Source code for chainer.functions.activation.prelu

import numpy
import six

from chainer import cuda
from chainer import function
from chainer.utils import type_check


def _fwd_kern():
    return cuda.elementwise(
        'T x, T cond, T W', 'T y',
        'y = cond >= 0 ? x : (T)(x * W)', 'prelu')


class PReLUFunction(function.Function):

    def check_type_forward(self, in_types):
        type_check.expect(in_types.size() == 2)

        x_type, W_type = in_types

        type_check.expect(
            x_type.dtype.kind == 'f',
            W_type.dtype == x_type.dtype,
            x_type.ndim >= W_type.ndim + 1,
            x_type.shape[1:1 + type_check.eval(W_type.ndim)] == W_type.shape
        )

    def forward_cpu(self, inputs):
        x, W = inputs
        y = x.copy()
        masked = numpy.ma.masked_greater_equal(y, 0, copy=False)
        shape = _get_extended_shape(W, y)
        masked *= W.reshape(shape)
        return y,

    def forward_gpu(self, inputs):
        x, W = inputs
        shape = _get_extended_shape(W, x)
        y = _fwd_kern()(x, x, W.reshape(shape))
        return y,

    def backward_cpu(self, inputs, grad_outputs):
        x, W = inputs
        gy = grad_outputs[0]
        mask = x >= 0
        axes = (0,) + tuple(six.moves.range(1 + W.ndim, gy.ndim))
        gW = numpy.where(mask, 0, x * gy).sum(axis=axes)
        if numpy.isscalar(gW):
            gW = numpy.array(gW)

        gx = gy.copy()
        masked = numpy.ma.array(gx, mask=mask)
        shape = _get_extended_shape(W, gx)
        masked *= W.reshape(shape)

        return gx, gW

    def backward_gpu(self, inputs, grad_outputs):
        x, W = inputs
        gy = grad_outputs[0]
        masked = cuda.elementwise(
            'T x, T gy', 'T masked',
            'masked = x >= 0 ? (T)0 : (T)(x * gy)',
            'prelu_masked')(x, gy)
        axes = (0,) + tuple(six.moves.range(1 + W.ndim, gy.ndim))
        gW = masked.sum(axis=axes)

        gx = masked  # reuse buffer
        shape = _get_extended_shape(W, gx)
        _fwd_kern()(gy, x, W.reshape(shape), gx)
        return gx, gW


[docs]def prelu(x, W): """Parametric ReLU function. It accepts two arguments: an input ``x`` and a weight array ``W`` and computes the output as :math:`PReLU(x) = \\max(x, W*x)`, where :math:`*` is an elementwise multiplication for each sample in the batch. When the PReLU function is combined with two-dimensional convolution, the elements of parameter :math:`a` are typically shared across the same filter of different pixels. In order to support such usage, this function supports the shape of parameter array that indicates leading dimensions of input arrays except the batch dimension. For example :math:`W` has the shape of :math:`(2, 3, 4)`, :math:`x` must have the shape of :math:`(B, 2, 3, 4, S1, ..., SN)` where B is batch size and the number of trailing S's is arbitrary non-negative integer. Args: x (~chainer.Variable): Input variable. Its first argument is assumed to be the minibatch dimension. W (~chainer.Variable): Weight variable. Returns: ~chainer.Variable: Output variable .. seealso:: :class:`~chainer.links.PReLU` """ return PReLUFunction()(x, W)
def _get_extended_shape(W, x): return (1,) + W.shape + (1,) * (x.ndim - W.ndim - 1)