

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

See also:

ConvolutionND, convolution_2d()

Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40, 50)
>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))

(continues on next page)

4.2. Functions 163

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> y.shape
(10, 1, 16, 11, 9)
>>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, l1, l2, l3)
True
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_
→˓all=True)
>>> y.shape == (n, c_o, l1, l2, l3 + 1)
True

chainer.functions.deconvolution_2d

chainer.functions.deconvolution_2d(x, W, b=None, stride=1, pad=0, outsize=None, *, di-
late=1, groups=1)

Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep learning frameworks and pa-
pers, this function is called transposed convolution. But because of historical reasons (e.g. paper by Ziller
Deconvolutional Networks) and backward compatibility, this function is called deconvolution in Chainer.

It takes three variables: input image x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• ℎ𝐼 and 𝑤𝐼 are the height and width of the input image, respectively.

• ℎ𝐾 and 𝑤𝐾 are the height and width of the filters, respectively.

• ℎ𝑃 and 𝑤𝑃 are the height and width of the spatial padding size, respectively.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is estimated by the following
equations:

ℎ𝑂 = 𝑠𝑌 (ℎ𝐼 − 1) + ℎ𝐾 − 2ℎ𝑃 ,

𝑤𝑂 = 𝑠𝑋(𝑤𝐼 − 1) + 𝑤𝐾 − 2𝑤𝑃 .

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Warning: deterministic argument is not supported anymore since v2. Instead, use chainer.
using_config('cudnn_deterministic', value) (value is either True or False). See
chainer.using_config().

Parameters

164 Chapter 4. Reference

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf

Chainer Documentation, Release 4.0.0

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape
(𝑛, 𝑐𝐼 , ℎ𝐼 , 𝑤𝐼).

• W (Variable or numpy.ndarray or cupy.ndarray) – Weight variable of shape
(𝑐𝐼 , 𝑐𝑂, ℎ𝐾 , 𝑤𝐾).

• b (Variable or numpy.ndarray or cupy.ndarray) – Bias variable of length 𝑐𝑂
(optional).

• stride (int or pair of int s) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of int s) – Spatial padding width for input arrays. pad=p and pad=(p,
p) are equivalent.

• outsize (tuple of int) – Expected output size of deconvolutional operation. It should
be pair of height and width (ℎ𝑂, 𝑤𝑂). Default value is None and the outsize is estimated
by input size, stride and pad.

• dilate (int or pair of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

Example

>>> n = 10
>>> c_i, c_o = 1, 3
>>> h_i, w_i = 5, 10
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 1, 5, 10)
>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, c_o).astype(np.float32)
>>> b.shape
(3,)
>>> s_y, s_x = 5, 5
>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 3, 20, 45)
>>> h_o = s_y * (h_i - 1) + h_k - 2 * h_p
>>> w_o = s_x * (w_i - 1) + w_k - 2 * w_p
>>> y.shape == (n, c_o, h_o, w_o)
True

4.2. Functions 165

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.functions.deconvolution_nd

chainer.functions.deconvolution_nd(x, W, b=None, stride=1, pad=0, outsize=None)
N-dimensional deconvolution function.

This is an implementation of N-dimensional deconvolution which generalizes two-dimensional one. In most of
deep learning frameworks and papers, this function is called transposed convolution. But because of historical
reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called
deconvolution in Chainer.

It takes three variables: the input x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

• 𝑠1, 𝑠2, ..., 𝑠𝑁 are the stride of each axis of filter application, respectively.

If outsize option is None, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁) is determined by the following equations with the
items in the above list:

𝑙𝑛 = 𝑠𝑛(𝑑𝑛 − 1) + 𝑘𝑛 − 2𝑝𝑛 (𝑛 = 1, ..., 𝑁)

If outsize option is given, the output size is determined by outsize. In this case, the outsize
(𝑙1, 𝑙2, ..., 𝑙𝑁) must satisfy the following equations:

𝑑𝑛 = ⌊(𝑙𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛⌋+ 1 (𝑛 = 1, ..., 𝑁)

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape
(𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁).

• W (Variable or numpy.ndarray or cupy.ndarray) – Weight variable of shape
(𝑐𝐼 , 𝑐𝑂, 𝑘1, 𝑘2, ..., 𝑘𝑁).

• b (Variable or numpy.ndarray or cupy.ndarray) – One-dimensional bias vari-
able with length 𝑐𝑂 (optional).

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁).
pad=p is equivalent to (p, p, ..., p).

• outsize (tuple of int s) – Expected output size of deconvolutional operation. It should
be a tuple of ints (𝑙1, 𝑙2, ..., 𝑙𝑁). Default value is None and the outsize is estimated by input
size, stride and pad.

Returns Output variable of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁).

166 Chapter 4. Reference

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Return type Variable

See also:

links.DeconvolutionND, deconvolution_2d()

Example

Example1: the case when outsize is not given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3
>>> y.shape == (n, c_o, l1, l2, l3)
True

Example2: the case when outsize is given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> l1, l2, l3 = 9, 38, 87
>>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1
True
>>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1
True

(continues on next page)

4.2. Functions 167

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3),
→˓outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True

chainer.functions.depthwise_convolution_2d

chainer.functions.depthwise_convolution_2d(x, W, b=None, stride=1, pad=0)
Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution. It takes two or three variables: the input
image x, the filter weight W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input.

• 𝑐𝑀 is the channel multiplier.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape
(𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable) – Weight variable of shape (𝑐𝑀 , 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable) – Bias variable of length 𝑐𝑀 * 𝑐𝐼 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

Returns Output variable. Its shape is (𝑛, 𝑐𝐼 * 𝑐𝑀 , ℎ𝑂, 𝑤𝑂).

Return type Variable

Like Convolution2D, DepthwiseConvolution2D function computes correlations between filters and
patches of size (𝑘𝐻 , 𝑘𝑊) in x. But unlike Convolution2D, DepthwiseConvolution2D does not add up
input channels of filters but concatenates them. For that reason, the shape of outputs of depthwise convolution
are (𝑛, 𝑐𝐼 * 𝑐𝑀 , ℎ𝑂, 𝑤𝑂), 𝑐𝑀 is called channel_multiplier.

(ℎ𝑂, 𝑤𝑂) is determined by the equivalent equation of Convolution2D.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See: L. Sifre. Rigid-motion scattering for image classification

See also:

168 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf

Chainer Documentation, Release 4.0.0

DepthwiseConvolution2D

Example

>>> x = np.random.uniform(0, 1, (2, 3, 4, 7))
>>> W = np.random.uniform(0, 1, (2, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (6,))
>>> y = F.depthwise_convolution_2d(x, W, b)
>>> y.shape
(2, 6, 2, 5)

chainer.functions.dilated_convolution_2d

chainer.functions.dilated_convolution_2d(x, W, b=None, stride=1, pad=0, dilate=1,
cover_all=False)

Two-dimensional dilated convolution function.

This is an implementation of two-dimensional dilated convolution in ConvNets. It takes three variables: the
input image x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output, respectively.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (Variable) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger.

Returns Output variable.

Return type Variable

The two-dimensional dilated convolution function is defined as follows. Then the DilatedConvolution2D
function computes correlations between filters and patches of size (𝑘𝐻 , 𝑘𝑊) in x. Patches here are extracted at
intervals of the dilation factor. Note that correlation here is equivalent to the inner product between expanded
vectors. Patches are extracted at intervals of the dilation factor and at positions shifted by multiples of stride
from the first position -pad for each spatial axis. The right-most (or bottom-most) patches do not run over the
padded spatial size.

4.2. Functions 169

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application, (𝑝𝐻 , 𝑝𝑊) the spatial padding size, and (𝑑𝑌 , 𝑑𝑋) the dilation
factor of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ + 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1))/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1))/𝑠𝑋 + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

chainer.functions.embed_id

chainer.functions.embed_id(x, W, ignore_label=None)
Efficient linear function for one-hot input.

This function implements so called word embeddings. It takes two arguments: a set of IDs (words) x in 𝐵
dimensional integer vector, and a set of all ID (word) embeddings W in 𝑉 × 𝑑 float32 matrix. It outputs 𝐵 × 𝑑
matrix whose i-th column is the x[i]-th column of W.

This function is only differentiable on the input W.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Batch vectors of IDs. Each
element must be signed integer.

• W (Variable or numpy.ndarray or cupy.ndarray) – Distributed representation of
each ID (a.k.a. word embeddings).

• ignore_label (int or None) – If ignore_label is an int value, i-th column of
return value is filled with 0.

Returns Output variable.

Return type Variable

See also:

EmbedID

Example

>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype(np.float32)
>>> W
array([[0., 0., 0.],

[1., 1., 1.],
[2., 2., 2.]], dtype=float32)

>>> F.embed_id(x, W).data
array([[2., 2., 2.],

[1., 1., 1.]], dtype=float32)
>>> F.embed_id(x, W, ignore_label=1).data
array([[2., 2., 2.],

[0., 0., 0.]], dtype=float32)

170 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.functions.linear

chainer.functions.linear(x, W, b=None)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It
computes

𝑌 = 𝑥𝑊⊤ + 𝑏.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable, which is a
(𝑠𝐵 , 𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float array. Its first dimension (𝑠𝐵) is assumed to be the mini-
batch dimension. The other dimensions are treated as concatenated one dimension whose
size must be (𝑠1 * ... * 𝑠𝑛 = 𝑁).

• W (Variable or numpy.ndarray or cupy.ndarray) – Weight variable of shape
(𝑀,𝑁), where (𝑁 = 𝑠1 * ... * 𝑠𝑛).

• b (Variable or numpy.ndarray or cupy.ndarray) – Bias variable (optional) of
shape (𝑀,).

Returns Output variable. A float array with shape of (𝑠𝐵 ,𝑀).

Return type Variable

See also:

Linear

Example

>>> x = np.random.uniform(0, 1, (3, 4)).astype(np.float32)
>>> W = np.random.uniform(0, 1, (5, 4)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (5,)).astype(np.float32)
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)

chainer.functions.local_convolution_2d

chainer.functions.local_convolution_2d(x, W, b=None, stride=1)
Two-dimensional local convolution function.

Locally-connected function for 2D inputs. Works similarly to convolution_2d, except that weights are unshared,
that is, a different set of filters is applied at each different patch of the input. It takes two or three variables: the
input image x, the filter weight W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input.

• 𝑐𝑂 is the number of output channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image, respectively.

4.2. Functions 171

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape
(𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable) – Weight variable of shape (𝑐𝑂, ℎ𝑂, 𝑤𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable) – Bias variable of shape (𝑐𝑂, ℎ𝑂, 𝑤𝑂) (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

Returns Output variable. Its shape is (𝑛, 𝑐𝐼 * 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

Like Convolution2D, LocalConvolution2D function computes correlations between filters and patches
of size (𝑘𝐻 , 𝑘𝑊) in x. But unlike Convolution2D, LocalConvolution2D has a separate filter for each
patch of the input

(ℎ𝑂, 𝑤𝑂) is determined by the equivalent equation of Convolution2D, without any padding

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

LocalConvolution2D

Example

>>> x = np.random.uniform(0, 1, (2, 3, 7, 7))
>>> W = np.random.uniform(0, 1, (2, 5, 5, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (2, 5, 5))
>>> y = F.local_convolution_2d(x, W, b)
>>> y.shape
(2, 2, 5, 5)

chainer.functions.n_step_bigru

chainer.functions.n_step_bigru(n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Bi-directional Gated Recurrent Unit function.

This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state
ℎ0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates hidden states ℎ𝑡 for

172 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

each time 𝑡 from input 𝑥𝑡.

𝑟𝑓𝑡 = 𝜎(𝑊 𝑓
0 𝑥𝑡 + 𝑊 𝑓

3 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓3)

𝑧𝑓𝑡 = 𝜎(𝑊 𝑓
1 𝑥𝑡 + 𝑊 𝑓

4 ℎ𝑡−1 + 𝑏𝑓1 + 𝑏𝑓4)

ℎ𝑓 ′

𝑡 = tanh(𝑊 𝑓
2 𝑥𝑡 + 𝑏𝑓2 + 𝑟𝑓𝑡 · (𝑊

𝑓
5 ℎ𝑡−1 + 𝑏𝑓5))

ℎ𝑓
𝑡 = (1− 𝑧𝑓𝑡) · ℎ𝑓 ′

𝑡 + 𝑧𝑓𝑡 · ℎ𝑡−1

𝑟𝑏𝑡 = 𝜎(𝑊 𝑏
0𝑥𝑡 + 𝑊 𝑏

3ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏3)

𝑧𝑏𝑡 = 𝜎(𝑊 𝑏
1𝑥𝑡 + 𝑊 𝑏

4ℎ𝑡−1 + 𝑏𝑏1 + 𝑏𝑏4)

ℎ𝑏′

𝑡 = tanh(𝑊 𝑏
2𝑥𝑡 + 𝑏𝑏2 + 𝑟𝑏𝑡 · (𝑊 𝑏

5ℎ𝑡−1 + 𝑏𝑏5))

ℎ𝑏
𝑡 = (1− 𝑧𝑏𝑡) · ℎ𝑏′

𝑡 + 𝑧𝑏𝑡 · ℎ𝑡−1

ℎ𝑡 = [ℎ𝑓
𝑡 ;ℎ𝑏

𝑡]

where 𝑊 𝑓 is weight matrices for forward-GRU, 𝑊 𝑏 is weight matrices for backward-GRU.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Six weight matrices and six bias
vectors are required for each layers. So, when 𝑆 layers exists, you need to prepare 6𝑆 weigth matrices and 6𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (chainer.Variable) – Variable holding stacked hidden states. Its shape is (2S,
B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and
N is dimension of hidden units.

• ws (list of list of chainer.Variable) – Weight matrices. ws[i] represents
weights for i-th layer. Each ws[i] is a list containing six matrices. ws[i][j] is corre-
sponding with W_j in the equation. Only ws[0][j] where 0 <= j < 3 is (I, N)
shape as they are multiplied with input variables. All other matrices has (N, N) shape.

• bs (list of list of chainer.Variable) – Bias vectors. bs[i] represnents
biases for i-th layer. Each bs[i] is a list containing six vectors. bs[i][j] is corre-
sponding with b_j in the equation. Shape of each matrix is (N,) where N is dimension of
hidden units.

• xs (list of chainer.Variable) – A list of Variable holding input values. Each
element xs[t] holds input value for time t. Its shape is (B_t, I), where B_t is mini-
batch size for time t, and I is size of input units. Note that this function supports variable
length sequences. When sequneces has different lengths, sort sequences in descending order
by length, and transpose the sorted sequence. transpose_sequence() transpose a
list of Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >=
xs[t + 1].shape[0].

• use_bi_direction (bool) – If True, this function uses Bi-direction GRU.

4.2. Functions 173

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.n_step_bilstm

chainer.functions.n_step_bilstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates

174 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

𝑖𝑓𝑡 =

𝜎(𝑊 𝑓
0 𝑥𝑡 + 𝑊 𝑓

4 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓4),

𝑓𝑓
𝑡 =

𝜎(𝑊 𝑓
1 𝑥𝑡 + 𝑊 𝑓

5 ℎ𝑡−1 + 𝑏𝑓1 + 𝑏𝑓5),

𝑜𝑓𝑡 =

𝜎(𝑊 𝑓
2 𝑥𝑡 + 𝑊 𝑓

6 ℎ𝑡−1 + 𝑏𝑓2 + 𝑏𝑓6),

𝑎𝑓𝑡 =

tanh(𝑊 𝑓
3 𝑥𝑡 + 𝑊 𝑓

7 ℎ𝑡−1 + 𝑏𝑓3 + 𝑏𝑓7),

𝑐𝑓𝑡 =

𝑓𝑓
𝑡 · 𝑐

𝑓
𝑡−1 + 𝑖𝑓𝑡 · 𝑎

𝑓
𝑡 ,

ℎ𝑓
𝑡 =

𝑜𝑓𝑡 · tanh(𝑐𝑓𝑡),

𝑖𝑏𝑡 =

𝜎(𝑊 𝑏
0𝑥𝑡 + 𝑊 𝑏

4ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏4),

𝑓 𝑏
𝑡 =

𝜎(𝑊 𝑏
1𝑥𝑡 + 𝑊 𝑏

5ℎ𝑡−1 + 𝑏𝑏1 + 𝑏𝑏5),

𝑜𝑏𝑡 =

𝜎(𝑊 𝑏
2𝑥𝑡 + 𝑊 𝑏

6ℎ𝑡−1 + 𝑏𝑏2 + 𝑏𝑏6),

𝑎𝑏𝑡 =

tanh(𝑊 𝑏
3𝑥𝑡 + 𝑊 𝑏

7ℎ𝑡−1 + 𝑏𝑏3 + 𝑏𝑏7),

𝑐𝑏𝑡 =

𝑓 𝑏
𝑡 · 𝑐𝑏𝑡−1 + 𝑖𝑏𝑡 · 𝑎𝑏𝑡 ,

ℎ𝑏
𝑡 =

𝑜𝑏𝑡 · tanh(𝑐𝑏𝑡),

ℎ𝑡 =

[ℎ𝑓
𝑡 ;ℎ𝑏

𝑡]

where 𝑊 𝑓 is the weight matrices for forward-LSTM, 𝑊 𝑏 is weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Eight weight matrices and eight bias
vectors are required for each layer of each direction. So, when 𝑆 layers exist, you need to prepare 16𝑆 weigth
matrices and 16𝑆 bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the
k-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

• n_layers (int) – The number of layers.

4.2. Functions 175

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (2S, B, N)where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units. Because of bi-direction, the first dimension length is 2S.

• cx (Variable) – Variable holding stacked cell states. It has the same shape as hx.

• ws (list of list of Variable) – Weight matrices. ws[2 * l + m] represents the weights
for the l-th layer of the m-th direction. (m == 0 means the forward direction and m == 1
means the backward direction.) Each ws[i] is a list containing eight matrices. ws[i][j]
corresponds to 𝑊𝑗 in the equation. ws[0][j] and ws[1][j] where 0 <= j < 4 are
(I, N)-shaped because they are multiplied with input variables, where I is the size of the
input. ws[i][j] where 2 <= i and 0 <= j < 4 are (N, 2N)-shaped because they
are multiplied with two hidden layers ℎ𝑡 = [ℎ𝑓

𝑡 ;ℎ𝑏
𝑡]. All other matrices are (N, N)-shaped.

• bs (list of list of Variable) – Bias vectors. bs[2 * l + m] represents the weights
for the l-th layer of m-th direction. (m == 0 means the forward direction and m == 1
means the backward direction.) Each bs[i] is a list containing eight vectors. bs[i][j]
corresponds to 𝑏𝑗 in the equation. The shape of each matrix is (N,).

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose_sequence() can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs
needs to satisfy xs[t].shape[0] >= xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, 2N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

Example

>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers * 2, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> def w_in(i, j):
... if i == 0 and j < 4:
... return in_size
... elif i > 0 and j < 4:
... return out_size * 2
... else:

(continues on next page)

176 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

(continued from previous page)

... return out_size

...
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
... for direction in (0, 1):
... ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i
→˓in range(8)])
... bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
...
>>> ws[0][0].shape # ws[0:2][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[2][0].shape # ws[2:][:4].shape are (out_size, 2 * out_size)
(2, 4)
>>> ws[0][4].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_bilstm(
... n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(4, 3, 2)
>>> cy.shape
(4, 3, 2)
>>> [y.shape for y in ys]
[(3, 4), (2, 4), (1, 4)]

chainer.functions.n_step_birnn

chainer.functions.n_step_birnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation=’tanh’)
Stacked Bi-directional RNN function for sequence inputs.

This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

ℎ𝑓
𝑡 =

𝑓(𝑊 𝑓
0 𝑥𝑡 + 𝑊 𝑓

1 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓1),

ℎ𝑏
𝑡 =

𝑓(𝑊 𝑏
0𝑥𝑡 + 𝑊 𝑏

1ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏1),

ℎ𝑡 =

[ℎ𝑓
𝑡 ;ℎ𝑓

𝑡],

where 𝑓 is an activation function.

Weight matrices 𝑊 contains two matrices 𝑊 𝑓 and 𝑊 𝑏. 𝑊 𝑓 is weight matrices for forward directional RNN.
𝑊 𝑏 is weight matrices for backward directional RNN.

𝑊 𝑓 contains 𝑊 𝑓
0 for an input sequence and 𝑊 𝑓

1 for a hidden state. 𝑊 𝑏 contains 𝑊 𝑏
0 for an input sequence and

𝑊 𝑏
1 for a hidden state.

Bias matrices 𝑏 contains two matrices 𝑏𝑓 and 𝑏𝑓 . 𝑏𝑓 contains 𝑏𝑓0 for an input sequence and 𝑏𝑓1 for a hidden state.
𝑏𝑏 contains 𝑏𝑏0 for an input sequence and 𝑏𝑏1 for a hidden state.

4.2. Functions 177

Chainer Documentation, Release 4.0.0

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Two weight matrices and two bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 2𝑆 weigth matrices and 2𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (chainer.Variable) – Variable holding stacked hidden states. Its shape is (2S,
B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and
N is dimension of hidden units. Because of bi-direction, the first dimension length is 2S.

• ws (list of list of chainer.Variable) – Weight matrices. ws[i + di]
represents weights for i-th layer. Note that di = 0 for forward-RNN and di = 1 for
backward-RNN. Each ws[i + di] is a list containing two matrices. ws[i + di][j]
is corresponding with W^{f}_j if di = 0 and corresponding with W^{b}_j if di =
1 in the equation. Only ws[0][j] and ws[1][j] where 0 <= j < 1 are (I, N)
shape as they are multiplied with input variables. All other matrices has (N, N) shape.

• bs (list of list of chainer.Variable) – Bias vectors. bs[i + di] repres-
nents biases for i-th layer. Note that di = 0 for forward-RNN and di = 1 for backward-
RNN. Each bs[i + di] is a list containing two vectors. bs[i + di][j] is corre-
sponding with b^{f}_j if di = 0 and corresponding with b^{b}_j if di = 1 in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

• xs (list of chainer.Variable) – A list of Variable holding input values. Each
element xs[t] holds input value for time t. Its shape is (B_t, I), where B_t is mini-
batch size for time t, and I is size of input units. Note that this function supports variable
length sequences. When sequneces has different lengths, sort sequences in descending order
by length, and transpose the sorted sequence. transpose_sequence() transpose a
list of Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >=
xs[t + 1].shape[0].

• activation (str) – Activation function name. Please select tanh or relu.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

178 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

chainer.functions.n_step_gru

chainer.functions.n_step_gru(n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Uni-directional Gated Recurrent Unit function.

This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state
ℎ0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates hidden states ℎ𝑡 for
each time 𝑡 from input 𝑥𝑡.

𝑟𝑡 = 𝜎(𝑊0𝑥𝑡 + 𝑊3ℎ𝑡−1 + 𝑏0 + 𝑏3)

𝑧𝑡 = 𝜎(𝑊1𝑥𝑡 + 𝑊4ℎ𝑡−1 + 𝑏1 + 𝑏4)

ℎ′
𝑡 = tanh(𝑊2𝑥𝑡 + 𝑏2 + 𝑟𝑡 · (𝑊5ℎ𝑡−1 + 𝑏5))

ℎ𝑡 = (1− 𝑧𝑡) · ℎ′
𝑡 + 𝑧𝑡 · ℎ𝑡−1

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Six weight matrices and six bias
vectors are required for each layers. So, when 𝑆 layers exists, you need to prepare 6𝑆 weigth matrices and 6𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (chainer.Variable) – Variable holding stacked hidden states. Its shape is (S, B,
N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is
dimension of hidden units.

• ws (list of list of chainer.Variable) – Weight matrices. ws[i] represents
weights for i-th layer. Each ws[i] is a list containing six matrices. ws[i][j] is corre-
sponding with W_j in the equation. Only ws[0][j] where 0 <= j < 3 is (I, N)
shape as they are multiplied with input variables. All other matrices has (N, N) shape.

• bs (list of list of chainer.Variable) – Bias vectors. bs[i] represnents
biases for i-th layer. Each bs[i] is a list containing six vectors. bs[i][j] is corre-
sponding with b_j in the equation. Shape of each matrix is (N,) where N is dimension of
hidden units.

• xs (list of chainer.Variable) – A list of Variable holding input values. Each
element xs[t] holds input value for time t. Its shape is (B_t, I), where B_t is mini-
batch size for time t, and I is size of input units. Note that this function supports variable
length sequences. When sequneces has different lengths, sort sequences in descending order
by length, and transpose the sorted sequence. transpose_sequence() transpose a
list of Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >=
xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

4.2. Functions 179

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.n_step_lstm

chainer.functions.n_step_lstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

𝑖𝑡 = 𝜎(𝑊0𝑥𝑡 + 𝑊4ℎ𝑡−1 + 𝑏0 + 𝑏4)

𝑓𝑡 = 𝜎(𝑊1𝑥𝑡 + 𝑊5ℎ𝑡−1 + 𝑏1 + 𝑏5)

𝑜𝑡 = 𝜎(𝑊2𝑥𝑡 + 𝑊6ℎ𝑡−1 + 𝑏2 + 𝑏6)

𝑎𝑡 = tanh(𝑊3𝑥𝑡 + 𝑊7ℎ𝑡−1 + 𝑏3 + 𝑏7)

𝑐𝑡 = 𝑓𝑡 · 𝑐𝑡−1 + 𝑖𝑡 · 𝑎𝑡
ℎ𝑡 = 𝑜𝑡 · tanh(𝑐𝑡)

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Eight weight matrices and eight bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 8𝑆 weigth matrices and 8𝑆
bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the
k-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

• n_layers (int) – The number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units.

• cx (Variable) – Variable holding stacked cell states. It has the same shape as hx.

• ws (list of list of Variable) – Weight matrices. ws[i] represents the weights for the
i-th layer. Each ws[i] is a list containing eight matrices. ws[i][j] corresponds to 𝑊𝑗

in the equation. Only ws[0][j] where 0 <= j < 4 are (I, N)-shaped as they are
multiplied with input variables, where I is the size of the input and N is the dimension of
the hidden units. All other matrices are (N, N)-shaped.

• bs (list of list of Variable) – Bias vectors. bs[i] represents the biases for the i-th
layer. Each bs[i] is a list containing eight vectors. bs[i][j] corresponds to 𝑏𝑗 in the
equation. The shape of each matrix is (N,) where N is the dimension of the hidden units.

180 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose_sequence() can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs
needs to satisfy xs[t].shape[0] >= xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

Note: The dimension of hidden units is limited to only one size N. If you want to use variable dimension of
hidden units, please use chainer.functions.lstm.

See also:

chainer.functions.lstm()

Example

>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
... ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i in
→˓range(8)])
... bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
...
>>> ws[0][0].shape # ws[0][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[1][0].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_lstm(
... n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(2, 3, 2)

(continues on next page)

4.2. Functions 181

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> cy.shape
(2, 3, 2)
>>> [y.shape for y in ys]
[(3, 2), (2, 2), (1, 2)]

chainer.functions.n_step_rnn

chainer.functions.n_step_rnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation=’tanh’)
Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

ℎ𝑡 = 𝑓(𝑊0𝑥𝑡 + 𝑊1ℎ𝑡−1 + 𝑏0 + 𝑏1)

where 𝑓 is an activation function.

Weight matrices 𝑊 contains two matrices 𝑊0 and 𝑊1. 𝑊0 is a parameter for an input sequence. 𝑊1 is a
parameter for a hidden state. Bias matrices 𝑏 contains two matrices 𝑏0 and 𝑏1. 𝑏0 is a parameter for an input
sequence. 𝑏1 is a parameter for a hidden state.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Two weight matrices and two bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 2𝑆 weigth matrices and 2𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (chainer.Variable) – Variable holding stacked hidden states. Its shape is (S, B,
N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is
dimension of hidden units.

• ws (list of list of chainer.Variable) – Weight matrices. ws[i] represents
weights for i-th layer. Each ws[i] is a list containing two matrices. ws[i][j] is cor-
responding with W_j in the equation. Only ws[0][j] where 0 <= j < 1 is (I, N)
shape as they are multiplied with input variables. All other matrices has (N, N) shape.

• bs (list of list of chainer.Variable) – Bias vectors. bs[i] represnents
biases for i-th layer. Each bs[i] is a list containing two vectors. bs[i][j] is corre-
sponding with b_j in the equation. Shape of each matrix is (N,) where N is dimension of
hidden units.

182 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• xs (list of chainer.Variable) – A list of Variable holding input values. Each
element xs[t] holds input value for time t. Its shape is (B_t, I), where B_t is mini-
batch size for time t, and I is size of input units. Note that this function supports variable
length sequences. When sequneces has different lengths, sort sequences in descending order
by length, and transpose the sorted sequence. transpose_sequence() transpose a
list of Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >=
xs[t + 1].shape[0].

• activation (str) – Activation function name. Please select tanh or relu.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.shift

chainer.functions.shift(x, ksize=3, dilate=1)
Shift function.

See: Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape
(𝑛, 𝑐, ℎ, 𝑤).

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

Returns Output variable of same shape as x.

Return type Variable

4.2.5 Evaluation functions

chainer.functions.accuracy Computes multiclass classification accuracy of the mini-
batch.

chainer.functions.binary_accuracy Computes binary classification accuracy of the minibatch.
chainer.functions.
classification_summary

Calculates Precision, Recall, F beta Score, and support.

chainer.functions.f1_score
chainer.functions.precision
chainer.functions.r2_score Computes R^2(coefficient of determination) regression

score function.
chainer.functions.recall

4.2. Functions 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1711.08141
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.functions.accuracy

chainer.functions.accuracy(y, t, ignore_label=None)
Computes multiclass classification accuracy of the minibatch.

Parameters

• y (Variable or numpy.ndarray or cupy.ndarray) – Array whose (i, j, k, . . .)-th
element indicates the score of the class j at the (i, k, . . .)-th sample. The prediction label 𝑡 is
calculated by the formula 𝑡(𝑖, 𝑘, ...) = argmax𝑗 𝑦(𝑖, 𝑗, 𝑘, ...).

• t (Variable or numpy.ndarray or cupy.ndarray of signed integer) – Array of
ground truth labels.

• ignore_label (int or None) – Skip calculating accuracy if the true label is
ignore_label.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when y is the two dimensional array.

>>> y = np.array([[0.1, 0.7, 0.2], # prediction label is 1
... [8.0, 1.0, 2.0], # prediction label is 0
... [-8.0, 1.0, 2.0], # prediction label is 2
... [-8.0, -1.0, -2.0]]) # prediction label is 1
>>> t = np.array([1, 0, 2, 1], np.int32)
>>> F.accuracy(y, t).data # 100% accuracy because all samples are correct
array(1.)
>>> t = np.array([1, 0, 0, 0], np.int32)
>>> F.accuracy(y, t).data # 50% accuracy because 1st and 2nd samples are correct.
array(0.5)
>>> F.accuracy(y, t, ignore_label=0).data # 100% accuracy because of ignoring the
→˓2nd, 3rd and 4th samples.
array(1.)

chainer.functions.binary_accuracy

chainer.functions.binary_accuracy(y, t)
Computes binary classification accuracy of the minibatch.

Parameters

• y (Variable or numpy.ndarray or cupy.ndarray) – Array whose i-th element
indicates the score of positive at the i-th sample. The prediction label 𝑡[𝑖] is 1 if y[i] >=
0, otherwise 0.

• t (Variable or numpy.ndarray or cupy.ndarray) – Array holding a signed inte-
ger vector of ground truth labels. If t[i] == 1, it indicates that i-th sample is positive.
If t[i] == 0, it indicates that i-th sample is negative. If t[i] == -1, corresponding
y[i] is ignored. Accuracy is zero if all ground truth labels are -1.

184 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when y is the two dimensional array.

>>> y = np.array([[-2.0, 0.0], # prediction labels are [0, 1]
... [3.0, -5.0]]) # prediction labels are [1, 0]
>>> t = np.array([[0, 1],
... [1, 0]], np.int32)
>>> F.binary_accuracy(y, t).data # 100% accuracy because all samples are correct.
array(1.)
>>> t = np.array([[0, 0],
... [1, 1]], np.int32)
>>> F.binary_accuracy(y, t).data # 50% accuracy because y[0][0] and y[1][0] are
→˓correct.
array(0.5)
>>> t = np.array([[0, -1],
... [1, -1]], np.int32)
>>> F.binary_accuracy(y, t).data # 100% accuracy because of ignoring y[0][1] and
→˓y[1][1].
array(1.)

chainer.functions.classification_summary

chainer.functions.classification_summary(y, t, label_num=None, beta=1.0, ignore_label=-
1)

Calculates Precision, Recall, F beta Score, and support.

This function calculates the following quantities for each class.

• Precision: tp
tp+fp

• Recall: tp
tp+tn

• F beta Score: The weighted harmonic average of Precision and Recall.

• Support: The number of instances of each ground truth label.

Here, tp, fp, and tn stand for the number of true positives, false positives, and true negative, respectively.

label_num specifies the number of classes, that is, each value in t must be an integer in the range of [0,
label_num). If label_num is None, this function regards label_num as a maximum of in t plus one.

ignore_label determines which instances should be ignored. Specifically, instances with the given label
are not taken into account for calculating the above quantities. By default, it is set to -1 so that all instances are
taken into consideration, as labels are supposed to be non-negative integers. Setting ignore_label to a non-
negative integer less than label_num is illegal and yields undefined behavior. In the current implementation,
it arises RuntimeWarning and ignore_label-th entries in output arrays do not contain correct quantities.

Parameters

• y (Variable) – Variable holding a vector of scores.

4.2. Functions 185

Chainer Documentation, Release 4.0.0

• t (Variable) – Variable holding a vector of ground truth labels.

• label_num (int) – The number of classes.

• beta (float) – The parameter which determines the weight of precision in the F-beta
score.

• ignore_label (int) – Instances with this label are ignored.

Returns 4-tuple of ~chainer.Variable of size (label_num,). Each element represents precision,
recall, F beta score, and support of this minibatch.

chainer.functions.f1_score

chainer.functions.f1_score(y, t, label_num=None, ignore_label=-1)

chainer.functions.precision

chainer.functions.precision(y, t, label_num=None, ignore_label=-1)

chainer.functions.r2_score

chainer.functions.r2_score(pred, true, sample_weight=None, multioutput=’uniform_average’)
Computes R^2(coefficient of determination) regression score function.

Parameters

• pred (Variable) – Variable holding a vector, matrix or tensor of estimated target values.

• true (Variable) – Variable holding a vector, matrix or tensor of correct target values.

• sample_weight – This argument is for compatibility with scikit-learn’s implementation
of r2_score. Current implementation admits None only.

• multioutput (string) – [‘uniform_average’, ‘raw_values’]. if ‘uniform_average’, this
function returns an average of R^2 score of multiple output. If ‘raw_average’, this function
return a set of R^2 score of multiple output.

Returns A Variable holding a scalar array of the R^2 score if ‘multioutput’ is ‘uniform_average’ or
a vector of R^2 scores if ‘multioutput’ is ‘raw_values’.

Return type Variable

Note: This function is non-differentiable.

chainer.functions.recall

chainer.functions.recall(y, t, label_num=None, ignore_label=-1)

4.2.6 Loss functions

chainer.functions.absolute_error Element-wise absolute error function.
Continued on next page

186 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Table 7 – continued from previous page
chainer.functions.bernoulli_nll Computes the negative log-likelihood of a Bernoulli distri-

bution.
chainer.functions.black_out BlackOut loss function.
chainer.functions.
connectionist_temporal_classification

Connectionist Temporal Classification loss function.

chainer.functions.contrastive Computes contrastive loss.
chainer.functions.crf1d Calculates negative log-likelihood of linear-chain CRF.
chainer.functions.argmax_crf1d Computes a state that maximizes a joint probability of the

given CRF.
chainer.functions.cross_covariance Computes the sum-squared cross-covariance penalty be-

tween y and z
chainer.functions.decov Computes the DeCov loss of h
chainer.functions.
gaussian_kl_divergence

Computes the KL-divergence of Gaussian variables from
the standard one.

chainer.functions.gaussian_nll Computes the negative log-likelihood of a Gaussian distri-
bution.

chainer.functions.hinge Computes the hinge loss for a one-of-many classification
task.

chainer.functions.huber_loss Computes the Huber loss.
chainer.functions.mean_absolute_error Mean absolute error function.
chainer.functions.mean_squared_error Mean squared error function.
chainer.functions.negative_sampling Negative sampling loss function.
chainer.functions.sigmoid_cross_entropy Computes cross entropy loss for pre-sigmoid activations.
chainer.functions.softmax_cross_entropy Computes cross entropy loss for pre-softmax activations.
chainer.functions.squared_error Squared error function.
chainer.functions.triplet Computes triplet loss.

chainer.functions.absolute_error

chainer.functions.absolute_error(x0, x1)
Element-wise absolute error function.

Computes the element-wise absolute error 𝐿 between two inputs 𝑥0 and 𝑥1 defined as follows.

𝐿 = |𝑥0 − 𝑥1|

Parameters

• x0 (Variable or numpy.ndarray or cupy.ndarray) – First input variable.

• x1 (Variable or numpy.ndarray or cupy.ndarray) – Second input variable.

Returns An array representing the element-wise absolute error between the two inputs.

Return type Variable

chainer.functions.bernoulli_nll

chainer.functions.bernoulli_nll(x, y, reduce=’sum’)
Computes the negative log-likelihood of a Bernoulli distribution.

This function calculates the negative log-likelihood of a Bernoulli distribution.

− log𝐵(𝑥; 𝑝) = −
∑︁
𝑖

{𝑥𝑖 log(𝑝𝑖) + (1− 𝑥𝑖) log(1− 𝑝𝑖)},

4.2. Functions 187

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

where 𝑝 = 𝜎(𝑦), 𝜎(·) is a sigmoid function, and 𝐵(𝑥; 𝑝) is a Bernoulli distribution.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum', loss values are summed up.

Note: As this function uses a sigmoid function, you can pass a result of fully-connected layer (that means
Linear) to this function directly.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• y (Variable or numpy.ndarray or cupy.ndarray) – A variable representing the
parameter of Bernoulli distribution.

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

Returns A variable representing the negative log-likelihood. If reduce is 'no', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If it is 'sum',
the output variable holds a scalar value.

Return type Variable

chainer.functions.black_out

chainer.functions.black_out(x, t, W, samples, reduce=’mean’)
BlackOut loss function.

BlackOut loss function is defined as

− log(𝑝(𝑡))−
∑︁
𝑠∈𝑆

log(1− 𝑝(𝑠)),

where 𝑡 is the correct label, 𝑆 is a set of negative examples and 𝑝(·) is likelihood of a given label. And, 𝑝 is
defined as

𝑝(𝑦) =
exp(𝑊⊤

𝑦 𝑥)∑︀
𝑠∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠 exp(𝑊⊤

𝑠 𝑥)
.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the no
loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• x (Variable) – Batch of input vectors. Its shape should be (𝑁,𝐷).

• t (Variable) – Vector of ground truth labels. Its shape should be (𝑁,). Each elements 𝑣
should satisfy 0 ≥ 𝑣 ≥ 𝑉 or −1 where 𝑉 is the number of label types.

• W (Variable) – Weight matrix. Its shape should be (𝑉,𝐷)

• samples (Variable) – Negative samples. Its shape should be (𝑁,𝑆) where 𝑆 is the
number of negative samples.

• reduce (str) – Reduction option. Its value must be either 'no' or 'mean'. Otherwise,
ValueError is raised.

Returns A variable object holding loss value(s). If reduce is 'no', the output variable holds an
array whose shape is (𝑁,) . If it is 'mean', it holds a scalar.

188 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 4.0.0

Return type Variable

See: BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies

See also:

BlackOut.

chainer.functions.connectionist_temporal_classification

chainer.functions.connectionist_temporal_classification(x, t, blank_symbol,
input_length=None,
label_length=None, re-
duce=’mean’)

Connectionist Temporal Classification loss function.

Connectionist Temporal Classification(CTC) [Graves2006] is a loss function of sequence labeling where the
alignment between the inputs and target is unknown. See also [Graves2012]

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
samplewise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

• x (list or tuple of Variable) – A list of unnormalized probabilities for labels. Each ele-
ment of x, x[i] is a Variable object, which has shape (B, V), where B is the batch
size and V is the number of labels. The softmax of x[i] represents the probabilities of the
labels at time i.

• t (Variable or numpy.ndarray or cupy.ndarray) – A matrix including expected
label sequences. Its shape is (B, M), where B is the batch size and M is the maximum
length of the label sequences. All elements in t must be less than V, the number of labels.

• blank_symbol (int) – Index of blank_symbol. This value must be non-negative.

• input_length (Variable or numpy.ndarray or cupy.ndarray or None) –
Length of sequence for each of mini batch x (optional). Its shape must be (B,). If the
input_length is omitted or None, it assumes that all of x is valid input.

• label_length (Variable or numpy.ndarray or cupy.ndarray or None) –
Length of sequence for each of mini batch t (optional). Its shape must be (B,). If the
label_length is omitted or None, it assumes that all of t is valid input.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar value of the CTC loss. If reduce is 'no', the output variable
holds array whose shape is (B,) where B is the number of samples. If it is 'mean', it holds a
scalar.

Return type Variable

Note: You need to input x without applying to activation functions(e.g. softmax function), because this
function applies softmax functions to x before calculating CTC loss to avoid numerical limitations. You also
need to apply softmax function to forwarded values before you decode it.

Note: This function is differentiable only by x.

4.2. Functions 189

https://arxiv.org/abs/1511.06909
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 4.0.0

Note: This function supports (batch, sequence, 1-dimensional input)-data.

chainer.functions.contrastive

chainer.functions.contrastive(x0, x1, y, margin=1, reduce=’mean’)
Computes contrastive loss.

It takes a pair of samples and a label as inputs. The label is 1 when those samples are similar, or 0 when they
are dissimilar.

Let 𝑁 and 𝐾 denote mini-batch size and the dimension of input variables, respectively. The shape of both input
variables x0 and x1 should be (N, K). The loss value of the 𝑛-th sample pair 𝐿𝑛 is

𝐿𝑛 =
1

2

(︀
𝑦𝑛𝑑

2
𝑛 + (1− 𝑦𝑛) max(margin− 𝑑𝑛, 0)2

)︀
where 𝑑𝑛 = ‖x0𝑛 − x1𝑛‖2, x0𝑛 and x1𝑛 are 𝑛-th K-dimensional vectors of x0 and x1.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• x0 (Variable or numpy.ndarray or cupy.ndarray) – The first input variable. The
shape should be (N, K), where N denotes the mini-batch size, and K denotes the dimension
of x0.

• x1 (Variable or numpy.ndarray or cupy.ndarray) – The second input variable.
The shape should be the same as x0.

• y (Variable or numpy.ndarray or cupy.ndarray) – Labels. All values should be
0 or 1. The shape should be (N,), where N denotes the mini-batch size.

• margin (float) – A parameter for contrastive loss. It should be positive value.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the loss value(s) calculated by the above equation. If reduce is 'no',
the output variable holds array whose shape is same as one of (hence both of) input variables. If
it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train siamese networks. See Learning a Similarity Metric Discriminatively, with
Application to Face Verification for details.

Example

>>> x0 = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x1 = np.array([[-1.0, 3.0, 1.0], [3.5, 0.5, -2.0]]).astype(np.float32)
>>> y = np.array([1, 0]).astype(np.int32)
>>> F.contrastive(x0, x1, y)
variable(0.3125)
>>> F.contrastive(x0, x1, y, margin=3.0) # harder penalty

(continues on next page)

190 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

Chainer Documentation, Release 4.0.0

(continued from previous page)

variable(0.3528857)
>>> z = F.contrastive(x0, x1, y, reduce='no')
>>> z.shape
(2,)
>>> z.data
array([0.625, 0.], dtype=float32)

chainer.functions.crf1d

chainer.functions.crf1d(cost, xs, ys, reduce=’mean’)
Calculates negative log-likelihood of linear-chain CRF.

It takes a transition cost matrix, a sequence of costs, and a sequence of labels. Let 𝑐𝑠𝑡 be a transition cost from a
label 𝑠 to a label 𝑡, 𝑥𝑖𝑡 be a cost of a label 𝑡 at position 𝑖, and 𝑦𝑖 be an expected label at position 𝑖. The negative
log-likelihood of linear-chain CRF is defined as

𝐿 = −

(︃
𝑙∑︁

𝑖=1

𝑥𝑖𝑦𝑖 +

𝑙−1∑︁
𝑖=1

𝑐𝑦𝑖𝑦𝑖+1 − log(𝑍)

)︃
,

where 𝑙 is the length of the input sequence and 𝑍 is the normalizing constant called partition function.

Note: When you want to calculate the negative log-likelihood of sequences which have different lengths, sort
the sequences in descending order of lengths and transpose the sequences. For example, you have three input
sequences:

>>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> c1 = c2 = np.random.uniform(-1, 1, 3).astype(np.float32)

>>> a = [a1, a2, a3, a4]
>>> b = [b1, b2, b3]
>>> c = [c1, c2]

where a1 and all other variables are arrays with (K,) shape. Make a transpose of the sequences:

>>> x1 = np.stack([a1, b1, c1])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])
>>> x4 = np.stack([a4])

and make a list of the arrays:

>>> xs = [x1, x2, x3, x4]

You need to make label sequences in the same fashion. And then, call the function:

>>> cost = chainer.Variable(
... np.random.uniform(-1, 1, (3, 3)).astype(np.float32))
>>> ys = [np.zeros(x.shape[0:1], dtype=np.int32) for x in xs]
>>> loss = F.crf1d(cost, xs, ys)

It calculates mean of the negative log-likelihood of the three sequences.

4.2. Functions 191

Chainer Documentation, Release 4.0.0

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', it holds mean of the loss values.

Parameters

• cost (Variable) – A 𝐾 × 𝐾 matrix which holds transition cost between two labels,
where 𝐾 is the number of labels.

• xs (list of Variable) – Input vector for each label. len(xs) denotes the length of
the sequence, and each Variable holds a 𝐵 ×𝐾 matrix, where 𝐵 is mini-batch size, 𝐾
is the number of labels. Note that 𝐵s in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

• ys (list of Variable) – Expected output labels. It needs to have the same length as
xs. Each Variable holds a 𝐵 integer vector. When x in xs has the different 𝐵, corre-
spoding y has the same 𝐵. In other words, ys must satisfy ys[i].shape == xs[i].
shape[0:1] for all i.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the average negative log-likelihood of the input sequences.

Return type Variable

Note: See detail in the original paper: Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data.

chainer.functions.argmax_crf1d

chainer.functions.argmax_crf1d(cost, xs)
Computes a state that maximizes a joint probability of the given CRF.

Parameters

• cost (Variable) – A 𝐾 × 𝐾 matrix which holds transition cost between two labels,
where 𝐾 is the number of labels.

• xs (list of Variable) – Input vector for each label. len(xs) denotes the length of
the sequence, and each Variable holds a 𝐵 ×𝐾 matrix, where 𝐵 is mini-batch size, 𝐾
is the number of labels. Note that 𝐵s in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

Returns A tuple of Variable object s and a list ps. The shape of s is (B,), where B is
the mini-batch size. i-th element of s, s[i], represents log-likelihood of i-th data. ps is a
list of numpy.ndarray or cupy.ndarray, and denotes the state that maximizes the point
probability. len(ps) is equal to len(xs), and shape of each ps[i] is the mini-batch size
of the corresponding xs[i]. That means, ps[i].shape == xs[i].shape[0:1].

Return type tuple

chainer.functions.cross_covariance

chainer.functions.cross_covariance(y, z, reduce=’half_squared_sum’)
Computes the sum-squared cross-covariance penalty between y and z

192 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://repository.upenn.edu/cis_papers/159/
https://repository.upenn.edu/cis_papers/159/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the covariant matrix that has as many rows (resp. columns) as the dimension of y (resp.z). If it is
'half_squared_sum', it holds the half of the Frobenius norm (i.e. L2 norm of a matrix flattened to a
vector) of the covarianct matrix.

Parameters

• y (Variable) – Variable holding a matrix where the first dimension corresponds to the
batches.

• z (Variable) – Variable holding a matrix where the first dimension corresponds to the
batches.

• reduce (str) – Reduction option. Its value must be either 'half_squared_sum' or
'no'. Otherwise, ValueError is raised.

Returns A variable holding the cross covariance loss. If reduce is 'no', the output variable holds
2-dimensional array matrix of shape (M, N) where M (resp. N) is the number of columns of y
(resp. z). If it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to disentangle variables. See https://arxiv.org/abs/1412.6583v3 for details.

chainer.functions.decov

chainer.functions.decov(h, reduce=’half_squared_sum’)
Computes the DeCov loss of h

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds a matrix
whose size is same as the number of columns of y. If it is 'half_squared_sum', it holds the half of the
squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix.

Parameters

• h (Variable) – Variable holding a matrix where the first dimension corresponds to the
batches.

• recude (str) – Reduction option. Its value must be either 'half_squared_sum' or
'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar of the DeCov loss. If reduce is 'no', the output variable
holds 2-dimensional array matrix of shape (N, N) where N is the number of columns of y. If
it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: See https://arxiv.org/abs/1511.06068 for details.

chainer.functions.gaussian_kl_divergence

chainer.functions.gaussian_kl_divergence(mean, ln_var, reduce=’sum’)
Computes the KL-divergence of Gaussian variables from the standard one.

4.2. Functions 193

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1412.6583v3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1511.06068

Chainer Documentation, Release 4.0.0

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function calculates the KL-
divergence in elementwise manner between the given multi-dimensional Gaussian 𝑁(𝜇, 𝑆) and the standard
Gaussian 𝑁(0, 𝐼)

𝐷KL(𝑁(𝜇, 𝑆)‖𝑁(0, 𝐼)),

where 𝑆 is a diagonal matrix such that 𝑆𝑖𝑖 = 𝜎2
𝑖 and 𝐼 is an identity matrix.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum', loss values are summed up.

Parameters

• mean (Variable or numpy.ndarray or cupy.ndarray) – A variable representing
mean of given gaussian distribution, 𝜇.

• ln_var (Variable or numpy.ndarray or cupy.ndarray) – A variable represent-
ing logarithm of variance of given gaussian distribution, log(𝜎2).

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

Returns A variable representing KL-divergence between given gaussian distribution and the stan-
dard gaussian. If reduce is 'no', the output variable holds array whose shape is same as one
of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type Variable

chainer.functions.gaussian_nll

chainer.functions.gaussian_nll(x, mean, ln_var, reduce=’sum’)
Computes the negative log-likelihood of a Gaussian distribution.

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function computes in elemen-
twise manner the negative log-likelihood of 𝑥 on a Gaussian distribution 𝑁(𝜇, 𝑆),

− log𝑁(𝑥;𝜇, 𝜎2) = log

(︂√︁
(2𝜋)𝐷|𝑆|

)︂
+

1

2
(𝑥− 𝜇)⊤𝑆−1(𝑥− 𝜇),

where 𝐷 is a dimension of 𝑥 and 𝑆 is a diagonal matrix where 𝑆𝑖𝑖 = 𝜎2
𝑖 .

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum', loss values are summed up.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• mean (Variable or numpy.ndarray or cupy.ndarray) – A variable representing
mean of a Gaussian distribution, 𝜇.

• ln_var (Variable or numpy.ndarray or cupy.ndarray) – A variable represent-
ing logarithm of variance of a Gaussian distribution, log(𝜎2).

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

Returns A variable representing the negative log-likelihood. If reduce is 'no', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If it is 'sum',
the output variable holds a scalar value.

Return type Variable

194 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 4.0.0

chainer.functions.hinge

chainer.functions.hinge(x, t, norm=’L1’, reduce=’mean’)
Computes the hinge loss for a one-of-many classification task.

𝐿 =
1

𝑁

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

[max(0, 1− 𝛿{𝑡𝑛 = 𝑘}𝑥𝑛𝑘)]
𝑝

where 𝑁 denotes the batch size and 𝐾 is the number of classes of interest,

𝛿{condition} =

{︂
1 if condition is true
−1 otherwise,

and

𝑝 =

{︂
1 if norm = L1
2 if norm = L2.

Let the hinge loss function 𝑙(𝑥, 𝛿) be [max(0, 1− 𝛿𝑥)]
𝑝. When 𝑥 and 𝛿 have the same sign (meaning

𝑥 predicts the proper score for classification) and |𝑥| ≥ 1, the hinge loss 𝑙(𝑥, 𝛿) = 0, but when they
have opposite sign, 𝑙(𝑥, 𝛿) increases linearly with 𝑥.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the elementwise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray of numpy.float) – Input
variable. The shape of x should be (𝑁 , 𝐾) .

• t (Variable or numpy.ndarray or cupy.ndarray of signed integer) – The 𝑁 -
dimensional label vector with values 𝑡𝑛 ∈ {0, 1, 2, . . . ,𝐾 − 1}. The shape of t should be
(𝑁 ,).

• norm (string) – Specifies norm type. Either 'L1' or 'L2' is acceptable.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable object holding a scalar array of the hinge loss 𝐿. If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it
is 'mean', the output variable holds a scalar value.

Return type Variable

Example

In this case, the batch size N is 2 and the number of classes K is 3.

>>> x = np.array([[-2.0, 3.0, 0.5],
... [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. , 3. , 0.5],

[5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([1, 0]).astype(np.int32)
>>> t
array([1, 0], dtype=int32)

(continues on next page)

4.2. Functions 195

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> F.hinge(x, t)
variable(2.5)
>>> F.hinge(x, t, reduce='no')
variable([[0. , 0. , 1.5],

[0. , 3. , 0.5]])
>>> F.hinge(x, t, norm='L2')
variable(5.75)

chainer.functions.huber_loss

chainer.functions.huber_loss(x, t, delta, reduce=’sum_along_second_axis’)
Computes the Huber loss.

The Huber loss is similar to the mean_squared_error() but is less sensitive to outliers in the data. It is
defined as

𝐿𝛿(𝑎) =

{︂
1
2𝑎

2 if |a| ≤ 𝛿
𝛿(|𝑎| − 1

2𝛿) otherwise,

where 𝑎 = 𝑥− 𝑡 is the difference between the input 𝑥 and the target 𝑡.

The loss is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum_along_second_axis', loss values are summed up along the second
axis (i.e. axis=1).

See: Huber loss - Wikipedia.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. The shape of
x should be (𝑁 , 𝐾).

• t (Variable or numpy.ndarray or cupy.ndarray) – Target variable for regression.
The shape of t should be (𝑁 , 𝐾).

• delta (float) – Constant variable for Huber loss function as used in definition.

• reduce (str) – Reduction option. Its value must be either
'sum_along_second_axis' or 'no'. Otherwise, ValueError is raised.

Returns A variable object holding a scalar array of the Huber loss 𝐿𝛿 . If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it is
'sum_along_second_axis', the shape of the array is same as the input variables, except
the second axis is removed.

Return type Variable

Example

Example without reduction, in which case the output y will have the same shape as the inputs x and t.

>>> import numpy as np
>>> from chainer import functions as F
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x.shape
(2, 3)
>>> t = np.array([[-2.0, 3.0, 0.0], [10.0, 2.0, -0.5]]).astype(np.float32)

(continues on next page)

196 Chapter 4. Reference

https://en.wikipedia.org/wiki/Huber_loss
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 4.0.0

(continued from previous page)

>>> t.shape
(2, 3)
>>> y = F.huber_loss(x, t, delta=1.0, reduce='no')
>>> y.shape
(2, 3)
>>> y
variable([[0. , 0. , 0.125],

[4.5 , 0. , 0.]])

Example with reduction along the second axis.

>>> y = F.huber_loss(x, t, delta=1.0, reduce='sum_along_second_axis')
>>> y.shape
(2,)
>>> y
variable([0.125, 4.5])

chainer.functions.mean_absolute_error

chainer.functions.mean_absolute_error(x0, x1)
Mean absolute error function.

This function computes mean absolute error between two variables. The mean is taken over the minibatch.

chainer.functions.mean_squared_error

chainer.functions.mean_squared_error(x0, x1)
Mean squared error function.

This function computes mean squared error between two variables. The mean is taken over the minibatch. Note
that the error is not scaled by 1/2.

Parameters

• x0 (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• x1 (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

Returns A variable holding an array representing the mean squared error of two inputs.

Return type Variable

chainer.functions.negative_sampling

chainer.functions.negative_sampling(x, t, W, sampler, sample_size, reduce=’sum’)
Negative sampling loss function.

In natural language processing, especially language modeling, the number of words in a vocabulary can be very
large. Therefore, you need to spend a lot of time calculating the gradient of the embedding matrix.

By using the negative sampling trick you only need to calculate the gradient for a few sampled negative exam-
ples.

The loss is defined as follows.

𝑓(𝑥, 𝑝) = − log 𝜎(𝑥⊤𝑤𝑝)− 𝑘𝐸𝑖∼𝑃 (𝑖)[log 𝜎(−𝑥⊤𝑤𝑖)]

4.2. Functions 197

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

where 𝜎(·) is a sigmoid function, 𝑤𝑖 is the weight vector for the word 𝑖, and 𝑝 is a positive example. It is
approximated with 𝑘 examples 𝑁 sampled from probability 𝑃 (𝑖).

𝑓(𝑥, 𝑝) ≈ − log 𝜎(𝑥⊤𝑤𝑝)−
∑︁
𝑛∈𝑁

log 𝜎(−𝑥⊤𝑤𝑛)

Each sample of 𝑁 is drawn from the word distribution 𝑃 (𝑤) = 1
𝑍 𝑐(𝑤)𝛼, where 𝑐(𝑤) is the unigram count of

the word 𝑤, 𝛼 is a hyper-parameter, and 𝑍 is the normalization constant.

Parameters

• x (Variable) – Batch of input vectors.

• t (Variable) – Vector of ground truth labels.

• W (Variable) – Weight matrix.

• sampler (FunctionType) – Sampling function. It takes a shape and returns an integer
array of the shape. Each element of this array is a sample from the word distribution. A
WalkerAlias object built with the power distribution of word frequency is recommended.

• sample_size (int) – Number of samples.

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the loss value(s) calculated by the above equation. If reduce is 'no',
the output variable holds array whose shape is same as one of (hence both of) input variables. If
it is 'sum', the output variable holds a scalar value.

Return type Variable

See: Distributed Representations of Words and Phrases and their Compositionality

See also:

NegativeSampling.

chainer.functions.sigmoid_cross_entropy

chainer.functions.sigmoid_cross_entropy(x, t, normalize=True, reduce=’mean’)
Computes cross entropy loss for pre-sigmoid activations.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – A variable object holding a
matrix whose (i, j)-th element indicates the unnormalized log probability of the j-th unit at
the i-th example.

• t (Variable or numpy.ndarray or cupy.ndarray) – A variable object holding a
matrix whose (i, j)-th element indicates a signed integer vector of ground truth labels 0 or 1.
If t[i, j] == -1, corresponding x[i, j] is ignored. Loss is zero if all ground truth
labels are -1.

• normalize (bool) – Variable holding a boolean value which determines the normaliza-
tion constant. If true, this function normalizes the cross entropy loss across all instances. If
else, it only normalizes along a batch size.

• reduce (str) – Variable holding a str which determines whether to reduce the shape of
the input. If it is 'mean', it computes the sum of cross entropy and normalize it according
to normalize option. If is is 'no', this function computes cross entropy for each instance
and does not normalize it (normalize option is ignored). In this case, the loss value of
the ignored instance, which has -1 as its target value, is set to 0.

198 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1310.4546
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns A variable object holding an array of the cross entropy. If reduce is 'mean', it is a
scalar array. If reduce is 'no', the shape is same as x.

Return type Variable

Note: This function is differentiable only by x.

Example

>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. , 3. , 0.5],

[5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([[0, 1, 0], [1, 1, -1]]).astype(np.int32)
>>> t
array([[0, 1, 0],

[1, 1, -1]], dtype=int32)
>>> F.sigmoid_cross_entropy(x, t)
variable(0.25664714)
>>> F.sigmoid_cross_entropy(x, t, normalize=False)
variable(0.64161783)
>>> y = F.sigmoid_cross_entropy(x, t, reduce='no')
>>> y.shape
(2, 3)
>>> y.data
array([[0.126928 , 0.04858735, 0.974077],

[0.00671535, 0.126928 , -0.]], dtype=float32)

chainer.functions.softmax_cross_entropy

chainer.functions.softmax_cross_entropy(x, t, normalize=True, cache_score=True,
class_weight=None, ignore_label=-1, re-
duce=’mean’, enable_double_backprop=False)

Computes cross entropy loss for pre-softmax activations.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Variable holding a multidi-
mensional array whose element indicates unnormalized log probability: the first axis of the
variable represents the number of samples, and the second axis represents the number of
classes. While this function computes a usual softmax cross entropy if the number of di-
mensions is equal to 2, it computes a cross entropy of the replicated softmax if the number
of dimensions is greater than 2.

• t (Variable or numpy.ndarray or cupy.ndarray) – Variable holding a signed
integer vector of ground truth labels. If t[i] == ignore_label, corresponding x[i]
is ignored.

• normalize (bool) – If True, this function normalizes the cross entropy loss across all
instances. If False, it only normalizes along a batch size.

• cache_score (bool) – When it is True, the function stores result of forward compu-
tation to use it on backward computation. It reduces computational cost though consumes
more memory. If enable_double_backprop option is True, this option is forcibly
turned off and the function does not cache the intermediate value.

4.2. Functions 199

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

• class_weight (Variable or numpy.ndarray or cupy.ndarray) – An array that
contains constant weights that will be multiplied with the loss values along with the second
dimension. The shape of this array should be (x.shape[1],). If this is not None,
each class weight class_weight[i] is actually multiplied to y[:, i] that is the
corresponding log-softmax output of x and has the same shape as x before calculating the
actual loss value.

• ignore_label (int) – Label value you want to ignore. Its default value is -1. See
description of the argument t.

• reduce (str) – A string that determines whether to reduce the loss values. If it is
'mean', it computes the sum of the individual cross entropy and normalize it according
to normalize option. If it is 'no', this function computes cross entropy for each in-
stance and does not normalize it (normalize option is ignored). In this case, the loss
value of the ignored instance, which has ignore_label as its target value, is set to 0.

• enable_double_backprop (bool) – If True, this function uses implementation that
supports higher order differentiation. If False, it uses single-backprop implementation.
This function use the single-backprop version because we expect it is faster. So, if you need
second or higher derivatives, you need to turn it on explicitly.

Returns A variable holding a scalar array of the cross entropy loss. If reduce is 'mean', it is a
scalar array. If reduce is 'no', the shape is same as that of x.

Return type Variable

Note: This function is differentiable only by x.

Example

>>> x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]]).astype(np.float32)
>>> x
array([[-1., 0., 1., 2.],

[2., 0., 1., -1.]], dtype=float32)
>>> t = np.array([3, 0]).astype(np.int32)
>>> t
array([3, 0], dtype=int32)
>>> y = F.softmax_cross_entropy(x, t)
>>> y
variable(0.44018972)
>>> log_softmax = -F.log_softmax(x)
>>> expected_loss = np.mean([log_softmax[row, column].data for row, column in
→˓enumerate(t)])
>>> y.array == expected_loss
True

chainer.functions.squared_error

chainer.functions.squared_error(x0, x1)
Squared error function.

This function computes the squared error between two variables:

(𝑥0 − 𝑥1)2

200 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

where operation is done in elementwise manner. Note that the error is not scaled by 1/2:

Parameters

• x0 (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

• x1 (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

Returns A variable holding an array representing the squared error of two inputs.

Return type Variable

chainer.functions.triplet

chainer.functions.triplet(anchor, positive, negative, margin=0.2, reduce=’mean’)
Computes triplet loss.

It takes a triplet of variables as inputs, 𝑎, 𝑝 and 𝑛: anchor, positive example and negative example respectively.
The triplet defines a relative similarity between samples. Let 𝑁 and 𝐾 denote mini-batch size and the dimension
of input variables, respectively. The shape of all input variables should be (𝑁,𝐾).

𝐿(𝑎, 𝑝, 𝑛) =
1

𝑁

(︃
𝑁∑︁
𝑖=1

max{𝑑(𝑎𝑖, 𝑝𝑖)− 𝑑(𝑎𝑖, 𝑛𝑖) + margin, 0}

)︃

where 𝑑(𝑥𝑖, 𝑦𝑖) = ‖x𝑖 − y𝑖‖22.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• anchor (Variable or numpy.ndarray or cupy.ndarray) – The anchor example
variable. The shape should be (𝑁,𝐾), where 𝑁 denotes the minibatch size, and 𝐾 denotes
the dimension of the anchor.

• positive (Variable or numpy.ndarray or cupy.ndarray) – The positive exam-
ple variable. The shape should be the same as anchor.

• negative (Variable or numpy.ndarray or cupy.ndarray) – The negative ex-
ample variable. The shape should be the same as anchor.

• margin (float) – A parameter for triplet loss. It should be a positive value.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar that is the loss value calculated by the above equation. If
reduce is 'no', the output variable holds array whose shape is same as one of (hence both
of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train triplet networks. See Learning Fine-grained Image Similarity with Deep
Ranking for details.

Example

4.2. Functions 201

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1404.4661
https://arxiv.org/abs/1404.4661

Chainer Documentation, Release 4.0.0

>>> anchor = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> pos = np.array([[-2.1, 2.8, 0.5], [4.9, 2.0, -0.4]]).astype(np.float32)
>>> neg = np.array([[-2.1, 2.7, 0.7], [4.9, 2.0, -0.7]]).astype(np.float32)
>>> F.triplet(anchor, pos, neg)
variable(0.14000003)
>>> y = F.triplet(anchor, pos, neg, reduce='no')
>>> y.shape
(2,)
>>> y.data
array([0.11000005, 0.17], dtype=float32)
>>> F.triplet(anchor, pos, neg, margin=0.5) # harder penalty
variable(0.44000003)

4.2.7 Mathematical functions

chainer.functions.absolute Element-wise absolute.
chainer.functions.arccos Elementwise arccosine function.
chainer.functions.arcsin Elementwise arcsine function.
chainer.functions.arctan Elementwise arctangent function.
chainer.functions.arctan2 Elementwise arctangent function with two arguments.
chainer.functions.argmax Returns index which holds maximum of array elements

over a given axis.
chainer.functions.argmin Returns index which holds minimum of array elements

over a given axis.
chainer.functions.average Calculate weighted average of array elements over a given

axis.
chainer.functions.batch_inv Computes the inverse of a batch of square matrices.
chainer.functions.batch_l2_norm_squared L2 norm (a.k.a. Euclidean norm) squared.
chainer.functions.batch_matmul Computes the batch matrix multiplications of two sets of

arrays.
chainer.functions.bias Elementwise summation with broadcasting.
chainer.functions.ceil Elementwise ceil function.
chainer.functions.clip Clips (limits) elements of input variable.
chainer.functions.cos Elementwise cos function.
chainer.functions.cosh Elementwise hyperbolic cosine function.
chainer.functions.cumsum Cumulative sum of array elements over a given axis.
chainer.functions.det Computes the determinant of a single square matrix.
chainer.functions.batch_det Computes the determinant of a batch of square matrices.
chainer.functions.erf Elementwise error function.
chainer.functions.erfc Elementwise complementary error function.
chainer.functions.exp Elementwise exponential function.
chainer.functions.expm1 Elementwise exponential minus one function.
chainer.functions.fft Fast Fourier transform.
chainer.functions.fix Elementwise fix function.
chainer.functions.fmod Elementwise mod function.
chainer.functions.floor Elementwise floor function.
chainer.functions.identity Just returns input variables.
chainer.functions.ifft Inverse fast Fourier transform.
chainer.functions.inv Computes the inverse of square matrix.

Continued on next page

202 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

Table 8 – continued from previous page
chainer.functions.linear_interpolate Elementwise linear-interpolation function.
chainer.functions.log Elementwise natural logarithm function.
chainer.functions.log10 Elementwise logarithm function to the base 10.
chainer.functions.log1p Elementwise natural logarithm plus one function.
chainer.functions.log2 Elementwise logarithm function to the base 2.
chainer.functions.logsumexp Log-sum-exp of array elements over a given axis.
chainer.functions.matmul Computes the matrix multiplication of two arrays.
chainer.functions.max Maximum of array elements over a given axis.
chainer.functions.maximum Element-wise maximum of input variables.
chainer.functions.mean Calculate weighted average of array elements over a given

axis.
chainer.functions.min Minimum of array elements over a given axis.
chainer.functions.minimum Element-wise minimum of input variables.
chainer.functions.prod Product of array elements over a given axis.
chainer.functions.rsqrt Computes elementwise reciprocal of square root of input

𝑥𝑖.
chainer.functions.scale Elementwise product with broadcasting.
chainer.functions.sin Elementwise sin function.
chainer.functions.sinh Elementwise hyperbolic sine function.
chainer.functions.sign Elementwise sign function.
chainer.functions.sqrt Elementwise square root function.
chainer.functions.square Elementwise square function.
chainer.functions.squared_difference Squared difference of input variables.
chainer.functions.sum Sum of array elements over a given axis.
chainer.functions.tanh Elementwise hyperbolic tangent function.
chainer.functions.tan Elementwise tan function.
chainer.functions.tensordot Returns the tensor dot product of two arrays along specified

axes.

chainer.functions.absolute

chainer.functions.absolute(self)
Element-wise absolute.

Returns Output variable.

Return type Variable

chainer.functions.arccos

chainer.functions.arccos(x)
Elementwise arccosine function.

𝑦𝑖 = arccos𝑥𝑖.

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

4.2. Functions 203

Chainer Documentation, Release 4.0.0

chainer.functions.arcsin

chainer.functions.arcsin(x)
Elementwise arcsine function.

𝑦𝑖 = arcsin𝑥𝑖.

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.arctan

chainer.functions.arctan(x)
Elementwise arctangent function.

𝑦𝑖 = arctan𝑥𝑖.

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.arctan2

chainer.functions.arctan2(x1, x2)
Elementwise arctangent function with two arguments.

Parameters

• x1 (Variable or numpy.ndarray or cupy.ndarray) – Y-coordinates.

• x2 (Variable or numpy.ndarray or cupy.ndarray) – X-coordinates.

Returns Angles in radians, in the range [-pi, pi].

Return type Variable

chainer.functions.argmax

chainer.functions.argmax(x, axis=None)
Returns index which holds maximum of array elements over a given axis.

Parameters

• x (Variable) – Array to find maximum elements.

• axis (None or int) – Axis over which a max is performed. The default (axis = None)
is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

204 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.functions.argmin

chainer.functions.argmin(x, axis=None)
Returns index which holds minimum of array elements over a given axis.

Parameters

• x (Variable) – Array to find minimum elements.

• axis (None or int) – Axis over which a min is performed. The default (axis = None)
is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.average

chainer.functions.average(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

• x (Variable) – Elements to sum.

• axis (None or int or tuple of int) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

• weights (None or chainer.Variable) – An array holding weights to calculate
weighted average. If it is None, all weights are assumed to be one. When axis is None,
weights must have the same shape of x. And when axis is int, it must be 1-D array
satisfing weights.shape == (x.shape[axis],).

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

chainer.functions.batch_inv

chainer.functions.batch_inv(a)
Computes the inverse of a batch of square matrices.

Parameters a (Variable) – Input array to compute the inverse for. Shape of the array should be
(m, n, n) where m is the number of matrices in the batch, and n is the dimensionality of a
square matrix.

Returns Inverse of every matrix in the batch of matrices.

Return type Variable

chainer.functions.batch_l2_norm_squared

chainer.functions.batch_l2_norm_squared(x)
L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

4.2. Functions 205

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters x (Variable) – Input variable. The first dimension is assumed to be the minibatch
dimension. If x has more than two dimensions all but the first dimension are flattened to one
dimension.

Returns Two dimensional output variable.

Return type Variable

chainer.functions.batch_matmul

chainer.functions.batch_matmul(a, b, transa=False, transb=False)
Computes the batch matrix multiplications of two sets of arrays.

Parameters

• a (Variable) – The left operand of the batch matrix multiplications. A 2-D array of
shape (B, N) is considered as B 𝑁 × 1 matrices. A 3-D array of shape (B, M, N) is
considered as B 𝑀 ×𝑁 matrices.

• b (Variable) – The right operand of the batch matrix multiplications. Its array is treated
as matrices in the same way as a’s array.

• transa (bool) – If True, transpose each matrix in a.

• transb (bool) – If True, transpose each matrix in b.

Returns The result of the batch matrix multiplications as a 3-D array.

Return type Variable

Deprecated since version v3.0.0: batch_matmul is deprecated. Use matmul instead.

chainer.functions.bias

chainer.functions.bias(x, y, axis=1)
Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s bias layer so the “broadcasting” with the following arguments:

x : 100 x 3 x 40 x 5 x 6
y : 3 x 40

axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y : (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply y is specified by the argument axis, whose meaning is different from
numpy’s axis.

Parameters

• x (Variable) – Input variable to be summed.

• y (Variable) – Input variable to sum, broadcasted.

206 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

• axis (int) – The first axis of x along which y is applied.

Returns Output variable.

Return type Variable

chainer.functions.ceil

chainer.functions.ceil(x)
Elementwise ceil function.

𝑦𝑖 = ⌈𝑥𝑖⌉

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.clip

chainer.functions.clip(x, x_min, x_max)
Clips (limits) elements of input variable.

Given an interval [x_min, xmax], elements outside the interval are clipped to the interval edges.

Parameters

• x (Variable) – Input variable to be clipped.

• x_min (float) – Minimum value.

• x_max (float) – Maximum value.

Returns Output variable.

Return type Variable

chainer.functions.cos

chainer.functions.cos(x)
Elementwise cos function.

chainer.functions.cosh

chainer.functions.cosh(x)
Elementwise hyperbolic cosine function.

𝑦𝑖 = cosh𝑥𝑖.

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

4.2. Functions 207

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

chainer.functions.cumsum

chainer.functions.cumsum(x, axis=None)
Cumulative sum of array elements over a given axis.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Elements to calculate the
cumulative sum.

• axis (int or None) – Axis along which the cumulative sum is taken. If it is not speci-
fied, the input is flattened.

Returns Output variable.

Return type Variable

chainer.functions.det

chainer.functions.det(a)
Computes the determinant of a single square matrix.

Parameters a (Variable) – Input array to compute the determinant for.

Returns Scalar determinant of the matrix a.

Return type Variable

chainer.functions.batch_det

chainer.functions.batch_det(a)
Computes the determinant of a batch of square matrices.

Parameters

• a (Variable) – Input array to compute the determinant for.

• first dimension should iterate over each matrix and be (The) –

• the batchsize. (of) –

Returns vector of determinants for every matrix in the batch.

Return type Variable

chainer.functions.erf

chainer.functions.erf(x)
Elementwise error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

Returns Output variable.

Return type Variable

208 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://www.scipy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

chainer.functions.erfc

chainer.functions.erfc(x)
Elementwise complementary error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.exp

chainer.functions.exp(x)
Elementwise exponential function.

chainer.functions.expm1

chainer.functions.expm1(x)
Elementwise exponential minus one function.

chainer.functions.fft

chainer.functions.fft(x)
Fast Fourier transform.

Parameters x (tuple) – (real, imag) where real is a Variable storing the real part and
imag is a Variable storing the imaginary part.

Returns Returns (ry, ri) where ry is the real part of the result and ri is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will supports a complex numbers directly in the
future.

chainer.functions.fix

chainer.functions.fix(x)
Elementwise fix function.

𝑦𝑖 = 𝑥𝑖

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

4.2. Functions 209

https://www.scipy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

chainer.functions.fmod

chainer.functions.fmod(x, divisor)
Elementwise mod function.

𝑦𝑖 = 𝑥𝑖 mod divisor.

Parameters

• x (Variable) – Input variable.

• divisor (Variable) – Input divisor.

Returns Output variable.

Return type Variable

chainer.functions.floor

chainer.functions.floor(x)
Elementwise floor function.

𝑦𝑖 = ⌊𝑥𝑖⌋

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.identity

chainer.functions.identity(*inputs)
Just returns input variables.

chainer.functions.ifft

chainer.functions.ifft(x)
Inverse fast Fourier transform.

Parameters x (tuple) – (real, imag) where real is a Variable storing the real part and
imag is a Variable storing the imaginary part.

Returns Returns (ry, ri) where ry is the real part of the result and ri is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will supports a complex numbers directly in the
future.

210 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

chainer.functions.inv

chainer.functions.inv(a)
Computes the inverse of square matrix.

Parameters a (Variable) – Input array to compute the inverse for. Shape of the array should be
(n, n) where n is the dimensionality of a square matrix.

Returns Matrix inverse of a.

Return type Variable

chainer.functions.linear_interpolate

chainer.functions.linear_interpolate(p, x, y)
Elementwise linear-interpolation function.

This function is defined as

𝑓(𝑝, 𝑥, 𝑦) = 𝑝𝑥 + (1− 𝑝)𝑦.

Parameters

• p (Variable) – Input variable.

• x (Variable) – Input variable.

• y (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log

chainer.functions.log(x)
Elementwise natural logarithm function.

chainer.functions.log10

chainer.functions.log10(x)
Elementwise logarithm function to the base 10.

𝑦𝑖 = log10 𝑥𝑖.

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log1p

chainer.functions.log1p(x)
Elementwise natural logarithm plus one function.

4.2. Functions 211

Chainer Documentation, Release 4.0.0

chainer.functions.log2

chainer.functions.log2(x)
Elementwise logarithm function to the base 2.

𝑦𝑖 = log2 𝑥𝑖.

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.logsumexp

chainer.functions.logsumexp(x, axis=None)
Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.

𝑦𝑖 = log

⎛⎝∑︁
𝑗

exp(𝑥𝑖𝑗)

⎞⎠
Parameters

• x (Variable) – Elements to log-sum-exp.

• axis (None, int, or tuple of int) – Axis which a sum is performed. The de-
fault (axis = None) is perform a sum over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.matmul

chainer.functions.matmul(a, b, transa=False, transb=False)
Computes the matrix multiplication of two arrays.

Parameters

• a (Variable) – The left operand of the matrix multiplication. If a and b are both 1-D
arrays, matmul returns a dot product of vector a and vector b. If 2-D arrays, matmul
returns matrix product of a and b. If arrays’ dimension is larger than 2, they are treated as
a stack of matrices residing in the last two indexes. matmul returns a stack of each two
arrays. a and b must have the same dimension.

• b (Variable) – The right operand of the matrix multiplication. Its array is treated as a
matrix in the same way as a’s array.

• transa (bool) – If True, each matrices in a will be transposed. If a.ndim == 1, do
nothing.

• transb (bool) – If True, each matrices in b will be transposed. If b.ndim == 1, do
nothing.

Returns The result of the matrix multiplication.

Return type Variable

212 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Example

>>> a = np.array([[1, 0], [0, 1]], np.float32)
>>> b = np.array([[4, 1], [2, 2]], np.float32)
>>> F.matmul(a, b).data
array([[4., 1.],

[2., 2.]], dtype=float32)

chainer.functions.max

chainer.functions.max(x, axis=None, keepdims=False)
Maximum of array elements over a given axis.

Parameters

• x (Variable) – Array to be maximized.

• axis (None, int, or tuple of int) – Axis over which a max is performed. The
default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.maximum

chainer.functions.maximum(x1, x2)
Element-wise maximum of input variables.

Parameters

• x1 (Variable) – Input variables to be compared.

• x2 (Variable) – Input variables to be compared.

Returns Output variable.

Return type Variable

chainer.functions.mean

chainer.functions.mean(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

• x (Variable) – Elements to sum.

• axis (None or int or tuple of int) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

• weights (None or chainer.Variable) – An array holding weights to calculate
weighted average. If it is None, all weights are assumed to be one. When axis is None,
weights must have the same shape of x. And when axis is int, it must be 1-D array
satisfing weights.shape == (x.shape[axis],).

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

4.2. Functions 213

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns Output variable.

Return type Variable

chainer.functions.min

chainer.functions.min(x, axis=None, keepdims=False)
Minimum of array elements over a given axis.

Parameters

• x (Variable) – Array to be minimized.

• axis (None, int, or tuple of int) – Axis over which a min is performed. The
default (axis = None) is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.minimum

chainer.functions.minimum(x1, x2)
Element-wise minimum of input variables.

Parameters

• x1 (Variable) – Input variables to be compared.

• x2 (Variable) – Input variables to be compared.

Returns Output variable.

Return type Variable

chainer.functions.prod

chainer.functions.prod(x, axis=None, keepdims=False)
Product of array elements over a given axis.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Elements to calculate the
product.

• axis (None, int, or tuple of int) – Axis which a product is performed. The
default (axis = None) is perform a product over all the dimensions of the input array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

chainer.functions.rsqrt

chainer.functions.rsqrt(x)
Computes elementwise reciprocal of square root of input 𝑥𝑖.

𝑦𝑖 =
1√
𝑥𝑖

.

214 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

See also:

sqrt()

chainer.functions.scale

chainer.functions.scale(x, y, axis=1)
Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s scale layer so the “broadcasting” with the following argu-
ments:

x : 100 x 3 x 40 x 5 x 6
y : 3 x 40

axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y : (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply y is specified by the argument axis, whose meaning is different from
numpy’s axis.

Parameters

• x (Variable) – Input variable to be scaled.

• y (Variable) – Input variable to scale, broadcasted.

• axis (int) – The first axis of x along which y is applied.

Returns Output variable.

Return type Variable

chainer.functions.sin

chainer.functions.sin(x)
Elementwise sin function.

chainer.functions.sinh

chainer.functions.sinh(x)
Elementwise hyperbolic sine function.

𝑦𝑖 = sinh𝑥𝑖.

Parameters x (Variable) – Input variable.

4.2. Functions 215

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Returns Output variable.

Return type Variable

chainer.functions.sign

chainer.functions.sign(x)
Elementwise sign function.

For a given input 𝑥, this function returns 𝑠𝑔𝑛(𝑥) defined as

𝑠𝑔𝑛(𝑥) =

⎧⎨⎩ −1 if x < 0
0 if x = 0
1 if x > 0

Note: The gradient of this function is None everywhere and therefore unchains the computational graph.

Parameters x (Variable) – Input variable for which the sign is computed.

Returns Output variable.

Return type Variable

chainer.functions.sqrt

chainer.functions.sqrt(x)
Elementwise square root function.

𝑦𝑖 =
√
𝑥𝑖.

If the value of 𝑥𝑖 is negative, it returns Nan for 𝑦𝑖 respect to underlying numpy and cupy specification.

Parameters x (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.square

chainer.functions.square(x)
Elementwise square function.

𝑦𝑖 = 𝑥2
𝑖 .

Parameters x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable.

Returns Output variable.

Return type Variable

216 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

chainer.functions.squared_difference

chainer.functions.squared_difference(x1, x2)
Squared difference of input variables.

Parameters

• x1 (Variable) – Input variables to be compared.

• x2 (Variable) – Input variables to be compared.

Returns (x1 - x2) ** 2 element-wise.

Return type Variable

chainer.functions.sum

chainer.functions.sum(x, axis=None, keepdims=False)
Sum of array elements over a given axis.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Elements to sum. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• axis (None, int, or tuple of int) – Axis along which a sum is performed.
The default (axis = None) is perform a sum over all the dimensions of the input array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

Example

>>> x = np.arange(6).reshape(2,3).astype(np.float32)
>>> x
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> y = F.sum(x)
>>> y.shape
()
>>> y.data
array(15., dtype=float32)
>>> y = F.sum(x, axis=1)
>>> y.shape
(2,)
>>> y.data
array([3., 12.], dtype=float32)
>>> y = F.sum(x, keepdims=True)
>>> y.shape
(1, 1)
>>> y.data
array([[15.]], dtype=float32)

4.2. Functions 217

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

chainer.functions.tan

chainer.functions.tan(x)
Elementwise tan function.

chainer.functions.tensordot

chainer.functions.tensordot(a, b, axes=2)
Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping.

Parameters

• a (Variable) – The first argument.

• b (Variable) – The second argument.

• axes –

– If it is an integer, then axes axes at the last of a and the first of b are used.

– If it is a pair of sequences of integers, then these two sequences specify the list of axes for
a and b. The corresponding axes are paired for sum-product.

Returns The tensor dot product of a and b along the axes specified by axes.

Return type Variable

Example

>>> a = np.random.rand(5, 3, 2)
>>> b = np.random.rand(3, 2, 4)
>>> c = F.tensordot(a, b, axes=2)
>>> c.shape
(5, 4)

See also:

numpy.tensordot()

4.2.8 Noise injections

chainer.functions.dropout Drops elements of input variable randomly.
chainer.functions.gaussian Gaussian sampling function.
chainer.functions.gumbel_softmax Gumbel-Softmax sampling function.
chainer.functions.
simplified_dropconnect

Linear unit regularized by simplified dropconnect.

chainer.functions.zoneout Drops elements of input variable and sets to previous vari-
able randomly.

chainer.functions.dropout

chainer.functions.dropout(x, ratio=.5)
Drops elements of input variable randomly.

218 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot

Chainer Documentation, Release 4.0.0

This function drops input elements randomly with probability ratio and scales the remaining elements by
factor 1 / (1 - ratio). In testing mode, it does nothing and just returns x.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', boolean). See chainer.using_config().

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• ratio (float) – Dropout ratio. The ratio must be 0.0 <= ratio < 1.0.

Returns Output variable.

Return type Variable

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> with chainer.using_config('train', True):
... y = F.dropout(x)
>>> y.data
array([[-2., 0.],

[4., -6.],
[-0., 2.]], dtype=float32)

>>> with chainer.using_config('train', True):
... y = F.dropout(x, ratio=0.0) # dropout returns original input if ratio=0.0
>>> (x == y.data).all()
True
>>> with chainer.using_config('train', False):
... y = F.dropout(x) # dropout in test mode returns original input
>>> (x == y.data).all()
True

chainer.functions.gaussian

chainer.functions.gaussian(mean, ln_var)
Gaussian sampling function.

This function takes a mean 𝜇 and the logarithm of a variance log(𝜎2) as inputs and outputs a sample drawn from
a Gaussian distribution 𝑁(𝜇, 𝜎).

The inputs must have the same shape.

Parameters

• mean (Variable) – Input variable representing the mean 𝜇.

• ln_var (Variable) – Input variable representing the logarithm of a variance log(𝜎2).

Returns Output variable with the shape of mean and/or ln_var.

Return type Variable

4.2. Functions 219

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1207.0580

Chainer Documentation, Release 4.0.0

chainer.functions.gumbel_softmax

chainer.functions.gumbel_softmax(log_pi, tau=0.1, axis=1)
Gumbel-Softmax sampling function.

This function draws samples 𝑦𝑖 from Gumbel-Softmax distribution,

𝑦𝑖 =
exp((𝑔𝑖 + log 𝜋𝑖)/𝜏)∑︀
𝑗 exp((𝑔𝑗 + log 𝜋𝑗)/𝜏)

,

where 𝜏 is a temperature parameter and 𝑔𝑖 s are samples drawn from Gumbel distribution 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1)

See Categorical Reparameterization with Gumbel-Softmax.

Parameters

• log_pi (Variable or numpy.ndarray or cupy.ndarray) – Input variable repre-
senting pre-normalized log-probability log 𝜋.

• tau (float or Variable) – Input variable representing temperature 𝜏 .

Returns Output variable.

Return type Variable

chainer.functions.simplified_dropconnect

chainer.functions.simplified_dropconnect(x, W, b=None, ratio=0.5, train=True,
mask=None, use_batchwise_mask=True)

Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with probability ratio and scales the remain-
ing elements by factor 1 / (1 - ratio). It accepts two or three arguments: an input minibatch x, a weight
matrix W, and optionally a bias vector b. It computes 𝑌 = 𝑥𝑊⊤ + 𝑏.

In testing mode, zero will be used as simplified dropconnect ratio instead of ratio.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

• x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable. Its first di-
mension n is assumed to be the minibatch dimension. The other dimensions are treated as
concatenated one dimension whose size must be N.

• W (Variable) – Weight variable of shape (M, N).

• b (Variable) – Bias variable (optional) of shape (M,).

• ratio (float) – Dropconnect ratio.

• train (bool) – If True, executes simplified dropconnect. Otherwise, simplified drop-
connect function works as a linear function.

• mask (None or chainer.Variable or numpy.ndarray or cupy.
ndarray) – If None, randomized dropconnect mask is generated. Otherwise, The
mask must be (n, M, N) or (M, N) shaped array, and use_batchwise_mask is ignored.
Main purpose of this option is debugging. mask array will be used as a dropconnect mask.

• use_batchwise_mask (bool) – If True, dropped connections depend on each sample
in mini-batch.

220 Chapter 4. Reference

https://arxiv.org/abs/1611.01144
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns Output variable.

Return type Variable

See also:

Dropconnect

See also:

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013). Regularization of Neural Network using DropConnect.
International Conference on Machine Learning. URL

chainer.functions.zoneout

chainer.functions.zoneout(h, x, ratio=.5)
Drops elements of input variable and sets to previous variable randomly.

This function drops input elements randomly with probability ratio and instead sets dropping element to their
previous variable. In testing mode , it does nothing and just returns x.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• h (Variable) – Previous variable.

• x (Variable) – Input variable.

• ratio (float) – Zoneout ratio.

Returns Output variable.

Return type Variable

See the paper: Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations.

4.2.9 Normalization functions

chainer.functions.batch_normalization Batch normalization function.
chainer.functions.batch_renormalization Batch renormalization function.
chainer.functions.
fixed_batch_normalization

Batch normalization function with fixed statistics.

chainer.functions.
fixed_batch_renormalization
chainer.functions.layer_normalization Layer normalization.
chainer.functions.
local_response_normalization

Local response normalization across neighboring channels.

chainer.functions.normalize L2 norm squared (a.k.a. Euclidean norm).

4.2. Functions 221

https://cs.nyu.edu/~wanli/dropc/
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1606.01305

Chainer Documentation, Release 4.0.0

chainer.functions.batch_normalization

chainer.functions.batch_normalization(x, gamma, beta, eps=2e-5, running_mean=None, run-
ning_var=None, decay=0.9)

Batch normalization function.

It takes the input variable x and two parameter variables gamma and beta. The parameter variables must both
have the same dimensionality, which is referred to as the channel shape. This channel shape corresponds to
the dimensions in the input which are not averaged over. Since the first dimension of the input corresponds
to the batch size, the second dimension of x will correspond to the first dimension of the channel shape, the
third dimension of x will correspond to the second channel dimension (if it exists) and so on. Therefore, the
dimensionality of the input must be at least one plus the number of channel dimensions. The total effective
“batch size” will then be considered to be the product of all dimensions in x except for the channel dimensions.

As an example, if the input is four dimensional and the parameter variables are one dimensional, then it is
assumed that the first dimension of the input is the batch size, the second dimension is the channel size, and
the remaining two dimensions are considered to be spatial dimensions that will be averaged over along with the
batch size in the batch normalization computations. That is, the total batch size will be considered to be the
product of all input dimensions except the second dimension.

Note: If this function is called, it will not be possible to access the updated running mean and variance statistics,
because they are members of the function object, which cannot be accessed by the caller. If it is desired to access
the updated running statistics, it is necessary to get a new instance of the function object, call the object, and
then access the running_mean and/or running_var attributes. See the corresponding Link class for an example
of how to do this.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable.

• gamma (Variable) – Scaling parameter of normalized data.

• beta (Variable) – Shifting parameter of scaled normalized data.

• eps (float) – Epsilon value for numerical stability.

• running_mean (numpy.ndarray or cupy.ndarray) – Running average of the
mean. This is a running average of the mean over several mini-batches using the decay pa-
rameter. If None, the running average is not computed. If this is None, then runnng_var
must also be None.

• running_var (numpy.ndarray or cupy.ndarray) – Running average of the
variance. This is a running average of the variance over several mini-batches using the
decay parameter. If None, the running average is not computed. If this is None, then
running_mean must also be None.

• decay (float) – Decay rate of moving average. It is used during training.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

links.BatchNormalization

222 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1502.03167

Chainer Documentation, Release 4.0.0

chainer.functions.batch_renormalization

chainer.functions.batch_renormalization(x, gamma, beta, rmax, dmax, eps=2e-05, run-
ning_mean=None, running_var=None, de-
cay=0.9)

Batch renormalization function.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:

links.BatchRenormalization

See also:

functions.BatchNormalization()

chainer.functions.fixed_batch_normalization

chainer.functions.fixed_batch_normalization(x, gamma, beta, mean, var, eps=2e-05)
Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as fixed
variables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used
for prediction consistency.

Parameters

• x (Variable) – Input variable.

• gamma (Variable) – Scaling parameter of normalized data.

• beta (Variable) – Shifting parameter of scaled normalized data.

• mean (Variable) – Shifting parameter of input.

• var (Variable) – Square of scaling parameter of input.

• eps (float) – Epsilon value for numerical stability.

See also:

functions.batch_normalization(), links.BatchNormalization

chainer.functions.fixed_batch_renormalization

chainer.functions.fixed_batch_renormalization(x, gamma, beta, mean, var, eps=2e-05)

chainer.functions.layer_normalization

chainer.functions.layer_normalization(x, gamma, beta, eps=1e-05)
Layer normalization.

This function implements a “layer normalization” which normalizes the input units by statistics that are com-
puted along the second axis, scales and shifts them.

Parameters

4.2. Functions 223

https://arxiv.org/abs/1702.03275
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• x (Variable) – Batch vectors. Shape of this value must be (batch_size, unit_size), e.g.,
the output of linear().

• gamma (Variable) – Scaling vectors.

• beta (Variable) – Shifting vectors.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See: Layer Normalization

chainer.functions.local_response_normalization

chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)
Local response normalization across neighboring channels.

This function implements normalization across channels. Let 𝑥 an input image with 𝑁 channels. Then, this
function computes an output image 𝑦 by following formula:

𝑦𝑖 =
𝑥𝑖(︁

𝑘 + 𝛼
∑︀min𝑁,𝑖+𝑛/2

𝑗=max 1,𝑖−𝑛/2 𝑥2
𝑗

)︁𝛽 .
Parameters

• x (Variable) – Input variable.

• n (int) – Normalization window width.

• k (float) – Smoothing parameter.

• alpha (float) – Normalizer scaling parameter.

• beta (float) – Normalizer power parameter.

Returns Output variable.

Return type Variable

See: Section 3.3 of ImageNet Classification with Deep Convolutional Neural Networks

chainer.functions.normalize

chainer.functions.normalize(x, eps=1e-05, axis=1)
L2 norm squared (a.k.a. Euclidean norm).

This function implements L2 normalization on a vector along the given axis. No reduction is done along the
normalization axis.

In the case when axis=1 and 𝑥 is a vector of dimension (𝑁,𝐾), where 𝑁 and 𝐾 denote mini-batch size and
the dimension of the input variable, this function computes an output vector 𝑦 by the following equation:

𝑦𝑖 =
𝑥𝑖

‖𝑥𝑖‖2 + 𝜖

eps is used to avoid division by zero when norm of 𝑥 along the given axis is zero.

The default value of axis is determined for backward compatibility.

Parameters

224 Chapter 4. Reference

https://arxiv.org/abs/1607.06450
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Chainer Documentation, Release 4.0.0

• x (Variable) – Two dimensional output variable. The first dimension is assumed to be
the mini-batch dimension.

• eps (float) – Epsilon value for numerical stability.

• axis (int) – Axis along which to normalize.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

4.2.10 Spatial pooling

chainer.functions.average_pooling_2d Spatial average pooling function.
chainer.functions.average_pooling_nd N-dimensionally spatial average pooling function.
chainer.functions.max_pooling_2d Spatial max pooling function.
chainer.functions.max_pooling_nd N-dimensionally spatial max pooling function.
chainer.functions.roi_pooling_2d Spatial Region of Interest (ROI) pooling function.
chainer.functions.
spatial_pyramid_pooling_2d

Spatial pyramid pooling function.

chainer.functions.unpooling_2d Inverse operation of pooling for 2d array.
chainer.functions.unpooling_nd Inverse operation of N-dimensional spatial pooling.
chainer.functions.upsampling_2d Upsampling using pooling indices.

chainer.functions.average_pooling_2d

chainer.functions.average_pooling_2d(x, ksize, stride=None, pad=0)
Spatial average pooling function.

This function acts similarly to Convolution2D, but it computes the average of input spatial patch for each
channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_2d(). Average pool-
ing runs in non-cover-all mode.

4.2. Functions 225

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.functions.average_pooling_nd

chainer.functions.average_pooling_nd(x, ksize, stride=None, pad=0)
N-dimensionally spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of average_pooling_2d(). This acts sim-
ilarly to ConvolutionND, but it computes the average of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_nd(). Average pool-
ing runs in non-cover-all mode.

chainer.functions.max_pooling_2d

chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True)
Spatial max pooling function.

This function acts similarly to Convolution2D, but it computes the maximum of input spatial patch for each
channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

Returns Output variable.

226 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Return type Variable

chainer.functions.max_pooling_nd

chainer.functions.max_pooling_nd(x, ksize, stride=None, pad=0, cover_all=True)
N-dimensionally spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of max_pooling_2d(). This acts similarly to
ConvolutionND, but it computes the maximum of input spatial patch for each channel without any parameter
instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s,s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

Returns Output variable.

Return type Variable

chainer.functions.roi_pooling_2d

chainer.functions.roi_pooling_2d(x, rois, outh, outw, spatial_scale)
Spatial Region of Interest (ROI) pooling function.

This function acts similarly to MaxPooling2D, but it computes the maximum of input spatial patch for each
channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 5), and
each datum is set as below: (batch_index, x_min, y_min, x_max, y_max).

• outh (int) – Height of output image after pooled.

• outw (int) – Width of output image after pooled.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

4.2. Functions 227

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.spatial_pyramid_pooling_2d

chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling_class=None,
pooling=None)

Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array x with different kernel sizes and padding sizes, and then
flattens all dimensions except first dimension of all pooling results, and finally concatenates them along second
dimension.

At 𝑖-th pyramid level, the kernel size (𝑘
(𝑖)
ℎ , 𝑘

(𝑖)
𝑤) and padding size (𝑝

(𝑖)
ℎ , 𝑝

(𝑖)
𝑤) of pooling operation are calculated

as below:

𝑘
(𝑖)
ℎ = ⌈𝑏ℎ/2𝑖⌉,

𝑘(𝑖)𝑤 = ⌈𝑏𝑤/2𝑖⌉,

𝑝
(𝑖)
ℎ = (2𝑖𝑘

(𝑖)
ℎ − 𝑏ℎ)/2,

𝑝(𝑖)𝑤 = (2𝑖𝑘(𝑖)𝑤 − 𝑏𝑤)/2,

where ⌈·⌉ denotes the ceiling function, and 𝑏ℎ, 𝑏𝑤 are height and width of input variable x, respectively. Note
that index of pyramid level 𝑖 is zero-based.

See detail in paper: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

Parameters

• x (Variable) – Input variable. The shape of x should be (batchsize, # of
channels, height, width).

• pyramid_height (int) – Number of pyramid levels

• pooling_class (MaxPooling2D) – (deprecated since v4.0.0) Only MaxPooling2D is
supported. Please use the pooling argument instead since this argument is deprecated.

• pooling (str) – Currently, only max is supported, which performs a 2d max pooling
operation. Replaces the pooling_class argument.

Returns Output variable. The shape of the output variable will be (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑐
∑︀𝐻−1

ℎ=0 22ℎ, 1, 1),
where 𝑐 is the number of channels of input variable x and 𝐻 is the number of pyramid levels.

Return type Variable

Note: This function uses some pooling classes as components to perform spatial pyramid pooling. Currently,
it only supports MaxPooling2D as elemental pooling operator so far.

chainer.functions.unpooling_2d

chainer.functions.unpooling_2d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2D, but it spreads input 2d array’s value without any parameter
instead of computing the inner products.

Parameters

228 Chapter 4. Reference

https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1406.4729
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int, pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• outsize (None or pair of ints) – Expected output size (height, width) of array
after the operation. If None, the size (height or width) is estimated from the size of input
array in first batch with get_deconv_outsize(). If outsize is not None, the result of
outsize applied to get_conv_outsize() must be equal to the shape of the 2d array in
the input batch x.

• cover_all (bool) – If True, the output size may be smaller than the size if
cover_all is False. This flag serves to align behavior to the pooling functions which
can cover all input locations, see max_pooling_2d() and convolution_2d().

Returns Output variable.

Return type Variable

chainer.functions.unpooling_nd

chainer.functions.unpooling_nd(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of N-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

This function acts similarly to DeconvolutionND, but it spreads input N-dimensional array’s value without
any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window (𝑘1, 𝑘2, ..., 𝑘𝑁).
ksize=k is equivalent to (k, k, ..., k).

• stride (int, pair of ints or None) – Stride of pooling applications
(𝑠1, 𝑠2, ..., 𝑠𝑁). stride=s is equivalent to (s, s, ..., s). If None is speci-
fied, then it uses same stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array
(𝑝1, 𝑝2, ..., 𝑝𝑁). pad=p is equivalent to (p, p, ..., p).

• outsize (None or pair of ints) – Expected output size of unpooling operation
(𝑜𝑢𝑡1, 𝑜𝑢𝑡2, ..., 𝑜𝑢𝑡𝑁). If None, the size is estimated from input size, stride and padding.

• cover_all (bool) – If True, the pooling window is assumed to cover all of the output
array, eventually the output size may be smaller than that in the case cover_all is False.

Returns Output variable.

Return type Variable

4.2. Functions 229

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

chainer.functions.upsampling_2d

chainer.functions.upsampling_2d(x, indexes, ksize, stride=None, pad=0, outsize=None,
cover_all=True)

Upsampling using pooling indices.

This function produces an upsampled image using pooling indices.

Example

It should be noted that you need to turn off chainer.config.use_cudnn flag when you perform
max_pooling_2d() function which will make a pooling indicies for this upsampling_2d(). It is be-
cause indexes is never created and stored in the MaxPooling2D object when cuDNN is used for it.

>>> x = np.arange(1, 37).reshape(1, 1, 6, 6).astype(np.float32)
>>> x = chainer.Variable(x)
>>> x.data
array([[[[1., 2., 3., 4., 5., 6.],

[7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.],
[31., 32., 33., 34., 35., 36.]]]], dtype=float32)

This is the original x before max pooling.

>>> p = F.MaxPooling2D(2, 2)
>>> with chainer.using_config('use_cudnn', 'never'):
... pooled_x = p.apply((x,))[0]
>>> pooled_x.data
array([[[[8., 10., 12.],

[20., 22., 24.],
[32., 34., 36.]]]], dtype=float32)

This is the output of the max pooling operation. upsampling_2d() needs indexes array stored in the max
pooling object p.

>>> upsampled_x = F.upsampling_2d(
... pooled_x, p.indexes, p.kh, p.sy, p.ph, x.shape[2:])
>>> upsampled_x.shape
(1, 1, 6, 6)
>>> upsampled_x.data
array([[[[0., 0., 0., 0., 0., 0.],

[0., 8., 0., 10., 0., 12.],
[0., 0., 0., 0., 0., 0.],
[0., 20., 0., 22., 0., 24.],
[0., 0., 0., 0., 0., 0.],
[0., 32., 0., 34., 0., 36.]]]], dtype=float32)

Parameters

• x (Variable) – Input variable.

• indexes (ndarray or ndarray) – Index array that was used to calculate x with
MaxPooling2D.

• ksize (int or (int, int)) – ksize attribute of MaxPooling2D object that is used to
calculate x

230 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• stride (int or (int, int)) – stride attribute of MaxPooling2D object that is used
to calculate x

• pad (int or (int, int)) – pad attribute of MaxPooling2D object that is used to
calculate x

• outsize ((int, int)) – Expected output size (height, width).

• cover_all (bool) – Whether cover_all is used in the MaxPooling2D object or not.

Returns Output variable.

Return type Variable

4.2.11 Utility functions

chainer.functions.forget Calls a function without storing intermediate results.

chainer.functions.forget

chainer.functions.forget(func, *xs)
Calls a function without storing intermediate results.

On a forward propagation, Chainer normally stores all intermediate results of VariableNodes on a computa-
tional graph as they are required on backward propagation. Sometimes these results consume too much memory.
F.forget forgets such intermediate results on forward propagation, and still supports backpropagation with
recalculation.

On a forward propagation, F.forget calls a given function with given variables without creating a computa-
tional graph. That means, no intermediate results are stored. On a backward propagation, F.forget calls the
given function again to create a computational graph for backpropagation.

F.forget reduces internal memory usage, whereas it requires more calculation time as it calls the function
twice.

Example

Let f be a function defined as:

>>> def f(a, b):
... return a + b + a

and, x and y be Variables:

>>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))
>>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))

When z is calculated as z = f(x, y), its intermediate result x + y is stored in memory. Instead, if you
call f with F.forget:

>>> z = F.forget(f, x, y)

intermediate x + y is forgotten.

Note: F.forget does not support functions which behave differently in multiple calls with the same inputs,

4.2. Functions 231

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

such as F.dropout() and F.negative_sampling().

Note: In case input argument variables are of class numpy.ndarray or cupy.ndarray objects, arguments
will automatically be converted to Variables. This conversion takes place to ensure that this function is
included in the computational graph to enable backward computations.

Parameters

• func (callable) – A function to call. It needs to be called with Variable object(s)
and to return a Variable object or a tuple of Variable objects.

• xs (Variable) – Argument variables of the function.

Returns A variable func returns. If it returns a tuple, the method returns a tuple too.

Return type Variable

4.2.12 Function base

chainer.Function Old-style interface of a differentiable function.
chainer.FunctionAdapter Adapter class to wrap Function with FunctionNode.
chainer.FunctionNode Function node of the computational graph.
chainer.force_backprop_mode Make a context manager which enables back-propagation.
chainer.no_backprop_mode Make a context manager which disables back-propagation.
chainer.grad Computes the gradient of output variables w.r.t. the input

variables.

chainer.Function

class chainer.Function
Old-style interface of a differentiable function.

This class provides an interface to implement an old-style differentiable function (i.e., the function applica-
tion is recorded to the computational graph). The subclass of Function that implement forward() and
backward() can be used to run the forward computation and automatically induce the backpropagation pro-
cedure.

There is another way to implement such a function: subclassing FunctionNode. There are mainly two
differences between them.

1. The differentiable backprop is available for FunctionNode, while it is not for Function because the
backward() of the latter directly operates on the arrays instead of Variable objects so that it cannot
record the history of the computation.

2. The information passed to backward() is different. In FunctionNode, which inputs the function
node has to compute the gradients w.r.t. is passed so that it can omit unnecessary computations, while
Function always has to compute gradients w.r.t. all the input nodes. The FunctionNode also accepts
the current gradient values of the input nodes so that the accumulation work can be merged with the
gradient computation if an efficient kernel is available.

This class uses FunctionAdapter to convert the interface to that of FunctionNode and adds the
FunctionNode object to the computational graph.

See FunctionNode for the details of building the computational graph in Chainer.

232 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Methods

__call__(*inputs)
Applies forward propagation with chaining backward references.

This method creates a new FunctionAdapter object and runs the forward propagation using it.

See FunctionNode for the detailed behavior of building the computational graph.

Parameters inputs – Tuple of input Variable, numpy.ndarray or cupy.ndarray
objects. If the input is an numpy.ndarray or a cupy.ndarray, it is automatically
wrapped with Variable.

Returns One Variable object or a tuple of multiple Variable objects.

add_hook(hook, name=None)
Registers a function hook.

See FunctionNode.add_hook() for the detail.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. name must be unique among function hooks
registered to the function. If None, default name of the function hook is used.

backward(inputs, grad_outputs)
Applies backprop to output gradient arrays.

It delegates the procedure to backward_cpu() or backward_gpu() by default. Which it selects is
determined by the type of input arrays and output gradient arrays. Implementations of Function must
implement either CPU/GPU methods or this method, if the function is intended to be backprop-ed.

Parameters

• inputs – Tuple of input arrays.

• grad_outputs – Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be None, if the function is not
differentiable on inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_cpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters

• inputs – Tuple of input numpy.ndarray object(s).

• grad_outputs – Tuple of output gradient numpy.ndarray object(s).

Returns Tuple of input gradient numpy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

4.2. Functions 233

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_gpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters

• inputs – Tuple of input cupy.ndarray object(s).

• grad_outputs – Tuple of output gradient cupy.ndarray object(s).

Returns Tuple of input gradient cupy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

check_type_forward(in_types)
Checks types of input data before forward propagation.

Before forward() is called, this function is called. You need to validate types of input data in this
function using the type checking utilities.

Parameters in_types (TypeInfoTuple) – The type information of input data for
forward().

delete_hook(name)
Unregisters the specified function hook.

Parameters name (str) – the name of the function hook to be unregistered.

forward(inputs)
Applies forward propagation to input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which it selects is
determined by the type of input arrays. Implementations of Function must implement either CPU/GPU
methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_cpu(inputs)
Applies forward propagation to input arrays on CPU.

Parameters inputs – Tuple of numpy.ndarray object(s).

Returns Tuple of numpy.ndarray object(s).

Return type tuple

234 Chapter 4. Reference

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_gpu(inputs)
Applies forward propagation to input arrays on GPU.

Parameters inputs – Tuple of cupy.ndarray object(s).

Returns Tuple of cupy.ndarray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function can specify which inputs are required for backprop.

If this method is not called, the function keeps all input arrays. If you want to release all input ar-
rays, call this method by passing an empty sequence. Note that this behavior is different from that of
FunctionNode.retain_inputs().

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes, retain_after_backward=False)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function can specify which outputs are required for back-
prop. If this method is not called, any output variables are not marked to keep the data array at the point of
returning from __call__(). The retained arrays are stored to output_data.

Note: It is STRONGLY RECOMMENDED to use this method if the function requires some or all output
arrays in backprop. The function can also use output arrays just by keeping references to them directly,
whereas it might influence on the performance of later function applications to the output variables.

Note that this method must not be called from the outside of forward().

Parameters

• indexes (iterable of int) – Indexes of input variables that the function will re-
quire for backprop.

• retain_after_backward (bool) – This option has no effect. It is left only for the
backward compatibility.

unchain()
Purges in/out nodes and this function itself from the graph.

See FunctionNode.unchain() for the detail.

4.2. Functions 235

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Attributes

inputs
The input nodes of the function.

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

local_function_hooks
Ordered Dictionary of registered function hooks.

See FunctionNode.local_function_hooks for the detail.

node
The FunctionAdapter object that wraps this Function.

If the Function does not have a node object, this property automatically creates a new one.

output_data
A tuple of the retained output arrays.

It has the same length as the outputs. Elements that are not retained are set to None.

outputs
Weak references to the output nodes of the function.

rank
The topological ordinal of the corresponding function node.

stack

chainer.FunctionAdapter

class chainer.FunctionAdapter(function)
Adapter class to wrap Function with FunctionNode.

While FunctionNode provides the interface of new-style differentiable functions, the old-style Function
can still be used for the backward compatibility. This class provides an adapter of there interface; it adds
FunctionNode interface to any Function object by delegation.

Note: The ownership of FunctionAdapter and Function is a bit tricky. At the initialization,
FunctionAdapter is owned by the Function object. Once the function is applied to variables, the own-
ership is reversed; the adapter becomes the owner of the Function object and the Function object changes
the reference to a weak one.

Parameters function (Function) – The function object to wrap.

New in version 3.0.0.

Methods

__call__(*args, **kwargs)
Call self as a function.

236 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

add_hook(hook, name=None)
Registers a function hook.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply(inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attribute of input variables exist on a GPU device, that device is made current before
calling forward(), so implementors do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable,
numpy.ndarray, or cupy.ndarray. If the element is an ndarray, it is automatically
wrapped with Variable.

Returns A tuple of output Variable objects.

backward(target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

• target_input_indexes (tuple of int) – Indices of the input variables w.r.t.
which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len(target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate() provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate(target_input_indexes, grad_outputs, grad_inputs)
Computes gradients w.r.t. specified inputs and accumulates them.

4.2. Functions 237

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward(). It is often simpler to implement
backward() and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• target_input_indexes (tuple of int) – Indices of the input variables w.r.t.
which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variable) – Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

• grad_inputs (tuple of Variable) – Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward(), the length of the tuple must be same as that of
target_input_indices.

Note: When the same variable is passed to the multiple input arguments of a function, only the first
position of grad_inputs corresponding to these input arguments may contain the gradient variable
corresponding to that input variable, and other entries are set to None. This is an implementation-detail
convention to avoid the complication of correctly accumulating gradients in such a case. This behavior
might be changed in a future version.

check_type_forward(in_types)
Checks types of input data before forward propagation.

This method is called before forward() and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) – The type information of input variables for
forward().

delete_hook(name)
Unregisters the function hook.

Parameters name (str) – The name of the function hook to be unregistered.

forward(inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

238 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables.

get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the

4.2. Functions 239

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

point of returning from apply(). The output variables with retained arrays can then be obtained by
calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of output variables that the function
will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

Attributes

function
The Function object that this adapter is wrapping.

inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy_grad_sum = False

local_function_hooks
Ordered dictionary of registered function hooks.

Contrary to chainer.thread_local.function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.FunctionNode

class chainer.FunctionNode
Function node of the computational graph.

FunctionNode is a class representing a node in a computational graph. The node corresponds to an application
of a differentiable function to input variables.

When a differentiable function is applied to Variable objects, it creates an instance of FunctionNode imple-
mentation and calls its apply() method. The apply() method basically does the following three things.

240 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

1. Adding an edge from the function node to the variable node corresponding to each input. The node of each
input is extracted by Variable.node.

2. Computing the output arrays of the function.

3. Creating a Variable object for each output array and adding an edge from the node of the variable to
the function node.

The output variables are then returned.

Example

Let x be an instance of Variable and f be an instance of FunctionNode taking only one argument. Then
the following code

>>> import numpy, chainer, chainer.functions as F
>>> x = chainer.Variable(numpy.zeros(10))
>>> f = F.Identity()
>>> y = f.apply((x,))[0]

computes a new variable y and creates backward references. The backward references are actually set as per the
following diagram:

x.node <--- f <--- y.node

If an application of another function g occurs as

>>> g = F.Identity()
>>> z = g.apply((x,))[0]

then the graph grows with a branch:

|--- f <--- y.node
x.node <-+

|--- g <--- z.node

Note that the branching is correctly managed on backward computation, i.e. the gradients from f and g are
accumulated to the gradient of x.

Every function-node implementation should provide forward() and backward(). Instead of overriding
forward(), one can also implement forward_cpu() and forward_gpu() when the implementations
for CPU and GPU arrays are totally different.

Note that the input and output variables are inaccessible from backward() by default. If it needs accesses
to these variables, the forward() method (or its CPU/GPU variants) has to call retain_inputs() and
retain_outputs() appropriately. The retained input/output variables can be accessed from backward()
by calling get_retained_inputs() and get_retained_outputs().

Note: There are two types of differentiable functions in Chainer (since v3). The first type is of a function using
a subclass of Function, which is called old-style differentiable function. The second type is of a function
using a subclass of FunctionNode, which is called new-style differentiable function. There are several
advantages on using the new-style differentiable function.

• The new-style differentiable function supports differentiable backpropagation. The backpropagated gradi-
ents computed through the new-style differentiable functions themselves support further backpropagations
so that the automatic higher-order differentiation is available.

4.2. Functions 241

Chainer Documentation, Release 4.0.0

• The backpropagation of the new-style differentiable function can be more computationally efficient be-
cause the interface allows an implementation to omit the computation of unneeded input gradients.

Note that the new-style differentiable function is the standard way of defining a function node of the compu-
tational graph in Chainer; old- style differentiable functions are implemented as wrappers of the new- style
differentiable functions.

Variables

• inputs – A tuple of the input VariableNode objects.

• outputs – A tuple of weak references to the output VariableNode objects.

• rank (int) – An ordinal following the topological order of the computational graph.

• stack – Stack trace retrieved at the forward computation. The stack trace is available only
in the debug mode.

New in version 3.0.0.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a function hook.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply(inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attribute of input variables exist on a GPU device, that device is made current before
calling forward(), so implementors do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable,
numpy.ndarray, or cupy.ndarray. If the element is an ndarray, it is automatically
wrapped with Variable.

Returns A tuple of output Variable objects.

backward(target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

242 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Unlike Function.backward(), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

• target_input_indexes (tuple of int) – Indices of the input variables w.r.t.
which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len(target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate() provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate(target_input_indexes, grad_outputs, grad_inputs)
Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward(). It is often simpler to implement
backward() and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• target_input_indexes (tuple of int) – Indices of the input variables w.r.t.
which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variable) – Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

• grad_inputs (tuple of Variable) – Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward(), the length of the tuple must be same as that of
target_input_indices.

Note: When the same variable is passed to the multiple input arguments of a function, only the first
position of grad_inputs corresponding to these input arguments may contain the gradient variable
corresponding to that input variable, and other entries are set to None. This is an implementation-detail
convention to avoid the complication of correctly accumulating gradients in such a case. This behavior
might be changed in a future version.

4.2. Functions 243

Chainer Documentation, Release 4.0.0

check_type_forward(in_types)
Checks types of input data before forward propagation.

This method is called before forward() and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) – The type information of input variables for
forward().

delete_hook(name)
Unregisters the function hook.

Parameters name (str) – The name of the function hook to be unregistered.

forward(inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables.

get_retained_outputs()
Returns a tuple of retained output variables.

244 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from apply(). The output variables with retained arrays can then be obtained by
calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of output variables that the function
will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

Attributes

inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy_grad_sum = False

local_function_hooks
Ordered dictionary of registered function hooks.

4.2. Functions 245

Chainer Documentation, Release 4.0.0

Contrary to chainer.thread_local.function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.force_backprop_mode

chainer.force_backprop_mode()
Make a context manager which enables back-propagation.

When you want to enable back-propagation in no_backprop_mode(), call this method. A Variable
created in this context always has a computational graph unless overridden by deeper contexts. If you call this
method outside of no_backprop_mode() context, it changes nothing.

In the following example, y has a computational graph and calling backward() on y will compute and
accumulate the gradients of the variables in the graph, in this case only x.

>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
... with chainer.force_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad
array([1.], dtype=float32)

See also:

See no_backprop_mode() for details on disabled back-propagation mode.

chainer.no_backprop_mode

chainer.no_backprop_mode()
Make a context manager which disables back-propagation.

In this context, Chainer does not make a computational graph. It has the benefit of reducing memory consump-
tion. However, a Variable created in this context does not hold a reference to the FunctionNode that
created itself so no gradients are accumulated by backward().

In the following example, y is created in this context, which means that calling backward() on y has no
effect on the gradients of x.

>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad is None
True

246 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

See also:

See force_backprop_mode() for details on how to override this context.

chainer.grad

chainer.grad(outputs, inputs, grad_outputs=None, grad_inputs=None, set_grad=False, re-
tain_grad=False, enable_double_backprop=False, loss_scale=None)

Computes the gradient of output variables w.r.t. the input variables.

This function implements the backpropagation algorithm. While Variable.backward() also implements
backprop, this function selects the smallest paths in the computational graph needed to compute the gradients
w.r.t. inputs. The error is backpropagated only through these selected paths, which may reduce the overall
computational cost.

This function also differs from Variable.backward() in the way to return the gradients; it directly returns
the gradient variables as a list instead of setting gradients to the Variable.grad_var attribute of the original
variable. It means users do not need to clear the gradient w.r.t. each variable before computing the gradient using
this function. If set_grad option is set to True, the computed gradient is also stored in the Variable.
grad_var attribute of each variable, in which case any original value of Variable.grad_var will be
updated even if it had already been set.

Parameters

• outputs (tuple or list of Variable) – A sequence of output variables from which back-
prop starts.

• inputs (tuple or list of Variable) – A sequence of input variables each of which this
function computes the gradient w.r.t.

• grad_outputs (tuple or list of Variable or None) – A sequence of variables that gives
the initial value of each output gradient. If an element is set to None, an array filled with 1
is used. If this argument itself is None, it is treated as a sequence of Nones.

• grad_inputs (tuple or list of Variable or None) – A sequence of variables that gives
the initial value of each input gradient. The gradients computed by the backprop algorithm
are accumulated to them (not in-place). If an element is set to None, the gradient is not
accumulated to this value. If this argument itself is None, it is treated as a sequence of
Nones.

• set_grad (bool) – If it is True, the Variable.grad_var attribute of each input
variable is set to the corresponding computed gradient variable.

• retain_grad (bool) – If it is True, the gradients w.r.t. all the intermediate variables
are stored in the Variable.grad_var attribute. In this case, the set_grad option is
ignored.

• enable_double_backprop (bool) – If it is True, the computed gradients can be
further backpropagated. Enabling it may increase the memory consumption (and possibly
the computational time) to remember the intermediate gradient values for the second back-
propagation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

Returns A list of gradient variables w.r.t. the inputs.

4.2. Functions 247

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

4.2.13 Function hooks

Chainer provides a function-hook mechanism that enriches the behavior of forward and backward propagation of
Function.

4.2.14 Base class

chainer.FunctionHook Base class of hooks for Functions.

chainer.FunctionHook

class chainer.FunctionHook
Base class of hooks for Functions.

FunctionHook is a callback object that is registered to FunctionNode. Registered function hooks are
invoked before and after forward and backward operations of each function.

Function hooks that derive FunctionHook are required to implement four methods:
forward_preprocess(), forward_postprocess(), backward_preprocess(), and
backward_postprocess(). By default, these methods do nothing.

Specifically, when __call__() method of some function is invoked, forward_preprocess() (resp.
forward_postprocess()) of all function hooks registered to this function are called before (resp. after)
forward propagation.

Likewise, when backward() of some Variable is invoked, backward_preprocess() (resp.
backward_postprocess()) of all function hooks registered to the function which holds this variable as a
gradient are called before (resp. after) backward propagation.

There are two ways to register FunctionHook objects to FunctionNode objects.

First one is to use with statement. Function hooks hooked in this way are registered to all functions within
with statement and are unregistered at the end of with statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation
procedure with TimerHook, which is a subclass of FunctionHook.

>>> from chainer import function_hooks
>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l = L.Linear(10, 10)
... def __call__(self, x1):
... return F.exp(self.l(x1))
>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.TimerHook() as m:
... _ = model1(x)
... y = model2(x)
... print("Total time : " + str(m.total_time()))
... model3 = Model()

(continues on next page)

248 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

(continued from previous page)

... z = model3(y)
Total time : ...

In this example, we measure the elapsed times for each forward propagation of all functions in model1 and
model2 (specifically, LinearFunction and Exp of model1 and model2). Note that model3 is not a
target of measurement as TimerHook is unregistered before forward propagation of model3.

Note: Chainer stores the dictionary of registered function hooks as a thread local object. So, function hooks
registered are different depending on threads.

The other one is to register directly to FunctionNode object with add_hook() method. Function hooks
registered in this way can be removed by delete_hook() method. Contrary to former registration method,
function hooks are registered only to the function which add_hook() is called.

Parameters name (str) – Name of this function hook.

Methods

__enter__()

__exit__(*_)

added(function=None)
Callback function invoked when a function hook is added

Parameters function (FunctionNode) – Function object to which the function hook is
added.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

4.2. Functions 249

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

deleted(function=None)
Callback function invoked when a function hook is deleted

Parameters function (FunctionNode) – Function object to which the function hook is
deleted.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

Attributes

name = 'FunctionHook'

4.2.15 Concrete function hooks

chainer.function_hooks.CUDAProfileHook
chainer.function_hooks.
CupyMemoryProfileHook

Function hook for measuring memory usage of functions
in cupy memory pool.

chainer.function_hooks.PrintHook Function hook that prints debug information.
chainer.function_hooks.TimerHook Function hook for measuring elapsed time of functions.

chainer.function_hooks.CUDAProfileHook

class chainer.function_hooks.CUDAProfileHook

Methods

__enter__()

__exit__(*_)

added(function=None)
Callback function invoked when a function hook is added

Parameters function (FunctionNode) – Function object to which the function hook is
added.

250 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

deleted(function=None)
Callback function invoked when a function hook is deleted

Parameters function (FunctionNode) – Function object to which the function hook is
deleted.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

Attributes

name = 'CUDAProfileHook'

4.2. Functions 251

Chainer Documentation, Release 4.0.0

chainer.function_hooks.CupyMemoryProfileHook

class chainer.function_hooks.CupyMemoryProfileHook
Function hook for measuring memory usage of functions in cupy memory pool.

Example

Code example:

from chainer.function_hooks import CupyMemoryProfileHook
hook = CupyMemoryProfileHook()
with hook:

trainer.run()
hook.print_report()

Output example:

FunctionName UsedBytes AcquiredBytes Occurrence
LinearFunction 5.16GB 179.98MB 3900

ReLU 991.82MB 458.97MB 2600
SoftmaxCrossEntropy 7.71MB 5.08MB 1300

Accuracy 617.97KB 351.00KB 700

where FunctionName is the name of function that calls the hook, and UsedBytes is the memory bytes the function
used from cupy memory pool, and AcquiredBytes is the actual memory bytes the cupy memory pool acquired
from GPU device on the function call, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of the name of the func-
tion that calls this hook, the memory bytes the function used from cupy memory pool, and the
memory bytes the cupy memory pool acquired from GPU device on the function call.

Methods

__enter__()

__exit__(*_)

added(function=None)
Callback function invoked when a function hook is added

Parameters function (FunctionNode) – Function object to which the function hook is
added.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

252 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

deleted(function=None)
Callback function invoked when a function hook is deleted

Parameters function (FunctionNode) – Function object to which the function hook is
deleted.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

print_report(file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)
Prints a summary report of memory profiling in functions.

summary()
Returns a summary of memory profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
used_bytes, acquired_bytes, and occurrrence.

total_acquired_bytes()
Returns total bytes that cupy memory pool acquired from GPU.

total_used_bytes()
Returns total bytes that functions used from cupy memory pool.

Attributes

name = 'CupyMemoryProfileHook'

4.2. Functions 253

Chainer Documentation, Release 4.0.0

chainer.function_hooks.PrintHook

class chainer.function_hooks.PrintHook(sep=None, end=’n’, file=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’ encoding=’UTF-8’>,
flush=True)

Function hook that prints debug information.

This function hook outputs the debug information of input arguments of forward and backward methods
involved in the hooked functions at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions at every function to be inspected, we
can show the information of all functions involved with single with statement.

Further, this hook enables us to show the information of backward methods without inserting print functions
into Chainer’s library code.

Parameters

• sep – (deprecated since v4.0.0) Ignored.

• end – Character to be added at the end of print function.

• file – Output file_like object that that redirect to.

• flush – If True, this hook forcibly flushes the text stream at the end of preprocessing.

Example

The basic usage is to use it with with statement.

>>> from chainer import function_hooks
>>> l = L.Linear(10, 10)
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.PrintHook():
... y = l(x)
... z = F.sum(y)
... z.backward()

In this example, PrintHook shows the debug information of forward propagation of LinearFunction
(which is implicitly called by l) and Sum (called by F.sum) and backward propagation of z and y.

Methods

__enter__()

__exit__(*_)

added(function=None)
Callback function invoked when a function hook is added

Parameters function (FunctionNode) – Function object to which the function hook is
added.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

254 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

deleted(function=None)
Callback function invoked when a function hook is deleted

Parameters function (FunctionNode) – Function object to which the function hook is
deleted.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

Attributes

name = 'PrintHook'

chainer.function_hooks.TimerHook

class chainer.function_hooks.TimerHook
Function hook for measuring elapsed time of functions.

4.2. Functions 255

Chainer Documentation, Release 4.0.0

Example

Code example:

from chainer.function_hooks import TimerHook
hook = TimerHook()
with hook:

trainer.run()
hook.print_report()

Output example:

FunctionName ElapsedTime Occurrence
LinearFunction 1.24sec 3900

ReLU 593.05ms 2600
SoftmaxCrossEntropy 824.11ms 1300

Accuracy 176.54ms 700

where FunctionName is the name of function that calls the hook, and ElapsedTime is the elapsed time the
function consumed, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of pairs of the name of the
function that calls this hook and the elapsed time the function consumes.

Methods

__enter__()

__exit__(*_)

added(function=None)
Callback function invoked when a function hook is added

Parameters function (FunctionNode) – Function object to which the function hook is
added.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put of forward propagation.

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

256 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

• out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) –
Gradient data of backward propagation.

deleted(function=None)
Callback function invoked when a function hook is deleted

Parameters function (FunctionNode) – Function object to which the function hook is
deleted.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – In-
put data of forward propagation.

print_report(file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-8’>)
Prints a summary report of time profiling in functions.

summary()
Returns a summary of time profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
elapsed_time and occurrrence.

total_time()
Returns total elapsed time in seconds.

Attributes

name = 'TimerHook'

4.3 Link and Chains

Chainer provides many Link implementations in the chainer.links package.

Note: Some of the links are originally defined in the chainer.functions namespace. They are still left in the
namespace for backward compatibility, though it is strongly recommended to use them via the chainer.links
package.

4.3. Link and Chains 257

Chainer Documentation, Release 4.0.0

4.3.1 Learnable connections

chainer.links.Bias Broadcasted elementwise summation with learnable pa-
rameters.

chainer.links.Bilinear Bilinear layer that performs tensor multiplication.
chainer.links.ChildSumTreeLSTM Child-Sum TreeLSTM unit.
chainer.links.Convolution2D Two-dimensional convolutional layer.
chainer.links.ConvolutionND N-dimensional convolution layer.
chainer.links.Deconvolution2D Two dimensional deconvolution function.
chainer.links.DeconvolutionND N-dimensional deconvolution function.
chainer.links.DepthwiseConvolution2D Two-dimensional depthwise convolutional layer.
chainer.links.DilatedConvolution2D Two-dimensional dilated convolutional layer.
chainer.links.EmbedID Efficient linear layer for one-hot input.
chainer.links.GRU Stateful Gated Recurrent Unit function (GRU)
chainer.links.Highway Highway module.
chainer.links.Inception Inception module of GoogLeNet.
chainer.links.InceptionBN Inception module of the new GoogLeNet with BatchNor-

malization.
chainer.links.Linear Linear layer (a.k.a. fully-connected layer).
chainer.links.LocalConvolution2D Two-dimensional local convolutional layer.
chainer.links.LSTM Fully-connected LSTM layer.
chainer.links.MLPConvolution2D Two-dimensional MLP convolution layer of Network in

Network.
chainer.links.NaryTreeLSTM N-ary TreeLSTM unit.
chainer.links.NStepBiGRU Stacked Bi-directional GRU for sequences.
chainer.links.NStepBiLSTM Stacked Bi-directional LSTM for sequences.
chainer.links.NStepBiRNNReLU Stacked Bi-directional RNN for sequences.
chainer.links.NStepBiRNNTanh Stacked Bi-directional RNN for sequences.
chainer.links.NStepGRU Stacked Uni-directional GRU for sequences.
chainer.links.NStepLSTM Stacked Uni-directional LSTM for sequences.
chainer.links.NStepRNNReLU Stacked Uni-directional RNN for sequences.
chainer.links.NStepRNNTanh Stacked Uni-directional RNN for sequences.
chainer.links.Parameter Link that just holds a parameter and returns it.
chainer.links.Scale Broadcasted elementwise product with learnable parame-

ters.
chainer.links.StatefulGRU Stateful Gated Recurrent Unit function (GRU).
chainer.links.StatelessGRU Stateless Gated Recurrent Unit function (GRU).
chainer.links.StatefulMGU
chainer.links.StatelessMGU
chainer.links.StatefulPeepholeLSTM Fully-connected LSTM layer with peephole connections.
chainer.links.StatefulZoneoutLSTM
chainer.links.StatelessLSTM Stateless LSTM layer.

chainer.links.Bias

class chainer.links.Bias(axis=1, shape=None)
Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as bias() function does except that its second input is a learnable bias
parameter 𝑏 the link has.

Parameters

258 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

• axis (int) – The first axis of the first input of bias() function along which its second
input is applied.

• shape (tuple of ints) – Shape of the learnable bias parameter. If None, this link
does not have learnable parameters so an explicit bias needs to be given to its __call__
method’s second input.

See also:

See bias() for details.

Variables b (Variable) – Bias parameter if shape is given. Otherwise, no attributes.

Methods

__call__(*xs)
Applies broadcasted elementwise summation.

Parameters xs (list of Variables) – Input variables whose length should be one if the
link has a learnable bias parameter, otherwise should be two.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

4.3. Link and Chains 259

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

260 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 261

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

262 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Bilinear

class chainer.links.Bilinear(left_size, right_size, out_size, nobias=False, initialW=None, ini-
tial_bias=None)

Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the bilinear() functions. It holds parameters W, V1, V2, and b
corresponding to the arguments of bilinear().

Parameters

• left_size (int) – Dimension of input vector 𝑒1 (𝐽)

• right_size (int) – Dimension of input vector 𝑒2 (𝐾)

• out_size (int) – Dimension of output vector 𝑦 (𝐿)

• nobias (bool) – If True, parameters V1, V2, and b are omitted.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (tuple of initializer) – Initial values of 𝑉 1, 𝑉 2 and 𝑏. The length of this
argument must be 3. Each element of this tuple must have the shapes of (left_size,
out_size), (right_size, out_size), and (out_size,), respectively if they
are numpy.ndarray. If None, 𝑉 1 and 𝑉 2 are initialized by the default initializer and 𝑏
is set to 0.

4.3. Link and Chains 263

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

See also:

See chainer.functions.bilinear() for details.

Variables

• W (Variable) – Bilinear weight parameter.

• V1 (Variable) – Linear weight parameter for the first argument.

• V2 (Variable) – Linear weight parameter for the second argument.

• b (Variable) – Bias parameter.

Methods

__call__(e1, e2)
Applies the bilinear function to inputs and the internal parameters.

Parameters

• e1 (Variable) – Left input.

• e2 (Variable) – Right input.

Returns Output variable.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

264 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 265

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

266 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

4.3. Link and Chains 267

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zero_grads()

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.ChildSumTreeLSTM

class chainer.links.ChildSumTreeLSTM(in_size, out_size)
Child-Sum TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a Child-Sum TreeLSTM unit as a chain. This link is a variable arguments function, which compounds
the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, 𝑐, and
the output, ℎ, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as func(c1, c2, h1, h2, x) if the number of children nodes is
2, while func(c1, c2, c3, h1, h2, h3, x) if that is 3. This function is independent from an order
of children nodes. Thus, the returns of func(c1, c2, h1, h2, x) equal to those of func(c2, c1,
h2, h1, x).

Parameters

• in_size (int) – Dimension of input vectors.

268 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• out_size (int) – Dimensionality of cell and output vectors.

Variables

• W_x (chainer.links.Linear) – Linear layer of connections from input vectors.

• W_h_aio (chainer.links.Linear) – Linear layer of connections between (𝑎, 𝑖, 𝑜)
and summation of children’s output vectors. 𝑎, 𝑖 and 𝑜 denotes input compound, input gate
and output gate, respectively. 𝑎, input compound, equals to 𝑢 in the paper by Tai et al.

• W_h_f (chainer.links.Linear) – Linear layer of connections between forget gate
𝑓 and the output of each child.

See the paper for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks.

Methods

__call__(*cshsx)
Returns new cell state and output of Child-Sum TreeLSTM.

Parameters cshsx (list of Variable) – Variable arguments which include all cell vectors
and all output vectors of variable children, and an input vector.

Returns Returns (𝑐𝑛𝑒𝑤, ℎ𝑛𝑒𝑤), where 𝑐𝑛𝑒𝑤 represents new cell state vector, and ℎ𝑛𝑒𝑤 is new
output vector.

Return type tuple of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

4.3. Link and Chains 269

https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

270 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

4.3. Link and Chains 271

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

272 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

4.3. Link and Chains 273

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

chainer.links.Convolution2D

class chainer.links.Convolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, initialW=None, initial_bias=None, *,
dilate=1, groups=1)

Two-dimensional convolutional layer.

This link wraps the convolution_2d() function and holds the filter weight and bias vector as parameters.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Warning: deterministic argument is not supported anymore since v2. Instead, use chainer.
using_config('cudnn_deterministic', value (value is either True or False). See
chainer.using_config().

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

See also:

See chainer.functions.convolution_2d() for the definition of two-dimensional convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

274 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Example

There are several ways to make a Convolution2D link.

Let an input vector x be:

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(1, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> l = L.Convolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.Convolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.Convolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.Convolution2D(7, 5, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.Convolution2D(None, 7, 5, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

Methods

__call__(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

4.3. Link and Chains 275

Chainer Documentation, Release 4.0.0

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

276 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

4.3. Link and Chains 277

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

278 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

4.3. Link and Chains 279

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.ConvolutionND

class chainer.links.ConvolutionND(ndim, in_channels, out_channels, ksize, stride=1,
pad=0, nobias=False, initialW=None, initial_bias=None,
cover_all=False)

N-dimensional convolution layer.

This link wraps the convolution_nd() function and holds the filter weight and bias vector as parameters.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• ndim (int) – Number of spatial dimensions.

• in_channels (int) – Number of channels of input arrays.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or tuple of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints) – Stride of filter application. stride=s and
stride=(s, s, ..., s) are equivalent.

• pad (int or tuple of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 𝑛 + 2 where 𝑛 is the number of spatial dimensions.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should 1.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use
cuDNN.

See also:

See convolution_nd() for the definition of N-dimensional convolution. See convolution_2d() for
the definition of two-dimensional convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter. If initial_bias is None, set to None.

280 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Methods

__call__(x)
Applies N-dimensional convolution layer.

Parameters x (Variable) – Input image.

Returns Output of convolution.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 281

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

282 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 283

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

284 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Deconvolution2D

class chainer.links.Deconvolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None, *, groups=1)

Two dimensional deconvolution function.

This link wraps the deconvolution_2d() function and holds the filter weight and bias vector as parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Warning: deterministic argument is not supported anymore since v2. Instead, use chainer.
using_config('cudnn_deterministic', value) (value is either True or False). See
chainer.using_config().

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias term.

4.3. Link and Chains 285

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

• outsize (tuple) – Expected output size of deconvolutional operation. It should be pair
of height and width (𝑜𝑢𝑡𝐻 , 𝑜𝑢𝑡𝑊). Default value is None and the outsize is estimated by
input size, stride and pad.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

• groups (int) – The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

The filter weight has four dimensions (𝑐𝐼 , 𝑐𝑂, 𝑘𝐻 , 𝑘𝑊) which indicate the number of input channels, output
channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d. Gaussian
random samples, each of which has zero mean and deviation

√︀
1/(𝑐𝐼𝑘𝐻𝑘𝑊) by default.

The bias vector is of size 𝑐𝑂. Its elements are initialized by bias argument. If nobias argument is set to
True, then this function does not hold the bias parameter.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-
ministic algorithm.

See also:

See chainer.functions.deconvolution_2d() for the definition of two-dimensional convolution.

See also:

See chainer.links.Convolution2D() for the examples of ways to give arguments to this link.

Example

There are several ways to make a Deconvolution2D link.

Let an input vector x be:

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(1, 3, 10, 10)

1. Give the first three arguments explicitly:

In this case, all the other arguments are set to the default values.

>>> l = L.Deconvolution2D(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.Deconvolution2D(7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

286 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

>>> l = L.Deconvolution2D(None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword arguments. So the below two cases are the same.

>>> l = L.Deconvolution2D(None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)

>>> l = L.Deconvolution2D(7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)

Methods

__call__(x)
Call self as a function.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

4.3. Link and Chains 287

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

288 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

4.3. Link and Chains 289

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

290 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.DeconvolutionND

class chainer.links.DeconvolutionND(ndim, in_channels, out_channels, ksize, stride=1,
pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None)

N-dimensional deconvolution function.

This link wraps deconvolution_nd() function and holds the filter weight and bias vector as its parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• ndim (int) – Number of spatial dimensions.

• in_channels (int) – Number of channels of input arrays.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or tuple of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) are equivalent.

4.3. Link and Chains 291

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• stride (int or tuple of ints) – Stride of filter application. stride=s and
stride=(s, s, ..., s) are equivalent.

• pad (int or tuple of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias.

• outsize (tuple of ints) – Expected output size of deconvolutional operation. It
should be a tuple of ints that represents the output size of each dimension. Default value is
None and the outsize is estimated with input size, stride and pad.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 𝑛 + 2 where 𝑛 is the number of spatial dimensions.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should 1.

See also:

deconvolution_nd()

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter. If initial_bias is None, set to None.

Methods

__call__(x)
Call self as a function.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

292 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

4.3. Link and Chains 293

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

294 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 295

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.DepthwiseConvolution2D

class chainer.links.DepthwiseConvolution2D(in_channels, channel_multiplier, ksize,
stride=1, pad=0, nobias=False, ini-
tialW=None, initial_bias=None)

Two-dimensional depthwise convolutional layer.

This link wraps the depthwise_convolution_2d() function and holds the filter weight and bias vector
as parameters.

Parameters

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• channel_multiplier (int) – Channel multiplier number. Number of output arrays
equal in_channels * channel_multiplier.

296 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

See chainer.functions.depthwise_convolution_2d().

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Methods

__call__(x)
Applies the depthwise convolution layer.

Parameters x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input image.

Returns Output of the depthwise convolution.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

4.3. Link and Chains 297

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

298 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 299

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

300 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.DilatedConvolution2D

class chainer.links.DilatedConvolution2D(in_channels, out_channels, ksize=None,
stride=1, pad=0, dilate=1, nobias=False,
initialW=None, initial_bias=None)

Two-dimensional dilated convolutional layer.

This link wraps the dilated_convolution_2d() function and holds the filter weight and bias vector as
parameters.

Parameters

4.3. Link and Chains 301

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

See chainer.functions.dilated_convolution_2d() for the definition of two-dimensional dilated
convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Example

There are several ways to make a DilatedConvolution2D link.

Let an input vector x be:

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(1, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> l = L.DilatedConvolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.DilatedConvolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

302 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

>>> l = L.DilatedConvolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.DilatedConvolution2D(None, 7, 5, 1, 0, 2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

>>> l = L.DilatedConvolution2D(7, 5, stride=1, pad=0, dilate=2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

Methods

__call__(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

4.3. Link and Chains 303

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

304 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

4.3. Link and Chains 305

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

306 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.EmbedID

class chainer.links.EmbedID(in_size, out_size, initialW=None, ignore_label=None)
Efficient linear layer for one-hot input.

This is a link that wraps the embed_id() function. This link holds the ID (word) embedding matrix W as a
parameter.

Parameters

• in_size (int) – Number of different identifiers (a.k.a. vocabulary size).

• out_size (int) – Size of embedding vector.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• ignore_label (int or None) – If ignore_label is an int value, i-th column of
return value is filled with 0.

4.3. Link and Chains 307

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

See also:

embed_id()

Variables W (Variable) – Embedding parameter matrix.

Example

>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype(np.float32)
>>> W
array([[0., 0., 0.],

[1., 1., 1.],
[2., 2., 2.]], dtype=float32)

>>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> y = l(x)
>>> y.data
array([[2., 2., 2.],

[1., 1., 1.]], dtype=float32)

Methods

__call__(x)
Extracts the word embedding of given IDs.

Parameters x (Variable) – Batch vectors of IDs.

Returns Batch of corresponding embeddings.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

308 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

4.3. Link and Chains 309

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

310 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 311

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

ignore_label = None

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.GRU

class chainer.links.GRU(in_size, out_size, init=None, inner_init=None, bias_init=0)
Stateful Gated Recurrent Unit function (GRU)

This is an alias of StatefulGRU .

312 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

Warning: In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with
LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points
the stateful links. You can use StatelessGRU for stateless version, whose implementation is identical to
GRU in v1.

See issue #2537 for details.

Methods

__call__(self, x)
Does forward propagation.

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

4.3. Link and Chains 313

https://github.com/chainer/chainer/issues/2537
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

314 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 315

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

316 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Highway

class chainer.links.Highway(in_out_size, nobias=False, activate=<function relu>,
init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1)

Highway module.

In highway network, two gates are added to the ordinal non-linear transformation (𝐻(𝑥) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑊ℎ𝑥 +
𝑏ℎ)). One gate is the transform gate 𝑇 (𝑥) = 𝜎(𝑊𝑡𝑥 + 𝑏𝑡), and the other is the carry gate 𝐶(𝑥). For simplicity,
the author defined 𝐶 = 1− 𝑇 . Highway module returns 𝑦 defined as

𝑦 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑊ℎ𝑥 + 𝑏ℎ)⊙ 𝜎(𝑊𝑡𝑥 + 𝑏𝑡) + 𝑥⊙ (1− 𝜎(𝑊𝑡𝑥 + 𝑏𝑡))

4.3. Link and Chains 317

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

The output array has the same spatial size as the input. In order to satisfy this, 𝑊ℎ and 𝑊𝑡 must be square
matrices.

Parameters

• in_out_size (int) – Dimension of input and output vectors.

• nobias (bool) – If True, then this function does not use the bias.

• activate – Activation function of plain array. 𝑡𝑎𝑛ℎ is also available.

• init_Wh (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• init_bh (initializer) – Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy.ndarray, its ndim should be 1.

• init_Wt (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• init_bt (initializer) – Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy.ndarray, its ndim should be 1. Negative value is recom-
mended by the author of the paper. (e.g. -1, -3, . . .).

See: Highway Networks.

Methods

__call__(x)
Computes the output of the Highway module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array.

Return type Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

318 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arxiv.org/abs/1505.00387
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

4.3. Link and Chains 319

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

320 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

(continues on next page)

4.3. Link and Chains 321

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

322 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Inception

class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool,
conv_init=None, bias_init=None)

Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension.
Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1
convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and
3x3 max pooling.

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate
padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

• in_channels (int or None) – Number of channels of input arrays.

• out1 (int) – Output size of 1x1 convolution path.

• proj3 (int) – Projection size of 3x3 convolution path.

• out3 (int) – Output size of 3x3 convolution path.

• proj5 (int) – Projection size of 5x5 convolution path.

• out5 (int) – Output size of 5x5 convolution path.

• proj_pool (int) – Projection size of max pooling path.

• conv_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 4.

• bias_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 1.

Methods

__call__(x)
Computes the output of the Inception module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array. The channel dimension has size out1 + out3 + out5 + proj_pool.

4.3. Link and Chains 323

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://arxiv.org/abs/1409.4842
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

Return type Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

324 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 325

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

326 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

4.3. Link and Chains 327

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.InceptionBN

class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype,
proj_pool=None, stride=1, conv_init=None, dtype=<class
’numpy.float32’>)

Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the BatchNormalization on top of each con-
volution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling
method is configurable.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Parameters

• in_channels (int or None) – Number of channels of input arrays.

• out1 (int) – Output size of the 1x1 convolution path.

• proj3 (int) – Projection size of the single 3x3 convolution path.

• out3 (int) – Output size of the single 3x3 convolution path.

• proj33 (int) – Projection size of the double 3x3 convolutions path.

• out33 (int) – Output size of the double 3x3 convolutions path.

• pooltype (str) – Pooling type. It must be either 'max' or 'avg'.

328 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://arxiv.org/abs/1502.03167
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• proj_pool (int or None) – Projection size in the pooling path. If None, no projec-
tion is done.

• stride (int) – Stride parameter of the last convolution of each path.

• conv_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 4.

• dtype (numpy.dtype) – Type to use in BatchNormalization.

See also:

Inception

Methods

__call__(x)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

4.3. Link and Chains 329

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

330 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

4.3. Link and Chains 331

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

332 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Linear

class chainer.links.Linear(in_size, out_size=None, nobias=False, initialW=None, ini-
tial_bias=None)

Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the linear() function, and holds a weight matrix W and optionally a bias vector b as
parameters.

4.3. Link and Chains 333

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

The weight matrix W is initialized with i.i.d. Gaussian samples, each of which has zero mean and deviation
√︀

1/

Parameters
• in_size (int or None) – Dimension of input vectors. If None, parameter initialization will be de-

ferred until the first forward data pass at which time the size will be determined.
• out_size (int) – Dimension of output vectors.
• nobias (bool) – If True, then this function does not use the bias.
• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should

be 2.
• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be initialized to zero.

When it is numpy.ndarray, its ndim should be 1.

See also:

linear()

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Example

There are several ways to make a Linear link.

Define an input vector x as:

>>> x = np.array([[0, 1, 2, 3, 4]], np.float32)

1. Give the first two arguments explicitly:

Those numbers are considered as the input size and the output size.

>>> l = L.Linear(5, 10)
>>> y = l(x)
>>> y.shape
(1, 10)

2. Omit in_size (give the output size only as the first argument) or fill it with None:

In this case, the size of second axis of x is used as the input size. So the below two cases are the same.

>>> l = L.Linear(10)
>>> y = l(x)
>>> y.shape
(1, 10)

>>> l = L.Linear(None, 10)
>>> y = l(x)
>>> y.shape
(1, 10)

When you omit the first argument, you need to specify the other subsequent arguments from nobias
as keyword arguments. So the below two cases are the same.

>>> l = L.Linear(None, 10, False, None, 0)
>>> y = l(x)
>>> y.shape
(1, 10)

334 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

>>> l = L.Linear(10, nobias=False, initialW=None, initial_bias=0)
>>> y = l(x)
>>> y.shape
(1, 10)

Methods

__call__(x)
Applies the linear layer.

Parameters x (Variable) – Batch of input vectors.

Returns Output of the linear layer.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope()
instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the
parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If it is an
array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note
that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of
the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

4.3. Link and Chains 335

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumu-
lation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain
(even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method,
so that all the parameters may have different initial values from the original link. copy means
that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply
copied. Thus, all parameters have same initial values but can be changed independently. share
means that the link is shallowly copied, so that its parameters’ arrays are shared with the original
one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and
devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its
descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

336 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by
an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this
context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we
can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this
link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent
value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 337

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode
argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block
is re-initialized with different parameters. If you give copy to this argument, each block has same values for
its parameters but its object ID is different from others. If it is share, each block is same to others in terms of
not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one
block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters of each
repeated element in the returned Sequential will be re-initialized, so that all elements have
different initial parameters. copy means that the parameters will not be re-initialized but object
itself will be deep-copied, so that all elements have same initial parameters but can be changed
independently. share means all the elements which consist the resulting Sequential object
are same object because they are shallow-copied, so that all parameters of elements are shared
with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the
link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the
link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

338 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward
compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.LocalConvolution2D

class chainer.links.LocalConvolution2D(in_channels, out_channels, in_size=None,
ksize=None, stride=1, nobias=False, ini-
tialW=None, initial_bias=None, **kwargs)

Two-dimensional local convolutional layer.

This link wraps the local_convolution_2d() function and holds the filter weight and bias array as pa-
rameters.

Parameters

• in_channels (int) – Number of channels of input arrays. If either in_channels or
in_size is None, parameter initialization will be deferred until the first forward data pass
at which time the size will be determined.

• out_channels (int) – Number of channels of output arrays

• in_size (int or pair of ints) – Size of each image channel in_size=k and
in_size=(k,k) are equivalent. If either in_channels or in_size is None, parameter ini-
tialization will be deferred until the first forward data pass when the size will be determined.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 6.

4.3. Link and Chains 339

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 3.

See also:

See chainer.functions.local_convolution_2d().

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Methods

__call__(x)
Applies the local convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

340 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 341

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

342 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

4.3. Link and Chains 343

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.LSTM

class chainer.links.LSTM(in_size, out_size=None, lateral_init=None, upward_init=None,
bias_init=None, forget_bias_init=None)

Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, which is defined as a stateless
activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be
used as a stateful LSTM.

This link supports variable length inputs. The mini-batch size of the current input must be equal to or smaller
than that of the previous one. The mini-batch size of c and h is determined as that of the first input x. When
mini-batch size of i-th input is smaller than that of the previous input, this link only updates c[0:len(x)]
and h[0:len(x)] and doesn’t change the rest of c and h. So, please sort input sequences in descending order
of lengths before applying the function.

Parameters

• in_size (int) – Dimension of input vectors. If it is None or omitted, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_size (int) – Dimensionality of output vectors.

344 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• lateral_init – A callable that takes numpy.ndarray or cupy.ndarray and edits
its value. It is used for initialization of the lateral connections. May be None to use default
initialization.

• upward_init – A callable that takes numpy.ndarray or cupy.ndarray and edits
its value. It is used for initialization of the upward connections. May be None to use default
initialization.

• bias_init – A callable that takes numpy.ndarray or cupy.ndarray and edits its
value It is used for initialization of the biases of cell input, input gate and output gate.and
gates of the upward connection. May be a scalar, in that case, the bias is initialized by this
value. If it is None, the cell-input bias is initialized to zero.

• forget_bias_init – A callable that takes numpy.ndarray or cupy.ndarray
and edits its value It is used for initialization of the biases of the forget gate of the upward
connection. May be a scalar, in that case, the bias is initialized by this value. If it is None,
the forget bias is initialized to one.

Variables

• upward (Linear) – Linear layer of upward connections.

• lateral (Linear) – Linear layer of lateral connections.

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the previous time step.

Example

There are several ways to make a LSTM link.

Let a two-dimensional input array 𝑥 be:

>>> x = np.zeros((1, 10), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.LSTM(10, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

The below two cases are the same.

>>> l = L.LSTM(20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

>>> l = L.LSTM(None, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

4.3. Link and Chains 345

Chainer Documentation, Release 4.0.0

Methods

__call__(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

346 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

4.3. Link and Chains 347

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

348 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal state.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

4.3. Link and Chains 349

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(c, h)
Sets the internal state.

It sets the c and h attributes.

Parameters

• c (Variable) – A new cell states of LSTM units.

• h (Variable) – A new output at the previous time step.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.MLPConvolution2D

class chainer.links.MLPConvolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, activation=relu.relu, conv_init=None,
bias_init=None)

Two-dimensional MLP convolution layer of Network in Network.

350 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

This is an “mlpconv” layer from the Network in Network paper. This layer is a two-dimensional convolution
layer followed by 1x1 convolution layers and interleaved activation functions.

Note that it does not apply the activation function to the output of the last 1x1 convolution layer.

Parameters

• in_channels (int or None) – Number of channels of input arrays. If it is None or
omitted, parameter initialization will be deferred until the first forward data pass at which
time the size will be determined.

• out_channels (tuple of ints) – Tuple of number of channels. The i-th integer
indicates the number of filters of the i-th convolution.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels) of the first convolu-
tion layer. ksize=k and ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications at the first convolution
layer. stride=s and stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays at the first con-
volution layer. pad=p and pad=(p, p) are equivalent.

• activation (function) – Activation function for internal hidden units. Note that this
function is not applied to the output of this link.

• conv_init – An initializer of weight matrices passed to the convolution layers. This
option must be specified as a keyword argument.

• bias_init – An initializer of bias vectors passed to the convolution layers. This option
must be specified as a keyword argument.

See: Network in Network.

Variables activation (function) – Activation function.

Methods

__call__(x)
Computes the output of the mlpconv layer.

Parameters x (Variable) – Input image.

Returns Output of the mlpconv layer.

Return type Variable

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

4.3. Link and Chains 351

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1312.4400v3
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

352 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 353

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

354 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

4.3. Link and Chains 355

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NaryTreeLSTM

class chainer.links.NaryTreeLSTM(in_size, out_size, n_ary=2)
N-ary TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a N-ary TreeLSTM unit as a chain. This link is a fixed-length arguments function, which compounds the
states of all children nodes into the new states of a current (parent) node. states denotes the cell state, 𝑐, and the
output, ℎ, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as func(c1, c2, h1, h2, x) if the number of children nodes
was set 2 (n_ary = 2), while func(c1, c2, c3, h1, h2, h3, x) if that was 3 (n_ary = 3).
This function is dependent from an order of children nodes unlike Child-Sum TreeLSTM. Thus, the returns of
func(c1, c2, h1, h2, x) are different from those of func(c2, c1, h2, h1, x).

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimensionality of cell and output vectors.

• n_ary (int) – The number of children nodes in a tree structure.

Variables

• W_x (chainer.links.Linear) – Linear layer of connections from input vectors.

• W_h (chainer.links.Linear) – Linear layer of connections between (𝑎, 𝑖, 𝑜, all 𝑓)
and the output of each child. 𝑎, 𝑖, 𝑜 and 𝑓 denotes input compound, input gate, output gate
and forget gate, respectively. 𝑎, input compound, equals to 𝑢 in the paper by Tai et al.

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks, and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. has only one 𝑊 matrix to be applied to 𝑥, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

356 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf

Chainer Documentation, Release 4.0.0

Methods

__call__(*cshsx)
Returns new cell state and output of N-ary TreeLSTM.

Parameters cshsx (list of Variable) – Arguments which include all cell vectors and all
output vectors of fixed-length children, and an input vector. The number of arguments must
be same as n_ary * 2 + 1.

Returns Returns (𝑐𝑛𝑒𝑤, ℎ𝑛𝑒𝑤), where 𝑐𝑛𝑒𝑤 represents new cell state vector, and ℎ𝑛𝑒𝑤 is new
output vector.

Return type tuple of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

4.3. Link and Chains 357

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

358 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 359

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

360 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepBiGRU

class chainer.links.NStepBiGRU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional GRU for sequences.

This link is stacked version of Bi-directional GRU for sequences. It calculates hidden and cell states of all layer
at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bigru(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

4.3. Link and Chains 361

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_bigru()

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-
directional RNN where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional RNN and
(L_t, 2N) for bi-directional RNN where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

362 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

4.3. Link and Chains 363

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

364 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 365

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

366 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepBiLSTM

class chainer.links.NStepBiLSTM(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional LSTM for sequences.

This link is stacked version of Bi-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bilstm(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

4.3. Link and Chains 367

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

chainer.functions.n_step_bilstm()

Methods

__call__(self, hx, cx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-
directional LSTM where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• cx (Variable or None) – Initial cell states. If None is specified zero-vector is used.
It has the same shape as hx.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional LSTM and
(L_t, 2N) for bi-directional LSTM where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

368 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

4.3. Link and Chains 369

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

370 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 371

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

372 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 8

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepBiRNNReLU

class chainer.links.NStepBiRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is relu. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

4.3. Link and Chains 373

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_birnn()

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-
directional RNN where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional RNN and
(L_t, 2N) for bi-directional RNN where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

374 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3. Link and Chains 375

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

376 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 377

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

378 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepBiRNNTanh

class chainer.links.NStepBiRNNTanh(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is tanh. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

• use_cudnn (bool) – Use cuDNN.

4.3. Link and Chains 379

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

See also:

chainer.functions.n_step_birnn()

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-
directional RNN where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional RNN and
(L_t, 2N) for bi-directional RNN where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

380 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

4.3. Link and Chains 381

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

382 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 383

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

384 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepGRU

class chainer.links.NStepGRU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional GRU for sequences.

This link is stacked version of Uni-directional GRU for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_gru(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

4.3. Link and Chains 385

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

See also:

chainer.functions.n_step_gru()

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-
directional RNN where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional RNN and
(L_t, 2N) for bi-directional RNN where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

386 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

4.3. Link and Chains 387

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

388 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 389

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

390 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepLSTM

class chainer.links.NStepLSTM(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional LSTM for sequences.

This link is stacked version of Uni-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_lstm(), this function automatically sort inputs in descending or-
der by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

4.3. Link and Chains 391

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

chainer.functions.n_step_lstm()

Methods

__call__(self, hx, cx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-
directional LSTM where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• cx (Variable or None) – Initial cell states. If None is specified zero-vector is used.
It has the same shape as hx.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional LSTM and
(L_t, 2N) for bi-directional LSTM where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

392 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 393

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

394 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 395

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

396 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 8

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepRNNReLU

class chainer.links.NStepRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is relu. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

4.3. Link and Chains 397

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

See also:

chainer.functions.n_step_rnn()

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-
directional RNN where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional RNN and
(L_t, 2N) for bi-directional RNN where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

398 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

4.3. Link and Chains 399

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

400 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 401

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

402 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepRNNTanh

class chainer.links.NStepRNNTanh(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is tanh. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

4.3. Link and Chains 403

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

See also:

chainer.functions.n_step_rnn()

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector
is used. Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-
directional RNN where S is the number of layers and is equal to n_layers, B is the
mini-batch size, and N is the dimension of the hidden units.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
xs[i] is a chainer.Variable holding a sequence. Its shape is (L_t, I), where
L_t is the length of a sequence for time t, and I is the size of the input and is equal to
in_size.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (L_t, N) for uni-directional RNN and
(L_t, 2N) for bi-directional RNN where L_t is the length of a sequence for time t,
and N is size of hidden units.

Return type tuple

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

404 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

4.3. Link and Chains 405

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

406 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 407

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

408 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Parameter

class chainer.links.Parameter(array)
Link that just holds a parameter and returns it.

Deprecated since version v1.5: The parameters are stored as variables as of v1.5. Use them directly instead.

Parameters array – Initial parameter array.

Variables W (Variable) – Parameter variable.

Methods

__call__(volatile=’off’)
Returns the parameter variable.

Parameters volatile (Flag) – The volatility of the returned variable.

Returns A copy of the parameter variable with given volatility.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

4.3. Link and Chains 409

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.

410 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

4.3. Link and Chains 411

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to

412 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

4.3. Link and Chains 413

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Scale

class chainer.links.Scale(axis=1, W_shape=None, bias_term=False, bias_shape=None)
Broadcasted elementwise product with learnable parameters.

Computes a elementwise product as scale() function does except that its second input is a learnable weight
parameter 𝑊 the link has.

Parameters

• axis (int) – The first axis of the first input of scale() function along which its second
input is applied.

• W_shape (tuple of ints) – Shape of learnable weight parameter. If None, this link
does not have learnable weight parameter so an explicit weight needs to be given to its
__call__ method’s second input.

• bias_term (bool) – Whether to also learn a bias (equivalent to Scale link + Bias link).

• bias_shape (tuple of ints) – Shape of learnable bias. If W_shape is None, this
should be given to determine the shape. Otherwise, the bias has the same shape W_shape
with the weight parameter and bias_shape is ignored.

See also:

See scale() for details.

Variables

• W (Parameter) – Weight parameter if W_shape is given. Otherwise, no W attribute.

• bias (Bias) – Bias term if bias_term is True. Otherwise, no bias attribute.

Methods

__call__(*xs)
Applies broadcasted elementwise product.

Parameters xs (list of Variables) – Input variables whose length should be one if the
link has a learnable weight parameter, otherwise should be two.

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

414 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 415

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

416 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 417

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

418 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatefulGRU

class chainer.links.StatefulGRU(in_size, out_size, init=None, inner_init=None, bias_init=0)
Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . The three parameters 𝑊𝑟, 𝑊𝑧 , and 𝑊
are 𝑛 ×𝑚 matrices, and the others 𝑈𝑟, 𝑈𝑧 , and 𝑈 are 𝑛 × 𝑛 matrices, where 𝑚 is the length of input vectors
and 𝑛 is the length of hidden vectors.

Given input vector 𝑥, Stateful GRU returns the next hidden vector ℎ′ defined as

𝑟 =

𝜎(𝑊𝑟𝑥 + 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥 + 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥 + 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1− 𝑧)⊙ ℎ + 𝑧 ⊙ ℎ̄,

where ℎ is current hidden vector.

As the name indicates, StatefulGRU is stateful, meaning that it also holds the next hidden vector h’ as a
state. For a stateless GRU, use StatelessGRU .

Parameters

• in_size (int) – Dimension of input vector 𝑥.

• out_size (int) – Dimension of hidden vector ℎ.

• init – Initializer for GRU’s input units (𝑊). It is a callable that takes numpy.ndarray
or cupy.ndarray and edits its value. If it is None, the default initializer is used.

4.3. Link and Chains 419

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• inner_init – Initializer for the GRU’s inner recurrent units (𝑈). It is a callable that
takes numpy.ndarray or cupy.ndarray and edits its value. If it is None, the default
initializer is used.

• bias_init – Bias initializer. It is a callable that takes numpy.ndarray or cupy.
ndarray and edits its value. If None, the bias is set to zero.

Variables h (Variable) – Hidden vector that indicates the state of StatefulGRU .

See also:

• StatelessGRU

• GRU : an alias of StatefulGRU

Example

There are several ways to make a StatefulGRU link. Let x be a two-dimensional input array:

>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)

1. Give only in_size and out_size arguments:

>>> l = L.StatefulGRU(in_size, out_size)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

2. Give all optional arguments:

>>> init = np.zeros((out_size, in_size), dtype=np.float32)
>>> inner_init = np.zeros((out_size, out_size), dtype=np.float32)
>>> bias = np.zeros((1, out_size), dtype=np.float32)
>>> l = L.StatefulGRU(in_size, out_size, init=init,
... inner_init=inner_init, bias_init=bias)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

Methods

__call__(x)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

420 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

4.3. Link and Chains 421

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

422 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 423

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

424 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatelessGRU

class chainer.links.StatelessGRU(in_size, out_size, init=None, inner_init=None,
bias_init=None)

Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . The three parameters 𝑊𝑟, 𝑊𝑧 , and 𝑊 are 𝑛×𝑚
matrices, and the others 𝑈𝑟, 𝑈𝑧 , and 𝑈 are 𝑛 × 𝑛 matrices, where 𝑚 is the length of input vectors and 𝑛 is the
length of hidden vectors.

Given two inputs a previous hidden vector ℎ and an input vector 𝑥, GRU returns the next hidden vector ℎ′

defined as

𝑟 =

𝜎(𝑊𝑟𝑥 + 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥 + 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥 + 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1− 𝑧)⊙ ℎ + 𝑧 ⊙ ℎ̄,

where 𝜎 is the sigmoid function, and ⊙ is the element-wise product.

As the name indicates, StatelessGRU is stateless, meaning that it does not hold the value of hidden vector
ℎ. For a stateful GRU, use StatefulGRU .

Parameters

4.3. Link and Chains 425

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

• in_size (int) – Dimension of input vector 𝑥. If None, parameter initialization will be
deferred until the first forward data pass at which time the size will be determined.

• out_size (int) – Dimension of hidden vector ℎ, ℎ̄ and ℎ′.

See:

• On the Properties of Neural Machine Translation: Encoder-Decoder Approaches [Cho+, SSST2014].

• Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Chung+NIPS2014
DLWorkshop].

See also:

StatefulGRU

Example

There are several ways to make a StatelessGRU link. Let x be a two-dimensional input array:

>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)
>>> h = np.zeros((1, out_size), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.StatelessGRU(in_size, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

>>> l = L.StatelessGRU(None, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)

Methods

__call__(h, x)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

426 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/W14-4012
https://arxiv.org/abs/1412.3555

Chainer Documentation, Release 4.0.0

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 427

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

428 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 429

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

430 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatefulMGU

class chainer.links.StatefulMGU(in_size, out_size)

Methods

__call__(x)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

4.3. Link and Chains 431

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

432 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

4.3. Link and Chains 433

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

(continues on next page)

434 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

4.3. Link and Chains 435

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatelessMGU

class chainer.links.StatelessMGU(n_inputs, n_units)

Methods

__call__(h, x)

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

436 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

4.3. Link and Chains 437

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

438 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

4.3. Link and Chains 439

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

440 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

chainer.links.StatefulPeepholeLSTM

class chainer.links.StatefulPeepholeLSTM(in_size, out_size)
Fully-connected LSTM layer with peephole connections.

This is a fully-connected LSTM layer with peephole connections as a chain. Unlike the LSTM link, this chain
holds peep_i, peep_f and peep_o as child links besides upward and lateral.

Given a input vector 𝑥, Peephole returns the next hidden vector ℎ′ defined as

𝑎 =

tanh(𝑢𝑝𝑤𝑎𝑟𝑑𝑥 + 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ),

𝑖 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥 + 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ + 𝑝𝑒𝑒𝑝𝑖𝑐),

𝑓 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥 + 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ + 𝑝𝑒𝑒𝑝𝑓𝑐),

𝑐′ =

𝑎⊙ 𝑖 + 𝑓 ⊙ 𝑐,

𝑜 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥 + 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ + 𝑝𝑒𝑒𝑝𝑜𝑐
′),

ℎ′ =

𝑜 tanh(𝑐′),

where 𝜎 is the sigmoid function, ⊙ is the element-wise product, 𝑐 is the current cell state, 𝑐′ is the next cell state
and ℎ is the current hidden vector.

Parameters

• in_size (int) – Dimension of the input vector 𝑥.

• out_size (int) – Dimension of the hidden vector ℎ.

Variables

• upward (Linear) – Linear layer of upward connections.

• lateral (Linear) – Linear layer of lateral connections.

• peep_i (Linear) – Linear layer of peephole connections to the input gate.

• peep_f (Linear) – Linear layer of peephole connections to the forget gate.

• peep_o (Linear) – Linear layer of peephole connections to the output gate.

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the current time step.

Methods

__call__(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

4.3. Link and Chains 441

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

442 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 443

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

444 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal states.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

4.3. Link and Chains 445

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatefulZoneoutLSTM

class chainer.links.StatefulZoneoutLSTM(in_size, out_size, c_ratio=0.5, h_ratio=0.5,
**kwargs)

Methods

__call__(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

__getitem__(name)
Equivalent to getattr.

446 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

4.3. Link and Chains 447

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

448 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 449

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal state.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(c, h)
Sets the internal state.

It sets the c and h attributes.

Parameters

• c (Variable) – A new cell states of LSTM units.

• h (Variable) – A new output at the previous time step.

450 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatelessLSTM

class chainer.links.StatelessLSTM(in_size, out_size=None, lateral_init=None, up-
ward_init=None, bias_init=None, forget_bias_init=None)

Stateless LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, this chain holds upward and
lateral connections as child links. This link doesn’t keep cell and hidden states.

Parameters

• in_size (int or None) – Dimension of input vectors. If None, parameter initializa-
tion will be deferred until the first forward data pass at which time the size will be deter-
mined.

• out_size (int) – Dimensionality of output vectors.

Variables

4.3. Link and Chains 451

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• upward (chainer.links.Linear) – Linear layer of upward connections.

• lateral (chainer.links.Linear) – Linear layer of lateral connections.

Example

There are several ways to make a StatelessLSTM link.

Let a two-dimensional input array 𝑥, a cell state array ℎ, and the output array of the previous step ℎ be:

>>> x = np.zeros((1, 10), dtype=np.float32)
>>> c = np.zeros((1, 20), dtype=np.float32)
>>> h = np.zeros((1, 20), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.StatelessLSTM(10, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

The below two cases are the same.

>>> l = L.StatelessLSTM(20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

>>> l = L.StatelessLSTM(None, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

Methods

__call__(c, h, x)
Returns new cell state and updated output of LSTM.

Parameters

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the previous time step.

• x (Variable) – A new batch from the input sequence.

Returns Returns (c_new, h_new), where c_new represents new cell state, and h_new is
updated output of LSTM units.

452 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

Return type tuple of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

4.3. Link and Chains 453

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

454 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 455

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

456 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

4.3.2 Activation/loss/normalization functions with parameters

chainer.links.BatchNormalization Batch normalization layer on outputs of linear or convolu-
tion functions.

chainer.links.BatchRenormalization Batch renormalization layer on outputs of linear or convo-
lution functions.

chainer.links.LayerNormalization Layer normalization layer on outputs of linear functions.
chainer.links.BinaryHierarchicalSoftmax Hierarchical softmax layer over binary tree.
chainer.links.BlackOut BlackOut loss layer.
chainer.links.CRF1d Linear-chain conditional random field loss layer.
chainer.links.SimplifiedDropconnect Fully-connected layer with simplified dropconnect regular-

ization.
chainer.links.PReLU Parametric ReLU function as a link.
chainer.links.Swish Swish activation function as a link.
chainer.links.Maxout Fully-connected maxout layer.
chainer.links.NegativeSampling Negative sampling loss layer.

4.3. Link and Chains 457

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

chainer.links.BatchNormalization

class chainer.links.BatchNormalization(size, decay=0.9, eps=2e-05, dtype=<class
’numpy.float32’>, use_gamma=True,
use_beta=True, initial_gamma=None, ini-
tial_beta=None)

Batch normalization layer on outputs of linear or convolution functions.

This link wraps the batch_normalization() and fixed_batch_normalization() functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statistics
by moving averages, which can be used for instant evaluation in testing mode.

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute the
population statistics, a user must use this mode to feed mini-batches running through whole training dataset.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population
statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-
tuning mode.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

• use_gamma (bool) – If True, use scaling parameter. Otherwise, use unit(1) which makes
no effect.

• use_beta (bool) – If True, use shifting parameter. Otherwise, use unit(0) which makes
no effect.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

batch_normalization(), fixed_batch_normalization()

Variables

• gamma (Variable) – Scaling parameter.

• beta (Variable) – Shifting parameter.

• avg_mean (numpy.ndarray or cupy.ndarray) – Population mean.

• avg_var (numpy.ndarray or cupy.ndarray) – Population variance.

• N (int) – Count of batches given for fine-tuning.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability. This value is added to the batch
variances.

458 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1502.03167
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

Methods

__call__(self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation
during training, and normalizes the input using batch statistics.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', False). See chainer.using_config().

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, BatchNor-
malization runs in fine-tuning mode; it accumulates the input array to compute population
statistics for normalization, and normalizes the input using batch statistics.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

4.3. Link and Chains 459

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

460 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 461

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_cpu()
Copies parameter variables and persistent values to CPU.

462 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.BatchRenormalization

class chainer.links.BatchRenormalization(size, rmax=1, dmax=0, decay=0.9, eps=2e-
05, dtype=<class ’numpy.float32’>,
use_gamma=True, use_beta=True, ini-
tial_gamma=None, initial_beta=None,
freeze_running_statistics=False)

Batch renormalization layer on outputs of linear or convolution functions.

This link wraps the batch_renormalization() and fixed_batch_renormalization() func-
tions.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:

4.3. Link and Chains 463

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://arxiv.org/abs/1702.03275

Chainer Documentation, Release 4.0.0

batch_renormalization(), fixed_batch_renormalization()
batch_normalization(),

Methods

__call__(self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation
during training, and normalizes the input using batch statistics.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', False). See chainer.using_config().

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, BatchNor-
malization runs in fine-tuning mode; it accumulates the input array to compute population
statistics for normalization, and normalizes the input using batch statistics.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

464 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 465

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

466 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 467

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

beta = None

gamma = None

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.LayerNormalization

class chainer.links.LayerNormalization(size=None, eps=1e-06, initial_gamma=None, ini-
tial_beta=None)

Layer normalization layer on outputs of linear functions.

Warning: This feature is experimental. The interface can change in the future.

This link implements a “layer normalization” layer which normalizes the input units by statistics that are com-
puted along the second axis, scales and shifts them. Parameter initialization will be deferred until the first
forward data pass at which time the size will be determined.

Parameters

468 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

• size (int) – Size of input units. If None, parameter initialization will be deferred until
the first forward data pass at which time the size will be determined.

• eps (float) – Epsilon value for numerical stability of normalization.

• initial_gamma (Initializer) – Initializer for scaling vector. If None, then the
vector is filled by 1. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is
set by it.

• initial_beta (Initializer) – Initializer for shifting vector. If None, then the vec-
tor is filled by 0. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is set
by it.

Variables

• gamma (Parameter) – Scaling parameter.

• beta (Parameter) – Shifting parameter.

• eps (float) – Epsilon value for numerical stability.

See: Layer Normalization

Methods

__call__(x)
Apply layer normalization to given input.

Parameters x (Variable) – Batch vectors. Shape of this value must be (batch_size, unit_size),
e.g., the output of linear().

Returns Output of the layer normalization.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

4.3. Link and Chains 469

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1607.06450
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

470 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

4.3. Link and Chains 471

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

472 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.BinaryHierarchicalSoftmax

class chainer.links.BinaryHierarchicalSoftmax(in_size, tree)
Hierarchical softmax layer over binary tree.

In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical
softmax uses product of sigmoid functions. It costs only 𝑂(log(𝑛)) time where 𝑛 is the vocabulary size in
average.

At first a user need to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When
a word 𝑥 is given, exactly one path from the root of the tree to the leaf of the word exists. Let path(𝑥) =
((𝑒1, 𝑏1), . . . , (𝑒𝑚, 𝑏𝑚)) be the path of 𝑥, where 𝑒𝑖 is an index of 𝑖-th internal node, and 𝑏𝑖 ∈ {−1, 1} indicates
direction to move at 𝑖-th internal node (-1 is left, and 1 is right). Then, the probability of 𝑥 is given as below:

𝑃 (𝑥) =
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝑃 (𝑏𝑖|𝑒𝑖)

=
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝜎(𝑏𝑖𝑥

⊤𝑤𝑒𝑖),

4.3. Link and Chains 473

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

where 𝜎(·) is a sigmoid function, and 𝑤 is a weight matrix.

This function costs 𝑂(log(𝑛)) time as an average length of paths is 𝑂(log(𝑛)), and 𝑂(𝑛) memory as the number
of internal nodes equals 𝑛− 1.

Parameters

• in_size (int) – Dimension of input vectors.

• tree – A binary tree made with tuples like ((1, 2), 3).

Variables W (Variable) – Weight parameter matrix.

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

Methods

__call__(x, t)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input to the classifier at each node.

• t (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

474 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

4.3. Link and Chains 475

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

static create_huffman_tree()
Makes a Huffman tree from a dictionary containing word counts.

This method creates a binary Huffman tree, that is required for BinaryHierarchicalSoftmax. For
example, {0: 8, 1: 5, 2: 6, 3: 4} is converted to ((3, 1), (2, 0)).

Parameters word_counts (dict of int key and int or float values) –
Dictionary representing counts of words.

Returns Binary Huffman tree with tuples and keys of word_coutns.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

476 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

4.3. Link and Chains 477

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.BlackOut

class chainer.links.BlackOut(in_size, counts, sample_size)
BlackOut loss layer.

See also:

black_out() for more detail.

478 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

Variables W (Parameter) – Weight parameter matrix.

Methods

__call__(x, t)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.

• t (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

4.3. Link and Chains 479

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

480 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 481

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

482 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

sample_data = None

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.CRF1d

class chainer.links.CRF1d(n_label)
Linear-chain conditional random field loss layer.

This link wraps the crf1d() function. It holds a transition cost matrix as a parameter.

Parameters n_label (int) – Number of labels.

See also:

crf1d() for more detail.

Variables cost (Variable) – Transition cost parameter.

Methods

__call__(xs, ys, reduce=’mean’)
Call self as a function.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

4.3. Link and Chains 483

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

argmax(xs)
Computes a state that maximizes a joint probability.

Parameters xs (list of Variable) – Input vector for each label.

Returns A tuple of Variable representing each log-likelihood and a list representing the
argmax path.

Return type tuple

See also:

See crf1d_argmax() for more detail.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

484 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 485

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

486 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

4.3. Link and Chains 487

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.SimplifiedDropconnect

class chainer.links.SimplifiedDropconnect(in_size, out_size, ratio=0.5, nobias=False, ini-
tialW=None, initial_bias=None)

Fully-connected layer with simplified dropconnect regularization.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

• in_size (int) – Dimension of input vectors. If None, parameter initialization will be
deferred until the first forward data pass at which time the size will be determined.

• out_size (int) – Dimension of output vectors.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 2.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

See also:

simplified_dropconnect()

See also:

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013). Regularization of Neural Network using DropConnect.
International Conference on Machine Learning. URL

488 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://cs.nyu.edu/~wanli/dropc/

Chainer Documentation, Release 4.0.0

Methods

__call__(x, train=True, mask=None, use_batchwise_mask=True)
Applies the simplified dropconnect layer.

Parameters

• x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Batch of input vectors. Its
first dimension n is assumed to be the minibatch dimension.

• train (bool) – If True, executes simplified dropconnect. Otherwise, simplified drop-
connect link works as a linear unit.

• mask (None or chainer.Variable or numpy.ndarray or cupy.
ndarray) – If None, randomized simplified dropconnect mask is generated. Otherwise,
The mask must be (n, M, N) or (M, N) shaped array, and use_batchwise_mask
is ignored. Main purpose of this option is debugging. mask array will be used as a
dropconnect mask.

• use_batchwise_mask (bool) – If True, dropped connections depend on each sam-
ple in mini-batch.

Returns Output of the simplified dropconnect layer.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

4.3. Link and Chains 489

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

490 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 491

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

492 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.PReLU

class chainer.links.PReLU(shape=(), init=0.25)
Parametric ReLU function as a link.

Parameters

• shape (tuple of ints) – Shape of the parameter array.

• init (float) – Initial parameter value.

See the paper for details: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification.

See also:

chainer.functions.prelu()

Variables W (Parameter) – Coefficient of parametric ReLU.

Methods

__call__(x)
Applies the parametric ReLU activation function.

Parameters x (Variable) – Input variable.

4.3. Link and Chains 493

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852

Chainer Documentation, Release 4.0.0

Returns Output of the parametric ReLU function.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

494 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()

(continues on next page)

4.3. Link and Chains 495

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(

(continues on next page)

496 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

4.3. Link and Chains 497

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Swish

class chainer.links.Swish(beta_shape, beta_init=1.0)
Swish activation function as a link.

Parameters

• beta_shape (tuple of ints or None) – Shape of the parameter variable 𝛽. If
None, parameter initialization will be deferred until the first forward data pass at which
time the shape will be determined.

• beta_init (float) – Initial value of the parameter variable 𝛽.

See the paper for details: Searching for Activation Functions

To try Swish instead of ReLU, replace F.ReLU with individual Swish links registered to the model. For
example, the model defined in the MNIST example can be rewritten as follows.

ReLU version (original):

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.l2 = L.Linear(None, n_units)
self.l3 = L.Linear(None, n_out)

def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

Swish version:

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.s1 = L.Swish(None)
self.l2 = L.Linear(None, n_units)

(continues on next page)

498 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1710.05941
https://github.com/chainer/chainer/tree/master/examples/mnist/train_mnist.py

Chainer Documentation, Release 4.0.0

(continued from previous page)

self.s2 = L.Swish(None)
self.l3 = L.Linear(None, n_out)

def __call__(self, x):
h1 = self.s1(self.l1(x))
h2 = self.s2(self.l2(h1))
return self.l3(h2)

See also:

See chainer.functions.swish() for the definition of Swish activation function.

Variables beta (Parameter) – Parameter variable 𝛽.

Methods

__call__(x)
Applies the Swish activation function.

Parameters x (Variable) – Input variable.

Returns Output of the Swish activation function.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

4.3. Link and Chains 499

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

500 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

4.3. Link and Chains 501

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

502 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Maxout

class chainer.links.Maxout(in_size, out_size, pool_size, initialW=None, initial_bias=0)
Fully-connected maxout layer.

Let M, P and N be an input dimension, a pool size, and an output dimension, respectively. For an input vector 𝑥
of size M, it computes

𝑌𝑖 = max𝑗(𝑊𝑖𝑗·𝑥 + 𝑏𝑖𝑗).

Here 𝑊 is a weight tensor of shape (M, P, N), 𝑏 an optional bias vector of shape (M, P) and 𝑊𝑖𝑗· is a sub-
vector extracted from 𝑊 by fixing first and second dimensions to 𝑖 and 𝑗, respectively. Minibatch dimension is
omitted in the above equation.

As for the actual implementation, this chain has a Linear link with a (M * P, N) weight matrix and an
optional M * P dimensional bias vector.

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimension of output vectors.

• pool_size (int) – Number of channels.

4.3. Link and Chains 503

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias is omitted.
When it is numpy.ndarray, its ndim should be 2.

Variables linear (Link) – The Linear link that performs affine transformation.

See also:

maxout()

See also:

Goodfellow, I., Warde-farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout Networks. In Pro-
ceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 1319-1327). URL

Methods

__call__(x)
Applies the maxout layer.

Parameters x (Variable) – Batch of input vectors.

Returns Output of the maxout layer.

Return type Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

504 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://jmlr.org/proceedings/papers/v28/goodfellow13.html
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3. Link and Chains 505

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

506 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

4.3. Link and Chains 507

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

508 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

chainer.links.NegativeSampling

class chainer.links.NegativeSampling(in_size, counts, sample_size, power=0.75)
Negative sampling loss layer.

This link wraps the negative_sampling() function. It holds the weight matrix as a parameter. It also
builds a sampler internally given a list of word counts.

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

• power (float) – Power factor 𝛼.

See also:

negative_sampling() for more detail.

Variables W (Variable) – Weight parameter matrix.

Methods

__call__(x, t, reduce=’sum’)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.

• t (Variable) – Batch of ground truth labels.

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

Returns Loss value.

Return type Variable

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

4.3. Link and Chains 509

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

510 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 511

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

512 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

4.3.3 Machine learning models

chainer.links.Classifier A simple classifier model.

chainer.links.Classifier

class chainer.links.Classifier(predictor, lossfun=<function softmax_cross_entropy>, acc-
fun=<function accuracy>, label_key=-1)

A simple classifier model.

This is an example of chain that wraps another chain. It computes the loss and accuracy based on a given

4.3. Link and Chains 513

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

input/label pair.

Parameters

• predictor (Link) – Predictor network.

• lossfun (function) – Loss function.

• accfun (function) – Function that computes accuracy.

• label_key (int or str) – Key to specify label variable from arguments. When it is
int, a variable in positional arguments is used. And when it is str, a variable in keyword
arguments is used.

Variables

• predictor (Link) – Predictor network.

• lossfun (function) – Loss function.

• accfun (function) – Function that computes accuracy.

• y (Variable) – Prediction for the last minibatch.

• loss (Variable) – Loss value for the last minibatch.

• accuracy (Variable) – Accuracy for the last minibatch.

• compute_accuracy (bool) – If True, compute accuracy on the forward computation.
The default value is True.

Note: This link uses chainer.softmax_cross_entropy() with default arguments as a loss function
(specified by lossfun), if users do not explicitly change it. In particular, the loss function does not sup-
port double backpropagation. If you need second or higher order differentiation, you need to turn it on with
enable_double_backprop=True:

>>> import chainer.functions as F
>>> import chainer.links as L
>>>
>>> def lossfun(x, t):
... return F.softmax_cross_entropy(
... x, t, enable_double_backprop=True)
>>>
>>> predictor = L.Linear(10)
>>> model = L.Classifier(predictor, lossfun=lossfun)

Methods

__call__(*args, **kwargs)
Computes the loss value for an input and label pair.

It also computes accuracy and stores it to the attribute.

Parameters

• args (list of ~chainer.Variable) – Input minibatch.

• kwargs (dict of ~chainer.Variable) – Input minibatch.

514 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

When label_key is int, the correpoding element in args is treated as ground truth labels. And when
it is str, the element in kwargs is used. The all elements of args and kwargs except the ground trush
labels are features. It feeds features to the predictor and compare the result with ground truth labels.

Returns Loss value.

Return type Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

4.3. Link and Chains 515

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

516 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

4.3. Link and Chains 517

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

518 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

compute_accuracy = True

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

4.3.4 Pre-trained models

Pre-trained models are mainly used to achieve a good performance with a small dataset, or extract a semantic feature
vector. Although CaffeFunction automatically loads a pre-trained model released as a caffemodel, the following
link models provide an interface for automatically converting caffemodels, and easily extracting semantic feature
vectors.

For example, to extract the feature vectors with VGG16Layers, which is a common pre-trained model in the field of
image recognition, users need to write the following few lines:

from chainer.links import VGG16Layers
from PIL import Image

model = VGG16Layers()
img = Image.open("path/to/image.jpg")
feature = model.extract([img], layers=["fc7"])["fc7"]

4.3. Link and Chains 519

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

where fc7 denotes a layer before the last fully-connected layer. Unlike the usual links, these classes automatically
load all the parameters from the pre-trained models during initialization.

VGG16Layers

chainer.links.VGG16Layers A pre-trained CNN model with 16 layers provided by VGG
team.

chainer.links.model.vision.vgg.prepare Converts the given image to the numpy array for VGG
models.

chainer.links.VGG16Layers

class chainer.links.VGG16Layers(pretrained_model=’auto’)
A pre-trained CNN model with 16 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another
chainer model, stores it on your local directory, and initializes all the parameters with it. This model would
be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a
different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify an-
other value as a environment variable. The converted chainer model is automatically used from
the second time. If the argument is specified as None, all the parameters are not initialized
by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.
initializers.Normal(scale=0.01).

Variables available_layers (list of str) – The list of available layer names used by
__call__ and extract methods.

Methods

__call__(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

520 Chapter 4. Reference

https://arxiv.org/abs/1409.1556
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

4.3. Link and Chains 521

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

522 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’fc7’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('enable_backprop', not volatile) respectively. See chainer.
using_config().

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()

(continues on next page)

4.3. Link and Chains 523

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

524 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

4.3. Link and Chains 525

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

available_layers

functions

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.model.vision.vgg.prepare

chainer.links.model.vision.vgg.prepare(image, size=(224, 224))
Converts the given image to the numpy array for VGG models.

Note that you have to call this method before __call__ because the pre-trained vgg model requires to resize
the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

GoogLeNet

chainer.links.GoogLeNet A pre-trained GoogLeNet model provided by BVLC.
chainer.links.model.vision.googlenet.
prepare

Converts the given image to the numpy array for
GoogLeNet.

526 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

chainer.links.GoogLeNet

class chainer.links.GoogLeNet(pretrained_model=’auto’)
A pre-trained GoogLeNet model provided by BVLC.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want to
extract a semantic feature vector per image, or fine-tune the model on a different dataset.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

GoogLeNet, which is also called Inception-v1, is an architecture of convolutional neural network proposed in
2014. This model is relatively lightweight and requires small memory footprint during training compared with
modern architectures such as ResNet. Therefore, if you fine-tune your network based on a model pre-trained
by Imagenet and need to train it with large batch size, GoogLeNet may be useful. On the other hand, if you
just want an off-the-shelf classifier, we recommend you to use ResNet50 or other models since they are more
accurate than GoogLeNet.

The original model is provided here: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify
another value as a environment variable. The converted chainer model is automatically used
from the second time. If the argument is specified as None, all the parameters are not ini-
tialized by the pre-trained model, but the default initializer used in BVLC, i.e., chainer.
initializers.LeCunUniform(scale=1.0). Note that, in Caffe, when weight_filler
is specified as “xavier” type without variance_norm parameter, the weights are initialized by
Uniform(-s, s), where 𝑠 =

√︁
3

𝑓𝑎𝑛𝑖𝑛
and 𝑓𝑎𝑛𝑖𝑛 is the number of input units. This corresponds to

LeCunUniform in Chainer but not GlorotUniform.

Variables available_layers (list of str) – The list of available layer names used by
__call__ and extract methods.

Methods

__call__(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

4.3. Link and Chains 527

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

528 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

4.3. Link and Chains 529

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and __call__ functions.

Warning: train and volatile arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('enable_backprop', not volatile) respectively. See chainer.
using_config().

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

530 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 531

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

532 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

available_layers

functions

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.model.vision.googlenet.prepare

chainer.links.model.vision.googlenet.prepare(image, size=(224, 224))
Converts the given image to the numpy array for GoogLeNet.

Note that you have to call this method before __call__ because the pre-trained GoogLeNet model requires
to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before
calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

Residual Networks

chainer.links.model.vision.resnet.
ResNetLayers

A pre-trained CNN model provided by MSRA.

chainer.links.ResNet50Layers A pre-trained CNN model with 50 layers provided by
MSRA.

Continued on next page

4.3. Link and Chains 533

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

Table 21 – continued from previous page
chainer.links.ResNet101Layers A pre-trained CNN model with 101 layers provided by

MSRA.
chainer.links.ResNet152Layers A pre-trained CNN model with 152 layers provided by

MSRA.
chainer.links.model.vision.resnet.
prepare

Converts the given image to the numpy array for ResNets.

chainer.links.model.vision.resnet.ResNetLayers

class chainer.links.model.vision.resnet.ResNetLayers(pretrained_model, n_layers)
A pre-trained CNN model provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and con-
verts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/
ResNet-{n-layers}-model.caffemodel, where $CHAINER_DATASET_ROOT
is set as $HOME/.chainer/dataset unless you specify another value by modifying
the environment variable and {n_layers} is replaced with the specified number of layers
given as the first argment to this costructor. Note that in this case the converted chainer
model is stored on the same directory and automatically used from the next time. If this ar-
gument is specified as None, all the parameters are not initialized by the pre-trained model,
but the default initializer used in the original paper, i.e., chainer.initializers.
HeNormal(scale=1.0).

• n_layers (int) – The number of layers of this model. It should be either 50, 101, or 152.

Variables available_layers (list of str) – The list of available layer names used by
__call__ and extract methods.

Methods

__call__(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

534 Chapter 4. Reference

https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

4.3. Link and Chains 535

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

536 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('enable_backprop', not volatile) respectively. See chainer.
using_config().

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 537

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

538 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

4.3. Link and Chains 539

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

available_layers

functions

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.ResNet50Layers

class chainer.links.ResNet50Layers(pretrained_model=’auto’)
A pre-trained CNN model with 50 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet50 has 25,557,096 trainable parameters, and it’s 58% and 43% fewer than ResNet101 and ResNet152,
respectively. On the other hand, the top-5 classification accuracy on ImageNet dataset drops only 0.7% and
1.1% from ResNet101 and ResNet152, respectively. Therefore, ResNet50 may have the best balance between
the accuracy and the model size. It would be basically just enough for many cases, but some advanced models
for object detection or semantic segmentation use deeper ones as their building blocks, so these deeper ResNets
are here for making reproduction work easier.

See: K. He et. al., Deep Residual Learning for Image Recognition

540 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385

Chainer Documentation, Release 4.0.0

Parameters pretrained_model (str) – the destination of the pre-trained chainer model
serialized as a .npz file. If this argument is specified as auto, it automatically
loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/
models/ResNet-50-model.caffemodel, where $CHAINER_DATASET_ROOT is set
as $HOME/.chainer/dataset unless you specify another value by modifying the environ-
ment variable. Note that in this case the converted chainer model is stored on the same directory
and automatically used from the next time. If this argument is specified as None, all the param-
eters are not initialized by the pre-trained model, but the default initializer used in the original
paper, i.e., chainer.initializers.HeNormal(scale=1.0).

Variables available_layers (list of str) – The list of available layer names used by
__call__ and extract methods.

Methods

__call__(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

4.3. Link and Chains 541

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

542 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('enable_backprop', not volatile) respectively. See chainer.
using_config().

4.3. Link and Chains 543

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

544 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

4.3. Link and Chains 545

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

available_layers

functions

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

546 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

chainer.links.ResNet101Layers

class chainer.links.ResNet101Layers(pretrained_model=’auto’)
A pre-trained CNN model with 101 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet101 has 44,549,224 trainable parameters, and it’s 43% fewer than ResNet152 model, while the top-5
classification accuracy on ImageNet dataset drops 1.1% from ResNet152. For many cases, ResNet50 may have
the best balance between the accuracy and the model size.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters pretrained_model (str) – the destination of the pre-trained chainer model
serialized as a .npz file. If this argument is specified as auto, it automatically
loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/
models/ResNet-101-model.caffemodel, where $CHAINER_DATASET_ROOT is
set as $HOME/.chainer/dataset unless you specify another value by modifying the en-
vironment variable. Note that in this case the converted chainer model is stored on the same
directory and automatically used from the next time. If this argument is specified as None, all
the parameters are not initialized by the pre-trained model, but the default initializer used in the
original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

Variables available_layers (list of str) – The list of available layer names used by
__call__ and extract methods.

Methods

__call__(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

4.3. Link and Chains 547

https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

548 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

4.3. Link and Chains 549

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('enable_backprop', not volatile) respectively. See chainer.
using_config().

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

550 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 551

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

552 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

available_layers

functions

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.ResNet152Layers

class chainer.links.ResNet152Layers(pretrained_model=’auto’)
A pre-trained CNN model with 152 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet152 has 60,192,872 trainable parameters, and it’s the deepest ResNet model and it achieves the best
result on ImageNet classification task in ILSVRC 2015.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters pretrained_model (str) – the destination of the pre-trained chainer model
serialized as a .npz file. If this argument is specified as auto, it automatically
loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/
models/ResNet-152-model.caffemodel, where $CHAINER_DATASET_ROOT is
set as $HOME/.chainer/dataset unless you specify another value by modifying the en-
vironment variable. Note that in this case the converted chainer model is stored on the same
directory and automatically used from the next time. If this argument is specified as None, all
the parameters are not initialized by the pre-trained model, but the default initializer used in the
original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

Variables available_layers (list of str) – The list of available layer names used by
__call__ and extract methods.

4.3. Link and Chains 553

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://github.com/KaimingHe/deep-residual-networks
http://image-net.org/challenges/LSVRC/2015/results#loc
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Methods

__call__(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

554 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3. Link and Chains 555

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since
v2. Instead, use chainer.using_config('train', train) and chainer.
using_config('enable_backprop', not volatile) respectively. See chainer.
using_config().

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

556 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

4.3. Link and Chains 557

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

558 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

available_layers

functions

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.model.vision.resnet.prepare

chainer.links.model.vision.resnet.prepare(image, size=(224, 224))
Converts the given image to the numpy array for ResNets.

Note that you have to call this method before __call__ because the pre-trained resnet model requires to resize
the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

4.3. Link and Chains 559

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

Compatibility with other frameworks

chainer.links.TheanoFunction Theano function wrapper.
chainer.links.caffe.CaffeFunction Caffe emulator based on the model file of Caffe.

chainer.links.TheanoFunction

class chainer.links.TheanoFunction(inputs, outputs)
Theano function wrapper.

Warning: This feature is experimental. The interface can change in the future.

This function wraps Theano function as a chainer.Link. A user needs to make input Theano variables
and output Theano variables. This function automatically creates Theano function for forward calculation and
backward calculation from inputs and ouptuts. And then, it sends data in chainer.Variable to the function
and gets results from Theano.

Example

>>> import theano
>>> x = theano.tensor.fvector()
>>> y = theano.tensor.fvector()
>>> z = x + y
>>> w = x - y
>>> f = L.TheanoFunction(inputs=[x, y], outputs=[z, w])
>>> a = chainer.Variable(np.array([1, 2], dtype=np.float32))
>>> b = chainer.Variable(np.array([2, 3], dtype=np.float32))
>>> c, d = f(a, b)
>>> c.data
array([3., 5.], dtype=float32)
>>> d.data
array([-1., -1.], dtype=float32)

Note: The current implementation always copys cupy.ndarray to CPU.

Parameters

• inputs (tuple of theano.tensor.TensorVariable) – Input variables of Theano.
This function accepts the same number of Variables in forward computation.

• outputs (tuple of theano.tensor.TensorVariable) – Output variables of
Theano. The function returns the same number of Variables as outputs.

560 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Methods

__call__(*args)
Call self as a function.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3. Link and Chains 561

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

562 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 563

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

564 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.caffe.CaffeFunction

class chainer.links.caffe.CaffeFunction(model_path)
Caffe emulator based on the model file of Caffe.

Given a protocol buffers file of a Caffe model, this class loads and emulates it on Variable objects. It supports
the official reference models provided by BVLC.

Note: CaffeFunction ignores the following layers:

• Layers that CaffeFunction does not support (including data layers)

• Layers that have no top blobs

• Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)

Warning: It does not support full compatibility against Caffe. Some layers and configurations are not
implemented in Chainer yet, though the reference models provided by the BVLC team are supported except
data layers.

Example

Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference
CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply written as follows:

Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
... # (Fill the minibatch here)

Forward the pre-trained net
(continues on next page)

4.3. Link and Chains 565

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

Chainer Documentation, Release 4.0.0

(continued from previous page)

x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])

The result y contains the Variable corresponding to the fc8 blob. The computational graph is memorized as a
usual forward computation in Chainer, so we can run backprop through this pre-trained net.

Parameters model_path (str) – Path to the binary-proto model file of Caffe.

Variables forwards (dict) – A mapping from layer names to corresponding functions.

Methods

__call__(self, inputs, outputs, disable=())
Executes a sub-network of the network.

This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each
layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output
blobs as Variable objects.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• inputs (dict) – A dictionary whose key-value pairs indicate initial correspondences
between blob names and Variable objects.

• outputs (Iterable) – A list of blob names whose corresponding Variable objects
are returned.

• disable (Iterable) – A list of layer names that will be ignored during the forward
computation.

Returns A tuple of output Variable objects corresponding to elements of the outputs argu-
ment.

Return type tuple

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

566 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3. Link and Chains 567

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

568 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 569

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

570 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

4.3.5 Link and Chain base classes

chainer.Link Building block of model definitions.
chainer.Chain Composable link with object-like interface.
chainer.ChainList Composable link with list-like interface.
chainer.Sequential Sequential model which has a single-stream forward pass.

chainer.Link

class chainer.Link(**params)
Building block of model definitions.

Link is a building block of neural network models that support various features like handling parameters, defin-
ing network fragments, serialization, etc.

Link is the primitive structure for the model definitions. It supports management of parameter variables and
persistent values that should be incorporated to serialization.

Parameter is an instance of Parameter registered to a link. A Parameter object can be registered as a
parameter of the link by assigning it to an attribute within an initialization scope, which is a code surrounded
by a init_scope() context manager using the with statement.

Persistent values are arrays, scalars, or any other serializable values registered via
register_persistent() or add_persistent().

Note: Whereas arbitrary serializable objects can be registered as persistent values, it is strongly recommended
to just register values that should be treated as results of learning. A typical example of persistent values is ones
computed during training and required for testing, e.g. running statistics for batch normalization.

Parameters and persistent values are referred by their names. They can be accessed as attributes of the links.
Link class itself manages the lists of names of parameters and persistent values to distinguish parameters and
persistent values from other attributes.

Link can be composed into more complex models. This composition feature is supported by child classes like
Chain and ChainList. One can create a chain by combining one or more links. See the documents for these
classes for details.

4.3. Link and Chains 571

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

As noted above, Link supports the serialization protocol of the Serializer class. Note that only parameters
and persistent values are saved and loaded. Other attributes are considered as a part of user program (i.e. a
part of network definition). In order to construct a link from saved file, other attributes must be identically
reconstructed by user codes.

Example

This is a simple example of custom link definition. Chainer itself also provides many links defined under the
links module. They might serve as examples, too.

Consider we want to define a simple primitive link that implements a fully-connected layer based on the
linear() function. Note that this function takes input units, a weight variable, and a bias variable as ar-
guments. Then, the fully-connected layer can be defined as follows:

import chainer
import chainer.functions as F
from chainer import initializers
import numpy as np

class LinearLayer(chainer.Link):

def __init__(self, n_in, n_out):
super(LinearLayer, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(
initializers.Normal(), (n_out, n_in))

self.b = chainer.Parameter(
initializers.Zero(), (n_out,))

def __call__(self, x):
return F.linear(x, self.W, self.b)

This example shows that a user can define arbitrary parameters and use them in any methods. Links typically
implement the __call__ operator, although they can also provide other methods to implement the forward
propagation.

Parameters params – (deprecated since v2.0.0) Names, shapes, and optional dtypes of initial pa-
rameters. The keywords are used as the parameter names and the corresponding values consist
either of the shape or a tuple of shape and a dtype (shape, dtype). If only the shape is
supplied, the default dtype will be used.

Variables name (str) – Name of this link, given by the parent chain (if exists).

Methods

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

572 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3. Link and Chains 573

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

574 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

4.3. Link and Chains 575

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

576 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

chainer.Chain

class chainer.Chain(**links)
Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural net models consist of many reusable
fragments, and each model itself might be embedded into a larger learnable system. Chain enables us to write a
neural net based on composition, without bothering about routine works like collecting parameters, serialization,
copying the structure with parameters shared, etc.

This class actually provides a way to compose one or more links into one structure. A chain can contain one or
more child links. Child link is a link registered to the chain with its own name. The child link is stored to an
attribute of the chain with the name. User can write a whole model or a fragment of neural nets as a child class
of Chain.

Each chain itself is also a link. Therefore, one can combine chains into higher-level chains. In this way, links
and chains construct a link hierarchy. Link hierarchy forms a tree structure, where each node is identified by the
path from the root. The path is represented by a string like a file path in UNIX, consisting of names of nodes on
the path, joined by slashes /.

A child link can be added just by assigning it to an attribute of the chain within init_scope().

The registered child link is saved and loaded on serialization and deserialization, and involved in the optimiza-
tion. The registered link is called a child. The child link is accessible via children() generator, which
returns a generator running through the children in registered order.

On registration of a child link, its name attribute is also set (or overwritten if the link has already been registered
to another chain).

Example

This is a simple example of custom chain definition. Chainer itself also provides some chains defined under the
links module. They might serve as examples, too.

Consider we want to define a multi-layer perceptron consisting of two hidden layers with rectifiers as activation
functions. We can use the Linear link as a building block:

import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(MultilayerPerceptron, self).__init__()
with self.init_scope():

self.layer1 = L.Linear(n_in, n_hidden)
self.layer2 = L.Linear(n_hidden, n_hidden)
self.layer3 = L.Linear(n_hidden, n_out)

def __call__(self, x):
Forward propagation
h1 = F.relu(self.layer1(x))
h2 = F.relu(self.layer2(h1))
return self.layer3(h2)

Child links are registered via the assignment within a with self.init_scope(): block. The forward
propagation is often implemented as the __call__ operator as the above example, though it is not mandatory.

4.3. Link and Chains 577

Chainer Documentation, Release 4.0.0

Parameters links – Child links. The keywords are used as their names. The names are also set to
the links.

Deprecated since version v2.0.0: Assign child links directly to attributes instead.

Methods

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

578 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

4.3. Link and Chains 579

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

580 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 581

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.ChainList

class chainer.ChainList(*links)
Composable link with list-like interface.

This is another example of compositional link. Unlike Chain, this class can be used like a list of child links.
Each child link is indexed by a non-negative integer, and it maintains the current number of registered child
links. The add_link() method inserts a new link at the end of the list. It is useful to write a chain with
arbitrary number of child links, e.g. an arbitrarily deep multi-layer perceptron.

Note that this class does not implement all methods of list.

Parameters links – Initial child links.

Methods

__getitem__(index)
Returns the child at given index.

582 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#list

Chainer Documentation, Release 4.0.0

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

4.3. Link and Chains 583

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

584 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

4.3. Link and Chains 585

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

586 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.Sequential

class chainer.Sequential(*layers)
Sequential model which has a single-stream forward pass.

Warning: This feature is experimental. The interface can change in the future.

This class enables to construct a network which has sequential structure easily. While Chain and ChainList
can only take Link object as input to their constructor, this Sequential can take arbitrary number of any
callable objects for the forward pass computation. A Sequential calls the given callable objects sequentially
inside of the __call__() method in the same order as the given argments. Therefore, you do not need to
write the forward pass computation explicitly.

Example

The below example code shows how to use this class to construct a simple sequential network:

import chainer
import chainer.functions as F
import link.Links as L
from chainer import Sequential

Model definition without writing __call__ function

(continues on next page)

4.3. Link and Chains 587

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

(continued from previous page)

model = Sequential(
L.Linear(n_in, n_hidden),
F.relu,
L.Linear(n_hidden, n_hidden),
F.relu,
L.Linear(n_hidden, n_out)

)

Compute the forward pass
y = model(x)

where x denotes a mini-batch of n_in-dimensional input vectors.

Furthermore, Sequential supports built-in list APIs, so you can concatenate Sequential objects to create
a longer Sequential model easily with the same ways as Python lists:

model_A = Sequential(L.Linear(10, 10), F.relu)
model_B = Sequential(L.Linear(10, 10), F.sigmoid)
model_C = model_A + model_B

To repeat a Sequential object multiple times, you can use repeat() method.

model_D = model_A.repeat(3)

You can also add your own functions or any callable objects to a Sequential object:

from link.Links.model.vision.vgg import VGG16Layers()

model = Sequential()
model.append(L.Linear(n_out, n_hidden))
model.append(F.relu)
model.append(F.Reshape((1, 3, 224, 224)))
model.append(VGG16Layers())
model.append(lambda x: x['prob'])

y = model(x)

The above code example shows how to add some layers to the model using append() method and then add
a large network (VGG16Layers) and finally add a lambda function to extract the prob output.

You can check the structure of your model briefly using print as following:

>>> print(model_C)
0 Linear W(10, 10) b(10,)
1 relu
2 Linear W(10, 10) b(10,)
3 sigmoid

Note: Note that a Sequential link which has at least one lambda function as its member cannot be pickled.
So, please use partial method from functools package instead:

from functools import partial

This is not pickable
model = Sequential(

L.Convolution2D(None, 64, 3, 1, 1),

(continues on next page)

588 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

(continued from previous page)

lambda x: F.max_pooling_2d(x, 2)
)

This is pickable
model = Sequential(

L.Convolution2D(None, 64, 3, 1, 1),
partial(F.max_pooling_2d, ksize=2)

)

Parameters layers – The layers which are called in its order. Each component should be a
callable object including Link object and functions defined under the chainer.functions,
e.g., relu, etc.

Methods

__call__(*x)
Forward pass computation.

This method performs the forward pass computation by giving the input variable x to the layers registered
in the constructor in the same order as the order in which the argments are given to the constructor.

It should be noted that the input variable is given directly to the first layer and all intermediate outputs
generated during the forward pass are also directly fed to the next layer. Therefore, the number of outputs
at a layer should be the same as the number of inputs at the next layer.

Parameters x – Input variables.

Returns The output of the final layer in the given layers.

__getitem__(i)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(i, layer)

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

4.3. Link and Chains 589

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(layer)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be regsitered.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

590 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
document for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

count(layer)

count_by_layer_type(type_name)
Count the number of layers by layer type.

This method counts the number of layers which have the name given by the argment type_name. For
example, if you want to know the number of Linear layers included in this model, type_name should
be Linear. If you want to know the number of Function classes or user-defined functions which have
a specific name, type_name should be the function name, e.g., relu or reshape, etc.

Parameters type_name (str) – The class or function name of a layer you want to enumerate.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(sequential)

flatten()
Flatten nested Sequential links.

This method flattens all the nested Sequential links inside this Sequential link.

4.3. Link and Chains 591

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns A flattened Sequential object.

Example

>>> import chainer
>>> import chainer.functions as F
>>> import chainer.links as L
>>> a = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> b = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> a.append(b)
>>> print(a) # Without flatten
0 Linear W(None) b(10,)
1 relu
2 Sequential which has 2 layers
>>> print(a.flatten()) # With flatten
0 Linear W(None) b(10,)
1 relu
2 Linear W(None) b(10,)
3 relu

index(layer, start=None, end=None)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(i, layer)

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

592 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop(i=-1)

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(layer)

remove_by_layer_type(type_name)
Remove layers by layer type.

This method removes layers from the Sequential object by the layer’s class name or function name.
If you want to remove a Link, the argment type_name should be its class name, e.g., Linear
or Convolution2D, etc. If you want to remove a Function class or any other callable objects,
type_name should be the function name, e.g., relu or reshape, etc.

Parameters type_name (str) – The name of a layer you want to remove.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def __call__(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

4.3. Link and Chains 593

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

__add__(other)

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

594 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

4.4 Optimizers

chainer.optimizers.AdaDelta Zeiler’s ADADELTA.
chainer.optimizers.AdaGrad AdaGrad optimizer.
chainer.optimizers.Adam Adam optimizer.
chainer.optimizers.MomentumSGD Momentum SGD optimizer.
chainer.optimizers.NesterovAG Nesterov’s Accelerated Gradient.
chainer.optimizers.RMSprop RMSprop optimizer.
chainer.optimizers.RMSpropGraves Alex Graves’s RMSprop.
chainer.optimizers.SGD Vanilla Stochastic Gradient Descent.
chainer.optimizers.SMORMS3 Simon Funk’s SMORMS3.

4.4.1 chainer.optimizers.AdaDelta

class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)
Zeiler’s ADADELTA.

See: http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

Parameters

• rho (float) – Exponential decay rate of the first and second order moments.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

4.4. Optimizers 595

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

596 Chapter 4. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

rho
Alias to self.hyperparam.rho

t = 0

target = None

4.4.2 chainer.optimizers.AdaGrad

class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)
AdaGrad optimizer.

See: http://jmlr.org/papers/v12/duchi11a.html

Parameters

• lr (float) – Learning rate.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

4.4. Optimizers 597

https://docs.python.org/3/library/functions.html#bool
http://jmlr.org/papers/v12/duchi11a.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

598 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

t = 0

target = None

4.4.3 chainer.optimizers.Adam

class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08, eta=1.0,
weight_decay_rate=0, amsgrad=False)

Adam optimizer.

See: Adam: A Method for Stochastic Optimization

Modified for proper weight decay (also called AdamW). AdamW introduces the additional parameters eta and
weight_decay_rate, which can be used to properly scale the learning rate, and decouple the weight decay
rate from alpha, as shown in the below paper.

Note that with the default values eta = 1 and weight_decay_rate = 0, this implementation is identical
to the standard Adam method.

4.4. Optimizers 599

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1412.6980v8

Chainer Documentation, Release 4.0.0

See: Fixing Weight Decay Regularization in Adam

A flag amsgrad to use the AMSGrad variant of Adam from the paper: On the Convergence of Adam and
Beyond

Parameters

• alpha (float) – Step size.

• beta1 (float) – Exponential decay rate of the first order moment.

• beta2 (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

• eta (float) – Schedule multiplier, can be used for warm restarts.

• weight_decay_rate (float) – Weight decay rate.

• amsgrad (bool) – Whether to use AMSGrad variant of Adam.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

600 Chapter 4. Reference

https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

4.4. Optimizers 601

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Attributes

alpha
Alias to self.hyperparam.alpha

amsgrad
Alias to self.hyperparam.amsgrad

beta1
Alias to self.hyperparam.beta1

beta2
Alias to self.hyperparam.beta2

epoch = 0

eps
Alias to self.hyperparam.eps

eta
Alias to self.hyperparam.eta

lr

t = 0

target = None

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

4.4.4 chainer.optimizers.MomentumSGD

class chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)
Momentum SGD optimizer.

Parameters

• lr (float) – Learning rate.

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

602 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

4.4. Optimizers 603

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

4.4.5 chainer.optimizers.NesterovAG

class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)
Nesterov’s Accelerated Gradient.

See: https://arxiv.org/abs/1212.0901

Parameters

• lr (float) – Learning rate.

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

604 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1212.0901
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

4.4. Optimizers 605

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

4.4.6 chainer.optimizers.RMSprop

class chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08)
RMSprop optimizer.

See: T. Tieleman and G. Hinton (2012). Lecture 6.5 - rmsprop, COURSERA: Neural Networks for Machine
Learning.

Parameters

• lr (float) – Learning rate.

• alpha (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

606 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

4.4. Optimizers 607

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

alpha
Alias to self.hyperparam.alpha

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

t = 0

target = None

608 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

4.4.7 chainer.optimizers.RMSpropGraves

class chainer.optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.9,
eps=0.0001)

Alex Graves’s RMSprop.

See: https://arxiv.org/abs/1308.0850

Parameters

• lr (float) – Learning rate.

• alpha (float) – Exponential decay rate of the first and second order moments of the raw
gradient.

• momentum (float) – Exponential decay rate of the first order moment of the adjusted
gradient.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

4.4. Optimizers 609

https://arxiv.org/abs/1308.0850
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

610 Chapter 4. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Attributes

alpha
Alias to self.hyperparam.alpha

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

4.4.8 chainer.optimizers.SGD

class chainer.optimizers.SGD(lr=0.01)
Vanilla Stochastic Gradient Descent.

Parameters lr (float) – Learning rate.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

4.4. Optimizers 611

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

612 Chapter 4. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

t = 0

target = None

4.4.9 chainer.optimizers.SMORMS3

class chainer.optimizers.SMORMS3(lr=0.001, eps=1e-16)
Simon Funk’s SMORMS3.

See http://sifter.org/~simon/journal/20150420.html.

Parameters

• lr (float) – Learning rate.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

4.4. Optimizers 613

http://sifter.org/~simon/journal/20150420.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

614 Chapter 4. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

t = 0

target = None

4.4.10 Optimizer base classes

chainer.Optimizer Base class of all numerical optimizers.
chainer.UpdateRule Base class of all update rules.
chainer.optimizer.Hyperparameter Set of hyperparameter entries of an optimizer.
chainer.GradientMethod Base class of all single gradient-based optimizers.

chainer.Optimizer

class chainer.Optimizer
Base class of all numerical optimizers.

This class provides basic features for all optimization methods. It optimizes parameters of a target link. The
target link is registered via the setup()method, and then the update()method updates its parameters based
on a given loss function.

Each optimizer implementation must be defined as a child class of Optimizer. It must override update()
method.

If the optimizer is based on single gradient computation (like most first-order methods), then it should inherit
GradientMethod, which adds some features dedicated for the first order methods, including the support of
UpdateRule.

Optimizer instance also supports hook functions. Hook function is registered by the add_hook() method.
Each hook function is called in registration order before of after the actual parameter update (configurable). If
the hook function has an attribute call_for_each_param and its value is True, the hook function is used

4.4. Optimizers 615

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

as a hook function of all update rules (i.e., it is invoked for every parameter by passing the corresponding update
rule and the parameter).

Variables

• target – Target link object. It is set by the setup() method.

• t – Number of update steps. It must be incremented by the update() method.

• epoch – Current epoch. It is incremented by the new_epoch() method.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

616 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates the parameters.

This method updates the parameters of the target link. The behavior of this method is different for the
cases either lossfun is given or not.

If lossfun is given, this method typically clears the gradients, calls the loss function with given ex-
tra arguments, and calls the backward() method of its output to compute the gradients. The actual
implementation might call lossfun more than once.

If lossfun is not given, then this method assumes that the gradients of all parameters are already com-
puted. An implementation that requires multiple gradient computations might raise an error on this case.

In both cases, this method invokes the update procedure for all parameters.

Parameters

• lossfun (function) – Loss function. It accepts arbitrary arguments and returns one
Variable object that represents the loss (or objective) value. This argument can be
omitted for single gradient-based methods. In this case, this method assumes gradient
arrays computed.

• kwds (args,) – Arguments for the loss function.

Attributes

epoch = 0

t = 0

target = None

chainer.UpdateRule

class chainer.UpdateRule(parent_hyperparam=None)
Base class of all update rules.

Update rule is an object that implements how to update one parameter variable using the gradient of a loss
function. This class provides the interface and the common features of any update rules.

An update rule can be set to a Variable object that represents a parameter array of a model. An Optimizer
instance defines which parameters to update, and the update rule instance of each parameter defines how to
update it.

Hook functions can be set to any update rule instance. The hook function is called just before or after any
updates (configurable) in the order of registrations.

An implementation of update rule should override update_core() or its device-dependent variants (i.e.,
update_core_cpu() and update_core_gpu()).

4.4. Optimizers 617

Chainer Documentation, Release 4.0.0

The state (e.g. a moving average of the gradient) of the update rule is stored into the state dictionary. An
implementation of update rule using state should also override init_state() to initialize the state at the first
update. The values of the state dictionary are automatically copied to the appropriate device before the update
based on the data and grad arrays.

Parameters parent_hyperparam (Hyperparameter) – Hyperparameter that provides the
default values.

Variables

• enabled (bool) – Flag to configure if this update rule is active. If the update rule is not
active (i.e., enabled = False), the update() method does not update the parameter.

• hyperparam (Hyperparameter) – Hyperparameter of the update rule.

• t (int) – Number of updates made by this update rule.

Methods

add_hook(hook, name=None, timing=’auto’)
Adds a hook function.

The hook function is called before or after any updates (see the timing attribute).

Parameters

• hook (callable) – Hook function to be added. It takes two arguments: the update rule
object and the parameter variable.

• name (str) – Name of the hook function. The name attribute of the hook function is
used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates. If ‘auto’ and the timing property of the hook is
not available, timing will default to ‘pre’.

init_state(param)
Initializes the state.

Any implementations that use the state should override this mehtod. This method is called at the first
update.

Parameters param (Variable) – Parameter variable. It can be used to extract the shape and
the data type of the parameter.

remove_hook(name)
Removes the specified hook function.

Parameters name (str) – Name of the hook function to be removed. The hook function reg-
istered with this name will be removed.

serialize(serializer)
Serializes the update rule state.

Be careful that this method only saves/loads the state of the update rule. The parameters of the target link
is not saved/loaded by this method, and so you need to serialize the target link separately if you want to
fully recover the training state including parameters.

Parameters serializer (AbstractSerializer) – Serializer object.

618 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

update(param)
Invokes hook functions and updates the parameter.

Parameters param (Variable) – Variable to be updated.

update_core(param)
Updates the parameter.

Implementation of UpdateRule should override this method or both of update_core_cpu() and
update_core_gpu().

Parameters param (Variable) – Variable to be updated.

update_core_cpu(param)
Updates the parameter on CPU.

See update_core() for details.

Parameters param (Variable) – Variable to be updated.

update_core_gpu(param)
Updates the parameter on GPU.

See update_core() for details.

Parameters param (Variable) – Variable to be updated.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

This method enables use of parameter update in fp32. When it is enabled and data type of original
parameter variable is fp16, fp32 copy of parameter variable is automatically created and retained at
self.fp32_param. And the parameter is update in fp32 in the following way.

1. copys the grad of original parameter variable to the grad of fp32 parameter variable, converting its
data type from fp16 to fp32.

2. updates the parameter in fp32.

3. copys the data of fp32 parameter variable to the data of original parameter variable, converting its data
type from fp32 to fp16.

See meth:update for details.

Attributes

state
State dictionary.

chainer.optimizer.Hyperparameter

class chainer.optimizer.Hyperparameter(parent=None)
Set of hyperparameter entries of an optimizer.

This is a utility class to provide a set of hyperparameter entries for update rules and an optimizer. Each entry
can be set as an attribute of a hyperparameter object.

A hyperparameter object can hold a reference to its parent hyperparameter object. When an attribute does not
exist in the child hyperparameter, it automatically refers to the parent. We typically set the hyperparameter of
the gradient method as the parent of the hyperparameter of each update rule. It enables us to centralize the
management of hyperparameters (e.g. we can change the learning rate of all update rules just by modifying the

4.4. Optimizers 619

Chainer Documentation, Release 4.0.0

hyperparameter of the central optimizer object), while users can freely customize the hyperparameter of each
update rule if needed.

Parameters parent (Hyperparameter) – Parent hyperparameter.

Methods

get_dict()
Converts the hyperparameter into a dictionary.

Returns Dictionary containing all entries that can be referred by this hyperparameter object.

Attributes

parent
Parent hyperparameter object.

chainer.GradientMethod

class chainer.GradientMethod
Base class of all single gradient-based optimizers.

This is an extension of the Optimizer class. Typical gradient methods that just require the gradient at the
current parameter vector on an update can be implemented as its child class.

This class uses UpdateRule to manage the update rule of each parameter. A child class of GradientMethod
should override create_update_rule() to create the default update rule of each parameter.

This class also provides hyperparam, which is the hyperparameter used as the default configuration of each
update rule. All built-in gradient method implementations also provide proxy properties that act as aliases to
the attributes of hyperparam. It is recommended to provide such an alias to each attribute. It can be done by
only adding one line for each attribute using HyperparameterProxy.

Variables hyperparam (Hyperparameter) – The hyperparameter of the gradient method. It
is used as the default configuration of each update rule (i.e., the hyperparameter of each update
rule refers this hyperparameter as its parent).

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

620 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

4.4. Optimizers 621

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

Attributes

epoch = 0

t = 0

target = None

4.4.11 Hook functions

chainer.optimizer_hooks.WeightDecay Optimizer/UpdateRule hook function for weight decay reg-
ularization.

chainer.optimizer_hooks.Lasso Optimizer/UpdateRule hook function for Lasso regulariza-
tion.

chainer.optimizer_hooks.
GradientClipping

Optimizer hook function for gradient clipping.

chainer.optimizer_hooks.
GradientHardClipping

Optimizer/UpdateRule hook function for gradient clipping.

chainer.optimizer_hooks.GradientNoise Optimizer/UpdateRule hook function for adding gradient
noise.

chainer.optimizer_hooks.WeightDecay

class chainer.optimizer_hooks.WeightDecay(rate)
Optimizer/UpdateRule hook function for weight decay regularization.

This hook function adds a scaled parameter to the corresponding gradient. It can be used as a regularization.

Parameters rate (float) – Coefficient for the weight decay.

Variables

• rate (float) – Coefficient for the weight decay.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-

622 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

dates).

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

Attributes

call_for_each_param = True

name = 'WeightDecay'

timing = 'pre'

chainer.optimizer_hooks.Lasso

class chainer.optimizer_hooks.Lasso(rate)
Optimizer/UpdateRule hook function for Lasso regularization.

This hook function adds a scaled parameter to the sign of each weight. It can be used as a regularization.

Parameters rate (float) – Coefficient for the weight decay.

Variables

• rate (float) – Coefficient for the weight decay.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

Attributes

call_for_each_param = True

name = 'Lasso'

timing = 'pre'

4.4. Optimizers 623

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

chainer.optimizer_hooks.GradientClipping

class chainer.optimizer_hooks.GradientClipping(threshold)
Optimizer hook function for gradient clipping.

This hook function scales all gradient arrays to fit to the defined L2 norm threshold.

Parameters threshold (float) – L2 norm threshold.

Variables

• threshold (float) – L2 norm threshold of gradient norm.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

New in version 4.0.0: The timing parameter.

Methods

__call__(opt)
Call self as a function.

Attributes

name = 'GradientClipping'

timing = 'pre'

chainer.optimizer_hooks.GradientHardClipping

class chainer.optimizer_hooks.GradientHardClipping(lower_bound, upper_bound)
Optimizer/UpdateRule hook function for gradient clipping.

This hook function clips all gradient arrays to be within a lower and upper bound.

Parameters

• lower_bound (float) – The lower bound of the gradient value.

• upper_bound (float) – The upper bound of the gradient value.

Variables

• lower_bound (float) – The lower bound of the gradient value.

• upper_bound (float) – The upper bound of the gradient value.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

New in version 4.0.0: The timing parameter.

624 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

Methods

__call__(rule, param)
Call self as a function.

Attributes

call_for_each_param = True

name = 'GradientHardClipping'

timing = 'pre'

chainer.optimizer_hooks.GradientNoise

class chainer.optimizer_hooks.GradientNoise(eta, noise_func=<function exponen-
tial_decay_noise>)

Optimizer/UpdateRule hook function for adding gradient noise.

This hook function simply adds noise generated by the noise_func to the gradient. By default it adds time-
dependent annealed Gaussian noise to the gradient at every training step:

𝑔𝑡 ← 𝑔𝑡 + 𝑁(0, 𝜎2
𝑡)

where

𝜎2
𝑡 =

𝜂

(1 + 𝑡)𝛾

with 𝜂 selected from {0.01, 0.3, 1.0} and 𝛾 = 0.55.

Parameters

• eta (float) – Parameter that defines the scale of the noise, which for the default noise
function is recommended to be either 0.01, 0.3 or 1.0.

• noise_func (function) – Noise generating function which by default is given by
Adding Gradient Noise Improves Learning for Very Deep Networks.

Variables timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any updates).

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

Attributes

call_for_each_param = True

name = 'GradientNoise'

timing = 'pre'

4.4. Optimizers 625

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/pdf/1511.06807

Chainer Documentation, Release 4.0.0

4.5 Weight Initializers

Weight initializers are used to initialize arrays. They destructively modify the content of numpy.ndarray or cupy.
ndarray. Typically, weight initializers are passed to Links to initialize their weights and biases.

A weight initializer can be any of the following objects.

• chainer.Initializer class instance.

• Python or NumPy scalar or numpy.ndarray.

• A callable that takes an array (numpy.ndarray or cupy.ndarray) and feeds the initial data into it.

• None, in which case the default initializer is used. Unless explicitly specified, it is LeCunNormal with scale
value 1.

4.5.1 Base class

chainer.Initializer Initializes array.

chainer.Initializer

class chainer.Initializer(dtype=None)
Initializes array.

It initializes the given array.

Variables dtype – Data type specifier. It is for type check in __call__ function.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

4.5.2 Concrete initializers

chainer.initializers.Identity Initializes array with the identity matrix.
chainer.initializers.Constant Initializes array with constant value.
chainer.initializers.Zero Initializes array to all-zero.
chainer.initializers.One Initializes array to all-one.
chainer.initializers.NaN Initializes array to all-NaN.
chainer.initializers.Normal Initializes array with a normal distribution.
chainer.initializers.LeCunNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.GlorotNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.HeNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.Orthogonal Initializes array with an orthogonal system.

Continued on next page

626 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Table 28 – continued from previous page
chainer.initializers.Uniform Initializes array with a scaled uniform distribution.
chainer.initializers.LeCunUniform Initializes array with a scaled uniform distribution.
chainer.initializers.GlorotUniform Initializes array with a scaled uniform distribution.
chainer.initializers.HeUniform Initializes array with scaled uniform distribution.

chainer.initializers.Identity

class chainer.initializers.Identity(scale=1.0, dtype=None)
Initializes array with the identity matrix.

It initializes the given array with the constant multiple of the identity matrix. Note that arrays to be passed must
be 2D squared matrices.

Variables

• scale (scalar) – A constant to be multiplied to identity

• matrices. –

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

chainer.initializers.Constant

class chainer.initializers.Constant(fill_value, dtype=None)
Initializes array with constant value.

Variables

• fill_value (scalar or numpy.ndarray or cupy.ndarray) – A constant
to be assigned to the initialized array. Broadcast is allowed on this assignment.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

4.5. Weight Initializers 627

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Attributes

fill_value = None

chainer.initializers.Zero

class chainer.initializers.Zero(dtype=None)
Initializes array to all-zero.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

Attributes

fill_value = 0.0

chainer.initializers.One

class chainer.initializers.One(dtype=None)
Initializes array to all-one.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

Attributes

fill_value = 1.0

628 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

chainer.initializers.NaN

class chainer.initializers.NaN(dtype=None)
Initializes array to all-NaN.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

Attributes

fill_value = nan

chainer.initializers.Normal

class chainer.initializers.Normal(scale=0.05, dtype=None)
Initializes array with a normal distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is scale.

Parameters

• scale (float) – Standard deviation of Gaussian distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

chainer.initializers.LeCunNormal

class chainer.initializers.LeCunNormal(scale=1.0, dtype=None)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
1

𝑓𝑎𝑛𝑖𝑛
, where 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

4.5. Weight Initializers 629

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Reference: LeCun 98, Efficient Backprop http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

chainer.initializers.GlorotNormal

class chainer.initializers.GlorotNormal(scale=1.0, dtype=None)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
2

𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡
, where 𝑓𝑎𝑛𝑖𝑛 and 𝑓𝑎𝑛𝑜𝑢𝑡 are the number of input

and output units, respectively.

Reference: Glorot & Bengio, AISTATS 2010

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

chainer.initializers.HeNormal

class chainer.initializers.HeNormal(scale=1.0, dtype=None, fan_option=’fan_in’)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
2

𝑓𝑎𝑛 . If fan_option == 'fan_in', 𝑓𝑎𝑛 is the number of
input units. If fan_option == 'fan_out', 𝑓𝑎𝑛 is the number of output units.

Reference: He et al., https://arxiv.org/abs/1502.01852

630 Chapter 4. Reference

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://arxiv.org/abs/1502.01852

Chainer Documentation, Release 4.0.0

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

• fan_option ({'fan_in', 'fan_out'}) – Decides how to compute the standard
deviation. The default value is 'fan_in'.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

chainer.initializers.Orthogonal

class chainer.initializers.Orthogonal(scale=1.1, dtype=None)
Initializes array with an orthogonal system.

This initializer first makes a matrix of the same shape as the array to be initialized whose elements are drawn
independently from standard Gaussian distribution. Next, it applies Singular Value Decomposition (SVD) to the
matrix. Then, it initializes the array with either side of resultant orthogonal matrices, depending on the shape of
the input array. Finally, the array is multiplied by the constant scale.

If the ndim of the input array is more than 2, we consider the array to be a matrix by concatenating all axes
except the first one.

The number of vectors consisting of the orthogonal system (i.e. first element of the shape of the array) must be
equal to or smaller than the dimension of each vector (i.e. second element of the shape of the array).

Variables

• scale (float) – A constant to be multiplied by.

• dtype – Data type specifier.

Reference: Saxe et al., https://arxiv.org/abs/1312.6120

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

4.5. Weight Initializers 631

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1312.6120
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

chainer.initializers.Uniform

class chainer.initializers.Uniform(scale=0.05, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution
[−𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒].

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

chainer.initializers.LeCunUniform

class chainer.initializers.LeCunUniform(scale=1.0, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠]
where 𝑠 = 𝑠𝑐𝑎𝑙𝑒×

√︁
3

𝑓𝑎𝑛𝑖𝑛
. Here 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Reference: LeCun 98, Efficient Backprop http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

632 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

chainer.initializers.GlorotUniform

class chainer.initializers.GlorotUniform(scale=1.0, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠] where

𝑠 = 𝑠𝑐𝑎𝑙𝑒×
√︁

6
𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡

. Here, 𝑓𝑎𝑛𝑖𝑛 and 𝑓𝑎𝑛𝑜𝑢𝑡 are the number of input and output units, respectively.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

chainer.initializers.HeUniform

class chainer.initializers.HeUniform(scale=1.0, dtype=None)
Initializes array with scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠]
where 𝑠 = 𝑠𝑐𝑎𝑙𝑒×

√︁
6

𝑓𝑎𝑛𝑖𝑛
. Here, 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized
by this initializer.

4.5.3 Helper function

chainer.initializers.generate_array Return initialized array.

4.5. Weight Initializers 633

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

chainer.initializers.generate_array

chainer.initializers.generate_array(initializer, shape, xp)
Return initialized array.

The algorithms used to make the new values depend on the concrete derived classes. The dtype of a generated
array depends on initializer.dtype.

Parameters

• initializer – A callable object that takes numpy.ndarray or cupy.ndarray and
edits its value.

• shape (tuple) – Shape of a return array.

• xp (module) – cupy or numpy.

Returns An initialized array.

Return type numpy.ndarray or cupy.ndarray

4.6 Training Tools

Chainer provides a standard implementation of the training loops under the chainer.training module. It is
built on top of many other core features of Chainer, including Variable and Function, Link/Chain/ChainList, Opti-
mizer, Dataset, and Reporter/Summary. Compared to the training loop abstraction of other machine learning tool
kits, Chainer’s training framework aims at maximal flexibility, while keeps the simplicity for the typical usages. Most
components are pluggable, and users can overwrite the definition.

The core of the training loop abstraction is Trainer, which implements the training loop itself. The training loop
consists of two parts: one is Updater, which actually updates the parameters to train, and the other is Extension
for arbitrary functionalities other than the parameter update.

Updater and some extensions use chainer.dataset and Iterator to scan the datasets and load mini-batches.
The trainer also uses Reporter to collect the observed values, and some extensions use DictSummary to accu-
mulate them and computes the statistics.

You can find many examples for the usage of this training utilities from the official examples. You can also search the
extension implementations from Extensions.

4.6.1 Trainer

chainer.training.Trainer The standard training loop in Chainer.

chainer.training.Trainer

class chainer.training.Trainer(updater, stop_trigger=None, out=’result’, extensions=None)
The standard training loop in Chainer.

Trainer is an implementation of a training loop. Users can invoke the training by calling the run() method.

Each iteration of the training loop proceeds as follows.

• Update of the parameters. It includes the mini-batch loading, forward and backward computations, and an
execution of the update formula. These are all done by the update object held by the trainer.

• Invocation of trainer extensions in the descending order of their priorities. A trigger object is attached to

634 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

each extension, and it decides at each iteration whether the extension should be executed. Trigger objects
are callable objects that take the trainer object as the argument and return a boolean value indicating
whether the extension should be called or not.

Extensions are callable objects that take the trainer object as the argument. There are three ways to define
custom extensions: inheriting the Extension class, decorating functions by make_extension(), and
defining any callable including lambda functions. See Extension for more details on custom extensions and
how to configure them.

Users can register extensions to the trainer by calling the extend() method, where some configurations can
be added.

• Trigger object, which is also explained above. In most cases, IntervalTrigger is used, in which case
users can simply specify a tuple of the interval length and its unit, like (1000, 'iteration') or (1,
'epoch').

• The order of execution of extensions is determined by their priorities. Extensions of higher priorities are
invoked earlier. There are three standard values for the priorities:

– PRIORITY_WRITER. This is the priority for extensions that write some records to the
observation dictionary. It includes cases that the extension directly adds values to the obser-
vation dictionary, or the extension uses the chainer.report() function to report values to the
observation dictionary.

– PRIORITY_EDITOR. This is the priority for extensions that edit the observation dictionary
based on already reported values.

– PRIORITY_READER. This is the priority for extensions that only read records from the
observation dictionary. This is also suitable for extensions that do not use the observation
dictionary at all.

The current state of the trainer object and objects handled by the trainer can be serialized through the standard
serialization protocol of Chainer. It enables us to easily suspend and resume the training loop.

Note: The serialization does not recover everything of the training loop. It only recovers the states which
change over the training (e.g. parameters, optimizer states, the batch iterator state, extension states, etc.). You
must initialize the objects correctly before deserializing the states.

On the other hand, it means that users can change the settings on deserialization. For example, the exit condition
can be changed on the deserialization, so users can train the model for some iterations, suspend it, and then
resume it with larger number of total iterations.

During the training, it also creates a Reporter object to store observed values on each update. For each
iteration, it creates a fresh observation dictionary and stores it in the observation attribute.

Links of the target model of each optimizer are registered to the reporter object as observers, where the name of
each observer is constructed as the format <optimizer name><link name>. The link name is given by
the chainer.Link.namedlink() method, which represents the path to each link in the hierarchy. Other
observers can be registered by accessing the reporter object via the reporter attribute.

The default trainer is plain, i.e., it does not contain any extensions.

Parameters

• updater (Updater) – Updater object. It defines how to update the models.

• stop_trigger – Trigger that determines when to stop the training loop. If it is not
callable, it is passed to IntervalTrigger.

• out – Output directory.

4.6. Training Tools 635

Chainer Documentation, Release 4.0.0

• extensions – Extensions registered to the trainer.

Variables

• updater – The updater object for this trainer.

• stop_trigger – Trigger that determines when to stop the training loop. The training
loop stops at the iteration on which this trigger returns True.

• observation – Observation of values made at the last update. See the Reporter class
for details.

• out – Output directory.

• reporter – Reporter object to report observed values.

Methods

extend(extension, name=None, trigger=None, priority=None, **kwargs)
Registers an extension to the trainer.

Extension is a callable object which is called after each update unless the corresponding trigger object
decides to skip the iteration. The order of execution is determined by priorities: extensions with higher
priorities are called earlier in each iteration. Extensions with the same priority are invoked in the order of
registrations.

If two or more extensions with the same name are registered, suffixes are added to the names of the second
to last extensions. The suffix is _N where N is the ordinal of the extensions.

See Extension for the interface of extensions.

Parameters

• extension – Extension to register.

• name (str) – Name of the extension. If it is omitted, the default_name attribute of
the extension is used instead. Note that the name would be suffixed by an ordinal in case
of duplicated names as explained above.

• trigger (tuple or Trigger) – Trigger object that determines when to invoke the
extension. If it is None, extension.trigger is used instead. If it is None and the
extension does not have the trigger attribute, the extension is triggered at every iteration
by default. If the trigger is not callable, it is passed to IntervalTrigger to build an
interval trigger.

• priority (int) – Invocation priority of the extension. Extensions are invoked in the
descending order of priorities in each iteration. If this is None, extension.priority
is used instead.

get_extension(name)
Returns the extension of a given name.

Parameters name (str) – Name of the extension.

Returns Extension.

run(show_loop_exception_msg=True)
Executes the training loop.

This method is the core of Trainer. It executes the whole loop of training the models.

Note that this method cannot run multiple times for one trainer object.

636 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

serialize(serializer)

Attributes

elapsed_time
Total time used for the training.

The time is in seconds. If the training is resumed from snapshot, it includes the time of all the previous
training to get the current state of the trainer.

4.6.2 Updaters

chainer.training.Updater Interface of updater objects for trainers.
chainer.training.updaters.
StandardUpdater

Standard implementation of Updater.

chainer.training.updaters.
ParallelUpdater

Implementation of a parallel GPU Updater.

chainer.training.updaters.
MultiprocessParallelUpdater

Implementation of a multiprocess parallel GPU Updater.

chainer.training.Updater

class chainer.training.Updater
Interface of updater objects for trainers.

Updater implements a training iteration as update(). Typically, the updating iteration proceeds as follows.

• Fetch a minibatch from dataset via Iterator.

• Run forward and backward process of Chain.

• Update parameters according to their UpdateRule.

The first line is processed by Iterator.__next__. The second and third are processed by Optimizer.
update. Users can also implement their original updating iteration by overriding Updater.update.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method is called at the end of training loops. It should finalize each dataset iterator used in this
updater.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

4.6. Training Tools 637

Chainer Documentation, Release 4.0.0

Return type dict

get_optimizer(name)
Gets the optimizer of given name.

Updater holds one or more optimizers with names. They can be retrieved by this method.

Parameters name (str) – Name of the optimizer.

Returns Optimizer of the name.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

chainer.training.updaters.StandardUpdater

class chainer.training.updaters.StandardUpdater(iterator, optimizer, con-
verter=<function concat_examples>,
device=None, loss_func=None,
loss_scale=None)

Standard implementation of Updater.

This is the standard implementation of Updater. It accepts one or more training datasets and one or more
optimizers. The default update routine assumes that there is only one training dataset and one optimizer. Users
can override this update routine by inheriting this class and overriding the update_core() method. Each
batch is converted to input arrays by concat_examples() by default, which can also be manually set by
converter argument.

Parameters

• iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps
strings to iterators. If this is just an iterator, then the iterator is registered by the name
'main'.

• optimizer – Optimizer to update parameters. It can also be a dictionary that maps strings
to optimizers. If this is just an optimizer, then the optimizer is registered by the name
'main'.

• converter – Converter function to build input arrays. Each batch extracted by the main
iterator and the device option are passed to this function. concat_examples() is
used by default.

• device – Device to which the training data is sent. Negative value indicates the host
memory (CPU).

• loss_func – Loss function. The target link of the main optimizer is used by default.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients

638 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

Variables

• converter – Converter function.

• loss_func – Loss function. If it is None, the target link of the main optimizer is used
instead.

• device – Device to which the training data is sent.

• iteration – Current number of completed updates.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

4.6. Training Tools 639

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

update_core()

Attributes

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

chainer.training.updaters.ParallelUpdater

class chainer.training.updaters.ParallelUpdater(iterator, optimizer, con-
verter=<function concat_examples>,
models=None, devices=None,
loss_func=None, loss_scale=None)

Implementation of a parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs. It behaves similarly to StandardUpdater.
The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is
based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the
parameters only in the main device.

Parameters

• iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps
strings to iterators. If this is just an iterator, then the iterator is registered by the name
'main'.

• optimizer – Optimizer to update parameters. It can also be a dictionary that maps strings
to optimizers. If this is just an optimizer, then the optimizer is registered by the name
'main'.

• converter – Converter function to build input arrays. Each batch extracted by the main
iterator is split equally between the devices and then passed with corresponding device
option to this function. concat_examples() is used by default.

• models – Dictionary of models. The main model should be the same model attached to
the 'main' optimizer.

• devices – Dictionary of devices to which the training data is sent. The devices should be
arranged in a dictionary with the same structure as models.

• loss_func – Loss function. The model is used as a loss function by default.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

640 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

Attributes

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

4.6. Training Tools 641

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

chainer.training.updaters.MultiprocessParallelUpdater

class chainer.training.updaters.MultiprocessParallelUpdater(iterators, optimizer,
converter=<function
concat_examples>,
devices=None)

Implementation of a multiprocess parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs with multi-process data parallelism. It uses
Nvidia NCCL for communication between multiple GPUs.

It behaves similarly to StandardUpdater. The update routine is modified to support data-parallel compu-
tation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient
computation over a mini-batch, and updates the parameters only in the main device.

It does not transfer the values collected by Reporter in the sub devices to the main device. So you can only
see the reported values in the main device.

Parameters

• iterators – List of dataset iterator for the training dataset. The number of the iterators
must be same to the number of GPUs you use.

• optimizer – Optimizer to update parameters. The model should be attached to the opti-
mizer.

• converter – Converter function to build input arrays. Each batch extracted by the iterator
is split equally between the devices and then passed with corresponding device option to
this function. concat_examples() is used by default.

• devices – Dictionary or list of devices to which the training data is sent. The master
device will be the first one in the list or the value attached to the key 'main'.

Methods

static available()

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

642 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

setup_workers()

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

Attributes

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

4.6.3 Extensions

An extension is a callable object that can perform arbitrary actions during the training loop. Extensions can be reg-
istered to Trainer by using Trainer.extend() method, and they are invoked when the Trigger condition is
satisfied.

In addition to the built-in extensions listed below, you can define your own extension by implementing Extension
or using the make_extension() decorator. See Trainer Extensions for details.

Common

chainer.training.Extension Base class of trainer extensions.
chainer.training.make_extension Decorator to make given functions into trainer extensions.

chainer.training.Extension

class chainer.training.Extension
Base class of trainer extensions.

Extension of Trainer is a callable object that takes the trainer object as the argument. It also provides some

4.6. Training Tools 643

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

default configurations as its attributes, e.g. the default trigger and the default priority. This class provides a set
of typical default values for these attributes.

There are three ways to define users’ own extensions: inheriting this class, decorating closures by
make_extension(), or using any callable including lambda functions as extensions. Decorator can slightly
reduce the overhead and is much easier to use, while this class provides more flexibility (for example, it can
have methods to configure the behavior). Using a lambda function allows one-line coding for simple purposes,
but users have to specify the configurations as arguments to Trainer.extend(). For a callable not in-
heriting this class, the default configurations of this class are used unless the user explicitly specifies them in
Trainer.extend() method.

Variables

• trigger – Default value of trigger for this extension. It is set to (1, 'iteration')
by default.

• priority – Default priority of the extension. It is set to PRIORITY_READER by default.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

644 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

chainer.training.make_extension

chainer.training.make_extension(trigger=None, default_name=None, priority=None, final-
izer=None, initializer=None, **kwargs)

Decorator to make given functions into trainer extensions.

This decorator just adds some attributes to a given function. The value of the attributes are given by the argu-
ments of this decorator.

See Extension for details of trainer extensions. Most of the default values of arguments also follow those for
this class.

Parameters

• trigger – Default trigger of the extension.

• default_name – Default name of the extension. The name of a given function is used by
default.

• priority (int) – Default priority of the extension.

• finalizer – Finalizer function of this extension. It is called at the end of the training
loop.

• initializer – Initializer function of this extension. It is called at the beginning of the
training loop.

Evaluation and Metrics Collection

These extensions provide features to collect additional metrics. The typical use case is to use Evaluator to perform
evaluation with a validation dataset to compute validation loss/accuracy.

chainer.training.extensions.Evaluator Trainer extension to evaluate models on a validation set.
chainer.training.extensions.
MicroAverage

Calculates micro-average ratio.

chainer.training.extensions.
FailOnNonNumber

Trainer extension to raise RuntimeError if parameters con-
tain NaN or Inf.

chainer.training.extensions.
ParameterStatistics

Trainer extension to report parameter statistics.

chainer.training.extensions.observe_lr Returns a trainer extension to record the learning rate.
chainer.training.extensions.
observe_value

Returns a trainer extension to continuously record a value.

chainer.training.extensions.Evaluator

class chainer.training.extensions.Evaluator(iterator, target, converter=<function
concat_examples>, device=None,
eval_hook=None, eval_func=None)

Trainer extension to evaluate models on a validation set.

4.6. Training Tools 645

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

This extension evaluates the current models by a given evaluation function. It creates a Reporter object to
store values observed in the evaluation function on each iteration. The report for all iterations are aggregated to
DictSummary . The collected mean values are further reported to the reporter object of the trainer, where the
name of each observation is prefixed by the evaluator name. See Reporter for details in naming rules of the
reports.

Evaluator has a structure to customize similar to that of StandardUpdater. The main differences are:

• There are no optimizers in an evaluator. Instead, it holds links to evaluate.

• An evaluation loop function is used instead of an update function.

• Preparation routine can be customized, which is called before each evaluation. It can be used, e.g., to
initialize the state of stateful recurrent networks.

There are two ways to modify the evaluation behavior besides setting a custom evaluation function. One is
by setting a custom evaluation loop via the eval_func argument. The other is by inheriting this class and
overriding the evaluate() method. In latter case, users have to create and handle a reporter object manually.
Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation. In
both cases, the functions are called in testing mode (i.e., chainer.config.train is set to False).

This extension is called at the end of each epoch by default.

Parameters

• iterator – Dataset iterator for the validation dataset. It can also be a dictionary of itera-
tors. If this is just an iterator, the iterator is registered by the name 'main'.

• target – Link object or a dictionary of links to evaluate. If this is just a link object, the
link is registered by the name 'main'.

• converter – Converter function to build input arrays. concat_examples() is used
by default.

• device – Device to which the validation data is sent. Negative value indicates the host
memory (CPU).

• eval_hook – Function to prepare for each evaluation process. It is called at the beginning
of the evaluation. The evaluator extension object is passed at each call.

• eval_func – Evaluation function called at each iteration. The target link to evaluate as a
callable is used by default.

Variables

• converter – Converter function.

• device – Device to which the validation data is sent.

• eval_hook – Function to prepare for each evaluation process.

• eval_func – Evaluation function called at each iteration.

Methods

__call__(trainer=None)
Executes the evaluator extension.

Unlike usual extensions, this extension can be executed without passing a trainer object. This extension
reports the performance on validation dataset using the report() function. Thus, users can use this
extension independently from any trainer by manually configuring a Reporter object.

646 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

Parameters trainer (Trainer) – Trainer object that invokes this extension. It can be omit-
ted in case of calling this extension manually.

Returns Result dictionary that contains mean statistics of values reported by the evaluation func-
tion.

Return type dict

evaluate()
Evaluates the model and returns a result dictionary.

This method runs the evaluation loop over the validation dataset. It accumulates the reported values to
DictSummary and returns a dictionary whose values are means computed by the summary.

Users can override this method to customize the evaluation routine.

Note: This method encloses eval_func calls with function.no_backprop_mode() context, so
all calculations using FunctionNodes inside eval_func do not make computational graphs. It is for
reducing the memory consumption.

Returns Result dictionary. This dictionary is further reported via report()without specifying
any observer.

Return type dict

finalize()
Finalizes the evaluator object.

This method calls the finalize method of each iterator that this evaluator has. It is called at the end of
training loops.

get_all_iterators()
Returns a dictionary of all iterators.

get_all_targets()
Returns a dictionary of all target links.

get_iterator(name)
Returns the iterator of the given name.

get_target(name)
Returns the target link of the given name.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

4.6. Training Tools 647

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 4.0.0

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name = 'validation'

name = None

priority = 300

trigger = (1, 'epoch')

chainer.training.extensions.MicroAverage

class chainer.training.extensions.MicroAverage(numerator_key, denominator_key, re-
sult_key, trigger=(1, ’epoch’))

Calculates micro-average ratio.

Give 𝑁 batches and values {𝑛1, . . . , 𝑛𝑁} and {𝑑1, . . . , 𝑑𝑁}, this extension calculates micro-average of these
ratio defined as: ∑︀𝑁

𝑖 𝑛𝑖∑︀𝑁
𝑖 𝑑𝑖

.

A user usually uses the number of examples which a system correctly predict as 𝑛𝑖 and the number of total
examples in 𝑖-th batch as 𝑑𝑖. This value is called macro-average of precision.

Note that macro-average is defined as:

1

𝑁

𝑁∑︁
𝑖

(𝑛𝑖/𝑑𝑖),

It is same to the micro-average when each mini-batch has the same 𝑑𝑖.

You need to report numerator value (the number of correct examples) and denominator value (the number of
examples) in your model.

>>> class MyModel(chainer.Link):
... def __call__(self, x, y):
... loss = F.softmax_cross_entropy(x, y)
... correct = (x.data.argmax(axis=1) == y.data).sum()
... total = len(y.data)
... reporter.report({'correct': correct, 'total': total}, self)
... return loss

And then, make an extension with corresponding reporting keys and register it.

>>> ext = extensions.MicroAverage(
... 'main/correct', 'main/total', 'main/accuracy')

Parameters

• numerator_key (str) – Key string of obserbation storing a numerator value.

• denominator_key (str) – Key string of obserbation storing a denominator value.

648 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• result_key (str) – Key string of obserbation to store a result.

• trigger – Trigger that decides when to calcurate average. This is distinct from the trig-
ger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>,
'iteration', it is passed to IntervalTrigger.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 200

trigger = (1, 'iteration')

chainer.training.extensions.FailOnNonNumber

class chainer.training.extensions.FailOnNonNumber
Trainer extension to raise RuntimeError if parameters contain NaN or Inf.

4.6. Training Tools 649

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Although parameters including non-number such as NaN and Inf are unnecessary in most cases, Trainer will
continue to compute even if the parameters in a given optimizer diverge. This extension is aimed to reduce
unnecessary computations by throwing RuntimeError if the parameters contain NaN or Inf.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

650 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

chainer.training.extensions.ParameterStatistics

class chainer.training.extensions.ParameterStatistics(links, statistics={’max’:
<function Parameter-
Statistics.<lambda> at
0x7fd5dcad36a8>, ’mean’:
<function Parameter-
Statistics.<lambda> at
0x7fd5dcad3510>, ’min’:
<function Parameter-
Statistics.<lambda> at
0x7fd5dcad3620>, ’per-
centile’: <function Param-
eterStatistics.<lambda>
at 0x7fd5dcad37b8>,
’std’: <function Param-
eterStatistics.<lambda>
at 0x7fd5dcad3598>, ’ze-
ros’: <function Param-
eterStatistics.<lambda>
at 0x7fd5dcad3730>},
report_params=True,
report_grads=True,
prefix=None, trig-
ger=(1, ’epoch’),
skip_nan_params=False)

Trainer extension to report parameter statistics.

Statistics are collected and reported for a given Link or an iterable of Links. If a link contains child links, the
statistics are reported separately for each child.

Any function that takes a one-dimensional numpy.ndarray or a cupy.ndarray and outputs a single or
multiple real numbers can be registered to handle the collection of statistics, e.g. numpy.ndarray.mean().

The keys of reported statistics follow the convention of link name followed by parameter name, attribute name
and function name, e.g. VGG16Layers/conv1_1/W/data/mean. They are prepended with an optional
prefix and appended with integer indices if the statistics generating function return multiple values.

Parameters

• links (Link or iterable of ~chainer.Link) – Link(s) containing the param-
eters to observe. The link is expected to have a name attribute which is used as a part of the
report key.

• statistics (dict) – Dictionary with function name to function mappings. The name
is a string and is used as a part of the report key. The function is responsible for generating
the statistics.

• report_params (bool) – If True, report statistics for parameter values such as weights
and biases.

• report_grads (bool) – If True, report statistics for parameter gradients.

• prefix (str) – Optional prefix to prepend to the report keys.

• trigger – Trigger that decides when to aggregate the results and report the values.

• skip_nan_params (bool) – If True, statistics are not computed for parameters includ-
ing NaNs and a single NaN value is immediately reported instead. Otherwise, this extension

4.6. Training Tools 651

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

will simply try to compute the statistics without performing any checks for NaNs.

Methods

__call__(trainer)
Execute the statistics extension.

Collect statistics for the current state of parameters.

Note that this method will merely update its statistic summary, unless the internal trigger is fired. If the
trigger is fired, the summary will also be reported and then reset for the next accumulation.

Parameters trainer (Trainer) – Associated trainer that invoked this extension.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

register_statistics(name, function)
Register a function to compute a certain statistic.

The registered function will be called each time the extension runs and the results will be included in the
report.

Parameters

• name (str) – Name of the statistic.

• function – Function to generate the statistic. Any function that takes a one-dimensional
numpy.ndarray or a cupy.ndarray and outputs a single or multiple real numbers
is allowed.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name = 'parameter_statistics'

default_statistics = {'max': <function ParameterStatistics.<lambda> at 0x7fd5dcad36a8>, 'mean': <function ParameterStatistics.<lambda> at 0x7fd5dcad3510>, 'min': <function ParameterStatistics.<lambda> at 0x7fd5dcad3620>, 'percentile': <function ParameterStatistics.<lambda> at 0x7fd5dcad37b8>, 'std': <function ParameterStatistics.<lambda> at 0x7fd5dcad3598>, 'zeros': <function ParameterStatistics.<lambda> at 0x7fd5dcad3730>}

priority = 300

652 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

report_key_template = '{prefix}{link_name}{param_name}/{attr_name}/{function_name}'

trigger = (1, 'iteration')

chainer.training.extensions.observe_lr

chainer.training.extensions.observe_lr(optimizer_name=’main’, observation_key=’lr’)
Returns a trainer extension to record the learning rate.

Parameters

• optimizer_name (str) – Name of optimizer whose learning rate is recorded.

• observation_key (str) – Key of observation to record.

Returns The extension function.

chainer.training.extensions.observe_value

chainer.training.extensions.observe_value(observation_key, target_func)
Returns a trainer extension to continuously record a value.

Parameters

• observation_key (str) – Key of observation to record.

• target_func (function) – Function that returns the value to record. It must take one
argument: :class:~chainer.training.Trainer object.

Returns The extension function.

Optimizer Behavior Control

These extensions provide features to adjust optimizer behavior. The typical use case is to change the learning rate of
the optimizer over time.

chainer.training.extensions.
ExponentialShift

Trainer extension to exponentially shift an optimizer at-
tribute.

chainer.training.extensions.LinearShift Trainer extension to change an optimizer attribute linearly.

chainer.training.extensions.ExponentialShift

class chainer.training.extensions.ExponentialShift(attr, rate, init=None, tar-
get=None, optimizer=None)

Trainer extension to exponentially shift an optimizer attribute.

This extension exponentially increases or decreases the specified attribute of the optimizer. The typical use case
is an exponential decay of the learning rate.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• rate (float) – Rate of the exponential shift. This value is multiplied to the attribute at
each call.

4.6. Training Tools 653

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

654 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

chainer.training.extensions.LinearShift

class chainer.training.extensions.LinearShift(attr, value_range, time_range, opti-
mizer=None)

Trainer extension to change an optimizer attribute linearly.

This extension changes an optimizer attribute from the first value to the last value linearly within a specified
duration. The typical use case is warming up of the momentum coefficient.

For example, suppose that this extension is called at every iteration, and value_range == (x, y) and
time_range == (i, j). Then, this extension keeps the attribute to be x up to the i-th iteration, linearly
shifts the value to y by the j-th iteration, and then keeps the value to be y after the j-th iteration.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the optimizer attribute to adjust.

• value_range (tuple of float) – The first and the last values of the attribute.

• time_range (tuple of ints) – The first and last counts of calls in which the attribute
is adjusted.

• optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
the trainer is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

4.6. Training Tools 655

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

Reporting

These extensions provide features to perform reporting of metrics and various statistics to the console or files.

chainer.training.extensions.PrintReport Trainer extension to print the accumulated results.
chainer.training.extensions.ProgressBar Trainer extension to print a progress bar and recent training

status.
chainer.training.extensions.LogReport Trainer extension to output the accumulated results to a log

file.
chainer.training.extensions.PlotReport Trainer extension to output plots.
chainer.training.extensions.
VariableStatisticsPlot

Trainer extension to plot statistics for Variables.

chainer.training.extensions.dump_graph Returns a trainer extension to dump a computational graph.

chainer.training.extensions.PrintReport

class chainer.training.extensions.PrintReport(entries, log_report=’LogReport’,
out=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Trainer extension to print the accumulated results.

This extension uses the log accumulated by a LogReport extension to print specified entries of the log in a
human-readable format.

Parameters

• entries (list of str) – List of keys of observations to print.

• log_report (str or LogReport) – Log report to accumulate the observations. This
is either the name of a LogReport extensions registered to the trainer, or a LogReport in-
stance to use internally.

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

656 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.ProgressBar

class chainer.training.extensions.ProgressBar(training_length=None, up-
date_interval=100, bar_length=50,
out=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Trainer extension to print a progress bar and recent training status.

This extension prints a progress bar at every call. It watches the current iteration and epoch to print the bar.

Parameters

• training_length (tuple) – Length of whole training. It consists of an integer and
either 'epoch' or 'iteration'. If this value is omitted and the stop trigger of the
trainer is IntervalTrigger, this extension uses its attributes to determine the length of
the training.

• update_interval (int) – Number of iterations to skip printing the progress bar.

• bar_length (int) – Length of the progress bar in characters.

4.6. Training Tools 657

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.LogReport

class chainer.training.extensions.LogReport(keys=None, trigger=(1, ’epoch’), postpro-
cess=None, log_name=’log’)

Trainer extension to output the accumulated results to a log file.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by
a supplied trigger, and writes them into a log file in JSON format.

658 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used
to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary
of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes
a new fresh summary object which is used until the next time that the trigger fires.

It also adds some entries to each result dictionary.

• 'epoch' and 'iteration' are the epoch and iteration counts at the output, respectively.

• 'elapsed_time' is the elapsed time in seconds since the training begins. The value is taken from
Trainer.elapsed_time.

Parameters

• keys (iterable of strs) – Keys of values to accumulate. If this is None, all the
values are accumulated and output to the log file.

• trigger – Trigger that decides when to aggregate the result and output the values. This
is distinct from the trigger of this extension itself. If it is a tuple in the form <int>,
'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.

• postprocess – Callback to postprocess the result dictionaries. Each result dictionary is
passed to this callback on the output. This callback can modify the result dictionaries, which
are used to output to the log file.

• log_name (str) – Name of the log file under the output directory. It can be a format
string: the last result dictionary is passed for the formatting. For example, users can use
‘{iteration}’ to separate the log files for different iterations. If the log name is None, it does
not output the log to any file.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

4.6. Training Tools 659

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

log
The current list of observation dictionaries.

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.PlotReport

class chainer.training.extensions.PlotReport(y_keys, x_key=’iteration’, trig-
ger=(1, ’epoch’), postprocess=None,
file_name=’plot.png’, marker=’x’,
grid=True)

Trainer extension to output plots.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by
a supplied trigger, and plot a graph with using them.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used
to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary
of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes
a new fresh summary object which is used until the next time that the trigger fires.

It also adds 'epoch' and 'iteration' entries to each result dictionary, which are the epoch and iteration
counts at the output.

Warning: If your environment needs to specify a backend of matplotlib explicitly, please call
matplotlib.use before calling trainer.run. For example:

import matplotlib
matplotlib.use('Agg')

trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'],

'epoch', file_name='loss.png'))
trainer.run()

Then, once one of instances of this extension is called, matplotlib.use will have no effect.

For the details, please see here: https://matplotlib.org/faq/usage_faq.html#what-is-a-backend

Parameters

660 Chapter 4. Reference

https://matplotlib.org/faq/usage_faq.html#what-is-a-backend

Chainer Documentation, Release 4.0.0

• y_keys (iterable of strs) – Keys of values regarded as y. If this is None, nothing
is output to the graph.

• x_key (str) – Keys of values regarded as x. The default value is ‘iteration’.

• trigger – Trigger that decides when to aggregate the result and output the values. This
is distinct from the trigger of this extension itself. If it is a tuple in the form <int>,
'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.

• postprocess – Callback to postprocess the result dictionaries. Figure object, Axes ob-
ject, and all plot data are passed to this callback in this order. This callback can modify the
figure.

• file_name (str) – Name of the figure file under the output directory. It can be a format
string.

• marker (str) – The marker used to plot the graph. Default is 'x'. If None is given, it
draws with no markers.

• grid (bool) – Set the axis grid on if True. Default is True.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

static available()

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

4.6. Training Tools 661

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.VariableStatisticsPlot

class chainer.training.extensions.VariableStatisticsPlot(targets,
max_sample_size=1000,
report_data=True,
report_grad=True,
plot_mean=True,
plot_std=True, per-
centile_sigmas=(0, 0.13,
2.28, 15.87, 50, 84.13,
97.72, 99.87, 100),
trigger=(1, ’epoch’),
file_name=’statistics.png’,
figsize=None,
marker=None,
grid=True)

Trainer extension to plot statistics for Variables.

This extension collects statistics for a single Variable, a list of Variables or similarly a single or a list of
Links containing one or more Variables. In case multiple Variables are found, the means are computed.
The collected statistics are plotted and saved as an image in the directory specified by the Trainer.

Statistics include mean, standard deviation and percentiles.

This extension uses reservoir sampling to preserve memory, using a fixed size running sample. This means that
collected items in the sample are discarded uniformly at random when the number of items becomes larger than
the maximum sample size, but each item is expected to occur in the sample with equal probability.

Parameters

• targets (Variable, Link or list of either) – Parameters for which statistics are col-
lected.

• max_sample_size (int) – Maximum number of running samples.

• report_data (bool) – If True, data (e.g. weights) statistics are plotted. If False,
they are neither computed nor plotted.

• report_grad (bool) – If True, gradient statistics are plotted. If False, they are
neither computed nor plotted.

• plot_mean (bool) – If True, means are plotted. If False, they are neither computed
nor plotted.

• plot_std (bool) – If True, standard deviations are plotted. If False, they are neither
computed nor plotted.

662 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

• percentile_sigmas (float or tuple of floats) – Percentiles to plot in the
range [0, 100].

• trigger – Trigger that decides when to save the plots as an image. This is distinct from the
trigger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>,
'iteration', it is passed to IntervalTrigger.

• file_name (str) – Name of the output image file under the output directory.

• figsize (tuple of int) – Matlotlib figsize argument that specifies the size of the
output image.

• marker (str) – Matplotlib marker argument that specified the marker style of the plots.

• grid (bool) – Matplotlib grid argument that specifies whether grids are rendered in in
the plots or not.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

static available()

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

save_plot_using_module(file_path, plt)

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

default_name
Default name of the extension.

4.6. Training Tools 663

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.dump_graph

chainer.training.extensions.dump_graph(root_name, out_name=’cg.dot’, vari-
able_style=None, function_style=None)

Returns a trainer extension to dump a computational graph.

This extension dumps a computational graph. The graph is output in DOT language.

It only dumps a graph at the first invocation.

Note: As of v2.0.0, the computational graph is not kept by default. This extension changes this behavior until
the first invocation. It is strongly recommended to use it with the default trigger setting.

The detailed behavior of this extension since v2.0.0 is as follows.

1. In its initializer, it turns on the chainer.config.keep_graph_on_report flag.

2. At the first iteration, it dumps the graph using the graph held by the reported variable.

3. After dumping the graph, it turns off the flag (if it was originally turned off) so that any variable reported
afterward does not hold a computational graph.

When the keep_graph_on_report flag is turned on, the computational graph created by the updater is
kept during the invocation of extensions. It will cause an unnecessarily large memory consumption when an
extension also uses a large amount of memory, e.g. Evaluator.

With the default setting, the dump_graph extension is called at the first iteration. Since Evaluator is not
called at the first iteration in most cases, it does not cause any memory problem.

Parameters

• root_name (str) – Name of the root of the computational graph. The root variable is
retrieved by this name from the observation dictionary of the trainer.

• out_name (str) – Output file name.

• variable_style (dict) – Dot node style for variables. Each variable is rendered by
an octagon by default.

• function_style (dict) – Dot node style for functions. Each function is rendered by a
rectangular by default.

See also:

See build_computational_graph() for the variable_style and function_style arguments.

Snapshot

These extensions provide features to take snapshots of models.

664 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 4.0.0

chainer.training.extensions.snapshot Returns a trainer extension to take snapshots of the trainer.
chainer.training.extensions.
snapshot_object

Returns a trainer extension to take snapshots of a given ob-
ject.

chainer.training.extensions.snapshot

chainer.training.extensions.snapshot(savefun=<function save_npz>, file-
name=’snapshot_iter_{.updater.iteration}’)

Returns a trainer extension to take snapshots of the trainer.

This extension serializes the trainer object and saves it to the output directory. It is used to support resuming the
training loop from the saved state.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object
specifying the required interval can be passed along with this extension to the extend() method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

Note: This extension first writes the serialized object to a temporary file and then rename it to the target file
name. Thus, if the program stops right before the renaming, the temporary file might be left in the output
directory.

Parameters

• savefun – Function to save the trainer. It takes two arguments: the output file path and
the trainer object.

• filename (str) – Name of the file into which the trainer is serialized. It can be a format
string, where the trainer object is passed to the str.format() method.

chainer.training.extensions.snapshot_object

chainer.training.extensions.snapshot_object(target, filename, savefun=<function
save_npz>)

Returns a trainer extension to take snapshots of a given object.

This extension serializes the given object and saves it to the output directory.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object
specifying the required interval can be passed along with this extension to the extend() method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

Parameters

• target – Object to serialize.

• filename (str) – Name of the file into which the object is serialized. It can be a for-
mat string, where the trainer object is passed to the str.format() method. For exam-
ple, 'snapshot_{.updater.iteration}' is converted to 'snapshot_10000'
at the 10,000th iteration.

• savefun – Function to save the object. It takes two arguments: the output file path and the
object to serialize.

Returns An extension function.

4.6. Training Tools 665

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.format

Chainer Documentation, Release 4.0.0

4.6.4 Triggers

A trigger is a callable object to decide when to process some specific event within the training loop. It takes a Trainer
object as the argument, and returns True if some event should be fired.

It is mainly used to determine when to call an extension. It is also used to determine when to quit the training loop.

chainer.training.get_trigger Gets a trigger object.
chainer.training.triggers.
BestValueTrigger

Trigger invoked when specific value becomes best.

chainer.training.triggers.
EarlyStoppingTrigger

Trigger for Early Stopping

chainer.training.triggers.
IntervalTrigger

Trigger based on a fixed interval.

chainer.training.triggers.
ManualScheduleTrigger

Trigger invoked at specified point(s) of iterations or epochs.

chainer.training.triggers.
MaxValueTrigger

Trigger invoked when specific value becomes maximum.

chainer.training.triggers.
MinValueTrigger

Trigger invoked when specific value becomes minimum.

chainer.training.triggers.TimeTrigger Trigger based on a fixed time interval.

chainer.training.get_trigger

chainer.training.get_trigger(trigger)
Gets a trigger object.

Trigger object is a callable that accepts a Trainer object as an argument and returns a boolean value. When
it returns True, various kinds of events can occur depending on the context in which the trigger is used. For
example, if the trigger is passed to the Trainer as the stop trigger, the training loop breaks when the trigger
returns True. If the trigger is passed to the extend() method of a trainer, then the registered extension is
invoked only when the trigger returns True.

This function returns a trigger object based on the argument. If trigger is already a callable, it just re-
turns the trigger. If trigger is None, it returns a trigger that never fires. Otherwise, it passes the value to
IntervalTrigger.

Parameters trigger – Trigger object. It can be either an already built trigger object (i.e., a
callable object that accepts a trainer object and returns a bool value), or a tuple. In latter case,
the tuple is passed to IntervalTrigger.

Returns trigger if it is a callable, otherwise a IntervalTrigger object made from
trigger.

chainer.training.triggers.BestValueTrigger

class chainer.training.triggers.BestValueTrigger(key, compare, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes best.

Parameters

• key (str) – Key of value.

• compare (function) – Compare function which takes current best value and new value
and returns whether new value is better than current best.

666 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

chainer.training.triggers.EarlyStoppingTrigger

class chainer.training.triggers.EarlyStoppingTrigger(check_trigger=(1, ’epoch’),
monitor=’main/loss’, pa-
tients=3, mode=’auto’,
verbose=False,
max_trigger=(100, ’epoch’))

Trigger for Early Stopping

It can be used as a stop trigger of Trainer to realize early stopping technique.

This trigger works as follows. Within each check interval defined by the check_trigger argument, it mon-
itors and accumulates the reported value at each iteration. At the end of each interval, it computes the mean of
the accumulated values and compares it to the previous ones to maintain the best value. When it finds that the
best value is not updated for some periods (defined by patients), this trigger fires.

Parameters

• monitor (str) – The metric you want to monitor

• check_trigger – Trigger that decides the comparison interval between current best
value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

• patients (int) – Counts to let the trigger be patient. The trigger will not fire until the
condition is met for successive patient checks.

• mode (str) – 'max', 'min', or 'auto'. It is used to determine how to compare the
monitored values.

• verbose (bool) – Enable verbose output. If verbose is true, you can get more information

• max_trigger – Upper bound of the number of training loops

Methods

__call__(trainer)
Decides whether the training loop should be stopped.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

4.6. Training Tools 667

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns True if the training loop should be stopped.

Return type bool

get_training_length()

chainer.training.triggers.IntervalTrigger

class chainer.training.triggers.IntervalTrigger(period, unit)
Trigger based on a fixed interval.

This trigger accepts iterations divided by a given interval. There are two ways to specify the interval: per
iterations and epochs. Iteration means the number of updates, while epoch means the number of sweeps over
the training dataset. Fractional values are allowed if the interval is a number of epochs; the trigger uses the
iteration and epoch_detail attributes defined by the updater.

For the description of triggers, see get_trigger().

Parameters

• period (int or float) – Length of the interval. Must be an integer if unit is
'iteration'.

• unit (str) – Unit of the length specified by period. It must be either 'iteration'
or 'epoch'.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

get_training_length()

serialize(serializer)

chainer.training.triggers.ManualScheduleTrigger

class chainer.training.triggers.ManualScheduleTrigger(points, unit)
Trigger invoked at specified point(s) of iterations or epochs.

This trigger accepts iterations or epochs indicated by given point(s). There are two ways to specify the point(s):
iteration and epoch. iteration means the number of updates, while epoch means the number of sweeps
over the training dataset. Fractional values are allowed if the point is a number of epochs; the trigger uses the
iteration and epoch_detail attributes defined by the updater.

Parameters

• points (int, float, or list of int or float) – time of the trigger. Must
be an integer or list of integer if unit is 'iteration'.

• unit (str) – Unit of the time specified by points. It must be either 'iteration' or
'epoch'.

668 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

chainer.training.triggers.MaxValueTrigger

class chainer.training.triggers.MaxValueTrigger(key, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes maximum.

For example you can use this trigger to take snapshot on the epoch the validation accuracy is maximum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes maximum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

chainer.training.triggers.MinValueTrigger

class chainer.training.triggers.MinValueTrigger(key, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes minimum.

For example you can use this trigger to take snapshot on the epoch the validation loss is minimum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes minimum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

4.6. Training Tools 669

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

chainer.training.triggers.TimeTrigger

class chainer.training.triggers.TimeTrigger(period)
Trigger based on a fixed time interval.

This trigger accepts iterations with a given interval time.

Parameters period (float) – Interval time. It is given in seconds.

Methods

__call__(trainer)
Call self as a function.

serialize(serializer)

4.7 Datasets

4.7.1 Dataset Abstraction

Chainer supports a common interface for training and validation of datasets. The dataset support consists of three
components: datasets, iterators, and batch conversion functions.

Dataset represents a set of examples. The interface is only determined by combination with iterators you want to
use on it. The built-in iterators of Chainer require the dataset to support __getitem__ and __len__ methods. In
particular, the __getitem__ method should support indexing by both an integer and a slice. We can easily support
slice indexing by inheriting DatasetMixin, in which case users only have to implement get_example()method
for indexing. Basically, datasets are considered as stateless objects, so that we do not need to save the dataset as a
checkpoint of the training procedure.

Iterator iterates over the dataset, and at each iteration, it yields a mini-batch of examples as a list. Iterators should
support the Iterator interface, which includes the standard iterator protocol of Python. Iterators manage where to
read next, which means they are stateful.

Batch conversion function converts the mini-batch into arrays to feed to the neural nets. They are also responsible to
send each array to an appropriate device. Chainer currently provides two implementations:

• concat_examples() is a plain implementation which is used as the default choice.

• ConcatWithAsyncTransfer is a variant which is basically same as concat_examples() except that
it overlaps other GPU computations and data transfer for the next iteration.

670 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

These components are all customizable, and designed to have a minimum interface to restrict the types of datasets
and ways to handle them. In most cases, though, implementations provided by Chainer itself are enough to cover the
usages.

Chainer also has a light system to download, manage, and cache concrete examples of datasets. All
datasets managed through the system are saved under the dataset root directory, which is determined by the
CHAINER_DATASET_ROOT environment variable, and can also be set by the set_dataset_root() function.

Dataset Representation

See Examples for dataset implementations.

chainer.dataset.DatasetMixin Default implementation of dataset indexing.

chainer.dataset.DatasetMixin

class chainer.dataset.DatasetMixin
Default implementation of dataset indexing.

DatasetMixin provides the __getitem__() operator. The default implementation uses get_example()
to extract each example, and combines the results into a list. This mixin makes it easy to implement a new
dataset that does not support efficient slicing.

Dataset implementation using DatasetMixin still has to provide the __len__() operator explicitly.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int

(continues on next page)

4.7. Datasets 671

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

Iterator Interface

See Iterator for dataset iterator implementations.

chainer.dataset.Iterator Base class of all dataset iterators.

chainer.dataset.Iterator

class chainer.dataset.Iterator
Base class of all dataset iterators.

Iterator iterates over the dataset, yielding a minibatch at each iteration. Minibatch is a list of examples. Each
implementation should implement an iterator protocol (e.g., the __next__() method).

Note that, even if the iterator supports setting the batch size, it does not guarantee that each batch always contains
the same number of examples. For example, if you let the iterator to stop at the end of the sweep, the last batch
may contain a fewer number of examples.

The interface between the iterator and the underlying dataset is not fixed, and up to the implementation.

Each implementation should provide the following attributes (not needed to be writable).

• batch_size: Number of examples within each minibatch.

• epoch: Number of completed sweeps over the dataset.

• epoch_detail: Floating point number version of the epoch. For example, if the iterator is at the middle
of the dataset at the third epoch, then this value is 2.5.

• previous_epoch_detail: The value of epoch_detail at the previous iteration. This value is
None before the first iteration.

• is_new_epoch: True if the epoch count was incremented at the last update.

Each implementation should also support serialization to resume/suspend the iteration.

672 Chapter 4. Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Methods

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

next()
Python2 alternative of __next__.

It calls __next__() by default.

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serializes
what is set manually by users such as the batch size.

Batch Conversion Function

chainer.dataset.concat_examples Concatenates a list of examples into array(s).
chainer.dataset.ConcatWithAsyncTransfer Interface to concatenate data and transfer them to GPU

asynchronously.
chainer.dataset.to_device Send an array to a given device.

chainer.dataset.concat_examples

chainer.dataset.concat_examples(batch, device=None, padding=None)
Concatenates a list of examples into array(s).

This function converts an “array of tuples” into a “tuple of arrays”. Specifically, given a list of examples each of
which consists of a list of elements, this function first makes an array by taking the element in the same position
from each example and concatenates them along the newly-inserted first axis (called batch dimension) into one
array. It repeats this for all positions and returns the resulting arrays.

The output type depends on the type of examples in batch. For instance, consider each example consists of
two arrays (x, y). Then, this function concatenates x ‘s into one array, and y ‘s into another array, and returns
a tuple of these two arrays. Another example: consider each example is a dictionary of two entries whose keys
are 'x' and 'y', respectively, and values are arrays. Then, this function concatenates x ‘s into one array, and y
‘s into another array, and returns a dictionary with two entries x and y whose values are the concatenated arrays.

When the arrays to concatenate have different shapes, the behavior depends on the padding value. If
padding is None (default), it raises an error. Otherwise, it builds an array of the minimum shape that the

4.7. Datasets 673

https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 4.0.0

contents of all arrays can be substituted to. The padding value is then used to the extra elements of the resulting
arrays.

Example

>>> import numpy as np
>>> from chainer import dataset
>>> x = [([1, 2], 1),
... ([3, 4], 2),
... ([5, 6], 3)]
>>> dataset.concat_examples(x)
(array([[1, 2],

[3, 4],
[5, 6]]), array([1, 2, 3]))

>>>
>>> y = [(np.array([1, 2]), 0),
... (np.array([3]), 1),
... (np.array([]), 2)]
>>> dataset.concat_examples(y, padding=100)
(array([[1, 2],

[3, 100],
[100, 100]]), array([0, 1, 2]))

>>>
>>> z = [(np.array([1, 2]), np.array([0])),
... (np.array([3]), np.array([])),
... (np.array([]), np.array([2]))]
>>> dataset.concat_examples(z, padding=(100, 200))
(array([[1, 2],

[3, 100],
[100, 100]]), array([[0],
[200],
[2]]))

>>> w = [{'feature': np.array([1, 2]), 'label': 0},
... {'feature': np.array([3, 4]), 'label': 1},
... {'feature': np.array([5, 6]), 'label': 2}]
>>> dataset.concat_examples(w)
{'feature': array([[1, 2],

[3, 4],
[5, 6]]), 'label': array([0, 1, 2])}

Parameters

• batch (list) – A list of examples. This is typically given by a dataset iterator.

• device (int) – Device ID to which each array is sent. Negative value indicates the host
memory (CPU). If it is omitted, all arrays are left in the original device.

• padding – Scalar value for extra elements. If this is None (default), an error is raised on
shape mismatch. Otherwise, an array of minimum dimensionalities that can accommodate
all arrays is created, and elements outside of the examples are padded by this value.

Returns Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each
example in the batch.

674 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.dataset.ConcatWithAsyncTransfer

class chainer.dataset.ConcatWithAsyncTransfer(stream=None)
Interface to concatenate data and transfer them to GPU asynchronously.

It enables to transfer next batch of input data to GPU while GPU is running kernels for training using current
batch of input data.

An instance of this class is mainly intended to be used as a converter function of an updater like below.

from chainer.dataset import convert
...
updater = chainer.training.updaters.StandardUpdater(

...,
converter=convert.ConcatWithAsyncTransfer(),
...)

Parameters stream (cupy.cuda.Stream) – CUDA stream. If None, a stream is automatically
created on the first call. Data transfer operation is launched acynchrnously using the stream.

Methods

__call__(batch, device=None, padding=None)
Concatenate data and transfer them to GPU asynchronously.

See also chainer.dataset.concat_examples().

Parameters

• batch (list) – A list of examples.

• device (int) – Device ID to which each array is sent.

• padding – Scalar value for extra elements.

Returns Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each
example in the batch.

chainer.dataset.to_device

chainer.dataset.to_device(device, x)
Send an array to a given device.

This method sends a given array to a given device. This method is used in concat_examples().
You can also use this method in a custom converter method used in Updater and Extension such as
StandardUpdater and Evaluator.

See also chainer.dataset.concat_examples().

Parameters

• device (int or None) – Device ID to which an array is sent. If it is negative value,
an array is sent to CPU. If it is positive, an array is sent to GPU with the given ID. If it is
None, an array is left in the original device.

• x (numpy.ndarray or cupy.ndarray) – An array to send.

Returns Converted array.

4.7. Datasets 675

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Dataset Management

chainer.dataset.get_dataset_root Gets the path to the root directory to download and cache
datasets.

chainer.dataset.set_dataset_root Sets the root directory to download and cache datasets.
chainer.dataset.cached_download Downloads a file and caches it.
chainer.dataset.cache_or_load_file Caches a file if it does not exist, or loads it otherwise.

chainer.dataset.get_dataset_root

chainer.dataset.get_dataset_root()
Gets the path to the root directory to download and cache datasets.

Returns The path to the dataset root directory.

Return type str

chainer.dataset.set_dataset_root

chainer.dataset.set_dataset_root(path)
Sets the root directory to download and cache datasets.

There are two ways to set the dataset root directory. One is by setting the environment variable
CHAINER_DATASET_ROOT. The other is by using this function. If both are specified, one specified via this
function is used. The default dataset root is $HOME/.chainer/dataset.

Parameters path (str) – Path to the new dataset root directory.

chainer.dataset.cached_download

chainer.dataset.cached_download(url)
Downloads a file and caches it.

It downloads a file from the URL if there is no corresponding cache. After the download, this function stores a
cache to the directory under the dataset root (see set_dataset_root()). If there is already a cache for the
given URL, it just returns the path to the cache without downloading the same file.

Note: This function raises OSError when it fails to create the cache directory. In older version, it raised
RuntimeError.

Parameters url (str) – URL to download from.

Returns Path to the downloaded file.

Return type str

chainer.dataset.cache_or_load_file

chainer.dataset.cache_or_load_file(path, creator, loader)
Caches a file if it does not exist, or loads it otherwise.

676 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

This is a utility function used in dataset loading routines. The creator creates the file to given path, and
returns the content. If the file already exists, the loader is called instead, and it loads the file and returns the
content.

Note that the path passed to the creator is temporary one, and not same as the path given to this function.
This function safely renames the file created by the creator to a given path, even if this function is called
simultaneously by multiple threads or processes.

Parameters

• path (str) – Path to save the cached file.

• creator – Function to create the file and returns the content. It takes a path to temporary
place as the argument. Before calling the creator, there is no file at the temporary path.

• loader – Function to load the cached file and returns the content.

Returns It returns the returned values by the creator or the loader.

4.7.2 Examples

The most basic dataset implementation is an array. Both NumPy and CuPy arrays can be used directly as datasets.

In many cases, though, the simple arrays are not enough to write the training procedure. In order to cover most of such
cases, Chainer provides many built-in implementations of datasets.

These built-in datasets are divided into two groups. One is a group of general datasets. Most of them are wrapper of
other datasets to introduce some structures (e.g., tuple or dict) to each data point. The other one is a group of concrete,
popular datasets. These concrete examples use the downloading utilities in the chainer.dataset module to cache
downloaded and converted datasets.

4.7.3 General Datasets

General datasets are further divided into four types.

The first one is DictDataset and TupleDataset, both of which combine other datasets and introduce some
structures on them.

The second one is ConcatenatedDataset and SubDataset. ConcatenatedDataset represents a con-
catenation of existing datasets. It can be used to merge datasets and make a larger dataset. SubDataset represents a
subset of an existing dataset. It can be used to separate a dataset for hold-out validation or cross validation. Convenient
functions to make random splits are also provided.

The third one is TransformDataset, which wraps around a dataset by applying a function to data indexed from
the underlying dataset. It can be used to modify behavior of a dataset that is already prepared.

The last one is a group of domain-specific datasets. Currently, ImageDataset and LabeledImageDataset are
provided for datasets of images.

DictDataset

chainer.datasets.DictDataset Dataset of a dictionary of datasets.

4.7. Datasets 677

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

chainer.datasets.DictDataset

class chainer.datasets.DictDataset(**datasets)
Dataset of a dictionary of datasets.

It combines multiple datasets into one dataset. Each example is represented by a dictionary mapping a key to an
example of the corresponding dataset.

Parameters datasets – Underlying datasets. The keys are used as the keys of each example. All
datasets must have the same length.

Methods

__getitem__(index)

__len__()

TupleDataset

chainer.datasets.TupleDataset Dataset of tuples from multiple equal-length datasets.

chainer.datasets.TupleDataset

class chainer.datasets.TupleDataset(*datasets)
Dataset of tuples from multiple equal-length datasets.

A TupleDataset combines multiple equal-length datasets into a single dataset of tuples. The i-th tuple
contains the i-th example from each of the argument datasets, in the same order that they were supplied.

Recall that in Chainer, a dataset is defined as an iterable that supports both __getitem__ and __len__. The
__getitem__ method should support indexing by both an integer and a slice.

As an example, consider creating a TupleDataset from two argument datasets d1 = [8, 0, 5, 1] and
d2 = [3, 1, 7, 4] as tuple_dataset = TupleDataset(d1, d2). The tuple_dataset
will then contain the examples (8, 3), (0, 1), (5, 7), (1, 4). Note that this behavior is simi-
lar to that of the built-in zip() function.

Parameters datasets – Underlying datasets that will be aggregated. Each dataset must be an
iterable that implements __getitem__ and __len__. The j-th dataset will be used for the
j-th item of each example tuple. All datasets must have the same length.

Methods

__getitem__(index)

__len__()

ConcatenatedDataset

chainer.datasets.ConcatenatedDataset Dataset which concatenates some base datasets.

678 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#zip

Chainer Documentation, Release 4.0.0

chainer.datasets.ConcatenatedDataset

class chainer.datasets.ConcatenatedDataset(*datasets)
Dataset which concatenates some base datasets.

This dataset wraps some base datasets and works as a concatenated dataset. For example, if a base dataset with
10 samples and another base dataset with 20 samples are given, this dataset works as a dataset which has 30
samples.

Parameters datasets – The underlying datasets. Each dataset has to support __len__() and
__getitem__().

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

4.7. Datasets 679

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError

Chainer Documentation, Release 4.0.0

Parameters i (int) – The index of the example.

Returns The i-th example.

SubDataset

chainer.datasets.SubDataset Subset of a base dataset.
chainer.datasets.split_dataset Splits a dataset into two subsets.
chainer.datasets.split_dataset_random Splits a dataset into two subsets randomly.
chainer.datasets.get_cross_validation_datasetsCreates a set of training/test splits for cross validation.
chainer.datasets.get_cross_validation_datasets_randomCreates a set of training/test splits for cross validation ran-

domly.

chainer.datasets.SubDataset

class chainer.datasets.SubDataset(dataset, start, finish, order=None)
Subset of a base dataset.

SubDataset defines a subset of a given base dataset. The subset is defined as an interval of indexes, optionally
with a given permutation.

If order is given, then the i-th example of this dataset is the order[start + i]-th example of the base
dataset, where i is a non-negative integer. If order is not given, then the i-th example of this dataset is the
start + i-th example of the base dataset. Negative indexing is also allowed: in this case, the term start
+ i is replaced by finish + i.

SubDataset is often used to split a dataset into training and validation subsets. The training set is used for
training, while the validation set is used to track the generalization performance, i.e. how the learned model
works well on unseen data. We can tune hyperparameters (e.g. number of hidden units, weight initializers,
learning rate, etc.) by comparing the validation performance. Note that we often use another set called test set
to measure the quality of the tuned hyperparameter, which can be made by nesting multiple SubDatasets.

There are two ways to make training-validation splits. One is a single split, where the dataset is split just
into two subsets. It can be done by split_dataset() or split_dataset_random(). The other
one is a 𝑘-fold cross validation, in which the dataset is divided into 𝑘 subsets, and 𝑘 different splits are
generated using each of the 𝑘 subsets as a validation set and the rest as a training set. It can be done by
get_cross_validation_datasets().

Parameters

• dataset – Base dataset.

• start (int) – The first index in the interval.

• finish (int) – The next-to-the-last index in the interval.

• order (sequence of ints) – Permutation of indexes in the base dataset. If this is
None, then the ascending order of indexes is used.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

680 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

chainer.datasets.split_dataset

chainer.datasets.split_dataset(dataset, split_at, order=None)
Splits a dataset into two subsets.

This function creates two instances of SubDataset. These instances do not share any examples, and they
together cover all examples of the original dataset.

Parameters

• dataset – Dataset to split.

• split_at (int) – Position at which the base dataset is split.

4.7. Datasets 681

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

• order (sequence of ints) – Permutation of indexes in the base dataset. See the
document of SubDataset for details.

Returns Two SubDataset objects. The first subset represents the examples of in-
dexes order[:split_at] while the second subset represents the examples of indexes
order[split_at:].

Return type tuple

chainer.datasets.split_dataset_random

chainer.datasets.split_dataset_random(dataset, first_size, seed=None)
Splits a dataset into two subsets randomly.

This function creates two instances of SubDataset. These instances do not share any examples, and they
together cover all examples of the original dataset. The split is automatically done randomly.

Parameters

• dataset – Dataset to split.

• first_size (int) – Size of the first subset.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer being
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

Returns Two SubDataset objects. The first subset contains first_size examples randomly
chosen from the dataset without replacement, and the second subset contains the rest of the
dataset.

Return type tuple

chainer.datasets.get_cross_validation_datasets

chainer.datasets.get_cross_validation_datasets(dataset, n_fold, order=None)
Creates a set of training/test splits for cross validation.

This function generates n_fold splits of the given dataset. The first part of each split corresponds to the
training dataset, while the second part to the test dataset. No pairs of test datasets share any examples, and all
test datasets together cover the whole base dataset. Each test dataset contains almost same number of examples
(the numbers may differ up to 1).

Parameters

• dataset – Dataset to split.

• n_fold (int) – Number of splits for cross validation.

• order (sequence of ints) – Order of indexes with which each split is determined.
If it is None, then no permutation is used.

Returns List of dataset splits.

Return type list of tuples

682 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.datasets.get_cross_validation_datasets_random

chainer.datasets.get_cross_validation_datasets_random(dataset, n_fold, seed=None)
Creates a set of training/test splits for cross validation randomly.

This function acts almost same as get_cross_validation_dataset(), except automatically generating
random permutation.

Parameters

• dataset – Dataset to split.

• n_fold (int) – Number of splits for cross validation.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer beging
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

Returns List of dataset splits.

Return type list of tuples

TransformDataset

chainer.datasets.TransformDataset Dataset that indexes the base dataset and transforms the
data.

chainer.datasets.TransformDataset

class chainer.datasets.TransformDataset(dataset, transform)
Dataset that indexes the base dataset and transforms the data.

This dataset wraps the base dataset by modifying the behavior of the base dataset’s __getitem__(). Arrays
returned by __getitem__() of the base dataset with integer as an argument are transformed by the given
function transform. Also, __len__() returns the integer returned by the base dataset’s __len__().

The function transform takes, as an argument, in_data, which is the output of the base dataset’s
__getitem__(), and returns the transformed arrays as output. Please see the following example.

>>> from chainer.datasets import get_mnist
>>> from chainer.datasets import TransformDataset
>>> dataset, _ = get_mnist()
>>> def transform(in_data):
... img, label = in_data
... img -= 0.5 # scale to [-0.5, -0.5]
... return img, label
>>> dataset = TransformDataset(dataset, transform)

Parameters

• dataset – The underlying dataset. The index of this dataset corresponds to the index of the
base dataset. This object needs to support functions __getitem__() and __len__()
as described above.

• transform (callable) – A function that is called to transform values returned by the
underlying dataset’s __getitem__().

4.7. Datasets 683

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

ImageDataset

chainer.datasets.ImageDataset Dataset of images built from a list of paths to image files.

684 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.datasets.ImageDataset

class chainer.datasets.ImageDataset(paths, root=’.’, dtype=<class ’numpy.float32’>)
Dataset of images built from a list of paths to image files.

This dataset reads an external image file on every call of the __getitem__() operator. The paths to the
image to retrieve is given as either a list of strings or a text file that contains paths in distinct lines.

Each image is automatically converted to arrays of shape channels, height, width, where channels
represents the number of channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color images).

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow
(e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For
example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the
same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale
images.

Parameters

• paths (str or list of strs) – If it is a string, it is a path to a text file that contains
paths to images in distinct lines. If it is a list of paths, the i-th element represents the path to
the i-th image. In both cases, each path is a relative one from the root path given by another
argument.

• root (str) – Root directory to retrieve images from.

• dtype – Data type of resulting image arrays.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values

(continues on next page)

4.7. Datasets 685

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

(continued from previous page)

... def __len__(self):

... return len(self.values)

... def get_example(self, i):

... return self.values[i]

...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

LabeledImageDataset

chainer.datasets.LabeledImageDataset Dataset of image and label pairs built from a list of paths
and labels.

chainer.datasets.LabeledImageDataset

class chainer.datasets.LabeledImageDataset(pairs, root=’.’, dtype=<class
’numpy.float32’>, label_dtype=<class
’numpy.int32’>)

Dataset of image and label pairs built from a list of paths and labels.

This dataset reads an external image file like ImageDataset. The difference from ImageDataset is that
this dataset also returns a label integer. The paths and labels are given as either a list of pairs or a text file
contains paths/labels pairs in distinct lines. In the latter case, each path and corresponding label are separated
by white spaces. This format is same as one used in Caffe.

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow
(e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For
example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the

686 Chapter 4. Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale
images.

Parameters

• pairs (str or list of tuples) – If it is a string, it is a path to a text file that
contains paths to images in distinct lines. If it is a list of pairs, the i-th element represents a
pair of the path to the i-th image and the corresponding label. In both cases, each path is a
relative one from the root path given by another argument.

• root (str) – Root directory to retrieve images from.

• dtype – Data type of resulting image arrays.

• label_dtype – Data type of the labels.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

4.7. Datasets 687

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 4.0.0

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

4.7.4 Concrete Datasets

chainer.datasets.get_mnist Gets the MNIST dataset.
chainer.datasets.get_fashion_mnist Gets the Fashion-MNIST dataset.
chainer.datasets.get_cifar10 Gets the CIFAR-10 dataset.
chainer.datasets.get_cifar100 Gets the CIFAR-100 dataset.
chainer.datasets.get_ptb_words Gets the Penn Tree Bank dataset as long word sequences.
chainer.datasets.get_ptb_words_vocabularyGets the Penn Tree Bank word vocabulary.
chainer.datasets.get_svhn Gets the SVHN dataset.

chainer.datasets.get_mnist

chainer.datasets.get_mnist(withlabel=True, ndim=1, scale=1.0, dtype=<class ’numpy.float32’>,
label_dtype=<class ’numpy.int32’>, rgb_format=False)

Gets the MNIST dataset.

MNIST is a set of hand-written digits represented by grey-scale 28x28 images. In the original images, each
pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the
interval [0, scale].

This function returns the training set and the test set of the official MNIST dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays.

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

688 Chapter 4. Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
http://yann.lecun.com/exdb/mnist/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_fashion_mnist

chainer.datasets.get_fashion_mnist(withlabel=True, ndim=1, scale=1.0, dtype=<class
’numpy.float32’>, label_dtype=<class ’numpy.int32’>,
rgb_format=False)

Gets the Fashion-MNIST dataset.

Fashion-MNIST is a set of fashion articles represented by grey-scale 28x28 images. In the original images, each
pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the
interval [0, scale].

This function returns the training set and the test set of the official Fashion-MNIST dataset. If withlabel is
True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays.

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_cifar10

chainer.datasets.get_cifar10(withlabel=True, ndim=3, scale=1.0)
Gets the CIFAR-10 dataset.

CIFAR-10 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into
10 groups. In the original images, each component of pixels is represented by one-byte unsigned integer. This
function scales the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official CIFAR-10 dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

4.7. Datasets 689

https://github.com/zalandoresearch/fashion-mnist/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (3072,)

– ndim == 3: the shape is (3, 32, 32)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_cifar100

chainer.datasets.get_cifar100(withlabel=True, ndim=3, scale=1.0)
Gets the CIFAR-100 dataset.

CIFAR-100 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into
100 groups. In the original images, each component pixels is represented by one-byte unsigned integer. This
function scales the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official CIFAR-100 dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (3072,)

– ndim == 3: the shape is (3, 32, 32)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

Returns A tuple of two datasets. If withlabel is True, both are TupleDataset instances.
Otherwise, both datasets are arrays of images.

chainer.datasets.get_ptb_words

chainer.datasets.get_ptb_words()
Gets the Penn Tree Bank dataset as long word sequences.

Penn Tree Bank is originally a corpus of English sentences with linguistic structure annotations. This func-
tion uses a variant distributed at https://github.com/wojzaremba/lstm, which omits the annotation and splits the
dataset into three parts: training, validation, and test.

This function returns the training, validation, and test sets, each of which is represented as a long array of word
IDs. All sentences in the dataset are concatenated by End-of-Sentence mark ‘<eos>’, which is treated as one of
the vocabulary.

Returns Int32 vectors of word IDs.

Return type tuple of numpy.ndarray

690 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.cis.upenn.edu/~treebank/
https://github.com/wojzaremba/lstm

Chainer Documentation, Release 4.0.0

See also:

Use get_ptb_words_vocabulary() to get the mapping between the words and word IDs.

chainer.datasets.get_ptb_words_vocabulary

chainer.datasets.get_ptb_words_vocabulary()
Gets the Penn Tree Bank word vocabulary.

Returns Dictionary that maps words to corresponding word IDs. The IDs are used in the Penn Tree
Bank long sequence datasets.

Return type dict

See also:

See get_ptb_words() for the actual datasets.

chainer.datasets.get_svhn

chainer.datasets.get_svhn(withlabel=True, scale=1.0, dtype=<class ’numpy.float32’>, la-
bel_dtype=<class ’numpy.int32’>)

Gets the SVHN dataset.

The Street View House Numbers (SVHN) dataset is a dataset similar to MNIST but composed of cropped
images of house numbers. The functionality of this function is identical to the counterpart for the MNIST
dataset (get_mnist()), with the exception that there is no ndim argument.

Note: SciPy is required to use this feature.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays.

• label_dtype – Data type of the labels.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

4.8 Iterator

Chainer provides some iterators that implement typical strategies to create mini-batches by iterating over datasets.
SerialIterator is the simplest one, which extract mini-batches in the main thread. MultiprocessIterator
and MultithreadIterator are a parallelized version of SerialIterator. It maintains worker subprocesses
and subthreads to load the next mini-batch in parallel.

chainer.iterators.SerialIterator Dataset iterator that serially reads the examples.
Continued on next page

4.8. Iterator 691

https://docs.python.org/3/library/stdtypes.html#dict
http://ufldl.stanford.edu/housenumbers/
https://www.scipy.org/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

Table 50 – continued from previous page
chainer.iterators.MultiprocessIterator Dataset iterator that loads examples in parallel.
chainer.iterators.MultithreadIterator Dataset iterator that loads examples in parallel.

4.8.1 chainer.iterators.SerialIterator

class chainer.iterators.SerialIterator(dataset, batch_size, repeat=True, shuffle=True)
Dataset iterator that serially reads the examples.

This is a simple implementation of Iterator that just visits each example in either the order of indexes or a
shuffled order.

To avoid unintentional performance degradation, the shuffle option is set to True by default. For validation,
it is better to set it to False when the underlying dataset supports fast slicing. If the order of examples has an
important meaning and the updater depends on the original order, this option should be set to False.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes.

Methods

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support serializer protocol of Chainer.

692 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 4.0.0

Note: It should only serialize the internal state that changes over the iteration. It should not serializes
what is set manually by users such as the batch size.

Attributes

epoch_detail

previous_epoch_detail

4.8.2 chainer.iterators.MultiprocessIterator

class chainer.iterators.MultiprocessIterator(dataset, batch_size, repeat=True,
shuffle=True, n_processes=None,
n_prefetch=1, shared_mem=None)

Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads examples with worker processes. It uses the standard
multiprocessing module to parallelize the loading. The dataset is sent to the worker processes in the
standard way using pickle.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current
batch is returned.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset (Dataset) – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes.

• n_processes (int) – Number of worker processes. The number of CPUs is used by
default.

• n_prefetch (int) – Number of prefetch batches.

• shared_mem (int) – The size of using shared memory per data. If None, size is adjusted
automatically.

Methods

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

__copy__()

4.8. Iterator 693

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 4.0.0

finalize()

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serializes
what is set manually by users such as the batch size.

Attributes

epoch_detail

previous_epoch_detail

4.8.3 chainer.iterators.MultithreadIterator

class chainer.iterators.MultithreadIterator(dataset, batch_size, repeat=True, shuf-
fle=True, n_threads=1)

Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads examples with worker threads. It uses the standard
threading module to parallelize the loading.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current
batch is returned.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset (Dataset) – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes.

• n_threads (int) – Number of worker threads.

Methods

__next__()
Returns the next batch.

694 Chapter 4. Reference

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serializes
what is set manually by users such as the batch size.

Attributes

epoch_detail

previous_epoch_detail

4.9 Serializers

4.9.1 Serialization in NumPy NPZ format

NumPy serializers can be used in arbitrary environments that Chainer runs with. It consists of asymmetric serial-
izer/deserializer due to the fact that numpy.savez() does not support online serialization. Therefore, serialization
requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.

chainer.serializers.
DictionarySerializer

Serializer for dictionary.

chainer.serializers.NpzDeserializer Deserializer for NPZ format.
chainer.serializers.save_npz Saves an object to the file in NPZ format.
chainer.serializers.load_npz Loads an object from the file in NPZ format.

chainer.serializers.DictionarySerializer

class chainer.serializers.DictionarySerializer(target=None, path=”)
Serializer for dictionary.

4.9. Serializers 695

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez

Chainer Documentation, Release 4.0.0

This is the standard serializer in Chainer. The hierarchy of objects are simply mapped to a flat dictionary with
keys representing the paths to objects in the hierarchy.

Note: Despite of its name, this serializer DOES NOT serialize the object into external files. It just build a
flat dictionary of arrays that can be fed into numpy.savez() and numpy.savez_compressed(). If you
want to use this serializer directly, you have to manually send a resulting dictionary to one of these functions.

Parameters

• target (dict) – The dictionary that this serializer saves the objects to. If target is None,
then a new dictionary is created.

• path (str) – The base path in the hierarchy that this serializer indicates.

Variables target (dict) – The target dictionary. Once the serialization completes, this dictionary
can be fed into numpy.savez() or numpy.savez_compressed() to serialize it in the
NPZ format.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When
value is None, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value
without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

696 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

chainer.serializers.NpzDeserializer

class chainer.serializers.NpzDeserializer(npz, path=”, strict=True, ig-
nore_names=None)

Deserializer for NPZ format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
save_npz().

Parameters

• npz – npz file object.

• path – The base path that the deserialization starts from.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

• ignore_names (string, callable or list of them) – If callable, it is a
function that takes a name of a parameter and a persistent and returns True when it needs to
be skipped. If string, this is a name of a parameter or persistent that are going to be skipped.
This can also be a list of callables and strings that behave as described above.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When
value is None, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value
without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

4.9. Serializers 697

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

chainer.serializers.save_npz

chainer.serializers.save_npz(file, obj, compression=True)
Saves an object to the file in NPZ format.

This is a short-cut function to save only one object into an NPZ file.

Parameters

• file (str or file-like) – Target file to write to.

• obj – Object to be serialized. It must support serialization protocol.

• compression (bool) – If True, compression in the resulting zip file is enabled.

See also:

chainer.serializers.load_npz()

chainer.serializers.load_npz

chainer.serializers.load_npz(file, obj, path=”, strict=True)
Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only one object.

Parameters

• file (str or file-like) – File to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

• path (str) – The path in the hierarchy of the serialized data under which the data is to be
loaded. The default behavior (blank) will load all data under the root path.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

See also:

chainer.serializers.save_npz()

4.9.2 Serialization in HDF5 format

chainer.serializers.HDF5Serializer Serializer for HDF5 format.
chainer.serializers.HDF5Deserializer Deserializer for HDF5 format.

Continued on next page

698 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

Table 52 – continued from previous page
chainer.serializers.save_hdf5 Saves an object to the file in HDF5 format.
chainer.serializers.load_hdf5 Loads an object from the file in HDF5 format.

chainer.serializers.HDF5Serializer

class chainer.serializers.HDF5Serializer(group, compression=4)
Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply mapped to HDF5 hierarchical groups.

Parameters

• group (h5py.Group) – The group that this serializer represents.

• compression (int) – Gzip compression level.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When
value is None, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value
without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

4.9. Serializers 699

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

chainer.serializers.HDF5Deserializer

class chainer.serializers.HDF5Deserializer(group, strict=True)
Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
HDF5Serializer.

Parameters

• group (h5py.Group) – The group that the deserialization starts from.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given HDF5 file. Otherwise, it ignores the value and skip deserialization.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When
value is None, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value
without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

700 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

chainer.serializers.save_hdf5

chainer.serializers.save_hdf5(filename, obj, compression=4)
Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If you want to save multiple objects to
one HDF5 file, use HDF5Serializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Target file name.

• obj – Object to be serialized. It must support serialization protocol.

• compression (int) – Gzip compression level.

Note: Currently save_hdf5() only supports writing to an actual file on file system due to a limitation of
HD5F library. See h5py/h5py#687 for details.

See also:

chainer.serializers.load_hdf5()

chainer.serializers.load_hdf5

chainer.serializers.load_hdf5(filename, obj)
Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only one object. If you want to load multiple
objects from one HDF5 file, use HDF5Deserializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Name of the file to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

Note: Currently load_hdf5() only supports loading an actual file on file system due to a limitation of HD5F
library. See h5py/h5py#687 for details.

See also:

chainer.serializers.save_hdf5()

4.9.3 Serializers base classes

chainer.Serializer Base class of all serializers.
chainer.AbstractSerializer Abstract base class of all serializers and deserializers.
chainer.Deserializer Base class of all deserializers.

chainer.Serializer

class chainer.Serializer
Base class of all serializers.

4.9. Serializers 701

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://github.com/h5py/h5py/issues/687
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/h5py/h5py/issues/687

Chainer Documentation, Release 4.0.0

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When
value is None, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value
without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

chainer.AbstractSerializer

class chainer.AbstractSerializer
Abstract base class of all serializers and deserializers.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

702 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When
value is None, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value
without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

chainer.Deserializer

class chainer.Deserializer
Base class of all deserializers.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When
value is None, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value
without modifying the value object.

Parameters

• key (str) – Name of the serialization entry.

4.9. Serializers 703

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

4.10 Utilities

4.10.1 Convolution/Deconvolution utilities

chainer.utils.get_conv_outsize Calculates output size of convolution.
chainer.utils.get_deconv_outsize Calculates output size of deconvolution.

chainer.utils.get_conv_outsize

chainer.utils.get_conv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of convolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_deconv_outsize()

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature
map.

• k (int) – The size of convolution kernel.

• s (int) – The size of stride.

• p (int) – The size of padding.

• cover_all (bool) – Use cover_all option or not.

• d (int) – The size of dilation.

Returns The expected output size of the convolution operation.

Return type int

704 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 4.0.0

chainer.utils.get_deconv_outsize

chainer.utils.get_deconv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of deconvolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_conv_outsize()

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature
map.

• k (int) – The size of deconvolution kernel.

• s (int) – The size of stride.

• p (int) – The size of padding.

• cover_all (bool) – Use cover_all option or not.

• d (int) – The size of dilation.

Returns The expected output size of the deconvolution operation.

Return type int

4.10.2 CUDA utilities

Device, context and memory management on CuPy.

Note: The package chainer.cuda has been renamed to chainer.backends.cuda as of v4.0.0, but the
previous module path chainer.cuda is also available.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU computation. Following modules and classes
defined in CuPy are imported to chainer.backends.cuda module for convenience (refer to this table when
reading chainer’s source codes).

imported name original name
chainer.backends.cuda.cupy cupy
chainer.backends.cuda.cupyx cupyx
chainer.backends.cuda.ndarray cupy.ndarray
chainer.backends.cuda.cupy.cuda cupy.cuda
chainer.backends.cuda.Device cupy.cuda.Device
chainer.backends.cuda.Event cupy.cuda.Event
chainer.backends.cuda.Stream cupy.cuda.Stream

Chainer replaces the default allocator of CuPy by its memory pool implementation. It enables us to reuse the device
memory over multiple forward/backward computations, and temporary arrays for consecutive elementwise operations.

4.10. Utilities 705

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Event.html#cupy.cuda.Event
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream

Chainer Documentation, Release 4.0.0

Devices

chainer.backends.cuda.get_device Gets the device from a device object, an ID integer or an
array object.

chainer.backends.cuda.
get_device_from_id

Gets the device from an ID integer.

chainer.backends.cuda.
get_device_from_array

Gets the device from a list of CuPy array or a single CuPy
array.

chainer.backends.cuda.get_device

chainer.backends.cuda.get_device(*args)
Gets the device from a device object, an ID integer or an array object.

Note: This API is deprecated. Please use get_device_from_id() or get_device_from_array()
instead.

This is a convenient utility to select a correct device if the type of arg is unknown (i.e., one can use this function
on arrays that may be on CPU or GPU). The returned device object supports the context management protocol
of Python for the with statement.

Parameters args – Values to specify a GPU device. The first device object, integer or cupy.
ndarray object is used to select a device. If it is a device object, it is returned. If it is an
integer, the corresponding device is returned. If it is a CuPy array, the device on which this array
reside is returned. If any arguments are neither integers nor CuPy arrays, a dummy device object
representing CPU is returned.

Returns Device object specified by given args.

See also:

See cupy.cuda.Device for the device selection not by arrays.

chainer.backends.cuda.get_device_from_id

chainer.backends.cuda.get_device_from_id(device_id)
Gets the device from an ID integer.

Parameters device_id (int or None) – The ID of the device which this function returns.

chainer.backends.cuda.get_device_from_array

chainer.backends.cuda.get_device_from_array(*arrays)
Gets the device from a list of CuPy array or a single CuPy array.

The device on which the given CuPy array reside is returned.

Note: This method only recognizes cupy.ndarrays in arguments. Especially note that, unlike
get_array_module(), this method does not recognize Variable objects. If you need to get device
from the Variable instance v, you need to use get_device_from_array(v.array).

706 Chapter 4. Reference

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs.python.org/3/library/functions.html#int
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

Parameters arrays (cupy.ndarray or list of cupy.ndarray) – A CuPy array which this
function returns the device corresponding to. If a list of cupy.ndarrays are given, it returns
the first device object of an array in the list.

CuPy array allocation and copy

chainer.backends.cuda.copy Copies a cupy.ndarray object using the default stream.
chainer.backends.cuda.to_cpu Copies the given GPU array to host CPU.
chainer.backends.cuda.to_gpu Copies the given CPU array to the specified device.

chainer.backends.cuda.copy

chainer.backends.cuda.copy(array, out=None, out_device=None, stream=None)
Copies a cupy.ndarray object using the default stream.

This function can copy the device array to the destination array on another device.

Parameters

• array (cupy.ndarray) – Array to be copied.

• out (cupy.ndarray) – Destination array. If it is not None, then out_device argu-
ment is ignored.

• out_device – Destination device specifier. Actual device object is obtained by passing
this value to get_device().

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Copied array.

If out is not specified, then the array is allocated on the device specified by out_device
argument.

Return type cupy.ndarray

chainer.backends.cuda.to_cpu

chainer.backends.cuda.to_cpu(array, stream=None)
Copies the given GPU array to host CPU.

Parameters

• array (array, None, list or tuple) – Array or arrays to be sent to CPU.

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Array on CPU.

If some of the arrays are already on CPU, then this function just returns those arrays without
performing any copy.

If input arrays include None, it is returned as None as is.

Return type numpy.ndarray, list or tuple

4.10. Utilities 707

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

chainer.backends.cuda.to_gpu

chainer.backends.cuda.to_gpu(array, device=None, stream=None)
Copies the given CPU array to the specified device.

Parameters

• array (array, None, list or tuple) – Array or arrays to be sent to GPU.

• device – Device specifier.

• stream (Stream) – (deprecated since v3.0.0) CUDA stream. If not None, the copy runs
asynchronously.

Returns

Array or arrays on GPU.

If some of the arrays are already on GPU, then this function just returns those arrays without
performing any copy.

If input arrays include None, it is returned as None as is.

Return type cupy.ndarray, list or tuple

Kernel definition utilities

chainer.backends.cuda.memoize Makes a function memoizing the result for each argument
and device.

chainer.backends.cuda.clear_memo Clears the memoized results for all functions decorated by
memoize.

chainer.backends.cuda.elementwise Creates an elementwise kernel function.
chainer.backends.cuda.reduce Creates a global reduction kernel function.

chainer.backends.cuda.memoize

chainer.backends.cuda.memoize(for_each_device=False)
Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that this function can be used in the global
scope even if CUDA is not available. In such case, this function does nothing.

Note: This decorator acts as a dummy if CUDA is not available. It cannot be used for general purpose
memoization even if for_each_device is set to False.

chainer.backends.cuda.clear_memo

chainer.backends.cuda.clear_memo()
Clears the memoized results for all functions decorated by memoize.

This function works like cupy.clear_memo() as a counterpart for chainer.backends.cuda.
memoize(). It can be used even if CUDA is not available. In such a case, this function does nothing.

708 Chapter 4. Reference

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.memoize.html#cupy.memoize
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.clear_memo.html#cupy.clear_memo

Chainer Documentation, Release 4.0.0

chainer.backends.cuda.elementwise

chainer.backends.cuda.elementwise(in_params, out_params, operation, name, **kwargs)
Creates an elementwise kernel function.

This function uses memoize() to cache the kernel object, i.e. the resulting kernel object is cached for each
argument combination and CUDA device.

The arguments are the same as those for cupy.ElementwiseKernel, except that the name argument is
mandatory.

chainer.backends.cuda.reduce

chainer.backends.cuda.reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr,
identity, name, **kwargs)

Creates a global reduction kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached
for each argument combination and CUDA device.

The arguments are the same as those for cupy.ReductionKernel, except that the name argument is
mandatory.

CPU/GPU generic code support

chainer.backends.cuda.get_array_module Gets an appropriate one from numpy or cupy.

chainer.backends.cuda.get_array_module

chainer.backends.cuda.get_array_module(*args)
Gets an appropriate one from numpy or cupy.

This is almost equivalent to cupy.get_array_module(). The differences are that this function can be used
even if CUDA is not available and that it will return their data arrays’ array module for Variable arguments.

Parameters args – Values to determine whether NumPy or CuPy should be used.

Returns cupy or numpy is returned based on the types of the arguments.

Return type module

cuDNN support

chainer.backends.cuda.
set_max_workspace_size

Sets the workspace size for cuDNN.

chainer.backends.cuda.
get_max_workspace_size

Gets the workspace size for cuDNN.

chainer.backends.cuda.set_max_workspace_size

chainer.backends.cuda.set_max_workspace_size(size)
Sets the workspace size for cuDNN.

4.10. Utilities 709

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ReductionKernel.html#cupy.ReductionKernel
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.get_array_module.html#cupy.get_array_module
https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 4.0.0

Check “cuDNN Library User Guide” for detail.

Parameters size – The workspace size for cuDNN.

chainer.backends.cuda.get_max_workspace_size

chainer.backends.cuda.get_max_workspace_size()
Gets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

Returns The workspace size for cuDNN.

Return type int

4.10.3 Common algorithms

chainer.utils.WalkerAlias Implementation of Walker’s alias method.

chainer.utils.WalkerAlias

class chainer.utils.WalkerAlias(probs)
Implementation of Walker’s alias method.

This method generates a random sample from given probabilities 𝑝1, . . . , 𝑝𝑛 in 𝑂(1) time. It is more efficient
than choice(). This class works on both CPU and GPU.

Parameters probs (float list) – Probabilities of entries. They are normalized with
sum(probs).

See: Wikipedia article

Methods

sample(shape)
Generates a random sample based on given probabilities.

Parameters shape (tuple of int) – Shape of a return value.

Returns Returns a generated array with the given shape. If a sampler is in CPU mode the return
value is a numpy.ndarray object, and if it is in GPU mode the return value is a cupy.
ndarray object.

sample_cpu(shape)

sample_gpu(shape)

to_cpu()
Make a sampler CPU mode.

to_gpu()
Make a sampler GPU mode.

710 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html#numpy.random.choice
https://en.wikipedia.org/wiki/Alias_method
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 4.0.0

4.10.4 Reporter

Reporter

chainer.Reporter Object to which observed values are reported.
chainer.get_current_reporter Returns the current reporter object.
chainer.report Reports observed values with the current reporter object.
chainer.report_scope Returns a report scope with the current reporter.

chainer.Reporter

class chainer.Reporter
Object to which observed values are reported.

Reporter is used to collect values that users want to watch. The reporter object holds a mapping from value
names to the actually observed values. We call this mapping observations.

When a value is passed to the reporter, an object called observer can be optionally attached. In this case,
the name of the observer is added as the prefix of the value name. The observer name should be registered
beforehand.

See the following example:

>>> from chainer import Reporter, report, report_scope
>>>
>>> reporter = Reporter()
>>> observer = object() # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer', observer)
>>> observation = {}
>>> with reporter.scope(observation):
... reporter.report({'x': 1}, observer)
...
>>> observation
{'my_observer/x': 1}

There are also a global API to add values:

>>> observation = {}
>>> with report_scope(observation):
... report({'x': 1}, observer)
...
>>> observation
{'my_observer/x': 1}

The most important application of Reporter is to report observed values from each link or chain in the training
and validation procedures. Trainer and some extensions prepare their own Reporter object with the hierarchy
of the target link registered as observers. We can use report() function inside any links and chains to report
the observed values (e.g., training loss, accuracy, activation statistics, etc.).

Variables observation – Dictionary of observed values.

Methods

__enter__()
Makes this reporter object current.

4.10. Utilities 711

Chainer Documentation, Release 4.0.0

__exit__(exc_type, exc_value, traceback)
Recovers the previous reporter object to the current.

add_observer(name, observer)
Registers an observer of values.

Observer defines a scope of names for observed values. Values observed with the observer are registered
with names prefixed by the observer name.

Parameters

• name (str) – Name of the observer.

• observer – The observer object. Note that the reporter distinguishes the observers by
their object ids (i.e., id(owner)), rather than the object equality.

add_observers(prefix, observers)
Registers multiple observers at once.

This is a convenient method to register multiple objects at once.

Parameters

• prefix (str) – Prefix of each name of observers.

• observers – Iterator of name and observer pairs.

report(values, observer=None)
Reports observed values.

The values are written with the key, prefixed by the name of the observer object if given.

Note: As of v2.0.0, if a value is of type Variable, the variable is copied without preserving the
computational graph and the new variable object purged from the graph is stored to the observer. This
behavior can be changed by setting chainer.config.keep_graph_on_report to True.

Parameters

• values (dict) – Dictionary of observed values.

• observer – Observer object. Its object ID is used to retrieve the observer name, which
is used as the prefix of the registration name of the observed value.

scope(observation)
Creates a scope to report observed values to observation.

This is a context manager to be passed to with statements. In this scope, the observation dictionary is
changed to the given one.

It also makes this reporter object current.

Parameters observation (dict) – Observation dictionary. All observations reported inside
of the with statement are written to this dictionary.

chainer.get_current_reporter

chainer.get_current_reporter()
Returns the current reporter object.

712 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 4.0.0

chainer.report

chainer.report(values, observer=None)
Reports observed values with the current reporter object.

Any reporter object can be set current by the with statement. This function calls the Report.report()
method of the current reporter. If no reporter object is current, this function does nothing.

Example

The most typical example is a use within links and chains. Suppose that a link is registered to the current
reporter as an observer (for example, the target link of the optimizer is automatically registered to the reporter
of the Trainer). We can report some values from the link as follows:

class MyRegressor(chainer.Chain):
def __init__(self, predictor):

super(MyRegressor, self).__init__(predictor=predictor)

def __call__(self, x, y):
This chain just computes the mean absolute and squared
errors between the prediction and y.
pred = self.predictor(x)
abs_error = F.sum(F.abs(pred - y)) / len(x)
loss = F.mean_squared_error(pred, y)

Report the mean absolute and squared errors.
report({'abs_error': abs_error, 'squared_error': loss}, self)

return loss

If the link is named 'main' in the hierarchy (which is the default name of the target link
in the StandardUpdater), these reported values are named 'main/abs_error' and 'main/
squared_error'. If these values are reported inside the Evaluator extension, 'validation/' is
added at the head of the link name, thus the item names are changed to 'validation/main/abs_error'
and 'validation/main/squared_error' ('validation' is the default name of the Evaluator ex-
tension).

Parameters

• values (dict) – Dictionary of observed values.

• observer – Observer object. Its object ID is used to retrieve the observer name, which is
used as the prefix of the registration name of the observed value.

chainer.report_scope

chainer.report_scope(observation)
Returns a report scope with the current reporter.

This is equivalent to get_current_reporter().scope(observation), except that it does not make
the reporter current redundantly.

4.10. Utilities 713

https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 4.0.0

Summary and DictSummary

chainer.Summary Online summarization of a sequence of scalars.
chainer.DictSummary Online summarization of a sequence of dictionaries.

chainer.Summary

class chainer.Summary
Online summarization of a sequence of scalars.

Summary computes the statistics of given scalars online.

Methods

add(value)
Adds a scalar value.

Parameters value – Scalar value to accumulate. It is either a NumPy scalar or a zero-
dimensional array (on CPU or GPU).

compute_mean()
Computes the mean.

make_statistics()
Computes and returns the mean and standard deviation values.

Returns Mean and standard deviation values.

Return type tuple

serialize(serializer)

chainer.DictSummary

class chainer.DictSummary
Online summarization of a sequence of dictionaries.

DictSummary computes the statistics of a given set of scalars online. It only computes the statistics for scalar
values and variables of scalar values in the dictionaries.

Methods

add(d)
Adds a dictionary of scalars.

Parameters d (dict) – Dictionary of scalars to accumulate. Only elements of scalars, zero-
dimensional arrays, and variables of zero-dimensional arrays are accumulated.

compute_mean()
Creates a dictionary of mean values.

It returns a single dictionary that holds a mean value for each entry added to the summary.

Returns Dictionary of mean values.

Return type dict

714 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 4.0.0

make_statistics()
Creates a dictionary of statistics.

It returns a single dictionary that holds mean and standard deviation values for every entry added to the
summary. For an entry of name 'key', these values are added to the dictionary by names 'key' and
'key.std', respectively.

Returns Dictionary of statistics of all entries.

Return type dict

serialize(serializer)

4.10.5 Experimental feature annotation

chainer.utils.experimental Declares that user is using an experimental feature.

chainer.utils.experimental

chainer.utils.experimental(api_name)
Declares that user is using an experimental feature.

The developer of an API can mark it as experimental by calling this function. When users call experimental
APIs, FutureWarning is issued. The presentation of FutureWarning is disabled by setting chainer.
disable_experimental_feature_warning to True, which is False by default.

The basic usage is to call it in the function or method we want to mark as experimental along with the API name.

from chainer import utils

def f(x):
utils.experimental('chainer.foo.bar.f')
concrete implementation of f follows

f(1)

... FutureWarning: chainer.foo.bar.f is experimental. The interface can change in
→˓the future. ...

We can also make a whole class experimental. In that case, we should call this function in its __init__
method.

class C():
def __init__(self):

utils.experimental('chainer.foo.C')

C()

... FutureWarning: chainer.foo.C is experimental. The interface can change in the
→˓future. ...

If we want to mark __init__ method only, rather than class itself, it is recommended that we explicitly feed
its API name.

class D():
def __init__(self):

(continues on next page)

4.10. Utilities 715

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning

Chainer Documentation, Release 4.0.0

(continued from previous page)

utils.experimental('D.__init__')

D()

... FutureWarning: D.__init__ is experimental. The interface can change in the
→˓future. ...

Currently, we do not have any sophisticated way to mark some usage of non-experimental function as experi-
mental. But we can support such usage by explicitly branching it.

def g(x, experimental_arg=None):
if experimental_arg is not None:

utils.experimental('experimental_arg of chainer.foo.g')

Parameters api_name (str) – The name of an API marked as experimental.

4.11 Configuring Chainer

Chainer provides some global settings that affect the behavior of some functionalities. Such settings can be configured
using the unified configuration system. The system provides a transparent way to manage the configuration for each
process and for each thread.

The configuration is managed by two global objects: chainer.global_config and chainer.config.

• The global_config object maintains the configuration shared in the Python process. This is an instance of
the GlobalConfig class. It can be used just as a plain object, and users can freely set any attributes on it.

• The config object, on the other hand, maintains the configuration for the current thread. This is an instance of
the LocalConfig class. It behaves like a thread-local object, and any attribute modifications are only visible
to the current thread.

If no value is set to config for a given key, global_config is transparently referred. Thanks to this transparent
lookup, users can always use config to read any configuration so that the thread-local configuration is used if
available and otherwise the default global setting is used.

The following entries of the configuration are currently provided by Chainer. Some entries support environment
variables to set the default values. Note that the default values are set in the global config.

chainer.config.cudnn_deterministic Flag to configure deterministic computations in cuDNN APIs. If
it is True, convolution functions that use cuDNN use the deterministic mode (i.e, the computation is repro-
ducible). Otherwise, the results of convolution functions using cuDNN may be non-deterministic in exchange
for the performance. The default value is False.

chainer.config.debug Debug mode flag. If it is True, Chainer runs in the debug mode. See Debug Mode for
more information of the debug mode. The default value is given by CHAINER_DEBUG environment variable
(set to 0 or 1) if available, otherwise uses False.

chainer.config.enable_backprop Flag to enable backpropagation support. If it is True, computational
graphs are created during forward passes by FunctionNode\ s, allowing backpropagation to start from any
Variable in the graph. Otherwise, computational graphs are not created but memory consumptions are re-
duced. So calling backward() on the results of a function will not compute any gradients of any input. The
default value is True.

chainer.config.keep_graph_on_report Flag to configure whether or not to let report() keep the
computational graph. If it is False, report() does not keep the computational graph when a Variable
object is reported. It means that report() stores a copy of the Variable object which is purged from

716 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

the computational graph. If it is True, report() just stores the Variable object as is with the computa-
tional graph left attached. The default value is given by CHAINER_KEEP_GRAPH_ON_REPORT environment
variable (set to 0 or 1) if available, otherwise uses False.

chainer.config.train Training mode flag. If it is True, Chainer runs in training mode. Otherwise, it runs
in the testing (evaluation) mode. This configuration alters the behavior of e.g. chainer.functions.
dropout() and chainer.functions.batch_normalization(). It does not reduce memory con-
sumption or affect the creation of computational graphs required in order to compute gradients. The default
value is True.

chainer.config.type_check Type checking mode flag. If it is True, Chainer checks the types (data types
and shapes) of inputs on Function applications. Otherwise, it skips type checking. The default value is given
by CHAINER_TYPE_CHECK environment variable (set to 0 or 1) if available, otherwise uses True.

chainer.config.use_cudnn Flag to configure whether or not to use cuDNN. This is a ternary flag with
'always', 'auto', and 'never' as its allowed values. The meaning of each flag is as follows.

• If it is 'always', Chainer will try to use cuDNN everywhere if possible.

• If it is 'auto', Chainer will use cuDNN only if it is known that the usage does not degrade the perfor-
mance.

• If it is 'never', Chainer will never use cuDNN anywhere.

The default value is given by CHAINER_USE_CUDNN environment variable (set to 'always', 'auto' or
'never') if available, otherwise uses 'auto'.

chainer.config.use_ideep Flag to configure whether or not to use iDeep.

• If it is 'always', Chainer will try to use iDeep everywhere if possible.

• If it is 'auto', Chainer will use iDeep only if it is known that the usage does not degrade the performance.

• If it is 'never', Chainer will never use iDeep anywhere.

The default value is given by CHAINER_USE_IDEEP environment variable (set to 'always', 'auto' or
'never') if available, otherwise uses 'never'.

Note that in spite of the configuration, optimizers will use iDeep if and only if the link is converted manually to
iDeep (e.g., model.to_intel64()).

chainer.config.lazy_grad_sum Flag to control the behavior of gradient accumulation. If it is True, gradi-
ents are accumulated in batch for performance. Otherwise gradients are accumulated one by one. The default
value is given by CHAINER_LAZY_GRAD_SUM environment variable (set to 0 or 1) if available, otherwise uses
False.

chainer.config.use_cudnn_tensor_core Flag to configure whether or not to enable Tensor Core opera-
tons in cuDNN.

• If it is always, Chainer uses cuDNN’s Tensor Core operations.

• If it is never, Chainer does not use cuDNN’s Tensor Core operations.

• If it is auto, Chainer checks cuDNN version, the data type of input, the compute capability of the GPU
used, and configures whether or not to use cuDNN’s Tensor Core operations.

The default value is auto.

chainer.config.autotune Autotune for convolutional networks flag. If it is True, Chainer uses the
cuDNN autotune feature to find the fastest calculation process for chainer.links.Convolution2D,
ConvolutionND, Deconvolution2D, or DeconvolutionND links. The default value is False.

Users can also define their own configurations. There are two ways:

4.11. Configuring Chainer 717

Chainer Documentation, Release 4.0.0

1. Use Chainer’s configuration objects. In this case, it is strongly recommended to prefix the name by “user_”
to avoid name conflicts with configurations introduced to Chainer in the future.

2. Use your own configuration objects. Users can define their own configuration objects using chainer.
configuration.GlobalConfig and chainer.configuration.LocalConfig. In this case,
there is no need to take care of the name conflicts.

Example

If you want to share a setting within the process, set an attribute to the global configuration.

>>> chainer.global_config.user_my_setting = 123

This value is automatically extracted by referring to the local config.

>>> chainer.config.user_my_setting
123

If you set an attribute to the local configuration, the value is only visible to the current thread.

>>> chainer.config.user_my_setting = 123

We often want to temporarily modify the configuration for the current thread. It can be done by using
using_config(). For example, if you only want to enable debug mode in a fragment of code, write as follows.

>>> with chainer.using_config('debug', True):
... pass # code running in the debug mode

We often want to switch to the test mode for an evaluation. This is also done in the same way.

>>> with chainer.using_config('train', False):
... pass # code running in the test mode

Note that Evaluator automatically switches to the test mode, and thus you do not need to manually switch in the
loss function for the evaluation.

You can also make your own code behave differently in training and test modes as follows.

if chainer.config.train:
pass # code only running in the training mode

else:
pass # code only running in the test mode

chainer.global_config Global configuration of Chainer.
chainer.config Thread-local configuration of Chainer.
chainer.using_config Context manager to temporarily change the thread-local

configuration.
chainer.configuration.GlobalConfig The plain object that represents the global configuration of

Chainer.
chainer.configuration.LocalConfig Thread-local configuration of Chainer.

718 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

4.11.1 chainer.global_config

chainer.global_config = <chainer.configuration.GlobalConfig object>
Global configuration of Chainer.

It is an instance of chainer.configuration.GlobalConfig. See Configuring Chainer for details.

4.11.2 chainer.config

chainer.config = <chainer.configuration.LocalConfig object>
Thread-local configuration of Chainer.

It is an instance of chainer.configuration.LocalConfig, and is referring to global_config as
its default configuration. See Configuring Chainer for details.

4.11.3 chainer.using_config

chainer.using_config(name, value, config=chainer.config)
Context manager to temporarily change the thread-local configuration.

Parameters

• name (str) – Name of the configuration to change.

• value – Temporary value of the configuration entry.

• config (LocalConfig) – Configuration object. Chainer’s thread-local configuration is
used by default.

See also:

Configuring Chainer

4.11.4 chainer.configuration.GlobalConfig

class chainer.configuration.GlobalConfig
The plain object that represents the global configuration of Chainer.

Methods

show(file=sys.stdout)
Prints the global config entries.

The entries are sorted in the lexicographical order of the entry name.

Parameters file – Output file-like object.

4.11.5 chainer.configuration.LocalConfig

class chainer.configuration.LocalConfig(global_config)
Thread-local configuration of Chainer.

This class implements the local configuration. When a value is set to this object, the configuration is only
updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically
retrieves a value from the global configuration.

4.11. Configuring Chainer 719

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

Methods

show(file=sys.stdout)
Prints the config entries.

The entries are sorted in the lexicographical order of the entry names.

Parameters file – Output file-like object.

Example

You can easily print the list of configurations used in the current thread.

>>> chainer.config.show()
debug False
enable_backprop True
train True
type_check True

4.11.6 Environment variables

Here are the environment variables Chainer uses.

CHAINER_SEEDDefault seed value of random number generators for CUDA. If it is not set, the seed value is
generated from Python random module. Set an integer value in decimal format.

CHAINER_DATASET_ROOTDefault directory path to store the downloaded datasets. See Datasets for details.
CHAINER_CUDNNSet 0 to completely disable cuDNN in Chainer. In this case, cuDNN will not be used regard-

less of CHAINER_USE_CUDNN and chainer.config.use_cudnn configuration. Other-
wise cuDNN is enabled automatically.

CHAINER_USE_CUDNNUsed as the default value for chainer.config.use_cudnn configuration. The value must
be any of 'always', 'auto' or 'never'. If CHAINER_CUDNN is set to 0, this environment
variable has no effect. See Configuring Chainer for details.

CHAINER_USE_IDEEPUsed as the default value for chainer.config.use_ideep configuration. The value must
be any of 'always', 'auto' or 'never'. See Configuring Chainer for details.

CHAINER_LAZY_GRAD_SUMUsed as the default value for chainer.config.lazy_grad_sum configuration. Set 1 to
enable batch accumulation of gradients. See Configuring Chainer for details.

CHAINER_TYPE_CHECKUsed as the default value for chainer.config.type_check configuration. Set 0 to disable
type checking. Otherwise type checking is enabled automatically. See Configuring Chainer and
Type checking utilities for details.

CHAINER_DEBUGUsed as the default value for chainer.config.debug configuration. Set 1 to enable debug
mode. It is disabled by default. In debug mode, Chainer performs various runtime checks that can
help debug user’s code at the cost of some overhead. See Configuring Chainer and Debug Mode
for details.

CHAINER_KEEP_GRAPH_ON_REPORTUsed as the default value for chainer.config.keep_graph_on_report configuration.
Set 1 to let report() keep the computational graph. See Configuring Chainer for details.

CHAINER_PYTHON_350_FORCESet 1 to force using Chainer with Python 3.5.0. Note that Chainer does not work with Python
3.5.0. Use Python 3.5.1+ or other supported versions (see Installation).

The following environment variables are only effective when running unit tests.

720 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

CHAINER_TEST_GPU_LIMITNumber of GPUs available for unit tests. When running unit test, test cases that require
more GPUs than the specified value will be skipped. Set 0 to skip all test cases that
require GPU. See Unit Testing for details.

CHAINER_TEST_RANDOM_NONDETERMINISTICSet 1 to use non-fixed seed for random number generators, even for test cases annotated
with fix_random.

4.12 Debug Mode

In debug mode, Chainer checks values of variables on runtime and shows more detailed error messages. It helps you
to debug your programs. However, it requires some additional overhead time.

If you want to enable debug mode for the entire code, you can set CHAINER_DEBUG environment variable to 1.

You can also enable or disable debug mode for the specific scope of code with chainer.using_config() or by
changing chainer.config.debug configuration.

with chainer.using_config('debug', True):
...

See Configuring Chainer for the details of Chainer’s configuration mechanism.

In debug mode, Chainer checks all results of forward and backward computation, and if it finds a NaN value, it raises
RuntimeError. Some functions and links also check validity of input values more strictly.

You can check if debug mode is enabled with chainer.is_debug() function.

chainer.is_debug Returns if the debug mode is enabled or not in the current
thread.

chainer.set_debug Enables or disables the debug mode in the current thread.

4.12.1 chainer.is_debug

chainer.is_debug()
Returns if the debug mode is enabled or not in the current thread.

Returns True if the debug mode is enabled.

Return type bool

4.12.2 chainer.set_debug

chainer.set_debug(debug)
Enables or disables the debug mode in the current thread.

Note: chainer.set_debug(value) is equivalent to chainer.config.debug = value.

Parameters debug (bool) – New debug mode.

4.12. Debug Mode 721

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

4.12.3 Deprecated interface

As of v2.0.0, it is recommended to turn on the debug mode using chainer.config.debug. See Configuring
Chainer for the way to use the config object. We leave the reference of the conventional way (which has been available
since Chainer v1) as follows.

chainer.DebugMode Debug mode context.

chainer.DebugMode

class chainer.DebugMode(debug)
Debug mode context.

This class provides a context manager for debug mode. When entering the context, it sets the debug mode to the
value of debug parameter with memorizing its original value. When exiting the context, it sets the debug mode
back to the original value.

Deprecated since version v2.0.0: Use chainer.using_config() instead. See Debug Mode for details.

Parameters debug (bool) – Debug mode used in the context.

Methods

__enter__()

__exit__(*args)

4.13 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed
properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by in-
voking build_computational_graph(). Generated computational graphs are dumped to specified format
(Currently Dot Language is supported).

Basic usage is as follows:

import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:

o.write(g.dump())

where vs is list of Variable instances and g is an instance of ComputationalGraph. This code generates the
computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of
vs.

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from example/
imagenet.

chainer.computational_graph.
build_computational_graph

Builds a graph of functions and variables backward-
reachable from outputs.

Continued on next page

722 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://arxiv.org/abs/1409.4842

Chainer Documentation, Release 4.0.0

Table 67 – continued from previous page
chainer.computational_graph.
ComputationalGraph

Class that represents computational graph.

4.13.1 chainer.computational_graph.build_computational_graph

chainer.computational_graph.build_computational_graph(outputs, remove_split=True,
variable_style={’fillcolor’:
’#E0E0E0’, ’shape’: ’oc-
tagon’, ’style’: ’filled’},
function_style={’fillcolor’:
’#6495ED’, ’shape’:
’record’, ’style’: ’filled’},
rankdir=’TB’, re-
move_variable=False,
show_name=True)

Builds a graph of functions and variables backward-reachable from outputs.

Parameters

• outputs (list) – nodes from which the graph is constructed. Each element of outputs
must be either Variable object, VariableNode object, or Function object.

• remove_split (bool) – It must be True. This argument is left for backward compati-
bility.

• variable_style (dict) – Dot node style for variable. Possible keys are ‘shape’,
‘color’, ‘fillcolor’, ‘style’, and etc.

• function_style (dict) – Dot node style for function.

• rankdir (str) – Direction of the graph that must be TB (top to bottom), BT (bottom to
top), LR (left to right) or RL (right to left).

• remove_variable (bool) – If True, Variables are removed from the resulting
computational graph. Only Functions are shown in the output.

• show_name (bool) – If True, the name attribute of each node is added to the label of
the node. Default is True.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of
outputs.

If unchain_backward was called in some variable in the computational graph before this
function, backward step is stopped at this variable.

For example, suppose that computational graph is as follows:

|--> f ---> y
x --+

|--> g ---> z

Let outputs = [y, z]. Then the full graph is emitted.

Next, let outputs = [y]. Note that z and g are not backward-reachable from y. The result-
ing graph would be following:

4.13. Visualization of Computational Graph 723

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

x ---> f ---> y

See TestGraphBuilder for details.

Return type ComputationalGraph

Note: The default behavior of ComputationalGraph has been changed from v1.23.0, so that it ouputs
the richest representation of a graph as default, namely, styles are set and names of functions and variables are
shown. To reproduce the same result as previous versions (<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.

4.13.2 chainer.computational_graph.ComputationalGraph

class chainer.computational_graph.ComputationalGraph(nodes, edges, vari-
able_style={’fillcolor’:
’#E0E0E0’, ’shape’: ’oc-
tagon’, ’style’: ’filled’},
function_style={’fillcolor’:
’#6495ED’, ’shape’: ’record’,
’style’: ’filled’}, rankdir=’TB’,
remove_variable=False,
show_name=True)

Class that represents computational graph.

Note: We assume that the computational graph is directed and acyclic.

Parameters

• nodes (list) – List of nodes. Each node is either VariableNode object or Function
object.

• edges (list) – List of edges. Each edge consists of pair of nodes.

• variable_style (dict) – Dot node style for variable.

• function_style (dict) – Dot node style for function.

724 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 4.0.0

• rankdir (str) – Direction of the graph that must be TB (top to bottom), BT (bottom to
top), LR (left to right) or RL (right to left).

• remove_variable (bool) – If True, Variables are removed from the resulting
computational graph. Only Functions are shown in the output.

• show_name (bool) – If True, the name attribute of each node is added to the label of
the node. Default is True.

Note: The default behavior of ComputationalGraph has been changed from v1.23.0, so that it ouputs
the richest representation of a graph as default, namely, styles are set and names of functions and variables are
shown. To reproduce the same result as previous versions (<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.

Methods

dump(format=’dot’)
Dumps graph as a text.

Parameters

• format (str) – The graph language name of the output.

• it must be 'dot'. (Currently,) –

Returns The graph in specified format.

Return type str

4.14 Caffe Reference Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities,
and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference
models in their Model Zoo, one of the reason why this framework gets popular.

Chainer can import the reference models and emulate the network by Link implementations. This functionality is
provided by the chainer.links.caffe.CaffeFunction class.

chainer.links.caffe.CaffeFunction Caffe emulator based on the model file of Caffe.

4.15 Caffe Model Export Support

Chainer can export a model from Link.

chainer.exporters.caffe.export (Experimental) Export a computational graph as Caffe for-
mat.

4.15. Caffe Model Export Support 725

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://caffe.berkeleyvision.org/
http://bvlc.eecs.berkeley.edu/
http://caffe.berkeleyvision.org/model_zoo.html

Chainer Documentation, Release 4.0.0

4.15.1 chainer.exporters.caffe.export

chainer.exporters.caffe.export(model, args, directory=None, export_params=True,
graph_name=’Graph’)

(Experimental) Export a computational graph as Caffe format.

Parameters

• model (Chain) – The model object you want to export in ONNX format. It should have
__call__() method because the second argment args is directly given to the model by
the () accessor.

• args (list of ~chainer.Variable) – The argments which are given to the model
directly.

• directory (str) – The directory used for saving the resulting Caffe model. If None,
nothing is saved to the disk.

• export_params (bool) – If True, this function exports all the parameters included in
the given model at the same time. If False, the exported Caffe model doesn’t include any
parameter values.

• graph_name (str) – A string to be used for the name field of the graph in the exported
Caffe model.

Note: Currently, this function supports networks that created by following layer functions.

• linear()

• convolution_2d()

• deconvolution_2d()

• max_pooling_2d()

• average_pooling_2d()

• batch_normalization()

• local_response_normalization()

• relu()

• concat()

• softmax()

• reshape()

• add()

This function can export at least following networks.

• GoogLeNet

• ResNet

• VGG

And, this function use testing (evaluation) mode.

Example

726 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 4.0.0

>>> from chainer.exporters import caffe
>>>
>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l1 = L.Convolution2D(None, 1, 1, 1, 0)
... self.b2 = L.BatchNormalization(1)
... self.l3 = L.Linear(None, 1)
...
... def __call__(self, x):
... h = F.relu(self.l1(x))
... h = self.b2(h)
... return self.l3(h)
...
>>> x = chainer.Variable(np.zeros((1, 10, 10, 10), np.float32))
>>> caffe.export(Model(), [x], None, True, 'test')

4.16 Assertion and Testing

Chainer provides some facilities to make debugging easy.

4.16.1 Type checking utilities

FunctionNode uses a systematic type checking of the chainer.utils.type_check module. It enables
users to easily find bugs of forward and backward implementations. You can find examples of type checking in some
function implementations.

chainer.utils.type_check.Expr Abstract syntax tree of an expression.
chainer.utils.type_check.expect Evaluates and tests all given expressions.
chainer.utils.type_check.TypeInfo Type information of an input/gradient array.
chainer.utils.type_check.TypeInfoTuple Type information of input/gradient tuples.

chainer.utils.type_check.Expr

class chainer.utils.type_check.Expr(priority)
Abstract syntax tree of an expression.

It represents an abstract syntax tree, and isn’t a value. You can get its actual value with eval() function, and
get syntax representation with the __str__() method. Each comparison operator (e.g. ==) generates a new
Expr object which represents the result of comparison between two expressions.

Example

Let x and y be instances of Expr, then

>>> x = Variable(1, 'x')
>>> y = Variable(1, 'y')
>>> c = (x == y)

4.16. Assertion and Testing 727

Chainer Documentation, Release 4.0.0

is also an instance of Expr. To evaluate and get its value, call eval() method:

>>> c.eval()
True

Call str function to get a representation of the original equation:

>>> str(c)
'x == y'

You can actually compare an expression with a value:

>>> (x == 1).eval()
True

Note that you can’t use boolean operators such as and, as they try to cast expressions to boolean values:

>>> z = Variable(1, 'z')
>>> x == y and y == z # raises an error
Traceback (most recent call last):
RuntimeError: Don't convert Expr to bool. Please call Expr.eval method to
→˓evaluate expression.

Methods

__call__(*args)
Call self as a function.

__getitem__(key)

eval()
Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() function.

__eq__(y)

__ne__(y)

__lt__(y)

__le__(y)

__gt__(y)

__ge__(y)

__nonzero__()

__bool__()

__neg__()

__add__(y)

__radd__(y)

__sub__(y)

__rsub__(y)

728 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

__mul__(y)

__rmul__(y)

__truediv__(y)

__rtruediv__(y)

__floordiv__(y)

__rfloordiv__(y)

__pow__(y)

chainer.utils.type_check.expect

chainer.utils.type_check.expect(*bool_exprs)
Evaluates and tests all given expressions.

This function evaluates given boolean expressions in order. When at least one expression is evaluated as False,
that means the given condition is not satisfied. You can check conditions with this function.

Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to
evaluate.

chainer.utils.type_check.TypeInfo

class chainer.utils.type_check.TypeInfo(shape, dtype)
Type information of an input/gradient array.

It contains type information of an array, such as the shape of array and the number of dimensions. This infor-
mation is independent of CPU or GPU array.

Methods

Attributes

size

chainer.utils.type_check.TypeInfoTuple

class chainer.utils.type_check.TypeInfoTuple
Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element of this object contains type information of the
i-th input/gradient data. As each element is Expr, you can easily check its validity.

Methods

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

size()
Returns an expression representing its length.

4.16. Assertion and Testing 729

Chainer Documentation, Release 4.0.0

Returns An expression object representing length of the tuple.

Return type Expr

4.16.2 Gradient checking utilities

Most function implementations are numerically tested by gradient checking. This method computes numerical gradi-
ents of forward routines and compares their results with the corresponding backward routines. It enables us to make
the source of issues clear when we hit an error of gradient computations. The chainer.gradient_checkmodule
makes it easy to implement the gradient checking.

chainer.gradient_check.check_backward Test backward procedure of a given function.
chainer.gradient_check.numerical_grad Computes numerical gradient by finite differences.

chainer.gradient_check.check_backward

chainer.gradient_check.check_backward(func, x_data, y_grad, params=(), eps=0.001, atol=1e-
05, rtol=0.0001, no_grads=None, dtype=None, de-
tect_nondifferentiable=False)

Test backward procedure of a given function.

This function automatically checks the backward-process of a given function to ensure that the computed gra-
dients are approximately correct. For example, assuming you’ve defined a FunctionNode class MyFunc,
that takes two arguments and returns one value, you can wrap it in a ordinary function and check its gradient
computations as follows:

>> def test_my_func(self):
>>
>> def func(xs):
>> y, = MyFunc().apply(xs)
>> return y
>>
>> x1_data = xp.array(...)
>> x2_data = xp.array(...)
>> gy_data = xp.array(...)
>> check_backward(func, (x1_data, x2_data), gy_data)

This method creates Variable objects with x_data and calls func with the Variables to get its result
as Variable. Then, it sets y_grad array to grad attribute of the result and calls backward method to
get gradients of the inputs. To check correctness of the gradients, the function calls numerical_grad()
to calculate numerically the gradients and compares the types of gradients with chainer.testing.
assert_allclose().

To reduce computational time, it uses directional derivative along a random vector. A function 𝑔 : R → R𝑛 is
defined as 𝑔(𝛿) = 𝑓(𝑥 + 𝛿𝑟), where 𝛿 ∈ R, 𝑟 ∈ R𝑛 is a random vector and 𝑓 is a function which you want to
test. Its gradient is

𝑔′(𝛿) = 𝑓 ′(𝑥 + 𝛿𝑟) · 𝑟.

Therefore, 𝑔′(0) = 𝑓 ′(𝑥) · 𝑟. So we can check the correctness of back propagation of 𝑓 indirectly by comparing
this equation with the gradient of 𝑔 numerically calculated and that of 𝑓 computed by backprop. If 𝑟 is chosen
from uniform distribution, we can conclude with high probability that the gradient of 𝑓 itself is correct.

If input objects (x1_data or/and x2_data in this example) represent integer variables, their gradients are
ignored.

730 Chapter 4. Reference

Chainer Documentation, Release 4.0.0

You can simplify a test when MyFunc gets only one argument:

>> check_backward(func, x1_data, gy_data)

If MyFunc is a loss function which returns a zero-dimensional array, pass None to gy_data. In this case, it
sets 1 to grad attribute of the result:

>> check_backward(my_loss_func, (x1_data, x2_data), None)

If MyFunc returns multiple outputs, pass all gradients for outputs as a tuple:

>> gy1_data = xp.array(...)
>> gy2_data = xp.array(...)
>> check_backward(func, x1_data, (gy1_data, gy2_data))

You can also test a Link. To check gradients of parameters of the link, set a tuple of the parameters to params
arguments:

>> check_backward(my_link, (x1_data, x2_data), gy_data,
>> (my_link.W, my_link.b))

Note that params are not ndarrays, but Variabless.

Function objects are acceptable as func argument:

>> check_backward(lambda x1, x2: f(x1, x2),
>> (x1_data, x2_data), gy_data)

Note: func is called many times to get numerical gradients for all inputs. This function doesn’t work correctly
when func behaves randomly as it gets different gradients.

Parameters

• func (callable) – A function which gets Variables and returns Variables. func
must returns a tuple of Variables or one Variable. You can use a Function,
FunctionNode or a Link object or any other function satisfying the condition.

• x_data (ndarray or tuple of ndarrays) – A set of ndarrays to be passed to
func. If x_data is one ndarray object, it is treated as (x_data,).

• y_grad (ndarray or tuple of ndarrays or None) – A set of ndarrays
representing gradients of return-values of func. If y_grad is one ndarray object, it
is treated as (y_grad,). If func is a loss-function, y_grad should be set to None.

• params (Variable or tuple of ~chainder.Variable) – A set of
Variables whose gradients are checked. When func is a Link object, set its
parameters as params. If params is one Variable object, it is treated as (params,).

• eps (float) – Epsilon value to be passed to numerical_grad().

• atol (float) – Absolute tolerance to be passed to chainer.testing.
assert_allclose().

• rtol (float) – Relative tolerance to be passed to chainer.testing.
assert_allclose().

• no_grads (list of bool) – Flag to skip variable for gradient assertion. It should be
same length as x_data.

4.16. Assertion and Testing 731

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 4.0.0

• dtype (dtype) – x_data, y_grad and params are casted to this dtype when calculat-
ing numerical gradients. Only float types and None are allowed.

• detect_nondifferentiable (bool) – If True, check for non-differentiable in-
puts is enabled. If func is non-differentiable at x_data, check_backward raises
NondifferentiableError.

See also:

numerical_grad()

chainer.gradient_check.numerical_grad

chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001, de-
tect_nondifferentiable=False, diff_atol=0,
diff_rtol=0.01, center_outputs=None)

Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of chainer.
functions.

By default, numerical_grad computes the gradient to the first order of eps.

Parameters

• f (function) – Python function with no arguments that runs forward computation and
returns the result.

• inputs (tuple of arrays) – Tuple of arrays that should be treated as inputs. Each
element of them is slightly modified to realize numerical gradient by finite differences.

• grad_outputs (tuple of arrays) – Tuple of arrays that are treated as output gra-
dients.

• eps (float) – Epsilon value of finite differences.

• detect_nondifferentiable (bool) – False by default. If True,
numerical_grad checks whether f is differentiable at inputs. It requires eval-
uation of f at 5 points instead of 2. As a side effect, the accuracy of numerical gradient will
be increased to the third order of eps. If it turns out that f is non-differentiable at input,
numerical_grad raises NondifferentiableError.

• diff_atol (float) – Absolute tolerance of fitting error of non-differentiable point de-
tection.

• diff_rtol (float) – Tolerance of fitting error of non-differentiable point detection rel-
ative to the output values of f.

• center_outputs (tuple of arrays or None) – Only used if
detect_nondifferentiable is True. If specified, these arrays are used as
the outputs of f at inputs. Otherwise, it is calculated. It can be used to reduce the
computation if these arrays are already calculated before calling numerical_grad.

Returns Numerical gradient arrays corresponding to inputs.

Return type tuple

732 Chapter 4. Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 4.0.0

4.16.3 Standard Assertions

The assertions have same names as NumPy’s ones. The difference from NumPy is that they can accept both numpy.
ndarray and cupy.ndarray.

chainer.testing.assert_allclose Asserts if some corresponding element of x and y differs
too much.

chainer.testing.assert_allclose

chainer.testing.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)
Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.

Parameters

• x – Left-hand-side array.

• y – Right-hand-side array.

• atol (float) – Absolute tolerance.

• rtol (float) – Relative tolerance.

• verbose (bool) – If True, it outputs verbose messages on error.

4.16.4 Function testing utilities

Chainer provides some utilities for testing its functions.

chainer.testing.unary_math_function_unittestDecorator for testing unary mathematical Chainer func-
tions.

chainer.testing.unary_math_function_unittest

chainer.testing.unary_math_function_unittest(func, func_expected=None, la-
bel_expected=None, make_data=None,
is_linear=False, forward_options=None,
backward_options=None, dou-
ble_backward_options=None)

Decorator for testing unary mathematical Chainer functions.

This decorator makes test classes test unary mathematical Chainer functions. Tested are forward and backward,
including double backward, computations on CPU and GPU across parameterized shape and dtype.

Parameters

• func (function or Function) – Chainer function to be tested by the decorated test
class. Taking Function is for backward compatibility.

• func_expected – Function used to provide expected values for testing forward compu-
tation. If not given, a corresponsing numpy function for func is implicitly picked up by its
name.

• label_expected (string) – String used to test labels of Chainer functions. If not

4.16. Assertion and Testing 733

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 4.0.0

given, the name of func is implicitly used.

• make_data – Function to customize input and gradient data used in the tests. It takes
shape and dtype as its arguments, and returns a tuple of input, gradient and double
gradient data. By default, uniform destribution ranged [-1, 1] is used for all of them.

• is_linear (bool) – Tells the decorator that func is a linear function so that it wraps
func as a non-linear function to perform double backward test. The default value is False.

• forward_options (dict) – Options to be specified as an argument of chainer.
testing.assert_allclose() function. If not given, preset tolerance values are au-
tomatically selected.

• backward_options (dict) – Options to be specified as an argument of chainer.
gradient_check.check_backward() function. If not given, preset tolerance val-
ues are automatically selected depending on dtype.

• double_backward_options (dict) – Options to be specified as an argument of
chainer.gradient_check.check_double_backward() function. If not given,
preset tolerance values are automatically selected depending on dtype.

The decorated test class tests forward, backward and double backward computations on CPU and GPU across
the following parameterize() ed parameters:

• shape: rank of zero, and rank of more than zero

• dtype: numpy.float16, numpy.float32 and numpy.float64

Additionally, it tests the label of the Chainer function.

Chainer functions tested by the test class decorated with the decorator should have the following properties:

• Unary, taking one parameter and returning one value

• dtype of input and output are the same

• Elementwise operation for the supplied ndarray

Example

The following code defines a test class that tests sin() Chainer function, which takes a parameter with dtype
of float and returns a value with the same dtype.

>>> import unittest
>>> from chainer import testing
>>> from chainer import functions as F
>>>
>>> @testing.unary_math_function_unittest(F.sin)
... class TestSin(unittest.TestCase):
... pass

Because the test methods are implicitly injected to TestSin class by the decorator, it is enough to place pass
in the class definition.

To customize test data, make_data optional parameter can be used. The following is an example of testing
sqrt Chainer function, which is tested in positive value domain here instead of the default input.

>>> import numpy
>>>
>>> def make_data(shape, dtype):
... x = numpy.random.uniform(0.1, 1, shape).astype(dtype)

(continues on next page)

734 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 4.0.0

(continued from previous page)

... gy = numpy.random.uniform(-1, 1, shape).astype(dtype)

... ggx = numpy.random.uniform(-1, 1, shape).astype(dtype)

... return x, gy, ggx

...
>>> @testing.unary_math_function_unittest(F.sqrt,
... make_data=make_data)
... class TestSqrt(unittest.TestCase):
... pass

make_data function which returns input, gradient and double gradient data generated in proper value domains
with given shape and dtype parameters is defined, then passed to the decorator’s make_data parameter.

4.16. Assertion and Testing 735

Chainer Documentation, Release 4.0.0

736 Chapter 4. Reference

CHAPTER 5

API Compatibility Policy

This document explains the design policy on compatibilities of Chainer APIs. Development team should follow this
policy on deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers. Users can decide the level of dependencies on Chainer’s
implementations in their codes based on this document. Developers should read through this document before creating
pull requests that contain changes on the interface. Note that this document may contain ambiguities on the level of
supported compatibilities.

5.1 Targeted Versions

This policy is applied to Chainer v2.0.0 and higher. Note that this policy is not applied to Chainer of lower versions.
For older versions of Chainer, see the old version of API Compatiblity Policy.

5.2 Versioning and Backward Compatibility

The versioning of Chainer follows the PEP 440 and a part of Semantic versioning. See Contribution Guide for details
of versioning.

The backward compatibility is kept for revision updates and minor updates, which are applied to the stable version.
A major update from the latest release candidate basically keeps the backward compatibility, although it is not
guaranteed. Any pre-releases may break the backward compatibility.

5.3 Breaking the Compatibility

We sometimes need to break the backward compatibility to improve the framework design and to support new kinds
of machine learning methods. Such a change is only made into pre-releases (alpha, beta, and release candidate) and
sometimes into the major update.

737

https://docs.chainer.org/en/v1.24.0/compatibility.html
https://www.python.org/dev/peps/pep-0440/
https://semver.org/

Chainer Documentation, Release 4.0.0

A change that breaks the compatibility affects user codes. We try to lower the cost of adapting your code to the newer
version. The following list shows an example of what we can do to reduce the cost (Note: this is not a promise; what
kind of actions we can take depends on the situation).

• When an argument is removed from an existing API, passing the argument to the updated API will emit an error
with a special error message. The error message tells you how to fix your code.

• When a function or a class is removed, we make the current stable version emit a deprecation warning. Note that
the deprecation warning is not printed by default in Python. You have to manually turn on the deprecation
warning by warnings.simplefilter('always', DeprecationWarning).

• When a definition of a link is changed, we try to enable it to deserialize a model dumped with an older version of
Chainer. In most cases, we cannot guarantee that a model serialized with a newer version of Chainer is loadable
by an older version of Chainer.

Note: Since Chainer v2, we have stopped adopting any solid processes to break backward compatibilities (e.g. a
solid schedule for deprecating and removing a feature) in order to keep the development fast enough to support the
cutting-edge research. It does not mean we stop taking care of maintainability of user codes. We are still paying
much attention to not breaking user codes.

5.4 Experimental APIs

Thanks to many contributors, we have introduced many new features to Chainer.

However, we have sometimes released new features only to later notice that their APIs are not appropriate. In par-
ticular, we sometimes know that the API is likely to be modified in the near future because we do not have enough
knowledge about how well the current design fits to the real usages. The objective of experimental APIs is to declare
that the APIs are likely to be updated in the near future so that users can decide if they can(not) use them.

Any newly added API can be marked as experimental. Any API that is not experimental is called stable in this
document.

Note: Undocumented behaviors are not considered as APIs, so they can be changed at any time (even in a revision
update). The treatment of undocumented behaviors are described in Undocumented behaviors section.

When users use experimental APIs for the first time, warnings are raised once for each experimental API, unless users
explicitly disable the emission of the warnings in advance.

See the document of chainer.utils.experimental() to know how developers mark APIs as experimental
and how users enable or disable the warnings practically.

Note: It is up to developers if APIs should be annotated as experimental or not. We recommend to make the APIs
experimental if they implement large modules or make a decision from several design choices.

5.5 Supported Backward Compatibility

This section defines backward compatibilities that revision updates must maintain.

738 Chapter 5. API Compatibility Policy

Chainer Documentation, Release 4.0.0

5.5.1 Documented Interface

Chainer has the official API documentation. Many applications can be written based on the documented features.
We support backward compatibilities of documented features. In other words, codes only based on the documented
features run correctly with revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes
outside of the documented APIs should have one or more underscores at the prefix of their names.

Note: Although it is not stated as a rule, we also try to keep the compatibility for any interface that looks like a stable
feature. For example, if the name of a symbol (function, class, method, attribute, etc.) is not prefixed by an underscore
and the API is not experimental, the API should be kept over revision updates even if it is not documented.

5.5.2 Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined. Undocumented behaviors are not
guaranteed to be stable between different revision versions.

Even revision updates may contain changes to undefined behaviors. One of the typical examples is a bug fix. Another
example is an improvement on implementation, which may change the internal object structures not shown in the
documentation. As a consequence, even revision updates do not support compatibility of pickling, unless the full
layout of pickled objects is clearly documented.

5.5.3 Documentation Error

Compatibility is basically determined based on the documentation, although it sometimes contains errors. It may make
the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the
documentation errors in any updates that may break the compatibility in regard to the documentation.

Note: Developers should not fix the documentation and implementation of the same functionality at the same time
in revision updates as a “bug fix” unless the bug is so critical that no users are expected to be using the old version
correctly.

5.5.4 Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other. It does not break the user codes, except the
codes depend on how the attributes and properties are implemented.

5.5.5 Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values. It does not
break the user codes, except the codes depend on how the methods and callable attributes are implemented.

5.5.6 Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception
is raised in the future revision versions with correct usages that the documentation allows.

5.5. Supported Backward Compatibility 739

Chainer Documentation, Release 4.0.0

On the other hand, warnings may be added at any revision updates for any APIs. It means revision updates do not keep
backward compatibility of warnings.

5.6 Model Format Compatibility

Links and chains serialized by official serializers that Chainer provides are correctly loaded with the future versions.
They might not be correctly loaded with Chainer of the lower versions.

Note: Current serialization APIs do not support versioning. It prevents us from introducing changes in the layout of
objects that support serialization. We are discussing versioning in serialization APIs.

5.7 Installation Compatibility

The installation process is another concern of compatibilities.

Any changes on the set of dependent libraries that force modifications on the existing environments should be done in
pre-releases and major updates. Such changes include following cases:

• dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

• adding new mandatory dependencies (e.g. adding h5py to setup_requires)

Note: We sometimes have to narrow the supported versions due to bugs in the specific versions of libraries. In such
a case, we may drop the support of those versions even in revision updates unless a workaround is found for the issue.

740 Chapter 5. API Compatibility Policy

CHAPTER 6

Contribution Guide

This is a guide for all contributions to Chainer. The development of Chainer is running on the official repository at
GitHub. Anyone that wants to register an issue or to send a pull request should read through this document.

Note: Many points of this document are updated at v2. We strongly recommend all contributors of v1 to read through
the document again.

6.1 Classification of Contributions

There are several ways to contribute to Chainer community:

1. Registering an issue

2. Sending a pull request (PR)

3. Sending a question/reply to StackOverflow (with chainer tag) or Chainer User Group

4. Open-sourcing an external example

5. Writing a post about Chainer

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

6.2 Development Cycle

This section explains the development process of Chainer. Before contributing to Chainer, it is strongly recommended
to understand the development cycle.

741

https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://stackoverflow.com/
https://groups.google.com/forum/#!forum/chainer

Chainer Documentation, Release 4.0.0

6.2.1 Versioning

The versioning of Chainer follows PEP 440 and a part of Semantic versioning. The version number consists of three
or four parts: X.Y.Zw where X denotes the major version, Y denotes the minor version, Z denotes the revision
number, and the optional w denotes the prelease suffix. While the major, minor, and revision numbers follow the rule
of semantic versioning, the pre-release suffix follows PEP 440 so that the version string is much friendly with Python
eco-system.

Note that a major update basically does not contain compatibility-breaking changes from the last release can-
didate (RC). This is not a strict rule, though; if there is a critical API bug that we have to fix for the major version, we
may add breaking changes to the major version up.

As for the backward compatibility, see API Compatibility Policy.

6.2.2 Release Cycle

Starting from v2.0.0, we are developing two tracks of versions at the same time. The first one is the track of stable
versions, which is a series of revision updates for the latest major version. The second one is the track of development
versions, which is a series of pre-releases for the upcoming major version.

Consider that X.0.0 is the latest major version and Y.0.0, Z.0.0 are the succeeding major versions. Then, the
timeline of the updates is depicted by the following table.

Date ver X ver Y ver Z
0 weeks X.0.0rc1 – –
4 weeks X.0.0 Y.0.0a1 –
8 weeks X.1.0* Y.0.0b1 –
12 weeks X.2.0* Y.0.0rc1 –
16 weeks – Y.0.0 Z.0.0a1

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of X.0.0rc1. In particular, each revision/minor
release is made four weeks after the previous one of the same major version, and the pre-release of the upcoming major
version is made at the same time. Whether these releases are revision or minor is determined based on the contents of
each update.

Note that there are only three stable releases for the versions X.x.x. During the parallel development of Y.0.0 and
Z.0.0a1, the version Y is treated as an almost-stable version and Z is treated as a development version.

If there is a critical bug found in X.x.x after stopping the development of version X, we may release a hot-fix for this
version at any time.

We create a milestone for each upcoming release at GitHub. The GitHub milestone is basically used for collecting the
issues and PRs resolved in the release.

6.2.3 Git Branches

The master branch is used to develop pre-release versions. It means that alpha, beta, and RC updates are devel-
oped at the master branch. This branch contains the most up-to-date source tree that includes features newly added
after the latest major version.

The stable version is developed at the individual branch named as vN where “N” reflects the version number (we call
it a versioned branch). For example, v3.0.0, v3.0.1, and v3.0.2 will be developed at the v3 branch.

742 Chapter 6. Contribution Guide

https://www.python.org/dev/peps/pep-0440/
https://semver.org/

Chainer Documentation, Release 4.0.0

Notes for contributors: When you send a pull request, you basically have to send it to the master branch. If the
change can also be applied to the stable version, a core team member will apply the same change to the stable version
so that the change is also included in the next revision update.

If the change is only applicable to the stable version and not to the master branch, please send it to the versioned
branch. We basically only accept changes to the latest versioned branch (where the stable version is developed) unless
the fix is critical.

If you want to make a new feature of the master branch available in the current stable version, please send a backport
PR to the stable version (the latest vN branch). See the next section for details.

Note: a change that can be applied to both branches should be sent to the master branch. Each release of the stable
version is also merged to the development version so that the change is also reflected to the next major version.

6.2.4 Feature Backport PRs

We basically do not backport any new features of the development version to the stable versions. If you desire
to include the feature to the current stable version and you can work on the backport work, we welcome such a
contribution. In such a case, you have to send a backport PR to the latest vN branch. Note that we do not accept any
feature backport PRs to older versions because we are not running quality assurance workflows (e.g. CI) for
older versions so that we cannot ensure that the PR is correctly ported.

There are some rules on sending a backport PR.

• Start the PR title from the prefix [backport].

• Clarify the original PR number in the PR description (something like “This is a backport of #XXXX”).

• (optional) Write to the PR description the motivation of backporting the feature to the stable version.

Please follow these rules when you create a feature backport PR.

Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are usually
backported by core dev members. It is also appreciated to make such a backport PR by any contributors, though, so
that the overall development proceeds more smoothly!

6.3 Issues and Pull Requests

In this section, we explain how to file issues and send pull requests (PRs).

6.3.1 Issue/PR Labels

Issues and PRs are labeled by the following tags:

• Bug: bug reports (issues) and bug fixes (PRs)

• Enhancement: implementation improvements without breaking the interface

• Feature: feature requests (issues) and their implementations (PRs)

• NoCompat: disrupts backward compatibility

• Test: test fixes and updates

• Document: document fixes and improvements

• Example: fixes and improvements on the examples

• Install: fixes installation script

6.3. Issues and Pull Requests 743

Chainer Documentation, Release 4.0.0

• Contribution-Welcome: issues that we request for contribution (only issues are categorized to this)

• Other: other issues and PRs

Multiple tags might be labeled to one issue/PR. Note that revision releases cannot include PRs in Feature and
NoCompat categories.

6.3.2 How to File an Issue

On registering an issue, write precise explanations on how you want Chainer to be. Bug reports must include necessary
and sufficient conditions to reproduce the bugs. Feature requests must include what you want to do (and why you
want to do, if needed) with Chainer. You can contain your thoughts on how to realize it into the feature requests,
though what part is most important for discussions.

Warning: If you have a question on usages of Chainer, it is highly recommended to send a post to StackOverflow
or Chainer User Group instead of the issue tracker. The issue tracker is not a place to share knowledge on practices.
We may suggest these places and immediately close how-to question issues.

6.3.3 How to Send a Pull Request

If you can write code to fix an issue, we encourage to send a PR.

First of all, before starting to write any code, do not forget to confirm the following points.

• Read through the Coding Guidelines and Unit Testing.

• Check the appropriate branch that you should send the PR following Git Branches. If you do not have any idea
about selecting a branch, please choose the master branch.

In particular, check the branch before writing any code. The current source tree of the chosen branch is the starting
point of your change.

After writing your code (including unit tests and hopefully documentations!), send a PR on GitHub. You have to
write a precise explanation of what and how you fix; it is the first documentation of your code that developers read,
which is a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI for Linux and Mac OS X, and on AppVeyor for Windows.
Your PR needs to pass at least the test for Linux on Travis CI. After the automatic test passes, some of the core
developers will start reviewing your code. Note that this automatic PR test only includes CPU tests.

Note: We are also running continuous integration with GPU tests for the master branch and the versioned branch
of the latest major version. Since this service is currently running on our internal server, we do not use it for automatic
PR tests to keep the server secure.

If you are planning to add a new feature or modify existing APIs, it is recommended to open an issue and discuss
the design first. The design discussion needs lower cost for the core developers than code review. Following the
consequences of the discussions, you can send a PR that is smoothly reviewed in a shorter time.

Even if your code is not complete, you can send a pull request as a work-in-progress PR by putting the [WIP] prefix
to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join the
discussion about how to proceed the PR. WIP PR is also useful to have discussions based on a concrete code.

744 Chapter 6. Contribution Guide

https://stackoverflow.com/
https://groups.google.com/forum/#!forum/chainer
https://travis-ci.org/chainer/chainer/
https://ci.appveyor.com/project/chainer/chainer

Chainer Documentation, Release 4.0.0

6.4 Coding Guidelines

Note: Coding guidelines are updated at v3.0. Those who have contributed to older versions should read the guidelines
again.

We use PEP 8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

To check your code, use autopep8 and flake8 command installed by hacking package:

$ pip install autopep8 hacking
$ autopep8 path/to/your/code.py
$ flake8 path/to/your/code.py

The autopep8 supports automatically correct Python code to conform to the PEP 8 style guide:

$ autopep8 --in-place path/to/your/code.py

The flake8 command lets you know the part of your code not obeying our style guidelines. Before sending a pull
request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect. It does not check some of the style guidelines. Here is a (not-complete)
list of the rules that flake8 cannot check.

• Relative imports are prohibited. [H304]

• Importing non-module symbols is prohibited.

• Import statements must be organized into three parts: standard libraries, third-party libraries, and internal im-
ports. [H306]

In addition, we restrict the usage of shortcut aliases in any global-scope code. In particular, you cannot use shortcut
aliases to designate a parent class in global-scope class definitions. When you want to make a class inheriting another
class defined in another module, you have to spell out the full module name instead of importing a module that provides
an alias.

For example, the following code is not allowed.

import chainer

class MyLink(chainer.Link): ...

Instead, import chainer.link and use that.

import chainer.link

class MyLink(chainer.link.Link): ...

If you feel the code too verbose, you can also use from import or import as.

from chainer import link

class MyLink(link.Link): ...

Note: From v3.0, we allow shortcut aliases used inside of functions and methods that are not called from any global
scope code. For example, you can write chainer.Variable instead of chainer.variable.Variable
inside of functions and methods. Use of such aliases is prohibited in the past for avoiding confusing errors related to
cyclic dependencies; we relaxed the rule so that the library code looks similar to user code.

6.4. Coding Guidelines 745

https://www.python.org/dev/peps/pep-0008/
https://docs.openstack.org/developer/hacking/

Chainer Documentation, Release 4.0.0

When you use such shortcut aliases, please be careful with cyclic imports. One of the typical pitfalls is a way to
import chainer.functions. An import like import chainer.functions as F within modules under
chainer.functions does not work. An import like from chainer import functions works well with
Python 3, but does not with Python 2. We recommend you to use import chainer.functions and spell out
like chainer.functions.foo in your methods.

Once you send a pull request, your coding style is automatically checked by Travis-CI. The reviewing process starts
after the check passes.

6.5 Unit Testing

Testing is one of the most important part of your code. You must write test cases and verify your implementation by
following our testing guide.

Note that we are using pytest and mock package for testing, so install them before writing your code:

$ pip install pytest mock

6.5.1 How to Run Tests

You can run unit tests simply by running python -m pytest command at the repository root:

$ python -m pytest

or specify the test script that you want to run:

$ python -m pytest path/to/your/test.py

You can also run all unit tests under a specified directory:

$ python -m pytest tests/chainer_tests/<directory name>

It requires CUDA and cuDNN by default. In order to run unit tests that do not require CUDA and cuDNN, use
CHAINER_TEST_GPU_LIMIT=0 environment variable and -m='not cudnn' option:

$ export CHAINER_TEST_GPU_LIMIT=0
$ python -m pytest path/to/your/test.py -m='not cudnn'

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify
the number of available GPUs to CHAINER_TEST_GPU_LIMIT. For example, if you have only one GPU, launch
pytest by the following command to skip multi-GPU tests:

$ export CHAINER_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py

Some tests spend too much time. If you want to skip such tests, pass -m='not slow' option to the command:

$ python -m pytest path/to/your/test.py -m='not slow'

If you modify the code related to existing unit tests, you must run appropriate commands and confirm that the tests
pass.

746 Chapter 6. Contribution Guide

https://travis-ci.org/chainer/chainer/

Chainer Documentation, Release 4.0.0

6.5.2 Test File and Directory Naming Conventions

Tests are put into the tests/chainer_tests directory. In order to enable test runner to find test scripts correctly, we are
using special naming convention for the test subdirectories and the test scripts.

• The name of each subdirectory of tests must end with the _tests suffix.

• The name of each test script must start with the test_ prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence
to the tested module is clear. For example, if you want to write a test for a module chainer.x.y.z, the test script
must be located at tests/chainer_tests/x_tests/y_tests/test_z.py.

6.5.3 How to Write Tests

There are many examples of unit tests under the tests directory, so reading some of them is a good and recommended
way to learn how to write tests for Chainer. They simply use the unittest package of the standard library, while
some tests are using utilities from chainer.testing.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability. Test functions that
require CUDA must be tagged by chainer.testing.attr.gpu decorator:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.gpu
def test_my_gpu_func(self):

...

The functions tagged by the gpu decorator are skipped if CHAINER_TEST_GPU_LIMIT=0 environment variable is
set. We also have the chainer.testing.attr.cudnn decorator to let pytest know that the test depends on
cuDNN. The test functions decorated by cudnn are skipped if -m='not cudnn' is given.

The test functions decorated by gpu must not depend on multiple GPUs. In order to write tests for multiple GPUs,
use chainer.testing.attr.multi_gpu() decorator instead:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.multi_gpu(2) # specify the number of required GPUs here
def test_my_two_gpu_func(self):

...

If your test requires too much time, add chainer.testing.attr.slow decorator. The test functions decorated
by slow are skipped if -m='not slow' is given:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

(continues on next page)

6.5. Unit Testing 747

https://github.com/chainer/chainer/tree/v4.0.0/tests/chainer_tests
https://github.com/chainer/chainer/tree/v4.0.0/tests

Chainer Documentation, Release 4.0.0

(continued from previous page)

@attr.slow
def test_my_slow_func(self):

...

Note: If you want to specify more than two attributes, use and operator like -m='not cudnn and not slow'.
See detail in the document of pytest.

Once you send a pull request, your code is automatically tested by Travis-CI except for tests annotated with ‘‘gpu‘‘,
‘‘multi_gpu‘‘ and ‘‘slow‘‘. Since Travis-CI does not support CUDA, we cannot check your CUDA-related code
automatically. The reviewing process starts after the test passes. Note that reviewers will test your code without the
option to check CUDA-related code.

Note: Some of numerically unstable tests might cause errors irrelevant to your changes. In such a case, we ignore the
failures and go on to the review process, so do not worry about it!

748 Chapter 6. Contribution Guide

https://docs.pytest.org/en/latest/example/markers.html
https://travis-ci.org/chainer/chainer/

CHAPTER 7

Tips and FAQs

7.1 It takes too long time to compile a computational graph. Can I
skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels. CuPy compiles kernels on demand to make
kernels optimized to the number of dimensions and element types of input arguments. Pre-compilation is not available,
because we have to compile an exponential number of kernels to support all CuPy functionalities. This restriction is
unavoidable because Python cannot call CUDA/C++ template functions in generic way. Note that every framework
using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as
cutorch) and Chainer is whether a kernel is compiled at installation or at the first use.

These compilations should run only at the first use of the kernels. The compiled binaries are cached to the $(HOME)/
.cupy/kernel_cache directory by default. If you see that compilations run every time you run the same script,
then the caching is failed. Please check that the directory is kept as is between multiple executions of the script. If your
home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel caching directory
by setting the CUPY_CACHE_DIR environment variable to an appropriate path. See CuPy Overview for more details.

7.2 MNIST example does not converge in CPU mode on Mac OS X

Note: Mac OS X is not officially supported. Please use it at your own risk.

Many users have reported that MNIST example does not work correctly when using vecLib as NumPy backend on
Mac OS X. vecLib is the default BLAS library installed on Mac OS X.

We recommend using other BLAS libraries such as OpenBLAS.

To use an alternative BLAS library, it is necessary to reinstall NumPy. Here is an instruction to install NumPy with
OpenBLAS using Homebrew.

749

https://docs-cupy.chainer.org/en/stable/overview.html
http://www.openblas.net/
https://brew.sh/

Chainer Documentation, Release 4.0.0

$ brew tap homebrew/science
$ brew install openblas
$ brew install numpy --with-openblas

If you want to install NumPy with pip, use site.cfg file.

For details of this problem, see issue #704.

7.3 How do I accelerate my model using iDeep on Intel CPU?

Follow these steps to utilize iDeep in your model.

7.3.1 Install iDeep

The following environments are recommended by iDeep.

• Ubuntu 14.04 / 16.04 LTS (64-bit) and CentOS 7 (64-bit)

• Python 2.7.5+, 3.5.2+, and 3.6.0+

On recommended systems, you can install iDeep wheel (binary distribution) by:

$ pip install ideep4py

7.3.2 Enable iDeep Configuration

Currently iDeep is disabled by default because it is an experimental feature. You need to manually enable iDeep by
changing chainer.config.use_ideep configuration to 'auto'. See Configuring Chainer for details.

The easiest way to change the configuration is to set environment variable as follows:

export CHAINER_USE_IDEEP="auto"

You can also use chainer.using_config() to change the configuration.

x = np.ones((3, 3), dtype='f')
with chainer.using_config('use_ideep', 'auto'):

y = chainer.functions.relu(x)
print(type(y.data))

<class 'ideep4py.mdarray'>

7.3.3 Convert Your Model to iDeep

You need to call model.to_intel64() (in the same way you call model.to_gpu() to transfer your link to
GPU) to convert the link to iDeep.

750 Chapter 7. Tips and FAQs

https://github.com/numpy/numpy/blob/master/site.cfg.example
https://github.com/chainer/chainer/issues/704
https://github.com/intel/ideep

Chainer Documentation, Release 4.0.0

7.3.4 Run Your Model

Now your model is accelerated by iDeep!

Please note that not all functions and optimizers support iDeep acceleration. Also note that iDeep will not be used
depending on the shape and data type of the input data.

7.4 My training process gets stuck when using MultiprocessIterator

When you are using OpenCV somewhere in your code and the MultiprocessIterator is used in the training
code, the training loop may get stuck at some point. In such situation, there are several workarounds to prevent the
process got stuck.

1. Set the environment variable as follows: OMP_NUM_THREADS=1

2. Add cv2.setNumThreads(0) right after import cv2 in your training script.

3. Use MultithreadIterator instead of MultiprocessIterator.

This problem is originally reported here: A training loop got stuck in a certain condition with multi-processing updater
and opencv for Chainer and the discussion on related problems is still going here: OpenCV + Python multiprocessing
breaks on OSX.

7.4. My training process gets stuck when using MultiprocessIterator 751

https://github.com/chainer/chainer/issues/2903
https://github.com/chainer/chainer/issues/2903
https://github.com/opencv/opencv/issues/5150
https://github.com/opencv/opencv/issues/5150

Chainer Documentation, Release 4.0.0

752 Chapter 7. Tips and FAQs

CHAPTER 8

Upgrade Guide

This is a list of changes introduced in each release that users should be aware of when migrating from older versions.
Most changes are carefully designed not to break existing code; however changes that may possibly break them are
highlighted with a box.

8.1 Chainer v4

8.1.1 Introduction of Backend Namespace

We introduced chainer.backends subpackage for future support of various backend libraries other than NumPy
and CuPy. By this change, chainer.cuda module is now moved to chainer.backends.cuda.

This does not break the existing code; you can safely continue to use chainer.cuda (e.g., from chainer
import cuda) but it is now encouraged to use from chainer.backends import cuda instead.

8.1.2 Namespace Changes for Updaters

chainer.training.StandardUpdater and chainer.training.ParallelUpdater are now
moved to chainer.training.updaters.StandardUpdater and chainer.training.updaters.
ParallelUpdater respectively, to align with the namespace convention of other subpackages. See the discussion
in #2982 for more details.

This change does not break the existing code; you can safely continue to use updater classes directly under chainer.
training but it is now encouraged to use chainer.training.updaters instead.

8.1.3 Namespace Changes for Optimizer Hooks

Optimizer hook functions are moved from chainer.optimizer.* to chainer.optimizer_hooks.

*. For example, chainer.optimizer.WeightDecay is now located chainer.optimizer_hooks.
WeightDecay .

753

https://github.com/chainer/chainer/pull/2982

Chainer Documentation, Release 4.0.0

If the existing code is using hooks directly under chainer.optimizer, DeprecationWarning will be shown.
You are now encouraged to use chainer.optimizer_hooks instead.

8.1.4 Prohibition of Mixed Use of Arrays on Different Devices in Function Argu-
ments

Argument validation of functions is now strictened to check device consistency of argument variables to provide better
error messages to users. Suppose the following code:

v1 = chainer.Variable(np.arange(10, dtype=np.float32)) # CPU
v2 = chainer.Variable(cupy.arange(10, dtype=cupy.float32)) # GPU

The line below raises an exception, because arguments are on different device.
F.maximum(v1, v2)

Prior to v4, the above code raises an exception like ValueError: object __array__ method not
producing an array, which was difficult to understand. In v4, the error message would become TypeError:
incompatible array types are mixed in the forward input (Maximum). This kind of error
usually occurs by mistake (for example, not performing to_gpu for some variables).

Attention: As the argument validation is strictened, call of functions intentionally mixing NumPy/CuPy arrays in
arguments will not work in Chainer v4. Please transfer all arrays to the same device before calling functions.

8.1.5 References to Function Nodes Not Retained in TimerHook and CupyMemo-
ryProfilerHook

To reduce memory consumption, references to the function nodes will no longer be retained in the chainer.
function_hooks.CupyMemoryProfileHook and chainer.function_hooks.TimerHook. See the
discussion in #4300 for more details.

Attention: The existing code using function nodes retained in call_history attribute of these hooks will
not work. The first element of call_history became the name of the function, instead of the function node
instance itself. You can define your own function hook if you need to access the function node instances.

8.1.6 Update of Docker Images

Chainer official Docker images (see Installation for details) are now updated to use CUDA 8.0 and cuDNN 6.0. This
change was introduced because CUDA 7.5 does not support NVIDIA Pascal GPUs.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

8.1.7 CuPy v4

Chainer v4 requires CuPy v4 if you need GPU support. Please see the Upgrade Guide for CuPy v4 for details.

754 Chapter 8. Upgrade Guide

https://github.com/chainer/chainer/pull/4300
https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v4

Chainer Documentation, Release 4.0.0

8.2 Chainer v3

8.2.1 Introduction of New-style Functions

This release introduces new-style functions (classes inheriting from FunctionNode) that support double backward
(gradient of gradient). See the Release Note for v3.0.0 for the usage of this feature.

Many of Functions are already migrated to new-style, although some of functions are still old-style (classes inheriting
from Function). We are going to migrate more old-style functions to new-style in upcoming minor releases.

This does not break the existing code. Old-style functions (classes inheriting from Function) are still supported in
v3 and future versions of Chainer.

If you are going to write new functions, it is encouraged to use FunctionNode to support double backward.

Attention: Users relying on undocumented function APIs (directly instantiating old-style classes) may experi-
ence an error like TypeError: 'SomeFunction' object is not callable after upgrading to v3.
Please use the function APIs documented in Functions.

8.2.2 Changed Behavior of matmul Function

The behavior of chainer.functions.matmul() has been changed to behave like the corresponding NumPy
function (numpy.matmul()). See the discussion in #2426 for more details.

Attention: The existing code using chainer.functions.matmul() may require modification to work
with Chainer v3.

Also note that chainer.functions.batch_matmul() is now deprecated by this change. You can rewrite it
using chainer.functions.matmul().

8.2.3 Removed use_cudnn Argument in spatial_transformer_grid and spa-
tial_transformer_sampler Functions

use_cudnn argument has been removed from chainer.functions.spatial_transformer_grid() and
chainer.functions.spatial_transformer_sampler(). See the discussion in #2955 for more details.

Attention: The existing code using use_cudnn argument of chainer.
functions.spatial_transformer_grid() and chainer.functions.
spatial_transformer_sampler() require modification to work with Chainer v3. Please use the
configuration context (e.g., with chainer.using_config('use_cudnn', 'auto'):) to enable or
disable use of cuDNN. See Configuring Chainer for details.

8.2.4 CuPy v2

Chainer v3 requires CuPy v2 if you need GPU support. Please see the Upgrade Guide for CuPy v2 for details.

8.2. Chainer v3 755

https://github.com/chainer/chainer/releases/tag/v3.0.0
https://docs.scipy.org/doc/numpy/reference/generated/numpy.matmul.html#numpy.matmul
https://github.com/chainer/chainer/pull/2426
https://github.com/chainer/chainer/pull/2955
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v2

Chainer Documentation, Release 4.0.0

8.3 Chainer v2

See Upgrade Guide from v1 to v2 for the changes introduced in Chainer v2.

8.3.1 Upgrade Guide from v1 to v2

This document provides detailed information of differences between Chainer v1 and v2. You will know by reading it
which part of your code is required (or recommended) to be fixed when you upgrade Chainer from v1 to v2.

• CuPy

– CuPy has been separated from Chainer into a separate package

• Global configurations

– Training mode is configured by a thread-local flag

– Configurations are added and replace some of existing global flags

• Variable

– Volatile flag is removed

– Variable is not a part of a computational graph anymore

– Parameter has to be an instance of Parameter class

– Small changes to Variable

• Function

– The force_tuple option of split_axis is True by default

– Type check APIs are updated to enable lazy building of the error messages

– Methods to release unneeded arrays are added

• Link/Chain/ChainList

– wscale option is removed from links

– bias option is removed from links

– The bias vector is enabled by default in N-dimensional convolution links

– init_weight function is removed

– The order of arguments of GRU is changed

– The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

– The interfaces of GRU and LSTM are aligned

– Aliases of links in chainer.functions are removed

– Parameter link is removed

– New-style parameter registration APIs are added to Link

– New-style child link registration APIs are added to Chain

– The input-size placeholder of links are made optional

• Optimizer

756 Chapter 8. Upgrade Guide

Chainer Documentation, Release 4.0.0

– Deprecated methods of Optimizer are removed

– GradientMethod uses Link.cleargrads instead of Link.zerograds by default

– GradientMethod is redesigned to allow parameter-specific update rules

• Serializer

– None is serializable

• Trainer and Extension

– Updater and Evaluator pass raw data arrays to the loss function

– trigger option is removed from snapshot and snapshot_object

– Extension.invoke_before_training is removed

– The dump_graph extension dumps the valid graph only at its first invocation

• Reporter

– When a variable is reported, the variable is copied with the graph purged

• Other utilities

– Some obsolete classes and functions are removed

CuPy

CuPy has been separated from Chainer into a separate package

CuPy, which was originally a part of Chainer, has been separated into a different Python package since Chainer v2. It
changes the way to set up Chainer with CUDA support. In particular, you have to separately install cupy package to
enable CUDA support. See Installation for the recommended installation steps.

Fortunately, there is no need of updating your source code to catch up with this change.

Global configurations

Training mode is configured by a thread-local flag

In Chainer v2, the concept of training mode is added. It is represented by a thread-local flag chainer.config.
train, which is a part of the unified configuration. When chainer.config.train is True, functions of
Chainer run in the training mode, and otherwise they run in the test mode. For example, BatchNormalization
and dropout() behave differently in each mode.

In Chainer v1, such a behavior was configured by the train or test argument of each function. This train/test
argument has been removed in Chainer v2. If your code is using the train or test argument, you have to update
it. In most cases, what you have to do is just removing the train / test argument from any function calls.

Example

Consider the following model definition and the code to call it in test mode written for Chainer v1.

Chainer v1
import chainer.functions as F

(continues on next page)

8.3. Chainer v2 757

https://docs-cupy.chainer.org/en/stable/reference/routines.html#module-cupy

Chainer Documentation, Release 4.0.0

(continued from previous page)

class MyModel(chainer.Link):
...

def __call__(self, x, train=True):
return f(F.dropout(x, train=train))

m = MyModel(...)
y = m(x, train=False)

In Chainer v2, it should be updated into the following code:

Chainer v2
import chainer.functions as F

class MyModel(chainer.Link):
...

def __call__(self, x):
return f(F.dropout(x))

m = MyModel(...)
with chainer.using_config('train', False):

y = m(x)

Configurations are added and replace some of existing global flags

There are many global settings moved to the unified configuration other than the training mode. Following is the
complete list of the configuration entries that have corresponding features in Chainer v1.

chainer.config.cudnn_deterministic It is corresponding to the deterministic argument of some
convolution functions in Chainer v1. This argument has been removed since Chainer v2. If you are using this
argument, you have to use the chainer.config.cudnn_deterministic flag to change the behavior of
the convolution functions.

chainer.config.debug It is corresponding to the debug mode in Chainer v1, which was configured by
set_debug() and extracted by is_debug(). These functions are also available in Chainer v2, so you
basically do not need to update the code related to the debug mode.

chainer.config.enable_backprop It is corresponding to the backprop mode in Chainer v1. The functions
no_backprop_mode() and force_backprop_mode() are still available in Chainer v2, which auto-
matically turns on/off the enable_backprop flag. One important difference from Chainer v1 is that the
volatile flag is removed from Variable. Therefore, there are more situations that you need to modify
the enable_backprop flag.

chainer.config.keep_graph_on_report This flag configures whether or not to keep the computational
graph alive for a reported variable. In Chainer v2, when a Variable object is reported by report(), a copy
of the variable isolated from the computational graph is created and stored by default. Setting True to this flag,
you can change this behavior and then the original Variable object is stored as is. See When a variable is
reported, the variable is copied with the graph purged for the details.

chainer.config.train It is corresponding to the train or test argument of some functions in Chainer v1.
This argument has been removed since Chainer v2. If you are using this argument, you have to use the
chainer.config.train flag instead. See Training mode is configured by a thread-local flag for more
details.

758 Chapter 8. Upgrade Guide

Chainer Documentation, Release 4.0.0

chainer.config.type_check It is corresponding to the Function.type_check_enable flag. If your
code touches this flag, you have to use chainer.config.type_check instead. Note that the environment
variable CHAINER_TYPE_CHECK is still available in Chainer v2, so if you are only using the environment
variable, there is no need of updating your code.

chainer.config.use_cudnn It is corresponding to the use_cudnn argument of many functions that have
cuDNN implementations. This argument has been removed since Chainer v2. If you are using this argument,
you have to use the chainer.config.use_cudnn flag instead. Note that this flag is ternary, not binary.
See Configuring Chainer for more details.

These configurations can be modified in two ways.

• Simply substituting a new value to an entry, like chainer.config.train = False.

• Using the chainer.using_config context manager. It can be used with the with statement of Python as
follows:

with chainer.using_config('train', False):
do something # this code runs with chainer.config.train == False

It recovers the original configuration after quitting the with block.

The chainer.config manages the thread-local configuration. You can also set the global configuration by mod-
ifying chainer.global_config. Note that the global configuration is used only if the entry of the thread-local
configuration is not explicitly set up.

Variable

Volatile flag is removed

The Variable.volatile flag has been removed since Chainer v2.

Instead, the configuration chainer.config.enable_backprop can be used to enable/disable the automatic
differentiation feature. If it is True, Chainer always creates a computational graph on the forward propagation,
which corresponds to passing non-volatile variables in Chainer v1. Otherwise, Chainer does not create a graph, which
corresponds to passing volatile variables in Chainer v1. The biggest difference is that enable_backprop is a
thread-local flag, whereas volatile was a flag local to each Variable object. Note that enable_backprop
flag has already existed in Chainer v1, which took effect only if all the inputs to the function have volatile ==
'auto'.

The chainer.config.enable_backprop flag can be modified directly or by using using_config(). See
Configuring Chainer for details. There is also a convenience function, no_backprop_mode(), to turn off the flag.

If you are using the Variable.volatile flag, you have to stop setting this flag (it will not take effect), and set the
enable_backprop flag instead.

Example

Let model be your model, and consider the following code that calls it in volatile mode.

Chainer v1
x_data = ... # ndarray
x = chainer.Variable(x_data, volatile=True)
y = model(x)

In Chainer v2, it should be updated as follows.

8.3. Chainer v2 759

Chainer Documentation, Release 4.0.0

Chainer v2
x_data = ... # ndarray
x = chainer.Variable(x_data)
with chainer.no_backprop_mode():

y = model(x)

Variable is not a part of a computational graph anymore

The Variable class has been separated into two distinct classes, the Variable class and the VariableNode
class, since Chainer v2. Every class:Variable object owns its own VariableNode object. A computational graph
consists of Function objects and VariableNode objects. When one applies a Function to a Variable, the
VariableNode object of the variable is extracted and set to one of the inputs of the function.

Note that the underlying data array of the variable is till held by the Variable object. It allows each Function
implementation to release unneeded arrays from the computational graph, resulting in greatly reduced memory con-
sumption.

This change does not affect most users’ code. If you are directly traversing the computational graph by yourself or
modifying the graph ad-hoc, you may have to update your code. In most cases, it is enough to just change Variable
into VariableNode in the code traversing the computational graph.

Parameter has to be an instance of Parameter class

Chainer v2 has a subclass of Variable called Parameter. This class has an interface convenient on setting up a
parameter variable registered to Link.

You basically do not need to update your code because Link.add_param() creates a Parameter object in
Chainer v2. There is a new recommended way of registering parameters to a link in Chainer v2, though. See here for
the recommended way of parameter registration.

Small changes to Variable

There are some changes on the interface and specification of methods.

• len(variable) returns the length of the first axis of the underlying array in Chainer v2. This is equivalent
to len(variable.data). It is different from the behavior of Chainer v1, in which len returned the total
number of elements in the underlying array.

• repr(variable) returns a NumPy-like text representation of the underlying array in Chainer v2. In Chainer
v1, it just returns a string that shows the name of the variable.

Function

The force_tuple option of split_axis is True by default

In Chainer v2, the force_tuple argument of functions.split_axis() is set to True by default. Therefore,
it always returns a tuple regardless of the number of sections made after the split. It was False by default in Chainer
v1.

760 Chapter 8. Upgrade Guide

Chainer Documentation, Release 4.0.0

Type check APIs are updated to enable lazy building of the error messages

In Chainer v2, the type check APIs are updated so that the overhead of checking types is greatly reduced. In order to
achieve the overhead reduction, some APIs are changed.

If you have custom Function implementations that do type checking, you have to update your code. The follow-
ing list shows which part has to be updated.

• Use utils.type_check.eval() instead of Expr.eval.

• Use utils.type_check.make_variable() to create a utils.type_check.Variable object in-
stead of directly constructing it by yourself.

• Stop using .name attribute of any expression.

Background of this change: In Chainer v1, the type checking APIs build an abstract syntax tree (AST) based on each
expression that tests some condition. The AST is used to emit a kind error message. However, building an AST
requires constructions of many Python objects, which adds large Python overheads. In Chainer v2, the Function.
type_check_forward() method is called once or twice. At the first call, the type checking APIs run in light-
weight mode, where it does not build an AST and just checks the condition. The second call is made only if there is a
test that fails, where it builds an AST. This change makes the ordinary path of running the type checking much faster,
while keeping the kind error messages.

Methods to release unneeded arrays are added

As is written above, Chainer v2 introduced a new mechanism to reduce the memory consumption of each Function
implementation. In many cases, a Function implementation does not need some input arrays in its backward
computation. A new method called Function.retain_inputs() can be used to specify which input arrays are
actually needed. This method must not be called from the outside of Function.forward().

Example

For example, consider the following simple addition function.

class AddFunction(chainer.Function):
def forward(self, inputs):

return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
return grad_outputs[0], grad_outputs[0]

It can be seen that the backward computation of this function does not use any of the inputs. Then, specifying an
empty tuple of indexes to retain_inputs() will reduce the memory overhead.

class AddFunction(chainer.Function):
def forward(self, inputs):

self.retain_inputs(()) # does not retain both inputs
return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
return grad_outputs[0], grad_outputs[0]

In some cases, the function can (or have to) use the output arrays instead of the inputs in its backward computation.
In Chainer v1, we have written code that store the output arrays to attributes of the Function object and reuse
them in the backward() method. In Chainer v2, it is recommended to use Function.retain_outputs()

8.3. Chainer v2 761

Chainer Documentation, Release 4.0.0

to declare which outputs are required in the backward computation. The retained output arrays can be accessed via
Function.output_data.

Note: The existing Function implementations that store the output arrays to its attributes will run correctly in
Chainer v2. There is no any memory overhead right now. It is recommended to use retain_outputs(), though,
so that we can incorporate more memory optimization in the future.

Example

For example, consider the following simple implementation of the tanh function.

class TanhFunction(chainer.Function):
def forward(self, inputs):

xp = chainer.cuda.get_array_module(inputs[0])
self.y = xp.tanh(inputs[0])
return self.y,

def backward(self, inputs, grad_outputs):
one = self.y.dtype.type(1) # avoid type promotion
return grad_outputs[0] * (one - self.y * self.y),

We can use retain_outputs() instead of preserving the output array by ourselves as follows.

class TanhFunction(chainer.Function):
def forward(self, inputs):

self.retain_outputs((0,))
xp = chainer.cuda.get_array_module(inputs[0])
return xp.tanh(inputs[0]),

def backward(self, inputs, grad_outputs):
y = self.output_data[0]
one = y.dtype.type(1) # avoid type promotion
return grad_outputs[0] * (one - y * y)

Link/Chain/ChainList

wscale option is removed from links

The wscale option has been removed from links since Chainer v2. If you are using wscale option, you have to
update your code. The recommended way is to explicitly set the initializer.

Example

Consider the case of adding a Linear link with the weight initialized by 0.5x of the default initialization.

Chainer v1
linear = chainer.links.Linear(10, 5, wscale=0.5)

Note that the default initializer of the weight matrix of Linear is a normal distribution of the standard deviation
1/
√
𝑓𝑎𝑛𝑖𝑛. Therefore, it can be fixed as follows.

762 Chapter 8. Upgrade Guide

Chainer Documentation, Release 4.0.0

Chainer v2
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.Normal(0.5 / math.
→˓sqrt(10)))

Or, by using the fact that initializers.HeNormal provides the initialization with a normal distribution of the
standard deviation 𝑠𝑐𝑎𝑙𝑒 *

√︀
2/𝑓𝑎𝑛𝑖𝑛, the following code is also equivalent to the original.

Chainer v2, using HeNormal
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.HeNormal(0.5 /
→˓math.sqrt(2))

bias option is removed from links

In Chainer v2, the bias option is removed from the following links: Linear, Convolution2D,
Deconvolution2D, and DilatedConvolution2D. The effect of this argument was duplicated with the
initial_bias option. Use initial_bias instead.

The bias vector is enabled by default in N-dimensional convolution links

In Chainer v2, the bias parameter is enabled by default in ConvolutionND and DeconvolutionND. It was
unintentionally disabled by default in Chainer v1.

If you are using ConvolutionND or DeconvolutionND without specifying the initial_bias argument, you
have to fix your code. If you want to keep the old behavior (i.e., no bias vector is created by the link), pass
nobias=True to the link at the construction. Otherwise it will automatically create a bias vector.

init_weight function is removed

The chainer.initializers.init_weight function that was used on weight initialization has been removed
since Chainer v2.

You have to update your code if you are using init_weight. In most cases, the update is simple: pass an
initializer to Parameter.

Example

Consider the following code that initializes a weight matrix randomly and a bias vector by zero.

Chainer v1
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__(

W=(10, 5),
b=(5,),

)
chainer.initializers.init_weight(self.W, chainer.initializers.Normal(0.05))
self.b.data.fill(0)

...

This code should be fixed as follows (see the next topic for the use of Parameter).

8.3. Chainer v2 763

Chainer Documentation, Release 4.0.0

Chainer v2
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__()
self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
self.b = chainer.Parameter(0, (5,))

...

The order of arguments of GRU is changed

In Chainer v2, the first two arguments of GRU is the input size and the output size. It was reversed in Chainer v1,
causing an inconsistent interface compared to other links including LSTM . If you are using GRU , you have to update
your code. The update is done by simply flipping the first two arguments.

Example

Consider the following code that creates a GRU link.

Chainer v1
gru = chainer.links.GRU(20, 10)

It should be fixed into the following code.

Chainer v2
gru = chainer.links.GRU(10, 20)

Note that if you were omitting the output size, the code works as is because GRU supports the omitted input size.

Chainer v1/v2
gru = chainer.links.GRU(20)

The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

In Chainer v2, the default forget bias value of LSTM and StatelessLSTM links is changed to 1. This change is
based on the paper reporting that using a large forget bias improves the training performance. The new behavior is
also consistent with the implementation of BasicLSTMCell in TensorFlow.

It will improve the most use cases of LSTMs, although this change would break the reproducibility of the existing
experiments. If you want to keep the same initialization procedure, you have to update your code. The change is
simple: pass forget_bias_init=0 to LSTM and StatelessLSTM .

The interfaces of GRU and LSTM are aligned

In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with the naming convention of
LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points the stateful
links. If you are using StatelessGRU for stateless version, whose implementation is identical to chainer.
linksGRU in v1.

764 Chapter 8. Upgrade Guide

http://proceedings.mlr.press/v37/jozefowicz15.pdf
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py#L138

Chainer Documentation, Release 4.0.0

Aliases of links in chainer.functions are removed

For the compatibility reason, there were some links that have aliases in the chainer.functions module. These
aliases are removed in Chainer v2. Use chainer.links instead.

Parameter link is removed

The chainer.links.Parameter link is removed in Chainer v2. This link existed in Chainer v1 only for the
backward compatibility. Use chainer.Parameter instead (for the new Parameter class, see Parameter has to
be an instance of Parameter class).

New-style parameter registration APIs are added to Link

In Chainer v2, Link.init_scope()method returns a context manager that automatically registers a Parameter
object to the link at setting it to an attribute. If you are using IDE like PyCharm, it is recommended to use this new-
style parameter registration so that IDEs can easily detect the existence of the parameter as an attribute. It is also a
good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering parameters are still valid.

Example

For example, the following link initialization code

Chainer v1
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__(

W=(10, 5),
b=(5,),

)
chainer.initializers.Normal(0.05)(self.W.data)
self.b.data.fill(0)

...

is recommended to be updated as follows.

Chainer v2
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
self.b = chainer.Parameter(0, (5,)) # initialize by zero

...

Note: To keep a Parameter object as an attribute without registration, you can set the attribute without using the
with self.init_scope(): block.

8.3. Chainer v2 765

Chainer Documentation, Release 4.0.0

New-style child link registration APIs are added to Chain

Like Parameter, a Link object is also automatically registered to a Chain object by substitution to an attribute
within a init_scope() scope. If you are using IDE like PyCharm, it is recommended to use the new-style child
link registration so that IDEs can easily detect the existence of the child link as an attribute. It is also a good practice
to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering child links are still valid.

Example

For example, the following chain initialization code

Chainer v1
class MyMLP(chainer.Chain):

def __init__(self):
super(MyMLP, self).__init__(

layer1=L.Linear(None, 20),
layer2=L.Linear(None, 30),

)
...

is recommended to be updated as follows.

Chainer v2
class MyMLP(chainer.Chain):

def __init__(self):
super(MyMLP, self).__init__()
with self.init_scope():

self.layer1 = L.Linear(20)
self.layer2 = L.Linear(30)

Note that this example also demonstrates the use of new APIs with the omitted input size, explained below.

Note: To keep a Link object as an attribute without registration, you can set the attribute without using the with
self.init_scope(): block.

The input-size placeholder of links are made optional

In Chainer v2, the input size of many links, including Linear and Convolution2D, is made optional. In Chainer
v1, we had to use None as the placeholder to specify that the input size should be determined at the first iteration. The
placeholder can also be used in Chainer v2, although it is easier to just omit the input size.

See the previous item for the example of omitting the input size of Linear. The following links currently support
the omitted input size.

• Convolution2D

• Deconvolution2D

• DilatedConvolution2D

• Linear

766 Chapter 8. Upgrade Guide

Chainer Documentation, Release 4.0.0

• LSTM

• MLPConvolution2D

• StatelessLSTM

Optimizer

Deprecated methods of Optimizer are removed

The following methods are removed from Optimizer. These methods have been already deprecated in the past
versions. If you are using these methods, you have to update your code.

• zero_grads: use Link.zerograds() instead.

• compute_grads_norm: you can compute the gradient norm by iterating the list of parameters by Link.
params().

• clip_grads: use GradientClipping instead.

• weight_decay: use WeightDecay instead.

• accumulate_grads: use Link.addgrads() instead.

GradientMethod uses Link.cleargrads instead of Link.zerograds by default

In Chainer v2, GradientMethod clears the gradient before running backprop by Link.cleargrads(). It
means that the gradient of each parameter is initialized by None instead of a zero array. Note that all the optimizer
implementations provided by Chainer are subclasses of GradientMethod, and therefore this change affects all of
them.

In most cases, you do not need to update your code. If your code relies on the zeroing initialization, you
have to fix your code to explicitly initialize the gradient by zero, or to pass False to GradientMethod.
use_cleargrads().

GradientMethod is redesigned to allow parameter-specific update rules

In Chainer v2, the new class UpdateRule is used to define an update rule specific to each Parameter object. The
UpdateRule is set to each Parameter object, and is used at each update step. This object implements an update
formula using the data and gradient arrays.

Each UpdateRule object has enabled flag, which configures if the update rule should be applied to that parameter
on update. By setting the flag to False, you can freeze the parameter. There is also a convenient method Link.
enable_update() and Link.disable_update(), which configure the flag of each parameter under the link
hierarchy. In other frameworks, a similar feature is called layer freezing. In Chainer v2, this is officially supported by
these methods.

Each UpdateRule object can also hold its own hook functions similar to Optimizer. The built-in hook functions
except for GradientClipping can also be used as a hook function of UpdateRule.

In most cases, you do not have to update your code because each optimizer automatically sets up an appropriate
UpdaterRule object to each parameter.

If you are using a custom gradient-based optimizer implementation, you need to update the implementation.
The following list shows what you have to do.

• Write a subclass of UpdateRule that implements the update rule.

8.3. Chainer v2 767

Chainer Documentation, Release 4.0.0

• Rewrite your GradientMethod implementation. The new implementation only has to set up the update rule
for each parameter in the target link.

You can see live examples in the optimizer implementations provided by Chainer.

Serializer

None is serializable

In Chainer v2, all serializers start supporting None value to be serialized and deserialized. Users’ code can rely on
this feature, i.e., it can serialize and deserialize None value with any given serializer. This change only affects your
code if it provides its own serializer implementations.

Trainer and Extension

Updater and Evaluator pass raw data arrays to the loss function

In Chainer v2, Updater and Evaluator pass raw data arrays to the loss function without wrapping them with
Variable. You might need to update your code so that the loss function (in most cases, the model’s __call__
) accepts raw arrays.

Note that raw arrays can be directly passed to any Function; they are automatically wrapped by Variable. For
example, if the input is directly passed to a Function object (or any function under chainer.functions), you
do not need to update the code.

Example

Consider the following code that obtains the shape of the input via Variable.data.

Chainer v1
class MyLink(chainer.Link):

def __call__(self, x):
shape = x.data.shape # valid if x is Variable, invalid if x is ndarray
...

It should be updated so that the link also accepts a raw array as the input. In this case, we have Variable.shape
which is equivalent to data.shape, so you can simply write as follows.

Chainer v2
class MyLink(chainer.Link):

def __call__(self, x):
shape = x.shape # valid regardless of x being Variable or ndarray
...

trigger option is removed from snapshot and snapshot_object

In Chainer v2, the trigger option is removed from the snapshot() and snapshot_object() extensions.
The effect of the option was duplicated with the trigger option of Trainer.extend. If you are passing the
trigger argument to these extensions, you have to update your code. The update can be done by passing the
value to the corresponding Trainer.extend.

768 Chapter 8. Upgrade Guide

https://github.com/chainer/chainer/tree/master/chainer/optimizers

Chainer Documentation, Release 4.0.0

Example

Assume that trainer is an instance of Trainer, and consider that you were adding a snapshot() extension as
follows.

Chainer v1
trainer.extend(chainer.training.extensions.snapshot(trigger=(1000, 'iteration')))

It should be updated as follows (note that this code also works with Chainer v1).

Chainer v1/v2
trainer.extend(chainer.training.extensions.snapshot(), trigger=(1000, 'iteration'))

Extension.invoke_before_training is removed

In Chainer v2, The attribute invoke_before_training of Extension is removed. Instead, the Extension.
initialize method is added. This method is called by Trainer.run before entering the training loop.

In Chainer v1, the extension is just called before entering the training loop when invoke_before_training
is True. If you have a custom extension that has invoke_before_training=True , you have to update
the code. What you have to do is to remove the invoke_before_training flag and override initialize()
method. If you are using the make_extension() decorator, you can set the initialize function by passing
the initializer argument to make_extension().

The dump_graph extension dumps the valid graph only at its first invocation

In Chainer v2, the dump_graph() extension dumps the valid computational graph only at its first invocation. If
you want to dump the graph more than once, you have to fix the code. The easiest fix is setting the chainer.
config.keep_graph_on_report flag to True. Note that this fix will cancel the improvement on the memory
consumption made in Chainer v2. More memory-efficient fix is to dump the graph without using an extension, e.g. by
customizing the loss function or the updater.

Here is the background of this change. In Chainer v2, the Reporter copies reported variables with purging the com-
putational graph by default. On the other hand, the dump_graph() extension requires the computational graph
reachable from the reported variable. In order to make the graph available, the dump_graph() extension turns on
the chainer.config.keep_graph_on_report flag at its initializer (i.e., it turns on the graph before entering
the training loop). Since we also wanted to achieve the memory efficiency, the dump_graph() extension turns off
the flag after dumping the graph at its first invocation (strictly speaking, it recovers the original value). As a result,
the computational graph is not available from the second invocation.

Since the dump_graph() recovers the original flag value at its invocation, you can keep the graph dumped more
than once by changing the original flag value.

Reporter

When a variable is reported, the variable is copied with the graph purged

In Chainer v2, when a Variable object is reported using report() function (or directly using Reporter), a
copy of the variable is made without preserving the computational graph. If your code depends on the reachability
of the computational graph from the reported variable, you have to update your code. The easiest way to

8.3. Chainer v2 769

Chainer Documentation, Release 4.0.0

update your code is setting chainer.config.keep_graph_on_report to True, then Chainer will keep the
computational graph reachable from the reported variable.

The possible examples that are affected by this change are as follows (not exhaustive).

• A custom extension that runs backprop from a reported variable. It is definitely an example of assuming the
reachability of the computational graph from the reported variable.

• An extension that visualizes the computational graph from a reported variable. If you are writing such an exten-
sion by yourself, you have to turn on the keep_graph_on_report flag. The dump_graph() extension is
another example, for which see the above item for the details.

This change is made for the memory performance reason; with this change, the memory used by the computational
graph for training is immediately released before invoking extensions. Therefore, changing the behavior by over-
writing chainer.config.keep_graph_on_report may increase the memory consumption. It may cause an
out-of-memory error if the computational graph of the loss function consumes almost all the memory available in your
environment and there is an extension that uses a certain amount of memory (e.g. Evaluator).

Other utilities

Some obsolete classes and functions are removed

The following classes and functions are removed in Chainer v2.

• chainer.Flag

• chainer.FunctionSet (Use Chain or ChainList instead)

• chainer.cuda.init (It did nothing except for calling check_cuda_available())

• chainer.cuda.empty (Use cupy.empty())

• chainer.cuda.empty_like (Use cupy.empty_like())

• chainer.cuda.full (Use cupy.full())

• chainer.cuda.full_like (Use cupy.full_like())

• chainer.cuda.ones (Use cupy.ones())

• chainer.cuda.ones_like (Use cupy.ones_like())

• chainer.cuda.zeros (Use cupy.zeros())

• chainer.cuda.zeros_like (Use cupy.zeros_like())

770 Chapter 8. Upgrade Guide

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.empty.html#cupy.empty
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.empty_like.html#cupy.empty_like
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.full.html#cupy.full
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.full_like.html#cupy.full_like
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ones.html#cupy.ones
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ones_like.html#cupy.ones_like
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.zeros.html#cupy.zeros
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.zeros_like.html#cupy.zeros_like

CHAPTER 9

Comparison with Other Frameworks

9.1 A table for quick comparison

This table compares Chainer with other actively developed deep learning frameworks. Content is current as of July
2017.

771

Chainer Documentation, Release 4.0.0

ChainerPy-
Torch

Ten-
sor-
Flow

Theano-
based

Caffe1/Caffe2Torch7MXNetDyNetPad-
dlePad-
dle

DL4J CNTKneon Knet.jlDark-
net

Thinc

Ba-
sics

Lan-
guage

PythonPythonPythonPythonPython/C++/
MAT-
LAB

Lu-
a-
JIT

Python/othersPython/C++Python/C++Java Brain-
Script/
Python/C++

PythonJu-
lia

C Python

Ap-
proach

define-
by-
run

define-
by-
run

sym-
bolic
au-
to-
grad

sym-
bolic
au-
to-
grad

static static/
man-
ual
grads

sym-
bolic
au-
to-
grad/
man-
ual
grads/
define-
by-
run1

define-
by-
run

sym-
bolic
au-
to-
grad

static/
man-
ual
grads/
sym-
bolic
au-
to-
grad2

static/
sym-
bolic
au-
to-
grad

static/
sym-
bolic
au-
to-
grad3

define-
by-
run

static callback-
based
define-
by-
run

CPU
back-
end
pack-
age

NumPyTH Eigen NumPy TH mshadowEigen ND4J NumPyJu-
lia

NumPy

GPU
back-
end
pack-
age

CuPy THC Eigen libg-
puar-
ray

THC mshadowEigen ND4J neon Kne-
tAr-
rays

CuPy

Pri-
mary
spon-
sor

Pre-
ferred
Net-
works

Face-
book

GoogleMILA Face-
book

Face-
book

Ama-
zon/Apache

CMU Baidu Sky-
mind

Mi-
crosoft

In-
tel
Ner-
vana

Koç
Uni-
ver-
sity

Joe
Red-
mon

Ex-
plo-
sion
AI

NNs CNNsfull full full full full full full par-
tial

full full full full par-
tial

full none

RNNsfull full full full par-
tial

full full full full full full par-
tial

par-
tial

par-
tial

par-
tial

Reverse-
mode
au-
to-
grad

Y Y Y Y torch-
autograd

Y Y Y Y ngraphY with
clo-
sures

Forward-
mode
au-
to-
grad

tensorflow-
forward-
ad

Y

Higher-
order
grads

Y Y Y Y

Variable-
length
loops

na-
tive

na-
tive

while_loopscan RNNs
only

na-
tive

2017 na-
tive

RNNs
only

none dy-
namic
axis

none na-
tive

none na-
tive

Dif-
fer-
ent
ar-
chi-
tec-
tures
per
batch

na-
tive

na-
tive

fold torch-
autograd

MinPy na-
tive

na-
tive

na-
tive

Per-
for-
mance

cuDNN
sup-
port

full full par-
tial

par-
tial

full full full par-
tial

full par-
tial

full N/A4 par-
tial

CPU/GPU
generic
back-
end

Y Y Y Y Y Y Y Y Y Y Y

Multi-
GPU
data
par-
al-
lelism

Y Y Y Y Y Y Y Y Y Y Y Y Y

Multi-
GPU
model
par-
al-
lelism

Y Y Y Y Y Y Y Y Y Y

Mul-
ti-
pro-
cess-
ing5

full par-
tial

full

Dis-
tributed
train-
ing

Chain-
erMN

THD Y 2017 torch-
distlearn

Y Y Spark Y Y

Misc Run-
time
de-
bug-
ging

de-
bug
mode,
type-
check-
ing,
pdb

pdb tfdbg Mon-
itor

pdb Java
de-
bug-
gers

cntk.debuggingGal-
lium.jl

gdb pdb

Trainer
ab-
strac-
tion

na-
tive

tnt Blocks,
Lasagne,
Keras

na-
tive

torch-
net

na-
tive

na-
tive

na-
tive

na-
tive

na-
tive

Re-
porter
ab-
strac-
tion

na-
tive

tnt na-
tive

torch-
net

na-
tive

na-
tive

na-
tive

Web
in-
ter-
face

ChainerUI,
ten-
sor-
boardX

ten-
sor-
boardX,
vis-
dom

Ten-
sor-
Board

DL4J-
UI

Ner-
vana
Cloud

Graph
com-
pi-
la-
tion
en-
gine

2017 XLA 2017 NNVM ngraph

772 Chapter 9. Comparison with Other Frameworks

https://github.com/chainer/chainer
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/Theano/Theano
https://github.com/bvlc/caffe
https://github.com/caffe2/caffe2
https://github.com/torch/torch
https://github.com/dmlc/mxnet
https://github.com/clab/dynet
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://github.com/deeplearning4j/deeplearning4j
https://github.com/Microsoft/cntk
https://github.com/NervanaSystems/neon
https://github.com/denizyuret/Knet.jl
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://github.com/explosion/thinc
https://github.com/torch/torch
https://github.com/PX4/eigen
https://github.com/dmlc/mshadow
https://github.com/deeplearning4j/nd4j
https://github.com/julialang/julia
https://github.com/julialang/julia
https://github.com/cupy/cupy
https://github.com/torch/cutorch
https://github.com/Theano/libgpuarray
https://github.com/Theano/libgpuarray
https://github.com/Theano/libgpuarray
https://github.com/twitter/torch-autograd
https://github.com/twitter/torch-autograd
https://github.com/NervanaSystems/ngraph
https://github.com/renmengye/tensorflow-forward-ad
https://github.com/renmengye/tensorflow-forward-ad
https://github.com/renmengye/tensorflow-forward-ad
https://github.com/tensorflow/fold
https://github.com/dmlc/MinPy
https://github.com/chainer/chainermn
https://github.com/chainer/chainermn
https://github.com/twitter/torch-distlearn
https://github.com/twitter/torch-distlearn
https://github.com/pytorch/tnt
https://github.com/mila-udem/blocks
https://github.com/Lasagne/Lasagne
https://github.com/fchollet/keras
https://github.com/torchnet/torchnet
https://github.com/torchnet/torchnet
https://github.com/chainer/chainerui
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
https://github.com/lanpa/tensorboard-pytorch
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/xla/
https://github.com/dmlc/nnvm

Chainer Documentation, Release 4.0.0

9.2 Benchmarks

Benchmarks for convolutional networks can be found at convnet-benchmarks while some NLP benchmarks are at
dynet-benchmark. Chainer wraps the latest available cuDNN kernels for CNNs and RNNs, so performance of most
common networks that use these kernels is typically similar to that of other modern frameworks. As Chainer’s define-
by-run approach means the user’s Python code is executed directly at runtime, particularly complex networks or those
with very small tensor sizes may be slower than in static-graph frameworks.

1 Define-by-run is in development as of June 2017 and tracked in dmlc/mxnet#5705. It is also possible using the much slower MinPy extension.
2 Symbolic autograd is in development as of June 2017 and tracked in deeplearning4j/nd4j#1750.
3 Symbolic autograd is available only with ngraph backend (experimental).
4 Nervana provides kernels that are meant to compete with cuDNN.
5 Multiprocessing provides a significant performance improvement only for frameworks that use Python at runtime.

9.2. Benchmarks 773

https://github.com/soumith/convnet-benchmarks
https://github.com/neulab/dynet-benchmark
https://github.com/dmlc/mxnet/pull/5705
https://github.com/deeplearning4j/nd4j/pull/1750

Chainer Documentation, Release 4.0.0

774 Chapter 9. Comparison with Other Frameworks

CHAPTER 10

License

Copyright (c) 2015 Preferred Infrastructure, Inc.

Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

775

Chainer Documentation, Release 4.0.0

776 Chapter 10. License

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

777

Chainer Documentation, Release 4.0.0

778 Chapter 11. Indices and tables

Bibliography

[LeCun98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11), 2278–2324, 1998.

[Simonyan14] Simonyan, K. and Zisserman, A., Very Deep Convolutional Networks for Large-Scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[He16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

[Graves2006] Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber, Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

[Graves2012] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks

779

ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
https://www.cs.toronto.edu/~graves/preprint.pdf

Chainer Documentation, Release 4.0.0

780 Bibliography

Python Module Index

c
chainer, 701
chainer.backends.cuda, 705
chainer.computational_graph, 722
chainer.dataset, 670
chainer.datasets, 677
chainer.exporters, 725
chainer.function_hooks, 250
chainer.functions, 119
chainer.initializers, 626
chainer.iterators, 691
chainer.links, 257
chainer.links.caffe, 725
chainer.serializers, 695
chainer.training, 634
chainer.utils, 738

781

Chainer Documentation, Release 4.0.0

782 Python Module Index

Index

Symbols
__abs__() (chainer.Parameter method), 113
__abs__() (chainer.Variable method), 105
__add__() (chainer.Parameter method), 113
__add__() (chainer.Sequential method), 594
__add__() (chainer.Variable method), 106
__add__() (chainer.utils.type_check.Expr method), 728
__bool__() (chainer.Parameter method), 113
__bool__() (chainer.Variable method), 105
__bool__() (chainer.utils.type_check.Expr method), 728
__call__() (chainer.AbstractSerializer method), 702
__call__() (chainer.Deserializer method), 703
__call__() (chainer.Function method), 233
__call__() (chainer.FunctionAdapter method), 236
__call__() (chainer.FunctionNode method), 242
__call__() (chainer.Initializer method), 626
__call__() (chainer.Sequential method), 589
__call__() (chainer.Serializer method), 702
__call__() (chainer.dataset.ConcatWithAsyncTransfer

method), 675
__call__() (chainer.initializers.Constant method), 627
__call__() (chainer.initializers.GlorotNormal method),

630
__call__() (chainer.initializers.GlorotUniform method),

633
__call__() (chainer.initializers.HeNormal method), 631
__call__() (chainer.initializers.HeUniform method), 633
__call__() (chainer.initializers.Identity method), 627
__call__() (chainer.initializers.LeCunNormal method),

630
__call__() (chainer.initializers.LeCunUniform method),

632
__call__() (chainer.initializers.NaN method), 629
__call__() (chainer.initializers.Normal method), 629
__call__() (chainer.initializers.One method), 628
__call__() (chainer.initializers.Orthogonal method), 631
__call__() (chainer.initializers.Uniform method), 632
__call__() (chainer.initializers.Zero method), 628
__call__() (chainer.links.BatchNormalization method),

459
__call__() (chainer.links.BatchRenormalization method),

464
__call__() (chainer.links.Bias method), 259
__call__() (chainer.links.Bilinear method), 264
__call__() (chainer.links.BinaryHierarchicalSoftmax

method), 474
__call__() (chainer.links.BlackOut method), 479
__call__() (chainer.links.CRF1d method), 483
__call__() (chainer.links.ChildSumTreeLSTM method),

269
__call__() (chainer.links.Classifier method), 514
__call__() (chainer.links.Convolution2D method), 275
__call__() (chainer.links.ConvolutionND method), 281
__call__() (chainer.links.Deconvolution2D method), 287
__call__() (chainer.links.DeconvolutionND method), 292
__call__() (chainer.links.DepthwiseConvolution2D

method), 297
__call__() (chainer.links.DilatedConvolution2D method),

303
__call__() (chainer.links.EmbedID method), 308
__call__() (chainer.links.GRU method), 313
__call__() (chainer.links.GoogLeNet method), 527
__call__() (chainer.links.Highway method), 318
__call__() (chainer.links.Inception method), 323
__call__() (chainer.links.InceptionBN method), 329
__call__() (chainer.links.LSTM method), 346
__call__() (chainer.links.LayerNormalization method),

469
__call__() (chainer.links.Linear method), 335
__call__() (chainer.links.LocalConvolution2D method),

340
__call__() (chainer.links.MLPConvolution2D method),

351
__call__() (chainer.links.Maxout method), 504
__call__() (chainer.links.NStepBiGRU method), 362
__call__() (chainer.links.NStepBiLSTM method), 368
__call__() (chainer.links.NStepBiRNNReLU method),

374
__call__() (chainer.links.NStepBiRNNTanh method), 380

783

Chainer Documentation, Release 4.0.0

__call__() (chainer.links.NStepGRU method), 386
__call__() (chainer.links.NStepLSTM method), 392
__call__() (chainer.links.NStepRNNReLU method), 398
__call__() (chainer.links.NStepRNNTanh method), 404
__call__() (chainer.links.NaryTreeLSTM method), 357
__call__() (chainer.links.NegativeSampling method), 509
__call__() (chainer.links.PReLU method), 493
__call__() (chainer.links.Parameter method), 409
__call__() (chainer.links.ResNet101Layers method), 547
__call__() (chainer.links.ResNet152Layers method), 554
__call__() (chainer.links.ResNet50Layers method), 541
__call__() (chainer.links.Scale method), 414
__call__() (chainer.links.SimplifiedDropconnect

method), 489
__call__() (chainer.links.StatefulGRU method), 420
__call__() (chainer.links.StatefulMGU method), 431
__call__() (chainer.links.StatefulPeepholeLSTM

method), 441
__call__() (chainer.links.StatefulZoneoutLSTM method),

446
__call__() (chainer.links.StatelessGRU method), 426
__call__() (chainer.links.StatelessLSTM method), 452
__call__() (chainer.links.StatelessMGU method), 436
__call__() (chainer.links.Swish method), 499
__call__() (chainer.links.TheanoFunction method), 561
__call__() (chainer.links.VGG16Layers method), 520
__call__() (chainer.links.caffe.CaffeFunction method),

566
__call__() (chainer.links.model.vision.resnet.ResNetLayers

method), 534
__call__() (chainer.optimizer_hooks.GradientClipping

method), 624
__call__() (chainer.optimizer_hooks.GradientHardClipping

method), 625
__call__() (chainer.optimizer_hooks.GradientNoise

method), 625
__call__() (chainer.optimizer_hooks.Lasso method), 623
__call__() (chainer.optimizer_hooks.WeightDecay

method), 623
__call__() (chainer.serializers.DictionarySerializer

method), 696
__call__() (chainer.serializers.HDF5Deserializer

method), 700
__call__() (chainer.serializers.HDF5Serializer method),

699
__call__() (chainer.serializers.NpzDeserializer method),

697
__call__() (chainer.training.Extension method), 644
__call__() (chainer.training.extensions.Evaluator

method), 646
__call__() (chainer.training.extensions.ExponentialShift

method), 654
__call__() (chainer.training.extensions.FailOnNonNumber

method), 650

__call__() (chainer.training.extensions.LinearShift
method), 655

__call__() (chainer.training.extensions.LogReport
method), 659

__call__() (chainer.training.extensions.MicroAverage
method), 649

__call__() (chainer.training.extensions.ParameterStatistics
method), 652

__call__() (chainer.training.extensions.PlotReport
method), 661

__call__() (chainer.training.extensions.PrintReport
method), 656

__call__() (chainer.training.extensions.ProgressBar
method), 658

__call__() (chainer.training.extensions.VariableStatisticsPlot
method), 663

__call__() (chainer.training.triggers.BestValueTrigger
method), 667

__call__() (chainer.training.triggers.EarlyStoppingTrigger
method), 667

__call__() (chainer.training.triggers.IntervalTrigger
method), 668

__call__() (chainer.training.triggers.ManualScheduleTrigger
method), 669

__call__() (chainer.training.triggers.MaxValueTrigger
method), 669

__call__() (chainer.training.triggers.MinValueTrigger
method), 670

__call__() (chainer.training.triggers.TimeTrigger
method), 670

__call__() (chainer.utils.type_check.Expr method), 728
__copy__() (chainer.Parameter method), 110
__copy__() (chainer.Variable method), 103
__copy__() (chainer.iterators.MultiprocessIterator

method), 693
__div__() (chainer.Parameter method), 114
__div__() (chainer.Variable method), 106
__enter__() (chainer.DebugMode method), 722
__enter__() (chainer.FunctionHook method), 249
__enter__() (chainer.Reporter method), 711
__enter__() (chainer.function_hooks.CUDAProfileHook

method), 250
__enter__() (chainer.function_hooks.CupyMemoryProfileHook

method), 252
__enter__() (chainer.function_hooks.PrintHook method),

254
__enter__() (chainer.function_hooks.TimerHook

method), 256
__eq__() (chainer.Parameter method), 113
__eq__() (chainer.Variable method), 105
__eq__() (chainer.utils.type_check.Expr method), 728
__exit__() (chainer.DebugMode method), 722
__exit__() (chainer.FunctionHook method), 249
__exit__() (chainer.Reporter method), 711

784 Index

Chainer Documentation, Release 4.0.0

__exit__() (chainer.function_hooks.CUDAProfileHook
method), 250

__exit__() (chainer.function_hooks.CupyMemoryProfileHook
method), 252

__exit__() (chainer.function_hooks.PrintHook method),
254

__exit__() (chainer.function_hooks.TimerHook method),
256

__floordiv__() (chainer.Parameter method), 114
__floordiv__() (chainer.Variable method), 107
__floordiv__() (chainer.utils.type_check.Expr method),

729
__ge__() (chainer.Parameter method), 113
__ge__() (chainer.Variable method), 105
__ge__() (chainer.utils.type_check.Expr method), 728
__getitem__() (chainer.AbstractSerializer method), 703
__getitem__() (chainer.Chain method), 578
__getitem__() (chainer.ChainList method), 582
__getitem__() (chainer.Deserializer method), 704
__getitem__() (chainer.Parameter method), 110
__getitem__() (chainer.Sequential method), 589
__getitem__() (chainer.Serializer method), 702
__getitem__() (chainer.Variable method), 102
__getitem__() (chainer.dataset.DatasetMixin method),

671
__getitem__() (chainer.datasets.ConcatenatedDataset

method), 679
__getitem__() (chainer.datasets.DictDataset method), 678
__getitem__() (chainer.datasets.ImageDataset method),

685
__getitem__() (chainer.datasets.LabeledImageDataset

method), 687
__getitem__() (chainer.datasets.SubDataset method), 680
__getitem__() (chainer.datasets.TransformDataset

method), 684
__getitem__() (chainer.datasets.TupleDataset method),

678
__getitem__() (chainer.links.ChildSumTreeLSTM

method), 269
__getitem__() (chainer.links.Classifier method), 515
__getitem__() (chainer.links.GRU method), 313
__getitem__() (chainer.links.GoogLeNet method), 527
__getitem__() (chainer.links.Highway method), 318
__getitem__() (chainer.links.Inception method), 324
__getitem__() (chainer.links.InceptionBN method), 329
__getitem__() (chainer.links.LSTM method), 346
__getitem__() (chainer.links.MLPConvolution2D

method), 351
__getitem__() (chainer.links.Maxout method), 504
__getitem__() (chainer.links.NStepBiGRU method), 362
__getitem__() (chainer.links.NStepBiLSTM method),

368
__getitem__() (chainer.links.NStepBiRNNReLU

method), 374

__getitem__() (chainer.links.NStepBiRNNTanh method),
380

__getitem__() (chainer.links.NStepGRU method), 386
__getitem__() (chainer.links.NStepLSTM method), 392
__getitem__() (chainer.links.NStepRNNReLU method),

398
__getitem__() (chainer.links.NStepRNNTanh method),

404
__getitem__() (chainer.links.NaryTreeLSTM method),

357
__getitem__() (chainer.links.ResNet101Layers method),

547
__getitem__() (chainer.links.ResNet152Layers method),

554
__getitem__() (chainer.links.ResNet50Layers method),

541
__getitem__() (chainer.links.Scale method), 414
__getitem__() (chainer.links.StatefulGRU method), 420
__getitem__() (chainer.links.StatefulMGU method), 431
__getitem__() (chainer.links.StatefulPeepholeLSTM

method), 441
__getitem__() (chainer.links.StatefulZoneoutLSTM

method), 446
__getitem__() (chainer.links.StatelessGRU method), 426
__getitem__() (chainer.links.StatelessLSTM method),

453
__getitem__() (chainer.links.StatelessMGU method), 436
__getitem__() (chainer.links.VGG16Layers method), 521
__getitem__() (chainer.links.caffe.CaffeFunction

method), 566
__getitem__() (chainer.links.model.vision.resnet.ResNetLayers

method), 535
__getitem__() (chainer.serializers.DictionarySerializer

method), 696
__getitem__() (chainer.serializers.HDF5Deserializer

method), 700
__getitem__() (chainer.serializers.HDF5Serializer

method), 699
__getitem__() (chainer.serializers.NpzDeserializer

method), 698
__getitem__() (chainer.utils.type_check.Expr method),

728
__gt__() (chainer.Parameter method), 113
__gt__() (chainer.Variable method), 105
__gt__() (chainer.utils.type_check.Expr method), 728
__iter__() (chainer.ChainList method), 583
__iter__() (chainer.Sequential method), 589
__iter__() (chainer.dataset.Iterator method), 673
__iter__() (chainer.iterators.MultiprocessIterator

method), 693
__iter__() (chainer.iterators.MultithreadIterator method),

695
__iter__() (chainer.iterators.SerialIterator method), 692
__iter__() (chainer.links.MLPConvolution2D method),

Index 785

Chainer Documentation, Release 4.0.0

351
__iter__() (chainer.links.NStepBiGRU method), 363
__iter__() (chainer.links.NStepBiLSTM method), 369
__iter__() (chainer.links.NStepBiRNNReLU method),

374
__iter__() (chainer.links.NStepBiRNNTanh method), 380
__iter__() (chainer.links.NStepGRU method), 386
__iter__() (chainer.links.NStepLSTM method), 392
__iter__() (chainer.links.NStepRNNReLU method), 398
__iter__() (chainer.links.NStepRNNTanh method), 404
__le__() (chainer.Parameter method), 113
__le__() (chainer.Variable method), 105
__le__() (chainer.utils.type_check.Expr method), 728
__len__() (chainer.ChainList method), 583
__len__() (chainer.Parameter method), 110
__len__() (chainer.Sequential method), 589
__len__() (chainer.Variable method), 103
__len__() (chainer.dataset.DatasetMixin method), 672
__len__() (chainer.datasets.ConcatenatedDataset

method), 679
__len__() (chainer.datasets.DictDataset method), 678
__len__() (chainer.datasets.ImageDataset method), 686
__len__() (chainer.datasets.LabeledImageDataset

method), 687
__len__() (chainer.datasets.SubDataset method), 681
__len__() (chainer.datasets.TransformDataset method),

684
__len__() (chainer.datasets.TupleDataset method), 678
__len__() (chainer.links.MLPConvolution2D method),

351
__len__() (chainer.links.NStepBiGRU method), 363
__len__() (chainer.links.NStepBiLSTM method), 369
__len__() (chainer.links.NStepBiRNNReLU method),

374
__len__() (chainer.links.NStepBiRNNTanh method), 380
__len__() (chainer.links.NStepGRU method), 386
__len__() (chainer.links.NStepLSTM method), 392
__len__() (chainer.links.NStepRNNReLU method), 398
__len__() (chainer.links.NStepRNNTanh method), 404
__lt__() (chainer.Parameter method), 113
__lt__() (chainer.Variable method), 105
__lt__() (chainer.utils.type_check.Expr method), 728
__matmul__() (chainer.Parameter method), 115
__matmul__() (chainer.Variable method), 107
__mul__() (chainer.Parameter method), 114
__mul__() (chainer.Variable method), 106
__mul__() (chainer.utils.type_check.Expr method), 728
__ne__() (chainer.Parameter method), 113
__ne__() (chainer.Variable method), 105
__ne__() (chainer.utils.type_check.Expr method), 728
__neg__() (chainer.Parameter method), 113
__neg__() (chainer.Variable method), 105
__neg__() (chainer.utils.type_check.Expr method), 728
__next__() (chainer.dataset.Iterator method), 673

__next__() (chainer.iterators.MultiprocessIterator
method), 693

__next__() (chainer.iterators.MultithreadIterator
method), 694

__next__() (chainer.iterators.SerialIterator method), 692
__nonzero__() (chainer.Parameter method), 113
__nonzero__() (chainer.Variable method), 105
__nonzero__() (chainer.utils.type_check.Expr method),

728
__pow__() (chainer.Parameter method), 115
__pow__() (chainer.Variable method), 107
__pow__() (chainer.utils.type_check.Expr method), 729
__radd__() (chainer.Parameter method), 113
__radd__() (chainer.Variable method), 106
__radd__() (chainer.utils.type_check.Expr method), 728
__rdiv__() (chainer.Parameter method), 114
__rdiv__() (chainer.Variable method), 106
__rfloordiv__() (chainer.Parameter method), 114
__rfloordiv__() (chainer.Variable method), 107
__rfloordiv__() (chainer.utils.type_check.Expr method),

729
__rmatmul__() (chainer.Parameter method), 115
__rmatmul__() (chainer.Variable method), 107
__rmul__() (chainer.Parameter method), 114
__rmul__() (chainer.Variable method), 106
__rmul__() (chainer.utils.type_check.Expr method), 729
__rpow__() (chainer.Parameter method), 115
__rpow__() (chainer.Variable method), 107
__rsub__() (chainer.Parameter method), 114
__rsub__() (chainer.Variable method), 106
__rsub__() (chainer.utils.type_check.Expr method), 728
__rtruediv__() (chainer.Parameter method), 114
__rtruediv__() (chainer.Variable method), 107
__rtruediv__() (chainer.utils.type_check.Expr method),

729
__setitem__() (chainer.Sequential method), 589
__sub__() (chainer.Parameter method), 114
__sub__() (chainer.Variable method), 106
__sub__() (chainer.utils.type_check.Expr method), 728
__truediv__() (chainer.Parameter method), 114
__truediv__() (chainer.Variable method), 106
__truediv__() (chainer.utils.type_check.Expr method),

729

A
absolute() (in module chainer.functions), 203
absolute_error() (in module chainer.functions), 187
AbstractSerializer (class in chainer), 702
accuracy() (in module chainer.functions), 184
AdaDelta (class in chainer.optimizers), 595
AdaGrad (class in chainer.optimizers), 597
Adam (class in chainer.optimizers), 599
add() (chainer.DictSummary method), 714
add() (chainer.Summary method), 714

786 Index

Chainer Documentation, Release 4.0.0

add() (in module chainer.functions), 119
add_hook() (chainer.Function method), 233
add_hook() (chainer.FunctionAdapter method), 236
add_hook() (chainer.FunctionNode method), 242
add_hook() (chainer.GradientMethod method), 620
add_hook() (chainer.Optimizer method), 616
add_hook() (chainer.optimizers.AdaDelta method), 595
add_hook() (chainer.optimizers.AdaGrad method), 597
add_hook() (chainer.optimizers.Adam method), 600
add_hook() (chainer.optimizers.MomentumSGD

method), 602
add_hook() (chainer.optimizers.NesterovAG method),

604
add_hook() (chainer.optimizers.RMSprop method), 607
add_hook() (chainer.optimizers.RMSpropGraves

method), 609
add_hook() (chainer.optimizers.SGD method), 611
add_hook() (chainer.optimizers.SMORMS3 method),

613
add_hook() (chainer.UpdateRule method), 618
add_link() (chainer.Chain method), 578
add_link() (chainer.ChainList method), 583
add_link() (chainer.links.caffe.CaffeFunction method),

566
add_link() (chainer.links.ChildSumTreeLSTM method),

269
add_link() (chainer.links.Classifier method), 515
add_link() (chainer.links.GoogLeNet method), 528
add_link() (chainer.links.GRU method), 313
add_link() (chainer.links.Highway method), 318
add_link() (chainer.links.Inception method), 324
add_link() (chainer.links.InceptionBN method), 329
add_link() (chainer.links.LSTM method), 346
add_link() (chainer.links.Maxout method), 504
add_link() (chainer.links.MLPConvolution2D method),

351
add_link() (chainer.links.model.vision.resnet.ResNetLayers

method), 535
add_link() (chainer.links.NaryTreeLSTM method), 357
add_link() (chainer.links.NStepBiGRU method), 363
add_link() (chainer.links.NStepBiLSTM method), 369
add_link() (chainer.links.NStepBiRNNReLU method),

374
add_link() (chainer.links.NStepBiRNNTanh method),

380
add_link() (chainer.links.NStepGRU method), 386
add_link() (chainer.links.NStepLSTM method), 392
add_link() (chainer.links.NStepRNNReLU method), 398
add_link() (chainer.links.NStepRNNTanh method), 404
add_link() (chainer.links.ResNet101Layers method), 547
add_link() (chainer.links.ResNet152Layers method), 554
add_link() (chainer.links.ResNet50Layers method), 541
add_link() (chainer.links.Scale method), 414
add_link() (chainer.links.StatefulGRU method), 420

add_link() (chainer.links.StatefulMGU method), 431
add_link() (chainer.links.StatefulPeepholeLSTM

method), 442
add_link() (chainer.links.StatefulZoneoutLSTM method),

446
add_link() (chainer.links.StatelessGRU method), 426
add_link() (chainer.links.StatelessLSTM method), 453
add_link() (chainer.links.StatelessMGU method), 436
add_link() (chainer.links.VGG16Layers method), 521
add_link() (chainer.Sequential method), 589
add_observer() (chainer.Reporter method), 712
add_observers() (chainer.Reporter method), 712
add_param() (chainer.Chain method), 578
add_param() (chainer.ChainList method), 583
add_param() (chainer.Link method), 572
add_param() (chainer.links.BatchNormalization method),

459
add_param() (chainer.links.BatchRenormalization

method), 464
add_param() (chainer.links.Bias method), 259
add_param() (chainer.links.Bilinear method), 264
add_param() (chainer.links.BinaryHierarchicalSoftmax

method), 474
add_param() (chainer.links.BlackOut method), 479
add_param() (chainer.links.caffe.CaffeFunction method),

567
add_param() (chainer.links.ChildSumTreeLSTM

method), 269
add_param() (chainer.links.Classifier method), 515
add_param() (chainer.links.Convolution2D method), 275
add_param() (chainer.links.ConvolutionND method), 281
add_param() (chainer.links.CRF1d method), 483
add_param() (chainer.links.Deconvolution2D method),

287
add_param() (chainer.links.DeconvolutionND method),

292
add_param() (chainer.links.DepthwiseConvolution2D

method), 297
add_param() (chainer.links.DilatedConvolution2D

method), 303
add_param() (chainer.links.EmbedID method), 308
add_param() (chainer.links.GoogLeNet method), 528
add_param() (chainer.links.GRU method), 313
add_param() (chainer.links.Highway method), 318
add_param() (chainer.links.Inception method), 324
add_param() (chainer.links.InceptionBN method), 329
add_param() (chainer.links.LayerNormalization method),

469
add_param() (chainer.links.Linear method), 335
add_param() (chainer.links.LocalConvolution2D

method), 340
add_param() (chainer.links.LSTM method), 346
add_param() (chainer.links.Maxout method), 504

Index 787

Chainer Documentation, Release 4.0.0

add_param() (chainer.links.MLPConvolution2D method),
352

add_param() (chainer.links.model.vision.resnet.ResNetLayers
method), 535

add_param() (chainer.links.NaryTreeLSTM method), 357
add_param() (chainer.links.NegativeSampling method),

509
add_param() (chainer.links.NStepBiGRU method), 363
add_param() (chainer.links.NStepBiLSTM method), 369
add_param() (chainer.links.NStepBiRNNReLU method),

374
add_param() (chainer.links.NStepBiRNNTanh method),

380
add_param() (chainer.links.NStepGRU method), 386
add_param() (chainer.links.NStepLSTM method), 393
add_param() (chainer.links.NStepRNNReLU method),

398
add_param() (chainer.links.NStepRNNTanh method),

404
add_param() (chainer.links.Parameter method), 409
add_param() (chainer.links.PReLU method), 494
add_param() (chainer.links.ResNet101Layers method),

548
add_param() (chainer.links.ResNet152Layers method),

554
add_param() (chainer.links.ResNet50Layers method),

541
add_param() (chainer.links.Scale method), 415
add_param() (chainer.links.SimplifiedDropconnect

method), 489
add_param() (chainer.links.StatefulGRU method), 421
add_param() (chainer.links.StatefulMGU method), 431
add_param() (chainer.links.StatefulPeepholeLSTM

method), 442
add_param() (chainer.links.StatefulZoneoutLSTM

method), 447
add_param() (chainer.links.StatelessGRU method), 427
add_param() (chainer.links.StatelessLSTM method), 453
add_param() (chainer.links.StatelessMGU method), 436
add_param() (chainer.links.Swish method), 499
add_param() (chainer.links.TheanoFunction method),

561
add_param() (chainer.links.VGG16Layers method), 521
add_param() (chainer.Sequential method), 589
add_persistent() (chainer.Chain method), 578
add_persistent() (chainer.ChainList method), 583
add_persistent() (chainer.Link method), 573
add_persistent() (chainer.links.BatchNormalization

method), 459
add_persistent() (chainer.links.BatchRenormalization

method), 464
add_persistent() (chainer.links.Bias method), 259
add_persistent() (chainer.links.Bilinear method), 264
add_persistent() (chainer.links.BinaryHierarchicalSoftmax

method), 474
add_persistent() (chainer.links.BlackOut method), 479
add_persistent() (chainer.links.caffe.CaffeFunction

method), 567
add_persistent() (chainer.links.ChildSumTreeLSTM

method), 270
add_persistent() (chainer.links.Classifier method), 515
add_persistent() (chainer.links.Convolution2D method),

276
add_persistent() (chainer.links.ConvolutionND method),

281
add_persistent() (chainer.links.CRF1d method), 484
add_persistent() (chainer.links.Deconvolution2D

method), 287
add_persistent() (chainer.links.DeconvolutionND

method), 292
add_persistent() (chainer.links.DepthwiseConvolution2D

method), 298
add_persistent() (chainer.links.DilatedConvolution2D

method), 303
add_persistent() (chainer.links.EmbedID method), 309
add_persistent() (chainer.links.GoogLeNet method), 528
add_persistent() (chainer.links.GRU method), 314
add_persistent() (chainer.links.Highway method), 319
add_persistent() (chainer.links.Inception method), 324
add_persistent() (chainer.links.InceptionBN method), 330
add_persistent() (chainer.links.LayerNormalization

method), 469
add_persistent() (chainer.links.Linear method), 335
add_persistent() (chainer.links.LocalConvolution2D

method), 340
add_persistent() (chainer.links.LSTM method), 346
add_persistent() (chainer.links.Maxout method), 505
add_persistent() (chainer.links.MLPConvolution2D

method), 352
add_persistent() (chainer.links.model.vision.resnet.ResNetLayers

method), 535
add_persistent() (chainer.links.NaryTreeLSTM method),

358
add_persistent() (chainer.links.NegativeSampling

method), 510
add_persistent() (chainer.links.NStepBiGRU method),

363
add_persistent() (chainer.links.NStepBiLSTM method),

369
add_persistent() (chainer.links.NStepBiRNNReLU

method), 375
add_persistent() (chainer.links.NStepBiRNNTanh

method), 381
add_persistent() (chainer.links.NStepGRU method), 387
add_persistent() (chainer.links.NStepLSTM method), 393
add_persistent() (chainer.links.NStepRNNReLU

method), 399
add_persistent() (chainer.links.NStepRNNTanh method),

788 Index

Chainer Documentation, Release 4.0.0

405
add_persistent() (chainer.links.Parameter method), 410
add_persistent() (chainer.links.PReLU method), 494
add_persistent() (chainer.links.ResNet101Layers

method), 548
add_persistent() (chainer.links.ResNet152Layers

method), 555
add_persistent() (chainer.links.ResNet50Layers method),

542
add_persistent() (chainer.links.Scale method), 415
add_persistent() (chainer.links.SimplifiedDropconnect

method), 489
add_persistent() (chainer.links.StatefulGRU method), 421
add_persistent() (chainer.links.StatefulMGU method),

432
add_persistent() (chainer.links.StatefulPeepholeLSTM

method), 442
add_persistent() (chainer.links.StatefulZoneoutLSTM

method), 447
add_persistent() (chainer.links.StatelessGRU method),

427
add_persistent() (chainer.links.StatelessLSTM method),

453
add_persistent() (chainer.links.StatelessMGU method),

437
add_persistent() (chainer.links.Swish method), 499
add_persistent() (chainer.links.TheanoFunction method),

561
add_persistent() (chainer.links.VGG16Layers method),

521
add_persistent() (chainer.Sequential method), 590
added() (chainer.function_hooks.CUDAProfileHook

method), 250
added() (chainer.function_hooks.CupyMemoryProfileHook

method), 252
added() (chainer.function_hooks.PrintHook method), 254
added() (chainer.function_hooks.TimerHook method),

256
added() (chainer.FunctionHook method), 249
addgrad() (chainer.Parameter method), 110
addgrad() (chainer.Variable method), 103
addgrads() (chainer.Chain method), 579
addgrads() (chainer.ChainList method), 583
addgrads() (chainer.Link method), 573
addgrads() (chainer.links.BatchNormalization method),

459
addgrads() (chainer.links.BatchRenormalization method),

465
addgrads() (chainer.links.Bias method), 259
addgrads() (chainer.links.Bilinear method), 265
addgrads() (chainer.links.BinaryHierarchicalSoftmax

method), 475
addgrads() (chainer.links.BlackOut method), 479
addgrads() (chainer.links.caffe.CaffeFunction method),

567
addgrads() (chainer.links.ChildSumTreeLSTM method),

270
addgrads() (chainer.links.Classifier method), 516
addgrads() (chainer.links.Convolution2D method), 276
addgrads() (chainer.links.ConvolutionND method), 281
addgrads() (chainer.links.CRF1d method), 484
addgrads() (chainer.links.Deconvolution2D method), 288
addgrads() (chainer.links.DeconvolutionND method), 293
addgrads() (chainer.links.DepthwiseConvolution2D

method), 298
addgrads() (chainer.links.DilatedConvolution2D

method), 304
addgrads() (chainer.links.EmbedID method), 309
addgrads() (chainer.links.GoogLeNet method), 528
addgrads() (chainer.links.GRU method), 314
addgrads() (chainer.links.Highway method), 319
addgrads() (chainer.links.Inception method), 325
addgrads() (chainer.links.InceptionBN method), 330
addgrads() (chainer.links.LayerNormalization method),

470
addgrads() (chainer.links.Linear method), 335
addgrads() (chainer.links.LocalConvolution2D method),

340
addgrads() (chainer.links.LSTM method), 347
addgrads() (chainer.links.Maxout method), 505
addgrads() (chainer.links.MLPConvolution2D method),

352
addgrads() (chainer.links.model.vision.resnet.ResNetLayers

method), 536
addgrads() (chainer.links.NaryTreeLSTM method), 358
addgrads() (chainer.links.NegativeSampling method),

510
addgrads() (chainer.links.NStepBiGRU method), 363
addgrads() (chainer.links.NStepBiLSTM method), 369
addgrads() (chainer.links.NStepBiRNNReLU method),

375
addgrads() (chainer.links.NStepBiRNNTanh method),

381
addgrads() (chainer.links.NStepGRU method), 387
addgrads() (chainer.links.NStepLSTM method), 393
addgrads() (chainer.links.NStepRNNReLU method), 399
addgrads() (chainer.links.NStepRNNTanh method), 405
addgrads() (chainer.links.Parameter method), 410
addgrads() (chainer.links.PReLU method), 494
addgrads() (chainer.links.ResNet101Layers method), 548
addgrads() (chainer.links.ResNet152Layers method), 555
addgrads() (chainer.links.ResNet50Layers method), 542
addgrads() (chainer.links.Scale method), 415
addgrads() (chainer.links.SimplifiedDropconnect

method), 490
addgrads() (chainer.links.StatefulGRU method), 421
addgrads() (chainer.links.StatefulMGU method), 432

Index 789

Chainer Documentation, Release 4.0.0

addgrads() (chainer.links.StatefulPeepholeLSTM
method), 442

addgrads() (chainer.links.StatefulZoneoutLSTM
method), 447

addgrads() (chainer.links.StatelessGRU method), 427
addgrads() (chainer.links.StatelessLSTM method), 454
addgrads() (chainer.links.StatelessMGU method), 437
addgrads() (chainer.links.Swish method), 500
addgrads() (chainer.links.TheanoFunction method), 561
addgrads() (chainer.links.VGG16Layers method), 522
addgrads() (chainer.Sequential method), 590
alpha (chainer.optimizers.Adam attribute), 602
alpha (chainer.optimizers.RMSprop attribute), 608
alpha (chainer.optimizers.RMSpropGraves attribute), 611
amsgrad (chainer.optimizers.Adam attribute), 602
append() (chainer.ChainList method), 583
append() (chainer.links.MLPConvolution2D method),

352
append() (chainer.links.NStepBiGRU method), 363
append() (chainer.links.NStepBiLSTM method), 369
append() (chainer.links.NStepBiRNNReLU method), 375
append() (chainer.links.NStepBiRNNTanh method), 381
append() (chainer.links.NStepGRU method), 387
append() (chainer.links.NStepLSTM method), 393
append() (chainer.links.NStepRNNReLU method), 399
append() (chainer.links.NStepRNNTanh method), 405
append() (chainer.Sequential method), 590
apply() (chainer.FunctionAdapter method), 237
apply() (chainer.FunctionNode method), 242
arccos() (in module chainer.functions), 203
arcsin() (in module chainer.functions), 204
arctan() (in module chainer.functions), 204
arctan2() (in module chainer.functions), 204
argmax() (chainer.links.CRF1d method), 484
argmax() (in module chainer.functions), 204
argmax_crf1d() (in module chainer.functions), 192
argmin() (in module chainer.functions), 205
array (chainer.Parameter attribute), 115
array (chainer.Variable attribute), 107
as_variable() (in module chainer), 109
assert_allclose() (in module chainer.testing), 733
available() (chainer.training.extensions.PlotReport static

method), 661
available() (chainer.training.extensions.VariableStatisticsPlot

static method), 663
available() (chainer.training.updaters.MultiprocessParallelUpdater

static method), 642
available_layers (chainer.links.GoogLeNet attribute), 533
available_layers (chainer.links.model.vision.resnet.ResNetLayers

attribute), 540
available_layers (chainer.links.ResNet101Layers at-

tribute), 553
available_layers (chainer.links.ResNet152Layers at-

tribute), 559

available_layers (chainer.links.ResNet50Layers at-
tribute), 546

available_layers (chainer.links.VGG16Layers attribute),
526

average() (in module chainer.functions), 205
average_pooling_2d() (in module chainer.functions), 225
average_pooling_nd() (in module chainer.functions), 226

B
backward() (chainer.Function method), 233
backward() (chainer.FunctionAdapter method), 237
backward() (chainer.FunctionNode method), 242
backward() (chainer.Parameter method), 111
backward() (chainer.Variable method), 103
backward_accumulate() (chainer.FunctionAdapter

method), 237
backward_accumulate() (chainer.FunctionNode method),

243
backward_cpu() (chainer.Function method), 233
backward_gpu() (chainer.Function method), 234
backward_postprocess() (chainer.function_hooks.CUDAProfileHook

method), 250
backward_postprocess() (chainer.function_hooks.CupyMemoryProfileHook

method), 252
backward_postprocess() (chainer.function_hooks.PrintHook

method), 254
backward_postprocess() (chainer.function_hooks.TimerHook

method), 256
backward_postprocess() (chainer.FunctionHook method),

249
backward_preprocess() (chainer.function_hooks.CUDAProfileHook

method), 251
backward_preprocess() (chainer.function_hooks.CupyMemoryProfileHook

method), 252
backward_preprocess() (chainer.function_hooks.PrintHook

method), 255
backward_preprocess() (chainer.function_hooks.TimerHook

method), 256
backward_preprocess() (chainer.FunctionHook method),

249
batch_det() (in module chainer.functions), 208
batch_inv() (in module chainer.functions), 205
batch_l2_norm_squared() (in module chainer.functions),

205
batch_matmul() (in module chainer.functions), 206
batch_normalization() (in module chainer.functions), 222
batch_renormalization() (in module chainer.functions),

223
BatchNormalization (class in chainer.links), 458
BatchRenormalization (class in chainer.links), 463
bernoulli_nll() (in module chainer.functions), 187
BestValueTrigger (class in chainer.training.triggers), 666
beta (chainer.links.BatchRenormalization attribute), 468
beta1 (chainer.optimizers.Adam attribute), 602

790 Index

Chainer Documentation, Release 4.0.0

beta2 (chainer.optimizers.Adam attribute), 602
Bias (class in chainer.links), 258
bias() (in module chainer.functions), 206
Bilinear (class in chainer.links), 263
bilinear() (in module chainer.functions), 159
binary_accuracy() (in module chainer.functions), 184
BinaryHierarchicalSoftmax (class in chainer.links), 473
black_out() (in module chainer.functions), 188
BlackOut (class in chainer.links), 478
broadcast() (in module chainer.functions), 133
broadcast_to() (in module chainer.functions), 134
build_computational_graph() (in module

chainer.computational_graph), 723

C
cache_or_load_file() (in module chainer.dataset), 676
cached_download() (in module chainer.dataset), 676
CaffeFunction (class in chainer.links.caffe), 565
call_for_each_param (chainer.optimizer_hooks.GradientHardClipping

attribute), 625
call_for_each_param (chainer.optimizer_hooks.GradientNoise

attribute), 625
call_for_each_param (chainer.optimizer_hooks.Lasso at-

tribute), 623
call_for_each_param (chainer.optimizer_hooks.WeightDecay

attribute), 623
call_hooks() (chainer.GradientMethod method), 620
call_hooks() (chainer.Optimizer method), 616
call_hooks() (chainer.optimizers.AdaDelta method), 595
call_hooks() (chainer.optimizers.AdaGrad method), 598
call_hooks() (chainer.optimizers.Adam method), 600
call_hooks() (chainer.optimizers.MomentumSGD

method), 602
call_hooks() (chainer.optimizers.NesterovAG method),

605
call_hooks() (chainer.optimizers.RMSprop method), 607
call_hooks() (chainer.optimizers.RMSpropGraves

method), 609
call_hooks() (chainer.optimizers.SGD method), 611
call_hooks() (chainer.optimizers.SMORMS3 method),

613
cast() (in module chainer.functions), 134
ceil() (in module chainer.functions), 207
Chain (class in chainer), 577
chainer (module), 101, 232, 571, 701
chainer.backends.cuda (module), 705
chainer.computational_graph (module), 722
chainer.dataset (module), 670
chainer.datasets (module), 677
chainer.exporters (module), 725
chainer.function_hooks (module), 250
chainer.functions (module), 119
chainer.initializers (module), 626
chainer.iterators (module), 691

chainer.links (module), 257
chainer.links.caffe (module), 725
chainer.serializers (module), 695
chainer.training (module), 634
chainer.utils (module), 738
ChainList (class in chainer), 582
check_backward() (in module chainer.gradient_check),

730
check_type_forward() (chainer.Function method), 234
check_type_forward() (chainer.FunctionAdapter

method), 238
check_type_forward() (chainer.FunctionNode method),

243
children() (chainer.Chain method), 579
children() (chainer.ChainList method), 584
children() (chainer.Link method), 573
children() (chainer.links.BatchNormalization method),

460
children() (chainer.links.BatchRenormalization method),

465
children() (chainer.links.Bias method), 260
children() (chainer.links.Bilinear method), 265
children() (chainer.links.BinaryHierarchicalSoftmax

method), 475
children() (chainer.links.BlackOut method), 480
children() (chainer.links.caffe.CaffeFunction method),

567
children() (chainer.links.ChildSumTreeLSTM method),

270
children() (chainer.links.Classifier method), 516
children() (chainer.links.Convolution2D method), 276
children() (chainer.links.ConvolutionND method), 281
children() (chainer.links.CRF1d method), 484
children() (chainer.links.Deconvolution2D method), 288
children() (chainer.links.DeconvolutionND method), 293
children() (chainer.links.DepthwiseConvolution2D

method), 298
children() (chainer.links.DilatedConvolution2D method),

304
children() (chainer.links.EmbedID method), 309
children() (chainer.links.GoogLeNet method), 529
children() (chainer.links.GRU method), 314
children() (chainer.links.Highway method), 319
children() (chainer.links.Inception method), 325
children() (chainer.links.InceptionBN method), 330
children() (chainer.links.LayerNormalization method),

470
children() (chainer.links.Linear method), 336
children() (chainer.links.LocalConvolution2D method),

341
children() (chainer.links.LSTM method), 347
children() (chainer.links.Maxout method), 505
children() (chainer.links.MLPConvolution2D method),

352

Index 791

Chainer Documentation, Release 4.0.0

children() (chainer.links.model.vision.resnet.ResNetLayers
method), 536

children() (chainer.links.NaryTreeLSTM method), 358
children() (chainer.links.NegativeSampling method), 510
children() (chainer.links.NStepBiGRU method), 363
children() (chainer.links.NStepBiLSTM method), 370
children() (chainer.links.NStepBiRNNReLU method),

375
children() (chainer.links.NStepBiRNNTanh method), 381
children() (chainer.links.NStepGRU method), 387
children() (chainer.links.NStepLSTM method), 393
children() (chainer.links.NStepRNNReLU method), 399
children() (chainer.links.NStepRNNTanh method), 405
children() (chainer.links.Parameter method), 410
children() (chainer.links.PReLU method), 494
children() (chainer.links.ResNet101Layers method), 549
children() (chainer.links.ResNet152Layers method), 555
children() (chainer.links.ResNet50Layers method), 542
children() (chainer.links.Scale method), 415
children() (chainer.links.SimplifiedDropconnect method),

490
children() (chainer.links.StatefulGRU method), 421
children() (chainer.links.StatefulMGU method), 432
children() (chainer.links.StatefulPeepholeLSTM

method), 443
children() (chainer.links.StatefulZoneoutLSTM method),

448
children() (chainer.links.StatelessGRU method), 427
children() (chainer.links.StatelessLSTM method), 454
children() (chainer.links.StatelessMGU method), 437
children() (chainer.links.Swish method), 500
children() (chainer.links.TheanoFunction method), 561
children() (chainer.links.VGG16Layers method), 522
children() (chainer.Sequential method), 590
ChildSumTreeLSTM (class in chainer.links), 268
classification_summary() (in module chainer.functions),

185
Classifier (class in chainer.links), 513
clear() (chainer.Sequential method), 590
clear_memo() (in module chainer.backends.cuda), 708
cleargrad() (chainer.Parameter method), 111
cleargrad() (chainer.Variable method), 104
cleargrads() (chainer.Chain method), 579
cleargrads() (chainer.ChainList method), 584
cleargrads() (chainer.Link method), 573
cleargrads() (chainer.links.BatchNormalization method),

460
cleargrads() (chainer.links.BatchRenormalization

method), 465
cleargrads() (chainer.links.Bias method), 260
cleargrads() (chainer.links.Bilinear method), 265
cleargrads() (chainer.links.BinaryHierarchicalSoftmax

method), 475
cleargrads() (chainer.links.BlackOut method), 480

cleargrads() (chainer.links.caffe.CaffeFunction method),
567

cleargrads() (chainer.links.ChildSumTreeLSTM method),
270

cleargrads() (chainer.links.Classifier method), 516
cleargrads() (chainer.links.Convolution2D method), 276
cleargrads() (chainer.links.ConvolutionND method), 281
cleargrads() (chainer.links.CRF1d method), 484
cleargrads() (chainer.links.Deconvolution2D method),

288
cleargrads() (chainer.links.DeconvolutionND method),

293
cleargrads() (chainer.links.DepthwiseConvolution2D

method), 298
cleargrads() (chainer.links.DilatedConvolution2D

method), 304
cleargrads() (chainer.links.EmbedID method), 309
cleargrads() (chainer.links.GoogLeNet method), 529
cleargrads() (chainer.links.GRU method), 314
cleargrads() (chainer.links.Highway method), 319
cleargrads() (chainer.links.Inception method), 325
cleargrads() (chainer.links.InceptionBN method), 330
cleargrads() (chainer.links.LayerNormalization method),

470
cleargrads() (chainer.links.Linear method), 336
cleargrads() (chainer.links.LocalConvolution2D method),

341
cleargrads() (chainer.links.LSTM method), 347
cleargrads() (chainer.links.Maxout method), 505
cleargrads() (chainer.links.MLPConvolution2D method),

352
cleargrads() (chainer.links.model.vision.resnet.ResNetLayers

method), 536
cleargrads() (chainer.links.NaryTreeLSTM method), 358
cleargrads() (chainer.links.NegativeSampling method),

510
cleargrads() (chainer.links.NStepBiGRU method), 364
cleargrads() (chainer.links.NStepBiLSTM method), 370
cleargrads() (chainer.links.NStepBiRNNReLU method),

375
cleargrads() (chainer.links.NStepBiRNNTanh method),

381
cleargrads() (chainer.links.NStepGRU method), 387
cleargrads() (chainer.links.NStepLSTM method), 393
cleargrads() (chainer.links.NStepRNNReLU method),

399
cleargrads() (chainer.links.NStepRNNTanh method), 405
cleargrads() (chainer.links.Parameter method), 410
cleargrads() (chainer.links.PReLU method), 494
cleargrads() (chainer.links.ResNet101Layers method),

549
cleargrads() (chainer.links.ResNet152Layers method),

555
cleargrads() (chainer.links.ResNet50Layers method), 542

792 Index

Chainer Documentation, Release 4.0.0

cleargrads() (chainer.links.Scale method), 415
cleargrads() (chainer.links.SimplifiedDropconnect

method), 490
cleargrads() (chainer.links.StatefulGRU method), 422
cleargrads() (chainer.links.StatefulMGU method), 432
cleargrads() (chainer.links.StatefulPeepholeLSTM

method), 443
cleargrads() (chainer.links.StatefulZoneoutLSTM

method), 448
cleargrads() (chainer.links.StatelessGRU method), 427
cleargrads() (chainer.links.StatelessLSTM method), 454
cleargrads() (chainer.links.StatelessMGU method), 437
cleargrads() (chainer.links.Swish method), 500
cleargrads() (chainer.links.TheanoFunction method), 561
cleargrads() (chainer.links.VGG16Layers method), 522
cleargrads() (chainer.Sequential method), 590
clip() (in module chainer.functions), 207
clipped_relu() (in module chainer.functions), 120
ComputationalGraph (class in

chainer.computational_graph), 724
compute_accuracy (chainer.links.Classifier attribute), 519
compute_mean() (chainer.DictSummary method), 714
compute_mean() (chainer.Summary method), 714
concat() (in module chainer.functions), 135
concat_examples() (in module chainer.dataset), 673
ConcatenatedDataset (class in chainer.datasets), 679
ConcatWithAsyncTransfer (class in chainer.dataset), 675
config (in module chainer), 719
connect_trainer() (chainer.training.Updater method), 637
connect_trainer() (chainer.training.updaters.MultiprocessParallelUpdater

method), 642
connect_trainer() (chainer.training.updaters.ParallelUpdater

method), 640
connect_trainer() (chainer.training.updaters.StandardUpdater

method), 639
connectionist_temporal_classification() (in module

chainer.functions), 189
Constant (class in chainer.initializers), 627
contrastive() (in module chainer.functions), 190
convert_caffemodel_to_npz() (chainer.links.GoogLeNet

class method), 529
convert_caffemodel_to_npz()

(chainer.links.model.vision.resnet.ResNetLayers
class method), 536

convert_caffemodel_to_npz()
(chainer.links.ResNet101Layers class method),
549

convert_caffemodel_to_npz()
(chainer.links.ResNet152Layers class method),
555

convert_caffemodel_to_npz()
(chainer.links.ResNet50Layers class method),
542

convert_caffemodel_to_npz()

(chainer.links.VGG16Layers class method),
522

Convolution2D (class in chainer.links), 274
convolution_2d() (in module chainer.functions), 160
convolution_nd() (in module chainer.functions), 162
ConvolutionND (class in chainer.links), 280
copy() (chainer.Chain method), 579
copy() (chainer.ChainList method), 584
copy() (chainer.Link method), 573
copy() (chainer.links.BatchNormalization method), 460
copy() (chainer.links.BatchRenormalization method), 465
copy() (chainer.links.Bias method), 260
copy() (chainer.links.Bilinear method), 265
copy() (chainer.links.BinaryHierarchicalSoftmax

method), 475
copy() (chainer.links.BlackOut method), 480
copy() (chainer.links.caffe.CaffeFunction method), 567
copy() (chainer.links.ChildSumTreeLSTM method), 270
copy() (chainer.links.Classifier method), 516
copy() (chainer.links.Convolution2D method), 276
copy() (chainer.links.ConvolutionND method), 282
copy() (chainer.links.CRF1d method), 484
copy() (chainer.links.Deconvolution2D method), 288
copy() (chainer.links.DeconvolutionND method), 293
copy() (chainer.links.DepthwiseConvolution2D method),

298
copy() (chainer.links.DilatedConvolution2D method),

304
copy() (chainer.links.EmbedID method), 309
copy() (chainer.links.GoogLeNet method), 529
copy() (chainer.links.GRU method), 314
copy() (chainer.links.Highway method), 319
copy() (chainer.links.Inception method), 325
copy() (chainer.links.InceptionBN method), 330
copy() (chainer.links.LayerNormalization method), 470
copy() (chainer.links.Linear method), 336
copy() (chainer.links.LocalConvolution2D method), 341
copy() (chainer.links.LSTM method), 347
copy() (chainer.links.Maxout method), 505
copy() (chainer.links.MLPConvolution2D method), 353
copy() (chainer.links.model.vision.resnet.ResNetLayers

method), 536
copy() (chainer.links.NaryTreeLSTM method), 358
copy() (chainer.links.NegativeSampling method), 510
copy() (chainer.links.NStepBiGRU method), 364
copy() (chainer.links.NStepBiLSTM method), 370
copy() (chainer.links.NStepBiRNNReLU method), 375
copy() (chainer.links.NStepBiRNNTanh method), 381
copy() (chainer.links.NStepGRU method), 387
copy() (chainer.links.NStepLSTM method), 394
copy() (chainer.links.NStepRNNReLU method), 399
copy() (chainer.links.NStepRNNTanh method), 405
copy() (chainer.links.Parameter method), 410
copy() (chainer.links.PReLU method), 494

Index 793

Chainer Documentation, Release 4.0.0

copy() (chainer.links.ResNet101Layers method), 549
copy() (chainer.links.ResNet152Layers method), 555
copy() (chainer.links.ResNet50Layers method), 543
copy() (chainer.links.Scale method), 416
copy() (chainer.links.SimplifiedDropconnect method),

490
copy() (chainer.links.StatefulGRU method), 422
copy() (chainer.links.StatefulMGU method), 432
copy() (chainer.links.StatefulPeepholeLSTM method),

443
copy() (chainer.links.StatefulZoneoutLSTM method),

448
copy() (chainer.links.StatelessGRU method), 428
copy() (chainer.links.StatelessLSTM method), 454
copy() (chainer.links.StatelessMGU method), 437
copy() (chainer.links.Swish method), 500
copy() (chainer.links.TheanoFunction method), 561
copy() (chainer.links.VGG16Layers method), 522
copy() (chainer.Sequential method), 590
copy() (in module chainer.backends.cuda), 707
copy() (in module chainer.functions), 135
copydata() (chainer.Parameter method), 111
copydata() (chainer.Variable method), 104
copyparams() (chainer.Chain method), 579
copyparams() (chainer.ChainList method), 584
copyparams() (chainer.Link method), 574
copyparams() (chainer.links.BatchNormalization

method), 460
copyparams() (chainer.links.BatchRenormalization

method), 465
copyparams() (chainer.links.Bias method), 260
copyparams() (chainer.links.Bilinear method), 265
copyparams() (chainer.links.BinaryHierarchicalSoftmax

method), 475
copyparams() (chainer.links.BlackOut method), 480
copyparams() (chainer.links.caffe.CaffeFunction

method), 568
copyparams() (chainer.links.ChildSumTreeLSTM

method), 271
copyparams() (chainer.links.Classifier method), 516
copyparams() (chainer.links.Convolution2D method), 277
copyparams() (chainer.links.ConvolutionND method),

282
copyparams() (chainer.links.CRF1d method), 485
copyparams() (chainer.links.Deconvolution2D method),

288
copyparams() (chainer.links.DeconvolutionND method),

293
copyparams() (chainer.links.DepthwiseConvolution2D

method), 298
copyparams() (chainer.links.DilatedConvolution2D

method), 304
copyparams() (chainer.links.EmbedID method), 309
copyparams() (chainer.links.GoogLeNet method), 529

copyparams() (chainer.links.GRU method), 314
copyparams() (chainer.links.Highway method), 320
copyparams() (chainer.links.Inception method), 325
copyparams() (chainer.links.InceptionBN method), 330
copyparams() (chainer.links.LayerNormalization

method), 470
copyparams() (chainer.links.Linear method), 336
copyparams() (chainer.links.LocalConvolution2D

method), 341
copyparams() (chainer.links.LSTM method), 347
copyparams() (chainer.links.Maxout method), 506
copyparams() (chainer.links.MLPConvolution2D

method), 353
copyparams() (chainer.links.model.vision.resnet.ResNetLayers

method), 536
copyparams() (chainer.links.NaryTreeLSTM method),

358
copyparams() (chainer.links.NegativeSampling method),

510
copyparams() (chainer.links.NStepBiGRU method), 364
copyparams() (chainer.links.NStepBiLSTM method), 370
copyparams() (chainer.links.NStepBiRNNReLU

method), 376
copyparams() (chainer.links.NStepBiRNNTanh method),

382
copyparams() (chainer.links.NStepGRU method), 388
copyparams() (chainer.links.NStepLSTM method), 394
copyparams() (chainer.links.NStepRNNReLU method),

400
copyparams() (chainer.links.NStepRNNTanh method),

406
copyparams() (chainer.links.Parameter method), 411
copyparams() (chainer.links.PReLU method), 495
copyparams() (chainer.links.ResNet101Layers method),

549
copyparams() (chainer.links.ResNet152Layers method),

556
copyparams() (chainer.links.ResNet50Layers method),

543
copyparams() (chainer.links.Scale method), 416
copyparams() (chainer.links.SimplifiedDropconnect

method), 490
copyparams() (chainer.links.StatefulGRU method), 422
copyparams() (chainer.links.StatefulMGU method), 433
copyparams() (chainer.links.StatefulPeepholeLSTM

method), 443
copyparams() (chainer.links.StatefulZoneoutLSTM

method), 448
copyparams() (chainer.links.StatelessGRU method), 428
copyparams() (chainer.links.StatelessLSTM method), 454
copyparams() (chainer.links.StatelessMGU method), 438
copyparams() (chainer.links.Swish method), 500
copyparams() (chainer.links.TheanoFunction method),

562

794 Index

Chainer Documentation, Release 4.0.0

copyparams() (chainer.links.VGG16Layers method), 522
copyparams() (chainer.Sequential method), 591
cos() (in module chainer.functions), 207
cosh() (in module chainer.functions), 207
count() (chainer.Sequential method), 591
count() (chainer.utils.type_check.TypeInfoTuple

method), 729
count_by_layer_type() (chainer.Sequential method), 591
count_params() (chainer.Chain method), 579
count_params() (chainer.ChainList method), 584
count_params() (chainer.Link method), 574
count_params() (chainer.links.BatchNormalization

method), 460
count_params() (chainer.links.BatchRenormalization

method), 465
count_params() (chainer.links.Bias method), 260
count_params() (chainer.links.Bilinear method), 265
count_params() (chainer.links.BinaryHierarchicalSoftmax

method), 475
count_params() (chainer.links.BlackOut method), 480
count_params() (chainer.links.caffe.CaffeFunction

method), 568
count_params() (chainer.links.ChildSumTreeLSTM

method), 271
count_params() (chainer.links.Classifier method), 516
count_params() (chainer.links.Convolution2D method),

277
count_params() (chainer.links.ConvolutionND method),

282
count_params() (chainer.links.CRF1d method), 485
count_params() (chainer.links.Deconvolution2D

method), 288
count_params() (chainer.links.DeconvolutionND

method), 293
count_params() (chainer.links.DepthwiseConvolution2D

method), 298
count_params() (chainer.links.DilatedConvolution2D

method), 304
count_params() (chainer.links.EmbedID method), 309
count_params() (chainer.links.GoogLeNet method), 529
count_params() (chainer.links.GRU method), 314
count_params() (chainer.links.Highway method), 320
count_params() (chainer.links.Inception method), 325
count_params() (chainer.links.InceptionBN method), 331
count_params() (chainer.links.LayerNormalization

method), 470
count_params() (chainer.links.Linear method), 336
count_params() (chainer.links.LocalConvolution2D

method), 341
count_params() (chainer.links.LSTM method), 347
count_params() (chainer.links.Maxout method), 506
count_params() (chainer.links.MLPConvolution2D

method), 353
count_params() (chainer.links.model.vision.resnet.ResNetLayers

method), 536
count_params() (chainer.links.NaryTreeLSTM method),

358
count_params() (chainer.links.NegativeSampling

method), 510
count_params() (chainer.links.NStepBiGRU method),

364
count_params() (chainer.links.NStepBiLSTM method),

370
count_params() (chainer.links.NStepBiRNNReLU

method), 376
count_params() (chainer.links.NStepBiRNNTanh

method), 382
count_params() (chainer.links.NStepGRU method), 388
count_params() (chainer.links.NStepLSTM method), 394
count_params() (chainer.links.NStepRNNReLU method),

400
count_params() (chainer.links.NStepRNNTanh method),

406
count_params() (chainer.links.Parameter method), 411
count_params() (chainer.links.PReLU method), 495
count_params() (chainer.links.ResNet101Layers

method), 549
count_params() (chainer.links.ResNet152Layers

method), 556
count_params() (chainer.links.ResNet50Layers method),

543
count_params() (chainer.links.Scale method), 416
count_params() (chainer.links.SimplifiedDropconnect

method), 490
count_params() (chainer.links.StatefulGRU method), 422
count_params() (chainer.links.StatefulMGU method),

433
count_params() (chainer.links.StatefulPeepholeLSTM

method), 443
count_params() (chainer.links.StatefulZoneoutLSTM

method), 448
count_params() (chainer.links.StatelessGRU method),

428
count_params() (chainer.links.StatelessLSTM method),

454
count_params() (chainer.links.StatelessMGU method),

438
count_params() (chainer.links.Swish method), 500
count_params() (chainer.links.TheanoFunction method),

562
count_params() (chainer.links.VGG16Layers method),

522
count_params() (chainer.Sequential method), 591
create_huffman_tree() (chainer.links.BinaryHierarchicalSoftmax

static method), 475
create_update_rule() (chainer.GradientMethod method),

621
create_update_rule() (chainer.optimizers.AdaDelta

Index 795

Chainer Documentation, Release 4.0.0

method), 596
create_update_rule() (chainer.optimizers.AdaGrad

method), 598
create_update_rule() (chainer.optimizers.Adam method),

600
create_update_rule() (chainer.optimizers.MomentumSGD

method), 603
create_update_rule() (chainer.optimizers.NesterovAG

method), 605
create_update_rule() (chainer.optimizers.RMSprop

method), 607
create_update_rule() (chainer.optimizers.RMSpropGraves

method), 609
create_update_rule() (chainer.optimizers.SGD method),

611
create_update_rule() (chainer.optimizers.SMORMS3

method), 613
creator (chainer.Parameter attribute), 115
creator (chainer.Variable attribute), 107
creator (chainer.variable.VariableNode attribute), 118
creator_node (chainer.Parameter attribute), 115
creator_node (chainer.Variable attribute), 108
creator_node (chainer.variable.VariableNode attribute),

118
crelu() (in module chainer.functions), 120
CRF1d (class in chainer.links), 483
crf1d() (in module chainer.functions), 191
cross_covariance() (in module chainer.functions), 192
CUDAProfileHook (class in chainer.function_hooks), 250
cumsum() (in module chainer.functions), 208
CupyMemoryProfileHook (class in

chainer.function_hooks), 252

D
data (chainer.Parameter attribute), 116
data (chainer.Variable attribute), 108
data (chainer.variable.VariableNode attribute), 118
DatasetMixin (class in chainer.dataset), 671
debug_print() (chainer.Parameter method), 111
debug_print() (chainer.Variable method), 104
DebugMode (class in chainer), 722
Deconvolution2D (class in chainer.links), 285
deconvolution_2d() (in module chainer.functions), 164
deconvolution_nd() (in module chainer.functions), 166
DeconvolutionND (class in chainer.links), 291
decov() (in module chainer.functions), 193
default_name (chainer.training.Extension attribute), 644
default_name (chainer.training.extensions.Evaluator at-

tribute), 648
default_name (chainer.training.extensions.ExponentialShift

attribute), 654
default_name (chainer.training.extensions.FailOnNonNumber

attribute), 650

default_name (chainer.training.extensions.LinearShift at-
tribute), 656

default_name (chainer.training.extensions.LogReport at-
tribute), 660

default_name (chainer.training.extensions.MicroAverage
attribute), 649

default_name (chainer.training.extensions.ParameterStatistics
attribute), 652

default_name (chainer.training.extensions.PlotReport at-
tribute), 662

default_name (chainer.training.extensions.PrintReport at-
tribute), 657

default_name (chainer.training.extensions.ProgressBar
attribute), 658

default_name (chainer.training.extensions.VariableStatisticsPlot
attribute), 663

default_statistics (chainer.training.extensions.ParameterStatistics
attribute), 652

delete_hook() (chainer.Function method), 234
delete_hook() (chainer.FunctionAdapter method), 238
delete_hook() (chainer.FunctionNode method), 244
deleted() (chainer.function_hooks.CUDAProfileHook

method), 251
deleted() (chainer.function_hooks.CupyMemoryProfileHook

method), 253
deleted() (chainer.function_hooks.PrintHook method),

255
deleted() (chainer.function_hooks.TimerHook method),

257
deleted() (chainer.FunctionHook method), 249
depth2space() (in module chainer.functions), 136
depthwise_convolution_2d() (in module

chainer.functions), 168
DepthwiseConvolution2D (class in chainer.links), 296
Deserializer (class in chainer), 703
det() (in module chainer.functions), 208
DictDataset (class in chainer.datasets), 678
DictionarySerializer (class in chainer.serializers), 695
DictSummary (class in chainer), 714
dilated_convolution_2d() (in module chainer.functions),

169
DilatedConvolution2D (class in chainer.links), 301
disable_update() (chainer.Chain method), 580
disable_update() (chainer.ChainList method), 584
disable_update() (chainer.Link method), 574
disable_update() (chainer.links.BatchNormalization

method), 460
disable_update() (chainer.links.BatchRenormalization

method), 465
disable_update() (chainer.links.Bias method), 260
disable_update() (chainer.links.Bilinear method), 265
disable_update() (chainer.links.BinaryHierarchicalSoftmax

method), 476
disable_update() (chainer.links.BlackOut method), 480

796 Index

Chainer Documentation, Release 4.0.0

disable_update() (chainer.links.caffe.CaffeFunction
method), 568

disable_update() (chainer.links.ChildSumTreeLSTM
method), 271

disable_update() (chainer.links.Classifier method), 517
disable_update() (chainer.links.Convolution2D method),

277
disable_update() (chainer.links.ConvolutionND method),

282
disable_update() (chainer.links.CRF1d method), 485
disable_update() (chainer.links.Deconvolution2D

method), 288
disable_update() (chainer.links.DeconvolutionND

method), 294
disable_update() (chainer.links.DepthwiseConvolution2D

method), 299
disable_update() (chainer.links.DilatedConvolution2D

method), 305
disable_update() (chainer.links.EmbedID method), 310
disable_update() (chainer.links.GoogLeNet method), 530
disable_update() (chainer.links.GRU method), 315
disable_update() (chainer.links.Highway method), 320
disable_update() (chainer.links.Inception method), 325
disable_update() (chainer.links.InceptionBN method),

331
disable_update() (chainer.links.LayerNormalization

method), 471
disable_update() (chainer.links.Linear method), 336
disable_update() (chainer.links.LocalConvolution2D

method), 341
disable_update() (chainer.links.LSTM method), 348
disable_update() (chainer.links.Maxout method), 506
disable_update() (chainer.links.MLPConvolution2D

method), 353
disable_update() (chainer.links.model.vision.resnet.ResNetLayers

method), 537
disable_update() (chainer.links.NaryTreeLSTM method),

359
disable_update() (chainer.links.NegativeSampling

method), 511
disable_update() (chainer.links.NStepBiGRU method),

364
disable_update() (chainer.links.NStepBiLSTM method),

370
disable_update() (chainer.links.NStepBiRNNReLU

method), 376
disable_update() (chainer.links.NStepBiRNNTanh

method), 382
disable_update() (chainer.links.NStepGRU method), 388
disable_update() (chainer.links.NStepLSTM method),

394
disable_update() (chainer.links.NStepRNNReLU

method), 400
disable_update() (chainer.links.NStepRNNTanh method),

406
disable_update() (chainer.links.Parameter method), 411
disable_update() (chainer.links.PReLU method), 495
disable_update() (chainer.links.ResNet101Layers

method), 549
disable_update() (chainer.links.ResNet152Layers

method), 556
disable_update() (chainer.links.ResNet50Layers method),

543
disable_update() (chainer.links.Scale method), 416
disable_update() (chainer.links.SimplifiedDropconnect

method), 490
disable_update() (chainer.links.StatefulGRU method),

422
disable_update() (chainer.links.StatefulMGU method),

433
disable_update() (chainer.links.StatefulPeepholeLSTM

method), 443
disable_update() (chainer.links.StatefulZoneoutLSTM

method), 448
disable_update() (chainer.links.StatelessGRU method),

428
disable_update() (chainer.links.StatelessLSTM method),

454
disable_update() (chainer.links.StatelessMGU method),

438
disable_update() (chainer.links.Swish method), 500
disable_update() (chainer.links.TheanoFunction method),

562
disable_update() (chainer.links.VGG16Layers method),

523
disable_update() (chainer.Sequential method), 591
dropout() (in module chainer.functions), 218
dstack() (in module chainer.functions), 137
dtype (chainer.Parameter attribute), 116
dtype (chainer.Variable attribute), 108
dump() (chainer.computational_graph.ComputationalGraph

method), 725
dump_graph(), 44
dump_graph() (in module chainer.training.extensions),

664

E
EarlyStoppingTrigger (class in chainer.training.triggers),

667
elapsed_time (chainer.training.Trainer attribute), 637
elementwise() (in module chainer.backends.cuda), 709
elu() (in module chainer.functions), 121
embed_id() (in module chainer.functions), 170
EmbedID (class in chainer.links), 307
enable_update() (chainer.Chain method), 580
enable_update() (chainer.ChainList method), 584
enable_update() (chainer.Link method), 574

Index 797

Chainer Documentation, Release 4.0.0

enable_update() (chainer.links.BatchNormalization
method), 460

enable_update() (chainer.links.BatchRenormalization
method), 465

enable_update() (chainer.links.Bias method), 260
enable_update() (chainer.links.Bilinear method), 266
enable_update() (chainer.links.BinaryHierarchicalSoftmax

method), 476
enable_update() (chainer.links.BlackOut method), 480
enable_update() (chainer.links.caffe.CaffeFunction

method), 568
enable_update() (chainer.links.ChildSumTreeLSTM

method), 271
enable_update() (chainer.links.Classifier method), 517
enable_update() (chainer.links.Convolution2D method),

277
enable_update() (chainer.links.ConvolutionND method),

282
enable_update() (chainer.links.CRF1d method), 485
enable_update() (chainer.links.Deconvolution2D

method), 289
enable_update() (chainer.links.DeconvolutionND

method), 294
enable_update() (chainer.links.DepthwiseConvolution2D

method), 299
enable_update() (chainer.links.DilatedConvolution2D

method), 305
enable_update() (chainer.links.EmbedID method), 310
enable_update() (chainer.links.GoogLeNet method), 530
enable_update() (chainer.links.GRU method), 315
enable_update() (chainer.links.Highway method), 320
enable_update() (chainer.links.Inception method), 325
enable_update() (chainer.links.InceptionBN method), 331
enable_update() (chainer.links.LayerNormalization

method), 471
enable_update() (chainer.links.Linear method), 336
enable_update() (chainer.links.LocalConvolution2D

method), 341
enable_update() (chainer.links.LSTM method), 348
enable_update() (chainer.links.Maxout method), 506
enable_update() (chainer.links.MLPConvolution2D

method), 353
enable_update() (chainer.links.model.vision.resnet.ResNetLayers

method), 537
enable_update() (chainer.links.NaryTreeLSTM method),

359
enable_update() (chainer.links.NegativeSampling

method), 511
enable_update() (chainer.links.NStepBiGRU method),

364
enable_update() (chainer.links.NStepBiLSTM method),

370
enable_update() (chainer.links.NStepBiRNNReLU

method), 376

enable_update() (chainer.links.NStepBiRNNTanh
method), 382

enable_update() (chainer.links.NStepGRU method), 388
enable_update() (chainer.links.NStepLSTM method), 394
enable_update() (chainer.links.NStepRNNReLU

method), 400
enable_update() (chainer.links.NStepRNNTanh method),

406
enable_update() (chainer.links.Parameter method), 411
enable_update() (chainer.links.PReLU method), 495
enable_update() (chainer.links.ResNet101Layers

method), 550
enable_update() (chainer.links.ResNet152Layers

method), 556
enable_update() (chainer.links.ResNet50Layers method),

543
enable_update() (chainer.links.Scale method), 416
enable_update() (chainer.links.SimplifiedDropconnect

method), 490
enable_update() (chainer.links.StatefulGRU method), 422
enable_update() (chainer.links.StatefulMGU method),

433
enable_update() (chainer.links.StatefulPeepholeLSTM

method), 443
enable_update() (chainer.links.StatefulZoneoutLSTM

method), 448
enable_update() (chainer.links.StatelessGRU method),

428
enable_update() (chainer.links.StatelessLSTM method),

454
enable_update() (chainer.links.StatelessMGU method),

438
enable_update() (chainer.links.Swish method), 501
enable_update() (chainer.links.TheanoFunction method),

562
enable_update() (chainer.links.VGG16Layers method),

523
enable_update() (chainer.Sequential method), 591
epoch (chainer.GradientMethod attribute), 622
epoch (chainer.Optimizer attribute), 617
epoch (chainer.optimizers.AdaDelta attribute), 597
epoch (chainer.optimizers.AdaGrad attribute), 599
epoch (chainer.optimizers.Adam attribute), 602
epoch (chainer.optimizers.MomentumSGD attribute), 604
epoch (chainer.optimizers.NesterovAG attribute), 606
epoch (chainer.optimizers.RMSprop attribute), 608
epoch (chainer.optimizers.RMSpropGraves attribute),

611
epoch (chainer.optimizers.SGD attribute), 613
epoch (chainer.optimizers.SMORMS3 attribute), 615
epoch (chainer.training.updaters.MultiprocessParallelUpdater

attribute), 643
epoch (chainer.training.updaters.ParallelUpdater at-

tribute), 641

798 Index

Chainer Documentation, Release 4.0.0

epoch (chainer.training.updaters.StandardUpdater at-
tribute), 640

epoch_detail (chainer.iterators.MultiprocessIterator at-
tribute), 694

epoch_detail (chainer.iterators.MultithreadIterator at-
tribute), 695

epoch_detail (chainer.iterators.SerialIterator attribute),
693

epoch_detail (chainer.training.updaters.MultiprocessParallelUpdater
attribute), 643

epoch_detail (chainer.training.updaters.ParallelUpdater
attribute), 641

epoch_detail (chainer.training.updaters.StandardUpdater
attribute), 640

eps (chainer.optimizers.AdaDelta attribute), 597
eps (chainer.optimizers.AdaGrad attribute), 599
eps (chainer.optimizers.Adam attribute), 602
eps (chainer.optimizers.RMSprop attribute), 608
eps (chainer.optimizers.RMSpropGraves attribute), 611
eps (chainer.optimizers.SMORMS3 attribute), 615
erf() (in module chainer.functions), 208
erfc() (in module chainer.functions), 209
eta (chainer.optimizers.Adam attribute), 602
eval() (chainer.utils.type_check.Expr method), 728
evaluate() (chainer.training.extensions.Evaluator

method), 647
Evaluator, 44
Evaluator (class in chainer.training.extensions), 645
exp() (in module chainer.functions), 209
expand_dims() (in module chainer.functions), 138
expect() (in module chainer.utils.type_check), 729
experimental() (in module chainer.utils), 715
expm1() (in module chainer.functions), 209
ExponentialShift (class in chainer.training.extensions),

653
export() (in module chainer.exporters.caffe), 726
Expr (class in chainer.utils.type_check), 727
extend() (chainer.Sequential method), 591
extend() (chainer.training.Trainer method), 636
Extension (class in chainer.training), 643
extract() (chainer.links.GoogLeNet method), 530
extract() (chainer.links.model.vision.resnet.ResNetLayers

method), 537
extract() (chainer.links.ResNet101Layers method), 550
extract() (chainer.links.ResNet152Layers method), 556
extract() (chainer.links.ResNet50Layers method), 543
extract() (chainer.links.VGG16Layers method), 523

F
f1_score() (in module chainer.functions), 186
FailOnNonNumber (class in chainer.training.extensions),

649
fft() (in module chainer.functions), 209
fill_value (chainer.initializers.Constant attribute), 628

fill_value (chainer.initializers.NaN attribute), 629
fill_value (chainer.initializers.One attribute), 628
fill_value (chainer.initializers.Zero attribute), 628
finalize() (chainer.dataset.Iterator method), 673
finalize() (chainer.iterators.MultiprocessIterator method),

693
finalize() (chainer.iterators.MultithreadIterator method),

695
finalize() (chainer.iterators.SerialIterator method), 692
finalize() (chainer.training.Extension method), 644
finalize() (chainer.training.extensions.Evaluator method),

647
finalize() (chainer.training.extensions.ExponentialShift

method), 654
finalize() (chainer.training.extensions.FailOnNonNumber

method), 650
finalize() (chainer.training.extensions.LinearShift

method), 655
finalize() (chainer.training.extensions.LogReport

method), 659
finalize() (chainer.training.extensions.MicroAverage

method), 649
finalize() (chainer.training.extensions.ParameterStatistics

method), 652
finalize() (chainer.training.extensions.PlotReport

method), 661
finalize() (chainer.training.extensions.PrintReport

method), 657
finalize() (chainer.training.extensions.ProgressBar

method), 658
finalize() (chainer.training.extensions.VariableStatisticsPlot

method), 663
finalize() (chainer.training.Updater method), 637
finalize() (chainer.training.updaters.MultiprocessParallelUpdater

method), 642
finalize() (chainer.training.updaters.ParallelUpdater

method), 641
finalize() (chainer.training.updaters.StandardUpdater

method), 639
fix() (in module chainer.functions), 209
fixed_batch_normalization() (in module

chainer.functions), 223
fixed_batch_renormalization() (in module

chainer.functions), 223
flatten() (chainer.Sequential method), 591
flatten() (in module chainer.functions), 139
flip() (in module chainer.functions), 140
fliplr() (in module chainer.functions), 140
flipud() (in module chainer.functions), 140
floor() (in module chainer.functions), 210
fmod() (in module chainer.functions), 210
force_backprop_mode() (in module chainer), 246
forget() (in module chainer.functions), 231
forward() (chainer.Function method), 234

Index 799

Chainer Documentation, Release 4.0.0

forward() (chainer.FunctionAdapter method), 238
forward() (chainer.FunctionNode method), 244
forward_cpu() (chainer.Function method), 234
forward_cpu() (chainer.FunctionAdapter method), 238
forward_cpu() (chainer.FunctionNode method), 244
forward_gpu() (chainer.Function method), 235
forward_gpu() (chainer.FunctionAdapter method), 239
forward_gpu() (chainer.FunctionNode method), 244
forward_postprocess() (chainer.function_hooks.CUDAProfileHook

method), 251
forward_postprocess() (chainer.function_hooks.CupyMemoryProfileHook

method), 253
forward_postprocess() (chainer.function_hooks.PrintHook

method), 255
forward_postprocess() (chainer.function_hooks.TimerHook

method), 257
forward_postprocess() (chainer.FunctionHook method),

250
forward_preprocess() (chainer.function_hooks.CUDAProfileHook

method), 251
forward_preprocess() (chainer.function_hooks.CupyMemoryProfileHook

method), 253
forward_preprocess() (chainer.function_hooks.PrintHook

method), 255
forward_preprocess() (chainer.function_hooks.TimerHook

method), 257
forward_preprocess() (chainer.FunctionHook method),

250
function (chainer.FunctionAdapter attribute), 240
Function (class in chainer), 232
FunctionAdapter (class in chainer), 236
FunctionHook (class in chainer), 248
FunctionNode (class in chainer), 240
functions (chainer.links.GoogLeNet attribute), 533
functions (chainer.links.model.vision.resnet.ResNetLayers

attribute), 540
functions (chainer.links.ResNet101Layers attribute), 553
functions (chainer.links.ResNet152Layers attribute), 559
functions (chainer.links.ResNet50Layers attribute), 546
functions (chainer.links.VGG16Layers attribute), 526

G
gamma (chainer.links.BatchRenormalization attribute),

468
gaussian() (in module chainer.functions), 219
gaussian_kl_divergence() (in module chainer.functions),

193
gaussian_nll() (in module chainer.functions), 194
generate_array() (in module chainer.initializers), 634
get_all_iterators() (chainer.training.extensions.Evaluator

method), 647
get_all_optimizers() (chainer.training.Updater method),

637

get_all_optimizers() (chainer.training.updaters.MultiprocessParallelUpdater
method), 642

get_all_optimizers() (chainer.training.updaters.ParallelUpdater
method), 641

get_all_optimizers() (chainer.training.updaters.StandardUpdater
method), 639

get_all_targets() (chainer.training.extensions.Evaluator
method), 647

get_array_module() (in module chainer.backends.cuda),
709

get_cifar10() (in module chainer.datasets), 689
get_cifar100() (in module chainer.datasets), 690
get_conv_outsize() (in module chainer.utils), 704
get_cross_validation_datasets() (in module

chainer.datasets), 682
get_cross_validation_datasets_random() (in module

chainer.datasets), 683
get_current_reporter() (in module chainer), 712
get_dataset_root() (in module chainer.dataset), 676
get_deconv_outsize() (in module chainer.utils), 705
get_device() (in module chainer.backends.cuda), 706
get_device_from_array() (in module

chainer.backends.cuda), 706
get_device_from_id() (in module chainer.backends.cuda),

706
get_dict() (chainer.optimizer.Hyperparameter method),

620
get_example() (chainer.dataset.DatasetMixin method),

672
get_example() (chainer.datasets.ConcatenatedDataset

method), 679
get_example() (chainer.datasets.ImageDataset method),

686
get_example() (chainer.datasets.LabeledImageDataset

method), 688
get_example() (chainer.datasets.SubDataset method), 681
get_example() (chainer.datasets.TransformDataset

method), 684
get_extension() (chainer.training.Trainer method), 636
get_fashion_mnist() (in module chainer.datasets), 689
get_item() (in module chainer.functions), 140
get_iterator() (chainer.training.extensions.Evaluator

method), 647
get_iterator() (chainer.training.updaters.MultiprocessParallelUpdater

method), 642
get_iterator() (chainer.training.updaters.ParallelUpdater

method), 641
get_iterator() (chainer.training.updaters.StandardUpdater

method), 639
get_max_workspace_size() (in module

chainer.backends.cuda), 710
get_mnist() (in module chainer.datasets), 688
get_optimizer() (chainer.training.Updater method), 638
get_optimizer() (chainer.training.updaters.MultiprocessParallelUpdater

800 Index

Chainer Documentation, Release 4.0.0

method), 643
get_optimizer() (chainer.training.updaters.ParallelUpdater

method), 641
get_optimizer() (chainer.training.updaters.StandardUpdater

method), 639
get_ptb_words() (in module chainer.datasets), 690
get_ptb_words_vocabulary() (in module

chainer.datasets), 691
get_retained_inputs() (chainer.FunctionAdapter method),

239
get_retained_inputs() (chainer.FunctionNode method),

244
get_retained_outputs() (chainer.FunctionAdapter

method), 239
get_retained_outputs() (chainer.FunctionNode method),

244
get_svhn() (in module chainer.datasets), 691
get_target() (chainer.training.extensions.Evaluator

method), 647
get_training_length() (chainer.training.triggers.EarlyStoppingTrigger

method), 668
get_training_length() (chainer.training.triggers.IntervalTrigger

method), 668
get_trigger() (in module chainer.training), 666
get_variable() (chainer.variable.VariableNode method),

117
get_variable_or_none() (chainer.variable.VariableNode

method), 117
global_config (in module chainer), 719
GlobalConfig (class in chainer.configuration), 719
GlorotNormal (class in chainer.initializers), 630
GlorotUniform (class in chainer.initializers), 633
GoogLeNet (class in chainer.links), 527
grad (chainer.Parameter attribute), 116
grad (chainer.Variable attribute), 108
grad (chainer.variable.VariableNode attribute), 118
grad() (in module chainer), 247
grad_var (chainer.Parameter attribute), 116
grad_var (chainer.Variable attribute), 108
grad_var (chainer.variable.VariableNode attribute), 118
GradientClipping (class in chainer.optimizer_hooks), 624
GradientHardClipping (class in

chainer.optimizer_hooks), 624
GradientMethod (class in chainer), 620
GradientNoise (class in chainer.optimizer_hooks), 625
GRU (class in chainer.links), 312
gumbel_softmax() (in module chainer.functions), 220

H
hard_sigmoid() (in module chainer.functions), 121
HDF5Deserializer (class in chainer.serializers), 700
HDF5Serializer (class in chainer.serializers), 699
HeNormal (class in chainer.initializers), 630
HeUniform (class in chainer.initializers), 633

Highway (class in chainer.links), 317
hinge() (in module chainer.functions), 195
hstack() (in module chainer.functions), 141
huber_loss() (in module chainer.functions), 196
Hyperparameter (class in chainer.optimizer), 619

I
Identity (class in chainer.initializers), 627
identity() (in module chainer.functions), 210
ifft() (in module chainer.functions), 210
ignore_label (chainer.links.EmbedID attribute), 312
im2col() (in module chainer.functions), 142
ImageDataset (class in chainer.datasets), 685
Inception (class in chainer.links), 323
InceptionBN (class in chainer.links), 328
index() (chainer.Sequential method), 592
index() (chainer.utils.type_check.TypeInfoTuple

method), 729
init_hx() (chainer.links.NStepBiGRU method), 364
init_hx() (chainer.links.NStepBiLSTM method), 370
init_hx() (chainer.links.NStepBiRNNReLU method), 376
init_hx() (chainer.links.NStepBiRNNTanh method), 382
init_hx() (chainer.links.NStepGRU method), 388
init_hx() (chainer.links.NStepLSTM method), 394
init_hx() (chainer.links.NStepRNNReLU method), 400
init_hx() (chainer.links.NStepRNNTanh method), 406
init_scope() (chainer.Chain method), 580
init_scope() (chainer.ChainList method), 585
init_scope() (chainer.Link method), 574
init_scope() (chainer.links.BatchNormalization method),

461
init_scope() (chainer.links.BatchRenormalization

method), 466
init_scope() (chainer.links.Bias method), 261
init_scope() (chainer.links.Bilinear method), 266
init_scope() (chainer.links.BinaryHierarchicalSoftmax

method), 476
init_scope() (chainer.links.BlackOut method), 481
init_scope() (chainer.links.caffe.CaffeFunction method),

568
init_scope() (chainer.links.ChildSumTreeLSTM method),

271
init_scope() (chainer.links.Classifier method), 517
init_scope() (chainer.links.Convolution2D method), 277
init_scope() (chainer.links.ConvolutionND method), 282
init_scope() (chainer.links.CRF1d method), 485
init_scope() (chainer.links.Deconvolution2D method),

289
init_scope() (chainer.links.DeconvolutionND method),

294
init_scope() (chainer.links.DepthwiseConvolution2D

method), 299
init_scope() (chainer.links.DilatedConvolution2D

method), 305

Index 801

Chainer Documentation, Release 4.0.0

init_scope() (chainer.links.EmbedID method), 310
init_scope() (chainer.links.GoogLeNet method), 530
init_scope() (chainer.links.GRU method), 315
init_scope() (chainer.links.Highway method), 320
init_scope() (chainer.links.Inception method), 326
init_scope() (chainer.links.InceptionBN method), 331
init_scope() (chainer.links.LayerNormalization method),

471
init_scope() (chainer.links.Linear method), 336
init_scope() (chainer.links.LocalConvolution2D method),

342
init_scope() (chainer.links.LSTM method), 348
init_scope() (chainer.links.Maxout method), 506
init_scope() (chainer.links.MLPConvolution2D method),

353
init_scope() (chainer.links.model.vision.resnet.ResNetLayers

method), 537
init_scope() (chainer.links.NaryTreeLSTM method), 359
init_scope() (chainer.links.NegativeSampling method),

511
init_scope() (chainer.links.NStepBiGRU method), 364
init_scope() (chainer.links.NStepBiLSTM method), 370
init_scope() (chainer.links.NStepBiRNNReLU method),

376
init_scope() (chainer.links.NStepBiRNNTanh method),

382
init_scope() (chainer.links.NStepGRU method), 388
init_scope() (chainer.links.NStepLSTM method), 394
init_scope() (chainer.links.NStepRNNReLU method),

400
init_scope() (chainer.links.NStepRNNTanh method), 406
init_scope() (chainer.links.Parameter method), 411
init_scope() (chainer.links.PReLU method), 495
init_scope() (chainer.links.ResNet101Layers method),

550
init_scope() (chainer.links.ResNet152Layers method),

556
init_scope() (chainer.links.ResNet50Layers method), 544
init_scope() (chainer.links.Scale method), 416
init_scope() (chainer.links.SimplifiedDropconnect

method), 491
init_scope() (chainer.links.StatefulGRU method), 422
init_scope() (chainer.links.StatefulMGU method), 433
init_scope() (chainer.links.StatefulPeepholeLSTM

method), 444
init_scope() (chainer.links.StatefulZoneoutLSTM

method), 448
init_scope() (chainer.links.StatelessGRU method), 428
init_scope() (chainer.links.StatelessLSTM method), 455
init_scope() (chainer.links.StatelessMGU method), 438
init_scope() (chainer.links.Swish method), 501
init_scope() (chainer.links.TheanoFunction method), 562
init_scope() (chainer.links.VGG16Layers method), 523
init_scope() (chainer.Sequential method), 592

init_state() (chainer.UpdateRule method), 618
initialize() (chainer.Parameter method), 112
initialize() (chainer.training.Extension method), 644
initialize() (chainer.training.extensions.Evaluator

method), 647
initialize() (chainer.training.extensions.ExponentialShift

method), 654
initialize() (chainer.training.extensions.FailOnNonNumber

method), 650
initialize() (chainer.training.extensions.LinearShift

method), 655
initialize() (chainer.training.extensions.LogReport

method), 659
initialize() (chainer.training.extensions.MicroAverage

method), 649
initialize() (chainer.training.extensions.ParameterStatistics

method), 652
initialize() (chainer.training.extensions.PlotReport

method), 661
initialize() (chainer.training.extensions.PrintReport

method), 657
initialize() (chainer.training.extensions.ProgressBar

method), 658
initialize() (chainer.training.extensions.VariableStatisticsPlot

method), 663
initializer (chainer.Parameter attribute), 116
Initializer (class in chainer), 626
inputs (chainer.Function attribute), 236
inputs (chainer.FunctionAdapter attribute), 240
inputs (chainer.FunctionNode attribute), 245
insert() (chainer.Sequential method), 592
IntervalTrigger (class in chainer.training.triggers), 668
inv() (in module chainer.functions), 211
is_debug() (in module chainer), 721
is_new_epoch (chainer.training.updaters.MultiprocessParallelUpdater

attribute), 643
is_new_epoch (chainer.training.updaters.ParallelUpdater

attribute), 641
is_new_epoch (chainer.training.updaters.StandardUpdater

attribute), 640
Iterator (class in chainer.dataset), 672

L
label (chainer.Function attribute), 236
label (chainer.FunctionAdapter attribute), 240
label (chainer.FunctionNode attribute), 245
label (chainer.Parameter attribute), 116
label (chainer.Variable attribute), 108
label (chainer.variable.VariableNode attribute), 118
LabeledImageDataset (class in chainer.datasets), 686
Lasso (class in chainer.optimizer_hooks), 623
layer_normalization() (in module chainer.functions), 223
LayerNormalization (class in chainer.links), 468
lazy_grad_sum (chainer.FunctionAdapter attribute), 240

802 Index

Chainer Documentation, Release 4.0.0

lazy_grad_sum (chainer.FunctionNode attribute), 245
leaky_relu() (in module chainer.functions), 122
LeCunNormal (class in chainer.initializers), 629
LeCunUniform (class in chainer.initializers), 632
Linear (class in chainer.links), 333
linear() (in module chainer.functions), 171
linear_interpolate() (in module chainer.functions), 211
LinearShift (class in chainer.training.extensions), 655
Link (class in chainer), 571
links() (chainer.Chain method), 580
links() (chainer.ChainList method), 585
links() (chainer.Link method), 574
links() (chainer.links.BatchNormalization method), 461
links() (chainer.links.BatchRenormalization method), 466
links() (chainer.links.Bias method), 261
links() (chainer.links.Bilinear method), 266
links() (chainer.links.BinaryHierarchicalSoftmax

method), 476
links() (chainer.links.BlackOut method), 481
links() (chainer.links.caffe.CaffeFunction method), 569
links() (chainer.links.ChildSumTreeLSTM method), 271
links() (chainer.links.Classifier method), 517
links() (chainer.links.Convolution2D method), 277
links() (chainer.links.ConvolutionND method), 283
links() (chainer.links.CRF1d method), 486
links() (chainer.links.Deconvolution2D method), 289
links() (chainer.links.DeconvolutionND method), 294
links() (chainer.links.DepthwiseConvolution2D method),

299
links() (chainer.links.DilatedConvolution2D method),

305
links() (chainer.links.EmbedID method), 310
links() (chainer.links.GoogLeNet method), 530
links() (chainer.links.GRU method), 315
links() (chainer.links.Highway method), 321
links() (chainer.links.Inception method), 326
links() (chainer.links.InceptionBN method), 331
links() (chainer.links.LayerNormalization method), 471
links() (chainer.links.Linear method), 337
links() (chainer.links.LocalConvolution2D method), 342
links() (chainer.links.LSTM method), 348
links() (chainer.links.Maxout method), 506
links() (chainer.links.MLPConvolution2D method), 354
links() (chainer.links.model.vision.resnet.ResNetLayers

method), 538
links() (chainer.links.NaryTreeLSTM method), 359
links() (chainer.links.NegativeSampling method), 511
links() (chainer.links.NStepBiGRU method), 365
links() (chainer.links.NStepBiLSTM method), 371
links() (chainer.links.NStepBiRNNReLU method), 377
links() (chainer.links.NStepBiRNNTanh method), 383
links() (chainer.links.NStepGRU method), 389
links() (chainer.links.NStepLSTM method), 395
links() (chainer.links.NStepRNNReLU method), 401

links() (chainer.links.NStepRNNTanh method), 407
links() (chainer.links.Parameter method), 411
links() (chainer.links.PReLU method), 496
links() (chainer.links.ResNet101Layers method), 550
links() (chainer.links.ResNet152Layers method), 557
links() (chainer.links.ResNet50Layers method), 544
links() (chainer.links.Scale method), 417
links() (chainer.links.SimplifiedDropconnect method),

491
links() (chainer.links.StatefulGRU method), 423
links() (chainer.links.StatefulMGU method), 434
links() (chainer.links.StatefulPeepholeLSTM method),

444
links() (chainer.links.StatefulZoneoutLSTM method),

449
links() (chainer.links.StatelessGRU method), 429
links() (chainer.links.StatelessLSTM method), 455
links() (chainer.links.StatelessMGU method), 438
links() (chainer.links.Swish method), 501
links() (chainer.links.TheanoFunction method), 563
links() (chainer.links.VGG16Layers method), 524
links() (chainer.Sequential method), 592
load() (chainer.Deserializer method), 704
load() (chainer.serializers.HDF5Deserializer method),

700
load() (chainer.serializers.NpzDeserializer method), 698
load_hdf5() (in module chainer.serializers), 701
load_npz() (in module chainer.serializers), 698
local_convolution_2d() (in module chainer.functions),

171
local_function_hooks (chainer.Function attribute), 236
local_function_hooks (chainer.FunctionAdapter at-

tribute), 240
local_function_hooks (chainer.FunctionNode attribute),

245
local_response_normalization() (in module

chainer.functions), 224
LocalConfig (class in chainer.configuration), 719
LocalConvolution2D (class in chainer.links), 339
log (chainer.training.extensions.LogReport attribute), 660
log() (in module chainer.functions), 211
log10() (in module chainer.functions), 211
log1p() (in module chainer.functions), 211
log2() (in module chainer.functions), 212
log_softmax() (in module chainer.functions), 123
LogReport, 43
LogReport (class in chainer.training.extensions), 658
logsumexp() (in module chainer.functions), 212
lr (chainer.optimizers.AdaGrad attribute), 599
lr (chainer.optimizers.Adam attribute), 602
lr (chainer.optimizers.MomentumSGD attribute), 604
lr (chainer.optimizers.NesterovAG attribute), 606
lr (chainer.optimizers.RMSprop attribute), 608
lr (chainer.optimizers.RMSpropGraves attribute), 611

Index 803

Chainer Documentation, Release 4.0.0

lr (chainer.optimizers.SGD attribute), 613
lr (chainer.optimizers.SMORMS3 attribute), 615
LSTM (class in chainer.links), 344
lstm() (in module chainer.functions), 123

M
make_extension() (in module chainer.training), 645
make_statistics() (chainer.DictSummary method), 714
make_statistics() (chainer.Summary method), 714
ManualScheduleTrigger (class in

chainer.training.triggers), 668
matmul() (in module chainer.functions), 212
max() (in module chainer.functions), 213
max_pooling_2d() (in module chainer.functions), 226
max_pooling_nd() (in module chainer.functions), 227
maximum() (in module chainer.functions), 213
Maxout (class in chainer.links), 503
maxout() (in module chainer.functions), 125
MaxValueTrigger (class in chainer.training.triggers), 669
mean() (in module chainer.functions), 213
mean_absolute_error() (in module chainer.functions), 197
mean_squared_error() (in module chainer.functions), 197
memoize() (in module chainer.backends.cuda), 708
MicroAverage (class in chainer.training.extensions), 648
min() (in module chainer.functions), 214
minimum() (in module chainer.functions), 214
MinValueTrigger (class in chainer.training.triggers), 669
MLPConvolution2D (class in chainer.links), 350
momentum (chainer.optimizers.MomentumSGD at-

tribute), 604
momentum (chainer.optimizers.NesterovAG attribute),

606
momentum (chainer.optimizers.RMSpropGraves at-

tribute), 611
MomentumSGD (class in chainer.optimizers), 602
MultiprocessIterator (class in chainer.iterators), 693
MultiprocessParallelUpdater (class in

chainer.training.updaters), 642
MultithreadIterator (class in chainer.iterators), 694

N
n_cells (chainer.links.NStepBiGRU attribute), 367
n_cells (chainer.links.NStepBiLSTM attribute), 373
n_cells (chainer.links.NStepBiRNNReLU attribute), 379
n_cells (chainer.links.NStepBiRNNTanh attribute), 385
n_cells (chainer.links.NStepGRU attribute), 391
n_cells (chainer.links.NStepLSTM attribute), 397
n_cells (chainer.links.NStepRNNReLU attribute), 403
n_cells (chainer.links.NStepRNNTanh attribute), 409
n_step_bigru() (in module chainer.functions), 172
n_step_bilstm() (in module chainer.functions), 174
n_step_birnn() (in module chainer.functions), 177
n_step_gru() (in module chainer.functions), 179
n_step_lstm() (in module chainer.functions), 180

n_step_rnn() (in module chainer.functions), 182
n_weights (chainer.links.NStepBiGRU attribute), 367
n_weights (chainer.links.NStepBiLSTM attribute), 373
n_weights (chainer.links.NStepBiRNNReLU attribute),

379
n_weights (chainer.links.NStepBiRNNTanh attribute),

385
n_weights (chainer.links.NStepGRU attribute), 391
n_weights (chainer.links.NStepLSTM attribute), 397
n_weights (chainer.links.NStepRNNReLU attribute), 403
n_weights (chainer.links.NStepRNNTanh attribute), 409
name (chainer.function_hooks.CUDAProfileHook at-

tribute), 251
name (chainer.function_hooks.CupyMemoryProfileHook

attribute), 253
name (chainer.function_hooks.PrintHook attribute), 255
name (chainer.function_hooks.TimerHook attribute), 257
name (chainer.FunctionHook attribute), 250
name (chainer.optimizer_hooks.GradientClipping at-

tribute), 624
name (chainer.optimizer_hooks.GradientHardClipping

attribute), 625
name (chainer.optimizer_hooks.GradientNoise attribute),

625
name (chainer.optimizer_hooks.Lasso attribute), 623
name (chainer.optimizer_hooks.WeightDecay attribute),

623
name (chainer.Parameter attribute), 116
name (chainer.training.extensions.Evaluator attribute),

648
name (chainer.Variable attribute), 108
namedlinks() (chainer.Chain method), 580
namedlinks() (chainer.ChainList method), 585
namedlinks() (chainer.Link method), 574
namedlinks() (chainer.links.BatchNormalization

method), 461
namedlinks() (chainer.links.BatchRenormalization

method), 466
namedlinks() (chainer.links.Bias method), 261
namedlinks() (chainer.links.Bilinear method), 266
namedlinks() (chainer.links.BinaryHierarchicalSoftmax

method), 476
namedlinks() (chainer.links.BlackOut method), 481
namedlinks() (chainer.links.caffe.CaffeFunction method),

569
namedlinks() (chainer.links.ChildSumTreeLSTM

method), 271
namedlinks() (chainer.links.Classifier method), 517
namedlinks() (chainer.links.Convolution2D method), 278
namedlinks() (chainer.links.ConvolutionND method),

283
namedlinks() (chainer.links.CRF1d method), 486
namedlinks() (chainer.links.Deconvolution2D method),

289

804 Index

Chainer Documentation, Release 4.0.0

namedlinks() (chainer.links.DeconvolutionND method),
294

namedlinks() (chainer.links.DepthwiseConvolution2D
method), 299

namedlinks() (chainer.links.DilatedConvolution2D
method), 305

namedlinks() (chainer.links.EmbedID method), 310
namedlinks() (chainer.links.GoogLeNet method), 531
namedlinks() (chainer.links.GRU method), 315
namedlinks() (chainer.links.Highway method), 321
namedlinks() (chainer.links.Inception method), 326
namedlinks() (chainer.links.InceptionBN method), 331
namedlinks() (chainer.links.LayerNormalization

method), 471
namedlinks() (chainer.links.Linear method), 337
namedlinks() (chainer.links.LocalConvolution2D

method), 342
namedlinks() (chainer.links.LSTM method), 348
namedlinks() (chainer.links.Maxout method), 506
namedlinks() (chainer.links.MLPConvolution2D

method), 354
namedlinks() (chainer.links.model.vision.resnet.ResNetLayers

method), 538
namedlinks() (chainer.links.NaryTreeLSTM method),

359
namedlinks() (chainer.links.NegativeSampling method),

511
namedlinks() (chainer.links.NStepBiGRU method), 365
namedlinks() (chainer.links.NStepBiLSTM method), 371
namedlinks() (chainer.links.NStepBiRNNReLU method),

377
namedlinks() (chainer.links.NStepBiRNNTanh method),

383
namedlinks() (chainer.links.NStepGRU method), 389
namedlinks() (chainer.links.NStepLSTM method), 395
namedlinks() (chainer.links.NStepRNNReLU method),

401
namedlinks() (chainer.links.NStepRNNTanh method),

407
namedlinks() (chainer.links.Parameter method), 412
namedlinks() (chainer.links.PReLU method), 496
namedlinks() (chainer.links.ResNet101Layers method),

551
namedlinks() (chainer.links.ResNet152Layers method),

557
namedlinks() (chainer.links.ResNet50Layers method),

544
namedlinks() (chainer.links.Scale method), 417
namedlinks() (chainer.links.SimplifiedDropconnect

method), 491
namedlinks() (chainer.links.StatefulGRU method), 423
namedlinks() (chainer.links.StatefulMGU method), 434
namedlinks() (chainer.links.StatefulPeepholeLSTM

method), 444

namedlinks() (chainer.links.StatefulZoneoutLSTM
method), 449

namedlinks() (chainer.links.StatelessGRU method), 429
namedlinks() (chainer.links.StatelessLSTM method), 455
namedlinks() (chainer.links.StatelessMGU method), 438
namedlinks() (chainer.links.Swish method), 501
namedlinks() (chainer.links.TheanoFunction method),

563
namedlinks() (chainer.links.VGG16Layers method), 524
namedlinks() (chainer.Sequential method), 592
namedparams() (chainer.Chain method), 580
namedparams() (chainer.ChainList method), 585
namedparams() (chainer.Link method), 575
namedparams() (chainer.links.BatchNormalization

method), 461
namedparams() (chainer.links.BatchRenormalization

method), 466
namedparams() (chainer.links.Bias method), 261
namedparams() (chainer.links.Bilinear method), 266
namedparams() (chainer.links.BinaryHierarchicalSoftmax

method), 476
namedparams() (chainer.links.BlackOut method), 481
namedparams() (chainer.links.caffe.CaffeFunction

method), 569
namedparams() (chainer.links.ChildSumTreeLSTM

method), 272
namedparams() (chainer.links.Classifier method), 517
namedparams() (chainer.links.Convolution2D method),

278
namedparams() (chainer.links.ConvolutionND method),

283
namedparams() (chainer.links.CRF1d method), 486
namedparams() (chainer.links.Deconvolution2D method),

289
namedparams() (chainer.links.DeconvolutionND

method), 294
namedparams() (chainer.links.DepthwiseConvolution2D

method), 299
namedparams() (chainer.links.DilatedConvolution2D

method), 305
namedparams() (chainer.links.EmbedID method), 310
namedparams() (chainer.links.GoogLeNet method), 531
namedparams() (chainer.links.GRU method), 315
namedparams() (chainer.links.Highway method), 321
namedparams() (chainer.links.Inception method), 326
namedparams() (chainer.links.InceptionBN method), 331
namedparams() (chainer.links.LayerNormalization

method), 471
namedparams() (chainer.links.Linear method), 337
namedparams() (chainer.links.LocalConvolution2D

method), 342
namedparams() (chainer.links.LSTM method), 348
namedparams() (chainer.links.Maxout method), 507
namedparams() (chainer.links.MLPConvolution2D

Index 805

Chainer Documentation, Release 4.0.0

method), 354
namedparams() (chainer.links.model.vision.resnet.ResNetLayers

method), 538
namedparams() (chainer.links.NaryTreeLSTM method),

359
namedparams() (chainer.links.NegativeSampling

method), 511
namedparams() (chainer.links.NStepBiGRU method),

365
namedparams() (chainer.links.NStepBiLSTM method),

371
namedparams() (chainer.links.NStepBiRNNReLU

method), 377
namedparams() (chainer.links.NStepBiRNNTanh

method), 383
namedparams() (chainer.links.NStepGRU method), 389
namedparams() (chainer.links.NStepLSTM method), 395
namedparams() (chainer.links.NStepRNNReLU method),

401
namedparams() (chainer.links.NStepRNNTanh method),

407
namedparams() (chainer.links.Parameter method), 412
namedparams() (chainer.links.PReLU method), 496
namedparams() (chainer.links.ResNet101Layers

method), 551
namedparams() (chainer.links.ResNet152Layers

method), 557
namedparams() (chainer.links.ResNet50Layers method),

544
namedparams() (chainer.links.Scale method), 417
namedparams() (chainer.links.SimplifiedDropconnect

method), 491
namedparams() (chainer.links.StatefulGRU method), 423
namedparams() (chainer.links.StatefulMGU method),

434
namedparams() (chainer.links.StatefulPeepholeLSTM

method), 444
namedparams() (chainer.links.StatefulZoneoutLSTM

method), 449
namedparams() (chainer.links.StatelessGRU method),

429
namedparams() (chainer.links.StatelessLSTM method),

455
namedparams() (chainer.links.StatelessMGU method),

439
namedparams() (chainer.links.Swish method), 501
namedparams() (chainer.links.TheanoFunction method),

563
namedparams() (chainer.links.VGG16Layers method),

524
namedparams() (chainer.Sequential method), 593
NaN (class in chainer.initializers), 629
NaryTreeLSTM (class in chainer.links), 356
ndim (chainer.Parameter attribute), 116

ndim (chainer.Variable attribute), 108
negative_sampling() (in module chainer.functions), 197
NegativeSampling (class in chainer.links), 509
NesterovAG (class in chainer.optimizers), 604
new_epoch() (chainer.GradientMethod method), 621
new_epoch() (chainer.Optimizer method), 616
new_epoch() (chainer.optimizers.AdaDelta method), 596
new_epoch() (chainer.optimizers.AdaGrad method), 598
new_epoch() (chainer.optimizers.Adam method), 600
new_epoch() (chainer.optimizers.MomentumSGD

method), 603
new_epoch() (chainer.optimizers.NesterovAG method),

605
new_epoch() (chainer.optimizers.RMSprop method), 607
new_epoch() (chainer.optimizers.RMSpropGraves

method), 609
new_epoch() (chainer.optimizers.SGD method), 611
new_epoch() (chainer.optimizers.SMORMS3 method),

614
next() (chainer.dataset.Iterator method), 673
next() (chainer.iterators.MultiprocessIterator method),

694
next() (chainer.iterators.MultithreadIterator method), 695
next() (chainer.iterators.SerialIterator method), 692
no_backprop_mode() (in module chainer), 246
node (chainer.Function attribute), 236
node (chainer.Parameter attribute), 116
node (chainer.Variable attribute), 108
Normal (class in chainer.initializers), 629
normalize() (in module chainer.functions), 224
NpzDeserializer (class in chainer.serializers), 697
NStepBiGRU (class in chainer.links), 361
NStepBiLSTM (class in chainer.links), 367
NStepBiRNNReLU (class in chainer.links), 373
NStepBiRNNTanh (class in chainer.links), 379
NStepGRU (class in chainer.links), 385
NStepLSTM (class in chainer.links), 391
NStepRNNReLU (class in chainer.links), 397
NStepRNNTanh (class in chainer.links), 403
numerical_grad() (in module chainer.gradient_check),

732

O
observe_lr() (in module chainer.training.extensions), 653
observe_value() (in module chainer.training.extensions),

653
One (class in chainer.initializers), 628
Optimizer (class in chainer), 615
Orthogonal (class in chainer.initializers), 631
output_data (chainer.Function attribute), 236
output_data (chainer.FunctionAdapter attribute), 240
output_data (chainer.FunctionNode attribute), 246
outputs (chainer.Function attribute), 236
outputs (chainer.FunctionAdapter attribute), 240

806 Index

Chainer Documentation, Release 4.0.0

outputs (chainer.FunctionNode attribute), 246

P
pad() (in module chainer.functions), 143
pad_sequence() (in module chainer.functions), 143
ParallelUpdater (class in chainer.training.updaters), 640
Parameter (class in chainer), 109
Parameter (class in chainer.links), 409
ParameterStatistics (class in chainer.training.extensions),

651
params() (chainer.Chain method), 580
params() (chainer.ChainList method), 585
params() (chainer.Link method), 575
params() (chainer.links.BatchNormalization method),

461
params() (chainer.links.BatchRenormalization method),

466
params() (chainer.links.Bias method), 261
params() (chainer.links.Bilinear method), 266
params() (chainer.links.BinaryHierarchicalSoftmax

method), 477
params() (chainer.links.BlackOut method), 481
params() (chainer.links.caffe.CaffeFunction method), 569
params() (chainer.links.ChildSumTreeLSTM method),

272
params() (chainer.links.Classifier method), 517
params() (chainer.links.Convolution2D method), 278
params() (chainer.links.ConvolutionND method), 283
params() (chainer.links.CRF1d method), 486
params() (chainer.links.Deconvolution2D method), 289
params() (chainer.links.DeconvolutionND method), 294
params() (chainer.links.DepthwiseConvolution2D

method), 299
params() (chainer.links.DilatedConvolution2D method),

305
params() (chainer.links.EmbedID method), 310
params() (chainer.links.GoogLeNet method), 531
params() (chainer.links.GRU method), 315
params() (chainer.links.Highway method), 321
params() (chainer.links.Inception method), 326
params() (chainer.links.InceptionBN method), 332
params() (chainer.links.LayerNormalization method),

471
params() (chainer.links.Linear method), 337
params() (chainer.links.LocalConvolution2D method),

342
params() (chainer.links.LSTM method), 348
params() (chainer.links.Maxout method), 507
params() (chainer.links.MLPConvolution2D method),

354
params() (chainer.links.model.vision.resnet.ResNetLayers

method), 538
params() (chainer.links.NaryTreeLSTM method), 359
params() (chainer.links.NegativeSampling method), 511

params() (chainer.links.NStepBiGRU method), 365
params() (chainer.links.NStepBiLSTM method), 371
params() (chainer.links.NStepBiRNNReLU method), 377
params() (chainer.links.NStepBiRNNTanh method), 383
params() (chainer.links.NStepGRU method), 389
params() (chainer.links.NStepLSTM method), 395
params() (chainer.links.NStepRNNReLU method), 401
params() (chainer.links.NStepRNNTanh method), 407
params() (chainer.links.Parameter method), 412
params() (chainer.links.PReLU method), 496
params() (chainer.links.ResNet101Layers method), 551
params() (chainer.links.ResNet152Layers method), 557
params() (chainer.links.ResNet50Layers method), 544
params() (chainer.links.Scale method), 417
params() (chainer.links.SimplifiedDropconnect method),

491
params() (chainer.links.StatefulGRU method), 423
params() (chainer.links.StatefulMGU method), 434
params() (chainer.links.StatefulPeepholeLSTM method),

444
params() (chainer.links.StatefulZoneoutLSTM method),

449
params() (chainer.links.StatelessGRU method), 429
params() (chainer.links.StatelessLSTM method), 455
params() (chainer.links.StatelessMGU method), 439
params() (chainer.links.Swish method), 501
params() (chainer.links.TheanoFunction method), 563
params() (chainer.links.VGG16Layers method), 524
params() (chainer.Sequential method), 593
parent (chainer.optimizer.Hyperparameter attribute), 620
permutate() (in module chainer.functions), 144
PlotReport, 44
PlotReport (class in chainer.training.extensions), 660
pop() (chainer.Sequential method), 593
precision() (in module chainer.functions), 186
predict() (chainer.links.GoogLeNet method), 531
predict() (chainer.links.model.vision.resnet.ResNetLayers

method), 538
predict() (chainer.links.ResNet101Layers method), 551
predict() (chainer.links.ResNet152Layers method), 557
predict() (chainer.links.ResNet50Layers method), 545
predict() (chainer.links.VGG16Layers method), 524
PReLU (class in chainer.links), 493
prelu() (in module chainer.functions), 126
prepare() (in module chainer.links.model.vision.googlenet),

533
prepare() (in module chainer.links.model.vision.resnet),

559
prepare() (in module chainer.links.model.vision.vgg), 526
previous_epoch_detail (chainer.iterators.MultiprocessIterator

attribute), 694
previous_epoch_detail (chainer.iterators.MultithreadIterator

attribute), 695

Index 807

Chainer Documentation, Release 4.0.0

previous_epoch_detail (chainer.iterators.SerialIterator at-
tribute), 693

previous_epoch_detail (chainer.training.updaters.MultiprocessParallelUpdater
attribute), 643

previous_epoch_detail (chainer.training.updaters.ParallelUpdater
attribute), 641

previous_epoch_detail (chainer.training.updaters.StandardUpdater
attribute), 640

print_report() (chainer.function_hooks.CupyMemoryProfileHook
method), 253

print_report() (chainer.function_hooks.TimerHook
method), 257

PrintHook (class in chainer.function_hooks), 254
PrintReport, 44
PrintReport (class in chainer.training.extensions), 656
priority (chainer.training.Extension attribute), 645
priority (chainer.training.extensions.Evaluator attribute),

648
priority (chainer.training.extensions.ExponentialShift at-

tribute), 654
priority (chainer.training.extensions.FailOnNonNumber

attribute), 650
priority (chainer.training.extensions.LinearShift at-

tribute), 656
priority (chainer.training.extensions.LogReport attribute),

660
priority (chainer.training.extensions.MicroAverage

attribute), 649
priority (chainer.training.extensions.ParameterStatistics

attribute), 652
priority (chainer.training.extensions.PlotReport attribute),

662
priority (chainer.training.extensions.PrintReport at-

tribute), 657
priority (chainer.training.extensions.ProgressBar at-

tribute), 658
priority (chainer.training.extensions.VariableStatisticsPlot

attribute), 664
prod() (in module chainer.functions), 214
ProgressBar (class in chainer.training.extensions), 657

R
r2_score() (in module chainer.functions), 186
rank (chainer.Function attribute), 236
rank (chainer.FunctionAdapter attribute), 240
rank (chainer.FunctionNode attribute), 246
rank (chainer.Parameter attribute), 116
rank (chainer.Variable attribute), 108
rank (chainer.variable.VariableNode attribute), 119
reallocate_cleared_grads() (chainer.GradientMethod

method), 621
reallocate_cleared_grads() (chainer.optimizers.AdaDelta

method), 596

reallocate_cleared_grads() (chainer.optimizers.AdaGrad
method), 598

reallocate_cleared_grads() (chainer.optimizers.Adam
method), 600

reallocate_cleared_grads()
(chainer.optimizers.MomentumSGD method),
603

reallocate_cleared_grads()
(chainer.optimizers.NesterovAG method),
605

reallocate_cleared_grads() (chainer.optimizers.RMSprop
method), 607

reallocate_cleared_grads()
(chainer.optimizers.RMSpropGraves method),
609

reallocate_cleared_grads() (chainer.optimizers.SGD
method), 612

reallocate_cleared_grads()
(chainer.optimizers.SMORMS3 method),
614

recall() (in module chainer.functions), 186
reduce() (in module chainer.backends.cuda), 709
register_persistent() (chainer.Chain method), 581
register_persistent() (chainer.ChainList method), 585
register_persistent() (chainer.Link method), 575
register_persistent() (chainer.links.BatchNormalization

method), 461
register_persistent() (chainer.links.BatchRenormalization

method), 466
register_persistent() (chainer.links.Bias method), 261
register_persistent() (chainer.links.Bilinear method), 266
register_persistent() (chainer.links.BinaryHierarchicalSoftmax

method), 477
register_persistent() (chainer.links.BlackOut method),

481
register_persistent() (chainer.links.caffe.CaffeFunction

method), 569
register_persistent() (chainer.links.ChildSumTreeLSTM

method), 272
register_persistent() (chainer.links.Classifier method),

517
register_persistent() (chainer.links.Convolution2D

method), 278
register_persistent() (chainer.links.ConvolutionND

method), 283
register_persistent() (chainer.links.CRF1d method), 486
register_persistent() (chainer.links.Deconvolution2D

method), 289
register_persistent() (chainer.links.DeconvolutionND

method), 295
register_persistent() (chainer.links.DepthwiseConvolution2D

method), 300
register_persistent() (chainer.links.DilatedConvolution2D

method), 306

808 Index

Chainer Documentation, Release 4.0.0

register_persistent() (chainer.links.EmbedID method),
311

register_persistent() (chainer.links.GoogLeNet method),
531

register_persistent() (chainer.links.GRU method), 316
register_persistent() (chainer.links.Highway method), 321
register_persistent() (chainer.links.Inception method),

326
register_persistent() (chainer.links.InceptionBN method),

332
register_persistent() (chainer.links.LayerNormalization

method), 472
register_persistent() (chainer.links.Linear method), 337
register_persistent() (chainer.links.LocalConvolution2D

method), 342
register_persistent() (chainer.links.LSTM method), 349
register_persistent() (chainer.links.Maxout method), 507
register_persistent() (chainer.links.MLPConvolution2D

method), 354
register_persistent() (chainer.links.model.vision.resnet.ResNetLayers

method), 538
register_persistent() (chainer.links.NaryTreeLSTM

method), 360
register_persistent() (chainer.links.NegativeSampling

method), 512
register_persistent() (chainer.links.NStepBiGRU

method), 365
register_persistent() (chainer.links.NStepBiLSTM

method), 371
register_persistent() (chainer.links.NStepBiRNNReLU

method), 377
register_persistent() (chainer.links.NStepBiRNNTanh

method), 383
register_persistent() (chainer.links.NStepGRU method),

389
register_persistent() (chainer.links.NStepLSTM method),

395
register_persistent() (chainer.links.NStepRNNReLU

method), 401
register_persistent() (chainer.links.NStepRNNTanh

method), 407
register_persistent() (chainer.links.Parameter method),

412
register_persistent() (chainer.links.PReLU method), 496
register_persistent() (chainer.links.ResNet101Layers

method), 551
register_persistent() (chainer.links.ResNet152Layers

method), 558
register_persistent() (chainer.links.ResNet50Layers

method), 545
register_persistent() (chainer.links.Scale method), 417
register_persistent() (chainer.links.SimplifiedDropconnect

method), 491
register_persistent() (chainer.links.StatefulGRU method),

423
register_persistent() (chainer.links.StatefulMGU

method), 434
register_persistent() (chainer.links.StatefulPeepholeLSTM

method), 444
register_persistent() (chainer.links.StatefulZoneoutLSTM

method), 449
register_persistent() (chainer.links.StatelessGRU

method), 429
register_persistent() (chainer.links.StatelessLSTM

method), 455
register_persistent() (chainer.links.StatelessMGU

method), 439
register_persistent() (chainer.links.Swish method), 501
register_persistent() (chainer.links.TheanoFunction

method), 563
register_persistent() (chainer.links.VGG16Layers

method), 524
register_persistent() (chainer.Sequential method), 593
register_statistics() (chainer.training.extensions.ParameterStatistics

method), 652
relu() (in module chainer.functions), 126
remove() (chainer.Sequential method), 593
remove_by_layer_type() (chainer.Sequential method),

593
remove_hook() (chainer.GradientMethod method), 621
remove_hook() (chainer.Optimizer method), 616
remove_hook() (chainer.optimizers.AdaDelta method),

596
remove_hook() (chainer.optimizers.AdaGrad method),

598
remove_hook() (chainer.optimizers.Adam method), 601
remove_hook() (chainer.optimizers.MomentumSGD

method), 603
remove_hook() (chainer.optimizers.NesterovAG

method), 605
remove_hook() (chainer.optimizers.RMSprop method),

607
remove_hook() (chainer.optimizers.RMSpropGraves

method), 610
remove_hook() (chainer.optimizers.SGD method), 612
remove_hook() (chainer.optimizers.SMORMS3 method),

614
remove_hook() (chainer.UpdateRule method), 618
repeat() (chainer.Chain method), 581
repeat() (chainer.ChainList method), 585
repeat() (chainer.Link method), 575
repeat() (chainer.links.BatchNormalization method), 462
repeat() (chainer.links.BatchRenormalization method),

467
repeat() (chainer.links.Bias method), 262
repeat() (chainer.links.Bilinear method), 267
repeat() (chainer.links.BinaryHierarchicalSoftmax

method), 477

Index 809

Chainer Documentation, Release 4.0.0

repeat() (chainer.links.BlackOut method), 482
repeat() (chainer.links.caffe.CaffeFunction method), 569
repeat() (chainer.links.ChildSumTreeLSTM method), 272
repeat() (chainer.links.Classifier method), 518
repeat() (chainer.links.Convolution2D method), 278
repeat() (chainer.links.ConvolutionND method), 283
repeat() (chainer.links.CRF1d method), 486
repeat() (chainer.links.Deconvolution2D method), 290
repeat() (chainer.links.DeconvolutionND method), 295
repeat() (chainer.links.DepthwiseConvolution2D

method), 300
repeat() (chainer.links.DilatedConvolution2D method),

306
repeat() (chainer.links.EmbedID method), 311
repeat() (chainer.links.GoogLeNet method), 531
repeat() (chainer.links.GRU method), 316
repeat() (chainer.links.Highway method), 321
repeat() (chainer.links.Inception method), 327
repeat() (chainer.links.InceptionBN method), 332
repeat() (chainer.links.LayerNormalization method), 472
repeat() (chainer.links.Linear method), 337
repeat() (chainer.links.LocalConvolution2D method), 343
repeat() (chainer.links.LSTM method), 349
repeat() (chainer.links.Maxout method), 507
repeat() (chainer.links.MLPConvolution2D method), 354
repeat() (chainer.links.model.vision.resnet.ResNetLayers

method), 538
repeat() (chainer.links.NaryTreeLSTM method), 360
repeat() (chainer.links.NegativeSampling method), 512
repeat() (chainer.links.NStepBiGRU method), 365
repeat() (chainer.links.NStepBiLSTM method), 371
repeat() (chainer.links.NStepBiRNNReLU method), 377
repeat() (chainer.links.NStepBiRNNTanh method), 383
repeat() (chainer.links.NStepGRU method), 389
repeat() (chainer.links.NStepLSTM method), 395
repeat() (chainer.links.NStepRNNReLU method), 401
repeat() (chainer.links.NStepRNNTanh method), 407
repeat() (chainer.links.Parameter method), 412
repeat() (chainer.links.PReLU method), 496
repeat() (chainer.links.ResNet101Layers method), 551
repeat() (chainer.links.ResNet152Layers method), 558
repeat() (chainer.links.ResNet50Layers method), 545
repeat() (chainer.links.Scale method), 417
repeat() (chainer.links.SimplifiedDropconnect method),

492
repeat() (chainer.links.StatefulGRU method), 423
repeat() (chainer.links.StatefulMGU method), 434
repeat() (chainer.links.StatefulPeepholeLSTM method),

445
repeat() (chainer.links.StatefulZoneoutLSTM method),

449
repeat() (chainer.links.StatelessGRU method), 429
repeat() (chainer.links.StatelessLSTM method), 456
repeat() (chainer.links.StatelessMGU method), 439

repeat() (chainer.links.Swish method), 502
repeat() (chainer.links.TheanoFunction method), 563
repeat() (chainer.links.VGG16Layers method), 524
repeat() (chainer.Sequential method), 593
repeat() (in module chainer.functions), 145
report() (chainer.Reporter method), 712
report() (in module chainer), 713
report_key_template (chainer.training.extensions.ParameterStatistics

attribute), 652
report_scope() (in module chainer), 713
Reporter (class in chainer), 711
requires_grad (chainer.Parameter attribute), 116
requires_grad (chainer.Variable attribute), 108
requires_grad (chainer.variable.VariableNode attribute),

119
reset() (chainer.iterators.MultiprocessIterator method),

694
reset() (chainer.iterators.MultithreadIterator method), 695
reset() (chainer.iterators.SerialIterator method), 692
reset_state() (chainer.links.GRU method), 316
reset_state() (chainer.links.LSTM method), 349
reset_state() (chainer.links.StatefulGRU method), 424
reset_state() (chainer.links.StatefulMGU method), 435
reset_state() (chainer.links.StatefulPeepholeLSTM

method), 445
reset_state() (chainer.links.StatefulZoneoutLSTM

method), 450
reshape() (chainer.Parameter method), 112
reshape() (chainer.Variable method), 104
reshape() (in module chainer.functions), 145
resize_images() (in module chainer.functions), 146
ResNet101Layers (class in chainer.links), 547
ResNet152Layers (class in chainer.links), 553
ResNet50Layers (class in chainer.links), 540
ResNetLayers (class in

chainer.links.model.vision.resnet), 534
retain_data() (chainer.Parameter method), 112
retain_data() (chainer.Variable method), 104
retain_data() (chainer.variable.VariableNode method),

117
retain_inputs() (chainer.Function method), 235
retain_inputs() (chainer.FunctionAdapter method), 239
retain_inputs() (chainer.FunctionNode method), 245
retain_outputs() (chainer.Function method), 235
retain_outputs() (chainer.FunctionAdapter method), 239
retain_outputs() (chainer.FunctionNode method), 245
rho (chainer.optimizers.AdaDelta attribute), 597
RMSprop (class in chainer.optimizers), 606
RMSpropGraves (class in chainer.optimizers), 609
rnn() (chainer.links.NStepBiGRU method), 366
rnn() (chainer.links.NStepBiLSTM method), 372
rnn() (chainer.links.NStepBiRNNReLU method), 378
rnn() (chainer.links.NStepBiRNNTanh method), 384
rnn() (chainer.links.NStepGRU method), 390

810 Index

Chainer Documentation, Release 4.0.0

rnn() (chainer.links.NStepLSTM method), 396
rnn() (chainer.links.NStepRNNReLU method), 402
rnn() (chainer.links.NStepRNNTanh method), 408
roi_pooling_2d() (in module chainer.functions), 227
rollaxis() (in module chainer.functions), 147
rsqrt() (in module chainer.functions), 214
run() (chainer.training.Trainer method), 636

S
sample() (chainer.utils.WalkerAlias method), 710
sample_cpu() (chainer.utils.WalkerAlias method), 710
sample_data (chainer.links.BlackOut attribute), 483
sample_gpu() (chainer.utils.WalkerAlias method), 710
save() (chainer.Serializer method), 702
save() (chainer.serializers.DictionarySerializer method),

696
save() (chainer.serializers.HDF5Serializer method), 699
save_hdf5() (in module chainer.serializers), 701
save_npz() (in module chainer.serializers), 698
save_plot_using_module()

(chainer.training.extensions.VariableStatisticsPlot
method), 663

Scale (class in chainer.links), 414
scale() (in module chainer.functions), 215
scatter_add() (in module chainer.functions), 147
scope() (chainer.Reporter method), 712
select_item() (in module chainer.functions), 148
selu() (in module chainer.functions), 127
separate() (in module chainer.functions), 148
Sequential (class in chainer), 587
SerialIterator (class in chainer.iterators), 692
serialize() (chainer.Chain method), 581
serialize() (chainer.ChainList method), 586
serialize() (chainer.dataset.Iterator method), 673
serialize() (chainer.DictSummary method), 715
serialize() (chainer.GradientMethod method), 621
serialize() (chainer.iterators.MultiprocessIterator

method), 694
serialize() (chainer.iterators.MultithreadIterator method),

695
serialize() (chainer.iterators.SerialIterator method), 692
serialize() (chainer.Link method), 576
serialize() (chainer.links.BatchNormalization method),

462
serialize() (chainer.links.BatchRenormalization method),

467
serialize() (chainer.links.Bias method), 262
serialize() (chainer.links.Bilinear method), 267
serialize() (chainer.links.BinaryHierarchicalSoftmax

method), 478
serialize() (chainer.links.BlackOut method), 482
serialize() (chainer.links.caffe.CaffeFunction method),

570

serialize() (chainer.links.ChildSumTreeLSTM method),
273

serialize() (chainer.links.Classifier method), 518
serialize() (chainer.links.Convolution2D method), 279
serialize() (chainer.links.ConvolutionND method), 284
serialize() (chainer.links.CRF1d method), 487
serialize() (chainer.links.Deconvolution2D method), 290
serialize() (chainer.links.DeconvolutionND method), 295
serialize() (chainer.links.DepthwiseConvolution2D

method), 300
serialize() (chainer.links.DilatedConvolution2D method),

306
serialize() (chainer.links.EmbedID method), 311
serialize() (chainer.links.GoogLeNet method), 532
serialize() (chainer.links.GRU method), 316
serialize() (chainer.links.Highway method), 322
serialize() (chainer.links.Inception method), 327
serialize() (chainer.links.InceptionBN method), 333
serialize() (chainer.links.LayerNormalization method),

472
serialize() (chainer.links.Linear method), 338
serialize() (chainer.links.LocalConvolution2D method),

343
serialize() (chainer.links.LSTM method), 349
serialize() (chainer.links.Maxout method), 508
serialize() (chainer.links.MLPConvolution2D method),

355
serialize() (chainer.links.model.vision.resnet.ResNetLayers

method), 539
serialize() (chainer.links.NaryTreeLSTM method), 360
serialize() (chainer.links.NegativeSampling method), 512
serialize() (chainer.links.NStepBiGRU method), 366
serialize() (chainer.links.NStepBiLSTM method), 372
serialize() (chainer.links.NStepBiRNNReLU method),

378
serialize() (chainer.links.NStepBiRNNTanh method), 384
serialize() (chainer.links.NStepGRU method), 390
serialize() (chainer.links.NStepLSTM method), 396
serialize() (chainer.links.NStepRNNReLU method), 402
serialize() (chainer.links.NStepRNNTanh method), 408
serialize() (chainer.links.Parameter method), 413
serialize() (chainer.links.PReLU method), 497
serialize() (chainer.links.ResNet101Layers method), 552
serialize() (chainer.links.ResNet152Layers method), 558
serialize() (chainer.links.ResNet50Layers method), 546
serialize() (chainer.links.Scale method), 418
serialize() (chainer.links.SimplifiedDropconnect method),

492
serialize() (chainer.links.StatefulGRU method), 424
serialize() (chainer.links.StatefulMGU method), 435
serialize() (chainer.links.StatefulPeepholeLSTM

method), 445
serialize() (chainer.links.StatefulZoneoutLSTM method),

450

Index 811

Chainer Documentation, Release 4.0.0

serialize() (chainer.links.StatelessGRU method), 430
serialize() (chainer.links.StatelessLSTM method), 456
serialize() (chainer.links.StatelessMGU method), 440
serialize() (chainer.links.Swish method), 502
serialize() (chainer.links.TheanoFunction method), 564
serialize() (chainer.links.VGG16Layers method), 525
serialize() (chainer.Optimizer method), 616
serialize() (chainer.optimizers.AdaDelta method), 596
serialize() (chainer.optimizers.AdaGrad method), 598
serialize() (chainer.optimizers.Adam method), 601
serialize() (chainer.optimizers.MomentumSGD method),

603
serialize() (chainer.optimizers.NesterovAG method), 605
serialize() (chainer.optimizers.RMSprop method), 607
serialize() (chainer.optimizers.RMSpropGraves method),

610
serialize() (chainer.optimizers.SGD method), 612
serialize() (chainer.optimizers.SMORMS3 method), 614
serialize() (chainer.Sequential method), 594
serialize() (chainer.Summary method), 714
serialize() (chainer.training.Extension method), 644
serialize() (chainer.training.extensions.Evaluator

method), 647
serialize() (chainer.training.extensions.ExponentialShift

method), 654
serialize() (chainer.training.extensions.FailOnNonNumber

method), 650
serialize() (chainer.training.extensions.LinearShift

method), 655
serialize() (chainer.training.extensions.LogReport

method), 659
serialize() (chainer.training.extensions.MicroAverage

method), 649
serialize() (chainer.training.extensions.ParameterStatistics

method), 652
serialize() (chainer.training.extensions.PlotReport

method), 661
serialize() (chainer.training.extensions.PrintReport

method), 657
serialize() (chainer.training.extensions.ProgressBar

method), 658
serialize() (chainer.training.extensions.VariableStatisticsPlot

method), 663
serialize() (chainer.training.Trainer method), 636
serialize() (chainer.training.triggers.IntervalTrigger

method), 668
serialize() (chainer.training.triggers.ManualScheduleTrigger

method), 669
serialize() (chainer.training.triggers.TimeTrigger

method), 670
serialize() (chainer.training.Updater method), 638
serialize() (chainer.training.updaters.MultiprocessParallelUpdater

method), 643
serialize() (chainer.training.updaters.ParallelUpdater

method), 641
serialize() (chainer.training.updaters.StandardUpdater

method), 639
serialize() (chainer.UpdateRule method), 618
Serializer (class in chainer), 701
set_creator() (chainer.Parameter method), 112
set_creator() (chainer.Variable method), 104
set_creator() (chainer.variable.VariableNode method),

117
set_creator_node() (chainer.Parameter method), 112
set_creator_node() (chainer.Variable method), 104
set_creator_node() (chainer.variable.VariableNode

method), 117
set_dataset_root() (in module chainer.dataset), 676
set_debug() (in module chainer), 721
set_loss_scale() (chainer.GradientMethod method), 621
set_loss_scale() (chainer.Optimizer method), 616
set_loss_scale() (chainer.optimizers.AdaDelta method),

596
set_loss_scale() (chainer.optimizers.AdaGrad method),

598
set_loss_scale() (chainer.optimizers.Adam method), 601
set_loss_scale() (chainer.optimizers.MomentumSGD

method), 603
set_loss_scale() (chainer.optimizers.NesterovAG

method), 605
set_loss_scale() (chainer.optimizers.RMSprop method),

607
set_loss_scale() (chainer.optimizers.RMSpropGraves

method), 610
set_loss_scale() (chainer.optimizers.SGD method), 612
set_loss_scale() (chainer.optimizers.SMORMS3

method), 614
set_max_workspace_size() (in module

chainer.backends.cuda), 709
set_state() (chainer.links.GRU method), 317
set_state() (chainer.links.LSTM method), 350
set_state() (chainer.links.StatefulGRU method), 424
set_state() (chainer.links.StatefulMGU method), 435
set_state() (chainer.links.StatefulZoneoutLSTM method),

450
setup() (chainer.GradientMethod method), 621
setup() (chainer.Optimizer method), 616
setup() (chainer.optimizers.AdaDelta method), 596
setup() (chainer.optimizers.AdaGrad method), 598
setup() (chainer.optimizers.Adam method), 601
setup() (chainer.optimizers.MomentumSGD method),

603
setup() (chainer.optimizers.NesterovAG method), 605
setup() (chainer.optimizers.RMSprop method), 608
setup() (chainer.optimizers.RMSpropGraves method),

610
setup() (chainer.optimizers.SGD method), 612
setup() (chainer.optimizers.SMORMS3 method), 614

812 Index

Chainer Documentation, Release 4.0.0

setup_workers() (chainer.training.updaters.MultiprocessParallelUpdater
method), 643

SGD (class in chainer.optimizers), 611
shape (chainer.Parameter attribute), 116
shape (chainer.Variable attribute), 108
shift() (in module chainer.functions), 183
show() (chainer.configuration.GlobalConfig method), 719
show() (chainer.configuration.LocalConfig method), 720
sigmoid() (in module chainer.functions), 127
sigmoid_cross_entropy() (in module chainer.functions),

198
sign() (in module chainer.functions), 216
simplified_dropconnect() (in module chainer.functions),

220
SimplifiedDropconnect (class in chainer.links), 488
sin() (in module chainer.functions), 215
sinh() (in module chainer.functions), 215
size (chainer.Parameter attribute), 116
size (chainer.utils.type_check.TypeInfo attribute), 729
size (chainer.Variable attribute), 108
size() (chainer.utils.type_check.TypeInfoTuple method),

729
slstm() (in module chainer.functions), 128
SMORMS3 (class in chainer.optimizers), 613
snapshot(), 43
snapshot() (in module chainer.training.extensions), 665
snapshot_object(), 43
snapshot_object() (in module

chainer.training.extensions), 665
softmax() (in module chainer.functions), 129
softmax_cross_entropy() (in module chainer.functions),

199
softplus() (in module chainer.functions), 129
space2depth() (in module chainer.functions), 149
spatial_pyramid_pooling_2d() (in module

chainer.functions), 228
spatial_transformer_grid() (in module chainer.functions),

150
spatial_transformer_sampler() (in module

chainer.functions), 151
split_axis() (in module chainer.functions), 151
split_dataset() (in module chainer.datasets), 681
split_dataset_random() (in module chainer.datasets), 682
sqrt() (in module chainer.functions), 216
square() (in module chainer.functions), 216
squared_difference() (in module chainer.functions), 217
squared_error() (in module chainer.functions), 200
squeeze() (in module chainer.functions), 152
stack (chainer.Function attribute), 236
stack (chainer.FunctionAdapter attribute), 240
stack (chainer.FunctionNode attribute), 246
stack() (in module chainer.functions), 153
StandardUpdater (class in chainer.training.updaters), 638

start_finetuning() (chainer.links.BatchNormalization
method), 462

start_finetuning() (chainer.links.BatchRenormalization
method), 467

state (chainer.UpdateRule attribute), 619
StatefulGRU (class in chainer.links), 419
StatefulMGU (class in chainer.links), 431
StatefulPeepholeLSTM (class in chainer.links), 441
StatefulZoneoutLSTM (class in chainer.links), 446
StatelessGRU (class in chainer.links), 425
StatelessLSTM (class in chainer.links), 451
StatelessMGU (class in chainer.links), 436
SubDataset (class in chainer.datasets), 680
sum() (in module chainer.functions), 217
Summary (class in chainer), 714
summary() (chainer.function_hooks.CupyMemoryProfileHook

method), 253
summary() (chainer.function_hooks.TimerHook method),

257
summary() (chainer.Parameter method), 112
summary() (chainer.Variable method), 104
swapaxes() (in module chainer.functions), 154
Swish (class in chainer.links), 498
swish() (in module chainer.functions), 130

T
t (chainer.GradientMethod attribute), 622
t (chainer.Optimizer attribute), 617
t (chainer.optimizers.AdaDelta attribute), 597
t (chainer.optimizers.AdaGrad attribute), 599
t (chainer.optimizers.Adam attribute), 602
t (chainer.optimizers.MomentumSGD attribute), 604
t (chainer.optimizers.NesterovAG attribute), 606
t (chainer.optimizers.RMSprop attribute), 608
t (chainer.optimizers.RMSpropGraves attribute), 611
t (chainer.optimizers.SGD attribute), 613
t (chainer.optimizers.SMORMS3 attribute), 615
T (chainer.Parameter attribute), 115
T (chainer.Variable attribute), 107
tan() (in module chainer.functions), 218
tanh() (in module chainer.functions), 131
target (chainer.GradientMethod attribute), 622
target (chainer.Optimizer attribute), 617
target (chainer.optimizers.AdaDelta attribute), 597
target (chainer.optimizers.AdaGrad attribute), 599
target (chainer.optimizers.Adam attribute), 602
target (chainer.optimizers.MomentumSGD attribute), 604
target (chainer.optimizers.NesterovAG attribute), 606
target (chainer.optimizers.RMSprop attribute), 608
target (chainer.optimizers.RMSpropGraves attribute), 611
target (chainer.optimizers.SGD attribute), 613
target (chainer.optimizers.SMORMS3 attribute), 615
tensordot() (in module chainer.functions), 218
TheanoFunction (class in chainer.links), 560

Index 813

Chainer Documentation, Release 4.0.0

tile() (in module chainer.functions), 155
TimerHook (class in chainer.function_hooks), 255
TimeTrigger (class in chainer.training.triggers), 670
timing (chainer.optimizer_hooks.GradientClipping

attribute), 624
timing (chainer.optimizer_hooks.GradientHardClipping

attribute), 625
timing (chainer.optimizer_hooks.GradientNoise at-

tribute), 625
timing (chainer.optimizer_hooks.Lasso attribute), 623
timing (chainer.optimizer_hooks.WeightDecay attribute),

623
to_cpu() (chainer.Chain method), 581
to_cpu() (chainer.ChainList method), 586
to_cpu() (chainer.Link method), 576
to_cpu() (chainer.links.BatchNormalization method), 462
to_cpu() (chainer.links.BatchRenormalization method),

467
to_cpu() (chainer.links.Bias method), 262
to_cpu() (chainer.links.Bilinear method), 267
to_cpu() (chainer.links.BinaryHierarchicalSoftmax

method), 478
to_cpu() (chainer.links.BlackOut method), 482
to_cpu() (chainer.links.caffe.CaffeFunction method), 570
to_cpu() (chainer.links.ChildSumTreeLSTM method),

273
to_cpu() (chainer.links.Classifier method), 518
to_cpu() (chainer.links.Convolution2D method), 279
to_cpu() (chainer.links.ConvolutionND method), 284
to_cpu() (chainer.links.CRF1d method), 487
to_cpu() (chainer.links.Deconvolution2D method), 290
to_cpu() (chainer.links.DeconvolutionND method), 295
to_cpu() (chainer.links.DepthwiseConvolution2D

method), 301
to_cpu() (chainer.links.DilatedConvolution2D method),

306
to_cpu() (chainer.links.EmbedID method), 312
to_cpu() (chainer.links.GoogLeNet method), 532
to_cpu() (chainer.links.GRU method), 317
to_cpu() (chainer.links.Highway method), 322
to_cpu() (chainer.links.Inception method), 327
to_cpu() (chainer.links.InceptionBN method), 333
to_cpu() (chainer.links.LayerNormalization method), 472
to_cpu() (chainer.links.Linear method), 338
to_cpu() (chainer.links.LocalConvolution2D method),

343
to_cpu() (chainer.links.LSTM method), 350
to_cpu() (chainer.links.Maxout method), 508
to_cpu() (chainer.links.MLPConvolution2D method), 355
to_cpu() (chainer.links.model.vision.resnet.ResNetLayers

method), 539
to_cpu() (chainer.links.NaryTreeLSTM method), 361
to_cpu() (chainer.links.NegativeSampling method), 513
to_cpu() (chainer.links.NStepBiGRU method), 366

to_cpu() (chainer.links.NStepBiLSTM method), 372
to_cpu() (chainer.links.NStepBiRNNReLU method), 378
to_cpu() (chainer.links.NStepBiRNNTanh method), 384
to_cpu() (chainer.links.NStepGRU method), 390
to_cpu() (chainer.links.NStepLSTM method), 396
to_cpu() (chainer.links.NStepRNNReLU method), 402
to_cpu() (chainer.links.NStepRNNTanh method), 408
to_cpu() (chainer.links.Parameter method), 413
to_cpu() (chainer.links.PReLU method), 497
to_cpu() (chainer.links.ResNet101Layers method), 552
to_cpu() (chainer.links.ResNet152Layers method), 559
to_cpu() (chainer.links.ResNet50Layers method), 546
to_cpu() (chainer.links.Scale method), 418
to_cpu() (chainer.links.SimplifiedDropconnect method),

492
to_cpu() (chainer.links.StatefulGRU method), 424
to_cpu() (chainer.links.StatefulMGU method), 435
to_cpu() (chainer.links.StatefulPeepholeLSTM method),

445
to_cpu() (chainer.links.StatefulZoneoutLSTM method),

450
to_cpu() (chainer.links.StatelessGRU method), 430
to_cpu() (chainer.links.StatelessLSTM method), 456
to_cpu() (chainer.links.StatelessMGU method), 440
to_cpu() (chainer.links.Swish method), 502
to_cpu() (chainer.links.TheanoFunction method), 564
to_cpu() (chainer.links.VGG16Layers method), 525
to_cpu() (chainer.Parameter method), 112
to_cpu() (chainer.Sequential method), 594
to_cpu() (chainer.utils.WalkerAlias method), 710
to_cpu() (chainer.Variable method), 104
to_cpu() (in module chainer.backends.cuda), 707
to_device() (in module chainer.dataset), 675
to_gpu() (chainer.Chain method), 582
to_gpu() (chainer.ChainList method), 586
to_gpu() (chainer.Link method), 576
to_gpu() (chainer.links.BatchNormalization method), 463
to_gpu() (chainer.links.BatchRenormalization method),

468
to_gpu() (chainer.links.Bias method), 262
to_gpu() (chainer.links.Bilinear method), 268
to_gpu() (chainer.links.BinaryHierarchicalSoftmax

method), 478
to_gpu() (chainer.links.BlackOut method), 482
to_gpu() (chainer.links.caffe.CaffeFunction method), 570
to_gpu() (chainer.links.ChildSumTreeLSTM method),

273
to_gpu() (chainer.links.Classifier method), 519
to_gpu() (chainer.links.Convolution2D method), 279
to_gpu() (chainer.links.ConvolutionND method), 284
to_gpu() (chainer.links.CRF1d method), 487
to_gpu() (chainer.links.Deconvolution2D method), 291
to_gpu() (chainer.links.DeconvolutionND method), 296

814 Index

Chainer Documentation, Release 4.0.0

to_gpu() (chainer.links.DepthwiseConvolution2D
method), 301

to_gpu() (chainer.links.DilatedConvolution2D method),
307

to_gpu() (chainer.links.EmbedID method), 312
to_gpu() (chainer.links.GoogLeNet method), 532
to_gpu() (chainer.links.GRU method), 317
to_gpu() (chainer.links.Highway method), 322
to_gpu() (chainer.links.Inception method), 327
to_gpu() (chainer.links.InceptionBN method), 333
to_gpu() (chainer.links.LayerNormalization method), 473
to_gpu() (chainer.links.Linear method), 338
to_gpu() (chainer.links.LocalConvolution2D method),

343
to_gpu() (chainer.links.LSTM method), 350
to_gpu() (chainer.links.Maxout method), 508
to_gpu() (chainer.links.MLPConvolution2D method),

355
to_gpu() (chainer.links.model.vision.resnet.ResNetLayers

method), 539
to_gpu() (chainer.links.NaryTreeLSTM method), 361
to_gpu() (chainer.links.NegativeSampling method), 513
to_gpu() (chainer.links.NStepBiGRU method), 366
to_gpu() (chainer.links.NStepBiLSTM method), 372
to_gpu() (chainer.links.NStepBiRNNReLU method), 378
to_gpu() (chainer.links.NStepBiRNNTanh method), 384
to_gpu() (chainer.links.NStepGRU method), 390
to_gpu() (chainer.links.NStepLSTM method), 396
to_gpu() (chainer.links.NStepRNNReLU method), 402
to_gpu() (chainer.links.NStepRNNTanh method), 408
to_gpu() (chainer.links.Parameter method), 413
to_gpu() (chainer.links.PReLU method), 497
to_gpu() (chainer.links.ResNet101Layers method), 552
to_gpu() (chainer.links.ResNet152Layers method), 559
to_gpu() (chainer.links.ResNet50Layers method), 546
to_gpu() (chainer.links.Scale method), 418
to_gpu() (chainer.links.SimplifiedDropconnect method),

492
to_gpu() (chainer.links.StatefulGRU method), 424
to_gpu() (chainer.links.StatefulMGU method), 435
to_gpu() (chainer.links.StatefulPeepholeLSTM method),

446
to_gpu() (chainer.links.StatefulZoneoutLSTM method),

451
to_gpu() (chainer.links.StatelessGRU method), 430
to_gpu() (chainer.links.StatelessLSTM method), 456
to_gpu() (chainer.links.StatelessMGU method), 440
to_gpu() (chainer.links.Swish method), 503
to_gpu() (chainer.links.TheanoFunction method), 564
to_gpu() (chainer.links.VGG16Layers method), 525
to_gpu() (chainer.Parameter method), 112
to_gpu() (chainer.Sequential method), 594
to_gpu() (chainer.utils.WalkerAlias method), 710
to_gpu() (chainer.Variable method), 104

to_gpu() (in module chainer.backends.cuda), 708
to_intel64() (chainer.Chain method), 582
to_intel64() (chainer.ChainList method), 587
to_intel64() (chainer.Link method), 576
to_intel64() (chainer.links.BatchNormalization method),

463
to_intel64() (chainer.links.BatchRenormalization

method), 468
to_intel64() (chainer.links.Bias method), 263
to_intel64() (chainer.links.Bilinear method), 268
to_intel64() (chainer.links.BinaryHierarchicalSoftmax

method), 478
to_intel64() (chainer.links.BlackOut method), 483
to_intel64() (chainer.links.caffe.CaffeFunction method),

570
to_intel64() (chainer.links.ChildSumTreeLSTM method),

273
to_intel64() (chainer.links.Classifier method), 519
to_intel64() (chainer.links.Convolution2D method), 279
to_intel64() (chainer.links.ConvolutionND method), 284
to_intel64() (chainer.links.CRF1d method), 487
to_intel64() (chainer.links.Deconvolution2D method),

291
to_intel64() (chainer.links.DeconvolutionND method),

296
to_intel64() (chainer.links.DepthwiseConvolution2D

method), 301
to_intel64() (chainer.links.DilatedConvolution2D

method), 307
to_intel64() (chainer.links.EmbedID method), 312
to_intel64() (chainer.links.GoogLeNet method), 532
to_intel64() (chainer.links.GRU method), 317
to_intel64() (chainer.links.Highway method), 322
to_intel64() (chainer.links.Inception method), 328
to_intel64() (chainer.links.InceptionBN method), 333
to_intel64() (chainer.links.LayerNormalization method),

473
to_intel64() (chainer.links.Linear method), 339
to_intel64() (chainer.links.LocalConvolution2D method),

344
to_intel64() (chainer.links.LSTM method), 350
to_intel64() (chainer.links.Maxout method), 508
to_intel64() (chainer.links.MLPConvolution2D method),

355
to_intel64() (chainer.links.model.vision.resnet.ResNetLayers

method), 540
to_intel64() (chainer.links.NaryTreeLSTM method), 361
to_intel64() (chainer.links.NegativeSampling method),

513
to_intel64() (chainer.links.NStepBiGRU method), 367
to_intel64() (chainer.links.NStepBiLSTM method), 373
to_intel64() (chainer.links.NStepBiRNNReLU method),

378
to_intel64() (chainer.links.NStepBiRNNTanh method),

Index 815

Chainer Documentation, Release 4.0.0

384
to_intel64() (chainer.links.NStepGRU method), 390
to_intel64() (chainer.links.NStepLSTM method), 396
to_intel64() (chainer.links.NStepRNNReLU method),

402
to_intel64() (chainer.links.NStepRNNTanh method), 408
to_intel64() (chainer.links.Parameter method), 413
to_intel64() (chainer.links.PReLU method), 497
to_intel64() (chainer.links.ResNet101Layers method),

552
to_intel64() (chainer.links.ResNet152Layers method),

559
to_intel64() (chainer.links.ResNet50Layers method), 546
to_intel64() (chainer.links.Scale method), 418
to_intel64() (chainer.links.SimplifiedDropconnect

method), 493
to_intel64() (chainer.links.StatefulGRU method), 425
to_intel64() (chainer.links.StatefulMGU method), 435
to_intel64() (chainer.links.StatefulPeepholeLSTM

method), 446
to_intel64() (chainer.links.StatefulZoneoutLSTM

method), 451
to_intel64() (chainer.links.StatelessGRU method), 430
to_intel64() (chainer.links.StatelessLSTM method), 457
to_intel64() (chainer.links.StatelessMGU method), 440
to_intel64() (chainer.links.Swish method), 503
to_intel64() (chainer.links.TheanoFunction method), 564
to_intel64() (chainer.links.VGG16Layers method), 526
to_intel64() (chainer.Parameter method), 112
to_intel64() (chainer.Sequential method), 594
to_intel64() (chainer.Variable method), 104
total_acquired_bytes() (chainer.function_hooks.CupyMemoryProfileHook

method), 253
total_time() (chainer.function_hooks.TimerHook

method), 257
total_used_bytes() (chainer.function_hooks.CupyMemoryProfileHook

method), 253
Trainer (class in chainer.training), 634
TransformDataset (class in chainer.datasets), 683
transpose() (chainer.Parameter method), 112
transpose() (chainer.Variable method), 105
transpose() (in module chainer.functions), 156
transpose_sequence() (in module chainer.functions), 157
tree_lstm() (in module chainer.functions), 131
trigger (chainer.training.Extension attribute), 645
trigger (chainer.training.extensions.Evaluator attribute),

648
trigger (chainer.training.extensions.ExponentialShift at-

tribute), 654
trigger (chainer.training.extensions.FailOnNonNumber

attribute), 650
trigger (chainer.training.extensions.LinearShift attribute),

656

trigger (chainer.training.extensions.LogReport attribute),
660

trigger (chainer.training.extensions.MicroAverage at-
tribute), 649

trigger (chainer.training.extensions.ParameterStatistics
attribute), 653

trigger (chainer.training.extensions.PlotReport attribute),
662

trigger (chainer.training.extensions.PrintReport attribute),
657

trigger (chainer.training.extensions.ProgressBar at-
tribute), 658

trigger (chainer.training.extensions.VariableStatisticsPlot
attribute), 664

triplet() (in module chainer.functions), 201
TupleDataset (class in chainer.datasets), 678
TypeInfo (class in chainer.utils.type_check), 729
TypeInfoTuple (class in chainer.utils.type_check), 729

U
unary_math_function_unittest() (in module

chainer.testing), 733
unchain() (chainer.Function method), 235
unchain() (chainer.FunctionAdapter method), 240
unchain() (chainer.FunctionNode method), 245
unchain() (chainer.Parameter method), 112
unchain() (chainer.Variable method), 105
unchain() (chainer.variable.VariableNode method), 118
unchain_backward() (chainer.Parameter method), 112
unchain_backward() (chainer.Variable method), 105
Uniform (class in chainer.initializers), 632
unpooling_2d() (in module chainer.functions), 228
unpooling_nd() (in module chainer.functions), 229
update() (chainer.GradientMethod method), 621
update() (chainer.Optimizer method), 617
update() (chainer.optimizers.AdaDelta method), 596
update() (chainer.optimizers.AdaGrad method), 599
update() (chainer.optimizers.Adam method), 601
update() (chainer.optimizers.MomentumSGD method),

603
update() (chainer.optimizers.NesterovAG method), 606
update() (chainer.optimizers.RMSprop method), 608
update() (chainer.optimizers.RMSpropGraves method),

610
update() (chainer.optimizers.SGD method), 612
update() (chainer.optimizers.SMORMS3 method), 614
update() (chainer.Parameter method), 113
update() (chainer.training.Updater method), 638
update() (chainer.training.updaters.MultiprocessParallelUpdater

method), 643
update() (chainer.training.updaters.ParallelUpdater

method), 641
update() (chainer.training.updaters.StandardUpdater

method), 639

816 Index

Chainer Documentation, Release 4.0.0

update() (chainer.UpdateRule method), 618
update_core() (chainer.training.updaters.MultiprocessParallelUpdater

method), 643
update_core() (chainer.training.updaters.ParallelUpdater

method), 641
update_core() (chainer.training.updaters.StandardUpdater

method), 639
update_core() (chainer.UpdateRule method), 619
update_core_cpu() (chainer.UpdateRule method), 619
update_core_gpu() (chainer.UpdateRule method), 619
update_enabled (chainer.Chain attribute), 582
update_enabled (chainer.ChainList attribute), 587
update_enabled (chainer.Link attribute), 576
update_enabled (chainer.links.BatchNormalization

attribute), 463
update_enabled (chainer.links.BatchRenormalization at-

tribute), 468
update_enabled (chainer.links.Bias attribute), 263
update_enabled (chainer.links.Bilinear attribute), 268
update_enabled (chainer.links.BinaryHierarchicalSoftmax

attribute), 478
update_enabled (chainer.links.BlackOut attribute), 483
update_enabled (chainer.links.caffe.CaffeFunction

attribute), 571
update_enabled (chainer.links.ChildSumTreeLSTM at-

tribute), 273
update_enabled (chainer.links.Classifier attribute), 519
update_enabled (chainer.links.Convolution2D attribute),

279
update_enabled (chainer.links.ConvolutionND attribute),

285
update_enabled (chainer.links.CRF1d attribute), 488
update_enabled (chainer.links.Deconvolution2D at-

tribute), 291
update_enabled (chainer.links.DeconvolutionND at-

tribute), 296
update_enabled (chainer.links.DepthwiseConvolution2D

attribute), 301
update_enabled (chainer.links.DilatedConvolution2D at-

tribute), 307
update_enabled (chainer.links.EmbedID attribute), 312
update_enabled (chainer.links.GoogLeNet attribute), 533
update_enabled (chainer.links.GRU attribute), 317
update_enabled (chainer.links.Highway attribute), 323
update_enabled (chainer.links.Inception attribute), 328
update_enabled (chainer.links.InceptionBN attribute),

333
update_enabled (chainer.links.LayerNormalization

attribute), 473
update_enabled (chainer.links.Linear attribute), 339
update_enabled (chainer.links.LocalConvolution2D at-

tribute), 344
update_enabled (chainer.links.LSTM attribute), 350
update_enabled (chainer.links.Maxout attribute), 508

update_enabled (chainer.links.MLPConvolution2D at-
tribute), 356

update_enabled (chainer.links.model.vision.resnet.ResNetLayers
attribute), 540

update_enabled (chainer.links.NaryTreeLSTM attribute),
361

update_enabled (chainer.links.NegativeSampling at-
tribute), 513

update_enabled (chainer.links.NStepBiGRU attribute),
367

update_enabled (chainer.links.NStepBiLSTM attribute),
373

update_enabled (chainer.links.NStepBiRNNReLU
attribute), 379

update_enabled (chainer.links.NStepBiRNNTanh at-
tribute), 385

update_enabled (chainer.links.NStepGRU attribute), 391
update_enabled (chainer.links.NStepLSTM attribute),

397
update_enabled (chainer.links.NStepRNNReLU at-

tribute), 403
update_enabled (chainer.links.NStepRNNTanh attribute),

409
update_enabled (chainer.links.Parameter attribute), 413
update_enabled (chainer.links.PReLU attribute), 498
update_enabled (chainer.links.ResNet101Layers at-

tribute), 553
update_enabled (chainer.links.ResNet152Layers at-

tribute), 559
update_enabled (chainer.links.ResNet50Layers attribute),

546
update_enabled (chainer.links.Scale attribute), 419
update_enabled (chainer.links.SimplifiedDropconnect at-

tribute), 493
update_enabled (chainer.links.StatefulGRU attribute),

425
update_enabled (chainer.links.StatefulMGU attribute),

436
update_enabled (chainer.links.StatefulPeepholeLSTM at-

tribute), 446
update_enabled (chainer.links.StatefulZoneoutLSTM at-

tribute), 451
update_enabled (chainer.links.StatelessGRU attribute),

431
update_enabled (chainer.links.StatelessLSTM attribute),

457
update_enabled (chainer.links.StatelessMGU attribute),

440
update_enabled (chainer.links.Swish attribute), 503
update_enabled (chainer.links.TheanoFunction attribute),

565
update_enabled (chainer.links.VGG16Layers attribute),

526
update_enabled (chainer.Sequential attribute), 594

Index 817

Chainer Documentation, Release 4.0.0

Updater (class in chainer.training), 637
UpdateRule (class in chainer), 617
upsampling_2d() (in module chainer.functions), 230
use_bi_direction (chainer.links.NStepBiGRU attribute),

367
use_bi_direction (chainer.links.NStepBiLSTM attribute),

373
use_bi_direction (chainer.links.NStepBiRNNReLU at-

tribute), 379
use_bi_direction (chainer.links.NStepBiRNNTanh

attribute), 385
use_bi_direction (chainer.links.NStepGRU attribute), 391
use_bi_direction (chainer.links.NStepLSTM attribute),

397
use_bi_direction (chainer.links.NStepRNNReLU at-

tribute), 403
use_bi_direction (chainer.links.NStepRNNTanh at-

tribute), 409
use_cleargrads() (chainer.GradientMethod method), 622
use_cleargrads() (chainer.optimizers.AdaDelta method),

597
use_cleargrads() (chainer.optimizers.AdaGrad method),

599
use_cleargrads() (chainer.optimizers.Adam method), 601
use_cleargrads() (chainer.optimizers.MomentumSGD

method), 604
use_cleargrads() (chainer.optimizers.NesterovAG

method), 606
use_cleargrads() (chainer.optimizers.RMSprop method),

608
use_cleargrads() (chainer.optimizers.RMSpropGraves

method), 610
use_cleargrads() (chainer.optimizers.SGD method), 612
use_cleargrads() (chainer.optimizers.SMORMS3

method), 615
use_fp32_update() (chainer.GradientMethod method),

622
use_fp32_update() (chainer.optimizers.AdaDelta

method), 597
use_fp32_update() (chainer.optimizers.AdaGrad

method), 599
use_fp32_update() (chainer.optimizers.Adam method),

601
use_fp32_update() (chainer.optimizers.MomentumSGD

method), 604
use_fp32_update() (chainer.optimizers.NesterovAG

method), 606
use_fp32_update() (chainer.optimizers.RMSprop

method), 608
use_fp32_update() (chainer.optimizers.RMSpropGraves

method), 610
use_fp32_update() (chainer.optimizers.SGD method),

613
use_fp32_update() (chainer.optimizers.SMORMS3

method), 615
use_fp32_update() (chainer.UpdateRule method), 619
using_config() (in module chainer), 719

V
Variable (class in chainer), 101
VariableNode (class in chainer.variable), 116
VariableStatisticsPlot (class in

chainer.training.extensions), 662
VGG16Layers (class in chainer.links), 520
vstack() (in module chainer.functions), 157

W
WalkerAlias (class in chainer.utils), 710
weight_decay_rate (chainer.optimizers.Adam attribute),

602
WeightDecay (class in chainer.optimizer_hooks), 622
where() (in module chainer.functions), 158
within_init_scope (chainer.Chain attribute), 582
within_init_scope (chainer.ChainList attribute), 587
within_init_scope (chainer.Link attribute), 576
within_init_scope (chainer.links.BatchNormalization at-

tribute), 463
within_init_scope (chainer.links.BatchRenormalization

attribute), 468
within_init_scope (chainer.links.Bias attribute), 263
within_init_scope (chainer.links.Bilinear attribute), 268
within_init_scope (chainer.links.BinaryHierarchicalSoftmax

attribute), 478
within_init_scope (chainer.links.BlackOut attribute), 483
within_init_scope (chainer.links.caffe.CaffeFunction at-

tribute), 571
within_init_scope (chainer.links.ChildSumTreeLSTM at-

tribute), 273
within_init_scope (chainer.links.Classifier attribute), 519
within_init_scope (chainer.links.Convolution2D at-

tribute), 279
within_init_scope (chainer.links.ConvolutionND at-

tribute), 285
within_init_scope (chainer.links.CRF1d attribute), 488
within_init_scope (chainer.links.Deconvolution2D

attribute), 291
within_init_scope (chainer.links.DeconvolutionND at-

tribute), 296
within_init_scope (chainer.links.DepthwiseConvolution2D

attribute), 301
within_init_scope (chainer.links.DilatedConvolution2D

attribute), 307
within_init_scope (chainer.links.EmbedID attribute), 312
within_init_scope (chainer.links.GoogLeNet attribute),

533
within_init_scope (chainer.links.GRU attribute), 317
within_init_scope (chainer.links.Highway attribute), 323
within_init_scope (chainer.links.Inception attribute), 328

818 Index

Chainer Documentation, Release 4.0.0

within_init_scope (chainer.links.InceptionBN attribute),
333

within_init_scope (chainer.links.LayerNormalization at-
tribute), 473

within_init_scope (chainer.links.Linear attribute), 339
within_init_scope (chainer.links.LocalConvolution2D at-

tribute), 344
within_init_scope (chainer.links.LSTM attribute), 350
within_init_scope (chainer.links.Maxout attribute), 508
within_init_scope (chainer.links.MLPConvolution2D at-

tribute), 356
within_init_scope (chainer.links.model.vision.resnet.ResNetLayers

attribute), 540
within_init_scope (chainer.links.NaryTreeLSTM at-

tribute), 361
within_init_scope (chainer.links.NegativeSampling at-

tribute), 513
within_init_scope (chainer.links.NStepBiGRU attribute),

367
within_init_scope (chainer.links.NStepBiLSTM at-

tribute), 373
within_init_scope (chainer.links.NStepBiRNNReLU at-

tribute), 379
within_init_scope (chainer.links.NStepBiRNNTanh at-

tribute), 385
within_init_scope (chainer.links.NStepGRU attribute),

391
within_init_scope (chainer.links.NStepLSTM attribute),

397
within_init_scope (chainer.links.NStepRNNReLU

attribute), 403
within_init_scope (chainer.links.NStepRNNTanh at-

tribute), 409
within_init_scope (chainer.links.Parameter attribute), 413
within_init_scope (chainer.links.PReLU attribute), 498
within_init_scope (chainer.links.ResNet101Layers

attribute), 553
within_init_scope (chainer.links.ResNet152Layers

attribute), 559
within_init_scope (chainer.links.ResNet50Layers at-

tribute), 546
within_init_scope (chainer.links.Scale attribute), 419
within_init_scope (chainer.links.SimplifiedDropconnect

attribute), 493
within_init_scope (chainer.links.StatefulGRU attribute),

425
within_init_scope (chainer.links.StatefulMGU attribute),

436
within_init_scope (chainer.links.StatefulPeepholeLSTM

attribute), 446
within_init_scope (chainer.links.StatefulZoneoutLSTM

attribute), 451
within_init_scope (chainer.links.StatelessGRU attribute),

431

within_init_scope (chainer.links.StatelessLSTM at-
tribute), 457

within_init_scope (chainer.links.StatelessMGU attribute),
440

within_init_scope (chainer.links.Swish attribute), 503
within_init_scope (chainer.links.TheanoFunction at-

tribute), 565
within_init_scope (chainer.links.VGG16Layers attribute),

526
within_init_scope (chainer.Sequential attribute), 594

X
xp (chainer.Chain attribute), 582
xp (chainer.ChainList attribute), 587
xp (chainer.Link attribute), 576
xp (chainer.links.BatchNormalization attribute), 463
xp (chainer.links.BatchRenormalization attribute), 468
xp (chainer.links.Bias attribute), 263
xp (chainer.links.Bilinear attribute), 268
xp (chainer.links.BinaryHierarchicalSoftmax attribute),

478
xp (chainer.links.BlackOut attribute), 483
xp (chainer.links.caffe.CaffeFunction attribute), 571
xp (chainer.links.ChildSumTreeLSTM attribute), 273
xp (chainer.links.Classifier attribute), 519
xp (chainer.links.Convolution2D attribute), 280
xp (chainer.links.ConvolutionND attribute), 285
xp (chainer.links.CRF1d attribute), 488
xp (chainer.links.Deconvolution2D attribute), 291
xp (chainer.links.DeconvolutionND attribute), 296
xp (chainer.links.DepthwiseConvolution2D attribute),

301
xp (chainer.links.DilatedConvolution2D attribute), 307
xp (chainer.links.EmbedID attribute), 312
xp (chainer.links.GoogLeNet attribute), 533
xp (chainer.links.GRU attribute), 317
xp (chainer.links.Highway attribute), 323
xp (chainer.links.Inception attribute), 328
xp (chainer.links.InceptionBN attribute), 333
xp (chainer.links.LayerNormalization attribute), 473
xp (chainer.links.Linear attribute), 339
xp (chainer.links.LocalConvolution2D attribute), 344
xp (chainer.links.LSTM attribute), 350
xp (chainer.links.Maxout attribute), 508
xp (chainer.links.MLPConvolution2D attribute), 356
xp (chainer.links.model.vision.resnet.ResNetLayers at-

tribute), 540
xp (chainer.links.NaryTreeLSTM attribute), 361
xp (chainer.links.NegativeSampling attribute), 513
xp (chainer.links.NStepBiGRU attribute), 367
xp (chainer.links.NStepBiLSTM attribute), 373
xp (chainer.links.NStepBiRNNReLU attribute), 379
xp (chainer.links.NStepBiRNNTanh attribute), 385
xp (chainer.links.NStepGRU attribute), 391

Index 819

Chainer Documentation, Release 4.0.0

xp (chainer.links.NStepLSTM attribute), 397
xp (chainer.links.NStepRNNReLU attribute), 403
xp (chainer.links.NStepRNNTanh attribute), 409
xp (chainer.links.Parameter attribute), 413
xp (chainer.links.PReLU attribute), 498
xp (chainer.links.ResNet101Layers attribute), 553
xp (chainer.links.ResNet152Layers attribute), 559
xp (chainer.links.ResNet50Layers attribute), 546
xp (chainer.links.Scale attribute), 419
xp (chainer.links.SimplifiedDropconnect attribute), 493
xp (chainer.links.StatefulGRU attribute), 425
xp (chainer.links.StatefulMGU attribute), 436
xp (chainer.links.StatefulPeepholeLSTM attribute), 446
xp (chainer.links.StatefulZoneoutLSTM attribute), 451
xp (chainer.links.StatelessGRU attribute), 431
xp (chainer.links.StatelessLSTM attribute), 457
xp (chainer.links.StatelessMGU attribute), 440
xp (chainer.links.Swish attribute), 503
xp (chainer.links.TheanoFunction attribute), 565
xp (chainer.links.VGG16Layers attribute), 526
xp (chainer.Parameter attribute), 116
xp (chainer.Sequential attribute), 595
xp (chainer.Variable attribute), 108

Z
Zero (class in chainer.initializers), 628
zero_grads() (chainer.links.Bilinear method), 268
zerograd() (chainer.Parameter method), 113
zerograd() (chainer.Variable method), 105
zerograds() (chainer.Chain method), 582
zerograds() (chainer.ChainList method), 587
zerograds() (chainer.Link method), 576
zerograds() (chainer.links.BatchNormalization method),

463
zerograds() (chainer.links.BatchRenormalization

method), 468
zerograds() (chainer.links.Bias method), 263
zerograds() (chainer.links.Bilinear method), 268
zerograds() (chainer.links.BinaryHierarchicalSoftmax

method), 478
zerograds() (chainer.links.BlackOut method), 483
zerograds() (chainer.links.caffe.CaffeFunction method),

570
zerograds() (chainer.links.ChildSumTreeLSTM method),

273
zerograds() (chainer.links.Classifier method), 519
zerograds() (chainer.links.Convolution2D method), 279
zerograds() (chainer.links.ConvolutionND method), 284
zerograds() (chainer.links.CRF1d method), 487
zerograds() (chainer.links.Deconvolution2D method),

291
zerograds() (chainer.links.DeconvolutionND method),

296

zerograds() (chainer.links.DepthwiseConvolution2D
method), 301

zerograds() (chainer.links.DilatedConvolution2D
method), 307

zerograds() (chainer.links.EmbedID method), 312
zerograds() (chainer.links.GoogLeNet method), 532
zerograds() (chainer.links.GRU method), 317
zerograds() (chainer.links.Highway method), 322
zerograds() (chainer.links.Inception method), 328
zerograds() (chainer.links.InceptionBN method), 333
zerograds() (chainer.links.LayerNormalization method),

473
zerograds() (chainer.links.Linear method), 339
zerograds() (chainer.links.LocalConvolution2D method),

344
zerograds() (chainer.links.LSTM method), 350
zerograds() (chainer.links.Maxout method), 508
zerograds() (chainer.links.MLPConvolution2D method),

355
zerograds() (chainer.links.model.vision.resnet.ResNetLayers

method), 540
zerograds() (chainer.links.NaryTreeLSTM method), 361
zerograds() (chainer.links.NegativeSampling method),

513
zerograds() (chainer.links.NStepBiGRU method), 367
zerograds() (chainer.links.NStepBiLSTM method), 373
zerograds() (chainer.links.NStepBiRNNReLU method),

378
zerograds() (chainer.links.NStepBiRNNTanh method),

384
zerograds() (chainer.links.NStepGRU method), 390
zerograds() (chainer.links.NStepLSTM method), 397
zerograds() (chainer.links.NStepRNNReLU method), 402
zerograds() (chainer.links.NStepRNNTanh method), 408
zerograds() (chainer.links.Parameter method), 413
zerograds() (chainer.links.PReLU method), 497
zerograds() (chainer.links.ResNet101Layers method),

552
zerograds() (chainer.links.ResNet152Layers method),

559
zerograds() (chainer.links.ResNet50Layers method), 546
zerograds() (chainer.links.Scale method), 418
zerograds() (chainer.links.SimplifiedDropconnect

method), 493
zerograds() (chainer.links.StatefulGRU method), 425
zerograds() (chainer.links.StatefulMGU method), 435
zerograds() (chainer.links.StatefulPeepholeLSTM

method), 446
zerograds() (chainer.links.StatefulZoneoutLSTM

method), 451
zerograds() (chainer.links.StatelessGRU method), 430
zerograds() (chainer.links.StatelessLSTM method), 457
zerograds() (chainer.links.StatelessMGU method), 440
zerograds() (chainer.links.Swish method), 503

820 Index

Chainer Documentation, Release 4.0.0

zerograds() (chainer.links.TheanoFunction method), 564
zerograds() (chainer.links.VGG16Layers method), 526
zerograds() (chainer.Sequential method), 594
zoneout() (in module chainer.functions), 221

Index 821

	Installation
	Recommended Environments
	Dependencies
	Install Chainer
	Uninstall Chainer
	Upgrade Chainer
	Reinstall Chainer
	Run Chainer with Docker
	Install Issues

	Guides
	Define-by-Run
	Variables and Derivatives
	Links
	Define your own function
	Creating Models
	Optimizer
	Trainer
	Trainer Extensions
	Using GPU(s) in Chainer
	Type Checks
	Serializers – saving and loading

	Neural Net Examples
	MNIST using Trainer
	MNIST with a Manual Training Loop
	Convolutional Network for Visual Recognition Tasks
	Recurrent Nets and their Computational Graph
	RNN Language Models
	Word2Vec: Obtain word embeddings
	Write a Sequance to Seqeunce (seq2seq) Model

	Reference
	Variable and Parameter
	Functions
	Link and Chains
	Optimizers
	Weight Initializers
	Training Tools
	Datasets
	Iterator
	Serializers
	Utilities
	Configuring Chainer
	Debug Mode
	Visualization of Computational Graph
	Caffe Reference Model Support
	Caffe Model Export Support
	Assertion and Testing

	API Compatibility Policy
	Targeted Versions
	Versioning and Backward Compatibility
	Breaking the Compatibility
	Experimental APIs
	Supported Backward Compatibility
	Model Format Compatibility
	Installation Compatibility

	Contribution Guide
	Classification of Contributions
	Development Cycle
	Issues and Pull Requests
	Coding Guidelines
	Unit Testing

	Tips and FAQs
	It takes too long time to compile a computational graph. Can I skip it?
	MNIST example does not converge in CPU mode on Mac OS X
	How do I accelerate my model using iDeep on Intel CPU?
	My training process gets stuck when using MultiprocessIterator

	Upgrade Guide
	Chainer v4
	Chainer v3
	Chainer v2

	Comparison with Other Frameworks
	A table for quick comparison
	Benchmarks

	License
	Indices and tables
	Bibliography
	Python Module Index

