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Install Guide


Before installing Chainer

We recommend these platforms.


	Ubuntu [http://www.ubuntu.com/] 14.04 LTS 64bit

	CentOS [https://www.centos.org/] 7 64bit



Chainer is supported on Python 2.7.6+, 3.4.3+, 3.5.1+, 3.6.0+.
Chainer uses C++ compiler such as g++.
You need to install it before installing Chainer.
This is typical installation method for each platform:

# Ubuntu 14.04
$ apt-get install g++

# CentOS 7
$ yum install gcc-c++





If you use old setuptools, upgrade it:

$ pip install -U setuptools








Install Chainer

Chainer depends on these Python packages:


	NumPy [http://www.numpy.org/] 1.9, 1.10, 1.11, 1.12

	Six [https://pythonhosted.org/six/] 1.9



CUDA support


	CUDA [https://developer.nvidia.com/cuda-zone] 6.5, 7.0, 7.5, 8.0

	filelock [https://filelock.readthedocs.org]



cuDNN support


	cuDNN [https://developer.nvidia.com/cudnn] v2, v3, v4, v5, v5.1, v6



Caffe model support


	Protocol Buffers [https://developers.google.com/protocol-buffers/]

	protobuf>=3.0.0 is required for Py3



All these libraries are automatically installed with pip or setup.py.

Image dataset is optional


	Pillow [https://pillow.readthedocs.io/]



HDF5 serialization is optional


	h5py [http://www.h5py.org/] 2.5.0




Install Chainer via pip

We recommend to install Chainer via pip:

$ pip install chainer








Install Chainer from source

You can use setup.py to install Chainer from source:

$ tar zxf chainer-x.x.x.tar.gz
$ cd chainer-x.x.x
$ python setup.py install








When an error occurs...

Use -vvvv option with pip command.
That shows all logs of installation. It may helps you:

$ pip install chainer -vvvv








Install Chainer with CUDA

You need to install CUDA Toolkit before installing Chainer.
If you have CUDA in a default directory or set CUDA_PATH correctly, Chainer installer finds CUDA automatically:

$ pip install chainer






Note

Chainer installer looks up CUDA_PATH environment variable first.
If it is empty, the installer looks for nvcc command from PATH environment variable and use its parent directory as the root directory of CUDA installation.
If nvcc command is also not found, the installer tries to use the default directory for Ubuntu /usr/local/cuda.



If you installed CUDA into a non-default directory, you need to specify the directory with CUDA_PATH environment variable:

$ CUDA_PATH=/opt/nvidia/cuda pip install chainer






Warning

If you want to use sudo to install Chainer, note that sudo command initializes all environment variables.
Please specify CUDA_PATH environment variable inside sudo like this:

$ sudo CUDA_PATH=/opt/nvidia/cuda pip install chainer










Install Chainer with CUDA and cuDNN

cuDNN is a library for Deep Neural Networks that NVIDIA provides.
Chainer can use cuDNN.
If you want to enable cuDNN, install cuDNN and CUDA before installing Chainer.
We recommend you to install developer library of deb package of cuDNN.

If you want to install tar-gz version, we recommend you to install it to CUDA directory.
For example if you uses Ubuntu Linux, copy .h files to include directory and .so files to lib64 directory:

$ cp /path/to/cudnn.h $CUDA_PATH/include
$ cp /path/to/libcudnn.so* $CUDA_PATH/lib64





The destination directories depend on your environment.

If you want to use cuDNN installed in other directory, please use CFLAGS, LDFLAGS and LD_LIBRARY_PATH environment variables before installing Chainer:

export CFLAGS=-I/path/to/cudnn/include
export LDFLAGS=-L/path/to/cudnn/lib
export LD_LIBRARY_PATH=/path/to/cudnn/lib:$LD_LIBRARY_PATH








Install Chainer for developers

Chainer uses Cython (>=0.24).
Developers need to use Cython to regenerate C++ sources from pyx files.
We recommend to use pip with -e option for editable mode:

$ pip install -U cython
$ cd /path/to/chainer/source
$ pip install -e .





Users need not to install Cython as a distribution package of Chainer only contains generated sources.




Support image dataset

Install Pillow manually to activate image dataset.
This feature is optional:

$ pip install pillow








Support HDF5 serialization

Install h5py manually to activate HDF5 serialization.
This feature is optional:

$ pip install h5py





Before installing h5py, you need to install libhdf5.
It depends on your environment:

# Ubuntu 14.04
$ apt-get install libhdf5-dev

# CentOS 7
$ yum -y install epel-release
$ yum install hdf5-devel










Uninstall Chainer

Use pip to uninstall Chainer:

$ pip uninstall chainer






Note

When you upgrade Chainer, pip sometimes installed various version of Chainer in site-packages.
Please uninstall it repeatedly until pip returns an error.






Upgrade Chainer

Just use pip with -U option:

$ pip install -U chainer








Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it.
We recommend to use --no-cache-dir option as pip sometimes uses cache:

$ pip uninstall chainer
$ pip install chainer --no-cache-dir





When you install Chainer without CUDA, and after that you want to use CUDA, please reinstall Chainer.
You need to reinstall Chainer when you want to upgrade CUDA.




Run Chainer with Docker

We provide the official Docker image.
Use nvidia-docker [https://github.com/NVIDIA/nvidia-docker] command to run Chainer image with GPU.
You can login to the environment with bash, and run the Python interpreter:

$ nvidia-docker run -it chainer/chainer /bin/bash





Or, run the interpreter directly:

$ nvidia-docker run -it chainer/chainer /usr/bin/python








What “recommend” means?

We tests Chainer automatically with Jenkins.
All supported environments are tested in this environment.
We cannot guarantee that Chainer works on other environments.




FAQ


The installer says “hdf5.h is not found”

You don’t have libhdf5.
Please install hdf5.
See Before installing Chainer.




MemoryError happens

You maybe failed to install Cython.
Please install it manually.
See When an error occurs....




Examples says “cuDNN is not enabled”

You failed to build Chainer with cuDNN.
If you don’t need cuDNN, ignore this message.
Otherwise, retry to install Chainer with cuDNN.
-vvvv option helps you.
See Install Chainer with CUDA and cuDNN.









          

      

      

    

  

    
      
          
            
  
Chainer Tutorial



	Introduction to Chainer
	Core Concept

	Forward/Backward Computation

	Links

	Write a model as a chain

	Optimizer

	Trainer

	Serializer

	Example: Multi-layer Perceptron on MNIST





	How to Write a New Network
	Convolutional Network for Visual Recognition Tasks

	Recurrent Nets and their Computational Graph





	Using GPU(s) in Chainer
	Relationship between Chainer and CuPy

	Basics of cupy.ndarray

	Run Neural Networks on a Single GPU

	Model-parallel Computation on Multiple GPUs

	Data-parallel Computation on Multiple GPUs with Trainer

	Data-parallel Computation on Multiple GPUs without Trainer





	Define your own function
	Differentiable Functions

	Unified forward/backward methods with NumPy/CuPy functions

	Write an Elementwise Kernel Function

	Links that wrap functions

	Testing Function





	Type check
	Basic usage of type check

	Detail of type information

	Internal mechanism of type check

	More powerful methods

	Call functions

	More complicated cases

	Typical type check example













          

      

      

    

  

    
      
          
            
  
Introduction to Chainer

This is the first section of the Chainer Tutorial.
In this section, you will learn about the following things:


	Pros and cons of existing frameworks and why we are developing Chainer

	Simple example of forward and backward computation

	Usage of links and their gradient computation

	Construction of chains (a.k.a. “model” in most frameworks)

	Parameter optimization

	Serialization of links and optimizers



After reading this section, you will be able to:


	Compute gradients of some arithmetics

	Write a multi-layer perceptron with Chainer




Core Concept

As mentioned on the front page, Chainer is a flexible framework for neural networks.
One major goal is flexibility, so it must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme.
That is, first a network is defined and fixed, and then the user periodically feeds it with mini-batches.
Since the network is statically defined before any forward/backward computation, all the logic must be embedded into the network architecture as data.
Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach.
Note that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based frameworks, and TensorFlow).

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined on-the-fly via the actual forward computation.
More precisely, Chainer stores the history of computation instead of programming logic.
This strategy enables us to fully leverage the power of programming logic in Python.
For example, Chainer does not need any magic to introduce conditionals and loops into the network definitions.
The Define-by-Run scheme is the core concept of Chainer.
We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.


Note

In the example code of this tutorial, we assume for simplicity that the following symbols are already imported:

import numpy as np
import chainer
from chainer import cuda, Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions





These imports appear widely in Chainer code and examples. For simplicity, we omit these imports in this tutorial.






Forward/Backward Computation

As described above, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network.
In order to start forward computation, we have to set the input array to a Variable object.
Here we start with a simple ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)





A Variable object has basic arithmetic operators.
In order to compute \(y = x^2 - 2x + 1\), just write:

>>> y = x**2 - 2 * x + 1





The resulting y is also a Variable object, whose value can be extracted by accessing the data attribute:

>>> y.data
array([ 16.], dtype=float32)





What y holds is not only the result value.
It also holds the history of computation (or computational graph), which enables us to compute its differentiation.
This is done by calling its backward() method:

>>> y.backward()





This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation).
Then, the gradient is computed and stored in the grad attribute of the input variable x:

>>> x.grad
array([ 8.], dtype=float32)





Also we can compute gradients of intermediate variables.
Note that Chainer, by default, releases the gradient arrays of intermediate variables for memory efficiency.
In order to preserve gradient information, pass the retain_grad argument to the backward method:

>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward(retain_grad=True)
>>> z.grad
array([-1.], dtype=float32)





All these computations are easily generalized to a multi-element array input.
Note that if we want to start backward computation from a variable holding a multi-element array, we must set the initial error manually.
This is done simply by setting the grad attribute of the output variable:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([[  0.,   2.,   4.],
       [  6.,   8.,  10.]], dtype=float32)






Note

Many functions taking Variable object(s) are defined in the functions module.
You can combine them to realize complicated functions with automatic backward computation.






Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters.
You can use links to do this.
A link is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their parameters.
We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the Linear link (a.k.a. fully-connected layer or affine transformation).
It represents a mathematical function \(f(x) = Wx + b\), where the matrix \(W\) and the vector \(b\) are parameters.
This link corresponds to its pure counterpart linear(), which accepts \(x, W, b\) as arguments.
A linear link from three-dimensional space to two-dimensional space is defined by the following line:

>>> f = L.Linear(3, 2)






Note

Most functions and links only accept mini-batch input, where the first dimension of the input array is considered as the batch dimension.
In the above Linear link case, input must have shape of (N, 3), where N is the mini-batch size.



The parameters of a link are stored as attributes.
Each parameter is an instance of Variable.
In the case of the Linear link, two parameters, W and b, are stored.
By default, the matrix W is initialized randomly, while the vector b is initialized with zeros.

>>> f.W.data
array([[ 1.01847613,  0.23103087,  0.56507462],
       [ 1.29378033,  1.07823515, -0.56423163]], dtype=float32)
>>> f.b.data
array([ 0.,  0.], dtype=float32)





An instance of the Linear link acts like a usual function:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.data
array([[ 3.1757617 ,  1.75755572],
       [ 8.61950684,  7.18090773]], dtype=float32)





Gradients of parameters are computed by the backward() method.
Note that gradients are accumulated by the method rather than overwritten.
So first you must clear gradients to renew the computation.
It can be done by calling the cleargrads() method.

>>> f.cleargrads()






Note

cleargrads() is introduced in v1.15 to replace zerograds() for efficiency.
zerograds() is left only for backward compatibility.



Now we can compute the gradients of parameters by simply calling the backward method.

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[ 5.,  7.,  9.],
       [ 5.,  7.,  9.]], dtype=float32)
>>> f.b.grad
array([ 2.,  2.], dtype=float32)








Write a model as a chain

Most neural network architectures contain multiple links.
For example, a multi-layer perceptron consists of multiple linear layers.
We can write complex procedures with parameters by combining multiple links like this:

>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)
>>> def my_forward(x):
...     h = l1(x)
...     return l2(h)





Here the L indicates the links module.
A procedure with parameters defined in this way is hard to reuse.
More Pythonic way is combining the links and procedures into a class:

>>> class MyProc(object):
...     def __init__(self):
...         self.l1 = L.Linear(4, 3)
...         self.l2 = L.Linear(3, 2)
...
...     def forward(self, x):
...         h = self.l1(x)
...         return self.l2(h)





In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible save/load features, etc.
These features are all supported by the Chain class in Chainer.
Then, what we have to do here is just define the above class as a subclass of Chain:

>>> class MyChain(Chain):
...     def __init__(self):
...         super(MyChain, self).__init__(
...             l1=L.Linear(4, 3),
...             l2=L.Linear(3, 2),
...         )
...
...     def __call__(self, x):
...         h = self.l1(x)
...         return self.l2(h)






Note

We often define a single forward method of a link by __call__ operator.
Such links and chains are callable and behave like regular functions of Variables.



It shows how a complex chain is constructed by simpler links.
Links like l1 and l2 are called child links of MyChain.
Note that Chain itself inherits Link.
It means we can define more complex chains that hold MyChain objects as their child links.

Another way to define a chain is using the ChainList class, which behaves like a list of links:

>>> class MyChain2(ChainList):
...     def __init__(self):
...         super(MyChain2, self).__init__(
...             L.Linear(4, 3),
...             L.Linear(3, 2),
...         )
...
...     def __call__(self, x):
...         h = self[0](x)
...         return self[1](h)





ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above case, the Chain class is recommended as a base class.




Optimizer

In order to get good values for parameters, we have to optimize them by the Optimizer class.
It runs a numerical optimization algorithm on a given link.
Many algorithms are implemented in the optimizers module.
Here we use the simplest one, called Stochastic Gradient Descent (SGD):

>>> model = MyChain()
>>> optimizer = optimizers.SGD()
>>> optimizer.use_cleargrads()
>>> optimizer.setup(model)





The method use_cleargrads() is for efficiency. See use_cleargrads() for detail.

The method setup() prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook functions to the optimizer.
Hook functions are called after the gradient computation and right before the actual update of parameters.
For example, we can set weight decay regularization by running the next line beforehand:

>>> optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))





Of course, you can write your own hook functions.
It should be a function or a callable object, taking the optimizer as the argument.

There are two ways to use the optimizer.
One is using it via Trainer, which we will see in the following sections.
The other way is using it directly.
We here review the latter case.
If you are interested in getting able to use the optimizer in a simple way, skip this section and go to the next one.

There are two further ways to use the optimizer directly.
One is manually computing gradients and then calling the update() method with no arguments.
Do not forget to clear the gradients beforehand!

>>> x = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> model.cleargrads()
>>> # compute gradient here...
>>> loss = F.sum(model(chainer.Variable(x)))
>>> loss.backward()
>>> optimizer.update()





The other way is just passing a loss function to the update() method.
In this case, cleargrads() is automatically called by the update method, so the user does not have to call it manually.

>>> def lossfun(arg1, arg2):
...     # calculate loss
...     loss = F.sum(model(arg1 - arg2))
...     return loss
>>> arg1 = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))





See Optimizer.update() for the full specification.




Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times.
A typical training loop consists of the following procedures:


	Iterations over training datasets

	Preprocessing of extracted mini-batches

	Forward/backward computations of the neural networks

	Parameter updates

	Evaluations of the current parameters on validation datasets

	Logging and printing of the intermediate results



Chainer provides a simple yet powerful way to make it easy to write such training processes.
The training loop abstraction mainly consists of two components:


	Dataset abstraction.
It implements 1 and 2 in the above list.
The core components are defined in the dataset module.
There are also many implementations of datasets and iterators in datasets and iterators modules, respectively.

	Trainer.
It implements 3, 4, 5, and 6 in the above list.
The whole procedure is implemented by Trainer.
The way to update parameters (3 and 4) is defined by Updater, which can be freely customized.
5 and 6 are implemented by instances of Extension, which appends an extra procedure to the training loop.
Users can freely customize the training procedure by adding extensions. Users can also implement their own extensions.



We will see how to use Trainer in the example section below.




Serializer

Before proceeding to the first example, we introduce Serializer, which is the last core feature described in this page.
Serializer is a simple interface to serialize or deserialize an object.
Link, Optimizer, and Trainer supports serialization.

Concrete serializers are defined in the serializers module.
It supports NumPy NPZ and HDF5 formats.

For example, we can serialize a link object into NPZ file by the serializers.save_npz() function:

>>> serializers.save_npz('my.model', model)





It saves the parameters of model into the file 'my.model' in NPZ format.
The saved model can be read by the serializers.load_npz() function:

>>> serializers.load_npz('my.model', model)






Note

Note that only the parameters and the persistent values are serialized by this serialization code.
Other attributes are not saved automatically.
You can register arrays, scalars, or any serializable objects as persistent values by the Link.add_persistent() method.
The registered values can be accessed by attributes of the name passed to the add_persistent method.



The state of an optimizer can also be saved by the same functions:

>>> serializers.save_npz('my.state', optimizer)
>>> serializers.load_npz('my.state', optimizer)






Note

Note that serialization of optimizer only saves its internal states including number of iterations, momentum vectors of MomentumSGD, etc.
It does not save the parameters and persistent values of the target link.
We have to explicitly save the target link with the optimizer to resume the optimization from saved states.



Support of the HDF5 format is enabled if the h5py package is installed.
Serialization and deserialization with the HDF5 format are almost identical to those with the NPZ format;
just replace save_npz() and load_npz() by save_hdf5() and load_hdf5(), respectively.




Example: Multi-layer Perceptron on MNIST

Now you can solve a multiclass classification task using a multi-layer perceptron (MLP).
We use a hand-written digits dataset called MNIST [http://yann.lecun.com/exdb/mnist/], which is one of the long-standing de facto “hello world” examples used in machine learning.
This MNIST example is also found in the examples/mnist [https://github.com/pfnet/chainer/tree/master/examples/mnist] directory of the official repository.
We show how to use Trainer to construct and run the training loop in this section.

We first have to prepare the MNIST dataset.
The MNIST dataset consists of 70,000 greyscale images of size 28x28 (i.e. 784 pixels) and corresponding digit labels.
The dataset is divided into 60,000 training images and 10,000 test images by default.
We can obtain the vectorized version (i.e., a set of 784 dimensional vectors) by datasets.get_mnist().

>>> train, test = datasets.get_mnist()
...





This code automatically downloads the MNIST dataset and saves the NumPy arrays to the $(HOME)/.chainer directory.
The returned train and test can be seen as lists of image-label pairs (strictly speaking, they are instances of TupleDataset).

We also have to define how to iterate over these datasets.
We want to shuffle the training dataset for every epoch, i.e. at the beginning of every sweep over the dataset.
In this case, we can use iterators.SerialIterator.

>>> train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)





On the other hand, we do not have to shuffle the test dataset.
In this case, we can pass shuffle=False argument to disable the shuffling.
It makes the iteration faster when the underlying dataset supports fast slicing.

>>> test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)





We also pass repeat=False, which means we stop iteration when all examples are visited.
This option is usually required for the test/validation datasets; without this option, the iteration enters an infinite loop.

Next, we define the architecture.
We use a simple three-layer rectifier network with 100 units per layer as an example.

>>> class MLP(Chain):
...     def __init__(self, n_units, n_out):
...         super(MLP, self).__init__(
...             # the size of the inputs to each layer will be inferred
...             l1=L.Linear(None, n_units),  # n_in -> n_units
...             l2=L.Linear(None, n_units),  # n_units -> n_units
...             l3=L.Linear(None, n_out),    # n_units -> n_out
...         )
...
...     def __call__(self, x):
...         h1 = F.relu(self.l1(x))
...         h2 = F.relu(self.l2(h1))
...         y = self.l3(h2)
...         return y





This link uses relu() as an activation function.
Note that the 'l3' link is the final linear layer whose output corresponds to scores for the ten digits.

In order to compute loss values or evaluate the accuracy of the predictions, we define a classifier chain on top of the above MLP chain:

>>> class Classifier(Chain):
...     def __init__(self, predictor):
...         super(Classifier, self).__init__(predictor=predictor)
...
...     def __call__(self, x, t):
...         y = self.predictor(x)
...         loss = F.softmax_cross_entropy(y, t)
...         accuracy = F.accuracy(y, t)
...         report({'loss': loss, 'accuracy': accuracy}, self)
...         return loss





This Classifier class computes accuracy and loss, and returns the loss value.
The pair of arguments x and t corresponds to each example in the datasets (a tuple of an image and a label).
softmax_cross_entropy() computes the loss value given prediction and ground truth labels.
accuracy() computes the prediction accuracy.
We can set an arbitrary predictor link to an instance of the classifier.

The report() function reports the loss and accuracy values to the trainer.
For the detailed mechanism of collecting training statistics, see Reporter.
You can also collect other types of observations like activation statistics in a similar ways.

Note that a class similar to the Classifier above is defined as chainer.links.Classifier.
So instead of using the above example, we will use this predefined Classifier chain.

>>> model = L.Classifier(MLP(100, 10))  # the input size, 784, is inferred
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)





Now we can build a trainer object.

>>> updater = training.StandardUpdater(train_iter, optimizer)
>>> trainer = training.Trainer(updater, (20, 'epoch'), out='result')





The second argument (20, 'epoch') represents the duration of training.
We can use either epoch or iteration as the unit.
In this case, we train the multi-layer perceptron by iterating over the training set 20 times.

In order to invoke the training loop, we just call the run() method.

>>> trainer.run()





This method executes the whole training sequence.

The above code just optimizes the parameters.
In most cases, we want to see how the training proceeds, where we can use extensions inserted before calling the run method.

>>> trainer.extend(extensions.Evaluator(test_iter, model))
>>> trainer.extend(extensions.LogReport())
>>> trainer.extend(extensions.PrintReport(['epoch', 'main/accuracy', 'validation/main/accuracy']))
>>> trainer.extend(extensions.ProgressBar())
>>> trainer.run()  





These extensions perform the following tasks:


	Evaluator

	Evaluates the current model on the test dataset at the end of every epoch.

	LogReport

	Accumulates the reported values and emits them to the log file in the output directory.

	PrintReport

	Prints the selected items in the LogReport.

	ProgressBar

	Shows the progress bar.



There are many extensions implemented in the chainer.training.extensions module.
The most important one that is not included above is snapshot(), which saves the snapshot of the training procedure (i.e., the Trainer object) to a file in the output directory.

The example code [https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist.py] in the examples/mnist directory additionally contains GPU support, though the essential part is the same as the code in this tutorial. We will review in later sections how to use GPU(s).







          

      

      

    

  

    
      
          
            
  
How to Write a New Network



	Convolutional Network for Visual Recognition Tasks
	LeNet5

	VGG16

	ResNet152

	Use Pre-trained Models





	Recurrent Nets and their Computational Graph
	Recurrent Nets

	Truncate the Graph by Unchaining

	Network Evaluation without Storing the Computation History

	Making it with Trainer













          

      

      

    

  

    
      
          
            
  
Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write


	A small convolutional network with a model class that is inherited from Chain,

	A large convolutional network that has several building block networks with ChainList.



After reading this section, you will be able to:


	Write your own original convolutional network in Chainer



A convolutional network (ConvNet) is mainly comprised of convolutional layers.
This type of network is commonly used for various visual recognition tasks,
e.g., classifying hand-written digits or natural images into given object
classes, detectiong objects from an image, and labeling all pixels of an image
with the object classes (semantic segmenation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is
\((N, C, H, W)\), where


	\(N\) denotes the number of images in a mini-batch,

	\(C\) denotes the number of channels of those images,

	\(H\) and \(W\) denote the height and width of those images,



respectively. Then, it typically outputs a fixed-sized vector as membership
probabilities over the target object classes. It also can output a set of
feature maps that have the corresponding size to the input image for a pixel
labeling task, etc.


Note

The below example code assumes that some packages are already imported.
Please see the details here: tutorial/basic.




LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer.
This is a ConvNet model that has 5 layers comprised of 3 convolutional layers
and 2 fully-connected layers. This was proposed to classify hand-written
digit images in 1998. In Chainer, the model can be written as follows:

class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__(
            conv1=L.Convolution2D(
                in_channels=1, out_channels=6, ksize=5, stride=1),
            conv2=L.Convolution2D(
                in_channels=6, out_channels=16, ksize=5, stride=1),
            conv3=L.Convolution2D(
                in_channels=16, out_channels=120, ksize=4, stride=1),
            fc4=L.Linear(None, 84),
            fc5=L.Linear(84, 10),
        )
        self.train = True

    def __call__(self, x):
        h = F.sigmoid(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv2(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv3(h))
        h = F.sigmoid(self.fc4(h))
        if self.train:
            return self.fc5(h)
        return F.softmax(self.fc5(h))





A typical way to write your network is creating a new class inherited from
Chain class. When defining your model in this way, typically,
all the layers which have trainable parameters are registered to the model
by giving the objects of Link to the superclass’s constructer
as keyword arguments (see the above __init__()).

There is also another way to do the same thing. For example,
add_link() of Chain class enables to
register the trainable layers (i.e., Link s) to the model, so
that the above __init__() can also be written as follows:

def __init__(self
    super(LeNet5, self).__init__()
    self.add_link('conv1', L.Convolution2D(1, 6, 5, 1))
    self.add_link('conv2', L.Convolution2D(6, 16, 5, 1))
    self.add_link('conv3', L.Convolution2D(16, 120, 4, 1))
    self.add_link('fc4', L.Linear(None, 84))
    self.add_link('fc5', L.Linear(84, 10))
    self.train = True





(Argments to Convolution2D are given without keywords
here for simplicity.)

The model class is instantiated before the forward and backward computations.
To give input images and label vectors simply by calling the model object
like a function, __call__() is usually defined in the model class.
This method performs the forward computation of the model. Chainer uses
the powerful autograd system for any computational graphs written with
Links calls a corresponding Function inside
of it), so that you don’t need to explicitly write the code for backward
computations in the model. Just prepare the data, then give it to the model.
The way this works is the resulting output Variable from the
forward computation has a backward() method to perform
autograd. In the above model, __call__() has a if statement at the
end to switch its behavior by the model’s running mode, i.e., training mode or
not. When it’s in training mode, this method returns the output value of the
last layer as is to compute the loss later on, otherwise it returns a
prediction result by calculating softmax().

If you don’t want to write conv1 and the other layers more than once, you
can also write the model like in this way:

class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__()
        net = [('conv1', L.Convolution2D(1, 6, 5, 1))]
        net += [('_sigm1', F.Sigmoid())]
        net += [('_mpool1', F.MaxPooling2D(2, 2))]
        net += [('conv2', L.Convolution2D(6, 16, 5, 1))]
        net += [('_sigm2', F.Sigmoid())]
        net += [('_mpool2', F.MaxPooling2D(2, 2))]
        net += [('conv3', L.Convolution2D(16, 120, 4, 1))]
        net += [('_sigm3', F.Sigmoid())]
        net += [('_mpool3', F.MaxPooling2D(2, 2))]
        net += [('fc4', L.Linear(None, 84))]
        net += [('_sigm4', F.Sigmoid())]
        net += [('fc5', L.Linear(84, 10))]
        net += [('_sigm5', F.Sigmoid())]
        for n in net:
            if not n[0].startswith('_'):
                self.add_link(*n)
        self.forward = net
        self.train = True

    def __call__(self, x):
        for n, f in self.forward:
            if not n.startswith('_'):
                x = getattr(self, n)(x)
            else:
                x = f(x)
        if self.train:
            return x
        return F.softmax(x)





This code creates a list of all Link s and
Function s after calling its superclass’s constructor.
Then the elements of the list are registered to this model as
trainable layers when the name of an element doesn’t start with _
character. This operation can be freely replaced with many other ways because
those names are just designed to select Link s only from the
list net easily. Function doesn’t have any trainable
parameters, so that we can’t register it to the model with
add_link(), but we want to use
Function s for constructing a forward path. The list
net is stored as an attribute attr:forward to refer it in
__call__(). In __call__(), it retrieves all layers in the network
from self.forward sequentially regardless of what types of object (
Link or Function) it is, and gives the
input variable or the intermediate output from the previous layer to the
current layer. The last part of the __call__() to switch its behavior
by the training/inference mode is the same as the former way.


Ways to calculate loss

When you train the model with label vector t, the loss should be calculated
using the output from the model. There also are several ways to calculate the
loss:

model = LeNet5()

# Input data and label
x = np.random.rand(32, 1, 28, 28).astype(np.float32)
t = np.random.randint(0, 10, size=(32,)).astype(np.int32)

# Forward computation
y = model(x)

# Loss calculation
loss = F.softmax_cross_entropy(y, t)





This is a primitive way to calculate a loss value from the output of the model.
On the other hand, the loss computation can be included in the model itself by
wrapping the model object (Chain or
ChainList object) with a class inherited from
Chain. The outer Chain should take the
model defined above and register it through the constructor of its superclass
or add_link(). Chain is actually
inherited from Link, so that Chain itself
can also be registedred as a trainable Link to another
Chain. Actually, Classifier class to
wrap the model and add the loss computation to the model already exists.
Actually, there is already a Classifier class that can
be used to wrap the model and include the loss computation as well.
It can be used like this:

model = L.Classifier(LeNet5())

# Foward & Loss calculation
loss = model(x, t)





This class takes a model object as an iput argument and registers it to
a predictor property as a trained parameter. As shown above, the returned
object can then be called like a function in which we pass x and t as
the input arguments and the resulting loss value (which we recall is a
Variable) is returned.

See the detailed implementation of Classifier from
here: chainer.links.Classifier and check the implementation by looking
at the source.

From the above examples, we can see that Chainer provides the flexibility to
write our original network in many different ways. Such flexibility intends to
make it intuitive for users to design new and complex models.






VGG16

Next, let’s write some larger models in Chainer. When you write a large network
consisting of several building block networks, ChainList is
useful. First, let’s see how to write a VGG16 [Simonyan14] model.

class VGG16(chainer.ChainList):
    def __init__(self):
        w = chainer.initializers.HeNormal()
        super(VGG16, self).__init__(
            VGGBlock(64),
            VGGBlock(128),
            VGGBlock(256, 3),
            VGGBlock(512, 3),
            VGGBlock(512, 3, True))
        self.train = True

    def __call__(self, x):
        for f in self.children():
            x = f(x, self.train)
        if self.train:
            return x
        return F.softmax(x)


class VGGBlock(chainer.Chain):
    def __init__(self, n_channels, n_convs=2, fc=False):
        w = chainer.initializers.HeNormal()
        super(VGGBlock, self).__init__(
            conv1=L.Convolution2D(None, n_channels, 3, 1, 1, initialW=w),
            conv2=L.Convolution2D(
                n_channels, n_channels, 3, 1, 1, initialW=w))
        if n_convs == 3:
            self.add_link('conv3', L.Convolution2D(
                n_channels, n_channels, 3, 1, 1, initialW=w))
        if fc:
            self.add_link('fc4', L.Linear(None, 4096, initialW=w))
            self.add_link('fc5', L.Linear(4096, 4096, initialW=w))
            self.add_link('fc6', L.Linear(4096, 1000, initialW=w))

        self.n_convs = n_convs
        self.fc = fc

    def __call__(self, x, train):
        h = F.relu(self.conv1(x))
        h = F.relu(self.conv2(h))
        if self.n_convs == 3:
            h = F.relu(self.conv3(h))
        h = F.max_pooling_2d(h, 2, 2)
        if self.fc:
            h = F.dropout(F.relu(self.fc4(h)), train=train)
            h = F.dropout(F.relu(self.fc5(h)), train=train)
            h = self.fc6(h)
        return h





That’s it. VGG16 is a model which won the 1st place in
classification + localization task at ILSVRC 2014 [http://www.image-net.org/challenges/LSVRC/2014/results#clsloc],
and since then, has become one of the standard models for many different tasks
as a pre-trained model. This has 16-layers, so it’s called “VGG-16”, but we can
write this model without writing all layers independently. Since this model
consists of several building blocks that have the same architecture, we can
build the whole network by re-using the building block definition. Each part
of the network is consisted of 2 or 3 convolutional layers and activation
function (relu()) following them, and
max_pooling_2d() operations. This block is written as
VGGBlock in the above example code. And the whole network just calls
this block one by one in sequential manner.




ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a
much deeper model than VGG16, having up to 152 layers. This sounds super
laborious to build, but it can be implemented in almost same manner as VGG16.
In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNet152(chainer.Chain):
    def __init__(self, n_blocks=[3, 8, 36, 3]):
        w = chainer.initializers.HeNormal()
        super(ResNet152, self).__init__(
            conv1=L.Convolution2D(
                None, 64, 7, 2, 3, initialW=w, nobias=True),
            bn1=L.BatchNormalization(64),
            res2=ResBlock(n_blocks[0], 64, 64, 256, 1),
            res3=ResBlock(n_blocks[1], 256, 128, 512),
            res4=ResBlock(n_blocks[2], 512, 256, 1024),
            res5=ResBlock(n_blocks[3], 1024, 512, 2048),
            fc6=L.Linear(2048, 1000))
        self.train = True

    def __call__(self, x):
        h = self.bn1(self.conv1(x), test=not self.train)
        h = F.max_pooling_2d(F.relu(h), 2, 2)
        h = self.res2(h, self.train)
        h = self.res3(h, self.train)
        h = self.res4(h, self.train)
        h = self.res5(h, self.train)
        h = F.average_pooling_2d(h, h.shape[2:], stride=1)
        h = self.fc6(h)
        if self.train:
            return h
        return F.softmax(h)


class ResBlock(chainer.ChainList):
    def __init__(self, n_layers, n_in, n_mid, n_out, stride=2):
        w = chainer.initializers.HeNormal()
        super(ResBlock, self).__init__()
        self.add_link(BottleNeck(n_in, n_mid, n_out, stride, True))
        for _ in range(n_layers - 1):
            self.add_link(BottleNeck(n_out, n_mid, n_out))

    def __call__(self, x, train):
        for f in self.children():
            x = f(x, train)
        return x


class BottleNeck(chainer.Chain):
    def __init__(self, n_in, n_mid, n_out, stride=1, proj=False):
        w = chainer.initializers.HeNormal()
        super(BottleNeck, self).__init__(
            conv1x1a=L.Convolution2D(
                n_in, n_mid, 1, stride, 0, initialW=w, nobias=True),
            conv3x3b=L.Convolution2D(
                n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True),
            conv1x1c=L.Convolution2D(
                n_mid, n_out, 1, 1, 0, initialW=w, nobias=True),
            bn_a=L.BatchNormalization(n_mid),
            bn_b=L.BatchNormalization(n_mid),
            bn_c=L.BatchNormalization(n_out))
        if proj:
            self.add_link('conv1x1r', L.Convolution2D(
                n_in, n_out, 1, stride, 0, initialW=w, nobias=True))
            self.add_link('bn_r', L.BatchNormalization(n_out))
        self.proj = proj

    def __call__(self, x, train):
        h = F.relu(self.bn_a(self.conv1x1a(x), test=not train))
        h = F.relu(self.bn_b(self.conv3x3b(h), test=not train))
        h = self.bn_c(self.conv1x1c(h), test=not train)
        if self.proj:
            x = self.bn_r(self.conv1x1r(x), test=not train)
        return F.relu(h + x)





In the BottleNeck class, depending on the value of the proj argument
supplied to the initializer, it will conditionally compute a convolutional
layer conv1x1r which will extend the number of channels of the input x
to be equal to the number of channels of the output of conv1x1c, and
followed by a batch normalization layer before the final ReLU layer.
Writing the building block in this way improves the re-usability of a class.
It switches not only the behavior in __class__() by flags but also the
parameter registration. In this case, when proj is False, the
BottleNeck doesn’t have conv1x1r and bn_r layers, so the memory
usage would be efficient compared to the case when it registers both anyway and
just ignore them if proj is False.

Using nested Chain s and ChainList for
sequential part enables us to write complex and very deep models easily.




Use Pre-trained Models

Various ways to write your models were described above. It turns out that
VGG16 and ResNet are very useful as general feature extractors for many kinds
of tasks, including but not limited to image classification. So, Chainer
provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a
simple API. You can use these models as follows:

from chainer.links import VGG16Layers

model = VGG16Layers()





When VGG16Layers is instantiated, the pre-trained
parameters are automatically downloaded from the author’s server. So you can
immediately start to use VGG16 with pre-trained weight as a good image feature
extractor. See the details of this model here:
chainer.links.VGG16Layers.

In the case of ResNet models, there are three variations differing in the number
of layers. We have chainer.links.ResNet50,
chainer.links.ResNet101, and chainer.links.ResNet152 models
with easy parameter loading feature. ResNet’s pre-trained parameters are not
available for direct downloading, so you need to download the weight from the
author’s web page first, and then place it into the dir
$CHAINER_DATSET_ROOT/pfnet/chainer/models or your favorite place. Once
the preparation is finished, the usage is the same as VGG16:

from chainer.links import ResNet152Layers

model = ResNet152layers()





Please see the details of usage and how to prepare the pre-trained weights for
ResNet here: chainer.links.ResNet50
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Recurrent Nets and their Computational Graph

In this section, you will learn how to write


	recurrent nets with full backprop,

	recurrent nets with truncated backprop,

	evaluation of networks with few memory.



After reading this section, you will be able to:


	Handle input sequences of variable length

	Truncate upper stream of the network during forward computation

	Use volatile variables to prevent network construction




Recurrent Nets

Recurrent nets are neural networks with loops.
They are often used to learn from sequential input/output.
Given an input stream \(x_1, x_2, \dots, x_t, \dots\) and the initial state \(h_0\), a recurrent net iteratively updates its state by \(h_t = f(x_t, h_{t-1})\), and at some or every point in time \(t\), it outputs \(y_t = g(h_t)\).
If we expand the procedure along the time axis, it looks like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net.
The task is language modeling: given a finite sequence of words, we want to predict the next word at each position without peeking the successive words.
Suppose there are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain.
We can use the chainer.links.LSTM link that implements a fully-connected stateful LSTM layer.
This link looks like an ordinary fully-connected layer.
On construction, you pass the input and output size to the constructor:

>>> l = L.LSTM(100, 50)





Then, call on this instance l(x) executes one step of LSTM layer:

>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)





Do not forget to reset the internal state of the LSTM layer before the forward computation!
Every recurrent layer holds its internal state (i.e. the output of the previous call).
At the first application of the recurrent layer, you must reset the internal state.
Then, the next input can be directly fed to the LSTM instance:

>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)





Based on this LSTM link, let’s write our recurrent network as a new chain:

class RNN(Chain):
    def __init__(self):
        super(RNN, self).__init__(
            embed=L.EmbedID(1000, 100),  # word embedding
            mid=L.LSTM(100, 50),  # the first LSTM layer
            out=L.Linear(50, 1000),  # the feed-forward output layer
        )

    def reset_state(self):
        self.mid.reset_state()

    def __call__(self, cur_word):
        # Given the current word ID, predict the next word.
        x = self.embed(cur_word)
        h = self.mid(x)
        y = self.out(h)
        return y

rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)





Here EmbedID is a link for word embedding.
It converts input integers into corresponding fixed-dimensional embedding vectors.
The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation.
It does not handle sequences by itself, but we can use it to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_list.
Then, we can compute loss values for the word sequence by simple for loop.

def compute_loss(x_list):
    loss = 0
    for cur_word, next_word in zip(x_list, x_list[1:]):
        loss += model(cur_word, next_word)
    return loss





Of course, the accumulated loss is a Variable object with the full history of computation.
So we can just call its backward() method to compute gradients of the total loss according to the model parameters:

# Suppose we have a list of word variables x_list.
rnn.reset_state()
model.cleargrads()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()





Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state()
optimizer.update(compute_loss, x_list)








Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets.
Suppose the input and state sequence is too long to fit into memory.
In such cases, we often truncate the backpropagation into a short time range.
This technique is called truncated backprop.
It is heuristic, and it makes the gradients biased.
However, this technique works well in practice if the time range is long enough.

How to implement truncated backprop in Chainer?
Chainer has a smart mechanism to achieve truncation, called backward unchaining.
It is implemented in the Variable.unchain_backward() method.
Backward unchaining starts from the Variable object, and it chops the computation history backwards from the variable.
The chopped variables are disposed automatically (if they are not referenced explicitly from any other user object).
As a result, they are no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop.
Here we use the same network as the one used in the previous subsection.
Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps.
We can write truncated backprop using the model defined above:

loss = 0
count = 0
seqlen = len(x_list[1:])

rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):
    loss += model(cur_word, next_word)
    count += 1
    if count % 30 == 0 or count == seqlen:
        model.cleargrads()
        loss.backward()
        loss.unchain_backward()
        optimizer.update()





State is updated at model(), and the losses are accumulated to loss variable.
At each 30 steps, backprop takes place at the accumulated loss.
Then, the unchain_backward() method is called, which deletes the computation history backward from the accumulated loss.
Note that the last state of model is not lost, since the RNN instance holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize this method to different situations.
For example, we can easily extend the above code to use different schedules between backprop timing and truncation length.




Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history.
While unchaining enables us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation history.
This is enabled by just passing volatile flag to all input variables.
Such variables are called volatile variables.

Volatile variable is created by passing volatile='on' at the construction:

x_list = [Variable(..., volatile='on') for _ in range(100)]  # list of 100 words
loss = compute_loss(x_list)





Note that we cannot call loss.backward() to compute the gradient here, since the volatile variable does not remember the computation history.

Volatile variables are also useful to evaluate feed-forward networks to reduce the memory footprint.

Variable’s volatility can be changed directly by setting the Variable.volatile attribute.
This enables us to combine a fixed feature extractor network and a trainable predictor network.
For example, suppose we want to train a feed-forward network predictor_func, which is located on top of another fixed pre-trained network fixed_func.
We want to train predictor_func without storing the computation history for fixed_func.
This is simply done by following code snippets (suppose x_data and y_data indicate input data and label, respectively):

x = Variable(x_data, volatile='on')
feat = fixed_func(x)
feat.volatile = 'off'
y = predictor_func(feat)
y.backward()





At first, the input variable x is volatile, so fixed_func is executed in volatile mode, i.e. without memorizing the computation history.
Then the intermediate variable feat is manually set to non-volatile, so predictor_func is executed in non-volatile mode, i.e., with memorizing the history of computation.
Since the history of computation is only memorized between variables feat and y, the backward computation stops at the feat variable.


Warning

It is not allowed to mix volatile and non-volatile variables as arguments to same function.
If you want to create a variable that behaves like a non-volatile variable while can be mixed with volatile ones, use 'auto' flag instead of 'off' flag.






Making it with Trainer

The above codes are written with plain Function/Variable APIs.
When we write a training loop, it is better to use Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings.
We here use Penn Tree Bank dataset as a set of sentences.
Each sentence is represented as a word sequence.
We concatenate all sentences into one long word sequence, in which each sentence is separated by a special word <eos>, which stands for “End of Sequence”.
This dataset is easily obtained by chainer.datasets.get_ptb_words().
This function returns train, validation, and test dataset, each of which is represented as a long array of integers.
Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence.
We use words in different locations to form mini-batches.
It means we maintain \(B\) indices pointing to different locations in the sequence, read from these indices at each iteration, and increment all indices after the read.
Of course, when one index reaches the end of the whole sequence, we turn the index back to 0.

In order to implement this training procedure, we have to customize the following components of Trainer:


	Iterator.
Built-in iterators do not support reading from different locations and aggregating them into a mini-batch.

	Update function.
The default update function does not support truncated BPTT.



When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface is not fixed.
On the other hand, the iterator must support the Iterator interface.
The important methods and attributes to implement are batch_size, epoch, epoch_detail, is_new_epoch, iteration, __next__, and serialize.
Following is a code from the official example in the examples/ptb directory.

from __future__ import division

class ParallelSequentialIterator(chainer.dataset.Iterator):
    def __init__(self, dataset, batch_size, repeat=True):
        self.dataset = dataset
        self.batch_size = batch_size
        self.epoch = 0
        self.is_new_epoch = False
        self.repeat = repeat
        self.offsets = [i * len(dataset) // batch_size for i in range(batch_size)]
        self.iteration = 0

    def __next__(self):
        length = len(self.dataset)
        if not self.repeat and self.iteration * self.batch_size >= length:
            raise StopIteration
        cur_words = self.get_words()
        self.iteration += 1
        next_words = self.get_words()

        epoch = self.iteration * self.batch_size // length
        self.is_new_epoch = self.epoch < epoch
        if self.is_new_epoch:
            self.epoch = epoch

        return list(zip(cur_words, next_words))

    @property
    def epoch_detail(self):
        return self.iteration * self.batch_size / len(self.dataset)

    def get_words(self):
        return [self.dataset[(offset + self.iteration) % len(self.dataset)]
                for offset in self.offsets]

    def serialize(self, serializer):
        self.iteration = serializer('iteration', self.iteration)
        self.epoch = serializer('epoch', self.epoch)

train_iter = ParallelSequentialIterator(train, 20)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)





Although the code is slightly long, the idea is simple.
First, this iterator creates offsets pointing to positions equally spaced within the whole sequence.
The i-th examples of mini-batches refer the sequence with the i-th offset.
The iterator returns a list of tuples of the current words and the next words.
Each mini-batch is converted to a tuple of integer arrays by the concat_examples function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.

def update_bptt(updater):
    loss = 0
    for i in range(35):
        batch = train_iter.__next__()
        x, t = chainer.dataset.concat_examples(batch)
        loss += model(chainer.Variable(x), chainer.Variable(t))

    model.cleargrads()
    loss.backward()
    loss.unchain_backward()  # truncate
    optimizer.update()

updater = training.StandardUpdater(train_iter, optimizer, update_bptt)





In this case, we update the parameters on every 35 consecutive words.
The call of unchain_backward cuts the history of computation accumulated to the LSTM links.
The rest of the code for setting up Trainer is almost same as one given in the previous tutorial.



In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to manage the history of computation (a.k.a. computational graph).
The example in the examples/ptb directory implements truncated backprop learning of a LSTM language model from the Penn Treebank corpus.
In the next section, we will review how to use GPU(s) in Chainer.







          

      

      

    

  

    
      
          
            
  
Using GPU(s) in Chainer

In this section, you will learn about the following things:


	Relationship between Chainer and CuPy

	Basics of CuPy

	Single-GPU usage of Chainer

	Multi-GPU usage of model-parallel computing

	Multi-GPU usage of data-parallel computing



After reading this section, you will be able to:


	Use Chainer on a CUDA-enabled GPU

	Write model-parallel computing in Chainer

	Write data-parallel computing in Chainer




Relationship between Chainer and CuPy


Note

As of the release of v1.3.0, Chainer changes its GPU backend from PyCUDA [http://mathema.tician.de/software/pycuda/] to CuPy.
CuPy covers all features of PyCUDA used by Chainer, though their interfaces are not compatible.



Chainer uses CuPy as its backend for GPU computation.
In particular, the cupy.ndarray class is the GPU array implementation for Chainer.
CuPy supports a subset of features of NumPy with a compatible interface.
It enables us to write a common code for CPU and GPU.
It also supports PyCUDA-like user-defined kernel generation, which enables us to write fast implementations dedicated to GPU.


Note

The chainer.cuda module imports many important symbols from CuPy.
For example, the cupy namespace is referred as cuda.cupy in the Chainer code.
Note that the chainer.cuda module can be imported even if CUDA is not installed.



Chainer uses a memory pool for GPU memory allocation.
As shown in the previous sections, Chainer constructs and destructs many arrays during learning and evaluating iterations.
It is not well suited for CUDA architecture, since memory allocation and release in CUDA (i.e. cudaMalloc and cudaFree functions) synchronize CPU and GPU computations, which hurts performance.
In order to avoid memory allocation and deallocation during the computation, Chainer uses CuPy’s memory pool as the standard memory allocator.
Chainer changes the default allocator of CuPy to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.




Basics of cupy.ndarray


Note

CuPy does not require explicit initialization, so cuda.init() function is deprecated.



CuPy is a GPU array backend that implements a subset of NumPy interface.
The cupy.ndarray class is in its core, which is a compatible GPU alternative of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].
CuPy implements many functions on cupy.ndarray objects.
See the reference for the supported subset of NumPy API.
Understanding NumPy might help utilizing most features of CuPy.
See the NumPy documentation for learning it [http://docs.scipy.org/doc/numpy/index.html].

The main difference of cupy.ndarray from numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] is that the content is allocated on the device memory.
The allocation takes place on the current device by default.
The current device can be changed by cupy.cuda.Device object as follows:

with cupy.cuda.Device(1):
    x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])





Most operations of CuPy is done on the current device.
Be careful that it causes an error to process an array on a non-current device.

Chainer provides some convenient functions to automatically switch and choose the device.
For example, the chainer.cuda.to_gpu() function copies a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object to a specified device:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)





It is equivalent to the following code using CuPy:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):
    x_gpu = cupy.array(x_cpu)





Moving a device array to the host can be done by chainer.cuda.to_cpu() as follows:

x_cpu = cuda.to_cpu(x_gpu)





It is equivalent to the following code using CuPy:

with x_gpu.device:
    x_cpu = x_gpu.get()






Note

The with statements in these codes are required to select the appropriate CUDA device.
If user uses only one device, these device switching is not needed.
chainer.cuda.to_cpu() and chainer.cuda.to_gpu() functions automatically switch the current device correctly.



Chainer also provides a convenient function chainer.cuda.get_device_from_id() and chainer.cuda.get_device_from_array() to select a device.
The former function accepts an integer or None.
When None is given, it returns a dummy device object.
Otherwise, it returns a corresponding device object.
The latter function accepts CuPy array or NumPy array.
When a NumPy array is given, it returns a dummy device object.
Otherwise, it returns a corresponding device object to the give CuPy array.
The dummy device object also supports with statements like the above example but does nothing.
Here are some other examples:

cuda.get_device_from_id(1).use()
x_gpu1 = cupy.empty((4, 3), dtype='f')  # 'f' indicates float32

with cuda.get_device_from_id(1):
    x_gpu1 = cuda.empty((4, 3), dtype='f')

with cuda.get_device_from_array(x_gpu1):
    y_gpu1 = x_gpu + 1





Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device switching:

def add1(x):
    with cuda.get_device_from_array(x):
        return x + 1





The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code.
It can be made easy by the chainer.cuda.get_array_module() function.
This function returns the numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] or cupy module based on arguments.
A CPU/GPU generic function is defined using it like follows:

# Stable implementation of log(1 + exp(x))
def softplus(x):
    xp = cuda.get_array_module(x)
    return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))








Run Neural Networks on a Single GPU

Single-GPU usage is very simple.
What you have to do is transferring Link and input arrays to the GPU beforehand.
In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_gpu() method.

This time, we make the number of input, hidden, and output units configurable.
The to_gpu() method also accepts a device ID like model.to_gpu(0).
In this case, the link object is transferred to the appropriate GPU device.
The current device is used by default.

If we use chainer.training.Trainer, what we have to do is just let the updater know the device ID to send each mini-batch.

updater = training.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')





We also have to specify the device ID for an evaluator extension as well.

trainer.extend(extensions.Evaluator(test_iter, model, device=0))





When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):
    print('epoch %d' % epoch)
    indexes = np.random.permutation(datasize)
    for i in range(0, datasize, batchsize):
        x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]]))
        t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))
        optimizer.update(model, x, t)








Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”.
Model-parallel means parallelizations of the computations inside the model.
In contrast, data-parallel means parallelizations using data sharding.
In this subsection, we show how to use the model-parallel approach on multiple GPUs in Chainer.

Recall the MNIST example.
Now suppose that we want to modify this example by expanding the network to 6 layers with 2000 units each using two GPUs.
In order to make multi-GPU computation efficient, we only make the two GPUs communicate at the third and sixth layer.
The overall architecture looks like the following diagram:

(GPU0) input --+--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+--> output
               |                       |                       |
(GPU1)         +--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+





We can use the above MLP chain as following diagram:

(GPU0) input --+--> mlp1 --+--> mlp2 --+--> output
               |           |           |
(GPU1)         +--> mlp1 --+--> mlp2 --+





Let’s write a link for the whole network.

class ParallelMLP(Chain):
    def __init__(self):
        super(ParallelMLP, self).__init__(
            # the input size, 784, is inferred
            mlp1_gpu0=MLP(1000, 2000).to_gpu(0),
            mlp1_gpu1=MLP(1000, 2000).to_gpu(1),

            # the input size, 2000, is inferred
            mlp2_gpu0=MLP(1000, 10).to_gpu(0),
            mlp2_gpu1=MLP(1000, 10).to_gpu(1),
        )

    def __call__(self, x):
        # assume x is on GPU 0
        z0 = self.mlp1_gpu0(x)
        z1 = self.mlp1_gpu1(F.copy(x, 1))

        # sync
        h0 = F.relu(z0 + F.copy(z1, 0))
        h1 = F.relu(z1 + F.copy(z0, 1))

        y0 = self.mlp2_gpu0(h0)
        y1 = self.mlp2_gpu1(h1)

        # sync
        y = y0 + F.copy(y1, 0)
        return y  # output is on GPU0





Recall that the Link.to_gpu() method returns the link itself.
The copy() function copies an input variable to specified GPU device and returns a new variable on the device.
The copy supports backprop, which just reversely transfers an output gradient to the input device.


Note

Above code is not parallelized on CPU, but is parallelized on GPU.
This is because all the functions in the above code run asynchronously to the host CPU.



An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py [https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist_model_parallel.py].




Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing.
In the context of neural networks, it means that a different device does computation on a different subset of the input data.
In this subsection, we review the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example.
This time we want to directly parallelize the three-layer network.
The most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data.
First, define a model and optimizer instances:

model = L.Classifier(MLP(1000, 10))  # the input size, 784, is inferred
optimizer = optimizers.SGD()
optimizer.setup(model)





Recall that the MLP link implements the multi-layer perceptron, and the Classifier link wraps it to provide a classifier interface.
We used StandardUpdater in the previous example.
In order to enable data-parallel computation with multiple GPUs, we only have to replace it with ParallelUpdater.

updater = training.ParallelUpdater(train_iter, optimizer,
                                   devices={'main': 0, 'second': 1})





The devices option specifies which devices to use in data-parallel learning.
The device with name 'main' is used as the main device.
The original model is sent to this device, so the optimization runs on the main device.
In the above example, the model is also cloned and sent to GPU 1.
Half of each mini-batch is fed to this cloned model.
After every backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the updated parameters are sent to GPU 1 again.

See also the example code in examples/mnist/train_mnist_data_parallel.py [https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist_data_parallel.py].




Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer.
Most users can skip this section.
If you are interested in how to write a data-parallel computation by yourself, this section should be informative.
It is also helpful to, e.g., customize the ParallelUpdater class.

We again start from the MNIST example.
At this time, we use a suffix like _0 and _1 to distinguish objects on each device.
First, we define a model.

model_0 = L.Classifier(MLP(1000, 10))  # the input size, 784, is inferred





We want to make two copies of this instance on different GPUs.
The Link.to_gpu() method runs in place, so we cannot use it to make a copy.
In order to make a copy, we can use Link.copy() method.

import copy
model_1 = copy.deepcopy(model_0)
model_0.to_gpu(0)
model_1.to_gpu(1)





The Link.copy() method copies the link into another instance.
It just copies the link hierarchy, and does not copy the arrays it holds.

Then, set up an optimizer:

optimizer = optimizers.SGD()
optimizer.setup(model_0)





Here we use the first copy of the model as the master model.
Before its update, gradients of model_1 must be aggregated to those of model_0.

Then, we can write a data-parallel learning loop as follows:

batchsize = 100
datasize = len(x_train)
for epoch in range(20):
    print('epoch %d' % epoch)
    indexes = np.random.permutation(datasize)
    for i in range(0, datasize, batchsize):
        x_batch = x_train[indexes[i : i + batchsize]]
        y_batch = y_train[indexes[i : i + batchsize]]

        x0 = Variable(cuda.to_gpu(x_batch[:batchsize//2], 0))
        t0 = Variable(cuda.to_gpu(y_batch[:batchsize//2], 0))
        x1 = Variable(cuda.to_gpu(x_batch[batchsize//2:], 1))
        t1 = Variable(cuda.to_gpu(y_batch[batchsize//2:], 1))

        loss_0 = model_0(x0, t0)
        loss_1 = model_1(x1, t1)

        model_0.cleargrads()
        model_1.cleargrads()

        loss_0.backward()
        loss_1.backward()

        model_0.addgrads(model_1)
        optimizer.update()

        model_1.copyparams(model_0)





Do not forget to clear the gradients of both model copies!
One half of the mini-batch is forwarded to GPU 0, the other half to GPU 1.
Then the gradients are accumulated by the Link.addgrads() method.
This method adds the gradients of a given link to those of the self.
After the gradients are prepared, we can update the optimizer in usual way.
Note that the update only modifies the parameters of model_0.
So we must manually copy them to model_1 using Link.copyparams() method.


Note

If the batch size used in one model remain the same, the scale of the gradient
is roughly proportional to the number of models, when we aggregate
gradients from all models by chainer.Link.addgrads(). So you need to adjust the batch size
and/or learning rate of the optimizer accordingly.





Now you can use Chainer with GPUs.
All examples in the examples directory support GPU computation, so please refer to them if you want to know more practices on using GPUs.
In the next section, we will show how to define a differentiable (i.e. backpropable) function on Variable objects.
We will also show there how to write a simple (elementwise) CUDA kernel using Chainer’s CUDA utilities.







          

      

      

    

  

    
      
          
            
  
Define your own function

In this section, you will learn about the following things:


	How to define a function on variables

	Useful tools to write a function using a GPU

	How to test the function definition



After reading this section, you will be able to:


	Write your own functions

	Define simple kernels in the function definition




Differentiable Functions

Chainer provides a collection of functions in the functions module.
It covers typical use cases in deep learning, so many existing works can be implemented with them.
On the other hand, deep learning is evolving rapidly and we cannot cover all possible functions to define unseen architectures.
So it is important to learn how to define your own functions.

First, suppose we want to define an elementwise function \(f(x, y, z) = x * y + z\).
While it is possible to implement this equation using a combination of the * and + functions,
defining it as a single function may reduce memory consumption, so it is not only a toy example.
Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU.
Any function must inherit the Function class.
The skeleton of a function looks like:

class MulAdd(Function):
    def forward_cpu(self, inputs):
        # do forward computation on CPU
        return some_tuple

    def backward_cpu(self, inputs, grad_outputs):
        # do backward computation on CPU
        return some_tuple





We must implement forward_cpu() and backward_cpu() methods.
The non-self arguments of these functions are tuples of array(s), and these functions must return a tuple of array(s).


Warning

Be careful to return a tuple of arrays even if you have just one array to return.



MulAdd is simple and implemented as follows

class MulAdd(Function):
    def forward_cpu(self, inputs):
        x, y, z = inputs
        w = x * y + z
        return w,

    def backward_cpu(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs

        gx = y * gw
        gy = x * gw
        gz = gw
        return gx, gy, gz





As per the warning above, the forward_cpu method returns a tuple of single element.
Note that all arrays appearing in CPU functions are numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].
The forward function is straightforward:
It unpacks the input tuple, computes the output, and packs it into a tuple.
The backward function is a bit more complicated.
Recall the rule of differentiation of multiplication.
This example just implements the rule.
Look at the return values, the function just packs the gradient of each input in same order and returns them.

By just defining the core computation of forward and backward,
Function class provides a chaining logic on it (i.e. storing the
history of computation, etc.).


Note

Assuming we implement a (forward) function \(y=f(x)\) which takes as input the
vector \(x \in \mathbb{R}^n\) and produces as output a vector
\(y \in \mathbb{R}^m\). Then the backward method has to compute


\[\lambda_i = \sum_{j=1}^m \frac{\partial y_j}{\partial x_i} \,
\gamma_j \,\, \text{for}\, i = 1 \dots n\]

where \(\gamma\) is the grad_outputs. Note, that the
resulting vector \(\lambda\) must have the same shape as the arguments of the forward method.



Now let’s define the corresponding GPU methods.
You can easily predict that the methods we have to write are named forward_gpu() and backward_gpu():

class MulAdd(Function):
    def forward_cpu(self, inputs):
        ...

    def backward_cpu(self, inputs, grad_outputs):
        ...

    def forward_gpu(self, inputs):
        x, y, z = inputs
        w = x * y + z
        return w,

    def backward_gpu(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs

        gx = y * gw
        gy = x * gw
        gz = gw
        return gx, gy, gz





In GPU methods, arrays are of type cupy.ndarray.
We use arithmetic operators defined for this class.
These operators implement the basic elementwise arithmetics.

You may find that the definitions of GPU methods are exactly same as those of CPU methods.
In that case, we can reduce them to forward() and backward() methods

class MulAdd(Function):
    def forward(self, inputs):
        x, y, z = inputs
        w = x * y + z
        return w,

    def backward(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs

        gx = y * gw
        gy = x * gw
        gz = gw
        return gx, gy, gz





Since the cupy.ndarray class implements many methods of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], we can write these unified methods in most cases.

The MulAdd function is used as follows:

x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)





It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables.
We also have to be careful that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph.
In Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
    return MulAdd()(x, y, z)

w = muladd(x, y, z)








Unified forward/backward methods with NumPy/CuPy functions

CuPy also implements many functions that are compatible to those of NumPy.
We can write unified forward/backward methods with them.
Consider that we want to write a backprop-able function \(f(x, y) = \exp(x) + \exp(y)\).
We name it ExpAdd here.
It can be written straight-forward as follows

class ExpAdd(Function):
    def forward_cpu(self, inputs):
        x, y = inputs
        z = np.exp(x) + np.exp(y)
        return z,

    def backward_cpu(self, inputs, grad_outputs):
        x, y = inputs
        gz, = grad_outputs

        gx = gz * np.exp(x)
        gy = gz * np.exp(y)
        return gx, gy

    def forward_gpu(self, inputs):
        cupy = cuda.cupy
        x, y = inputs
        z = cupy.exp(x) + cupy.exp(y)
        return z,

    def backward_gpu(self, inputs, grad_outputs):
        cupy = cuda.cupy
        x, y = inputs
        gz, = grad_outputs

        gx = gz * cupy.exp(x)
        gy = gz * cupy.exp(y)
        return gx, gy

def expadd(x, y):
    return ExpAdd()(x, y)






Note

Here we used cuda.cupy instead of directly accessing cupy.
This is because the cupy module cannot be imported if the CUDA is not installed.
In order to keep the implementation valid in non-CUDA environment, we have to defer the access to the cupy module.
Note that the chainer.cuda module can be imported even if the CUDA is not installed.
Of course, the module in such environment is almost useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still valid.



The CPU and GPU implementations are almost same, except that numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] is replaced by cupy in GPU methods.
We can unify these functions using the cuda.get_array_module() function.
This function accepts arbitrary number of arrays, and returns an appropriate module for them.
See the following code

class ExpAdd(Function):
    def forward(self, inputs):
        xp = cuda.get_array_module(*inputs)
        x, y = inputs
        z = xp.exp(x) + xp.exp(y)
        return z,

    def backward(self, inputs, grad_outputs):
        xp = cuda.get_array_module(*inputs)
        x, y = inputs
        gz, = grad_outputs

        gx = gz * xp.exp(x)
        gy = gz * xp.exp(y)
        return gx, gy

def expadd(x, y):
    return ExpAdd()(x, y)





Note that this code works correctly even if CUDA is not installed in the environment.
If CUDA is not found, get_array_module function always returns numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy].
We often use the name xp for the variadic module name, which is analogous to the abbreviation np for NumPy and cp for CuPy.




Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores.
However, it invokes two kernels during each of forward and backward computations.
It might hurt performance, since the intermediate temporary arrays are read and written by possibly different GPU cores, which consumes much bandwidth.
We can reduce the number of invocations by defining our own kernel.
It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd.
CuPy provides a useful tool to define elementwise kernels, the cupy.elementwise.ElementwiseKernel class, and Chainer wraps it by cuda.elementwise() function.
Our MulAdd implementation can be improved as follows:

class MulAdd(Function):
    def forward_cpu(self, inputs):
        ...

    def backward_cpu(self, inputs, grad_outputs):
        ...

    def forward_gpu(self, inputs):
        cupy = cuda.cupy
        x, y, z = inputs
        w = cuda.elementwise(
            'float32 x, float32 y, float32 z',
            'float32 w',
            'w = x * y + z',
            'muladd_fwd')(x, y, z)
        return w,

    def backward_gpu(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs

        gx, gy = cuda.elementwise(
            'float32 x, float32 y, float32 gw',
            'float32 gx, float32 gy',
            '''
               gx = y * gw;
               gy = x * gw;
            ''',
            'muladd_bwd')(x, y, gw)

        gz = gw
        return gx, gy, gz





cuda.elementwise() function accepts the essential implementation of the kernel function, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:


	Input argument list. This is a comma-separated string each entry of which consists of a type specification and an argument name.

	Output argument list in the same format as the input argument list.

	Body of parallel loop. We can use the input/output argument names as an element of these arrays.

	Name of the kernel function, which is shown in debuggers and profilers.



Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by cuda.elementwise().

The first one is binary caching:
cuda.elementwise() function caches the compiled binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if the given code matches the hash value.
This caching mechanism is actually implemented in CuPy.

The second one is upload caching:
Given a compiled binary code, we have to upload it to the current GPU in order to execute it.
cuda.elementwise() function memoizes the arguments and the current device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays.
The ElementwiseKernel also supports the type-variadic kernel definition.
In order to define variadic kernel functions, you can use type placeholder by placing a single character as type specifier:

class MulAdd(Function):
    def forward_cpu(self, inputs):
        ...

    def backward_cpu(self, inputs, grad_outputs):
        ...

    def forward_gpu(self, inputs):
        cupy = cuda.cupy
        x, y, z = inputs
        w = cuda.elementwise(
            'T x, T y, T z',
            'T w',
            'w = x * y + z',
            'muladd_fwd')(x, y, z)
        return w,

    def backward_gpu(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs

        gx, gy = cuda.elementwise(
            'T x, T y, T gw',
            'T gx, T gy',
            '''
               gx = y * gw;
               gy = x * gw;
            ''',
            'muladd_bwd')(x, y, gw)

        gz = gw
        return gx, gy, gz





The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy.
See the CuPy documentation on user-defined kernels for more details.




Links that wrap functions

Some functions are meant to be combined with parameters.
In such case, it is useful to write a small link that wraps the function.
We have already seen how to define a chain that wraps other links (by inheriting Chain class).
Here we study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and the parameter array.
It can be defined as follows:

class EltwiseParamProduct(Link):
    def __init__(self, shape):
        # By passing a shape of the parameter, the initializer allocates a
        # parameter variable of the shape.
        super(EltwiseParamProduct, self).__init__(W=shape)
        self.W.data[...] = np.random.randn(*shape)

    def __call__(self, x):
        return self.W * x





We can also initialize the parameter after the initialization by the Link.add_param() method.

class EltwiseParamProduct(Link):
    def __init__(self, shape):
        super(EltwiseParamProduct, self).__init__()
        self.add_param('W', shape)
        self.W.data[...] = np.random.randn(*shape)

    def __call__(self, x):
        return self.W * x





Note that the initializer and the add_param() method does not initialize elements of the parameter array.
We have to manually initialize the elements by random values, zeros, etc.

For another example, assume we want to define a simple linear layer.
It is already defined as Linear, so this is an educational example.
The linear layer is divided into two parts: a function and its wrapper link.
First, we have to define a function on variables:

class LinearFunction(Function):
    def forward(self, inputs):
        x, W, b = inputs
        return x.dot(W.T) + b,

    def backward(self, inputs, grad_outputs):
        x, W, b = inputs
        gy, = grad_outputs

        gx = gy.dot(W)
        gW = gy.T.dot(x)
        gb = gy.sum(axis=0)
        return gx, gW, gb

def linear(x, W, b):
    return LinearFunction()(x, W, b)





This function takes three arguments: input, weight, and bias.
It can be used as a part of model definition, though is inconvenient since the user have to manage the weight and bias parameters directly.
In order to make a convenient module, let’s wrap it into a link:

class Linear(Link):
    def __init__(self, in_size, out_size):
        super(Linear, self).__init__(W=(out_size, in_size), b=out_size)
        self.W.data[...] = np.random.randn(out_size, in_size) / math.sqrt(in_size)
        self.b.data.fill(0)

    def __call__(self, x):
        return linear(x, self.W, self.b)





This link hides the parameters of the linear layer.


Note

An advanced tip to implement functions: if you want to preserve some information between forward and backward computations (e.g. to cache some arrays), you can store it as attributes.
Be careful that it might increase the memory consumption during the whole forward-backward computation.
If you want to train very large networks on a GPU with limited memory, it is not recommended to cache arrays between forward and backward.
There is one exception for this: caching the output arrays does not change the memory consumption, because they are also held by the output Variable objects.


Warning

You should not assume a one-to-one match of calls of forward and backward.
Some users may call backward more than once after one forward call.








Testing Function

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implementations.
Chainer provides simple utilities to help writing unit tests.
They are defined in the gradient_check module.

The most important test utility is the numerical_grad() function.
This function computes the numerical gradient of given function using finite differences.
It can be used as follows

x  = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f  = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))





f is a closure that returns a tuple of array(s) computed from input arrays.
The second and third arguments of numerical_grad() are tuples of input arrays and output gradient arrays, respectively.
The code above computes the numerical gradients of sum(f(x)), where sum indicates the summation over all elements.
The summation can be weighted by changing gy.
numerical_grad() function also accepts additional eps argument, which indicates the quantization width of finite differences.


Note

numerical_grad() function accepts both CPU and GPU arrays.
Note that we cannot mix CPU and GPU arrays.



Another utility is chainer.testing.assert_allclose() function.
This is similar to numpy.testing.assert_allclose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose] function.
The difference is that Chainer’s version accepts CPU and GPU arrays as inputs.
We can mix them in one invocation of chainer.testing.assert_allclose().
The default values of optional arguments are also different.

Here is a typical usage of gradient checking utilities.
This is a test example of functions.relu() function

import unittest

from chainer import testing

class TestReLU(unittest.TestCase):
    def test_backward_cpu(self):
        x = Variable(np.random.randn(3, 2).astype(np.float32))
        y = F.relu(x)
        y.grad = np.random.randn(3, 2).astype(np.float32)
        y.backward()

        f = lambda: (F.relu(x).data,)
        gx, = gradient_check.numerical_grad(f, (x.data,), (y.grad,))

        testing.assert_allclose(gx, x.grad)





The first four lines of the test code are simple forward and backward computation of ReLU function.
The next two lines compute numerical gradient using the same forward function without backward routine.
And at last, we compare these two results elementwise.
Note that the above test code can be easily modified to test GPU version just by replacing CPU arrays to GPU arrays.

You can find many examples of function tests under tests/chainer_tests/function_tests directory.







          

      

      

    

  

    
      
          
            
  
Type check

In this section, you will learn about the following things:


	Basic usage of type check

	Detail of type information

	Internal mechanism of type check

	More complicated cases

	Call functions

	Typical type check example



After reading this section, you will be able to:


	Write a code to check types of input arguments of your own functions




Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result by broadcasting.
When you use CUDA with an illegal type of array, it causes memory corruption, and you get a serious error.
These bugs are hard to fix.
Chainer can check preconditions of each function, and helps to prevent such problems.
These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward().
This function is called just before the forward() method of the Function class.
You can override this method to check the condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

def check_type_forward(self, in_types):
  ...





in_types is an instance of TypeInfoTuple, which is a sub-class of tuple [https://docs.python.org/3/library/stdtypes.html#tuple].
To get type information about the first argument, use in_types[0].
If the function gets multiple arguments, we recommend to use new variables for readability:

x_type, y_type = in_types





In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example.
When you want to check if the number of dimension of x_type equals to 2, write this code:

utils.type_check.expect(x_type.ndim == 2)





When this condition is true, nothing happens.
Otherwise this code throws an exception, and the user gets a message like this:

Traceback (most recent call last):
...
InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2





This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.




Detail of type information

You can access three information of x_type.


	.shape is a tuple of ints. Each value is size of each dimension.

	.ndim is int [https://docs.python.org/3/library/functions.html#int] value representing the number of dimensions. Note that ndim == len(shape)

	.dtype is numpy.dtype representing data type of the value.



You can check all members.
For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect(x_type.shape[0] > 0)





You can also check data types with .dtype:

utils.type_check.expect(x_type.dtype == np.float64)





And an error is like this:

Traceback (most recent call last):
...
InvalidType: Expect: in_types[0].dtype == <type 'numpy.float64'>
Actual: float32 != <type 'numpy.float64'>





You can also check kind of dtype.
This code checks if the type is floating point

utils.type_check.expect(x_type.dtype.kind == 'f')





You can compare between variables.
For example, the following code checks if the first argument and the second argument have the same length:

utils.type_check.expect(x_type.shape[1] == y_type.shape[1])








Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"?
If x_type is an object containing ndim member variable, we cannot show such an error message because this equation is evaluated as a boolean value by Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself.
Expr represents a syntax tree.
x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim').
x_type.ndim == 2 makes an object like (eq, (getattr, x_type, 'ndim'), 2).
type_check.expect() gets a Expr object and evaluates it.
When it is True, it causes no error and shows nothing.
Otherwise, this method shows a readable error message.

If you want to evaluate a Expr object, call eval() method:

actual_type = x_type.eval()





actual_type is an instance of TypeInfo, while x_type is an instance of Expr.
In the same way, x_type.shape[0].eval() returns an int value.




More powerful methods

Expr class is more powerful.
It supports all mathematical operators such as + and *.
You can write a condition that the first dimension of x_type is the first dimension of y_type times four:

utils.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)





When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

Traceback (most recent call last):
...
InvalidType: Expect: in_types[0].shape[0] == in_types[1].shape[0] * 4
Actual: 3 != 4





To compare a member variable of your function, wrap a value with Variable to show readable error message:

x_type.shape[0] == utils.type_check.Variable(self.in_size, "in_size")





This code can check the equivalent condition below:

x_type.shape[0] == self.in_size





However, the latter condition doesn’t know the meaning of this value.
When this condition is not satisfied, the latter code shows unreadable error message:

InvalidType: Expect: in_types[0].shape[0] == 4  # what does '4' mean?
Actual: 3 != 4





Note that the second argument of utils.type_check.Variable is only for readability.

The former shows this message:

InvalidType: Expect: in_types[0].shape[0] == in_size  # OK, `in_size` is a value that is given to the constructor
Actual: 3 != 4  # You can also check actual value here








Call functions

How to check summation of all values of shape?
Expr also supports function call:

sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)





Why do we need to wrap the function numpy.sum with utils.type_check.Variable?
x_type.shape is not a tuple but an object of Expr as we have seen before.
Therefore, numpy.sum(x_type.shape) fails.
We need to evaluate this function lazily.

The above example produces an error message like this:

Traceback (most recent call last):
...
InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10








More complicated cases

How to write a more complicated condition that can’t be written with these operators?
You can evaluate Expr and get its result value with eval() method.
Then check the condition and show warning message by hand:

x_shape = x_type.shape.eval()  # get actual shape (int tuple)
if not more_complicated_condition(x_shape):
    expect_msg = 'Shape is expected to be ...'
    actual_msg = 'Shape is ...'
    raise utils.type_check.InvalidType(expect_msg, actual_msg)





Please write a readable error message.
This code generates the following error message:

Traceback (most recent call last):
...
InvalidType: Expect: Shape is expected to be ...
Actual: Shape is ...








Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect(in_types.size() == 2)





in_types.size() returns a Expr object representing the number of arguments.
You can check it in the same way.

And then, get each type:

x_type, y_type = in_types





Don’t get each value before checking in_types.size().
When the number of argument is illegal, type_check.expect might output unuseful error messages.
For example, this code doesn’t work when the size of in_types is 0:

utils.type_check.expect(
  in_types.size() == 2,
  in_types[0].ndim == 3,
)





After that, check each type:

utils.type_check.expect(
  x_type.dtype == np.float32,
  x_type.ndim == 3,
  x_type.shape[1] == 2,
)





The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.
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Variable


	
class chainer.Variable(data, volatile=OFF, name=None, grad=None)

	Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray.

A Variable object may be constructed in two ways: by the user or by some
function. When a variable is created by some function as one of its
outputs, the variable holds a reference to that function. This reference is
used in error backpropagation (a.k.a. backprop). It is also used in
backward unchaining. A variable that does not hold a reference to its
creator is called a root variable. A variable is root if it is created by
the user, or if the reference is deleted by unchain_backward().

Users can disable this chaining behavior by setting the volatile flag for
the initial variables. When a function gets volatile variables as its
inputs, the output variables do not hold references to the function. This
acts like unchaining on every function application.





	Parameters:	
	data (array) – Initial data array.

	volatile (Flag) – Volatility flag. String (‘on’, ‘off’, or
‘auto’) or boolean values can be used, too.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the variable.

	grad (array) – Initial gradient array.






	Variables:	
	data – Data array of type either numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray.

	grad – Gradient array.

	creator – The function who creates this variable. It is None if the
variable is not created by any function.

	volatile – Ternary Flag object. If 'ON', the
variable does not keep track of any function applications. See
Flag for the detail of ternary flags.










	
__abs__()

	Element-wise absolute.





	Returns:	Output variable.


	Return type:	Variable










	
__add__(rhs)

	Element-wise addition.





	Returns:	Output variable.


	Return type:	Variable










	
__div__(rhs)

	Element-wise division





	Returns:	Output variable.


	Return type:	Variable










	
__getitem__(x, slices)

	Extract elements from array with specified shape, axes and offsets.





	Parameters:	
	x (Variable) – A variable to be sliced.

	slices (int [https://docs.python.org/3/library/functions.html#int], slice [https://docs.python.org/3/library/functions.html#slice], Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis], None [https://docs.python.org/3/library/constants.html#None], integer array-like, boolean        array-like or tuple of them) – It is an integer, a slice, an ellipsis,
a numpy.newaxis, an integer array-like, a boolean array-like
or tuple of them.






	Returns:	
	Variable object

	which contains sliced array of x.










	Return type:	Variable








Note

It only supports types that are supported by CUDA’s atomicAdd when
an integer array is included in slices.
The supported types are numpy.float32, numpy.int32,
numpy.uint32, numpy.uint64 and numpy.ulonglong.




Note

It does not support slices that contains multiple boolean arrays.




Note

See NumPy document for details of indexing [http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html].








	
__len__()

	Returns the number of elements of the data array.





	Returns:	Number of elements of the data array.


	Return type:	int [https://docs.python.org/3/library/functions.html#int]










	
__matmul__(rhs)

	Matrix multiplication.





	Returns:	Output variable.


	Return type:	Variable










	
__mul__(rhs)

	Element-wise multiplication.





	Returns:	Output variable.


	Return type:	Variable










	
__neg__()

	Element-wise negation.





	Returns:	Output variable.


	Return type:	Variable










	
__pow__(rhs)

	Element-wise power function.





	Returns:	Output variable.


	Return type:	Variable










	
__radd__(rhs)

	Element-wise addition.





	Returns:	Output variable.


	Return type:	Variable










	
__rdiv__(rhs)

	Element-wise division.





	Returns:	Output variable.


	Return type:	Variable










	
__rmatmul__(rhs)

	Matrix multiplication.





	Returns:	Output variable.


	Return type:	Variable










	
__rmul__(rhs)

	Element-wise multiplication.





	Returns:	Output variable.


	Return type:	Variable










	
__rpow__(rhs)

	Element-wise power function.





	Returns:	Output variable.


	Return type:	Variable










	
__rsub__(rhs)

	Element-wise subtraction.





	Returns:	Output variable.


	Return type:	Variable










	
__rtruediv__(rhs)

	Element-wise division.





	Returns:	Output variable.


	Return type:	Variable










	
__sub__(rhs)

	Element-wise subtraction.





	Returns:	Output variable.


	Return type:	Variable










	
__truediv__(rhs)

	Element-wise division





	Returns:	Output variable.


	Return type:	Variable










	
addgrad(var)

	Accumulates the gradient array from given source variable.

This method just runs self.grad += var.grad, except that the
accumulation is even done across the host and different devices.





	Parameters:	var (Variable) – Source variable.










	
backward(retain_grad=False)

	Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, Function.backward() is called on each
Function object appearing in the backward graph starting from
this variable. The backward graph is represented by backward references
from variables to their creators, and from functions to their inputs.
The backprop stops at all root variables. Some functions set None
as gradients of some inputs, where further backprop does not take place
at such input variables.

This method uses grad as the initial error array. User can
manually set a gradient array before calling this method. If
data contains only one element (i.e., it is scalar) and
grad is None, then this method automatically complements
1.0 as the initial error. This is useful on starting backprop from
some scalar loss value.





	Parameters:	retain_grad (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the gradient arrays of all
intermediate variables are kept. Otherwise, grad of the
intermediate variables are set to None on appropriate
timing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop
is to compute gradients of parameters, not of variables, so it
is recommended to set this flag False.












	
cleargrad()

	Clears the gradient array.






	
copydata(var)

	Copies the data array from given source variable.

This method just copies the data attribute from given variable to this
variable, except that the copy is even done across the host and
different devices.





	Parameters:	var (Variable) – Source variable.










	
debug_print()

	Display a summary of the stored data and location of the Variable






	
label

	Short text that represents the variable.






	
reshape(*shape)

	Returns a variable of a different shape and the same content.


See also

chainer.functions.reshape() for full documentation,








	
set_creator(gen_func)

	Notifies the variable that the given function is its creator.





	Parameters:	gen_func (Function) – Function object that creates this variable as
one of its outputs.










	
to_cpu()

	Copies the data and gradient arrays to CPU.






	
to_gpu(device=None)

	Copies the data and gradient arrays to specified GPU.





	Parameters:	device – Target device specifier. If omitted, the current device is
used.










	
transpose(*axes)

	Permute the dimensions of an input variable without copy.


See also

chainer.functions.transpose() for full documentation.








	
unchain_backward()

	Deletes references between variables and functions backward.

After this method completes, intermediate variables and functions that
are not referenced from anywhere are deallocated by reference
count GC. Also this variable itself deletes the reference to its
creator function, i.e. this variable becomes root in the computation
graph. It indicates that backprop after unchaining stops at this
variable. This behavior is useful to implement truncated BPTT.






	
zerograd()

	Initializes the gradient array by zeros.


Deprecated since version v1.15: Use cleargrad() instead.















          

      

      

    

  

    
      
          
            
  
Flag


	
class chainer.Flag

	Ternary flag object for variables.

It takes three values: ON, OFF, and AUTO.

ON and OFF flag can be evaluated as a boolean value. These are converted
to True and False, respectively. AUTO flag cannot be converted to boolean.
In this case, ValueError is raised.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], or None [https://docs.python.org/3/library/constants.html#None]) – Name of the flag. Following values are
allowed:


	'on', 'ON', or True for ON value

	'off', 'OFF', or False for OFF value

	'auto', 'AUTO', or None for AUTO value














	
chainer.ON = ON

	Equivalent to Flag(‘on’).






	
chainer.OFF = OFF

	Equivalent to Flag(‘off’).






	
chainer.AUTO = AUTO

	Equivalent to Flag(‘auto’).






	
chainer.flag.aggregate_flags(flags)

	Returns an aggregated flag given a sequence of flags.

If both ON and OFF are found, this function raises an error. Otherwise,
either of ON and OFF that appeared is returned. If all flags are AUTO, then
it returns AUTO.





	Parameters:	flags (sequence of Flag) – Input flags.


	Returns:	The result of aggregation.


	Return type:	Flag













          

      

      

    

  

    
      
          
            
  
Function


	
class chainer.Function

	Function on variables with backpropagation ability.

All function implementations defined in chainer.functions inherit
this class.

The main feature of this class is keeping track of function applications as
a backward graph. When a function is applied to Variable objects,
its forward() method is called on data fields of
input variables, and at the same time it chains references from output
variables to the function and from the function to its inputs.


Note

As of v1.5, a function instance cannot be used twice in any
computational graphs. In order to reuse a function object multiple
times, use copy.copy() [https://docs.python.org/3/library/copy.html#copy.copy] before the function applications to make a
copy of the instance.

This restriction also means that we cannot make a stateful function
anymore. For example, it is now not allowed to let a function hold
parameters. Define a function as a pure (stateless) procedure, and use
Link to combine it with parameter variables.




Example

Let x an instance of Variable and f an instance of
Function taking only one argument. Then a line

>>> import numpy, chainer, chainer.functions as F
>>> x = chainer.Variable(numpy.zeros(10))
>>> f = F.Identity()
>>> y = f(x)





computes a new variable y and creates backward references. Actually,
backward references are set as per the following diagram:

x <--- f <--- y





If an application of another function g occurs as

>>> g = F.Identity()
>>> z = g(x)





then the graph grows with a branch:

    |--- f <--- y
x <-+
    |--- g <--- z





Note that the branching is correctly managed on backward computation,
i.e. the gradients from f and g are accumulated to the gradient
of x.



Every function implementation should provide forward_cpu(),
forward_gpu(), backward_cpu() and backward_gpu().
Alternatively, one can provide forward() and backward() instead
of separate methods. Backward methods have default implementations that
just return None, which indicates that the function is non-
differentiable.





	Variables:	
	inputs – A tuple or list of input variables.

	outputs – A tuple or list of output variables.

	type_check_enable – When it is True, the function checks types of
input arguments. Set CHAINER_TYPE_CHECK environment variable
0 to disable type check, or set the variable directly in
your own program.










	
__call__(*inputs)

	Applies forward propagation with chaining backward references.

Basic behavior is expressed in documentation of Function
class.


Note

If the data attribute of input variables exist on
GPU device, then, before it calls forward() method, the
appropriate device is selected, so in most cases implementers do
not need to take care of device selection.







	Parameters:	inputs – Tuple of input Variable, numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray objects. The volatile flags of all input
variables must agree. If the input is an numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
or a cupy.ndarray, it is automatically wrapped with
Variable.


	Returns:	One Variable object or a tuple of multiple
Variable objects.










	
add_hook(hook, name=None)

	Registers the function hook.





	Parameters:	
	hook (FunctionHook) – Function hook to be registered.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the function hook.
name must be unique among function hooks
registered to the function. If None,
default name of the function hook is used.














	
backward(inputs, grad_outputs)

	Applies backprop to output gradient arrays.

It delegates the procedure to backward_cpu() or
backward_gpu() by default. Which it selects is determined by the
type of input arrays and output gradient arrays. Implementations of
Function must implement either CPU/GPU methods or this method,
if the function is intended to be backprop-ed.





	Parameters:	
	inputs – Tuple of input arrays.

	grad_outputs – Tuple of output gradient arrays.






	Returns:	Tuple of input gradient arrays. Some or all of them can be
None, if the function is not differentiable on
inputs.




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]








Warning

Implementations of Function must take care that the
return value must be a tuple even if it returns only one array.








	
backward_cpu(inputs, grad_outputs)

	Applies backprop to output gradient arrays on CPU.





	Parameters:	
	inputs – Tuple of input numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object(s).

	grad_outputs – Tuple of output gradient numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
object(s).






	Returns:	Tuple of input gradient numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object(s).
Some or all of them can be None, if the function is not
differentiable on corresponding inputs.




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]








Warning

Implementations of Function must take care that the
return value must be a tuple even if it returns only one array.








	
backward_gpu(inputs, grad_outputs)

	Applies backprop to output gradient arrays on GPU.





	Parameters:	
	inputs – Tuple of input cupy.ndarray
object(s).

	grad_outputs – Tuple of output gradient
cupy.ndarray object(s).






	Returns:	Tuple of input gradient cupy.ndarray
object(s). Some or all of them can be None, if the function is
not differentiable on corresponding inputs.




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]








Warning

Implementations of Function must take care that the
return value must be a tuple even if it returns only one array.








	
check_type_forward(in_types)

	Checks types of input data before forward propagation.

Before forward() is called, this function is called.
You need to validate types of input data in this function
using the type checking utilities.





	Parameters:	in_types (TypeInfoTuple) – The type
information of input data for forward().










	
delete_hook(name)

	Unregisters the function hook.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the function hook
to be unregistered.










	
forward(inputs)

	Applies forward propagation to input arrays.

It delegates the procedure to forward_cpu() or
forward_gpu() by default. Which it selects is determined by the
type of input arrays.
Implementations of Function must implement either CPU/GPU
methods or this method.





	Parameters:	inputs – Tuple of input array(s).


	Returns:	Tuple of output array(s).






Warning

Implementations of Function must take care that the
return value must be a tuple even if it returns only one array.








	
forward_cpu(inputs)

	Applies forward propagation to input arrays on CPU.





	Parameters:	inputs – Tuple of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object(s).


	Returns:	Tuple of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object(s).


	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]






Warning

Implementations of Function must take care that the
return value must be a tuple even if it returns only one array.








	
forward_gpu(inputs)

	Applies forward propagation to input arrays on GPU.





	Parameters:	inputs – Tuple of cupy.ndarray object(s).


	Returns:	Tuple of cupy.ndarray object(s).


	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]






Warning

Implementations of Function must take care that the
return value must be a tuple even if it returns only one array.








	
label

	Short text that represents the function.

The default implementation returns its type name.
Each function should override it to give more information.






	
local_function_hooks

	Ordered Dictionary of registered function hooks.

Contrary to chainer.thread_local.function_hooks,
which registers its elements to all functions,
Function hooks in this property is specific to this function.






	
unchain()

	Purges in/out variables and this function itself from the graph.

This method is called from Variable.unchain_backward() method.










	
chainer.force_backprop_mode(*args, **kwds)

	Enable back-propagation for Variable whose volatile is auto.

When you want to enable back-propagation in no_backprop_mode(),
call this method. In this context, Variable object
whose volatile attribute is 'auto' behaves like a volatile
variable. That means you can disable no_backprop_mode() in this
context.

If you call this method outside of no_backprop_mode() context, it
changes nothing. Variable object with volatile='auto'
behaves like a volatile variable by default.

In this example, the volatility of x and y is 'auto'. In
no_backprop_mode() context, y does not have a computational graph
but in force_backprop_mode() it has a graph.

>>> with chainer.no_backprop_mode():
...   # Variable with volatile='auto' behaves like volatile='on'
...   with chainer.force_backprop_mode():
...     # Variable with volatile='auto' behaves like volatile='off'
...     y = x + 1






See also

See no_backprop_mode() for details of back-prop mode.








	
chainer.no_backprop_mode(*args, **kwds)

	Disable back-propagation for Variable whose volatile is auto.

In the default setting a Variable object whose
volatile attribute is 'auto' behaves like a non-volatile
variable. That means such a Variable object builds a
computational graph, consumes memory to store the graph, and you can
execute back-propagation for it. With this context such a
Variable object behaves like a volatile variable.
So, you can easily switch training and evaluation.

In this example, the volatility of x and y is 'auto'. So, y
does not have a computational graph.

>>> x = chainer.Variable(numpy.array([1,], 'f'), volatile='auto')
>>> with chainer.no_backprop_mode():
...    y = x + 1













          

      

      

    

  

    
      
          
            
  
Link and Chain


	
class chainer.Link(**params)

	Building block of model definitions.

Link is a building block of neural network models that support various
features like handling parameters, defining network fragments,
serialization, etc.

Link is the primitive structure for the model definitions. It supports
management of parameter variables and persistent values that should be
incorporated to serialization. Parameters are variables registered via
the add_param() method, or given to the initializer method.
Persistent values are arrays, scalars, or any other serializable values
registered via the add_persistent() method.


Note

Whereas arbitrary serializable objects can be registered as persistent
values, it is strongly recommended to just register values that should
be treated as results of learning. A typical example of persistent
values is ones computed during training and required for testing, e.g.
running statistics for batch normalization.



Parameters and persistent values are referred by their names. They can be
accessed as attributes of the links. Link class itself manages the lists
of names of parameters and persistent values to distinguish parameters and
persistent values from other attributes.

Link can be composed into more complex models. This composition feature is
supported by child classes like Chain and ChainList. One
can create a chain by combining one or more links. See the documents for
these classes for details.

As noted above, Link supports the serialization protocol of the
Serializer class. Note that only parameters and
persistent values are saved and loaded. Other attributes are considered
as a part of user program (i.e. a part of network definition). In order to
construct a link from saved file, other attributes must be identically
reconstructed by user codes.


Example

This is a simple example of custom link definition. Chainer itself also
provides many links defined under the links module. They
might serve as examples, too.

Consider we want to define a simple primitive link that implements a
fully-connected layer based on the linear() function.
Note that this function takes input units, a weight variable, and a bias
variable as arguments. Then, the fully-connected layer can be defined as
follows:

import chainer
import chainer.functions as F
import numpy as np

class LinearLayer(chainer.Link):

    def __init__(self, n_in, n_out):
        # Parameters are initialized as a numpy array of given shape.
        super(LinearLayer, self).__init__(
            W=(n_out, n_in),
            b=(n_out,),
        )
        self.W.data[...] = np.random.randn(n_out, n_in)
        self.b.data.fill(0)

    def __call__(self, x):
        return F.linear(x, self.W, self.b)





This example shows that a user can define arbitrary parameters and use
them in any methods. Links typically implement the __call__
operator.







	Parameters:	params – Names, shapes, and optional dtypes of initial parameters. The
keywords are used as the parameter names and the corresponding
values consist either of the shape or a tuple of shape and a dtype
(shape, dtype). If only the shape is supplied, the default dtype
will be used.


	Variables:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this link, given by the parent chain (if exists).






	
add_param(name, shape, dtype=<type 'numpy.float32'>, initializer=None)

	Registers a parameter to the link.

The registered parameter is saved and loaded on serialization and
deserialization, and involved in the optimization. The data and
gradient of the variable are initialized by NaN arrays.
If initializer is not None, the data is initialized by
initializer.

If the supplied name argument corresponds to an uninitialized
parameter (that is, one that was added with the
add_uninitialized_param() method), name will be removed
from the set of uninitialized parameters.

The parameter is set to an attribute of the link with the given name.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter. This name is also used as the
attribute name. Any uninitialized parameters with the same
name will be removed.

	shape (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Shape of the parameter array.

	dtype – Data type of the parameter array.

	initializer (chainer.initializer.Initializer) – If it is not
None, the data is initialized with the given initializer.
Note that in this case dtype argument is ignored.














	
add_persistent(name, value)

	Registers a persistent value to the link.

The registered value is saved and loaded on serialization and
deserialization. The value is set to an attribute of the link.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the persistent value. This name is also used
for the attribute name.

	value – Value to be registered.














	
add_uninitialized_param(name)

	Registers an uninitialized parameter to the link.

An uninitialized parameter is defined as a parameter that has a name
but that does not yet have a shape. If the shape of a parameter
depends on the shape of the inputs to the __call__ operator,
it can be useful to defer initialization (that is, setting the shape)
until the first forward call of the link. Such parameters are
intended to be defined as uninitialized parameters in the initializer
and then initialized during the first forward call.

An uninitialized parameter is intended to be registered to a link by
calling this method in the initializer method. Then, during the
first forward call, the shape of the parameter will be determined
from the size of the inputs and the parameter must be initialized by
calling the add_param() method.





	Parameters:	name – (str): Name of the uninitialized parameter.










	
addgrads(link)

	Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding
gradient array of this link. The accumulation is even done across
host and different devices.





	Parameters:	link (Link) – Source link object.










	
children()

	Returns a generator of all child links.





	Returns:	A generator object that generates all child links.










	
cleargrads()

	Clears all gradient arrays.

This method should be called before the backward computation at every
iteration of the optimization.






	
copy()

	Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is
basically shallow, except that the parameter variables are also
shallowly copied. It means that the parameter variables of copied one
are different from ones of original link, while they share the data and
gradient arrays.

The name of the link is reset on the copy, since the copied instance
does not belong to the original parent chain (even if exists).





	Returns:	Copied link object.


	Return type:	Link










	
copyparams(link)

	Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The
copy is even done across the host and devices. Note that this method
does not copy the gradient arrays.





	Parameters:	link (Link) – Source link object.










	
has_uninitialized_params

	Check if the link has uninitialized parameters.





	Returns:	True if the link has any uninitialized parameters.
Otherwise returns False.


	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]










	
links(skipself=False)

	Returns a generator of all links under the hierarchy.





	Parameters:	skipself (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the generator skips this link
and starts with the first child link.


	Returns:	A generator object that generates all links.










	
namedlinks(skipself=False)

	Returns a generator of all (path, link) pairs under the hierarchy.





	Parameters:	skipself (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the generator skips this link
and starts with the first child link.


	Returns:	A generator object that generates all (path, link) pairs.










	
namedparams()

	Returns a generator of all (path, param) pairs under the hierarchy.





	Returns:	A generator object that generates all (path, parameter) pairs. The
paths are relative from this link.










	
params()

	Returns a generator of all parameters under the link hierarchy.





	Returns:	A generator object that generates all parameters.










	
serialize(serializer)

	Serializes the link object.





	Parameters:	serializer (AbstractSerializer) – Serializer object.










	
to_cpu()

	Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to CPU, the link implementation must
override this method to do so.

Returns: self






	
to_gpu(device=None)

	Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to GPU, the link implementation must
override this method to do so.





	Parameters:	device – Target device specifier. If omitted, the current device is
used.





Returns: self






	
xp

	Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns
numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] or cupy.






	
zerograds()

	Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less
efficient. This method is left for backward compatibility.


Deprecated since version v1.15: Use cleargrads() instead.












	
class chainer.Chain(**links)

	Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural
net models consist of many reusable fragments, and each model itself might
be embedded into a larger learnable system. Chain enables us to write a
neural net based on composition, without bothering about routine works like
collecting parameters, serialization, copying the structure with parameters
shared, etc.

This class actually provides a way to compose one or more links into one
structure. A chain can contain one or more child links. Child link is a
link registered to the chain with its own name. The child link is stored to
an attribute of the chain with the name. User can write a whole model or a
fragment of neural nets as a child class of Chain.

Each chain itself is also a link. Therefore, one can combine chains into
higher-level chains. In this way, links and chains construct a link
hierarchy. Link hierarchy forms a tree structure, where each node is
identified by the path from the root. The path is represented by a string
like a file path in UNIX, consisting of names of nodes on the path, joined
by slashes /.


Example

This is a simple example of custom chain definition. Chainer itself also
provides some chains defined under the links module.
They might serve as examples, too.

Consider we want to define a multi-layer perceptron consisting of two
hidden layers with rectifiers as activation functions. We can use the
Linear link as a building block:

import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):

    def __init__(self, n_in, n_hidden, n_out):
        # Create and register three layers for this MLP
        super(MultiLayerPerceptron, self).__init__(
            layer1=L.Linear(n_in, n_hidden),
            layer2=L.Linear(n_hidden, n_hidden),
            layer3=L.Linear(n_hidden, n_out),
        )

    def __call__(self, x):
        # Forward propagation
        h1 = F.relu(self.layer1(x))
        h2 = F.relu(self.layer2(h1))
        return self.layer3(h2)





Child links are registered via the initializer method. They also can be
registered by the add_link() method. The forward propagation is
often implemented as The __call__ operator as the above example,
though it is not mandatory.







	Parameters:	links – Child links. The keywords are used as their names. The names are
also set to the links.






	
__getitem__(name)

	Equivalent to getattr.






	
add_link(name, link)

	Registers a child link to this chain.

The registered link is saved and loaded on serialization and
deserialization, and involved in the optimization. The registered link
is called a child. The child link is set to an attribute of the chain
with the given name.

This method also sets the name attribute of the
registered link. If the given link already has the name attribute set,
then it raises an error.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the child link. This name is also used as the
attribute name.

	link (Link) – The link object to be registered.


















	
class chainer.ChainList(*links)

	Composable link with list-like interface.

This is another example of compositional link. Unlike Chain, this
class can be used like a list of child links. Each child link is indexed by
a non-negative integer, and it maintains the current number of registered
child links. The add_link() method inserts a new link at the end of
the list. It is useful to write a chain with arbitrary number of child
links, e.g. an arbitrarily deep multi-layer perceptron.

Note that this class does not implement all methods of list [https://docs.python.org/3/library/stdtypes.html#list].





	Parameters:	links – Initial child links.






	
__getitem__(index)

	Returns the child at given index.





	Parameters:	index (int [https://docs.python.org/3/library/functions.html#int]) – Index of the child in the list.


	Returns:	The index-th child link.


	Return type:	Link










	
__len__()

	Returns a number of children.






	
add_link(link)

	Registers a child link to this chain.

The registered link is saved and loaded on serialization and
deserialization, and involved in the optimization. The registered link
is called a child. The child link is accessible via children()
generator, which returns a generator running through the children in
registered order.

This method also sets the name attribute of the
registered link. If the given link already has the name attribute set,
then it raises an error.





	Parameters:	link (Link) – The link object to be registered.

















          

      

      

    

  

    
      
          
            
  
Optimizer


	
class chainer.Optimizer

	Base class of all numerical optimizers.

This class provides basic features for all optimization methods. It
optimizes parameters of a target link. The target link is registered via
the setup() method, and then the update() method updates its
parameters based on a given loss function.

Each optimizer implementation must be defined as a child class of
Optimizer. It must override update() method. An optimizer can use
internal states each of which is tied to one of the parameters. State is
a dictionary of serializable values (typically arrays of size same as
the corresponding parameters). In order to use state dictionaries, the
optimizer must override init_state() method (or its CPU/GPU versions,
init_state_cpu() and init_state_gpu()).

If the optimizer is based on single gradient computation (like
most first-order methods), then it should inherit GradientMethod,
which adds some features dedicated for the first order methods.

Optimizer instance also supports hook functions. Hook function is
registered by the add_hook() method. Each hook function is called
in registration order in advance of the actual parameter update.





	Variables:	
	target – Target link object. It is set by the setup() method.

	t – Number of update steps. It must be incremented by the
update() method.

	epoch – Current epoch. It is incremented by the new_epoch()
method.










	
accumulate_grads(grads)

	Accumulates gradients from other source.

This method just adds given gradient arrays to gradients that this
optimizer holds. It is typically used in data-parallel optimization,
where gradients for different shards are computed in parallel and
aggregated by this method. This method correctly treats multiple GPU
devices.





	Parameters:	grads (Iterable) – Iterable of gradient arrays to be accumulated.






Deprecated since version v1.5: Use the chainer.Link.addgrads() method of the target link
instead.








	
add_hook(hook, name=None)

	Registers a hook function.

Hook function is typically called right after the gradient computation,
though the timing depends on the optimization method.





	Parameters:	
	hook (function) – Hook function. It accepts the optimizer object.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the registration. If omitted, hook.name is
used by default.














	
call_hooks()

	Invokes hook functions in registration order.






	
clip_grads(maxnorm)

	Clips the norm of whole gradients up to the threshold.





	Parameters:	maxnorm (float [https://docs.python.org/3/library/functions.html#float]) – Threshold of gradient L2 norm.






Deprecated since version v1.5: Use the GradientClipping hook function
instead.








	
compute_grads_norm()

	Computes the norm of whole gradients.





	Returns:	L2 norm of whole gradients, i.e. square root of sum of
square of all gradient elements.


	Return type:	float [https://docs.python.org/3/library/functions.html#float]






Warning

This method returns a CPU-computed value, which means that this
method synchronizes between CPU and GPU if at least one of the
gradients reside on the GPU.




Deprecated since version v1.5.








	
init_state(param, state)

	Initializes the optimizer state corresponding to the parameter.

This method should add needed items to the state dictionary. Each
optimizer implementation that uses its own states should override this
method or CPU/GPU dedicated versions (init_state_cpu() and
init_state_gpu()).





	Parameters:	
	param (Variable) – Parameter variable.

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – State dictionary.










See also

init_state_cpu(), init_state_gpu()








	
init_state_cpu(param, state)

	Initializes the optimizer state on CPU.

This method is called from init_state() by default.





	Parameters:	
	param (Variable) – Parameter variable. Its data array is
of type numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – State dictionary.










See also

init_state()








	
init_state_gpu(param, state)

	Initializes the optimizer state on GPU.

This method is called from init_state() by default.





	Parameters:	
	param (Variable) – Parameter variable. Its data array is
of type cupy.ndarray.

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – State dictionary.










See also

init_state()








	
new_epoch()

	Starts a new epoch.

This method increments the epoch count. Note that if the
optimizer depends on the epoch count, then user should call this method
appropriately at the beginning of each epoch.






	
prepare()

	Prepares for an update.

This method initializes missing optimizer states (e.g. for newly added
parameters after the set up), and copies arrays in each state
dictionary to CPU or GPU according to the corresponding parameter
array.






	
remove_hook(name)

	Removes a hook function.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Registered name of the hook function to remove.










	
serialize(serializer)

	Serializes or deserializes the optimizer.

It only saves or loads the following things:


	Optimizer states

	Global states (t and epoch)



It does not saves nor loads the parameters of the target link. They
should be separately saved or loaded.





	Parameters:	serializer (AbstractSerializer) – Serializer or
deserializer object.










	
setup(link)

	Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the
optimizer state dictionaries corresponding to all parameters in the
link hierarchy. The existing states are discarded.





	Parameters:	link (Link) – Target link object.










	
update(lossfun=None, *args, **kwds)

	Updates the parameters and optimizer states.

This method updates the parameters of the target link and corresponding
optimizer states. The behavior of this method is different for the
cases either lossfun is given or not.

If lossfun is given, then this method initializes the gradients by
zeros, calls it with given extra arguments, and calls the
backward() method of its output to compute the
gradients. The implementation might call lossfun more than once.

If lossfun is not given, then this method assumes that the
gradients of all parameters are already computed. An implementation
that requires multiple gradient computations might raise an error on
this case.

In both cases, this method invokes the update procedure for all
parameters.





	Parameters:	
	lossfun (function) – Loss function. It accepts arbitrary arguments
and returns one Variable object that
represents the loss (or objective) value. This argument can be
omitted for single gradient-based methods. In this case, this
method assumes gradient arrays computed.

	kwds (args,) – Arguments for the loss function.














	
weight_decay(decay)

	Applies weight decay to the parameter/gradient pairs.





	Parameters:	decay (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient of weight decay.






Deprecated since version v1.5: Use the WeightDecay hook function
instead.








	
zero_grads()

	Fills all gradient arrays by zeros.


Deprecated since version v1.5: Use the chainer.Link.cleargrads() method for the target link
instead.












	
class chainer.GradientMethod

	Base class of all single gradient-based optimizers.

This is an extension of the Optimizer class. Typical gradient
methods that just require the gradient at the current parameter vector on
an update can be implemented as its child class.

An implementation of a gradient method must override the following methods:


	init_state() or both init_state_cpu() and
init_state_gpu()

	update_one() or both update_one_cpu() and
update_one_gpu()




Note

It is recommended to call use_cleargrads() after creating a
GradientMethod object for efficiency.




	
call_hooks()

	Invokes hook functions in registration order.






	
reallocate_cleared_grads()

	Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None [https://docs.python.org/3/library/constants.html#None].
This method is called before and after every optimizer hook.
If an inheriting optimizer does not require this allocation,
the optimizer can override this method with a blank function.






	
update(lossfun=None, *args, **kwds)

	Updates parameters based on a loss function or computed gradients.

This method runs in two ways.


	If lossfun is given, then use it as a loss function to compute
gradients.

	Otherwise, this method assumes that the gradients are already
computed.



In both cases, the computed gradients are used to update parameters.
The actual update routines are defined by the update_one()
method (or its CPU/GPU versions, update_one_cpu() and
update_one_gpu()).






	
update_one(param, state)

	Updates a parameter based on the corresponding gradient and state.

This method calls appropriate one from update_param_cpu() or
update_param_gpu().





	Parameters:	
	param (Variable) – Parameter variable.

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – State dictionary.














	
update_one_cpu(param, state)

	Updates a parameter on CPU.





	Parameters:	
	param (Variable) – Parameter variable.

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – State dictionary.














	
update_one_gpu(param, state)

	Updates a parameter on GPU.





	Parameters:	
	param (Variable) – Parameter variable.

	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – State dictionary.














	
use_cleargrads(use=True)

	Enables or disables use of cleargrads() in update.





	Parameters:	use (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function enables use of
cleargrads. If False, disables use of cleargrads
(zerograds is used).






Note

Note that update() calls zerograds() by default
for backward compatibility. It is recommended to call this method
before first call of update because cleargrads is more
efficient than zerograds.












Hook functions


	
class chainer.optimizer.WeightDecay(rate)

	Optimizer hook function for weight decay regularization.

This hook function adds a scaled parameter to the corresponding gradient.
It can be used as a regularization.





	Parameters:	rate (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient for the weight decay.


	Variables:	rate (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient for the weight decay.










	
class chainer.optimizer.Lasso(rate)

	Optimizer hook function for Lasso regularization.

This hook function adds a scaled parameter to the sign of each weight.
It can be used as a regularization.





	Parameters:	rate (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient for the weight decay.


	Variables:	rate (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient for the weight decay.










	
class chainer.optimizer.GradientClipping(threshold)

	Optimizer hook function for gradient clipping.

This hook function scales all gradient arrays to fit to the defined L2 norm
threshold.





	Parameters:	threshold (float [https://docs.python.org/3/library/functions.html#float]) – L2 norm threshold.


	Variables:	threshold (float [https://docs.python.org/3/library/functions.html#float]) – L2 norm threshold of gradient norm.










	
class chainer.optimizer.GradientNoise(eta, noise_func=<function exponential_decay_noise>)

	Optimizer hook function for adding gradient noise.

This hook function simply adds noise generated by the noise_func
to the gradient. By default it adds time-dependent annealed Gaussian
noise to the gradient at every training step:


\[g_t \leftarrow g_t + N(0, \sigma_t^2)\]

where


\[\sigma_t^2 = \frac{\eta}{(1+t)^\gamma}\]

with \(\eta\) selected from {0.01, 0.3, 1.0} and
\(\gamma = 0.55\).





	Parameters:	
	eta (float [https://docs.python.org/3/library/functions.html#float]) – Parameter that defines the scale of the noise, which for
the default noise function is recommended to be either 0.01, 0.3
or 1.0.

	noise_func (function) – Noise generating function which by default
is given by Adding Gradient Noise Improves Learning for Very Deep            Networks [https://arxiv.org/pdf/1511.06807].



















          

      

      

    

  

    
      
          
            
  
Serializer


	
class chainer.AbstractSerializer

	Abstract base class of all serializers and deserializers.


	
__call__(key, value)

	Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key.
Note that some type information might be missed depending on the
implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The
deserialization differently works on scalars and arrays. For scalars,
the value argument is used just for determining the type of
restored value to be converted, and the converted value is returned.
For arrays, the restored elements are directly copied into the
value argument. String values are treated like scalars. If the
value argument is None, the type of the restored value will
typically be a numpy array but can depend on the particular subclass
implementation.





	Parameters:	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the serialization entry.

	value (scalar, array, None [https://docs.python.org/3/library/constants.html#None], or str [https://docs.python.org/3/library/stdtypes.html#str]) – Object to be (de)serialized.
None is only supported by deserializers.






	Returns:	Serialized or deserialized value.












	
__getitem__(key)

	Gets a child serializer.

This operator creates a _child_ serializer represented by the given
key.





	Parameters:	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the child serializer.














	
class chainer.Serializer

	Base class of all serializers.


	
save(obj)

	Saves an object by this serializer.

This is equivalent to obj.serialize(self).





	Parameters:	obj – Target object to be serialized.














	
class chainer.Deserializer

	Base class of all deserializers.


	
load(obj)

	Loads an object from this deserializer.

This is equivalent to obj.serialize(self).





	Parameters:	obj – Target object to be serialized.

















          

      

      

    

  

    
      
          
            
  
Dataset abstraction

Chainer has a support of common interface of training and validation datasets. The dataset support consists of three components: datasets, iterators, and batch conversion functions.

Dataset represents a set of examples. The interface is only determined by combination with iterators you want to use on it. The built-in iterators of Chainer requires the dataset to support __getitem__ and __len__ method. In particular, the __getitem__ method should support indexing by both an integer and a slice. We can easily support slice indexing by inheriting DatasetMixin, in which case users only have to implement get_example() method for indexing. Some iterators also restrict the type of each example. Basically, datasets are considered as stateless objects, so that we do not need to save the dataset as a checkpoint of the training procedure.

Iterator iterates over the dataset, and at each iteration, it yields a mini batch of examples as a list. Iterators should support the Iterator interface, which includes the standard iterator protocol of Python. Iterators manage where to read next, which means they are stateful.

Batch conversion function converts the mini batch into arrays to feed to the neural nets. They are also responsible to send each array to an appropriate device. Chainer currently provides concat_examples() as the only example of batch conversion functions.

These components are all customizable, and designed to have a minimum interface to restrict the types of datasets and ways to handle them. In most cases, though, implementations provided by Chainer itself are enough to cover the usages.

Chainer also has a light system to download, manage, and cache concrete examples of datasets. All datasets managed through the system are saved under the dataset root directory, which is determined by the CHAINER_DATASET_ROOT environment variable, and can also be set by the set_dataset_root() function.


Dataset representation

See Dataset examples for dataset implementations.


	
class chainer.dataset.DatasetMixin

	Default implementation of dataset indexing.

DatasetMixin provides the __getitem__() operator. The default
implementation uses get_example() to extract each example, and
combines the results into a list. This mixin makes it easy to implement a
new dataset that does not support efficient slicing.

Dataset implementation using DatasetMixin still has to provide the
__len__() operator explicitly.


	
__getitem__(index)

	Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer
array indexing. It uses the get_example() method by default, but
it may be overridden by the implementation to, for example, improve the
slicing performance.





	Parameters:	index (int [https://docs.python.org/3/library/functions.html#int], slice [https://docs.python.org/3/library/functions.html#slice], list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An index of an example
or indexes of examples.


	Returns:	If index is int, returns an example created by get_example.
If index is either slice or one-dimensional list or numpy.ndarray,
returns a list of examples created by get_example.






Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]   # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]












	
__len__()

	Returns the number of data points.






	
get_example(i)

	Returns the i-th example.

Implementations should override it. It should raise IndexError [https://docs.python.org/3/library/exceptions.html#IndexError]
if the index is invalid.





	Parameters:	i (int [https://docs.python.org/3/library/functions.html#int]) – The index of the example.


	Returns:	The i-th example.
















Iterator interface

See Iterator examples for dataset iterator implementations.


	
class chainer.dataset.Iterator

	Base class of all dataset iterators.

Iterator iterates over the dataset, yielding a minibatch at each
iteration. Minibatch is a list of examples. Each implementation should
implement an iterator protocol (e.g., the __next__() method).

Note that, even if the iterator supports setting the batch size, it does
not guarantee that each batch always contains the same number of examples.
For example, if you let the iterator to stop at the end of the sweep, the
last batch may contain a fewer number of examples.

The interface between the iterator and the underlying dataset is not fixed,
and up to the implementation.

Each implementation should provide the following attributes (not needed to
be writable).


	batch_size: Number of examples within each minibatch.

	epoch: Number of completed sweeps over the dataset.

	epoch_detail: Floating point number version of the epoch. For
example, if the iterator is at the middle of the dataset at the third
epoch, then this value is 2.5.

	previous_epoch_detail: The value of epoch_detail at the previous
iteration. This value is None before the first iteration.

	is_new_epoch: True if the epoch count was incremented at the last
update.



Each implementation should also support serialization to resume/suspend the
iteration.


	
__iter__()

	Returns self.






	
__next__()

	Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the
StopIteration [https://docs.python.org/3/library/exceptions.html#StopIteration] exception when it stops the iteration.






	
finalize()

	Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to
better handle the internal resources.






	
next()

	Python2 alternative of __next__.

It calls __next__() by default.






	
serialize(serializer)

	Serializes the internal state of the iterator.

This is a method to support serializer protocol of Chainer.


Note

It should only serialize the internal state that changes over the
iteration. It should not serializes what is set manually by
users such as the batch size.














Batch conversion function


	
chainer.dataset.concat_examples(batch, device=None, padding=None)

	Concatenates a list of examples into array(s).

Dataset iterator yields a list of examples. If each example is an array,
this function concatenates them along the newly-inserted first axis (called
batch dimension) into one array. The basic behavior is same for examples
consisting of multiple arrays, i.e., corresponding arrays of all examples
are concatenated.

For instance, consider each example consists of two arrays (x, y).
Then, this function concatenates x ‘s into one array, and y ‘s
into another array, and returns a tuple of these two arrays. Another
example: consider each example is a dictionary of two entries whose keys
are 'x' and 'y', respectively, and values are arrays. Then, this
function concatenates x ‘s into one array, and y ‘s into another
array, and returns a dictionary with two entries x and y whose
values are the concatenated arrays.

When the arrays to concatenate have different shapes, the behavior depends
on the padding value. If padding is None (default), it raises
an error. Otherwise, it builds an array of the minimum shape that the
contents of all arrays can be substituted to. The padding value is then
used to the extra elements of the resulting arrays.

TODO(beam2d): Add an example.





	Parameters:	
	batch (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of examples. This is typically given by a dataset
iterator.

	device (int [https://docs.python.org/3/library/functions.html#int]) – Device ID to which each array is sent. Negative value
indicates the host memory (CPU). If it is omitted, all arrays are
left in the original device.

	padding – Scalar value for extra elements. If this is None (default),
an error is raised on shape mismatch. Otherwise, an array of
minimum dimensionalities that can accommodate all arrays is
created, and elements outside of the examples are padded by this
value.






	Returns:	Array, a tuple of arrays, or a dictionary of arrays. The type depends
on the type of each example in the batch.












	
chainer.dataset.to_device(device, x)

	Send an array to a given device.

This method send a given array to a given device. This method is used in
concat_examples().
You can also use this method in a custom converter method used in
Updater and Extension
such as StandardUpdater and
Evaluator.





	Parameters:	
	device (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Device ID to which an array is sent. If it is
negative value, an array is sent to CPU. If it is positive, an
array is sent to GPU with the given ID. If it is None, an
array is left in the original device.

	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – An array to send.






	Returns:	Converted array.














Dataset management


	
chainer.dataset.get_dataset_root()

	Gets the path to the root directory to download and cache datasets.





	Returns:	The path to the dataset root directory.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
chainer.dataset.set_dataset_root(path)

	Sets the root directory to download and cache datasets.

There are two ways to set the dataset root directory. One is by setting the
environment variable CHAINER_DATASET_ROOT. The other is by using this
function. If both are specified, one specified via this function is used.
The default dataset root is $HOME/.chainer/dataset.





	Parameters:	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the new dataset root directory.










	
chainer.dataset.cached_download(url)

	Downloads a file and caches it.

It downloads a file from the URL if there is no corresponding cache. After
the download, this function stores a cache to the directory under the
dataset root (see set_dataset_root()). If there is already a cache
for the given URL, it just returns the path to the cache without
downloading the same file.





	Parameters:	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to download from.


	Returns:	Path to the downloaded file.


	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]










	
chainer.dataset.cache_or_load_file(path, creator, loader)

	Caches a file if it does not exist, or loads it otherwise.

This is a utility function used in dataset loading routines. The
creator creates the file to given path, and returns the content. If the
file already exists, the loader is called instead, and it loads the
file and returns the content.

Note that the path passed to the creator is temporary one, and not same as
the path given to this function. This function safely renames the file
created by the creator to a given path, even if this function is called
simultaneously by multiple threads or processes.





	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to save the cached file.

	creator – Function to create the file and returns the content. It takes
a path to temporary place as the argument. Before calling the
creator, there is no file at the temporary path.

	loader – Function to load the cached file and returns the content.






	Returns:	It returns the returned values by the creator or the loader.

















          

      

      

    

  

    
      
          
            
  
Training loop abstraction

Chainer provides a standard implementation of the training loops under the chainer.training module. It is built on top of many other core features of Chainer, including Variable and Function, Link/Chain/ChainList, Optimizer, Dataset, and Reporter/Summary. Compared to the training loop abstraction of other machine learning tool kits, Chainer’s training framework aims at maximal flexibility, while keeps the simplicity for the typical usages. Most components are pluggable, and users can overwrite the definition.

The core of the training loop abstraction is Trainer, which implements the training loop itself. The training loop consists of two parts: one is Updater, which actually updates the parameters to train, and the other is Extension for arbitrary functionalities other than the parameter update.

Updater and some extensions use dataset and Iterator to scan the datasets and load mini batches. The trainer also uses Reporter to collect the observed values, and some extensions use DictSummary to accumulate them and computes the statistics.

You can find many examples for the usage of this training utilities from the official examples. You can also search the extension implementations from Trainer extensions.


Trainer


	
class chainer.training.Trainer(updater, stop_trigger=None, out='result')

	The standard training loop in Chainer.

Trainer is an implementation of a training loop. Users can invoke the
training by calling the run() method.

Each iteration of the training loop proceeds as follows.


	Update of the parameters. It includes the mini-batch loading, forward
and backward computations, and an execution of the update formula.
These are all done by the update object held by the trainer.

	Invocation of trainer extensions in the descending order of their
priorities. A trigger object is attached to each extension, and it
decides at each iteration whether the extension should be executed.
Trigger objects are callable objects that take the trainer object as the
argument and return a boolean value indicating whether the extension
should be called or not.



Extensions are callable objects that take the trainer object as the
argument. There are three ways to define custom extensions: inheriting the
Extension class, decorating functions by make_extension(),
and defining any callable including lambda functions. See
Extension for more details on custom extensions and how to
configure them.

Users can register extensions to the trainer by calling the extend()
method, where some configurations can be added.


	Trigger object, which is also explained above. In most cases,
IntervalTrigger is used, in which case users can simply specify
a tuple of the interval length and its unit, like
(1000, 'iteration') or (1, 'epoch').

	The order of execution of extensions is determined by their priorities.
Extensions of higher priorities are invoked earlier. There are three
standard values for the priorities:
	PRIORITY_WRITER. This is the priority for extensions that write
some records to the observation dictionary. It includes cases
that the extension directly adds values to the observation dictionary,
or the extension uses the chainer.report() function to report
values to the observation dictionary.

	PRIORITY_EDITOR. This is the priority for extensions that edit the
observation dictionary based on already reported values.

	PRIORITY_READER. This is the priority for extensions that only read
records from the observation dictionary. This is also suitable
for extensions that do not use the observation dictionary at
all.





	Extensions with invoke_before_training flag on are also invoked at
the beginning of the training loop. Extensions that update the training
status (e.g., changing learning rates) should have this flag to be
True to ensure that resume of the training loop correctly recovers
the training status.



The current state of the trainer object and objects handled by the trainer
can be serialized through the standard serialization protocol of Chainer.
It enables us to easily suspend and resume the training loop.


Note

The serialization does not recover everything of the training loop. It
only recovers the states which change over the training (e.g.
parameters, optimizer states, the batch iterator state, extension
states, etc.). You must initialize the objects correctly before
deserializing the states.

On the other hand, it means that users can change the settings on
deserialization. For example, the exit condition can be changed on the
deserialization, so users can train the model for some iterations,
suspend it, and then resume it with larger number of total iterations.



During the training, it also creates a Reporter object to
store observed values on each update. For each iteration, it creates a
fresh observation dictionary and stores it in the observation
attribute.

Links of the target model of each optimizer are registered to the reporter
object as observers, where the name of each observer is constructed as the
format <optimizer name><link name>. The link name is given by the
chainer.Link.namedlink() method, which represents the path to each
link in the hierarchy. Other observers can be registered by accessing the
reporter object via the reporter attribute.

The default trainer is plain, i.e., it does not contain any extensions.





	Parameters:	
	updater (Updater) – Updater object. It defines how to
update the models.

	stop_trigger – Trigger that determines when to stop the training loop.
If it is not callable, it is passed to IntervalTrigger.






	Variables:	
	updater – The updater object for this trainer.

	stop_trigger – Trigger that determines when to stop the training loop.
The training loop stops at the iteration on which this trigger
returns True.

	observation – Observation of values made at the last update. See the
Reporter class for details.

	out – Output directory.

	reporter – Reporter object to report observed values.










	
elapsed_time

	Total time used for the training.

The time is in seconds. If the training is resumed from snapshot, it
includes the time of all the previous training to get the current
state of the trainer.






	
extend(extension, name=None, trigger=None, priority=None, invoke_before_training=None)

	Registers an extension to the trainer.

Extension is a callable object which is called after each
update unless the corresponding trigger object decides to skip the
iteration. The order of execution is determined by priorities:
extensions with higher priorities are called earlier in each iteration.
Extensions with the same priority are invoked in the order of
registrations.

If two or more extensions with the same name are registered, suffixes
are added to the names of the second to last extensions. The suffix is
_N where N is the ordinal of the extensions.

See Extension for the interface of extensions.





	Parameters:	
	extension – Extension to register.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the extension. If it is omitted, the
default_name attribute of the extension is used instead.
Note that the name would be suffixed by an ordinal in case of
duplicated names as explained above.

	trigger (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or Trigger) – Trigger object that determines when to
invoke the extension. If it is None, extension.trigger
is used instead. If it is None and the extension does not
have the trigger attribute, the extension is triggered at every
iteration by default. If the trigger is not callable, it is
passed to IntervalTrigger to build an interval
trigger.

	priority (int [https://docs.python.org/3/library/functions.html#int]) – Invocation priority of the extension. Extensions
are invoked in the descending order of priorities in each
iteration. If this is None, extension.priority is used
instead.

	invoke_before_training (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – If True, the extension
is also invoked just before entering the training loop. If this
is None, extension.invoke_before_training is used
instead. This option is mainly used for extensions that alter
the training configuration (e.g., learning rates); in such a
case, resuming from snapshots require the call of extension to
recover the configuration before any updates.














	
get_extension(name)

	Returns the extension of a given name.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the extension.


	Returns:	Extension.










	
run()

	Executes the training loop.

This method is the core of Trainer. It executes the whole loop of
training the models.

Note that this method cannot run multiple times for one trainer object.












Updater


	
class chainer.training.Updater

	Interface of updater objects for trainers.

TODO(beam2d): document it.


	
connect_trainer(trainer)

	Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the
reporter of the trainer. This method is called at the end of the
initialization of Trainer. The default
implementation does nothing.





	Parameters:	trainer (Trainer) – Trainer object to which the
updater is registered.










	
finalize()

	Finalizes the updater object.

This method is called at the end of training loops. It should finalize
each dataset iterator used in this updater.






	
get_all_optimizers()

	Gets a dictionary of all optimizers for this updater.





	Returns:	Dictionary that maps names to optimizers.


	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
get_optimizer(name)

	Gets the optimizer of given name.

Updater holds one or more optimizers with names. They can be retrieved
by this method.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the optimizer.


	Returns:	Optimizer of the name.


	Return type:	Optimizer










	
serialize(serializer)

	Serializes the current state of the updater object.






	
update()

	Updates the parameters of the target model.

This method implements an update formula for the training task,
including data loading, forward/backward computations, and actual
updates of parameters.

This method is called once at each iteration of the training loop.










	
class chainer.training.StandardUpdater(iterator, optimizer, converter=<function concat_examples>, device=None, loss_func=None)

	Standard implementation of Updater.

This is the standard implementation of Updater. It accepts one or
more training datasets and one or more optimizers. The default update
routine assumes that there is only one training dataset and one optimizer.
Users can override this update routine by inheriting this class and
overriding the update_core() method. Each batch is converted to input
arrays by concat_examples() by default, which can
also be manually set by converter argument.





	Parameters:	
	iterator – Dataset iterator for the training dataset. It can also be a
dictionary of iterators. If this is just an iterator, then the
iterator is registered by the name 'main'.

	optimizer – Optimizer to update parameters. It can also be a dictionary
of optimizers. If this is just an optimizer, then the optimizer is
registered by the name 'main'.

	converter – Converter function to build input arrays. Each batch
extracted by the main iterator and the device option are passed
to this function. concat_examples() is used
by default.

	device – Device to which the training data is sent. Negative value
indicates the host memory (CPU).

	loss_func – Loss function. The target link of the main optimizer is used
by default.






	Variables:	
	converter – Converter function.

	loss_func – Loss function. If it is None, the target link of the
main optimizer is used instead.

	device – Device to which the training data is sent.

	iteration – Current number of completed updates.










	
get_iterator(name)

	Gets the dataset iterator of given name.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the dataset iterator.


	Returns:	Corresponding dataset iterator.


	Return type:	Iterator














	
class chainer.training.ParallelUpdater(iterator, optimizer, converter=<function concat_examples>, models=None, devices=None, loss_func=None)

	Implementation of a parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs.
It behaves similarly to StandardUpdater. The
update routine is modified to support data-parallel computation on multiple
GPUs in one machine. It is based on synchronous parallel SGD: it
parallelizes the gradient computation over a mini-batch, and updates the
parameters only in the main device.





	Parameters:	
	iterator – Dataset iterator for the training dataset. It can also be a
dictionary of iterators. If this is just an iterator, then the
iterator is registered by the name 'main'.

	optimizer – Optimizer to update parameters. It can also be a dictionary
of optimizers. If this is just an optimizer, then the optimizer is
registered by the name 'main'.

	converter – Converter function to build input arrays. Each batch
extracted by the main iterator is split equally between the
devices and then passed with corresponding device option to
this function. concat_examples() is used by
default.

	models – Dictionary of models. The main model should be the same model
attached to the 'main' optimizer.

	devices – Dictionary of devices to which the training data is sent. The
devices should be arranged in a dictionary with the same structure
as models.

	loss_func – Loss function. The model is used as a loss function by
default.
















Extension


	
class chainer.training.Extension

	Base class of trainer extensions.

Extension of Trainer is a callable object that takes the trainer
object as the argument. It also provides some default configurations as its
attributes, e.g. the default trigger and the default priority. This class
provides a set of typical default values for these attributes.

There are three ways to define users’ own extensions: inheriting this
class, decorating closures by make_extension(), or using any callable
including lambda functions as extensions. Decorator can slightly reduce the
overhead and is much easier to use, while this class provides more
flexibility (for example, it can have methods to configure the behavior).
Using a lambda function allows one-line coding for simple purposes, but
users have to specify the configurations as arguments to
Trainer.extend(). For a callable not inheriting this class, the
default configurations of this class are used unless the user explicitly
specifies them in Trainer.extend() method.





	Variables:	
	trigger – Default value of trigger for this extension. It is set to
(1, 'iteration') by default.

	priority – Default priority of the extension. It is set to
PRIORITY_READER by default.

	invoke_before_training – Default flag to decide whether this extension
should be invoked before the training starts. The default value is
False.










	
__call__(trainer)

	Invokes the extension.

Implementations should override this operator. This method is called
at iterations which the corresponding trigger accepts.





	Parameters:	trainer (Trainer) – Trainer object that calls this operator.










	
default_name

	Default name of the extension.

It is the name of the class by default. Implementation can override
this property, or provide a class attribute to hide it.






	
finalize()

	Finalizes the extension.

This method is called at the end of the training loop.






	
serialize(serializer)

	Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It
serializes nothing by default.










	
chainer.training.make_extension(trigger=None, default_name=None, priority=None, invoke_before_training=False, finalizer=None)

	Decorator to make given functions into trainer extensions.

This decorator just adds some attributes to a given function. The value of
the attributes are given by the arguments of this decorator.

See Extension for details of trainer extensions. Most of the
default values of arguments also follow those for this class.





	Parameters:	
	trigger – Default trigger of the extension.

	default_name – Default name of the extension. The name of a given
function is used by default.

	priority (int [https://docs.python.org/3/library/functions.html#int]) – Default priority of the extension.

	invoke_before_training (bool [https://docs.python.org/3/library/functions.html#bool]) – Default flag to decide whether the
extension should be invoked before any training.

	finalizer – Finalizer function of this extension. The finalizer is
called at the end of the training loop.
















Trigger

Trigger is a callable object to decide when to process some specific event within the training loop. It takes a Trainer object as the argument, and returns True if some event should be fired.

It is mainly used to determine when to call an extension. It is also used to determine when to quit the training loop.


	
chainer.training.get_trigger(trigger)

	Gets a trigger object.

Trigger object is a callable that accepts a
Trainer object as an argument and returns a
boolean value. When it returns True, various kinds of events can occur
depending on the context in which the trigger is used. For example, if the
trigger is passed to the Trainer as the stop
trigger, the training loop breaks when the trigger returns True. If the
trigger is passed to the extend() method of
a trainer, then the registered extension is invoked only when the trigger
returns True.

This function returns a trigger object based on the argument.
If trigger is already a callable, it just returns the trigger. If
trigger is None, it returns a trigger that never fires. Otherwise,
it passes the value to IntervalTrigger.





	Parameters:	trigger – Trigger object. It can be either an already built trigger
object (i.e., a callable object that accepts a trainer object and
returns a bool value), or a tuple. In latter case, the tuple is
passed to IntervalTrigger.


	Returns:	trigger if it is a callable, otherwise a
IntervalTrigger
object made from trigger.















          

      

      

    

  

    
      
          
            
  
Debug mode

In debug mode, Chainer checks values of variables on runtime and shows more
detailed error messages.
It helps you to debug your programs.
Instead it requires additional overhead time.

In debug mode, Chainer checks all results of forward and backward computation, and if it founds a NaN value, it raises RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError].
Some functions and links also check validity of input values.


	
chainer.is_debug()

	Get the debug mode.





	Returns:	Return True if Chainer is in debug mode.


	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]










	
chainer.set_debug(debug)

	Set the debug mode.


Note

This method changes global state. When you use this method on
multi-threading environment, it may affects other threads.







	Parameters:	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – New debug mode.










	
class chainer.DebugMode(debug)

	Debug mode context.

This class provides a context manager for debug mode. When entering the
context, it sets the debug mode to the value of debug parameter with
memorizing its original value. When exiting the context, it sets the debug
mode back to the original value.





	Parameters:	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – Debug mode used in the context.













          

      

      

    

  

    
      
          
            
  
FunctionSet (deprecated)


	
class chainer.FunctionSet(**links)

	Set of links (as “parameterized functions”).

FunctionSet is a subclass of Chain. Function
registration is done just by adding an attribute to object [https://docs.python.org/3/library/functions.html#object].


Deprecated since version v1.5: Use Chain instead.


Note

FunctionSet was used for manipulation of one or more parameterized
functions. The concept of parameterized function is gone, and it has
been replaced by Link and Chain.






	
__getitem__(key)

	Returns an attribute by name.





	Parameters:	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the attribute.


	Returns:	Attribute.






Example

>>> model = chainer.FunctionSet(l1=L.Linear(10, 10),
...                             l2=L.Linear(10, 10))
>>> l1 = model['l1']  # equivalent to l1 = model.l1












	
collect_parameters()

	Returns a tuple of parameters and gradients.





	Returns:	Tuple (pair) of two tuples. The first element is a tuple of
parameter arrays, and the second is a tuple of gradient arrays.










	
copy_parameters_from(params)

	Copies parameters from another source without reallocation.





	Parameters:	params (Iterable) – Iterable of parameter arrays.










	
gradients

	Tuple of gradient arrays of all registered functions.

The order of gradients is consistent with parameters() property.






	
parameters

	Tuple of parameter arrays of all registered functions.

The order of parameters is consistent with parameters() property.
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CUDA utilities

Device, context and memory management on CuPy.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU
computation. Following modules and classes are imported to cuda
module for convenience (refer to this table when reading chainer’s source
codes).







	imported name
	original name




	chainer.cuda.cupy
	cupy


	chainer.cuda.ndarray
	cupy.ndarray


	chainer.cuda.cupy.cuda
	cupy.cuda


	chainer.cuda.Device
	cupy.cuda.Device


	chainer.cuda.Event
	cupy.cuda.Event


	chainer.cuda.Stream
	cupy.cuda.Stream





Chainer replaces the default allocator of CuPy by its memory pool
implementation. It enables us to reuse the device memory over multiple
forward/backward computations, and temporary arrays for consecutive elementwise
operations.


Devices


	
chainer.cuda.get_device(*args)

	Gets the device from a device object, an ID integer or an array object.


Note

This API is deprecated. Please use
:method:`cupy.cuda.get_device_from_id`
or :method:`cupy.cuda.get_device_from_array` instead.



This is a convenient utility to select a correct device if the type of
arg is unknown (i.e., one can use this function on arrays that may be
on CPU or GPU). The returned device object supports the context management
protocol of Python for the with statement.





	Parameters:	args – Values to specify a GPU device. The first device object, integer
or cupy.ndarray object is used to select a device.
If it is a device object, it is returned. If it is an integer,
the corresponding device is returned. If it is a CuPy array,
the device on which this array reside is returned. If any
arguments are neither integers nor CuPy arrays, a dummy device
object representing CPU is returned.


	Returns:	Device object specified by given args.






See also

See cupy.cuda.Device for the device selection not by arrays.








	
chainer.cuda.get_device_from_id(device_id)

	Gets the device from an ID integer.





	Parameters:	device_id (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The ID of the device which this function
returns.










	
chainer.cuda.get_device_from_array(*arrays)

	Gets the device from a list of CuPy array or a single CuPy array.

The device on which the given CuPy array reside is returned.





	Parameters:	array (cupy.ndarray or list of cupy.ndarray) – A CuPy array which this function returns the device corresponding
to. If a list of :class:`cupy.ndarray`s are given, it returns
the first device object of an array in the list.












CuPy array allocation and copy


Note

As of v1.3.0, the following array construction wrappers are marked as
deprecated. Use the corresponding functions of the cupy module
instead. The main difference of them is that the default dtype is changed
from float32 to float64.







	Deprecated functions
	Recommended functions




	chainer.cuda.empty
	cupy.empty()


	chainer.cuda.empty_like
	cupy.empty_like()


	chainer.cuda.zeros
	cupy.zeros()


	chainer.cuda.zeros_like
	cupy.zeros_like()


	chainer.cuda.ones
	cupy.ones()


	chainer.cuda.ones_like
	cupy.ones_like()


	chainer.cuda.full
	cupy.full()


	chainer.cuda.full_like
	cupy.full_like()








	
chainer.cuda.copy(array, out=None, out_device=None, stream=None)

	Copies a cupy.ndarray object using the default stream.

This function can copy the device array to the destination array on another
device.





	Parameters:	
	array (cupy.ndarray) – Array to be copied.

	out (cupy.ndarray) – Destination array.
If it is not None, then out_device argument is ignored.

	out_device – Destination device specifier. Actual device object is
obtained by passing this value to get_device().

	stream (cupy.cuda.Stream) – CUDA stream.






	Returns:	Copied array.

If out is not specified, then the array is allocated on the device
specified by out_device argument.






	Return type:	cupy.ndarray












	
chainer.cuda.to_cpu(array, stream=None)

	Copies the given GPU array to host CPU.





	Parameters:	
	array – Array to be sent to CPU.

	stream (cupy.cuda.Stream) – CUDA stream.






	Returns:	Array on CPU.

If given array is already on CPU, then this function just returns
array without performing any copy.






	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]












	
chainer.cuda.to_gpu(array, device=None, stream=None)

	Copies the given CPU array to specified device.





	Parameters:	
	array – Array to be sent to GPU.

	device – Device specifier.

	stream (cupy.cuda.Stream) – CUDA stream. If not None, the copy runs
asynchronously.






	Returns:	Array on GPU.

If array is already on GPU, then this function just returns
array without performing any copy. Note that this function does not
copy cupy.ndarray into specified device.






	Return type:	cupy.ndarray














Kernel definition utilities


	
chainer.cuda.memoize(for_each_device=False)

	Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that
this function can be used in the global scope even if CUDA is not
available. In such case, this function does nothing.


Note

This decorator acts as a dummy if CUDA is not available. It cannot be
used for general purpose memoization even if for_each_device is set
to False.








	
chainer.cuda.clear_memo()

	Clears the memoized results for all functions decorated by memoize.

This function works like cupy.clear_memo() as a counterpart for
chainer.cuda.memoize(). It can be used even if CUDA is not available.
In such a case, this function does nothing.






	
chainer.cuda.elementwise()

	Creates an elementwise kernel function.

This function uses memoize() to cache the
kernel object, i.e. the resulting kernel object is cached for each argument
combination and CUDA device.

The arguments are the same as those for
cupy.ElementwiseKernel, except that the name argument is
mandatory.






	
chainer.cuda.reduce()

	Creates a global reduction kernel function.

This function uses memoize() to cache the resulting
kernel object, i.e. the resulting kernel object is cached for each argument
combination and CUDA device.

The arguments are the same as those for
cupy.ReductionKernel, except that the name argument is
mandatory.








CPU/GPU generic code support


	
chainer.cuda.get_array_module(*args)

	Gets an appropriate one from numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] or cupy.

This is almost equivalent to cupy.get_array_module(). The differences
are that this function can be used even if CUDA is not available and that
it will return their data arrays’ array module for
Variable arguments.





	Parameters:	args – Values to determine whether NumPy or CuPy should be used.


	Returns:	cupy or numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] is returned based on the types of
the arguments.


	Return type:	module












cuDNN support


	
chainer.cuda.set_max_workspace_size(size)

	Sets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.





	Parameters:	size – The workspace size for cuDNN.










	
chainer.cuda.get_max_workspace_size()

	Gets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.





	Returns:	The workspace size for cuDNN.


	Return type:	int [https://docs.python.org/3/library/functions.html#int]















          

      

      

    

  

    
      
          
            
  
Common algorithms


	
class chainer.utils.WalkerAlias(probs)

	Implementation of Walker’s alias method.

This method generates a random sample from given probabilities
\(p_1, \dots, p_n\) in \(O(1)\) time.
It is more efficient than choice() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html#numpy.random.choice].
This class works on both CPU and GPU.





	Parameters:	probs (float list) – Probabilities of entries. They are normalized with
sum(probs).





See: Wikipedia article [https://en.wikipedia.org/wiki/Alias_method]


	
sample(shape)

	Generates a random sample based on given probabilities.





	Parameters:	shape (tuple of int) – Shape of a return value.


	Returns:	Returns a generated array with the given shape. If a sampler is in
CPU mode the return value is a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object, and
if it is in GPU mode the return value is a cupy.ndarray
object.










	
to_gpu()

	Make a sampler GPU mode.













          

      

      

    

  

    
      
          
            
  
Reporter


Reporter


	
class chainer.Reporter

	Object to which observed values are reported.

Reporter is used to collect values that users want to watch. The reporter
object holds a mapping from value names to the actually observed values.
We call this mapping observations.

When a value is passed to the reporter, an object called observer can be
optionally attached. In this case, the name of the observer is added as the
prefix of the value name. The observer name should be registered
beforehand.

See the following example:

>>> from chainer import Reporter, report, report_scope
>>>
>>> reporter = Reporter()
>>> observer = object()  # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer:', observer)
>>> observation = {}
>>> with reporter.scope(observation):
...     reporter.report({'x': 1}, observer)
...
>>> observation
{'my_observer:x': 1}





There are also a global API to add values:

>>> observation = {}
>>> with report_scope(observation):
...     report({'x': 1}, observer)
...
>>> observation
{'my_observer:x': 1}





The most important application of Reporter is to report observed values
from each link or chain in the training and validation procedures.
Trainer and some extensions prepare their own
Reporter object with the hierarchy of the target link registered as
observers. We can use report() function inside any links and chains
to report the observed values (e.g., training loss, accuracy, activation
statistics, etc.).





	Variables:	observation – Dictionary of observed values.






	
__enter__()

	Makes this reporter object current.






	
__exit__(exc_type, exc_value, traceback)

	Recovers the previous reporter object to the current.






	
add_observer(name, observer)

	Registers an observer of values.

Observer defines a scope of names for observed values. Values observed
with the observer are registered with names prefixed by the observer
name.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the observer.

	observer – The observer object. Note that the reporter distinguishes
the observers by their object ids (i.e., id(owner)), rather
than the object equality.














	
add_observers(prefix, observers)

	Registers multiple observers at once.

This is a convenient method to register multiple objects at once.





	Parameters:	
	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prefix of each name of observers.

	observers – Iterator of name and observer pairs.














	
report(values, observer=None)

	Reports observed values.

The values are written with the key, prefixed by the name of the
observer object if given.





	Parameters:	
	values (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of observed values.

	observer – Observer object. Its object ID is used to retrieve the
observer name, which is used as the prefix of the registration
name of the observed value.














	
scope(*args, **kwds)

	Creates a scope to report observed values to observation.

This is a context manager to be passed to with statements. In this
scope, the observation dictionary is changed to the given one.

It also makes this reporter object current.





	Parameters:	observation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Observation dictionary. All observations
reported inside of the with statement are written to this
dictionary.














	
chainer.get_current_reporter()

	Returns the current reporter object.






	
chainer.report(values, observer=None)

	Reports observed values with the current reporter object.

Any reporter object can be set current by the with statement. This
function calls the Report.report() method of the current reporter.
If no reporter object is current, this function does nothing.


Example

The most typical example is a use within links and chains. Suppose that
a link is registered to the current reporter as an observer (for
example, the target link of the optimizer is automatically registered to
the reporter of the Trainer). We can report
some values from the link as follows:

class MyRegressor(chainer.Chain):
    def __init__(self, predictor):
        super(MyRegressor, self).__init__(predictor=predictor)

    def __call__(self, x, y):
        # This chain just computes the mean absolute and squared
        # errors between the prediction and y.
        pred = self.predictor(x)
        abs_error = F.sum(F.abs(pred - y)) / len(x.data)
        loss = F.mean_squared_error(pred, y)

        # Report the mean absolute and squared errors.
        report({'abs_error': abs_error, 'squared_error': loss}, self)

        return loss





If the link is named 'main' in the hierarchy (which is the default
name of the target link in the
StandardUpdater), these reported values are
named 'main/abs_error' and 'main/squared_error'. If these values
are reported inside the Evaluator
extension, 'validation/' is added at the head of the link name, thus
the item names are changed to 'validation/main/abs_error' and
'validation/main/squared_error' ('validation' is the default
name of the Evaluator extension).







	Parameters:	
	values (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of observed values.

	observer – Observer object. Its object ID is used to retrieve the
observer name, which is used as the prefix of the registration name
of the observed value.














	
chainer.report_scope(*args, **kwds)

	Returns a report scope with the current reporter.

This is equivalent to get_current_reporter().scope(observation),
except that it does not make the reporter current redundantly.








Summary and DictSummary


	
class chainer.Summary

	Online summarization of a sequence of scalars.

Summary computes the statistics of given scalars online.


	
add(value)

	Adds a scalar value.





	Parameters:	value – Scalar value to accumulate. It is either a NumPy scalar or
a zero-dimensional array (on CPU or GPU).










	
compute_mean()

	Computes the mean.






	
make_statistics()

	Computes and returns the mean and standard deviation values.





	Returns:	Mean and standard deviation values.


	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














	
class chainer.DictSummary

	Online summarization of a sequence of dictionaries.

DictSummary computes the statistics of a given set of scalars online.
It only computes the statistics for scalar values and variables of scalar
values in the dictionaries.


	
add(d)

	Adds a dictionary of scalars.





	Parameters:	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of scalars to accumulate. Only elements of
scalars, zero-dimensional arrays, and variables of
zero-dimensional arrays are accumulated.










	
compute_mean()

	Creates a dictionary of mean values.

It returns a single dictionary that holds a mean value for each entry
added to the summary.





	Returns:	Dictionary of mean values.


	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
make_statistics()

	Creates a dictionary of statistics.

It returns a single dictionary that holds mean and standard deviation
values for every entry added to the summary. For an entry of name
'key', these values are added to the dictionary by names 'key'
and 'key.std', respectively.





	Returns:	Dictionary of statistics of all entries.


	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]



















          

      

      

    

  

    
      
          
            
  
Experimental feature annotation


	
chainer.utils.experimental(api_name)

	Declares that user is using an experimental feature.

The developer of an API can mark it as experimental by calling
this function. When users call experimental APIs, FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning]
is issued.
The presentation of FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning] is disabled by setting
chainer.disable_experimental_warning to True,
which is False by default.

The basic usage is to call it in the function or method we want to
mark as experimental along with the API name.

from chainer import utils

def f(x):
    utils.experimental('chainer.foo.bar.f')
    # concrete implementation of f follows

f(1)





... FutureWarning: chainer.foo.bar.f is experimental. The interface can change in the future. ...





We can also make a whole class experimental. In that case,
we should call this function in its __init__ method.

class C():
    def __init__(self):
      utils.experimental('chainer.foo.C')

C()





... FutureWarning: chainer.foo.C is experimental. The interface can change in the future. ...





If we want to mark __init__ method only, rather than class itself,
it is recommended that we explicitly feed its API name.

class D():
    def __init__(self):
        utils.experimental('D.__init__')

D()





...  FutureWarning: D.__init__ is experimental. The interface can change in the future. ...





Currently, we do not have any sophisticated way to mark some usage of
non-experimental function as experimental.
But we can support such usage by explicitly branching it.

def g(x, experimental_arg=None):
    if experimental_arg is not None:
        utils.experimental('experimental_arg of chainer.foo.g')









	Parameters:	api_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of an API marked as experimental.













          

      

      

    

  

    
      
          
            
  
Assertion and Testing

Chainer provides some facilities to make debugging easy.


Type checking utilities

Function uses a systematic type checking of the chainer.utils.type_check module.
It enables users to easily find bugs of forward and backward implementations.
You can find examples of type checking in some function implementations.


	
class chainer.utils.type_check.Expr(priority)

	Abstract syntax tree of an expression.

It represents an abstract syntax tree, and isn’t a value. You can get its
actual value with eval() function, and get syntax representation with
the __str__() method.
Each comparison operator (e.g. ==) generates a new Expr object
which represents the result of comparison between two expressions.


Example

Let x and y be instances of Expr, then

>>> x = Variable(1, 'x')
>>> y = Variable(1, 'y')
>>> c = (x == y)





is also an instance of Expr. To evaluate and get its value,
call eval() method:

>>> c.eval()
True





Call str function to get a representation of the original
equation:

>>> str(c)
'x == y'





You can actually compare an expression with a value:

>>> (x == 1).eval()
True





Note that you can’t use boolean operators such as and, as they try
to cast expressions to boolean values:

>>> z = Variable(1, 'z')
>>> x == y and y == z  # raises an error
Traceback (most recent call last):
RuntimeError: Don't convert Expr to bool. Please call Expr.eval method to evaluate expression.








	
eval()

	Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class.
For example, a binary operator + calls the __add__ function
with the two results of eval() function.










	
chainer.utils.type_check.expect(*bool_exprs)

	Evaluates and tests all given expressions.

This function evaluates given boolean expressions in order. When at least
one expression is evaluated as False, that means the given condition is
not satisfied.
You can check conditions with this function.





	Parameters:	bool_exprs (tuple of Bool expressions) – Bool expressions you want to
evaluate.










	
class chainer.utils.type_check.TypeInfo(shape, dtype)

	Type information of an input/gradient array.

It contains type information of an array, such as the shape of array and
the number of dimensions.
This information is independent of CPU or GPU array.






	
class chainer.utils.type_check.TypeInfoTuple

	Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element
of this object contains type information of the i-th input/gradient data.
As each element is Expr, you can easily check its validity.


	
size()

	Returns an expression representing its length.





	Returns:	An expression object representing length of the tuple.


	Return type:	Expr
















Gradient checking utilities

Most function implementations are numerically tested by gradient checking.
This method computes numerical gradients of forward routines and compares their results with the corresponding backward routines.
It enables us to make the source of issues clear when we hit an error of gradient computations.
The chainer.gradient_check module makes it easy to implement the gradient checking.


	
chainer.gradient_check.check_backward(func, x_data, y_grad, params=(), eps=0.001, atol=1e-05, rtol=0.0001, no_grads=None, dtype=None)

	Test backward procedure of a given function.

This function automatically check backward-process of given function.
For example, when you have a Function class MyFunc,
that gets two arguments and returns one value, you can make its test like
this:

>> def test_my_func(self):
>>   func = MyFunc()
>>   x1_data = xp.array(...)
>>   x2_data = xp.array(...)
>>   gy_data = xp.array(...)
>>   check_backward(func, (x1_data, x2_data), gy_data)





This method creates Variable objects with x_data
and calls func with the Variable s to get its result
as Variable.
Then, it sets y_grad array to grad attribute of the result and
calls backward method to get gradients of the inputs.
To check correctness of the gradients, the function calls
numerical_grad() to calculate numerically the gradients and compares
the types of gradients with chainer.testing.assert_allclose().
If input objects (x1_data or/and x2_data in this example) represent
integer variables, their gradients are ignored.

You can simplify a test when MyFunc gets only one argument:

>>   check_backward(func, x1_data, gy_data)





If MyFunc is a loss function which returns a zero-dimensional
array, pass None to gy_data. In this case, it sets 1 to
grad attribute of the result:

>>   check_backward(my_loss_func, (x1_data, x2_data), None)





If MyFunc returns multiple outputs, pass all gradients for outputs
as a tuple:

>>   gy1_data = xp.array(...)
>>   gy2_data = xp.array(...)
>>   check_backward(func, x1_data, (gy1_data, gy2_data))





You can also test a Link.
To check gradients of parameters of the link, set a tuple of the parameters
to params arguments:

>>   check_backward(my_link, (x1_data, x2_data), gy_data,
>>                  (my_link.W, my_link.b))





Note that params are not ndarray s,
but Variables s.

Function objects are acceptable as func argument:

>>   check_backward(lambda x1, x2: f(x1, x2),
>>                  (x1_data, x2_data), gy_data)






Note

func is called many times to get numerical gradients for all inputs.
This function doesn’t work correctly when func behaves randomly as
it gets different gradients.







	Parameters:	
	func (callable [https://docs.python.org/3/library/functions.html#callable]) – A function which gets Variable s
and returns Variable s. func must returns
a tuple of Variable s or one
Variable. You can use Function
object, Link object or a function satisfying the
condition.

	x_data (ndarray or tuple of ndarrays) – A set of ndarray s to be
passed to func. If x_data is one ndarray object, it is
treated as (x_data,).

	y_grad (ndarray or tuple of ndarrays or None [https://docs.python.org/3/library/constants.html#None]) – A set of ndarray s representing gradients of return-values of
func. If y_grad is one ndarray object, it is
treated as (y_grad,). If func is a loss-function,
y_grad should be set to None.

	params (Variable or tuple of ~chainder.Variable) – A set of Variable s whose gradients are checked.
When func is a Link object,
set its parameters as params.
If params is one Variable object,
it is treated as (params,).

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value to be passed to numerical_grad().

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Absolute tolerance to be passed to
chainer.testing.assert_allclose().

	rtol (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance to be passed to
chainer.testing.assert_allclose().

	no_grads (list of bool) – Flag to skip variable for gradient assertion.
It should be same length as x_data.

	dtype (dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – x_data and y_grad are casted to this
dtype when calculating numerical gradients. Only float types and
None are allowed.










	See:

	numerical_grad()








	
chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001)

	Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see
unit tests of chainer.functions.





	Parameters:	
	f (function) – Python function with no arguments that runs forward
computation and returns the result.

	inputs (tuple of arrays) – Tuple of arrays that should be treated as
inputs. Each element of them is slightly modified to realize
numerical gradient by finite differences.

	grad_outputs (tuple of arrays) – Tuple of arrays that are treated as
output gradients.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value of finite differences.






	Returns:	Numerical gradient arrays corresponding to inputs.




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














Standard Assertions

The assertions have same names as NumPy’s ones.
The difference from NumPy is that they can accept both numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
and cupy.ndarray.


	
chainer.testing.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)

	Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.





	Parameters:	
	x – Left-hand-side array.

	y – Right-hand-side array.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Absolute tolerance.

	rtol (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it outputs verbose messages on error.
















Function testing utilities

Chainer provides some utilities for testing its functions.


	
chainer.testing.unary_math_function_unittest(func, func_expected=None, label_expected=None, make_data=None)

	Decorator for testing unary mathematical Chainer functions.

This decorator makes test classes test unary mathematical Chainer
functions. Tested are forward and backward computations on CPU and GPU
across parameterized shape and dtype.





	Parameters:	
	func (Function) – Chainer function to be tested by the decorated
test class.

	func_expected – Function used to provide expected values for
testing forward computation. If not given, a corresponsing numpy
function for func is implicitly picked up by its class name.

	label_expected (string [https://docs.python.org/3/library/string.html#module-string]) – String used to test labels of Chainer
functions. If not given, the class name of func lowered is
implicitly used.

	make_data – Function to customize input and gradient data used
in the tests. It takes shape and dtype as its arguments,
and returns a tuple of input and gradient data. By default, uniform
destribution ranged [-1, 1] is used for both.









The decorated test class tests forward and backward computations on CPU and
GPU across the following parameterize() ed
parameters:


	shape: rank of zero, and rank of more than zero

	dtype: numpy.float16, numpy.float32 and numpy.float64



Additionally, it tests the label of the Chainer function.

Chainer functions tested by the test class decorated with the decorator
should have the following properties:


	Unary, taking one parameter and returning one value

	dtype of input and output are the same

	Elementwise operation for the supplied ndarray




Example

The following code defines a test class that tests
sin() Chainer function, which takes a parameter
with dtype of float and returns a value with the same dtype.

>>> import unittest
>>> from chainer import testing
>>> from chainer import functions as F
>>>
>>> @testing.unary_math_function_unittest(F.Sin())
... class TestSin(unittest.TestCase):
...     pass





Because the test methods are implicitly injected to TestSin class by
the decorator, it is enough to place pass in the class definition.

Now the test is run with nose module.

>>> import nose
>>> nose.run(
...     defaultTest=__name__, argv=['', '-a', '!gpu'], exit=False)
True





To customize test data, make_data optional parameter can be used.
The following is an example of testing sqrt Chainer function, which
is tested in positive value domain here instead of the default input.

>>> import numpy
>>>
>>> def make_data(shape, dtype):
...     x = numpy.random.uniform(0.1, 1, shape).astype(dtype)
...     gy = numpy.random.uniform(-1, 1, shape).astype(dtype)
...     return x, gy
...
>>> @testing.unary_math_function_unittest(F.Sqrt(),
...                                       make_data=make_data)
... class TestSqrt(unittest.TestCase):
...     pass
...
>>> nose.run(
...     defaultTest=__name__, argv=['', '-a', '!gpu'], exit=False)
True





make_data function which returns input and gradient data generated
in proper value domains with given shape and dtype parameters is
defined, then passed to the decorator’s make_data parameter.













          

      

      

    

  

    
      
          
            
  
Standard Function implementations

Chainer provides basic Function implementations in the
chainer.functions package. Most of them are wrapped by plain Python
functions, which users should use.


Note

As of v1.5, the concept of parameterized functions are gone, and they are
replaced by corresponding Link implementations. They are
still put in the functions namespace for backward
compatibility, though it is strongly recommended to use them via the
chainer.links package.




Activation functions


clipped_relu


	
chainer.functions.clipped_relu(x, z=20.0)

	Clipped Rectifier Unit function.

For a clipping value \(z(>0)\), it computes









	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_n)\)-shaped float array.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Clipping value. (default = 20.0)






	Returns:	Output variable. A
\((s_1, s_2, ..., s_n)\)-shaped float array.




	Return type:	Variable








Example

>>> x = np.random.uniform(-100, 100, (10, 20)).astype('f')
>>> z = 10.0
>>> np.any(x < 0)
True
>>> np.any(x > z)
True
>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.data < 0)
False
>>> np.any(y.data > z)
False














crelu


	
chainer.functions.crelu(x, axis=1)

	Concatenated Rectified Linear Unit function.

This function is expressed as follows



\[f(x) = (\max(0, x), \max(0, -x)).\]




Here, two output values are concatenated along an axis.

See: https://arxiv.org/abs/1603.05201





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis that the output values are concatenated along.
Default is 1.






	Returns:	Output variable of concatenated array.
If the axis is 1, A \((s_1, s_2 \times 2, ..., s_N)\)-shaped float
array.




	Return type:	Variable








Example

>>> x = np.array([[-1, 0], [2, -3]], 'f')
>>> x
array([[-1.,  0.],
       [ 2., -3.]], dtype=float32)
>>> y = F.crelu(x, axis=1)
>>> y.data
array([[ 0.,  0.,  1.,  0.],
       [ 2.,  0.,  0.,  3.]], dtype=float32)














elu


	
chainer.functions.elu(x, alpha=1.0)

	Exponential Linear Unit function.

For a parameter \(\alpha\), it is expressed as


\[\begin{split}f(x) = \left \{ \begin{array}{ll}
x & {\rm if}~ x \ge 0 \\
\alpha (\exp(x) - 1) & {\rm if}~ x < 0,
\end{array} \right.\end{split}\]

See: https://arxiv.org/abs/1511.07289





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – Parameter \(\alpha\). Default is 1.0.






	Returns:	Output variable. A
\((s_1, s_2, ..., s_N)\)-shaped float array.




	Return type:	Variable








Example

>>> x = np.array([[-1, 0], [2, -3]], 'f')
>>> x
array([[-1.,  0.],
       [ 2., -3.]], dtype=float32)
>>> y = F.elu(x, alpha=1.)
>>> y.data
array([[-0.63212055,  0.        ],
       [ 2.        , -0.95021296]], dtype=float32)














hard_sigmoid


	
chainer.functions.hard_sigmoid(x)

	Element-wise hard-sigmoid function.

This function is defined as


\[\begin{split}f(x) = \left \{ \begin{array}{ll}
0 & {\rm if}~ x < -2.5 \\
0.2 x + 0.5 & {\rm if}~ -2.5 < x < 2.5 \\
1 & {\rm if}~ 2.5 < x.
\end{array} \right.\end{split}\]





	Parameters:	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.


	Returns:	Output variable. A
\((s_1, s_2, ..., s_N)\)-shaped float array.


	Return type:	Variable






Example

It maps the input values into the range of \([0, 1]\).

>>> x = np.array([-2.6, -1, 0, 1, 2.6])
>>> x
array([-2.6, -1. ,  0. ,  1. ,  2.6])
>>> F.hard_sigmoid(x).data
array([ 0. ,  0.3,  0.5,  0.7,  1. ])














leaky_relu


	
chainer.functions.leaky_relu(x, slope=0.2)

	Leaky Rectified Linear Unit function.

This function is expressed as


\[f(x)=\max(x, ax),\]

where \(a\) is a configurable slope value.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

	slope (float [https://docs.python.org/3/library/functions.html#float]) – Slope value \(a\).






	Returns:	Output variable. A
\((s_1, s_2, ..., s_N)\)-shaped float array.




	Return type:	Variable








Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], 'f')
>>> x
array([[-1.,  0.],
       [ 2., -3.],
       [-2.,  1.]], dtype=float32)
>>> F.leaky_relu(x, slope=0.2).data
array([[-0.2       ,  0.        ],
       [ 2.        , -0.60000002],
       [-0.40000001,  1.        ]], dtype=float32)














log_softmax


	
chainer.functions.log_softmax(x, use_cudnn=True)

	Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis.
Let \(c = (c_1, c_2, \dots, c_D)\) be the slice of x along with
the second axis. For each slice \(c\), it computes the logarithm of
the function \(f(c)\) defined as


\[f(c) = {\exp(c) \over \sum_{d} \exp(c_d)}.\]

This method is theoretically equivalent to log(softmax(x)) but is more
stable.


Note

log(softmax(x)) may cause underflow when x is too small,
because softmax(x) may returns 0.
log_softmax method is more stable.







	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable.
A \(n\)-dimensional (\(n \geq 2\)) float array.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.






	Returns:	Output variable.
A \(n\)-dimensional (\(n \geq 2\)) float array, which is the
same shape with x.




	Return type:	Variable








See also

softmax()




Example

>>> x = np.array([[0, 1, 2], [0, 2, 4]], 'f')
>>> x
array([[ 0.,  1.,  2.],
       [ 0.,  2.,  4.]], dtype=float32)
>>> F.log_softmax(x).data
array([[-2.40760589, -1.40760589, -0.40760589],
       [-4.14293146, -2.14293146, -0.14293146]], dtype=float32)
>>> np.allclose(F.log_softmax(x).data, F.log(F.softmax(x)).data)
True














lstm


	
chainer.functions.lstm(c_prev, x)

	Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous
cell state c_prev and the input array x.

First, the input array x is split into four arrays
\(a, i, f, o\) of the same shapes along the second axis. It means that
x ‘s second axis must have 4 times the c_prev ‘s second axis.

The split input arrays are corresponding to:



	\(a\) : sources of cell input

	\(i\) : sources of input gate

	\(f\) : sources of forget gate

	\(o\) : sources of output gate






Second, it computes the updated cell state c and the outgoing signal
h as:


\[\begin{split}c &= \tanh(a) \sigma(i)
   + c_{\text{prev}} \sigma(f), \\
h &= \tanh(c) \sigma(o),\end{split}\]

where \(\sigma\) is the elementwise sigmoid function.
These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of
the current input must be equal to or smaller than that of the previous
one. When mini-batch size of x is smaller than that of c, this
function only updates c[0:len(x)] and doesn’t change the rest of c,
c[len(x):].
So, please sort input sequences in descending order of lengths before
applying the function.





	Parameters:	
	c_prev (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable that holds the previous cell state. The cell state
should be a zero array or the output of the previous call of LSTM.

	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable that holds the sources of cell input, input gate, forget
gate and output gate. It must have the second dimension whose size
is four times of that of the cell state.






	Returns:	Two Variable objects c and h.
c is the updated cell state. h indicates the outgoing signal.




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]







See the original paper proposing LSTM with forget gates:
Long Short-Term Memory in Recurrent Neural Networks [http://www.felixgers.de/papers/phd.pdf].


See also

LSTM




Example

Assuming y is the current incoming signal, c is the previous
cell state, and h is the previous outgoing signal from an lstm
function. Each of y, c and h has n_units channels.
Most typical preparation of x is:

>>> n_units = 100
>>> y = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> h = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> model = chainer.Chain(w=L.Linear(n_units, 4 * n_units),
...                       v=L.Linear(n_units, 4 * n_units),)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)





It corresponds to calculate the input array x, or the input
sources \(a, i, f, o\), from the current incoming signal y and
the previous outgoing signal h. Different parameters are used for
different kind of input sources.




Note

We use the naming rule below.


	
	incoming signal

	The formal input of the formulation of LSTM (e.g. in NLP, word
vector or output of lower RNN layer). The input of
chainer.links.LSTM is the incoming signal.





	
	input array

	The array which is linear transformed from incoming signal and
the previous outgoing signal. The input array contains four
sources, the sources of cell input, input gate, forget gate and
output gate. The input of chainer.functions.LSTM is the
input array.
















maxout


	
chainer.functions.maxout(x, pool_size, axis=1)

	Maxout activation function.

It accepts an input tensor x, reshapes the axis dimension
(say the size being M * pool_size) into two dimensions
(M, pool_size), and takes maximum along the axis dimension.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \(n\)-dimensional (\(n \ge\) axis)
float array. In general, its first dimension is assumed to be the
minibatch dimension. The other dimensions are treated as one
concatenated dimension.

	pool_size (int [https://docs.python.org/3/library/functions.html#int]) – The size used for downsampling of pooling layer.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis dimension to be reshaped. The size of axis
dimension should be M * pool_size.






	Returns:	Output variable. The shape of the output is same as x except
that axis dimension is transformed from M * pool_size to
M.




	Return type:	Variable








See also

Maxout




Example

Typically, x is the output of a linear layer or a convolution
layer. The following is the example where we use maxout() in
combination with a Linear link.

>>> in_size, out_size, pool_size = 10, 10, 10
>>> bias = np.arange(out_size * pool_size).astype('f')
>>> l = L.Linear(in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((1, in_size), 'f')  # prepare data
>>> x = l(x)
>>> y = F.maxout(x, pool_size)
>>> x.shape
(1, 100)
>>> y.shape
(1, 10)
>>> x.reshape((out_size, pool_size)).data
array([[  0.,   1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.],
       [ 10.,  11.,  12.,  13.,  14.,  15.,  16.,  17.,  18.,  19.],
       [ 20.,  21.,  22.,  23.,  24.,  25.,  26.,  27.,  28.,  29.],
       [ 30.,  31.,  32.,  33.,  34.,  35.,  36.,  37.,  38.,  39.],
       [ 40.,  41.,  42.,  43.,  44.,  45.,  46.,  47.,  48.,  49.],
       [ 50.,  51.,  52.,  53.,  54.,  55.,  56.,  57.,  58.,  59.],
       [ 60.,  61.,  62.,  63.,  64.,  65.,  66.,  67.,  68.,  69.],
       [ 70.,  71.,  72.,  73.,  74.,  75.,  76.,  77.,  78.,  79.],
       [ 80.,  81.,  82.,  83.,  84.,  85.,  86.,  87.,  88.,  89.],
       [ 90.,  91.,  92.,  93.,  94.,  95.,  96.,  97.,  98.,  99.]], dtype=float32)
>>> y.data
array([[  9.,  19.,  29.,  39.,  49.,  59.,  69.,  79.,  89.,  99.]], dtype=float32)














prelu


	
chainer.functions.prelu(x, W)

	Parametric ReLU function.

It accepts two arguments: an input x and a weight array W
and computes the output as \(PReLU(x) = \max(x, W*x)\),
where \(*\) is an elementwise multiplication for each sample in the
batch.

When the PReLU function is combined with two-dimensional convolution, the
elements of parameter \(a\) are typically shared across the same filter
of different pixels. In order to support such usage, this function supports
the shape of parameter array that indicates leading dimensions of input
arrays except the batch dimension.

For example \(W\) has the shape of \((2, 3, 4)\),
\(x\) must have the shape of \((B, 2, 3, 4, S1, ..., SN)\)
where B is batch size and the number of trailing S’s
is arbitrary non-negative integer.





	Parameters:	
	x (Variable) – Input variable.
Its first argument is assumed to be the minibatch dimension.

	W (Variable) – Weight variable.






	Returns:	Output variable




	Return type:	Variable








See also

PReLU










relu


	
chainer.functions.relu(x, use_cudnn=True)

	Rectified Linear Unit function.


\[f(x)=\max(0, x).\]





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.






	Returns:	Output variable. A
\((s_1, s_2, ..., s_N)\)-shaped float array.




	Return type:	Variable








Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], 'f')
>>> np.any(x < 0)
True
>>> y = F.relu(x)
>>> np.any(y.data < 0)
False
>>> y.shape
(3, 2)














sigmoid


	
chainer.functions.sigmoid(x, use_cudnn=True)

	Element-wise sigmoid logistic function.



\[f(x)=(1 + \exp(-x))^{-1}.\]








	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.






	Returns:	Output variable. A
\((s_1, s_2, ..., s_N)\)-shaped float array.




	Return type:	Variable








Example

It maps the input values into the range of \([0, 1]\).

>>> x = np.arange(-2, 3, 2).astype('f')
>>> x
array([-2.,  0.,  2.], dtype=float32)
>>> F.sigmoid(x).data
array([ 0.11920291,  0.5       ,  0.88079709], dtype=float32)














slstm


	
chainer.functions.slstm(c_prev1, c_prev2, x1, x2)

	S-LSTM units as an activation function.

This function implements S-LSTM unit. It is an extension of LSTM unit
applied to tree structures.
The function is applied to binary trees. Each node has two child nodes.
It gets four arguments, previous cell states c_prev1 and c_prev2,
and input arrays x1 and x2.

First both input arrays x1 and x2 are split into eight arrays
\(a_1, i_1, f_1, o_1\), and \(a_2, i_2, f_2, o_2\). They have the
same shape along the second axis.
It means that x1 and x2 ‘s second axis must have 4 times
the length of c_prev1 and c_prev2.

The split input arrays are corresponding to:



	\(a_i\) : sources of cell input

	\(i_i\) : sources of input gate

	\(f_i\) : sources of forget gate

	\(o_i\) : sources of output gate






It computes the updated cell state c and the outgoing signal
h as:


\[\begin{split}c &= \tanh(a_1 + a_2) \sigma(i_1 + i_2)
   + c_{\text{prev}1} \sigma(f_1)
   + c_{\text{prev}2} \sigma(f_2), \\
h &= \tanh(c) \sigma(o_1 + o_2),\end{split}\]

where \(\sigma\) is the elementwise sigmoid function.
The function returns c and h as a tuple.





	Parameters:	
	c_prev1 (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable that holds the previous cell state of the first child
node. The cell state should be a zero array or the output of
the previous call of LSTM.

	c_prev2 (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable that holds the previous cell state of the second child
node.

	x1 (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable that holds the sources of cell input, input gate, forget
gate and output gate from the first child node. It must have the
second dimension whose size is four times of that of the cell
state.

	x2 (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable that holds the input sources from the second child node.






	Returns:	Two Variable objects c and h. c is
the cell state. h indicates the outgoing signal.




	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]







See detail in paper: Long Short-Term Memory Over Tree Structures [https://arxiv.org/abs/1503.04881].


Example

Assuming c1, c2 is the previous cell state of children,
and h1, h2 is the previous outgoing signal from children.
Each of c1, c2, h1 and h2 has n_units channels.
Most typical preparation of x1, x2 is:

>>> n_units = 100
>>> h1 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> h2 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c1 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c2 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> model1 = chainer.Chain(w=L.Linear(n_units, 4 * n_units),
...                        v=L.Linear(n_units, 4 * n_units))
>>> model2 = chainer.Chain(w=L.Linear(n_units, 4 * n_units),
...                        v=L.Linear(n_units, 4 * n_units))
>>> x1 = model1.w(c1) + model1.v(h1)
>>> x2 = model2.w(c2) + model2.v(h2)
>>> c, h = F.slstm(c1, c2, x1, x2)





It corresponds to calculate the input array x1, or the input
sources \(a_1, i_1, f_1, o_1\) from the previous cell state of
first child node c1, and the previous outgoing signal from first
child node h1. Different parameters are used for different kind of
input sources.










softmax


	
chainer.functions.softmax(x, use_cudnn=True, axis=1)

	Softmax function.

This function computes its softmax along an axis. Let
\(x = (x_1, x_2, \dots, x_d)^{\top}\) be the d dimensional index
array and \(f(x)\) be the d dimensional input array. For each index
\(x\) of the input array \(f(x)\), it computes the probability
\(p(x)\) defined as
\(p(x) = {\exp(f(x)) \over \sum_{x_2} \exp(f(x))}\).





	Parameters:	
	x (Variable) – Input variable.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.

	axis – The axis along which the softmax is to be computed.






	Returns:	Output variable.




	Return type:	Variable














softplus


	
chainer.functions.softplus(x, beta=1.0)

	Element-wise softplus function.

The softplus function is the smooth approximation of ReLU.


\[f(x)=\frac{1}{\beta}\log(1 + \exp(\beta x)),\]

where \(\beta\) is a parameter. The function becomes curved
and akin to ReLU as the \(\beta\) is increasing.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Parameter \(\beta\).






	Returns:	Output variable. A
\((s_1, s_2, ..., s_N)\)-shaped float array.




	Return type:	Variable








Example

>>> x = np.arange(-2, 3, 2).astype('f')
>>> x
array([-2.,  0.,  2.], dtype=float32)
>>> F.softplus(x, beta=1.0).data
array([ 0.126928  ,  0.69314718,  2.12692809], dtype=float32)














tanh


	
chainer.functions.tanh(x, use_cudnn=True)

	Elementwise hyperbolic tangent function.



\[f(x)=\tanh(x).\]








	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.






	Returns:	Output variable. A
\((s_1, s_2, ..., s_N)\)-shaped float array.




	Return type:	Variable








Example

>>> x = np.arange(-1, 4, 2).astype('f')
>>> x
array([-1.,  1.,  3.], dtype=float32)
>>> F.tanh(x).data
array([-0.76159418,  0.76159418,  0.99505478], dtype=float32)
















Array manipulations


broadcast


	
chainer.functions.broadcast(*args)

	Broadcast given variables.





	Parameters:	args (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]         or cupy.ndarray) – Input variables to be broadcasted. Each dimension of the shapes             of the input variables must have the same size.


	Returns:	Variable or tuple of             Variable objects which are broadcasted             from given arguments.


	Return type:	Variable






Example

>>> x = np.random.uniform(0, 1, (3, 2)).astype('f')
>>> y = F.broadcast(x)
>>> np.all(x == y.data)
True
>>> z = np.random.uniform(0, 1, (3, 2)).astype('f')
>>> y, w = F.broadcast(x, z)
>>> np.all(x == y.data) & np.all(z == w.data)
True














broadcast_to


	
chainer.functions.broadcast_to(x, shape)

	Broadcast a given variable to a given shape.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable be broadcasted. A             \((s_1, s_2, ..., s_N)\)-shaped float array.

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple of int [https://docs.python.org/3/library/functions.html#int] of the shape of the             output variable.






	Returns:	Output variable broadcasted to the given shape.




	Return type:	Variable








Example

>>> x = np.arange(0, 3)
>>> x
array([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.data
array([[0, 1, 2],
       [0, 1, 2],
       [0, 1, 2]])














cast


	
chainer.functions.cast(x, typ)

	Cast an input variable to a given type.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable to be casted. A             \((s_1, s_2, ..., s_N)\)-shaped float array.

	typ (str [https://docs.python.org/3/library/stdtypes.html#str] of dtype or numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Typecode or data type to cast.






	Returns:	Variable holding a casted array.




	Return type:	Variable








Example

>>> x = np.arange(0, 3, dtype=np.float64)
>>> x.dtype
dtype('float64')
>>> y = F.cast(x, np.float32)
>>> y.dtype
dtype('float32')
>>> y = F.cast(x, 'float16')
>>> y.dtype
dtype('float16')














concat


	
chainer.functions.concat(xs, axis=1)

	Concatenates given variables along an axis.





	Parameters:	
	xs (tuple of Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variables to be concatenated. The variables must have the             same shape, except in the dimension corresponding to axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which the arrays will be joined. Default             is 1.






	Returns:	The concatenated variable.




	Return type:	Variable








Example

>>> x = np.arange(0, 12).reshape(3, 4)
>>> x
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> y = np.arange(0, 3).reshape(3, 1)
>>> y
array([[0],
       [1],
       [2]])
>>> z = F.concat((x, y), axis=1)
>>> z.data
array([[ 0,  1,  2,  3,  0],
       [ 4,  5,  6,  7,  1],
       [ 8,  9, 10, 11,  2]])














copy


	
chainer.functions.copy(x, dst)

	Copies the input variable onto the specified device.

This function copies the array of input variable onto the device specified
by dst. When dst == -1, it copies the array onto the host memory.
This function supports copies from host to host, from host to device,
from device to device and from device to host.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable to be copied.

	dst (int [https://docs.python.org/3/library/functions.html#int]) – Target device specifier.






	Returns:	Output variable.




	Return type:	Variable








Example

>>> import chainer.cuda as cuda
>>> x = np.random.uniform(-1, 1, (5, 10))
>>> cuda.get_device_from_array(x).id
-1
>>> y = F.copy(x, 0) # from host to device0
>>> cuda.get_device_from_array(y.data).id
0
>>> z = F.copy(y, -1) # from device0 to host
>>> cuda.get_device_from_array(z.data).id
-1














depth2space


	
chainer.functions.depth2space(X, r)

	Computes the depth2space transformation for subpixel calculations.





	Parameters:	
	X (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable holding a 4d array of shape
(batch, channel * r * r, dim1, dim2).

	r (int [https://docs.python.org/3/library/functions.html#int]) – the upscaling factor.






	Returns:	A variable holding the upscaled array from
interspersed depth layers. The shape is
(batch, channel, dim1 * r, dim2 * r).




	Return type:	Variable








Note

This can be used to compute super-resolution transformations.
See https://arxiv.org/abs/1609.05158 for details.




See also

space2depth()




Example

>>> X = np.arange(24).reshape(1, 4, 2, 3).astype('f')
>>> X.shape
(1, 4, 2, 3)
>>> X
array([[[[  0.,   1.,   2.],
         [  3.,   4.,   5.]],

        [[  6.,   7.,   8.],
         [  9.,  10.,  11.]],

        [[ 12.,  13.,  14.],
         [ 15.,  16.,  17.]],

        [[ 18.,  19.,  20.],
         [ 21.,  22.,  23.]]]], dtype=float32)
>>> y = F.depth2space(X, 2)
>>> y.shape
(1, 1, 4, 6)
>>> y.data
array([[[[  0.,   6.,   1.,   7.,   2.,   8.],
         [ 12.,  18.,  13.,  19.,  14.,  20.],
         [  3.,   9.,   4.,  10.,   5.,  11.],
         [ 15.,  21.,  16.,  22.,  17.,  23.]]]], dtype=float32)














dstack


	
chainer.functions.dstack(xs)

	Concatenate variables along third axis (depth wise).





	Parameters:	xs (list of Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variables to be concatenated. The variables must have the
same ndim. When the variables have the third axis (i.e.
\(ndim \geq 3\)), the variables must have the same shape
along all but the third axis. When the variables do not have the
third axis(i.e. \(ndim < 3\)), the variables must have the
same shape.


	Returns:	Output variable. When the input variables have the third axis
(i.e. \(ndim \geq 3\)), the shapes of inputs and output are
the same along all but the third axis. The length of third axis
is the sum of the lengths of inputs’ third axis.
When the shape of variables are (N1, N2) (i.e.
\(ndim = 2\)), the shape of output is (N1, N2, 2). When
the shape of variables are (N1,) (i.e. \(ndim = 1\)), the
shape of output is (1, N1, 2). When the shape of variables are
() (i.e. \(ndim = 0\)), the shape of output is
(1, 1, 2).


	Return type:	Variable






Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.dstack((x1, x2))
>>> y.shape
(1, 3, 2)
>>> y.data
array([[[1, 2],
        [2, 3],
        [3, 4]]])





>>> x1 = np.arange(0, 6).reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> x2 = np.arange(6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[ 6,  7],
       [ 8,  9],
       [10, 11]])
>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 2)
>>> y.data
array([[[ 0,  6],
        [ 1,  7]],

       [[ 2,  8],
        [ 3,  9]],

       [[ 4, 10],
        [ 5, 11]]])





>>> x1 = np.arange(0, 12).reshape(3, 2, 2)
>>> x2 = np.arange(12, 18).reshape(3, 2, 1)
>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 3)
>>> y.data
array([[[ 0,  1, 12],
        [ 2,  3, 13]],

       [[ 4,  5, 14],
        [ 6,  7, 15]],

       [[ 8,  9, 16],
        [10, 11, 17]]])














expand_dims


	
chainer.functions.expand_dims(x, axis)

	Expands dimensions of an input variable without copy.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Position where new axis is to be inserted. The axis parameter
is acceptable when \(-ndim - 1 \leq axis \leq ndim\).
(ndim is the dimension of input variables). When
\(axis < 0\), the result is the same with
\(ndim + 1 - |axis|\).






	Returns:	Variable that holds a expanded input. The ndim
of output is one grater than that of x.




	Return type:	Variable








Example

>>> x = np.array([1, 2, 3])
>>> x.shape
(3,)
>>> y = F.expand_dims(x, axis=0)
>>> y.shape
(1, 3)
>>> y.data
array([[1, 2, 3]])
>>> y = F.expand_dims(x, axis=1)
>>> y.shape
(3, 1)
>>> y.data
array([[1],
       [2],
       [3]])
>>> y = F.expand_dims(x, axis=-2)
>>> y.shape
(1, 3)
>>> y.data
array([[1, 2, 3]])














flatten


	
chainer.functions.flatten(x)

	Flatten a given array.





	Parameters:	x (Varaiable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












fliplr


	
chainer.functions.fliplr(a)

	Flip array in the left/right direction.





	Parameters:	xs (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












flipud


	
chainer.functions.flipud(a)

	Flip array in the up/down direction.





	Parameters:	xs (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












get_item


	
chainer.functions.get_item(x, slices)

	Extract elements from array with specified shape, axes and offsets.





	Parameters:	
	x (Variable) – A variable to be sliced.

	slices (int [https://docs.python.org/3/library/functions.html#int], slice [https://docs.python.org/3/library/functions.html#slice], Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis], None [https://docs.python.org/3/library/constants.html#None], integer array-like, boolean        array-like or tuple of them) – It is an integer, a slice, an ellipsis,
a numpy.newaxis, an integer array-like, a boolean array-like
or tuple of them.






	Returns:	
	Variable object

	which contains sliced array of x.










	Return type:	Variable








Note

It only supports types that are supported by CUDA’s atomicAdd when
an integer array is included in slices.
The supported types are numpy.float32, numpy.int32,
numpy.uint32, numpy.uint64 and numpy.ulonglong.




Note

It does not support slices that contains multiple boolean arrays.




Note

See NumPy document for details of indexing [http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html].










hstack


	
chainer.functions.hstack(xs)

	Concatenate variables horizontally (column wise).





	Parameters:	xs (list of Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variables to be concatenated. The variables must have the
same ndim. When the variables have the second axis (i.e.
\(ndim \geq 2\)), the variables must have the same shape
along all but the second axis. When the variables do not have the
second axis(i.e. \(ndim < 2\)), the variables need not to have
the same shape.


	Returns:	Output variable. When the input variables have the second axis
(i.e. \(ndim \geq 2\)), the shapes of inputs and output are
the same along all but the second axis. The length of second axis
is the sum of the lengths of inputs’ second axis.
When the variables do not have the second axis (i.e.
\(ndim < 2\)), the shape of output is (N, ) (N is the
sum of the input variables’ size).


	Return type:	Variable






Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.hstack((x1, x2))
>>> y.shape
(6,)
>>> y.data
array([1, 2, 3, 2, 3, 4])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],
       [14, 15],
       [16, 17]])
>>> y = F.hstack([x1, x2])
>>> y.shape
(3, 6)
>>> y.data
array([[ 0,  1,  2,  3, 12, 13],
       [ 4,  5,  6,  7, 14, 15],
       [ 8,  9, 10, 11, 16, 17]])














im2col


	
chainer.functions.im2col(x, ksize, stride=1, pad=0, cover_all=False, dilate=1)

	Extract patches from an image based on the filter.

This function rearranges patches of an image and put them in the channel
dimension of the output.

Patches are extracted at positions shifted by multiples of stride from
the first position -pad for each spatial axis.
The right-most (or bottom-most) patches do not run over the padded spatial
size.

Notation: here is a notation.


	\(n\) is the batch size.

	\(c\) is the number of the input channels.

	\(h\) and \(w\) are the height and width of the input image,
respectively.

	\(k_H\) and \(k_W\) are the height and width of the filters,
respectively.

	\(s_Y\) and \(s_X\) are the strides of the filter.

	\(p_H\) and \(p_W\) are the spatial padding sizes.

	\(d_Y\) and \(d_X\) are the dilation factors of filter         application.



The output size \((h_O, w_O)\) is determined by the following
equations when cover_all = False:


\[\begin{split}h_O &= (h + 2p_H - k_H - (k_H - 1) * (d_Y - 1)) / s_Y + 1,\\
w_O &= (w + 2p_W - k_W - (k_W - 1) * (d_X - 1)) / s_X + 1.\end{split}\]

When cover_all = True, the output size is determined by
the following equations:


\[\begin{split}h_O &= (h + 2p_H - k_H - (k_H - 1) * (d_Y - 1) + s_Y - 1) / s_Y + 1,\\
w_O &= (w + 2p_W - k_W - (k_W - 1) * (d_X - 1) + s_X - 1) / s_X + 1.\end{split}\]





	Parameters:	
	x (Variable) – Input variable of shape \((n, c, h, w)\).

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, all spatial locations are rearranged
into some output pixels. It may make the output size larger.

	dilate (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Dilation factor of filter applications.
dilate=d and dilate=(d, d) are equivalent.






	Returns:	Output variable whose shape is
\((n, c \cdot k_H \cdot k_W, h_O, w_O)\)




	Return type:	Variable














pad


	
chainer.functions.pad(x, pad_width, mode, **keywords)

	Pad an input variable.





	Parameters:	
	x (chainer.Variable or :class:numpy.ndarray or cupy.ndarray) – Input data.

	pad_width (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Number of values padded to the edges of each axis.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies how the function fills the periphery of the array.
constant


Pads with a constant values.




	constant_values (int [https://docs.python.org/3/library/functions.html#int] or array-like) – The values are padded for each axis.






	Returns:	Output variable.




	Return type:	Variable














permutate


	
chainer.functions.permutate(x, indices, axis=0, inv=False)

	Permutates a given variable along an axis.

This function permutate x with given indices.
That means y[i] = x[indices[i]] for all i.
Note that this result is same as y = x.take(indices).
indices must be a permutation of [0, 1, ..., len(x) - 1].

When inv is True, indices is treated as its inverse.
That means y[indices[i]] = x[i].





	Parameters:	
	x (Variable) – Variable to permutate.

	indices (Variable) – Indices to extract from the variable.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis that the input array is permutate along.

	inv (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, indices is treated as its inverse.






	Returns:	Output variable.




	Return type:	Variable














reshape


	
chainer.functions.reshape(x, shape)

	Reshapes an input variable without copy.





	Parameters:	
	x (Variable) – Input variable.

	shape (tuple of ints) – Target shape.






	Returns:	
	Variable that holds a reshaped version of the input

	variable.










	Return type:	Variable














resize_images


	
chainer.functions.resize_images(x, output_shape)

	Resize images to the given shape.

This function resizes 2D data to output_shape.
Currently, only bilinear interpolation is supported as the sampling method.

Notatition: here is a notation for dimensionalities.


	\(n\) is the batch size.

	\(c_I\) is the number of the input channels.

	\(h\) and \(w\) are the height and width of the input image,
respectively.

	\(h_O\) and \(w_O\) are the height and width of the output
image.







	Parameters:	
	x (Variable) – Input variable of shape \((n, c_I, h, w)\).

	output_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – This is a tuple of length 2 whose values are
(h_O, w_O). Note that the order of height and width is
opposite of the one in OpenCV.






	Returns:	Resized image whose shape is             \((n, c_I, h_O, w_O)\).




	Return type:	Variable














rollaxis


	
chainer.functions.rollaxis(x, axis, start=0)

	Roll the axis backwards to the given position.





	Parameters:	
	x (Variable) – Input variable.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to roll backwards.

	start (int [https://docs.python.org/3/library/functions.html#int]) – The place to which the axis is moved.






	Returns:	Variable whose axis is rolled.




	Return type:	Variable














select_item


	
chainer.functions.select_item(x, t)

	Select elements stored in given indices.

This function returns t.choose(x.T), that means
y[i] == x[i, t[i]] for all i.





	Parameters:	
	x (Variable) – Variable storing arrays.

	t (Variable) – Variable storing index numbers.






	Returns:	Variable that holds t-th element of x.




	Return type:	Variable














separate


	
chainer.functions.separate(x, axis=0)

	Separates an array along a given axis.

This function separates an array along a given axis. For example, shape of
an array is (2, 3, 4). When it separates the array with axis=1, it
returns three (2, 4) arrays.

This function is an inverse of chainer.functions.stack().





	Parameters:	
	x (chainer.Variable) – Variable to be separated.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which variables are separated.






	Returns:	Output variables.




	Return type:	tuple of chainer.Variable








See also

chainer.functions.stack()










space2depth


	
chainer.functions.space2depth(X, r)

	Computes the space2depth transformation for subpixel calculations.





	Parameters:	
	X (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Variable holding a 4d array of shape
(batch, channel, dim1 * r, dim2 * r).

	r (int [https://docs.python.org/3/library/functions.html#int]) – the downscaling factor.






	Returns:	A variable holding the downscaled layer array from subpixel array
sampling. The shape is (batch, channel * r * r, dim1, dim2).




	Return type:	Variable








Note

This can be used to compute inverse super-resolution transformations.
See https://arxiv.org/abs/1609.05158 for details.




See also

depth2space()




Example

>>> X = np.arange(24).reshape(1, 1, 4, 6).astype('f')
>>> X.shape
(1, 1, 4, 6)
>>> X
array([[[[  0.,   1.,   2.,   3.,   4.,   5.],
         [  6.,   7.,   8.,   9.,  10.,  11.],
         [ 12.,  13.,  14.,  15.,  16.,  17.],
         [ 18.,  19.,  20.,  21.,  22.,  23.]]]], dtype=float32)
>>> y = F.space2depth(X, 2)
>>> y.shape
(1, 4, 2, 3)
>>> y.data
array([[[[  0.,   2.,   4.],
         [ 12.,  14.,  16.]],

        [[  1.,   3.,   5.],
         [ 13.,  15.,  17.]],

        [[  6.,   8.,  10.],
         [ 18.,  20.,  22.]],

        [[  7.,   9.,  11.],
         [ 19.,  21.,  23.]]]], dtype=float32)














spatial_transformer_grid


	
chainer.functions.spatial_transformer_grid(theta, output_shape, use_cudnn=True)

	2D Spatial Transformer grid.

This function generates coordinates of the points sampled from an image
to perform warping described in Spatial Transformer Networks [https://arxiv.org/abs/1506.02025].

Given a coordinate in the warped image \((x_i^t, y_i^t)\), the point
sampled from the source image \((x_i^s, y_i^s)\) are calculated
by the following equation.


\[\begin{split}\left(\begin{matrix} x_i^s \\
    y_i^s \end{matrix}\right)
=
\left(\begin{matrix} \theta_{11} & \theta_{12} & \theta_{13} \\
    \theta_{21} & \theta_{22} & \theta_{23} \end{matrix}\right)
\left(\begin{matrix} x_i^t \\
    y_i^t \\
    1 \end{matrix}\right)\end{split}\]

Notatition: here is a notation for dimensionalities.


	\(n\) is the batch size.

	\(h_O\) and \(w_O\) are the height and the width of the output
image.







	Parameters:	
	theta (Variable) – An array of shape \((n, 2, 3)\).
This is a batch of \(2 \times 3\) matrix used for
the warping described above.

	output_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of 2 elements: \(h_O, w_O\).

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available. Note that, cuDNN supports SpatialTransformerGrid
from version 5.0.0.






	Returns:	A variable of shape \((n, 2, h_O, w_O)\).
In the 2nd dimension, the first element is the coordinate along the
x axis, and the second element is the coordinate along the y axis.
All the coordinates in the image are scaled to fit range
\([-1, 1]\).
This means that the coordinate \((-1, -1)\) corresponds to
the upper-left corner of the input image.




	Return type:	Variable














spatial_transformer_sampler


	
chainer.functions.spatial_transformer_sampler(x, grid, use_cudnn=True)

	2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points
grid and an input feature map x, this produces a sampled output
feature map.

This function currently only supports bilinear interpolation as a sampling
kernel.

When coordinates in grid is outside range \([-1, 1]\), values are
sampled from a zero padded input image.

Notatition: here is a notation for dimensionalities.


	\(n\) is the batch size.

	\(c_I\) is the number of the input channels.

	\(h\) and \(w\) are the height and width of the input image,
respectively.

	\(h_O\) and \(w_O\) are the height and width of the output
image.



See detail in the following paper: Spatial Transformer Networks [https://arxiv.org/abs/1506.02025].





	Parameters:	
	x (Variable) – Input variable of shape \((n, c_I, h, w)\).

	grid (Variable) – Coordinate variable of shape
\((n, 2, h_O, w_O)\). Each coordinate defines the spatial
location in the input where a sampling kernel is applied to get
the value at a particular pixel in the output.
grid[idx, :, i, j] corresponds to the coordinate that is used
to sample the values for an output pixel at location
\((i, j)\).

In the second dimension, the first coordinate corresponds to the
location along the horizontal axis, and the second coordinate
corresponds to the location along the vertical axis.

The coordinate \((-1, -1)\) corresponds to the upper-left
corner of the input image.



	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available. Note that, cuDNN supports SpatialTransformerSampler
from version 5.0.0.






	Returns:	Output feature map of shape             \((n, c_I, h_O, w_O)\).




	Return type:	Variable














split_axis


	
chainer.functions.split_axis(x, indices_or_sections, axis, force_tuple=False)

	Splits given variables along an axis.





	Parameters:	
	x (tuple of Variables) – Variables to be split.

	indices_or_sections (int [https://docs.python.org/3/library/functions.html#int] or 1-D array) – If this argument is an integer,
N, the array will be divided into N equal arrays along axis.
If it is a 1-D array of sorted integers, it
indicates the positions where the array is split.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis that the input array is split along.

	force_tuple (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this method returns a tuple even when
the number of outputs is one.






	Returns:	
	Tuple of Variable objects

	if the number of outputs is more than 1 or
Variable otherwise.
When force_tuple is True, returned value is always a tuple
regardless of the number of outputs.










	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or Variable








Note

This function raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if at least
one of the outputs is split to zero-size
(i.e. axis-th value of its shape is zero).










squeeze


	
chainer.functions.squeeze(x, axis=None)

	Remove demensions of size one from the shape of a ndarray.





	Parameters:	
	x (chainer.Variable or :class:numpy.ndarray or cupy.ndarray) – Input
data.

	axis (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – A subset of the single-dimensional
entries in the shape to remove. If None is supplied, all of
them are removed. The dimension index starts at zero. If an axis
with dimension greater than one is selected, an error is raised.






	Returns:	Variable whose dimensions of size 1 are removed.




	Return type:	Variable














stack


	
chainer.functions.stack(xs, axis=0)

	Concatenate variables along a new axis.





	Parameters:	
	xs (list of Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variables to be concatenated. The variables must have the
same shape.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which the arrays will be stacked. The
axis parameter is acceptable when
\(-ndim - 1 \leq axis \leq ndim\). (ndim is the
dimension of input variables). When \(axis < 0\), the result
is the same with \(ndim + 1 - |axis|\).






	Returns:	Output variable. Let x_1, x_2, ..., x_n and y be the input
variables and the output variable,
y[:, ..., 0, ..., :] is x_1,
y[:, ..., 1, ..., :] is x_2
and y[:, ..., n-1, ..., :] is x_n (The indexed axis
indicates the axis).




	Return type:	Variable








Example

>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 24).reshape(3, 4)
>>> x2.shape
(3, 4)
>>> x2
array([[12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23]])
>>> y = F.stack([x1, x2], axis=0)
>>> y.shape
(2, 3, 4)
>>> y.data
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> y = F.stack([x1, x2], axis=1)
>>> y.shape
(3, 2, 4)
>>> y.data
array([[[ 0,  1,  2,  3],
        [12, 13, 14, 15]],

       [[ 4,  5,  6,  7],
        [16, 17, 18, 19]],

       [[ 8,  9, 10, 11],
        [20, 21, 22, 23]]])
>>> y = F.stack([x1, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.data
array([[[ 0, 12],
        [ 1, 13],
        [ 2, 14],
        [ 3, 15]],

       [[ 4, 16],
        [ 5, 17],
        [ 6, 18],
        [ 7, 19]],

       [[ 8, 20],
        [ 9, 21],
        [10, 22],
        [11, 23]]])
>>> y = F.stack([x1, x2], axis=-1)
>>> y.shape
(3, 4, 2)














swapaxes


	
chainer.functions.swapaxes(x, axis1, axis2)

	Swap two axes of a variable.





	Parameters:	
	x (Variable) – Input variable.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis to swap.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis to swap.






	Returns:	Variable whose axes are swapped.




	Return type:	Variable














tile


	
chainer.functions.tile(x, reps)

	Construct an array by tiling a given array.





	Parameters:	
	x (chainer.Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Input data.

	reps (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The number of times for each axis with
which x is replicated.






	Returns:	Variable tiled the given array.




	Return type:	Variable














transpose


	
chainer.functions.transpose(x, axes=None)

	Permute the dimensions of an input variable without copy.





	Parameters:	
	x (Variable) – Input variable.

	axes (tuple of ints) – By default, reverse the dimensions,
otherwise permute the axes according to the values given.






	Returns:	Variable whose axes are permuted.




	Return type:	Variable














transpose_sequence


	
chainer.functions.transpose_sequence(xs)

	Transpose a list of Variables.

This function transposes a list of Variable s and returns
a list of Variable s.
For example a user gives [(0, 1, 2, 3), (4, 5), (6)], the function
returns [(0, 4, 6), (1, 5), (2), (3)].
Note that a given list needs to be sorted by each length of
Variable.





	Parameters:	xs (list of ~chainer.Variable) – Variables to transpose.


	Returns:	Transposed list.


	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or Variable












vstack


	
chainer.functions.vstack(xs)

	Concatenate variables vertically (row wise).





	Parameters:	xs (list of Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variables to be concatenated. The variables must have the
same ndim. When the variables have the second axis (i.e.
\(ndim \geq 2\)), the variables must have the same shape
along all but the first axis. When the variables do not have the
second axis(i.e. \(ndim < 2\)), the variables must have the
same shape.


	Returns:	Output variable. When the input variables have the second axis
(i.e. \(ndim \geq 2\)), the shapes of inputs and output are
the same along all but the first axis. The length of first axis
is the sum of the lengths of inputs’ first axis.
When the variables do not have the second axis (i.e.
\(ndim < 2\)), the shape of output is (2, N) (N is the
size of the input variable).


	Return type:	Variable






Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.vstack((x1, x2))
>>> y.shape
(2, 3)
>>> y.data
array([[1, 2, 3],
       [2, 3, 4]])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 20).reshape(2, 4)
>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],
       [16, 17, 18, 19]])
>>> y = F.vstack([x1, x2])
>>> y.shape
(5, 4)
>>> y.data
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19]])














where


	
chainer.functions.where(condition, x, y)

	Choose elements depending on condition.

This function choose values depending on a given condition.
All condition, x, and y must have the same shape.





	Parameters:	
	condition (Variable) – Variable containing the condition.
Only boolean array is permitted.

	x (Variable) – Variable chosen when condition is True.

	y (Variable) – Variable chosen when condition is False.






	Returns:	Variable containing chosen values.




	Return type:	Variable
















Neural network connections


bilinear


	
chainer.functions.bilinear(e1, e2, W, V1=None, V2=None, b=None)

	Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper
below). It takes two input variables and one or four parameters, and
outputs one variable.

To be precise, denote six input arrays mathematically by
\(e^1\in \mathbb{R}^{I\cdot J}\),
\(e^2\in \mathbb{R}^{I\cdot K}\),
\(W\in \mathbb{R}^{J \cdot K \cdot L}\),
\(V^1\in \mathbb{R}^{J \cdot L}\),
\(V^2\in \mathbb{R}^{K \cdot L}\), and
\(b\in \mathbb{R}^{L}\),
where \(I\) is mini-batch size.
In this document, we call \(V^1\), \(V^2\), and \(b\) linear
parameters.

The output of forward propagation is calculated as


\[y_{il} = \sum_{jk} e^1_{ij} e^2_{ik} W_{jkl} + \
  \sum_{j} e^1_{ij} V^1_{jl} + \sum_{k} e^2_{ik} V^2_{kl} + b_{l}.\]

Note that V1, V2, b are optional. If these are not given, then this
function omits the last three terms in the above equation.


Note

This function accepts an input variable e1 or e2 of a non-matrix
array. In this case, the leading dimension is treated as the batch
dimension, and the other dimensions are reduced to one dimension.




Note

In the original paper, \(J\) and \(K\)
must be equal and the author denotes \([V^1 V^2]\)
(concatenation of matrices) by \(V\).







	Parameters:	
	e1 (Variable) – Left input variable.

	e2 (Variable) – Right input variable.

	W (Variable) – Quadratic weight variable.

	V1 (Variable) – Left coefficient variable.

	V2 (Variable) – Right coefficient variable.

	b (Variable) – Bias variable.






	Returns:	Output variable.




	Return type:	Variable








	See:

	Reasoning With Neural Tensor Networks for Knowledge Base Completion [http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion] [Socher+, NIPS2013].










convolution_2d


	
chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, use_cudnn=True, cover_all=False, deterministic=False)

	Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets.
It takes three variables: the input image x, the filter weight W,
and the bias vector b.

Notation: here is a notation for dimensionalities.


	\(n\) is the batch size.

	\(c_I\) and \(c_O\) are the number of the input and output
channels, respectively.

	\(h_I\) and \(w_I\) are the height and width of the input image,
respectively.

	\(h_K\) and \(w_K\) are the height and width of the filters,
respectively.

	\(h_P\) and \(w_P\) are the height and width of the spatial
padding size, respectively.



Then the Convolution2D function computes correlations between filters
and patches of size \((h_K, w_K)\) in x.
Note that correlation here is equivalent to the inner product between
expanded vectors.
Patches are extracted at positions shifted by multiples of stride from
the first position (-h_P, -w_P) for each spatial axis.
The right-most (or bottom-most) patches do not run over the padded spatial
size.

Let \((s_Y, s_X)\) be the stride of filter application. Then, the
output size \((h_O, w_O)\) is determined by the following equations:


\[\begin{split}h_O &= (h_I + 2h_P - h_K) / s_Y + 1,\\
w_O &= (w_I + 2w_P - w_K) / s_X + 1.\end{split}\]

If cover_all option is True, the filter will cover the all
spatial locations. So, if the last stride of filter does not cover the
end of spatial locations, an addtional stride will be applied to the end
part of spatial locations. In this case, the output size \((h_O, w_O)\)
is determined by the following equations:


\[\begin{split}h_O &= (h_I + 2h_P - h_K + s_Y - 1) / s_Y + 1,\\
w_O &= (w_I + 2w_P - w_K + s_X - 1) / s_X + 1.\end{split}\]

If the bias vector is given, then it is added to all spatial locations of
the output of convolution.

The two-dimensional convolution function is defined as follows.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable of shape \((n, c_I, h_I, w_I)\).

	W (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Weight variable of shape \((c_O, c_I, h_K, w_K)\).

	b (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Bias variable of length \(c_O\) (optional).

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of int [https://docs.python.org/3/library/functions.html#int] s) – Stride of filter applications. stride=s and stride=(s, s)
are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of int [https://docs.python.org/3/library/functions.html#int] s) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, all spatial locations are convoluted
into some output pixels.

	deterministic (bool [https://docs.python.org/3/library/functions.html#bool]) – The output of this function can be
non-deterministic when it uses cuDNN.
If this option is True, then it forces cuDNN to use
a deterministic algorithm. This option is only available for
cuDNN version >= v3.






	Returns:	Output variable of shape \((n, c_O, h_O, w_O)\).




	Return type:	Variable








See also

Convolution2D




Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> h_i, w_i = 30, 40
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype('f')
>>> x.shape
(10, 3, 30, 40)
>>> W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype('f')
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o,)).astype('f')
>>> b.shape
(1,)
>>> s_y, s_x = 5, 7
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 1, 7, 6)
>>> h_o = int((h_i + 2 * h_p - h_k) / s_y + 1)
>>> w_o = int((w_i + 2 * w_p - w_k) / s_x + 1)
>>> y.shape == (n, c_o, h_o, w_o)
True
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p), cover_all=True)
>>> y.shape == (n, c_o, h_o, w_o + 1)
True














convolution_nd


	
chainer.functions.convolution_nd(x, W, b=None, stride=1, pad=0, use_cudnn=True, cover_all=False)

	N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized
two-dimensional convolution in ConvNets. It takes three variables: the
input x, the filter weight W and the bias vector b.

Notation: here is a notation for dimensionalities.


	\(N\) is the number of spatial dimensions.

	\(n\) is the batch size.

	\(c_I\) and \(c_O\) are the number of the input and output
channels, respectively.

	\(d_1, d_2, ..., d_N\) are the size of each axis of the input’s
spatial dimensions, respectively.

	\(k_1, k_2, ..., k_N\) are the size of each axis of the filters,
respectively.

	\(l_1, l_2, ..., l_N\) are the size of each axis of the output’s
spatial dimensions, respectively.

	\(p_1, p_2, ..., p_N\) are the size of each axis of the spatial
padding size, respectively.



Then the convolution_nd function computes correlations between filters
and patches of size \((k_1, k_2, ..., k_N)\) in x.
Note that correlation here is equivalent to the inner product between
expanded tensors.
Patches are extracted at positions shifted by multiples of stride from
the first position (-p_1, -p_2, ..., -p_N) for each spatial axis.

Let \((s_1, s_2, ..., s_N)\) be the stride of filter application.
Then, the output size \((l_1, l_2, ..., l_N)\) is determined by the
following equations:


\[l_n = (d_n + 2p_n - k_n) / s_n + 1 \ \ (n = 1, ..., N)\]

If cover_all option is True, the filter will cover the all
spatial locations. So, if the last stride of filter does not cover the
end of spatial locations, an addtional stride will be applied to the end
part of spatial locations. In this case, the output size is determined by
the following equations:


\[l_n = (d_n + 2p_n - k_n + s_n - 1) / s_n + 1 \ \ (n = 1, ..., N)\]

The N-dimensional convolution function is defined as follows.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable of shape \((n, c_I, d_1, d_2, ..., d_N)\).

	W (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Weight variable of shape \((c_O, c_I, k_1, k_2, ..., k_N)\).

	b (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – One-dimensional bias variable with length \(c_O\) (optional).

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] s) – Stride of filter applications \((s_1, s_2, ..., s_N)\).
stride=s is equivalent to (s, s, ..., s).

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] s) – Spatial padding width for input arrays
\((p_1, p_2, ..., p_N)\). pad=p is equivalent to
(p, p, ..., p).

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available. See below for the excact conditions.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, all spatial locations are convoluted
into some output pixels. It may make the output size larger.
cover_all needs to be False if you want to use cuDNN.






	Returns:	Output variable of shape \((n, c_O, l_1, l_2, ..., l_N)\).




	Return type:	Variable








Note

This function uses cuDNN implementation for its forward and backward
computation if ALL of the following conditions are satisfied:


	cuda.cudnn_enabled is True

	use_cudnn is True

	The number of spatial dimensions is more than one.

	cover_all is False

	The input’s dtype is equal to the filter weight’s.

	The dtype is FP16, FP32 or FP64. (FP16 is only available when
cuDNN version \(\geq\) v3.)






See also

ConvolutionND, convolution_2d()




Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
>>> x.shape
(10, 3, 30, 40, 50)
>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype('f')
>>> W.shape
(1, 3, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype('f')
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, l1, l2, l3)
True
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_all=True)
>>> y.shape == (n, c_o, l1, l2, l3 + 1)
True














deconvolution_2d


	
chainer.functions.deconvolution_2d(x, W, b=None, stride=1, pad=0, outsize=None, use_cudnn=True, deterministic=False)

	Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep
learning frameworks and papers, this function is called
transposed convolution. But because of historical reasons (e.g. paper
by Ziller Deconvolutional Networks [http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf]) and backward compatibility, this
function is called deconvolution in Chainer.

It takes three variables: input image x,
the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.


	\(n\) is the batch size.

	\(c_I\) and \(c_O\) are the number of the input and output
channels, respectively.

	\(h_I\) and \(w_I\) are the height and width of the input image,
respectively.

	\(h_K\) and \(w_K\) are the height and width of the filters,
respectively.

	\(h_P\) and \(w_P\) are the height and width of the spatial
padding size, respectively.



Let \((s_Y, s_X)\) be the stride of filter application. Then, the
output size \((h_O, w_O)\) is estimated by the following equations:


\[\begin{split}h_O &= s_Y (h_I - 1) + h_K - 2h_P,\\
w_O &= s_X (w_I - 1) + w_K - 2w_P.\end{split}\]





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable of shape \((n, c_I, h_I, w_I)\).

	W (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Weight variable of shape \((c_I, c_O, h_K, w_K)\).

	b (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Bias variable of length \(c_O\) (optional).

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of int [https://docs.python.org/3/library/functions.html#int] s) – Stride of filter applications. stride=s and stride=(s, s)
are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of int [https://docs.python.org/3/library/functions.html#int] s) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	outsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) – Expected output size of deconvolutional operation.
It should be pair of height and width \((h_O, w_O)\).
Default value is None and the outsize is estimated by
input size, stride and pad.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available.

	deterministic (bool [https://docs.python.org/3/library/functions.html#bool]) – The output of this function can be
non-deterministic when it uses cuDNN.
If this option is True, then it forces cuDNN to use
a deterministic algorithm. This option is only available for
cuDNN version >= v3.






	Returns:	Output variable of shape \((n, c_O, h_O, w_O)\).




	Return type:	Variable








Example

>>> n = 10
>>> c_i, c_o = 1, 3
>>> h_i, w_i = 5, 10
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype('f')
>>> x.shape
(10, 1, 5, 10)
>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype('f')
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, c_o).astype('f')
>>> b.shape
(3,)
>>> s_y, s_x = 5, 5
>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 3, 20, 45)
>>> h_o = s_y * (h_i - 1) + h_k - 2 * h_p
>>> w_o = s_x * (w_i - 1) + w_k - 2 * w_p
>>> y.shape == (n, c_o, h_o, w_o)
True














deconvolution_nd


	
chainer.functions.deconvolution_nd(x, W, b=None, stride=1, pad=0, outsize=None, use_cudnn=True)

	N-dimensional deconvolution function.

This is an implementation of N-dimensional deconvolution which generalizes
two-dimensional one. In most of deep learning frameworks and papers, this
function is called transposed convolution. But because of historical
reasons (e.g. paper by Ziller Deconvolutional Networks [http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf]) and backward
compatibility, this function is called deconvolution in Chainer.

It takes three variables: the input x, the filter weight W, and the
bias vector b.

Notation: here is a notation for dimensionalities.


	\(N\) is the number of spatial dimensions.

	\(n\) is the batch size.

	\(c_I\) and \(c_O\) are the number of the input and output
channels, respectively.

	\(d_1, d_2, ..., d_N\) are the size of each axis of the input’s
spatial dimensions, respectively.

	\(k_1, k_2, ..., k_N\) are the size of each axis of the filters,
respectively.

	\(p_1, p_2, ..., p_N\) are the size of each axis of the spatial
padding size, respectively.

	\(s_1, s_2, ..., s_N\) are the stride of each axis of filter
application, respectively.



If outsize option is None, the output size
\((l_1, l_2, ..., l_N)\) is determined by the following equations with
the items in the above list:


\[l_n = s_n (d_n - 1)  + k_n - 2 p_n \ \ (n = 1, ..., N)\]

If outsize option is given, the output size is determined by
outsize. In this case, the outsize \((l_1, l_2, ..., l_N)\)
must satisfy the following equations:


\[d_n = \lfloor (l_n + 2p_n - k_n) / s_n \rfloor + 1 \ \ (n = 1, ..., N)\]





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable of shape \((n, c_I, d_1, d_2, ..., d_N)\).

	W (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Weight variable of shape \((c_I, c_O, k_1, k_2, ..., k_N)\).

	b (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – One-dimensional bias variable with length \(c_O\) (optional).

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] s) – Stride of filter applications \((s_1, s_2, ..., s_N)\).
stride=s is equivalent to (s, s, ..., s).

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] s) – Spatial padding width for input arrays
\((p_1, p_2, ..., p_N)\). pad=p is equivalent to
(p, p, ..., p).

	outsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int] s) – Expected output size of deconvolutional operation. It should be a
tuple of ints \((l_1, l_2, ..., l_N)\). Default value is
None and the outsize is estimated by input size, stride and
pad.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available. Note that cuDNN supports more than one-dimensional
deconvolution operations only.






	Returns:	Output variable of shape \((n, c_O, l_1, l_2, ..., l_N)\).




	Return type:	Variable








See also

links.DeconvolutionND, deconvolution_2d()




Example

Example1: the case when outsize is not given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype('f')
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype('f')
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3
>>> y.shape == (n, c_o, l1, l2, l3)
True





Example2: the case when outsize is given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype('f')
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype('f')
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> l1, l2, l3 = 9, 38, 87
>>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1
True
>>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1
True
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True














depthwise_convolution_2d


	
chainer.functions.depthwise_convolution_2d(x, W, b=None, stride=1, pad=0)

	Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution.
It takes two or three variables: the input image x, the filter weight
W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.


	\(n\) is the batch size.

	\(c_I\) is the number of the input.

	\(c_M\) is the channel multiplier.

	\(h\) and \(w\) are the height and width of the input image,
respectively.

	\(h_O\) and \(w_O\) are the height and width of the output image,
respectively.

	\(k_H\) and \(k_W\) are the height and width of the filters,
respectively.







	Parameters:	
	x (chainer.Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Input variable of shape \((n, c_I, h, w)\).

	W (Variable) – Weight variable of shape
\((c_M, c_I, k_H, k_W)\).

	b (Variable) – Bias variable of length \(c_M * c_I\) (optional).

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.






	Returns:	Output variable. Its shape is \((n, c_I * c_M, h_O, w_O)\).




	Return type:	Variable







Like Convolution2D, DepthwiseConvolution2D function computes
correlations between filters and patches of size \((k_H, k_W)\) in
x.
But unlike Convolution2D, DepthwiseConvolution2D does not add up
input channels of filters but concatenates them.
For that reason, the shape of outputs of depthwise convolution are
\((n, c_I * c_M, h_O, w_O)\), \(c_M\) is called channel_multiplier.

\((h_O, w_O)\) is determined by the equivalent equation of
Convolution2D.

If the bias vector is given, then it is added to all spatial locations of
the output of convolution.

See: L. Sifre. Rigid-motion scattering for image classification [http://www.di.ens.fr/data/publications/papers/phd_sifre.pdf]


See also

DepthwiseConvolution2D




Example

>>> x = np.random.uniform(0, 1, (2, 3, 4, 7))
>>> W = np.random.uniform(0, 1, (2, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (6,))
>>> y = F.depthwise_convolution_2d(x, W, b)
>>> y.shape
(2, 6, 2, 5)














dilated_convolution_2d


	
chainer.functions.dilated_convolution_2d(x, W, b=None, stride=1, pad=0, dilate=1, use_cudnn=True, cover_all=False)

	Two-dimensional dilated convolution function.

This is an implementation of two-dimensional dilated convolution
in ConvNets.
It takes three variables: the input image x, the filter weight W,
and the bias vector b.

Notation: here is a notation for dimensionalities.


	\(n\) is the batch size.

	\(c_I\) and \(c_O\) are the number of the input and output,
respectively.

	\(h\) and \(w\) are the height and width of the input image,
respectively.

	\(k_H\) and \(k_W\) are the height and width of the filters,
respectively.







	Parameters:	
	x (Variable) – Input variable of shape \((n, c_I, h, w)\).

	W (Variable) – Weight variable of shape
\((c_O, c_I, k_H, k_W)\).

	b (Variable) – Bias variable of length \(c_O\) (optional).

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	dilate (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Dilation factor of filter applications.
dilate=d and dilate=(d, d) are equivalent.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, all spatial locations are convoluted
into some output pixels. It may make the output size larger.






	Returns:	Output variable.




	Return type:	Variable







The two-dimensional dilated convolution function is defined as follows.
Then the DilatedConvolution2D function computes correlations
between filters and patches of size \((k_H, k_W)\) in x.
Patches here are extracted at intervals of the dilation factor.
Note that correlation here is equivalent to the inner product between
expanded vectors.
Patches are extracted at intervals of the dilation factor and at positions
shifted by multiples of stride from the first position -pad for
each spatial axis. The right-most (or bottom-most) patches do not run over
the padded spatial size.

Let \((s_Y, s_X)\) be the stride of filter application,
\((p_H, p_W)\) the spatial padding size, and \((d_Y, d_X)\)
the dilation factor of filter application. Then, the output size
\((h_O, w_O)\) is determined by the following equations:


\[\begin{split}h_O &= (h + 2p_H - k_H - (k_H - 1) * (d_Y - 1)) / s_Y + 1,\\
w_O &= (w + 2p_W - k_W - (k_W - 1) * (d_X - 1)) / s_X + 1.\end{split}\]

If the bias vector is given, then it is added to all spatial locations of
the output of convolution.


See also

DilatedConvolution2D










embed_id


	
chainer.functions.embed_id(x, W, ignore_label=None)

	Efficient linear function for one-hot input.

This function implements so called word embedding. It takes two
arguments: a set of IDs (words) x in \(B\) dimensional integer
vector, and a set of all ID (word) embeddings W in \(V \times d\)
float32 matrix. It outputs \(B \times d\) matrix whose i-th
column is the x[i]-th column of W.

This function is only differentiable on the input W.





	Parameters:	
	x (Variable) – Batch vectors of IDs.

	W (Variable) – Representation of each ID (a.k.a.
word embeddings).

	ignore_label (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – If ignore_label is an int value,
i-th column of return value is filled with 0.






	Returns:	Output variable.




	Return type:	Variable








See also

EmbedID










linear


	
chainer.functions.linear(x, W, b=None)

	Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight
matrix W, and optionally a bias vector b. It computes



\[Y = xW^\top + b.\]








	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable, which is a \((s_B, s_1,             s_2, ..., s_n)\)-shaped float array. Its first dimension
\((s_B)\) is assumed to be the minibatch dimension. The
other dimensions are treated as concatenated one dimension whose
size must be \((s_1 * ... * s_n = N)\).

	W (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Weight variable of shape \((M, N)\),
where \((N = s_1 * ... * s_n)\).

	b (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Bias variable (optional) of shape
\((M,)\).






	Returns:	Output variable. A float array with shape
of \((s_B, M)\).




	Return type:	Variable








See also

Linear




Example

>>> x = np.random.uniform(0, 1, (3, 4)).astype('f')
>>> W = np.random.uniform(0, 1, (5, 4)).astype('f')
>>> b = np.random.uniform(0, 1, (5,)).astype('f')
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)














n_step_bigru


	
chainer.functions.n_step_bigru(n_layers, dropout_ratio, hx, ws, bs, xs, train=True, use_cudnn=True)

	Stacked Bi-directional Gated Recurrent Unit function.

This function calculates stacked Bi-directional GRU with sequences.
This function gets an initial hidden state \(h_0\), an input
sequence \(x\), weight matrices \(W\), and bias vectors \(b\).
This function calculates hidden states \(h_t\) for each time \(t\)
from input \(x_t\).


\[\begin{split}r^{f}_t &= \sigma(W^{f}_0 x_t + W^{f}_3 h_{t-1} + b^{f}_0 + b^{f}_3)
\\
z^{f}_t &= \sigma(W^{f}_1 x_t + W^{f}_4 h_{t-1} + b^{f}_1 + b^{f}_4)
\\
h^{f'}_t &= \tanh(W^{f}_2 x_t + b^{f}_2 + r^{f}_t \cdot (W^{f}_5
h_{t-1} + b^{f}_5)) \\
h^{f}_t &= (1 - z^{f}_t) \cdot h^{f'}_t + z^{f}_t \cdot h_{t-1}
\\
r^{b}_t &= \sigma(W^{b}_0 x_t + W^{b}_3 h_{t-1} + b^{b}_0 + b^{b}_3)
\\
z^{b}_t &= \sigma(W^{b}_1 x_t + W^{b}_4 h_{t-1} + b^{b}_1 + b^{b}_4)
\\
h^{b'}_t &= \tanh(W^{b}_2 x_t + b^{b}_2 + r^{b}_t \cdot (W^{b}_5
h_{t-1} + b^{b}_5)) \\
h^{b}_t &= (1 - z^{b}_t) \cdot h^{b'}_t + z^{b}_t \cdot h_{t-1}
\\
h_t  &= [h^{f}_t; h^{f}_t] \\\end{split}\]

where \(W^{f}\) is weight matrices for forward-GRU, \(W^{b}\) is
weight matrices for backward-GRU.

As the function accepts a sequence, it calculates \(h_t\) for all
\(t\) with one call. Six weight matrices and six bias vectors are
required for each layers. So, when \(S\) layers exists, you need to
prepare \(6S\) weigth matrices and \(6S\) bias vectors.

If the number of layers n_layers is greather than \(1\), input
of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape
from the first layer.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	dropout_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	hx (chainer.Variable) – Variable holding stacked hidden states.
Its shape is (S, B, N) where S is number of layers and is
equal to n_layers, B is mini-batch size, and N is
dimention of hidden units.

	ws (list of list of chainer.Variable) – Weight matrices. ws[i]
represents weights for i-th layer.
Each ws[i] is a list containing six matrices.
ws[i][j] is corresponding with W_j in the equation.
Only ws[0][j] where 0 <= j < 3 is (I, N) shape as they
are multiplied with input variables. All other matrices has
(N, N) shape.

	bs (list of list of chainer.Variable) – Bias vectors. bs[i]
represnents biases for i-th layer.
Each bs[i] is a list containing six vectors.
bs[i][j] is corresponding with b_j in the equation.
Shape of each matrix is (N,) where N is dimention of
hidden units.

	xs (list of chainer.Variable) – A list of Variable
holding input values. Each element xs[t] holds input value
for time t. Its shape is (B_t, I), where B_t is
mini-batch size for time t, and I is size of input units.
Note that this functions supports variable length sequences.
When sequneces has different lengths, sort sequences in descending
order by length, and transpose the sorted sequence.
transpose_sequence() transpose a list
of Variable() holding sequence.
So xs needs to satisfy
xs[t].shape[0] >= xs[t + 1].shape[0].

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function executes dropout.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function uses cuDNN if available.

	use_bi_direction (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function uses
Bi-direction GRU.






	Returns:	
	This functions returns a tuple concaining three elements,

	hy and ys.
- hy is an updated hidden states whose shape is same as hx.
- ys is a list of Variable . Each element


ys[t] holds hidden states of the last layer corresponding
to an input xs[t]. Its shape is (B_t, N) where B_t is
mini-batch size for time t, and N is size of hidden
units. Note that B_t is the same value as xs[t].













	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














n_step_bilstm


	
chainer.functions.n_step_bilstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs, train=True, use_cudnn=True)

	Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences.
This function gets an initial hidden state \(h_0\), an initial cell
state \(c_0\), an input sequence \(x\), weight matrices \(W\),
and bias vectors \(b\).
This function calculates hidden states \(h_t\) and \(c_t\) for each
time \(t\) from input \(x_t\).


\[\begin{split}i^{f}_t &=& \sigma(W^{f}_0 x_t + W^{f}_4 h_{t-1} + b^{f}_0 + b^{f}_4),
\\
f^{f}_t &=& \sigma(W^{f}_1 x_t + W^{f}_5 h_{t-1} + b^{f}_1 + b^{f}_5),
\\
o^{f}_t &=& \sigma(W^{f}_2 x_t + W^{f}_6 h_{t-1} + b^{f}_2 + b^{f}_6),
\\
a^{f}_t &=& \tanh(W^{f}_3 x_t + W^{f}_7 h_{t-1} + b^{f}_3 + b^{f}_7),
\\
c^{f}_t &=& f^{f}_t \cdot c^{f}_{t-1} + i^{f}_t \cdot a^{f}_t,
\\
h^{f}_t &=& o^{f}_t \cdot \tanh(c^{f}_t),
\\
i^{b}_t &=& \sigma(W^{b}_0 x_t + W^{b}_4 h_{t-1} + b^{b}_0 + b^{b}_4),
\\
f^{b}_t &=& \sigma(W^{b}_1 x_t + W^{b}_5 h_{t-1} + b^{b}_1 + b^{b}_5),
\\
o^{b}_t &=& \sigma(W^{b}_2 x_t + W^{b}_6 h_{t-1} + b^{b}_2 + b^{b}_6),
\\
a^{b}_t &=& \tanh(W^{b}_3 x_t + W^{b}_7 h_{t-1} + b^{b}_3 + b^{b}_7),
\\
c^{b}_t &=& f^{b}_t \cdot c^{b}_{t-1} + i^{b}_t \cdot a^{b}_t, \\
h^{b}_t &=& o^{b}_t \cdot \tanh(c^{b}_t), \\
h_t &=& [h^{f}; h^{b}]\end{split}\]

where \(W^{f}\) is weight matrices for forward-LSTM, \(W^{b}\) is
weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates \(h_t\) for all
\(t\) with one call. Eight weight matrices and eight bias vectors are
required for each layers. So, when \(S\) layers exists, you need to
prepare \(8S\) weigth matrices and \(8S\) bias vectors.

If the number of layers n_layers is greather than \(1\), input
of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape
from the first layer.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	dropout_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	hx (chainer.Variable) – Variable holding stacked hidden states.
Its shape is (S, B, N) where S is number of layers and is
equal to n_layers, B is mini-batch size, and N is
dimention of hidden units.

	cx (chainer.Variable) – Variable holding stacked cell states.
It has the same shape as hx.

	ws (list of list of chainer.Variable) – Weight matrices. ws[i]
represents weights for i-th layer.
Each ws[i] is a list containing eight matrices.
ws[i][j] is corresponding with W_j in the equation.
Only ws[0][j] where 0 <= j < 4 is (I, N) shape as they
are multiplied with input variables. All other matrices has
(N, N) shape.

	bs (list of list of chainer.Variable) – Bias vectors. bs[i]
represnents biases for i-th layer.
Each bs[i] is a list containing eight vectors.
bs[i][j] is corresponding with b_j in the equation.
Shape of each matrix is (N,) where N is dimention of
hidden units.

	xs (list of chainer.Variable) – A list of Variable
holding input values. Each element xs[t] holds input value
for time t. Its shape is (B_t, I), where B_t is
mini-batch size for time t, and I is size of input units.
Note that this functions supports variable length sequences.
When sequneces has different lengths, sort sequences in descending
order by length, and transpose the sorted sequence.
transpose_sequence() transpose a list
of Variable() holding sequence.
So xs needs to satisfy
xs[t].shape[0] >= xs[t + 1].shape[0].

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function executes dropout.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function uses cuDNN if available.






	Returns:	
	This functions returns a tuple concaining three elements,

	hy, cy and ys.
- hy is an updated hidden states whose shape is same as hx.
- cy is an updated cell states whose shape is same as cx.
- ys is a list of Variable . Each element


ys[t] holds hidden states of the last layer corresponding
to an input xs[t]. Its shape is (B_t, N) where B_t is
mini-batch size for time t, and N is size of hidden
units. Note that B_t is the same value as xs[t].













	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














n_step_birnn


	
chainer.functions.n_step_birnn(n_layers, dropout_ratio, hx, ws, bs, xs, train=True, use_cudnn=True, activation='tanh')

	Stacked Bi-directional RNN function for sequence inputs.

This function calculates stacked Bi-directional RNN with sequences.
This function gets an initial hidden state \(h_0\), an initial
cell state \(c_0\), an input sequence \(x\),
weight matrices \(W\), and bias vectors \(b\).
This function calculates hidden states \(h_t\) and \(c_t\) for each
time \(t\) from input \(x_t\).


\[\begin{split}h^{f}_t &=& f(W^{f}_0 x_t + W^{f}_1 h_{t-1} + b^{f}_0 + b^{f}_1), \\
h^{b}_t &=& f(W^{b}_0 x_t + W^{b}_1 h_{t-1} + b^{b}_0 + b^{b}_1), \\
h_t  &=& [h^{f}_t; h^{f}_t], \\\end{split}\]

where \(f\) is an activation function.

Weight matrices \(W\) contains two matrices \(W^{f}\) and
\(W^{b}\). \(W^{f}\) is weight matrices for forward directional
RNN. \(W^{b}\) is weight matrices for backward directional RNN.

\(W^{f}\) contains \(W^{f}_0\) for an input sequence and
\(W^{f}_1\) for a hidden state.
\(W^{b}\) contains \(W^{b}_0\) for an input sequence and
\(W^{b}_1\) for a hidden state.

Bias matrices \(b\) contains two matrices \(b^{f}\) and
\(b^{f}\). \(b^{f}\) contains \(b^{f}_0\) for an input sequence
and \(b^{f}_1\) for a hidden state.
\(b^{b}\) contains \(b^{b}_0\) for an input sequence and
\(b^{b}_1\) for a hidden state.

As the function accepts a sequence, it calculates \(h_t\) for all
\(t\) with one call. Two weight matrices and two bias vectors are
required for each layer. So, when \(S\) layers exist, you need to
prepare \(2S\) weigth matrices and \(2S\) bias vectors.

If the number of layers n_layers is greather than \(1\), input
of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape
from the first layer.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	dropout_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	hx (chainer.Variable) – Variable holding stacked hidden states.
Its shape is (S, B, N) where S is number of layers and is
equal to n_layers, B is mini-batch size, and N is
dimention of hidden units.

	ws (list of list of chainer.Variable) – Weight matrices. ws[i + di]
represents weights for i-th layer.
Note that di = 0 for forward-RNN and di = 1 for
backward-RNN.
Each ws[i + di] is a list containing two matrices.
ws[i + di][j] is corresponding with W^{f}_j if di = 0
and corresponding with W^{b}_j if di = 1 in the equation.
Only ws[0][j] and ws[1][j] where 0 <= j < 1 are
(I, N) shape as they are multiplied with input variables.
All other matrices has (N, N) shape.

	bs (list of list of chainer.Variable) – Bias vectors. bs[i + di]
represnents biases for i-th layer.
Note that di = 0 for forward-RNN and di = 1 for
backward-RNN.
Each bs[i + di] is a list containing two vectors.
bs[i + di][j] is corresponding with b^{f}_j if di = 0
and corresponding with b^{b}_j if di = 1 in the equation.
Shape of each matrix is (N,) where N is dimention of
hidden units.

	xs (list of chainer.Variable) – A list of Variable
holding input values. Each element xs[t] holds input value
for time t. Its shape is (B_t, I), where B_t is
mini-batch size for time t, and I is size of input units.
Note that this functions supports variable length sequences.
When sequneces has different lengths, sort sequences in descending
order by length, and transpose the sorted sequence.
transpose_sequence() transpose a list
of Variable() holding sequence.
So xs needs to satisfy
xs[t].shape[0] >= xs[t + 1].shape[0].

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function executes dropout.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function uses cuDNN if available.

	activation (str [https://docs.python.org/3/library/stdtypes.html#str]) – Activation function name.
Please select tanh or relu.






	Returns:	
	This functions returns a tuple concaining three elements,

	hy and ys.


	hy is an updated hidden states whose shape is same as hx.

	ys is a list of Variable . Each element
ys[t] holds hidden states of the last layer corresponding
to an input xs[t]. Its shape is (B_t, N) where B_t
is mini-batch size for time t, and N is size of hidden
units. Note that B_t is the same value as xs[t].












	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














n_step_gru


	
chainer.functions.n_step_gru(n_layers, dropout_ratio, hx, ws, bs, xs, train=True, use_cudnn=True)

	Stacked Uni-directional Gated Recurrent Unit function.

This function calculates stacked Uni-directional GRU with sequences.
This function gets an initial hidden state \(h_0\), an input
sequence \(x\), weight matrices \(W\), and bias vectors \(b\).
This function calculates hidden states \(h_t\) for each time \(t\)
from input \(x_t\).


\[\begin{split}r_t &= \sigma(W_0 x_t + W_3 h_{t-1} + b_0 + b_3) \\
z_t &= \sigma(W_1 x_t + W_4 h_{t-1} + b_1 + b_4) \\
h'_t &= \tanh(W_2 x_t + b_2 + r_t \cdot (W_5 h_{t-1} + b_5)) \\
h_t &= (1 - z_t) \cdot h'_t + z_t \cdot h_{t-1}\end{split}\]

As the function accepts a sequence, it calculates \(h_t\) for all
\(t\) with one call. Six weight matrices and six bias vectors are
required for each layers. So, when \(S\) layers exists, you need to
prepare \(6S\) weigth matrices and \(6S\) bias vectors.

If the number of layers n_layers is greather than \(1\), input
of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape
from the first layer.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	dropout_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	hx (chainer.Variable) – Variable holding stacked hidden states.
Its shape is (S, B, N) where S is number of layers and is
equal to n_layers, B is mini-batch size, and N is
dimention of hidden units.

	ws (list of list of chainer.Variable) – Weight matrices. ws[i]
represents weights for i-th layer.
Each ws[i] is a list containing six matrices.
ws[i][j] is corresponding with W_j in the equation.
Only ws[0][j] where 0 <= j < 3 is (I, N) shape as they
are multiplied with input variables. All other matrices has
(N, N) shape.

	bs (list of list of chainer.Variable) – Bias vectors. bs[i]
represnents biases for i-th layer.
Each bs[i] is a list containing six vectors.
bs[i][j] is corresponding with b_j in the equation.
Shape of each matrix is (N,) where N is dimention of
hidden units.

	xs (list of chainer.Variable) – A list of Variable
holding input values. Each element xs[t] holds input value
for time t. Its shape is (B_t, I), where B_t is
mini-batch size for time t, and I is size of input units.
Note that this functions supports variable length sequences.
When sequneces has different lengths, sort sequences in descending
order by length, and transpose the sorted sequence.
transpose_sequence() transpose a list
of Variable() holding sequence.
So xs needs to satisfy
xs[t].shape[0] >= xs[t + 1].shape[0].

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function executes dropout.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function uses cuDNN if available.






	Returns:	
	This functions returns a tuple concaining three elements,

	hy and ys.
- hy is an updated hidden states whose shape is same as hx.
- ys is a list of Variable . Each element


ys[t] holds hidden states of the last layer corresponding
to an input xs[t]. Its shape is (B_t, N) where B_t is
mini-batch size for time t, and N is size of hidden
units. Note that B_t is the same value as xs[t].













	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














n_step_lstm


	
chainer.functions.n_step_lstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs, train=True, use_cudnn=True)

	Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences.
This function gets an initial hidden state \(h_0\), an initial cell
state \(c_0\), an input sequence \(x\), weight matrices \(W\),
and bias vectors \(b\).
This function calculates hidden states \(h_t\) and \(c_t\) for each
time \(t\) from input \(x_t\).


\[\begin{split}i_t &= \sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4) \\
f_t &= \sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5) \\
o_t &= \sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6) \\
a_t &= \tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7) \\
c_t &= f_t \cdot c_{t-1} + i_t \cdot a_t \\
h_t &= o_t \cdot \tanh(c_t)\end{split}\]

As the function accepts a sequence, it calculates \(h_t\) for all
\(t\) with one call. Eight weight matrices and eight bias vectors are
required for each layers. So, when \(S\) layers exists, you need to
prepare \(8S\) weigth matrices and \(8S\) bias vectors.

If the number of layers n_layers is greather than \(1\), input
of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape
from the first layer.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	dropout_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	hx (chainer.Variable) – Variable holding stacked hidden states.
Its shape is (S, B, N) where S is number of layers and is
equal to n_layers, B is mini-batch size, and N is
dimention of hidden units.

	cx (chainer.Variable) – Variable holding stacked cell states.
It has the same shape as hx.

	ws (list of list of chainer.Variable) – Weight matrices. ws[i]
represents weights for i-th layer.
Each ws[i] is a list containing eight matrices.
ws[i][j] is corresponding with W_j in the equation.
Only ws[0][j] where 0 <= j < 4 is (I, N) shape as they
are multiplied with input variables. All other matrices has
(N, N) shape.

	bs (list of list of chainer.Variable) – Bias vectors. bs[i]
represnents biases for i-th layer.
Each bs[i] is a list containing eight vectors.
bs[i][j] is corresponding with b_j in the equation.
Shape of each matrix is (N,) where N is dimention of
hidden units.

	xs (list of chainer.Variable) – A list of Variable
holding input values. Each element xs[t] holds input value
for time t. Its shape is (B_t, I), where B_t is
mini-batch size for time t, and I is size of input units.
Note that this functions supports variable length sequences.
When sequneces has different lengths, sort sequences in descending
order by length, and transpose the sorted sequence.
transpose_sequence() transpose a list
of Variable() holding sequence.
So xs needs to satisfy
xs[t].shape[0] >= xs[t + 1].shape[0].

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function executes dropout.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function uses cuDNN if available.






	Returns:	
	This functions returns a tuple concaining three elements,

	hy, cy and ys.
- hy is an updated hidden states whose shape is same as hx.
- cy is an updated cell states whose shape is same as cx.
- ys is a list of Variable . Each element


ys[t] holds hidden states of the last layer corresponding
to an input xs[t]. Its shape is (B_t, N) where B_t is
mini-batch size for time t, and N is size of hidden
units. Note that B_t is the same value as xs[t].













	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]








See also

chainer.functions.lstm()










n_step_rnn


	
chainer.functions.n_step_rnn(n_layers, dropout_ratio, hx, ws, bs, xs, train=True, use_cudnn=True, activation='tanh')

	Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences.
This function gets an initial hidden state \(h_0\),
an initial cell state \(c_0\), an input sequence \(x\),
weight matrices \(W\), and bias vectors \(b\).
This function calculates hidden states \(h_t\) and \(c_t\) for each
time \(t\) from input \(x_t\).


\[h_t = f(W_0 x_t + W_1 h_{t-1} + b_0 + b_1)\]

where \(f\) is an activation function.

Weight matrices \(W\) contains two matrices \(W_0\) and
\(W_1\). \(W_0\) is a parameter for an input sequence.
\(W_1\) is a parameter for a hidden state.
Bias matrices \(b\) contains two matrices \(b_0\) and \(b_1\).
\(b_0\) is a parameter for an input sequence.
\(b_1\) is a parameter for a hidden state.

As the function accepts a sequence, it calculates \(h_t\) for all
\(t\) with one call. Two weight matrices and two bias vectors are
required for each layer. So, when \(S\) layers exist, you need to
prepare \(2S\) weigth matrices and \(2S\) bias vectors.

If the number of layers n_layers is greather than \(1\), input
of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape
from the first layer.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	dropout_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	hx (chainer.Variable) – Variable holding stacked hidden states.
Its shape is (S, B, N) where S is number of layers and is
equal to n_layers, B is mini-batch size, and N is
dimention of hidden units.

	ws (list of list of chainer.Variable) – Weight matrices. ws[i]
represents weights for i-th layer.
Each ws[i] is a list containing two matrices.
ws[i][j] is corresponding with W_j in the equation.
Only ws[0][j] where 0 <= j < 1 is (I, N) shape as they
are multiplied with input variables. All other matrices has
(N, N) shape.

	bs (list of list of chainer.Variable) – Bias vectors. bs[i]
represnents biases for i-th layer.
Each bs[i] is a list containing two vectors.
bs[i][j] is corresponding with b_j in the equation.
Shape of each matrix is (N,) where N is dimention of
hidden units.

	xs (list of chainer.Variable) – A list of Variable
holding input values. Each element xs[t] holds input value
for time t. Its shape is (B_t, I), where B_t is
mini-batch size for time t, and I is size of input units.
Note that this functions supports variable length sequences.
When sequneces has different lengths, sort sequences in descending
order by length, and transpose the sorted sequence.
transpose_sequence() transpose a list
of Variable() holding sequence.
So xs needs to satisfy
xs[t].shape[0] >= xs[t + 1].shape[0].

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function executes dropout.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function uses cuDNN if available.

	activation (str [https://docs.python.org/3/library/stdtypes.html#str]) – Activation function name.
Please select tanh or relu.






	Returns:	
	This functions returns a tuple concaining three elements,

	hy and ys.


	hy is an updated hidden states whose shape is same as hx.

	ys is a list of Variable . Each element
ys[t] holds hidden states of the last layer corresponding
to an input xs[t]. Its shape is (B_t, N) where B_t is
mini-batch size for time t, and N is size of hidden
units. Note that B_t is the same value as xs[t].












	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]
















Evaluation functions


accuracy


	
chainer.functions.accuracy(y, t, ignore_label=None)

	Computes multiclass classification accuracy of the minibatch.





	Parameters:	
	y (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Array whose (i, j, k, ...)-th element indicates the score of
the class j at the (i, k, ...)-th sample.
The prediction label \(\hat t\) is calculated by the formula
\(\hat t(i, k, ...) = \operatorname{\mathrm{argmax}}_j y(i, j, k, ...)\).

	t (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray of numpy.int32) – Array of ground truth labels.

	ignore_label (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Skip calculating accuracy
if the true label is ignore_label.






	Returns:	A variable holding a scalar array of the accuracy.




	Return type:	Variable








Note

This function is non-differentiable.




Example

We show the most common case, when y is the two dimensional array.

>>> y = np.array([[0.1, 0.7, 0.2], # prediction label is 1
...               [8.0, 1.0, 2.0], # prediction label is 0
...               [-8.0, 1.0, 2.0], # prediction label is 2
...               [-8.0, -1.0, -2.0]]) # prediction label is 1
>>> t = np.array([1, 0, 2, 1], 'i')
>>> F.accuracy(y, t).data # 100% accuracy because all samples are correct
array(1.0)
>>> t = np.array([1, 0, 0, 0], 'i')
>>> F.accuracy(y, t).data # 50% accuracy because 1st and 2nd samples are correct.
array(0.5)
>>> F.accuracy(y, t, ignore_label=0).data # 100% accuracy because of ignoring the 2nd, 3rd and 4th samples.
array(1.0)














binary_accuracy


	
chainer.functions.binary_accuracy(y, t)

	Computes binary classification accuracy of the minibatch.





	Parameters:	
	y (Variable) – Variable holding a matrix whose i-th element
indicates the score of positive at the i-th example.

	t (Variable) – Variable holding an int32 vector of ground truth labels.
If t[i] == -1, corresponding x[i] is ignored.
Accuracy is zero if all ground truth labels are -1.






	Returns:	A variable holding a scalar array of the accuracy.




	Return type:	Variable








Note

This function is non-differentiable.










classification_summary


	
chainer.functions.classification_summary(y, t, label_num=None, beta=1.0, ignore_label=-1)

	Calculates Precision, Recall, F beta Score, and support.

This function calculates the following quantities for each class.


	Precision: \(\frac{\mathrm{tp}}{\mathrm{tp} + \mathrm{fp}}\)

	Recall: \(\frac{\mathrm{tp}}{\mathrm{tp} + \mathrm{tn}}\)

	F beta Score: The weighted harmonic average of Precision and Recall.

	Support: The number of instances of each ground truth label.



Here, tp, fp, and tn stand for the number of true positives,
false positives, and true negative, respectively.

label_num specifies the number of classes, that is,
each value in t must be an integer in the range of
[0, label_num).
If label_num is None, this function regards
label_num as a maximum of in t plus one.

ignore_label determines which instances should be ignored.
Specifically, instances with the given label are not taken
into account for calculating the above quantities.
By default, it is set to -1 so that all instances are taken
into consideration, as labels are supposed to be non-negative integers.
Setting ignore_label to a non-negative integer less than label_num
is illegal and yields undefined behavior. In the current implementation,
it arises RuntimeWarning and ignore_label-th entries in output
arrays do not contain correct quantities.





	Parameters:	
	y (Variable) – Variable holding a vector of scores.

	t (Variable) – Variable holding a vector of
ground truth labels.

	label_num (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – The parameter which determines the weight of
precision in the F-beta score.

	ignore_label (int [https://docs.python.org/3/library/functions.html#int]) – Instances with this label are ignored.






	Returns:	4-tuple of ~chainer.Variable of size (label_num,).
Each element represents precision, recall, F beta score,
and support of this minibatch.














r2_score


	
chainer.functions.r2_score(pred, true, sample_weight=None, multioutput='uniform_average')

	Computes R^2(coefficient of determination) regression score function.





	Parameters:	
	pred (Variable) – Variable holding a vector, matrix or tensor of
estimated target values.

	true (Variable) – Variable holding a vector, matrix or tensor of
correct target values.

	sample_weight – This argument is for compatibility with scikit-learn’s
implementation of r2_score. Current implementation admits None
only.

	multioutput (string [https://docs.python.org/3/library/string.html#module-string]) – [‘uniform_average’, ‘raw_values’]. if
‘uniform_average’, this function returns an average of R^2
score of multiple output. If ‘raw_average’, this function
return a set of R^2 score of multiple output.






	Returns:	A Variable holding a scalar array of the R^2 score if
‘multioutput’ is ‘uniform_average’ or a vector of R^2 scores if
‘multioutput’ is ‘raw_values’.




	Return type:	Variable








Note

This function is non-differentiable.












Loss functions


bernoulli_nll


	
chainer.functions.bernoulli_nll(x, y, reduce='sum')

	Computes the negative log-likelihood of a Bernoulli distribution.

This function calculates the negative log-likelihood of a Bernoulli
distribution.


\[-\log B(x; p) = -\sum_i \{x_i \log(p_i) + (1 - x_i)\log(1 - p_i)\},\]

where \(p = \sigma(y)\), \(\sigma(\cdot)\) is a sigmoid
function, and \(B(x; p)\) is a Bernoulli distribution.

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'sum', loss values are summed up.


Note

As this function uses a sigmoid function, you can pass a result of
fully-connected layer (that means Linear) to this function
directly.







	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable.

	y (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – A variable representing the parameter of
Bernoulli distribution.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'sum' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable representing the negative log-likelihood.
If reduce is 'no', the output variable holds array
whose shape is same as one of (hence both of) input variables.
If it is 'sum', the output variable holds a scalar value.




	Return type:	Variable














black_out


	
chainer.functions.black_out(x, t, W, samples, reduce='mean')

	BlackOut loss function.

BlackOut loss function is defined as


\[-\log(p(t)) - \sum_{s \in S} \log(1 - p(s)),\]

where \(t\) is the correct label, \(S\) is a set of negative
examples and \(p(\cdot)\) is likelihood of a given label.
And, \(p\) is defined as


\[p(y) = \frac{\exp(W_y^\top x)}{
\sum_{s \in samples} \exp(W_s^\top x)}.\]

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the
no loss values. If it is 'mean', this function takes
a mean of loss values.





	Parameters:	
	x (Variable) – Batch of input vectors.
Its shape should be \((N, D)\).

	t (Variable) – Vector of ground truth labels.
Its shape should be \((N,)\). Each elements \(v\)
should satisfy \(0 \geq v \geq V\) or \(-1\)
where \(V\) is the number of label types.

	W (Variable) – Weight matrix.
Its shape should be \((V, D)\)

	samples (Variable) – Negative samples.
Its shape should be \((N, S)\) where \(S\) is
the number of negative samples.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either

	or 'mean'. Otherwise, ('no') – 









:param ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.:





	Returns:	A variable object holding loss value(s).
If reduce is 'no', the output variable holds an
array whose shape is \((N,)\) .
If it is 'mean', it holds a scalar.


	Return type:	Variable





See: BlackOut: Speeding up Recurrent Neural Network Language Models With          Very Large Vocabularies [https://arxiv.org/abs/1511.06909]


See also

BlackOut.










connectionist_temporal_classification


	
chainer.functions.connectionist_temporal_classification(x, t, blank_symbol, input_length=None, label_length=None, reduce='mean')

	Connectionist Temporal Classification loss function.

Connectionist Temporal Classification(CTC) [Graves2006] is a loss function
of sequence labeling where the alignment between the inputs and target is
unknown. See also [Graves2012]

The output is a varialbe whose value depends on the value of
the option reduce. If it is 'no', it holds the samplewise
loss values. If it is 'mean', it takes the mean of loss values.





	Parameters:	
	x (sequence of Variable) – RNN output at each time. x must be a list
of Variable s. Each element of x, x[i]
is a Variable representing output of RNN at time
i.

	t (Variable) – Expected label sequence.

	blank_symbol (int [https://docs.python.org/3/library/functions.html#int]) – Index of blank_symbol.
This value must be non-negative.

	input_length (Variable) – Length of valid sequence for each of mini
batch x (optional). If input_length is skipped, It regards that
all of x is valid input.

	label_length (Variable) – Length of valid sequence for each of mini
batch t (optional). If label_length is skipped, It regards that
all of t is valid input.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'mean' or 'no'. Otherwise,
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable holding a scalar value of the CTC loss.
If reduce is 'no', the output varialbe holds array
whose shape is (B,) where B is the number of samples.
If it is 'mean', it holds a scalar.




	Return type:	Variable








Note

You need to input x without applying to activation functions(e.g.
softmax function), because this function applies softmax functions
to x before calculating CTC loss to avoid numerical limitations.
You also need to apply softmax function to forwarded values before you
decode it.




Note

This function is differentiable only by x.




Note

This function supports (batch, sequence, 1-dimensional input)-data.






	[Graves2006]	Alex Graves, Santiago Fernandez,    Faustino Gomez, Jurgen Schmidhuber,    Connectionist Temporal Classification: Labelling Unsegmented    Sequence Data with Recurrent Neural Networks [ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf]







	[Graves2012]	Alex Graves,    Supervised Sequence Labelling with Recurrent Neural Networks [http://www.cs.toronto.edu/~graves/preprint.pdf]











contrastive


	
chainer.functions.contrastive(x0, x1, y, margin=1, reduce='mean')

	Computes contrastive loss.

It takes a pair of samples and a label as inputs.
The label is \(1\) when those samples are similar,
or \(0\) when they are dissimilar.

Let \(N\) and \(K\) denote mini-batch size and the dimension
of input variables, respectively. The shape of both input variables
x0 and x1 should be (N, K).
The loss value of the \(n\)-th sample pair \(L_n\) is


\[L_n = \frac{1}{2} \left( y_n d_n^2
+ (1 - y_n) \max ({\rm margin} - d_n, 0)^2 \right)\]

where \(d_n = \| {\bf x_0}_n - {\bf x_1}_n \|_2\),
\({\bf x_0}_n\) and \({\bf x_1}_n\) are \(n\)-th
K-dimensional vectors of x0 and x1.

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'mean', this function takes a mean of
loss values.





	Parameters:	
	x0 (Variable) – The first input variable. The shape should be
(N, K), where N denotes the mini-batch size, and K denotes the
dimension of x0.

	x1 (Variable) – The second input variable. The shape should be
the same as x0.

	y (Variable) – Labels. All values should be 0 or 1. The shape
should be (N,), where N denotes the mini-batch size.

	margin (float [https://docs.python.org/3/library/functions.html#float]) – A parameter for contrastive loss. It should be positive
value.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'mean' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable holding the loss value(s) calculated by the
above equation.
If reduce is 'no', the output variable holds array
whose shape is same as one of (hence both of) input variables.
If it is 'mean', the output variable holds a scalar value.




	Return type:	Variable








Note

This cost can be used to train siamese networks. See Learning a
Similarity Metric Discriminatively, with Application to Face
Verification [http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf]
for details.










crf1d


	
chainer.functions.crf1d(cost, xs, ys, reduce='mean')

	Calculates negative log-likelihood of linear-chain CRF.

It takes a transition cost matrix, a sequence of costs, and a sequence of
labels. Let \(c_{st}\) be a transition cost from a label \(s\) to
a label \(t\), \(x_{it}\) be a cost of a label \(t\) at
position \(i\), and \(y_i\) be an expected label at position
\(i\). The negative log-likelihood of linear-chain CRF is defined as


\[L = -\left( \sum_{i=1}^l x_{iy_i} + \
     \sum_{i=1}^{l-1} c_{y_i y_{i+1}} - {\log(Z)} \right) ,\]

where \(l\) is the length of the input sequence and \(Z\) is the
normalizing constant called partition function.


Note

When you want to calculate the negative log-likelihood of sequences
which have different lengths, sort the sequences in descending order of
lengths and transpose the sequences.
For example, you have three input sequences:

>>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype('f')
>>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype('f')
>>> c1 = c2 = np.random.uniform(-1, 1, 3).astype('f')





>>> a = [a1, a2, a3, a4]
>>> b = [b1, b2, b3]
>>> c = [c1, c2]





where a1 and all other variables are arrays with (K,) shape.
Make a transpose of the sequences:

>>> x1 = np.stack([a1, b1, c1])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])
>>> x4 = np.stack([a4])





and make a list of the arrays:

>>> xs = [x1, x2, x3, x4]





You need to make label sequences in the same fashion.
And then, call the function:

>>> cost = chainer.Variable(
...     np.random.uniform(-1, 1, (3, 3)).astype('f'))
>>> ys = [np.zeros(x.shape[0:1], dtype='i') for x in xs]
>>> loss = F.crf1d(cost, xs, ys)





It calculates mean of the negative log-likelihood of the three
sequences.

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'mean', it holds mean of the loss values.







	Parameters:	
	cost (Variable) – A \(K \times K\) matrix which holds transition
cost between two labels, where \(K\) is the number of labels.

	xs (list of Variable) – Input vector for each label.
len(xs) denotes the length of the sequence,
and each Variable holds a \(B \times K\)
matrix, where \(B\) is mini-batch size, \(K\) is the number
of labels.
Note that \(B\) s in all the variables are not necessary
the same, i.e., it accepts the input sequences with different
lengths.

	ys (list of Variable) – Expected output labels. It needs to have the
same length as xs. Each Variable holds a
\(B\) integer vector.
When x in xs has the different \(B\), correspoding
y has the same \(B\). In other words, ys must satisfy
ys[i].shape == xs[i].shape[0:1] for all i.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'mean' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	
	A variable holding the average negative

	log-likelihood of the input sequences.










	Return type:	Variable








Note

See detail in the original paper: Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data [http://repository.upenn.edu/cis_papers/159/].








	
chainer.functions.argmax_crf1d(cost, xs)

	Computes a state that maximizes a joint probability of the given CRF.





	Parameters:	
	cost (Variable) – A \(K \times K\) matrix which holds transition
cost between two labels, where \(K\) is the number of labels.

	xs (list of Variable) – Input vector for each label.
len(xs) denotes the length of the sequence,
and each Variable holds a \(B \times K\)
matrix, where \(B\) is mini-batch size, \(K\) is the number
of labels.
Note that \(B\) s in all the variables are not necessary
the same, i.e., it accepts the input sequences with different
lengths.






	Returns:	
	A tuple of Variable object s and a

	list [https://docs.python.org/3/library/stdtypes.html#list] ps.
The shape of s is (B,), where B is the mini-batch size.
i-th element of s, s[i], represents log-likelihood of i-th
data.
ps is a list of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray, and denotes the state that maximizes the
point probability.
len(ps) is equal to len(xs), and shape of each ps[i] is
the mini-batch size of the corresponding xs[i]. That means,
ps[i].shape == xs[i].shape[0:1].










	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














cross_covariance


	
chainer.functions.cross_covariance(y, z, reduce='half_squared_sum')

	Computes the sum-squared cross-covariance penalty between y and z

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the covariant
matrix that has as many rows (resp. columns) as the dimension of
y (resp.z).
If it is 'half_squared_sum', it holds the half of the
Frobenius norm (i.e. L2 norm of a matrix flattened to a vector)
of the covarianct matrix.





	Parameters:	
	y (Variable) – Variable holding a matrix where the first dimension
corresponds to the batches.

	z (Variable) – Variable holding a matrix where the first dimension
corresponds to the batches.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'half_squared_sum' or 'no'.
Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable holding the cross covariance loss.
If reduce is 'no', the output variable holds
2-dimensional array matrix of shape (M, N) where
M (resp. N) is the number of columns of y
(resp. z).
If it is 'half_squared_sum', the output variable
holds a scalar value.




	Return type:	Variable








Note

This cost can be used to disentangle variables.
See https://arxiv.org/abs/1412.6583v3 for details.










gaussian_kl_divergence


	
chainer.functions.gaussian_kl_divergence(mean, ln_var, reduce='sum')

	Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable mean representing \(\mu\) and ln_var
representing \(\log(\sigma^2)\), this function calculates
the KL-divergence in elementwise manner between the given multi-dimensional
Gaussian \(N(\mu, S)\) and the standard Gaussian \(N(0, I)\)


\[D_{\mathbf{KL}}(N(\mu, S) \| N(0, I)),\]

where \(S\) is a diagonal matrix such that \(S_{ii} = \sigma_i^2\)
and \(I\) is an identity matrix.

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'sum', loss values are summed up.





	Parameters:	
	mean (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – A variable representing mean of given
gaussian distribution, \(\mu\).

	ln_var (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – A variable representing logarithm of
variance of given gaussian distribution, \(\log(\sigma^2)\).

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'sum' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable representing KL-divergence between
given gaussian distribution and the standard gaussian.
If reduce is 'no', the output variable holds array
whose shape is same as one of (hence both of) input variables.
If it is 'sum', the output variable holds a scalar value.




	Return type:	Variable














gaussian_nll


	
chainer.functions.gaussian_nll(x, mean, ln_var, reduce='sum')

	Computes the negative log-likelihood of a Gaussian distribution.

Given two variable mean representing \(\mu\) and ln_var
representing \(\log(\sigma^2)\), this function computes in
elementwise manner the negative log-likelihood of \(x\) on a
Gaussianx distribution \(N(\mu, S)\),


\[-\log N(x; \mu, \sigma^2) =
\log\left(\sqrt{(2\pi)^D |S|}\right) +
\frac{1}{2}(x - \mu)^\top S^{-1}(x - \mu),\]

where \(D\) is a dimension of \(x\) and \(S\) is a diagonal
matrix where \(S_{ii} = \sigma_i^2\).

The output is a varialbe whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'sum', loss values are summed up.





	Parameters:	
	x (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – Input variable.

	mean (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – A variable representing mean of a Gaussian
distribution, \(\mu\).

	ln_var (Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or         cupy.ndarray) – A variable representing logarithm of
variance of a Gaussian distribution, \(\log(\sigma^2)\).

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'sum' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable representing the negative log-likelihood.
If reduce is 'no', the output varialbe holds array
whose shape is same as one of (hence both of) input variables.
If it is 'sum', the output variable holds a scalar value.




	Return type:	Variable














hinge


	
chainer.functions.hinge(x, t, norm='L1', reduce='mean')

	Computes the hinge loss for a one-of-many classification task.



\[L = \frac{1}{N} \sum_{n=1}^N \sum_{k=1}^K \left[
\max(0, 1 - \delta\{t_n = k\} x_{nk}) \right]^p\]

where \(N\) denotes the batch size and \(K\) is the number of
classes of interest,


\[\begin{split}\delta \{ {\rm condition} \} = \left \{ \begin{array}{cc}
1 & {\rm if~condition\ is\ true} \\
-1 & {\rm otherwise,}
\end{array} \right.\end{split}\]

and


\[\begin{split}p = \left \{ \begin{array}{cc}
1 & {\rm if~norm} = {\rm L1} \\
2 & {\rm if~norm} = {\rm L2.}
\end{array} \right.\end{split}\]

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'mean', it takes the mean of loss values.








	Parameters:	
	x (Variable) – Input variable. The shape of x should be
(\(N\), \(K\)).

	t (Variable) – The \(N\)-dimensional label vector
with values \(t_n \in \{0, 1, 2, \dots, K-1\}\).
The shape of t should be (\(N\),).

	norm (string [https://docs.python.org/3/library/string.html#module-string]) – Specifies norm type. Either 'L1' or 'L2' is
acceptable.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'mean' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable object holding a scalar array of the
hinge loss \(L\).
If reduce is 'no', the output variable holds array
whose shape is same as one of (hence both of) input variables.
If it is 'mean', the output variable holds a scalar value.




	Return type:	Variable














huber_loss


	
chainer.functions.huber_loss(x, t, delta, reduce='sum_along_second_axis')

	Loss function which is less sensitive to outliers in data than MSE.



\[a = x - t\]

and


\[\begin{split}L_{\delta}(a) = \left \{ \begin{array}{cc}
\frac{1}{2} a^2 & {\rm if~|a| \leq \delta} \\
\delta (|a| - \frac{1}{2} \delta) & {\rm otherwise,}
\end{array} \right.\end{split}\]

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'sum_along_second_axis', loss values are
summed up along the second axis (i.e. axis=1).








	Parameters:	
	x (Variable) – Input variable.
The shape of x should be (\(N\), \(K\)).

	t (Variable) – Target variable for regression.
The shape of t should be (\(N\), \(K\)).

	delta (float [https://docs.python.org/3/library/functions.html#float]) – Constant variable for huber loss function
as used in definition.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'sum_along_second_axis' or 'no'. Otherwise,
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable object holding a scalar array of the
huber loss \(L_{\delta}\).
If reduce is 'no', the output variable holds array
whose shape is same as one of (hence both of) input variables.
If it is 'sum_along_second_axis', the shape of the array
is same as the input variables, except the second axis is removed.




	Return type:	Variable








	See:

	Huber loss - Wikipedia [https://en.wikipedia.org/wiki/Huber_loss].










mean_absolute_error


	
chainer.functions.mean_absolute_error(x0, x1)

	Mean absolute error function.

This function computes mean absolute error between two variables. The mean
is taken over the minibatch.








mean_squared_error


	
chainer.functions.mean_squared_error(x0, x1)

	Mean squared error function.

This function computes mean squared error between two variables. The mean
is taken over the minibatch. Note that the error is not scaled by 1/2.








negative_sampling


	
chainer.functions.negative_sampling(x, t, W, sampler, sample_size, reduce='sum')

	Negative sampling loss function.

In natural language processing, especially language modeling, the number of
words in a vocabulary can be very large.
Therefore, you need to spend a lot of time calculating the gradient of the
embedding matrix.

By using the negative sampling trick you only need to calculate the
gradient for a few sampled negative examples.

The objective function is below:


\[f(x, p) = \log \sigma(x^\top w_p) +  \
k E_{i \sim P(i)}[\log \sigma(- x^\top w_i)],\]

where \(\sigma(\cdot)\) is a sigmoid function, \(w_i\) is the
weight vector for the word \(i\), and \(p\) is a positive example.
It is approximated with \(k\) examples \(N\) sampled from
probability \(P(i)\), like this:


\[f(x, p) \approx \log \sigma(x^\top w_p) +  \
\sum_{n \in N} \log \sigma(-x^\top w_n).\]

Each sample of \(N\) is drawn from the word distribution \(P(w)\).
This is calculated as \(P(w) = \frac{1}{Z} c(w)^\alpha\), where
\(c(w)\) is the unigram count of the word \(w\), \(\alpha\) is
a hyper-parameter, and \(Z\) is the normalization constant.





	Parameters:	
	x (Variable) – Batch of input vectors.

	t (Variable) – Vector of ground truth labels.

	W (Variable) – Weight matrix.

	sampler (FunctionType [https://docs.python.org/3/library/types.html#types.FunctionType]) – Sampling function. It takes a shape and
returns an integer array of the shape. Each element of this array
is a sample from the word distribution.
A WalkerAlias object built with the power
distribution of word frequency is recommended.

	sample_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'sum' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable holding the loss value(s) calculated by the
above equation.
If reduce is 'no', the output variable holds array
whose shape is same as one of (hence both of) input variables.
If it is 'sum', the output variable holds a scalar value.




	Return type:	Variable







See: Distributed Representations of Words and Phrases and their         Compositionality [https://arxiv.org/abs/1310.4546]


See also

NegativeSampling.










sigmoid_cross_entropy


	
chainer.functions.sigmoid_cross_entropy(x, t, use_cudnn=True, normalize=True, reduce='mean')

	Computes cross entropy loss for pre-sigmoid activations.





	Parameters:	
	x (Variable) – A variable object holding a matrix whose (i, j)-th
element indicates the unnormalized log probability of the j-th unit
at the i-th example.

	t (Variable) – Variable holding an int32 vector of ground truth labels.
If t[i] == -1, corresponding x[i] is ignored.
Loss is zero if all ground truth labels are -1.

	normalize (bool [https://docs.python.org/3/library/functions.html#bool]) – Variable holding a boolean value which
determines the normalization constant. If true, this function
normalizes the cross entropy loss across all instances. If else,
it only normalizes along a batch size.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Variable holding a str which
determines whether to reduce the shape of the input.
If it is 'mean', it computes the sum of cross entropy
and normalize it according to normalize option.
If is is 'no', this function computes cross entropy for each
instance and does not normalize it (normalize option is
ignored). In this case, the loss value of the ignored instance,
which has -1 as its target value, is set to 0.






	Returns:	A variable object holding an array of the cross entropy.
If reduce is 'mean', it is a scalar array.
If reduce is 'no', the shape is same as x.




	Return type:	Variable








Note

This function is differentiable only by x.










softmax_cross_entropy


	
chainer.functions.softmax_cross_entropy(x, t, use_cudnn=True, normalize=True, cache_score=True, class_weight=None, ignore_label=-1, reduce='mean')

	Computes cross entropy loss for pre-softmax activations.





	Parameters:	
	x (Variable) – Variable holding a multidimensional array whose
element indicates unnormalized log probability: the first axis of
the variable represents the number of samples, and the second axis
represents the number of classes. While this function computes
a usual softmax cross entropy if the number of dimensions is equal
to 2, it computes a cross entropy of the replicated softmax if the
number of dimensions is greater than 2.

	t (Variable) – Variable holding an int32 vector of ground truth
labels. If t[i] == ignore_label, corresponding x[i] is
ignored.

	normalize (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function normalizes the cross
entropy loss across all instances. If False, it only
normalizes along a batch size.

	cache_score (bool [https://docs.python.org/3/library/functions.html#bool]) – When it is True, the function stores result
of forward computation to use it on backward computation. It
reduces computational cost though consumes more memory.

	class_weight (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or ndarray) – An array
that contains constant weights that will be multiplied with the
loss values along with the second dimension. The shape of this
array should be (x.shape[1],). If this is not None, each
class weight class_weight[i] is actually multiplied to
y[:, i] that is the corresponding log-softmax output of x
and has the same shape as x before calculating the actual loss
value.

	ignore_label (int [https://docs.python.org/3/library/functions.html#int]) – Label value you want to ignore. Its default value
is -1. See description of the argument t.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that determines whether to reduce the loss
values. If it is 'mean', it computes the sum of the individual
cross entropy and normalize it according to normalize option.
If it is 'no', this function computes cross entropy for each
instance and does not normalize it (normalize option is
ignored). In this case, the loss value of the ignored instance,
which has ignore_label as its target value, is set to 0.






	Returns:	A variable holding a scalar array of the cross entropy loss.
If reduce is 'mean', it is a scalar array.
If reduce is 'no', the shape is same as that of x.




	Return type:	Variable








Note

This function is differentiable only by x.










triplet


	
chainer.functions.triplet(anchor, positive, negative, margin=0.2, reduce='mean')

	Computes triplet loss.

It takes a triplet of variables as inputs, \(a\), \(p\) and
\(n\): anchor, positive example and negative example respectively.
The triplet defines a relative similarity between samples.
Let \(N\) and \(K\) denote mini-batch size and the dimension of
input variables, respectively. The shape of all input variables should be
\((N, K)\).


\[L(a, p, n) = \frac{1}{N} \left( \sum_{i=1}^N \max \{d(a_i, p_i)
    - d(a_i, n_i) + {\rm margin}, 0\} \right)\]

where \(d(x_i, y_i) = \| {\bf x}_i - {\bf y}_i \|_2^2\).

The output is a variable whose value depends on the value of
the option reduce. If it is 'no', it holds the elementwise
loss values. If it is 'mean', this function takes a mean of
loss values.





	Parameters:	
	anchor (Variable) – The anchor example variable. The shape
should be \((N, K)\), where \(N\) denotes the minibatch
size, and \(K\) denotes the dimension of the anchor.

	positive (Variable) – The positive example variable. The shape
should be the same as anchor.

	negative (Variable) – The negative example variable. The shape
should be the same as anchor.

	margin (float [https://docs.python.org/3/library/functions.html#float]) – A parameter for triplet loss. It should be a positive
value.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'mean' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.






	Returns:	A variable holding a scalar that is the loss value
calculated by the above equation.
If reduce is 'no', the output variable holds array
whose shape is same as one of (hence both of) input variables.
If it is 'mean', the output variable holds a scalar value.




	Return type:	Variable








Note

This cost can be used to train triplet networks. See Learning         Fine-grained Image Similarity with Deep Ranking [https://arxiv.org/abs/1404.4661] for details.












Mathematical functions


arccos


	
chainer.functions.arccos(x)

	Elementwise arccosine function.


\[y_i = \arccos x_i.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












arcsin


	
chainer.functions.arcsin(x)

	Elementwise arcsine function.


\[y_i = \arcsin x_i.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












arctan


	
chainer.functions.arctan(x)

	Elementwise arctangent function.


\[y_i = \arctan x_i.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












argmax


	
chainer.functions.argmax(x, axis=None)

	Returns index which holds maximum of array elements over a given axis.





	Parameters:	
	x (Variable) – Array to find maximum elements.

	axis (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Axis over which a max is performed.
The default (axis = None) is perform a max over all the dimensions
of the input array.






	Returns:	Output variable.




	Return type:	Variable














argmin


	
chainer.functions.argmin(x, axis=None)

	Returns index which holds minimum of array elements over a given axis.





	Parameters:	
	x (Variable) – Array to find minimum elements.

	axis (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Axis over which a min is performed.
The default (axis = None) is perform a min over all the dimensions
of the input array.






	Returns:	Output variable.




	Return type:	Variable














average


	
chainer.functions.average(x, axis=None, weights=None, keepdims=False)

	Calculate weighted average of array elements over a given axis.





	Parameters:	
	x (Variable) – Elements to sum.

	axis (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the
dimensions of the input array.

	weights (None [https://docs.python.org/3/library/constants.html#None] or chainer.Variable) – An array holding weights to
calculate weighted average. If it is None, all weights are
assumed to be one.
When axis is None, weights must have the same shape
of x. And when axis is int, it must be 1-D array
satisfing weights.shape == (x.shape[axis],).

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as axes
of length one.






	Returns:	Output variable.




	Return type:	Variable














batch_inv


	
chainer.functions.batch_inv(a)

	Computes the inverse of a batch of square matrices.





	Parameters:	a (Variable) – Input array to compute the inverse for. Shape of
the array should be (m, n, n) where m is the number of
matrices in the batch, and n is the dimensionality of a square
matrix.


	Returns:	Inverse of every matrix in the batch of matrices.


	Return type:	Variable












batch_l2_norm_squared


	
chainer.functions.batch_l2_norm_squared(x)

	L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction
along batch axis is done.





	Parameters:	x (Variable) – Input variable. The first dimension is assumed
to be the minibatch dimension. If x has more than two
dimensions all but the first dimension are flattened to one
dimension.


	Returns:	Two dimensional output variable.


	Return type:	Variable












batch_matmul


	
chainer.functions.batch_matmul(a, b, transa=False, transb=False)

	Computes the batch matrix multiplications of two sets of arrays.





	Parameters:	
	a (Variable) – The left operand of the batch matrix multiplications.
A 2-D array of shape (B, N) is considered as B
\(N \times 1\) matrices.
A 3-D array of shape (B, M, N) is considered as B
\(M \times N\) matrices.

	b (Variable) – The right operand of the batch matrix multiplications.
Its array is treated as matrices in the same way as a‘s array.

	transa (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, transpose each matrix in a.

	transb (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, transpose each matrix in b.






	Returns:	
	The result of the batch matrix multiplications as a

	3-D array.










	Return type:	Variable














bias


	
chainer.functions.bias(x, y, axis=1)

	Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of
the latter variable broadcasted to match the shape of the former. axis
is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s bias layer so the
“broadcasting” with the following arguments:

   x : 100 x 3 x 40 x 60
   y : 3 x 40
axis : 1





is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 60
y :   1 x 3 x 40 x 1





Note that how the axis indicates to which axis of x we apply y.





	Parameters:	
	x (Variable) – Input variable to be summed.

	y (Variable) – Input variable to sum, broadcasted.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The first axis of x along which y is applied.






	Returns:	Output variable.




	Return type:	Variable














ceil


	
chainer.functions.ceil(x)

	Elementwise ceil function.


\[y_i = \lceil x_i \rceil\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












clip


	
chainer.functions.clip(x, x_min, x_max)

	Clips (limits) elements of input variable.

Given an interval [x_min, xmax], elements outside the interval are
clipped to the interval edges.





	Parameters:	
	x (Variable) – Input variable to be clipped.

	x_min (float [https://docs.python.org/3/library/functions.html#float]) – Minimum value.

	x_max (float [https://docs.python.org/3/library/functions.html#float]) – Maximum value.






	Returns:	Output variable.




	Return type:	Variable














cos


	
chainer.functions.cos(x)

	Elementwise cos function.








cosh


	
chainer.functions.cosh(x)

	Elementwise hyperbolic cosine function.


\[y_i = \cosh x_i.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












exp


	
chainer.functions.exp(x)

	Elementwise exponential function.








fmod


	
chainer.functions.fmod(x, divisor)

	Elementwise mod function.


\[y_i = x_i \bmod \mathrm{divisor}.\]





	Parameters:	
	x (Variable) – Input variable.

	divisor (Variable) – Input divisor.






	Returns:	Output variable.




	Return type:	Variable














floor


	
chainer.functions.floor(x)

	Elementwise floor function.


\[y_i = \lfloor x_i \rfloor\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












identity


	
chainer.functions.identity(*inputs)

	Just returns input variables.








inv


	
chainer.functions.inv(a)

	Computes the inverse of square matrix.





	Parameters:	a (Variable) – Input array to compute the inverse for. Shape of
the array should be (n, n) where n is the dimensionality of
a square matrix.


	Returns:	Matrix inverse of a.


	Return type:	Variable












linear_interpolate


	
chainer.functions.linear_interpolate(p, x, y)

	Elementwise linear-interpolation function.

This function is defined as


\[f(p, x, y) = p x + (1 - p) y.\]





	Parameters:	
	p (Variable) – Input variable.

	x (Variable) – Input variable.

	y (Variable) – Input variable.






	Returns:	Output variable.




	Return type:	Variable














log


	
chainer.functions.log(x)

	Elementwise natural logarithm function.








log10


	
chainer.functions.log10(x)

	Elementwise logarithm function to the base 10.


\[y_i = \log_{10} x_i.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












log1p


	
chainer.functions.log1p(x)

	Elementwise natural logarithm plus one function.








log2


	
chainer.functions.log2(x)

	Elementwise logarithm function to the base 2.


\[y_i = \log_2 x_i.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












logsumexp


	
chainer.functions.logsumexp(x, axis=None)

	Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.


\[y_i = \log\left(\sum_j \exp(x_{ij})\right)\]





	Parameters:	
	x (Variable) – Elements to log-sum-exp.

	axis (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int], or tuple of int) – Axis which a sum is performed.
The default (axis = None) is perform a sum over all the dimensions
of the input array.






	Returns:	Output variable.




	Return type:	Variable














matmul


	
chainer.functions.matmul(a, b, transa=False, transb=False)

	Computes the matrix multiplication of two arrays.





	Parameters:	
	a (Variable) – The left operand of the matrix multiplication.
A 1-D array of shape (N,) is considered as an
\(N \times 1\) matrix.
A 2-D array of shape (M, N) is considered as an
\(M \times N\) matrix.

	b (Variable) – The right operand of the matrix multiplication.
Its array is treated as a matrix in the same way as a‘s array.

	transa (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, transpose a.

	transb (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, transpose b.






	Returns:	
	The result of the matrix multiplication as a 2-D

	array.










	Return type:	Variable














max


	
chainer.functions.max(x, axis=None, keepdims=False)

	Maximum of array elements over a given axis.





	Parameters:	
	x (Variable) – Array to be maximized.

	axis (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int], or tuple of int) – Axis over which a max is performed.
The default (axis = None) is perform a max over all the dimensions
of the input array.






	Returns:	Output variable.




	Return type:	Variable














maximum


	
chainer.functions.maximum(x1, x2)

	Element-wise maximum of input variables.





	Parameters:	
	x1 (Variable) – Input variables to be compared.

	x2 (Variable) – Input variables to be compared.






	Returns:	Output variable.




	Return type:	Variable














mean


	
chainer.functions.mean(x, axis=None, weights=None, keepdims=False)

	Calculate weighted average of array elements over a given axis.





	Parameters:	
	x (Variable) – Elements to sum.

	axis (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the
dimensions of the input array.

	weights (None [https://docs.python.org/3/library/constants.html#None] or chainer.Variable) – An array holding weights to
calculate weighted average. If it is None, all weights are
assumed to be one.
When axis is None, weights must have the same shape
of x. And when axis is int, it must be 1-D array
satisfing weights.shape == (x.shape[axis],).

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as axes
of length one.






	Returns:	Output variable.




	Return type:	Variable














min


	
chainer.functions.min(x, axis=None, keepdims=False)

	Minimum of array elements over a given axis.





	Parameters:	
	x (Variable) – Array to be minimized.

	axis (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int], or tuple of int) – Axis over which a min is performed.
The default (axis = None) is perform a min over all the dimensions
of the input array.






	Returns:	Output variable.




	Return type:	Variable














minimum


	
chainer.functions.minimum(x1, x2)

	Element-wise minimum of input variables.





	Parameters:	
	x1 (Variable) – Input variables to be compared.

	x2 (Variable) – Input variables to be compared.






	Returns:	Output variable.




	Return type:	Variable














rsqrt


	
chainer.functions.rsqrt(x)

	Computes elementwise reciprocal of square root of input \(x_i\).


\[y_i = {1 \over \sqrt x_i}.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable






See also

sqrt()










scale


	
chainer.functions.scale(x, y, axis=1)

	Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of
the latter variable broadcasted to match the shape of the former. axis
is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s scale layer so the
“broadcasting” with the following arguments:

   x : 100 x 3 x 40 x 60
   y : 3 x 40
axis : 1





is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 60
y :   1 x 3 x 40 x 1





Note that how the axis indicates to which axis of x we apply y.





	Parameters:	
	x (Variable) – Input variable to be scaled.

	y (Variable) – Input variable to scale, broadcasted.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The first axis of x along which y is applied.






	Returns:	Output variable.




	Return type:	Variable














sin


	
chainer.functions.sin(x)

	Elementwise sin function.








sinh


	
chainer.functions.sinh(x)

	Elementwise hyperbolic sine function.


\[y_i = \sinh x_i.\]





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












sqrt


	
chainer.functions.sqrt(x)

	Elementwise square root function.


\[y_i = \sqrt x_i.\]

If the value of \(x_i\) is negative, it returns Nan for \(y_i\)
respect to underlying numpy and cupy specification.





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












square


	
chainer.functions.square(x)

	Elementwise square function.


\[y_i = x_i ^ 2.\]





	Parameters:	x (chainer.Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Input variable.


	Returns:	Output variable.


	Return type:	Variable












squared_difference


	
chainer.functions.squared_difference(x1, x2)

	Squared difference of input variables.





	Parameters:	
	x1 (Variable) – Input variables to be compared.

	x2 (Variable) – Input variables to be compared.






	Returns:	(x1 - x2) ** 2 element-wise.




	Return type:	Variable














sum


	
chainer.functions.sum(x, axis=None, keepdims=False)

	Sum of array elements over a given axis.





	Parameters:	
	x (Variable) – Elements to sum.

	axis (None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int], or tuple of int) – Axis which a sum is performed.
The default (axis = None) is perform a sum over all the dimensions
of the input array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the specified axes are remained as axes
of length one.






	Returns:	Output variable.




	Return type:	Variable














tanh

Hyperbolic tangent function is described in “Activation functions” section.


See also

tanh()






tan


	
chainer.functions.tan(x)

	Elementwise tan function.










Noise injections


dropout


	
chainer.functions.dropout(x, ratio=0.5, train=True)

	Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and
scales the remaining elements by factor 1 / (1 - ratio). In testing
mode, it does nothing and just returns x.





	Parameters:	
	x (Variable) – Input variable.

	ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, executes dropout. Otherwise, does nothing.






	Returns:	Output variable.




	Return type:	Variable







See the paper by G. Hinton: Improving neural networks by preventing     co-adaptation of feature detectors [https://arxiv.org/abs/1207.0580].








gaussian


	
chainer.functions.gaussian(mean, ln_var)

	Gaussian sampling function.

It takes mean \(\mu\) and logarithm of variance
\(\log(\sigma^2)\) as input and output a sample drawn from gaussian
\(N(\mu, \sigma)\).





	Parameters:	
	mean (Variable) – Input variable representing mean
\(\mu\).

	ln_var (Variable) – Input variable representing logarithm of
variance \(\log(\sigma^2)\).






	Returns:	Output variable.




	Return type:	Variable














simplified_dropconnect


	
chainer.functions.simplified_dropconnect(x, W, b=None, ratio=0.5, train=True, mask=None)

	Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with
probability ratio and scales the remaining elements by factor
1 / (1 - ratio). Which element is dropped depends on each sample.
It accepts two or three arguments: an input minibatch x, a weight
matrix W, and optionally a bias vector b. It computes
\(Y = xW^\top + b\).

In testing mode, zero will be used as simplified dropconnect ratio instead
of ratio.

Notice:
This implementation cannot be used for reproduction of the paper.
There is a difference between the current implementation and the
original one.
The original version uses sampling with gaussian distribution before
passing activation function, whereas the current implementation averages
before activation.





	Parameters:	
	x (chainer.Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Input variable. Its first dimension n is assumed
to be the minibatch dimension. The other dimensions are treated
as concatenated one dimension whose size must be N.

	W (Variable) – Weight variable of shape (M, N).

	b (Variable) – Bias variable (optional) of shape (M,).

	ratio (float [https://docs.python.org/3/library/functions.html#float]) – Dropconnect ratio.

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, executes simplified dropconnect.
Otherwise, simplified dropconnect function works as a linear
function.










	:param mask (None or chainer.Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or: cupy.ndarray):

	If None, randomized dropconnect mask is generated.
Otherwise, The mask must be (n, M, N) shaped array.
Main purpose of this option is debugging.
mask array will be used as a dropconnect mask.







	Returns:	Output variable.


	Return type:	Variable






See also

Dropconnect




See also

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013).
Regularization of Neural Network using DropConnect.
International Conference on Machine Learning.
URL [http://cs.nyu.edu/~wanli/dropc/]












Normalization functions


batch_normalization


	
chainer.functions.batch_normalization(x, gamma, beta, eps=2e-05, running_mean=None, running_var=None, decay=0.9, use_cudnn=True)

	Batch normalization function.

It takes the input variable x and two parameter variables gamma and
beta. The parameter variables must both have the same dimensionality,
which is referred to as the channel shape. This channel shape corresponds
to the dimensions in the input which are not averaged over. Since the
first dimension of the input corresponds to the batch size, the second
dimension of x will correspond to the first dimension of the channel
shape, the third dimension of x will correspond to the second channel
dimension (if it exists) and so on. Therefore, the dimensionality of the
input must be at least one plus the number of channel dimensions. The
total effective “batch size” will then be considered to be the product of
all dimensions in x except for the channel dimensions.

As an example, if the input is four dimensional and the parameter
variables are one dimensional, then it is assumed that the first
dimension of the input is the batch size, the second dimension is the
channel size, and the remaining two dimensions are considered
to be spatial dimensions that will be averaged over along with the
batch size in the batch normalization computations. That is,
the total batch size will be considered to be the product of all
input dimensions except the second dimension.

Note: If this function is called, it will not be possible to access the
updated running mean and variance statistics, because they are members
of the function object, which cannot be accessed by the caller.
If it is desired to access the updated running statistics, it is necessary
to get a new instance of the function object, call the object, and then
access the running_mean and/or running_var attributes. See the
corresponding Link class for an example of how to do this.





	Parameters:	
	x (Variable) – Input variable.

	gamma (Variable) – Scaling parameter of normalized data.

	beta (Variable) – Shifting parameter of scaled normalized data.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value for numerical stability.

	running_mean (array) – Running average of the mean. This is a
running average of the mean over several mini-batches using
the decay parameter. If None, the running average is not
computed. If this is None, then runnng_var must also
be None.

	running_var (array) – Running average of the variance. This is a
running average of the variance over several mini-batches using
the decay parameter. If None, the running average is not
computed. If this is None, then running_mean must also
be None.

	decay (float [https://docs.python.org/3/library/functions.html#float]) – Decay rate of moving average. It is used during
training.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.









See: Batch Normalization: Accelerating Deep Network Training by Reducing          Internal Covariate Shift [https://arxiv.org/abs/1502.03167]


See also

links.BatchNormalization










fixed_batch_normalization


	
chainer.functions.fixed_batch_normalization(x, gamma, beta, mean, var, eps=2e-05, use_cudnn=True)

	Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance
statistics are given by the caller as fixed variables. This is
used on testing mode of the batch normalization layer, where batch
statistics cannot be used for prediction consistency.





	Parameters:	
	x (Variable) – Input variable.

	gamma (Variable) – Scaling parameter of normalized data.

	beta (Variable) – Shifting parameter of scaled normalized data.

	mean (Variable) – Shifting parameter of input.

	var (Variable) – Square of scaling parameter of input.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value for numerical stability.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.










See also

functions.batch_normalization(),
links.BatchNormalization










local_response_normalization


	
chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)

	Local response normalization across neighboring channels.

This function implements normalization across channels. Let \(x\) an
input image with \(N\) channels. Then, this function computes an output
image \(y\) by following formula:


\[y_i = {x_i \over \left( k + \
       \alpha \sum_{j=\max{1, i - n/2}}^{\min{N, i + n/2}} \
       x_j^2 \right)^\beta}.\]





	Parameters:	
	x (Variable) – Input variable.

	n (int [https://docs.python.org/3/library/functions.html#int]) – Normalization window width.

	k (float [https://docs.python.org/3/library/functions.html#float]) – Smoothing parameter.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – Normalizer scaling parameter.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Normalizer power parameter.






	Returns:	Output variable.




	Return type:	Variable







See: Section 3.3 of ImageNet Classification with Deep Convolutional Neural Networks [http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf]








normalize


	
chainer.functions.normalize(x, eps=1e-05, axis=1)

	L2 norm squared (a.k.a. Euclidean norm).

This function implements L2 normalization on a vector along the given axis.
No reduction is done along the normalization axis.

In the case when axis=1 and \(x\) is a vector of dimension
\((N, K)\), where \(N\) and \(K\) denote mini-batch size and
the dimension of the input variable, this function computes an output
vector \(y\) by the following equation:


\[y_i = {x_i \over \| x_i \|_2 + \epsilon}\]

eps is used to avoid division by zero when norm of \(x\) along
the given axis is zero.

The default value of axis is determined for backward compatibility.





	Parameters:	
	x (Variable) – Two dimensional output variable. The first
dimension is assumed to be the mini-batch dimension.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value for numerical stability.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which to normalize.






	Returns:	The output variable which has the same shape
as \(x\).




	Return type:	Variable
















Spatial pooling


average_pooling_2d


	
chainer.functions.average_pooling_2d(x, ksize, stride=None, pad=0, use_cudnn=True)

	Spatial average pooling function.

This function acts similarly to Convolution2D, but
it computes the average of input spatial patch for each channel
without any parameter instead of computing the inner products.





	Parameters:	
	x (Variable) – Input variable.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints or None [https://docs.python.org/3/library/constants.html#None]) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is
specified, then it uses same stride as the pooling window size.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for the input array.
pad=p and pad=(p, p) are equivalent.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.






	Returns:	Output variable.




	Return type:	Variable








Note

This function currently does not support cover_all mode as
max_pooling_2d(). Average pooling runs in non-cover-all mode.










average_pooling_nd


	
chainer.functions.average_pooling_nd(x, ksize, stride=None, pad=0, use_cudnn=True)

	N-dimensionally spatial average pooling function.

This function provides a N-dimensionally generalized version of
average_pooling_2d(). This acts similarly to
ConvolutionND, but it computes the average of input
spatial patch for each channel without any parameter instead of computing
the inner products.





	Parameters:	
	x (Variable) – Input variable.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints or None [https://docs.python.org/3/library/constants.html#None]) – Stride of pooling applications.
stride=s and stride=(s, s, ..., s) are equivalent. If
None is specified, then it uses same stride as the pooling
window size.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Spatial padding width for the input array.
pad=p and pad=(p, p, ..., p) are equivalent.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation. cuDNN supports more than
one-dimensional pooling.






	Returns:	Output variable.




	Return type:	Variable








Note

This function currently does not support cover_all mode as
max_pooling_nd(). Average pooling runs in non-cover-all mode.










max_pooling_2d


	
chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True, use_cudnn=True)

	Spatial max pooling function.

This function acts similarly to Convolution2D, but
it computes the maximum of input spatial patch for each channel
without any parameter instead of computing the inner products.





	Parameters:	
	x (Variable) – Input variable.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints or None [https://docs.python.org/3/library/constants.html#None]) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is
specified, then it uses same stride as the pooling window size.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for the input array.
pad=p and pad=(p, p) are equivalent.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, all spatial locations are pooled into
some output pixels. It may make the output size larger.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.






	Returns:	Output variable.




	Return type:	Variable














max_pooling_nd


	
chainer.functions.max_pooling_nd(x, ksize, stride=None, pad=0, cover_all=True, use_cudnn=True)

	N-dimensionally spatial max pooling function.

This function provides a N-dimensionally generalized version of
max_pooling_2d(). This acts similarly to
ConvolutionND, but it computes the maximum of input
spatial patch for each channel without any parameter instead of computing
the inner products.





	Parameters:	
	x (Variable) – Input variable.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints or None [https://docs.python.org/3/library/constants.html#None]) – Stride of pooling applications.
stride=s and stride=(s,s, ..., s) are equivalent. If
None is specified, then it uses same stride as the pooling
window size.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Spatial padding width for the input array.
pad=p and pad=(p, p, ..., p) are equivalent.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, all spatial locations are pooled into
some output pixels. It may make the output size larger.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation. cuDNN supports more than
one-dimensional pooling.






	Returns:	Output variable.




	Return type:	Variable














roi_pooling_2d


	
chainer.functions.roi_pooling_2d(x, rois, outh, outw, spatial_scale)

	Spatial Region of Interest (ROI) pooling function.

This function acts similarly to MaxPooling2D, but
it computes the maximum of input spatial patch for each channel
with the region of interest.





	Parameters:	
	x (Variable) – Input variable. The shape is expected to be
4 dimentional: (n: batch, c: channel, h, height, w: width).

	rois (Variable) – Input roi variable. The shape is expected to
be (n: data size, 5), and each datum is set as below:
(batch_index, x_min, y_min, x_max, y_max).

	outh (int [https://docs.python.org/3/library/functions.html#int]) – Height of output image after pooled.

	outw (int [https://docs.python.org/3/library/functions.html#int]) – Width of output image after pooled.

	spatial_scale (float [https://docs.python.org/3/library/functions.html#float]) – Scale of the roi is resized.






	Returns:	Output variable.




	Return type:	Variable







See the original paper proposing ROIPooling:
Fast R-CNN [https://arxiv.org/abs/1504.08083].








spatial_pyramid_pooling_2d


	
chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling_class, use_cudnn=True)

	Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array x with different
kernel sizes and padding sizes, and then flattens all dimensions except
first dimension of all pooling results, and finally concatenates them along
second dimension.

At \(i\)-th pyramid level, the kernel size
\((k_h^{(i)}, k_w^{(i)})\) and padding size
\((p_h^{(i)}, p_w^{(i)})\) of pooling operation are calculated as
below:


\[\begin{split}k_h^{(i)} &= \lceil b_h / 2^i \rceil, \\
k_w^{(i)} &= \lceil b_w / 2^i \rceil, \\
p_h^{(i)} &= (2^i k_h^{(i)} - b_h) / 2, \\
p_w^{(i)} &= (2^i k_w^{(i)} - b_w) / 2,\end{split}\]

where \(\lceil \cdot \rceil\) denotes the ceiling function, and
\(b_h, b_w\) are height and width of input variable x,
respectively. Note that index of pyramid level \(i\) is zero-based.

See detail in paper: Spatial Pyramid Pooling in Deep Convolutional     Networks for Visual Recognition [https://arxiv.org/abs/1406.4729].





	Parameters:	
	x (Variable) – Input variable. The shape of x should be
(batchsize, # of channels, height, width).

	pyramid_height (int [https://docs.python.org/3/library/functions.html#int]) – Number of pyramid levels

	pooling_class (MaxPooling2D or AveragePooling2D) – Only MaxPooling2D class can be available for now.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and cuDNN is enabled, then this function
uses cuDNN as the core implementation.






	Returns:	
	Output variable. The shape of the output variable

	will be \((batchsize, c \sum_{h=0}^{H-1} 2^{2h}, 1, 1)\),
where \(c\) is the number of channels of input variable x
and \(H\) is the number of pyramid levels.










	Return type:	Variable








Note

This function uses some pooling classes as components to perform
spatial pyramid pooling. Now it supports only
MaxPooling2D as elemental pooling operator so far.










unpooling_2d


	
chainer.functions.unpooling_2d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)

	Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2D, but
it spreads input 2d array’s value without any parameter instead of
computing the inner products.





	Parameters:	
	x (Variable) – Input variable.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int], pair of ints or None [https://docs.python.org/3/library/constants.html#None]) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is
specified, then it uses same stride as the pooling window size.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for the input array.
pad=p and pad=(p, p) are equivalent.

	outsize (None [https://docs.python.org/3/library/constants.html#None] or pair of ints) – Expected output size (height, width)
of array after the operation.  If None, the size
(height or width) is estimated from the size of input array
in first batch with
get_deconv_outsize().
If outsize is not None, the result of outsize applied to
get_conv_outsize() must be equal to
the shape of the 2d array in the input batch x.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the output size may be smaller than
the size if cover_all is False. This flag serves to
align behavior to the pooling functions which can cover all
input locations, see max_pooling_2d()
and convolution_2d().






	Returns:	Output variable.




	Return type:	Variable














upsampling_2d


	
chainer.functions.upsampling_2d(x, indexes, ksize, stride=None, pad=0, outsize=None, cover_all=True)

	Upsampling using pooling indices.

This function produces an upsampled image using pooling indices.


Example

It should be noted that you need to specify use_cudnn=False when
you create MaxPooling2D object because if cuDNN used for operating
max pooling, indexes is never created and stored in the
MaxPooling2D object.

>>> p = F.MaxPooling2D(2, 2, use_cudnn=False)
>>> x = np.arange(1, 37).reshape(1, 1, 6, 6).astype('f')
>>> x = chainer.Variable(x)
>>> x.data
array([[[[  1.,   2.,   3.,   4.,   5.,   6.],
         [  7.,   8.,   9.,  10.,  11.,  12.],
         [ 13.,  14.,  15.,  16.,  17.,  18.],
         [ 19.,  20.,  21.,  22.,  23.,  24.],
         [ 25.,  26.,  27.,  28.,  29.,  30.],
         [ 31.,  32.,  33.,  34.,  35.,  36.]]]], dtype=float32)





This is the original x before max pooling.

>>> pooled_x = p(x)
>>> pooled_x.data
array([[[[  8.,  10.,  12.],
         [ 20.,  22.,  24.],
         [ 32.,  34.,  36.]]]], dtype=float32)





This is the output of the max pooling operation. upsampling_2d
needs indexes array stored in the max pooling object p.

>>> upsampled_x = F.upsampling_2d(
...     pooled_x, p.indexes, p.kh, p.sy, p.ph, x.shape[2:])
>>> upsampled_x.shape
(1, 1, 6, 6)
>>> upsampled_x.data
array([[[[  0.,   0.,   0.,   0.,   0.,   0.],
         [  0.,   8.,   0.,  10.,   0.,  12.],
         [  0.,   0.,   0.,   0.,   0.,   0.],
         [  0.,  20.,   0.,  22.,   0.,  24.],
         [  0.,   0.,   0.,   0.,   0.,   0.],
         [  0.,  32.,   0.,  34.,   0.,  36.]]]], dtype=float32)











	Parameters:	
	x (Variable) – Input variable.

	indexes (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or ndarray) – Index array that was used
to calculate x with MaxPooling2D.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or (int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – ksize attribute of MaxPooling2D object that
is used to calculate x

	stride (int [https://docs.python.org/3/library/functions.html#int] or (int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – stride attribute of MaxPooling2D object
that is used to calculate x

	pad (int [https://docs.python.org/3/library/functions.html#int] or (int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – pad attribute of MaxPooling2D object that is
used to calculate x

	outsize ((int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – Expected output size (height, width).

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether cover_all is used in the MaxPooling2D object
or not.






	Returns:	Output variable.




	Return type:	Variable
















Utility functions


forget


	
chainer.functions.forget(func, *xs)

	Call a function without storing internal results.

On a forward propagation Chainer stores all internal results of
Function on a computational graph as they are required on
backward-propagation. These results consume too much memory when the
internal results are too large. This method forgets such internal
results on forward propagation, and still supports back-propagation with
recalculation.

In a forward propagation, this method calls a given function with given
variables without creating a computational graph. That means, no internal
results are stored. In a backward propagation this method calls the given
function again to create a computational graph to execute back-propagation.

This method reduces internal memory usage. Instead it requires more
calculation time as it calls the function twice.


Example

Let f be a function defined as:

>>> def f(a, b):
...   return a + b + a





and, x and y be Variable:

>>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f'))
>>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f'))





When z is calculated as z = f(x, y), its internal result
x + y is stored in memory. Instead if you call f with
forget():

>>> z = F.forget(f, x, y)





internal x + y is forgotten.




Note

The method does not support functions behaving randomly, such as
dropout() and
negative_sampling(). It is because first results
of these function differ from the second one.







	Parameters:	
	func (callable [https://docs.python.org/3/library/functions.html#callable]) – A function to call. It needs to be called with
Variable object(s) and to return a
Variable object or a tuple of
Variable objects.

	xs (Variable) – Argument variables of the function.






	Returns:	A variable func returns. If it returns a tuple,
the method returns a tuple too.




	Return type:	Variable



















          

      

      

    

  

    
      
          
            
  
Standard Link implementations

Chainer provides many Link implementations in the
chainer.links package.


Note

Some of the links are originally defined in the chainer.functions
namespace. They are still left in the namespace for backward compatibility,
though it is strongly recommended to use them via the chainer.links
package.




Learnable connections


Bias


	
class chainer.links.Bias(axis=1, shape=None)

	Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as bias()
function does except that its second input is a learnable bias parameter
\(b\) the link has.





	Parameters:	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – The first axis of the first input of
bias() function along which its second
input is applied.

	shape (tuple of ints) – Shape of the learnable bias parameter. If
None, this link does not have learnable parameters so an
explicit bias needs to be given to its __call__ method’s second
input.










See also

See bias() for details.







	Variables:	b (Variable) – Bias parameter if shape is given. Otherwise,
no attributes.






	
__call__(*xs)

	Applies broadcasted elementwise summation.





	Parameters:	xs (list of Variables) – Input variables whose length should
be one if the link has a learnable bias parameter, otherwise
should be two.
















Bilinear


	
class chainer.links.Bilinear(left_size, right_size, out_size, nobias=False, initialW=None, initial_bias=None)

	Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the
bilinear() functions. It holds parameters W,
V1, V2, and b corresponding to the arguments of
bilinear().





	Parameters:	
	left_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vector \(e^1\) (\(J\))

	right_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vector \(e^2\) (\(K\))

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of output vector \(y\) (\(L\))

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, parameters V1, V2, and b are
omitted.

	initialW (3-D numpy array) – Initial value of \(W\).
Shape of this argument must be
(left_size, right_size, out_size). If None,
\(W\) is initialized by centered Gaussian distribution properly
scaled according to the dimension of inputs and outputs.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	initial_bias (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Initial values of \(V^1\), \(V^2\)
and \(b\). The length this argument must be 3.
Each element of this tuple must have the shapes of
(left_size, output_size), (right_size, output_size),
and (output_size,), respectively. If None, \(V^1\)
and \(V^2\) is initialized by scaled centered Gaussian
distributions and \(b\) is set to \(0\).
May also be a tuple of callables that take numpy.ndarray or
cupy.ndarray and edit its value.










See also

See chainer.functions.bilinear() for details.







	Variables:	
	W (Variable) – Bilinear weight parameter.

	V1 (Variable) – Linear weight parameter for the first argument.

	V2 (Variable) – Linear weight parameter for the second
argument.

	b (Variable) – Bias parameter.










	
__call__(e1, e2)

	Applies the bilinear function to inputs and the internal parameters.





	Parameters:	
	e1 (Variable) – Left input.

	e2 (Variable) – Right input.






	Returns:	Output variable.




	Return type:	Variable


















Convolution2D


	
class chainer.links.Convolution2D(in_channels, out_channels, ksize, stride=1, pad=0, wscale=1, bias=0, nobias=False, use_cudnn=True, initialW=None, initial_bias=None, deterministic=False)

	Two-dimensional convolutional layer.

This link wraps the convolution_2d() function and
holds the filter weight and bias vector as parameters.





	Parameters:	
	in_channels (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Number of channels of input arrays.
If None, parameter initialization will be deferred until the
first forward data pass at which time the size will be determined.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of output arrays.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	wscale (float [https://docs.python.org/3/library/functions.html#float]) – Scaling factor of the initial weight.

	bias (float [https://docs.python.org/3/library/functions.html#float]) – Initial bias value.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link does not use the bias term.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link uses cuDNN if available.

	initialW (4-D array) – Initial weight value. If None, then this
function uses Gaussian distribution scaled by w_scale to
initialize weight.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	initial_bias (1-D array) – Initial bias value. If None, then this
function uses bias to initialize bias.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	deterministic (bool [https://docs.python.org/3/library/functions.html#bool]) – The output of this link can be
non-deterministic when it uses cuDNN.
If this option is True, then it forces cuDNN to use
a deterministic algorithm. This option is only available for
cuDNN version >= v4.










See also

See chainer.functions.convolution_2d() for the definition of
two-dimensional convolution.







	Variables:	
	W (Variable) – Weight parameter.

	b (Variable) – Bias parameter.










	
__call__(x)

	Applies the convolution layer.





	Parameters:	x (Variable) – Input image.


	Returns:	Output of the convolution.


	Return type:	Variable
















ConvolutionND


	
class chainer.links.ConvolutionND(ndim, in_channels, out_channels, ksize, stride=1, pad=0, initialW=None, initial_bias=None, use_cudnn=True, cover_all=False)

	N-dimensional convolution layer.

This link wraps the convolution_nd() function and
holds the filter weight and bias vector as parameters.





	Parameters:	
	ndim (int [https://docs.python.org/3/library/functions.html#int]) – Number of spatial dimensions.

	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of input arrays.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of output arrays.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k, ..., k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Stride of filter application.
stride=s and stride=(s, s, ..., s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p, ..., p) are equivalent.

	initialW – Value used to initialize the filter weight. May be an
initializer instance or another value that
init_weight() helper function can take.

	initial_bias – Value used to initialize the bias vector. May be an
initializer instance or another value except None that
init_weight() helper function can take. If None
is given, this link does not use the bias vector.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link uses cuDNN if available.
See convolution_nd() for exact conditions
of cuDNN availability.

	cover_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, all spatial locations are convoluted
into some output pixels. It may make the output size larger.
cover_all needs to be False if you want to use cuDNN.










See also

See convolution_nd() for the definition of
N-dimensional convolution. See
convolution_2d() for the definition of
two-dimensional convolution.







	Variables:	
	W (Variable) – Weight parameter.

	b (Variable) – Bias parameter. If initial_bias is None,
set to None.










	
__call__(x)

	Applies N-dimensional convolution layer.





	Parameters:	x (Variable) – Input image.


	Returns:	Output of convolution.


	Return type:	Variable
















Deconvolution2D


	
class chainer.links.Deconvolution2D(in_channels, out_channels, ksize, stride=1, pad=0, wscale=1, bias=0, nobias=False, outsize=None, use_cudnn=True, initialW=None, initial_bias=None, deterministic=False)

	Two dimensional deconvolution function.

This link wraps the deconvolution_2d() function
and holds the filter weight and bias vector as parameters.





	Parameters:	
	in_channels (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Number of channels of input arrays.
If None, parameter initialization will be deferred until the
first forward data pass at which time the size will be determined.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of output arrays.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	wscale (float [https://docs.python.org/3/library/functions.html#float]) – Scaling factor of the initial weight.

	bias (float [https://docs.python.org/3/library/functions.html#float]) – Initial bias value.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function does not use the bias
term.

	outsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Expected output size of deconvolutional operation.
It should be pair of height and width \((out_H, out_W)\).
Default value is None and the outsize is estimated by
input size, stride and pad.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function uses cuDNN if
available.

	initialW (4-D array) – Initial weight value. If None, then this
function uses Gaussian distribution scaled by w_scale to
initialize weight.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	initial_bias (1-D array) – Initial bias value. If None, then this
function uses bias to initialize bias.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	deterministic (bool [https://docs.python.org/3/library/functions.html#bool]) – The output of this link can be
non-deterministic when it uses cuDNN.
If this option is True, then it forces cuDNN to use
a deterministic algorithm. This option is only available for
cuDNN version >= v4.









The filter weight has four dimensions \((c_I, c_O, k_H, k_W)\)
which indicate the number of input channels, output channels,
height and width of the kernels, respectively.
The filter weight is initialized with i.i.d. Gaussian random samples, each
of which has zero mean and deviation \(\sqrt{1/(c_I k_H k_W)}\) by
default. The deviation is scaled by wscale if specified.

The bias vector is of size \(c_O\).
Its elements are initialized by bias argument.
If nobias argument is set to True, then this function does not hold
the bias parameter.


See also

See chainer.functions.deconvolution_2d() for the definition of
two-dimensional convolution.










DeconvolutionND


	
class chainer.links.DeconvolutionND(ndim, in_channels, out_channels, ksize, stride=1, pad=0, outsize=None, initialW=None, initial_bias=0, use_cudnn=True)

	N-dimensional deconvolution function.

This link wraps deconvolution_nd() function and
holds the filter weight and bias vector as its parameters.





	Parameters:	
	ndim (int [https://docs.python.org/3/library/functions.html#int]) – Number of spatial dimensions.

	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of input arrays.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of output arrays.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k, ..., k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Stride of filter application.
stride=s and stride=(s, s, ..., s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p, ..., p) are equivalent.

	outsize (tuple of ints) – Expected output size of deconvolutional
operation. It should be a tuple of ints that represents the output
size of each dimension. Default value is None and the outsize
is estimated with input size, stride and pad.

	initialW – Value used to initialize the filter weight. May be an
initializer instance of another value the same with that
init_weight() function can take.

	initial_bias – Value used to initialize the bias vector. May be an
initializer instance or another value except None the same with
that init_weight() function can take. If None is
supplied, this link does not use the bias vector.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link uses cuDNN if available.










See also

deconvolution_nd()







	Variables:	
	W (Variable) – Weight parameter.

	b (Variable) – Bias parameter. If initial_bias is None,
set to None.
















DepthwiseConvolution2D


	
class chainer.links.DepthwiseConvolution2D(in_channels, channel_multiplier, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None)

	Two-dimensional depthwise convolutional layer.

This link wraps the depthwise_convolution_2d()
function and holds the filter weight and bias vector as parameters.





	Parameters:	
	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of input arrays. If None,
parameter initialization will be deferred until the first forward
data pass at which time the size will be determined.

	channel_multiplier (int [https://docs.python.org/3/library/functions.html#int]) – Channel multiplier number. Number of output
arrays equal in_channels * channel_multiplier.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link does not use the bias term.

	initialW (4-D array) – Initial weight value. If None, the default
initializer is used.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	initial_bias (1-D array) – Initial bias value. If None, the bias
is set to 0.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.










See also

See chainer.functions.depthwise_convolution_2d().







	Variables:	
	W (Variable) – Weight parameter.

	b (Variable) – Bias parameter.
















DilatedConvolution2D


	
class chainer.links.DilatedConvolution2D(in_channels, out_channels, ksize, stride=1, pad=0, dilate=1, wscale=1, bias=0, nobias=False, use_cudnn=True, initialW=None, initial_bias=None)

	Two-dimensional dilated convolutional layer.

This link wraps the dilated_convolution_2d()
function and holds the filter weight and bias vector as parameters.





	Parameters:	
	in_channels (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Number of channels of input arrays.
If None, parameter initialization will be deferred until the
first forward data pass at which time the size will be determined.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of output arrays.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	dilate (int [https://docs.python.org/3/library/functions.html#int] or pair of ints) – Dilation factor of filter applications.
dilate=d and dilate=(d, d) are equivalent.

	wscale (float [https://docs.python.org/3/library/functions.html#float]) – Scaling factor of the initial weight.

	bias (float [https://docs.python.org/3/library/functions.html#float]) – Initial bias value.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link does not use the bias term.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link uses cuDNN if available.

	initialW (4-D array) – Initial weight value. If None, then this
function uses scaled Gaussian distribution to initialize weight.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	initial_bias (1-D array) – Initial bias value. If None, then this
function uses bias to initialize bias.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.










See also

See chainer.functions.dilated_convolution_2d()
for the definition of two-dimensional dilated convolution.







	Variables:	
	W (Variable) – Weight parameter.

	b (Variable) – Bias parameter.










	
__call__(x)

	Applies the convolution layer.





	Parameters:	x (Variable) – Input image.


	Returns:	Output of the convolution.


	Return type:	Variable
















EmbedID


	
class chainer.links.EmbedID(in_size, out_size, initialW=None, ignore_label=None)

	Efficient linear layer for one-hot input.

This is a link that wraps the embed_id() function.
This link holds the ID (word) embedding matrix W as a parameter.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of different identifiers (a.k.a. vocabulary
size).

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of embedding vector.

	initialW (2-D array) – Initial weight value. If None, then the
matrix is initialized from the standard normal distribution.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	ignore_label (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – If ignore_label is an int value,
i-th column of return value is filled with 0.










See also

chainer.functions.embed_id()







	Variables:	W (Variable) – Embedding parameter matrix.






	
__call__(x)

	Extracts the word embedding of given IDs.





	Parameters:	x (Variable) – Batch vectors of IDs.


	Returns:	Batch of corresponding embeddings.


	Return type:	Variable
















GRU


	
class chainer.links.GRU(n_units, n_inputs=None, init=None, inner_init=None, bias_init=0)

	Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters \(W_r\), \(W_z\), \(W\),
\(U_r\), \(U_z\), and \(U\). All these parameters are
\(n \times n\) matrices, where \(n\) is the dimension of
hidden vectors.

Given two inputs a previous hidden vector \(h\) and an input vector
\(x\), GRU returns the next hidden vector \(h'\) defined as


\[\begin{split}r &=& \sigma(W_r x + U_r h), \\
z &=& \sigma(W_z x + U_z h), \\
\bar{h} &=& \tanh(W x + U (r \odot h)), \\
h' &=& (1 - z) \odot h + z \odot \bar{h},\end{split}\]

where \(\sigma\) is the sigmoid function, and \(\odot\) is the
element-wise product.

GRU does not hold the value of
hidden vector \(h\). So this is stateless.
Use StatefulGRU as a stateful GRU.





	Parameters:	
	n_units (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of hidden vector \(h\).

	n_inputs (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vector \(x\). If None,
it is set to the same value as n_units.










	See:

	
	On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches [http://www.aclweb.org/anthology/W14-4012]
[Cho+, SSST2014].

	Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling [https://arxiv.org/abs/1412.3555]
[Chung+NIPS2014 DLWorkshop].








See also

StatefulGRU










Highway


	
class chainer.links.Highway(in_out_size, nobias=False, activate=<function relu>, init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1)

	Highway module.

In highway network, two gates are added to the ordinal non-linear
transformation (\(H(x) = activate(W_h x + b_h)\)).
One gate is the transform gate \(T(x) = \sigma(W_t x + b_t)\), and the
other is the carry gate \(C(x)\).
For simplicity, the author defined \(C = 1 - T\).
Highway module returns \(y\) defined as


\[y = activate(W_h x + b_h) \odot \sigma(W_t x + b_t) +
x \odot(1 - \sigma(W_t x + b_t))\]

The output array has the same spatial size as the input. In order to
satisfy this, \(W_h\) and \(W_t\) must be square matrices.





	Parameters:	
	in_out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input and output vectors.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function does not use the bias.

	activate – Activation function of plain array. \(tanh\) is also
available.

	init_Wh (2-D array) – Initial weight value of plain array. If None,
then this function uses Gaussian distribution scaled by w_scale
to initialize \(W_h\). May also be a callable that takes
numpy.ndarray or``cupy.ndarray`` and edits its value.

	init_bh (1-D array) – Initial bias value of plain array. If None,
then this function uses zero vector to initialize \(b_h\).
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	init_Wt (2-D array) – Initial weight value of transform array.
If None, then this function uses Gaussian distribution scaled
by w_scale to initialize \(W_t\).
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	init_bt (1-D array) – Initial bias value of transform array.
Default value is -1 vector.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
Negative value is recommended by the author of the paper.
(e.g. -1, -3, ...).










	See:

	Highway Networks [https://arxiv.org/abs/1505.00387].




	
__call__(x)

	Computes the output of the Highway module.





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable. Its array has the same spatial size and
the same minibatch size as the input array.


	Return type:	Variable
















Inception


	
class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool, conv_init=None, bias_init=None)

	Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates
their outputs along the channel dimension. Three of them are 2D
convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5
sizes have 1x1 convolutions (called projections) ahead of them. The other
path consists of 1x1 convolution (projection) and 3x3 max pooling.

The output array has the same spatial size as the input. In order to
satisfy this, Inception module uses appropriate padding for each
convolution and pooling.

See: Going Deeper with Convolutions [https://arxiv.org/abs/1409.4842].





	Parameters:	
	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of input arrays.

	out1 (int [https://docs.python.org/3/library/functions.html#int]) – Output size of 1x1 convolution path.

	proj3 (int [https://docs.python.org/3/library/functions.html#int]) – Projection size of 3x3 convolution path.

	out3 (int [https://docs.python.org/3/library/functions.html#int]) – Output size of 3x3 convolution path.

	proj5 (int [https://docs.python.org/3/library/functions.html#int]) – Projection size of 5x5 convolution path.

	out5 (int [https://docs.python.org/3/library/functions.html#int]) – Output size of 5x5 convolution path.

	proj_pool (int [https://docs.python.org/3/library/functions.html#int]) – Projection size of max pooling path.

	conv_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
It is used for initialization of the convolution matrix weights.
Maybe be None to use default initialization.

	bias_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
It is used for initialization of the convolution bias weights.
Maybe be None to use default initialization.










	
__call__(x)

	Computes the output of the Inception module.





	Parameters:	x (Variable) – Input variable.


	Returns:	Output variable. Its array has the same spatial size and
the same minibatch size as the input array. The channel dimension
has size out1 + out3 + out5 + proj_pool.


	Return type:	Variable
















InceptionBN


	
class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype, proj_pool=None, stride=1, conv_init=None, dtype=<type 'numpy.float32'>)

	Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the
BatchNormalization on top of each convolution, the 5x5 convolution
path is replaced by two consecutive 3x3 convolution applications, and the
pooling method is configurable.

See: Batch Normalization: Accelerating Deep Network Training by Reducing     Internal Covariate Shift [https://arxiv.org/abs/1502.03167].





	Parameters:	
	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of input arrays.

	out1 (int [https://docs.python.org/3/library/functions.html#int]) – Output size of the 1x1 convolution path.

	proj3 (int [https://docs.python.org/3/library/functions.html#int]) – Projection size of the single 3x3 convolution path.

	out3 (int [https://docs.python.org/3/library/functions.html#int]) – Output size of the single 3x3 convolution path.

	proj33 (int [https://docs.python.org/3/library/functions.html#int]) – Projection size of the double 3x3 convolutions path.

	out33 (int [https://docs.python.org/3/library/functions.html#int]) – Output size of the double 3x3 convolutions path.

	pooltype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pooling type. It must be either 'max' or 'avg'.

	proj_pool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, do projection in the pooling path.

	stride (int [https://docs.python.org/3/library/functions.html#int]) – Stride parameter of the last convolution of each path.

	conv_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
It is used for initialization of the convolution matrix weights.
Maybe be None to use default initialization.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Type to use in
~batch_normalization.BatchNormalization.










See also

Inception







	Variables:	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then batch normalization layers are used in
training mode. If False, they are used in testing mode.






	
__call__(x, test=None)

	Computes the output of the InceptionBN module.





	Parameters:	
	x (Variable) – An input variable.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, batch normalization layers run in testing
mode; if test is omitted, not self.train is used as
test.




















Linear


	
class chainer.links.Linear(in_size, out_size, wscale=1, bias=0, nobias=False, initialW=None, initial_bias=None)

	Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the linear() function,
and holds a weight matrix W and optionally a bias vector b as
parameters.

The weight matrix W is initialized with i.i.d. Gaussian samples, each
of which has zero mean and deviation \(\sqrt{1/\text{in_size}}\). The
bias vector b is of size out_size. Each element is initialized with
the bias value. If nobias argument is set to True, then this link
does not hold a bias vector.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Dimension of input vectors. If None,
parameter initialization will be deferred until the first forward
data pass at which time the size will be determined.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of output vectors.

	wscale (float [https://docs.python.org/3/library/functions.html#float]) – Scaling factor of the weight matrix.

	bias (float [https://docs.python.org/3/library/functions.html#float]) – Initial bias value.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this function does not use the bias.

	initialW (2-D array) – Initial weight value. If None, then this
function uses Gaussian distribution scaled by w_scale to
initialize weight.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	initial_bias (1-D array) – Initial bias value. If None, then this
function uses bias to initialize bias.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.










See also

linear()







	Variables:	
	W (Variable) – Weight parameter.

	b (Variable) – Bias parameter.










	
__call__(x)

	Applies the linear layer.





	Parameters:	x (Variable) – Batch of input vectors.


	Returns:	Output of the linear layer.


	Return type:	Variable
















LSTM


	
class chainer.links.LSTM(in_size, out_size, **kwargs)

	Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the
lstm() function, which is defined as a stateless
activation function, this chain holds upward and lateral connections as
child links.

It also maintains states, including the cell state and the output
at the previous time step. Therefore, it can be used as a stateful LSTM.

This link supports variable length inputs. The mini-batch size of the
current input must be equal to or smaller than that of the previous one.
The mini-batch size of c and h is determined as that of the first
input x.
When mini-batch size of i-th input is smaller than that of the previous
input, this link only updates c[0:len(x)] and h[0:len(x)] and
doesn’t change the rest of c and h.
So, please sort input sequences in descending order of lengths before
applying the function.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vectors. If None, parameter
initialization will be deferred until the first forward data pass
at which time the size will be determined.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of output vectors.

	lateral_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
It is used for initialization of the lateral connections.
Maybe be None to use default initialization.

	upward_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
It is used for initialization of the upward connections.
Maybe be None to use default initialization.

	bias_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value
It is used for initialization of the biases of cell input,
input gate and output gate.and gates of the upward connection.
Maybe a scalar, in that case, the bias is
initialized by this value.
Maybe be None to use default initialization.

	forget_bias_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value
It is used for initialization of the biases of the forget gate of
the upward connection.
Maybe a scalar, in that case, the bias is
initialized by this value.
Maybe be None to use default initialization.






	Variables:	
	upward (Linear) – Linear layer of upward connections.

	lateral (Linear) – Linear layer of lateral connections.

	c (Variable) – Cell states of LSTM units.

	h (Variable) – Output at the previous time step.










	
__call__(x)

	Updates the internal state and returns the LSTM outputs.





	Parameters:	x (Variable) – A new batch from the input sequence.


	Returns:	Outputs of updated LSTM units.


	Return type:	Variable










	
reset_state()

	Resets the internal state.

It sets None to the c and h attributes.






	
set_state(c, h)

	Sets the internal state.

It sets the c and h attributes.





	Parameters:	
	c (Variable) – A new cell states of LSTM units.

	h (Variable) – A new output at the previous time step.




















MLPConvolution2D




NStepBiLSTM


	
class chainer.links.NStepBiLSTM(n_layers, in_size, out_size, dropout, use_cudnn=True)

	Stacked Bi-directional LSTM for sequnces.

This link is stacked version of Bi-directional LSTM for sequences.
It calculates hidden and cell states of all layer at end-of-string,
and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bilstm(), this function automatically
sort inputs in descending order by length, and transpose the seuqnece.
Users just need to call the link with a list of chainer.Variable
holding sequences.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of hidden states and output vectors.

	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – Use cuDNN.










See also

chainer.functions.n_step_bilstm()










NStepBiRNNReLU


	
class chainer.links.NStepBiRNNReLU(n_layers, in_size, out_size, dropout, use_cudnn=True)

	Stacked Bi-directional RNN for sequnces.

This link is stacked version of Bi-directional RNN for sequences.
Note that the activation function is relu.
It calculates hidden and cell states of all layer at end-of-string,
and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically
sort inputs in descending order by length, and transpose the seuqnece.
Users just need to call the link with a list of chainer.Variable
holding sequences.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of hidden states and output vectors.

	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – Use cuDNN.










See also

chainer.functions.n_step_birnn()










NStepBiRNNTanh


	
class chainer.links.NStepBiRNNTanh(n_layers, in_size, out_size, dropout, use_cudnn=True)

	Stacked Bi-directional RNN for sequnces.

This link is stacked version of Bi-directional RNN for sequences.
Note that the activation function is tanh.
It calculates hidden and cell states of all layer at end-of-string,
and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically
sort inputs in descending order by length, and transpose the seuqnece.
Users just need to call the link with a list of chainer.Variable
holding sequences.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of hidden states and output vectors.

	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – Use cuDNN.










See also

chainer.functions.n_step_birnn()










NStepGRU


	
class chainer.links.NStepGRU(n_layers, in_size, out_size, dropout, use_cudnn=True)

	Stacked Uni-directional GRU for sequnces.

This link is stacked version of Uni-directional GRU for sequences.
It calculates hidden and cell states of all layer at end-of-string,
and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_gru(), this function automatically
sort inputs in descending order by length, and transpose the seuqnece.
Users just need to call the link with a list of chainer.Variable
holding sequences.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of hidden states and output vectors.

	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – Use cuDNN.










See also

chainer.functions.n_step_gru()










NStepLSTM


	
class chainer.links.NStepLSTM(n_layers, in_size, out_size, dropout, use_cudnn=True)

	Stacked Uni-directional LSTM for sequnces.

This link is stacked version of Uni-directional LSTM for sequences.
It calculates hidden and cell states of all layer at end-of-string,
and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_lstm(), this function automatically
sort inputs in descending order by length, and transpose the seuqnece.
Users just need to call the link with a list of chainer.Variable
holding sequences.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of hidden states and output vectors.

	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – Use cuDNN.










See also

chainer.functions.n_step_lstm()










NStepRNNReLU


	
class chainer.links.NStepRNNReLU(n_layers, in_size, out_size, dropout, use_cudnn=True)

	Stacked Uni-directional RNN for sequnces.

This link is stacked version of Uni-directional RNN for sequences.
Note that the activation function is relu.
It calculates hidden and cell states of all layer at end-of-string,
and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically
sort inputs in descending order by length, and transpose the seuqnece.
Users just need to call the link with a list of chainer.Variable
holding sequences.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of hidden states and output vectors.

	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – Use cuDNN.










See also

chainer.functions.n_step_rnn()










NStepRNNTanh


	
class chainer.links.NStepRNNTanh(n_layers, in_size, out_size, dropout, use_cudnn=True)

	Stacked Uni-directional RNN for sequnces.

This link is stacked version of Uni-directional RNN for sequences.
Note that the activation function is tanh.
It calculates hidden and cell states of all layer at end-of-string,
and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically
sort inputs in descending order by length, and transpose the seuqnece.
Users just need to call the link with a list of chainer.Variable
holding sequences.





	Parameters:	
	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers.

	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of hidden states and output vectors.

	dropout (float [https://docs.python.org/3/library/functions.html#float]) – Dropout ratio.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – Use cuDNN.










See also

chainer.functions.n_step_rnn()










Scale


	
class chainer.links.Scale(axis=1, W_shape=None, bias_term=False, bias_shape=None)

	Broadcasted elementwise product with learnable parameters.

Computes a elementwise product as scale()
function does except that its second input is a learnable weight parameter
\(W\) the link has.





	Parameters:	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – The first axis of the first input of
scale() function along which its second
input is applied.

	W_shape (tuple of ints) – Shape of learnable weight parameter. If
None, this link does not have learnable weight parameter so an
explicit weight needs to be given to its __call__ method’s
second input.

	bias_term (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to also learn a bias (equivalent to Scale
link + Bias link).

	bias_shape (tuple of ints) – Shape of learnable bias. If W_shape is
None, this should be given to determine the shape. Otherwise,
the bias has the same shape W_shape with the weight parameter
and bias_shape is ignored.










See also

See scale() for details.







	Variables:	
	W (Variable) – Weight parameter if W_shape is given.
Otherwise, no W attribute.

	bias (Bias) – Bias term if bias_term is True.
Otherwise, no bias attribute.










	
__call__(*xs)

	Applies broadcasted elementwise product.





	Parameters:	xs (list of Variables) – Input variables whose length should
be one if the link has a learnable weight parameter, otherwise
should be two.
















StatefulGRU


	
class chainer.links.StatefulGRU(in_size, out_size, init=None, inner_init=None, bias_init=0)

	Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters \(W_r\), \(W_z\),
\(W\), \(U_r\), \(U_z\), and \(U\).
All these parameters are \(n \times n\) matrices,
where \(n\) is the dimension of hidden vectors.

Given input vector \(x\), Stateful GRU returns the next
hidden vector \(h'\) defined as


\[\begin{split}r &=& \sigma(W_r x + U_r h), \\
z &=& \sigma(W_z x + U_z h), \\
\bar{h} &=& \tanh(W x + U (r \odot h)), \\
h' &=& (1 - z) \odot h + z \odot \bar{h},\end{split}\]

where \(h\) is current hidden vector.

As the name indicates, StatefulGRU is stateful,
meaning that it also holds the next hidden vector h’ as a state.
Use GRU as a stateless version of GRU.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vector \(x\).

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of hidden vector \(h\).

	init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
It is used for initialization of the
GRU’s input units (\(W\)). Maybe be None to use default
initialization.

	inner_init – A callable that takes numpy.ndarray or
cupy.ndarray and edits its value.
It is used for initialization of the GRU’s inner
recurrent units (\(U\)).
Maybe be None to use default initialization.

	bias_init – A callable or scalar used to initialize the bias values for
both the GRU’s inner and input units. Maybe be None to use
default initialization.






	Variables:	h (Variable) – Hidden vector that indicates the state of
StatefulGRU.








See also

GRU










StatefulPeepholeLSTM


	
class chainer.links.StatefulPeepholeLSTM(in_size, out_size)

	Fully-connected LSTM layer with peephole connections.

This is a fully-connected LSTM layer with peephole connections as a chain.
Unlike the LSTM link, this chain holds peep_i,
peep_f and peep_o as child links besides upward and
lateral.

Given a input vector \(x\), Peephole returns the next hidden vector
\(h'\) defined as


\[\begin{split}a &=& \tanh(upward x + lateral h), \\
i &=& \sigma(upward x + lateral h + peep_i c), \\
f &=& \sigma(upward x + lateral h + peep_f c), \\
c' &=& a \odot i + f \odot c, \\
o &=& \sigma(upward x + lateral h + peep_o c'), \\
h' &=& o \tanh(c'),\end{split}\]

where \(\sigma\) is the sigmoid function, \(\odot\) is the
element-wise product, \(c\) is the current cell state, \(c'\)
is the next cell state and \(h\) is the current hidden vector.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the input vector \(x\).

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the hidden vector \(h\).






	Variables:	
	upward (Linear) – Linear layer of upward connections.

	lateral (Linear) – Linear layer of lateral connections.

	peep_i (Linear) – Linear layer of peephole connections
to the input gate.

	peep_f (Linear) – Linear layer of peephole connections
to the forget gate.

	peep_o (Linear) – Linear layer of peephole connections
to the output gate.

	c (Variable) – Cell states of LSTM units.

	h (Variable) – Output at the current time step.










	
__call__(x)

	Updates the internal state and returns the LSTM outputs.





	Parameters:	x (Variable) – A new batch from the input sequence.


	Returns:	Outputs of updated LSTM units.


	Return type:	Variable










	
reset_state()

	Resets the internal states.

It sets None to the c and h attributes.












StatelessLSTM


	
class chainer.links.StatelessLSTM(in_size, out_size, lateral_init=None, upward_init=None, bias_init=0, forget_bias_init=0)

	Stateless LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the
lstm() function, this chain holds upward and
lateral connections as child links. This link doesn’t keep cell and
hidden states.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Dimension of input vectors. If None,
parameter initialization will be deferred until the first forward
data pass at which time the size will be determined.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of output vectors.






	Variables:	
	upward (chainer.links.Linear) – Linear layer of upward connections.

	lateral (chainer.links.Linear) – Linear layer of lateral connections.










	
__call__(c, h, x)

	Returns new cell state and updated output of LSTM.





	Parameters:	
	c (Variable) – Cell states of LSTM units.

	h (Variable) – Output at the previous time step.

	x (Variable) – A new batch from the input sequence.






	Returns:	
	Returns (c_new, h_new), where

	c_new represents new cell state, and h_new is updated
output of LSTM units.










	Return type:	tuple of ~chainer.Variable




















Activation/loss/normalization functions with parameters


BatchNormalization


	
class chainer.links.BatchNormalization(size, decay=0.9, eps=2e-05, dtype=<type 'numpy.float32'>, use_gamma=True, use_beta=True, initial_gamma=None, initial_beta=None, use_cudnn=True)

	Batch normalization layer on outputs of linear or convolution functions.

This link wraps the batch_normalization() and
fixed_batch_normalization() functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also
maintains approximated population statistics by moving averages, which can
be used for instant evaluation in testing mode.

In fine-tuning mode, it accumulates the input to compute population
statistics. In order to correctly compute the population statistics, a
user must use this mode to feed mini-batches running through whole training
dataset.

In testing mode, it uses pre-computed population statistics to normalize
the input variable. The population statistics is approximated if it is
computed by training mode, or accurate if it is correctly computed by
fine-tuning mode.





	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Size (or shape) of channel
dimensions.

	decay (float [https://docs.python.org/3/library/functions.html#float]) – Decay rate of moving average. It is used on training.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value for numerical stability.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Type to use in computing.

	use_gamma (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use scaling parameter. Otherwise, use
unit(1) which makes no effect.

	use_beta (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use shifting parameter. Otherwise, use
unit(0) which makes no effect.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link uses cuDNN if available.









See: Batch Normalization: Accelerating Deep Network Training by Reducing          Internal Covariate Shift [https://arxiv.org/abs/1502.03167]


See also

batch_normalization(),
fixed_batch_normalization()







	Variables:	
	gamma (Variable) – Scaling parameter.

	beta (Variable) – Shifting parameter.

	avg_mean (Variable) – Population mean.

	avg_var (Variable) – Population variance.

	N (int [https://docs.python.org/3/library/functions.html#int]) – Count of batches given for fine-tuning.

	decay (float [https://docs.python.org/3/library/functions.html#float]) – Decay rate of moving average. It is used on training.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value for numerical stability. This value is added
to the batch variances.

	use_cudnn (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link uses cuDNN if available.










	
__call__(x, test=False, finetune=False)

	Invokes the forward propagation of BatchNormalization.

BatchNormalization accepts additional arguments, which controls three
different running mode.





	Parameters:	
	x (Variable) – Input variable.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, BatchNormalization runs in testing mode;
it normalizes the input using pre-computed statistics.

	finetune (bool [https://docs.python.org/3/library/functions.html#bool]) – If finetune is True and test is
False, BatchNormalization runs in fine-tuning mode; it
accumulates the input array to compute population statistics
for normalization, and normalizes the input using batch
statistics.









If test is False, then BatchNormalization runs in training
mode; it computes moving averages of mean and variance for evaluation
during training, and normalizes the input using batch statistics.






	
start_finetuning()

	Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the
fine-tuning mode. Otherwise, this method should be called before
starting the fine-tuning mode again.












LayerNormalization


	
class chainer.links.LayerNormalization(size=None, eps=1e-06, initial_gamma=None, initial_beta=None)

	Layer normalization layer on outputs of linear functions.

This link implements a “layer normalization” layer
which normalizes the input units by statistics
that are computed along the second axis,
scales and shifts them.
Parameter initialization will be deferred until
the first forward data pass at which time the size will be determined.





	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of input units. If None, parameter initialization
will be deferred until the first forward data pass at which time
the size will be determined.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value for numerical stability of normalization.

	initial_gamma (Initializer) – Initializer for scaling vector.
If None, then the vector is filled by 1.
If a scalar, the vector is filled by it.
If numpy.ndarray, the vector is set by it.

	initial_beta (Initializer) – Initializer for shifting vector.
If None, then the vector is filled by 0.
If a scalar, the vector is filled by it.
If numpy.ndarray, the vector is set by it.






	Variables:	
	gamma (Variable) – Scaling parameter.

	beta (Variable) – Shifting parameter.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – Epsilon value for numerical stability.









See: Layer Normalization [https://arxiv.org/abs/1607.06450]


	
__call__(x)

	Apply layer normalization to given input.





	Parameters:	x (Variable) – Batch vectors.
Shape of this value must be (batch_size, unit_size),
e.g., the output of linear().


	Returns:	Output of the layer normalization.


	Return type:	Variable
















BinaryHierarchicalSoftmax


	
class chainer.links.BinaryHierarchicalSoftmax(in_size, tree)

	Hierarchical softmax layer over binary tree.

In natural language applications, vocabulary size is too large to use
softmax loss.
Instead, the hierarchical softmax uses product of sigmoid functions.
It costs only \(O(\log(n))\) time where \(n\) is the vocabulary
size in average.

At first a user need to prepare a binary tree whose each leaf is
corresponding to a word in a vocabulary.
When a word \(x\) is given, exactly one path from the root of the tree
to the leaf of the word exists.
Let \(\mbox{path}(x) = ((e_1, b_1), \dots, (e_m, b_m))\) be the path
of \(x\), where \(e_i\) is an index of \(i\)-th internal node,
and \(b_i \in \{-1, 1\}\) indicates direction to move at
\(i\)-th internal node (-1 is left, and 1 is right).
Then, the probability of \(x\) is given as below:


\[\begin{split}P(x) &= \prod_{(e_i, b_i) \in \mbox{path}(x)}P(b_i | e_i)  \\
     &= \prod_{(e_i, b_i) \in \mbox{path}(x)}\sigma(b_i x^\top
        w_{e_i}),\end{split}\]

where \(\sigma(\cdot)\) is a sigmoid function, and \(w\) is a
weight matrix.

This function costs \(O(\log(n))\) time as an average length of paths
is \(O(\log(n))\), and \(O(n)\) memory as the number of internal
nodes equals \(n - 1\).





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vectors.

	tree – A binary tree made with tuples like ((1, 2), 3).






	Variables:	W (Variable) – Weight parameter matrix.







See: Hierarchical Probabilistic Neural Network Language Model [Morin+,
AISTAT2005].


	
__call__(x, t)

	Computes the loss value for given input and ground truth labels.





	Parameters:	
	x (Variable) – Input to the classifier at each node.

	t (Variable) – Batch of ground truth labels.






	Returns:	Loss value.




	Return type:	Variable












	
static create_huffman_tree(word_counts)

	Makes a Huffman tree from a dictionary containing word counts.

This method creates a binary Huffman tree, that is required for
BinaryHierarchicalSoftmax.
For example, {0: 8, 1: 5, 2: 6, 3: 4} is converted to
((3, 1), (2, 0)).





	Parameters:	word_counts (dict of int key and int or float values) – Dictionary representing counts of words.


	Returns:	Binary Huffman tree with tuples and keys of word_coutns.
















BlackOut


	
class chainer.links.BlackOut(in_size, counts, sample_size)

	BlackOut loss layer.


See also

black_out() for more detail.







	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vectors.

	counts (int list) – Number of each identifiers.

	sample_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of negative samples.






	Variables:	W (Variable) – Weight parameter matrix.














CRF1d


	
class chainer.links.CRF1d(n_label)

	Linear-chain conditional random field loss layer.

This link wraps the crf1d() function.
It holds a transition cost matrix as a parameter.





	Parameters:	n_label (int [https://docs.python.org/3/library/functions.html#int]) – Number of labels.






See also

crf1d() for more detail.







	Variables:	cost (Variable) – Transition cost parameter.






	
argmax(xs)

	Computes a state that maximizes a joint probability.





	Parameters:	xs (list of Variable) – Input vector for each label.


	Returns:	
	A tuple of Variable representing each

	log-likelihood and a list representing the argmax path.






	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]






See also

See crf1d_argmax() for more
detail.














SimplifiedDropconnect


	
class chainer.links.SimplifiedDropconnect(in_size, out_size, ratio=0.5, nobias=False, initialW=None, initial_bias=None)

	Fully-connected layer with simplified dropconnect regularization.

Notice:
This implementation cannot be used for reproduction of the paper.
There is a difference between the current implementation and the
original one.
The original version uses sampling with gaussian distribution before
passing activation function, whereas the current implementation averages
before activation.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vectors. If None, parameter
initialization will be deferred until the first forward data pass
at which time the size will be determined.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of output vectors.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then this link does not use the bias term.

	initialW (3-D array or None [https://docs.python.org/3/library/constants.html#None]) – Initial weight value.
If None, the default initializer is used.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.

	initial_bias (2-D array, float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Initial bias value.
If None, the bias is set to 0.
May also be a callable that takes numpy.ndarray or
cupy.ndarray and edits its value.






	Variables:	
	W (Variable) – Weight parameter.

	b (Variable) – Bias parameter.










See also

simplified_dropconnect()




See also

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013).
Regularization of Neural Network using DropConnect.
International Conference on Machine Learning.
URL [http://cs.nyu.edu/~wanli/dropc/]




	
__call__(x, train=True, mask=None)

	Applies the simplified dropconnect layer.





	Parameters:	
	x (chainer.Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Batch of input vectors. Its first dimension n is assumed
to be the minibatch dimension.

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, executes simplified dropconnect.
Otherwise, simplified dropconnect link works as a linear unit.










	:param mask (None or chainer.Variable or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or: cupy.ndarray):

	If None, randomized simplified dropconnect mask is
generated. Otherwise, The mask must be (n, M, N)
shaped array. Main purpose of this option is debugging.
mask array will be used as a dropconnect mask.







	Returns:	Output of the simplified dropconnect layer.


	Return type:	Variable
















PReLU


	
class chainer.links.PReLU(shape=(), init=0.25)

	Parametric ReLU function as a link.





	Parameters:	
	shape (tuple of ints) – Shape of the parameter array.

	init (float [https://docs.python.org/3/library/functions.html#float]) – Initial parameter value.









See the paper for details: Delving Deep into Rectifiers: Surpassing     Human-Level Performance on ImageNet Classification [https://arxiv.org/abs/1502.01852].


See also

chainer.functions.prelu()







	Variables:	W (Variable) – Coefficient of parametric ReLU.






	
__call__(x)

	Applies the parametric ReLU activation function.





	Parameters:	x (Variable) – Input variable.


	Returns:	Output of the parametric ReLU function.


	Return type:	Variable
















Maxout


	
class chainer.links.Maxout(in_size, out_size, pool_size, wscale=1, initialW=None, initial_bias=0)

	Fully-connected maxout layer.

Let M, P and N be an input dimension, a pool size,
and an output dimension, respectively.
For an input vector \(x\) of size M, it computes


\[Y_{i} = \mathrm{max}_{j} (W_{ij\cdot}x + b_{ij}).\]

Here \(W\) is a weight tensor of shape (M, P, N),
\(b\) an  optional bias vector of shape (M, P)
and \(W_{ij\cdot}\) is a sub-vector extracted from
\(W\) by fixing first and second dimensions to
\(i\) and \(j\), respectively.
Minibatch dimension is omitted in the above equation.

As for the actual implementation, this chain has a
Linear link with a (M * P, N) weight matrix and
an optional M * P dimensional bias vector.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vectors.

	out_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of output vectors.

	pool_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels.

	wscale (float [https://docs.python.org/3/library/functions.html#float]) – Scaling factor of the weight matrix.

	initialW (3-D array or None [https://docs.python.org/3/library/constants.html#None]) – Initial weight value.
If None, then this function uses Gaussian distribution
scaled by w_scale to initialize weight.

	initial_bias (2-D array, float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Initial bias value.
If it is float, initial bias is filled with this value.
If None, bias is omitted.






	Variables:	linear (Link) – The Linear link that performs
affine transformation.








See also

maxout()




See also

Goodfellow, I., Warde-farley, D., Mirza, M.,
Courville, A., & Bengio, Y. (2013).
Maxout Networks. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13) (pp. 1319-1327).
URL [http://jmlr.org/proceedings/papers/v28/goodfellow13.html]




	
__call__(x)

	Applies the maxout layer.





	Parameters:	x (Variable) – Batch of input vectors.


	Returns:	Output of the maxout layer.


	Return type:	Variable
















NegativeSampling


	
class chainer.links.NegativeSampling(in_size, counts, sample_size, power=0.75)

	Negative sampling loss layer.

This link wraps the negative_sampling() function.
It holds the weight matrix as a parameter. It also builds a sampler
internally given a list of word counts.





	Parameters:	
	in_size (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of input vectors.

	counts (int list) – Number of each identifiers.

	sample_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of negative samples.

	power (float [https://docs.python.org/3/library/functions.html#float]) – Power factor \(\alpha\).










See also

negative_sampling() for more detail.







	Variables:	W (Variable) – Weight parameter matrix.






	
__call__(x, t, reduce='sum')

	Computes the loss value for given input and ground truth labels.





	Parameters:	
	x (Variable) – Input of the weight matrix multiplication.

	t (Variable) – Batch of ground truth labels.

	reduce (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction option. Its value must be either
'sum' or 'no'. Otherwise, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is
raised.






	Returns:	Loss value.




	Return type:	Variable




















Machine learning models


Classifier


	
class chainer.links.Classifier(predictor, lossfun=<function softmax_cross_entropy>, accfun=<function accuracy>)

	A simple classifier model.

This is an example of chain that wraps another chain. It computes the
loss and accuracy based on a given input/label pair.





	Parameters:	
	predictor (Link) – Predictor network.

	lossfun (function) – Loss function.

	accfun (function) – Function that computes accuracy.






	Variables:	
	predictor (Link) – Predictor network.

	lossfun (function) – Loss function.

	accfun (function) – Function that computes accuracy.

	y (Variable) – Prediction for the last minibatch.

	loss (Variable) – Loss value for the last minibatch.

	accuracy (Variable) – Accuracy for the last minibatch.

	compute_accuracy (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compute accuracy on the forward
computation. The default value is True.










	
__call__(*args)

	Computes the loss value for an input and label pair.

It also computes accuracy and stores it to the attribute.





	Parameters:	args (list of ~chainer.Variable) – Input minibatch.





The all elements of args but last one are features and
the last element corresponds to ground truth labels.
It feeds features to the predictor and compare the result
with ground truth labels.





	Returns:	Loss value.


	Return type:	Variable


















Pre-trained models

Pre-trained models are mainly used to achieve a good performance with a small
dataset, or extract a semantic feature vector. Although CaffeFunction
automatically loads a pre-trained model released as a caffemodel,
the following link models provide an interface for automatically converting
caffemodels, and easily extracting semantic feature vectors.

For example, to extract the feature vectors with VGG16Layers, which is
a common pre-trained model in the field of image recognition,
users need to write the following few lines:

from chainer.links import VGG16Layers
from PIL import Image

model = VGG16Layers()
img = Image.open("path/to/image.jpg")
feature = model.extract([img], layers=["fc7"])["fc7"]





where fc7 denotes a layer before the last fully-connected layer.
Unlike the usual links, these classes automatically load all the
parameters from the pre-trained models during initialization.


VGG16Layers


	
class chainer.links.VGG16Layers(pretrained_model='auto')

	A pre-trained CNN model with 16 layers provided by VGG team [1].

During initialization, this chain model automatically downloads
the pre-trained caffemodel, convert to another chainer model,
stores it on your local directory, and initializes all the parameters
with it. This model would be useful when you want to extract a semantic
feature vector from a given image, or fine-tune the model
on a different dataset.
Note that this pre-trained model is released under Creative Commons
Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer
model that can be specified in the constructor,
please use convert_caffemodel_to_npz classmethod instead.




	[1]	K. Simonyan and A. Zisserman, Very Deep Convolutional Networks
for Large-Scale Image Recognition [https://arxiv.org/abs/1409.1556]








	Parameters:	pretrained_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination of the pre-trained
chainer model serialized as a .npz file.
If this argument is specified as auto,
it automatically downloads the caffemodel from the internet.
Note that in this case the converted chainer model is stored
on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
as a environment variable. The converted chainer model is
automatically used from the second time.
If the argument is specified as None, all the parameters
are not initialized by the pre-trained model, but the default
initializer used in the original paper, i.e.,
chainer.initializers.Normal(scale=0.01).


	Variables:	available_layers (list of str) – The list of available layer names
used by __call__ and extract methods.






	
__call__(x, layers=['prob'], test=True)

	Computes all the feature maps specified by layers.





	Parameters:	
	x (Variable) – Input variable.

	layers (list of str) – The list of layer names you want to extract.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, dropout runs in test mode.






	Returns:	A directory in which
the key contains the layer name and the value contains
the corresponding feature map variable.




	Return type:	Dictionary of ~chainer.Variable












	
classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)

	Converts a pre-trained caffemodel to a chainer model.





	Parameters:	
	path_caffemodel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the pre-trained caffemodel.

	path_npz (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the converted chainer model.














	
extract(images, layers=['fc7'], size=(224, 224), test=True, volatile=OFF)

	Extracts all the feature maps of given images.

The difference of directly executing __call__ is that
it directly accepts images as an input and automatically
transforms them to a proper variable. That is,
it is also interpreted as a shortcut method that implicitly calls
prepare and __call__ functions.





	Parameters:	
	images (iterable of PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input images.

	layers (list of str) – The list of layer names you want to extract.

	size (pair of ints) – The resolution of resized images used as
an input of CNN. All the given images are not resized
if this argument is None, but the resolutions of
all the images should be the same.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, dropout runs in test mode.

	volatile (Flag) – Volatility flag used for input variables.






	Returns:	A directory in which
the key contains the layer name and the value contains
the corresponding feature map variable.




	Return type:	Dictionary of ~chainer.Variable












	
predict(images, oversample=True)

	Computes all the probabilities of given images.





	Parameters:	
	images (iterable of PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input images.

	oversample (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it averages results across
center, corners, and mirrors. Otherwise, it uses only the
center.






	Returns:	Output that contains the class probabilities
of given images.




	Return type:	Variable
















	
chainer.links.model.vision.vgg.prepare(image, size=(224, 224))

	Converts the given image to the numpy array for VGG models.

Note that you have to call this method before __call__
because the pre-trained vgg model requires to resize the given image,
covert the RGB to the BGR, subtract the mean,
and permute the dimensions before calling.





	Parameters:	
	image (PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input image.
If an input is numpy.ndarray, its shape must be
(height, width), (height, width, channels),
or (channels, height, width), and
the order of the channels must be RGB.

	size (pair of ints) – Size of converted images.
If None, the given image is not resized.






	Returns:	The converted output array.




	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














GoogLeNet


	
class chainer.links.GoogLeNet(pretrained_model='auto')

	A pre-trained GoogLeNet model provided by BVLC [1].

When you specify the path of the pre-trained chainer model serialized as
a .npz file in the constructor, this chain model automatically
initializes all the parameters with it.
This model would be useful when you want to extract a semantic feature
vector per image, or fine-tune the model on a different dataset.

If you want to manually convert the pre-trained caffemodel to a chainer
model that can be specified in the constructor,
please use convert_caffemodel_to_npz classmethod instead.

GoogLeNet, which is also called Inception-v1, is an architecture of
convolutional neural network proposed in 2014. This model is relatively
lightweight and requires small memory footprint during training compared
with modern architectures such as ResNet. Therefore, if you fine-tune your
network based on a model pre-trained by Imagenet and need to train it with
large batch size, GoogLeNet may be useful. On the other hand, if you just
want an off-the-shelf classifier, we recommend you to use ResNet50 or other
models since they are more accurate than GoogLeNet.




	[1]	https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet








	Parameters:	pretrained_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination of the pre-trained
chainer model serialized as a .npz file.
If this argument is specified as auto,
it automatically downloads the caffemodel from the internet.
Note that in this case the converted chainer model is stored
on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
as a environment variable. The converted chainer model is
automatically used from the second time.
If the argument is specified as None, all the parameters
are not initialized by the pre-trained model, but the default
initializer used in BVLC, i.e.,
chainer.initializers.LeCunUniform(scale=1.0).
Note that, in Caffe, when weight_filler is specified as
“xavier” type without variance_norm parameter, the weights are
initialized by Uniform(-s, s), where
\(s = \sqrt{\frac{3}{fan_{in}}}\) and \(fan_{in}\) is the
number of input units. This corresponds to LeCunUniform in Chainer
but not GlorotUniform.


	Variables:	available_layers (list of str) – The list of available layer names
used by __call__ and extract methods.






	
__call__(x, layers=['prob'], train=False)

	Computes all the feature maps specified by layers.





	Parameters:	
	x (Variable) – Input variable. It should be prepared by

	function. (prepare) – 

	layers (list of str) – The list of layer names you want to extract.

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, Dropout runs in training mode.






	Returns:	A directory in which
the key contains the layer name and the value contains
the corresponding feature map variable.




	Return type:	Dictionary of ~chainer.Variable












	
classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)

	Converts a pre-trained caffemodel to a chainer model.





	Parameters:	
	path_caffemodel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the pre-trained caffemodel.

	path_npz (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the converted chainer model.














	
extract(images, layers=['pool5'], size=(224, 224), train=False, volatile=OFF)

	Extracts all the feature maps of given images.

The difference of directly executing __call__ is that
it directly accepts images as an input and automatically
transforms them to a proper variable. That is,
it is also interpreted as a shortcut method that implicitly calls
prepare and __call__ functions.





	Parameters:	
	images (iterable of PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input images.

	layers (list of str) – The list of layer names you want to extract.

	size (pair of ints) – The resolution of resized images used as
an input of CNN. All the given images are not resized
if this argument is None, but the resolutions of
all the images should be the same.

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, Dropout runs in training mode.

	volatile (Flag) – Volatility flag used for input variables.






	Returns:	A directory in which
the key contains the layer name and the value contains
the corresponding feature map variable.




	Return type:	Dictionary of ~chainer.Variable












	
predict(images, oversample=True)

	Computes all the probabilities of given images.





	Parameters:	
	images (iterable of PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input images.

	oversample (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it averages results across
center, corners, and mirrors. Otherwise, it uses only the
center.






	Returns:	Output that contains the class probabilities
of given images.




	Return type:	Variable
















	
chainer.links.model.vision.googlenet.prepare(image, size=(224, 224))

	Converts the given image to the numpy array for GoogLeNet.

Note that you have to call this method before __call__
because the pre-trained GoogLeNet model requires to resize the given
image, covert the RGB to the BGR, subtract the mean,
and permute the dimensions before calling.





	Parameters:	
	image (PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input image.
If an input is numpy.ndarray, its shape must be
(height, width), (height, width, channels),
or (channels, height, width), and
the order of the channels must be RGB.

	size (pair of ints) – Size of converted images.
If None, the given image is not resized.






	Returns:	The converted output array.




	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]














Residual Networks


	
class chainer.links.model.vision.resnet.ResNetLayers(pretrained_model, n_layers)

	A pre-trained CNN model provided by MSRA [1].

When you specify the path of the pre-trained chainer model serialized as
a .npz file in the constructor, this chain model automatically
initializes all the parameters with it.
This model would be useful when you want to extract a semantic feature
vector per image, or fine-tune the model on a different dataset.
Note that unlike VGG16Layers, it does not automatically download a
pre-trained caffemodel. This caffemodel can be downloaded at
GitHub [https://github.com/KaimingHe/deep-residual-networks].

If you want to manually convert the pre-trained caffemodel to a chainer
model that can be specified in the constructor,
please use convert_caffemodel_to_npz classmethod instead.




	[1]	K. He et. al., Deep Residual Learning for Image Recognition [https://arxiv.org/abs/1512.03385]








	Parameters:	
	pretrained_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination of the pre-trained
chainer model serialized as a .npz file.
If this argument is specified as auto,
it automatically loads and converts the caffemodel from
$CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-{n-layers}-model.caffemodel,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable and {n_layers} is replaced
with the specified number of layers given as the first argment to
this costructor. Note that in this case the converted chainer
model is stored on the same directory and automatically used from
the next time.
If this argument is specified as None, all the parameters
are not initialized by the pre-trained model, but the default
initializer used in the original paper, i.e.,
chainer.initializers.HeNormal(scale=1.0).

	n_layers (int [https://docs.python.org/3/library/functions.html#int]) – The number of layers of this model. It should be either
50, 101, or 152.






	Variables:	available_layers (list of str) – The list of available layer names
used by __call__ and extract methods.








	
__call__(x, layers=['prob'], test=True)

	Computes all the feature maps specified by layers.





	Parameters:	
	x (Variable) – Input variable.

	layers (list of str) – The list of layer names you want to extract.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, BarchNormalization runs in test mode.






	Returns:	A directory in which
the key contains the layer name and the value contains
the corresponding feature map variable.




	Return type:	Dictionary of ~chainer.Variable












	
classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)

	Converts a pre-trained caffemodel to a chainer model.





	Parameters:	
	path_caffemodel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the pre-trained caffemodel.

	path_npz (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the converted chainer model.














	
extract(images, layers=['pool5'], size=(224, 224), test=True, volatile=OFF)

	Extracts all the feature maps of given images.

The difference of directly executing __call__ is that
it directly accepts images as an input and automatically
transforms them to a proper variable. That is,
it is also interpreted as a shortcut method that implicitly calls
prepare and __call__ functions.





	Parameters:	
	images (iterable of PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input images.

	layers (list of str) – The list of layer names you want to extract.

	size (pair of ints) – The resolution of resized images used as
an input of CNN. All the given images are not resized
if this argument is None, but the resolutions of
all the images should be the same.

	test (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, BatchNormalization runs in test mode.

	volatile (Flag) – Volatility flag used for input variables.






	Returns:	A directory in which
the key contains the layer name and the value contains
the corresponding feature map variable.




	Return type:	Dictionary of ~chainer.Variable












	
predict(images, oversample=True)

	Computes all the probabilities of given images.





	Parameters:	
	images (iterable of PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input images.

	oversample (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it averages results across
center, corners, and mirrors. Otherwise, it uses only the
center.






	Returns:	Output that contains the class probabilities
of given images.




	Return type:	Variable
















	
class chainer.links.ResNet50Layers(pretrained_model='auto')

	A pre-trained CNN model with 50 layers provided by MSRA [1].

When you specify the path of the pre-trained chainer model serialized as
a .npz file in the constructor, this chain model automatically
initializes all the parameters with it.
This model would be useful when you want to extract a semantic feature
vector per image, or fine-tune the model on a different dataset.
Note that unlike VGG16Layers, it does not automatically download a
pre-trained caffemodel. This caffemodel can be downloaded at
GitHub [https://github.com/KaimingHe/deep-residual-networks].

If you want to manually convert the pre-trained caffemodel to a chainer
model that can be specified in the constructor,
please use convert_caffemodel_to_npz classmethod instead.

ResNet50 has 25,557,096 trainable parameters, and it’s 58% and 43% fewer
than ResNet101 and ResNet152, respectively. On the other hand, the top-5
classification accuracy on ImageNet dataset drops only 0.7% and 1.1% from
ResNet101 and ResNet152, respectively. Therefore, ResNet50 may have the
best balance between the accuracy and the model size. It would be basically
just enough for many cases, but some advanced models for object detection
or semantic segmentation use deeper ones as their building blocks, so these
deeper ResNets are here for making reproduction work easier.




	[1]	K. He et. al., Deep Residual Learning for Image Recognition [https://arxiv.org/abs/1512.03385]








	Parameters:	pretrained_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination of the pre-trained
chainer model serialized as a .npz file.
If this argument is specified as auto,
it automatically loads and converts the caffemodel from
$CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-50-model.caffemodel,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable. Note that in this case the
converted chainer model is stored on the same directory and
automatically used from the next time.
If this argument is specified as None, all the parameters
are not initialized by the pre-trained model, but the default
initializer used in the original paper, i.e.,
chainer.initializers.HeNormal(scale=1.0).


	Variables:	available_layers (list of str) – The list of available layer names
used by __call__ and extract methods.










	
class chainer.links.ResNet101Layers(pretrained_model='auto')

	A pre-trained CNN model with 101 layers provided by MSRA [1].

When you specify the path of the pre-trained chainer model serialized as
a .npz file in the constructor, this chain model automatically
initializes all the parameters with it.
This model would be useful when you want to extract a semantic feature
vector per image, or fine-tune the model on a different dataset.
Note that unlike VGG16Layers, it does not automatically download a
pre-trained caffemodel. This caffemodel can be downloaded at
GitHub [https://github.com/KaimingHe/deep-residual-networks].

If you want to manually convert the pre-trained caffemodel to a chainer
model that can be specified in the constructor,
please use convert_caffemodel_to_npz classmethod instead.

ResNet101 has 44,549,224 trainable parameters, and it’s 43% fewer than
ResNet152 model, while the top-5 classification accuracy on ImageNet
dataset drops 1.1% from ResNet152. For many cases, ResNet50 may have the
best balance between the accuracy and the model size.




	[1]	K. He et. al., Deep Residual Learning for Image Recognition [https://arxiv.org/abs/1512.03385]








	Parameters:	pretrained_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination of the pre-trained
chainer model serialized as a .npz file.
If this argument is specified as auto,
it automatically loads and converts the caffemodel from
$CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-101-model.caffemodel,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable. Note that in this case the
converted chainer model is stored on the same directory and
automatically used from the next time.
If this argument is specified as None, all the parameters
are not initialized by the pre-trained model, but the default
initializer used in the original paper, i.e.,
chainer.initializers.HeNormal(scale=1.0).


	Variables:	available_layers (list of str) – The list of available layer names
used by __call__ and extract methods.










	
class chainer.links.ResNet152Layers(pretrained_model='auto')

	A pre-trained CNN model with 152 layers provided by MSRA [1].

When you specify the path of the pre-trained chainer model serialized as
a .npz file in the constructor, this chain model automatically
initializes all the parameters with it.
This model would be useful when you want to extract a semantic feature
vector per image, or fine-tune the model on a different dataset.
Note that unlike VGG16Layers, it does not automatically download a
pre-trained caffemodel. This caffemodel can be downloaded at
GitHub [https://github.com/KaimingHe/deep-residual-networks].

If you want to manually convert the pre-trained caffemodel to a chainer
model that can be specified in the constructor,
please use convert_caffemodel_to_npz classmethod instead.

ResNet152 has 60,192,872 trainable parameters, and it’s the deepest ResNet
model and it achieves the best result on ImageNet classification task in
ILSVRC 2015 [http://image-net.org/challenges/LSVRC/2015/results#loc].




	[1]	K. He et. al., Deep Residual Learning for Image Recognition [https://arxiv.org/abs/1512.03385]








	Parameters:	pretrained_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination of the pre-trained
chainer model serialized as a .npz file.
If this argument is specified as auto,
it automatically loads and converts the caffemodel from
$CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-152-model.caffemodel,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable. Note that in this case the
converted chainer model is stored on the same directory and
automatically used from the next time.
If this argument is specified as None, all the parameters
are not initialized by the pre-trained model, but the default
initializer used in the original paper, i.e.,
chainer.initializers.HeNormal(scale=1.0).


	Variables:	available_layers (list of str) – The list of available layer names
used by __call__ and extract methods.










	
chainer.links.model.vision.resnet.prepare(image, size=(224, 224))

	Converts the given image to the numpy array for ResNets.

Note that you have to call this method before __call__
because the pre-trained resnet model requires to resize the given
image, covert the RGB to the BGR, subtract the mean,
and permute the dimensions before calling.





	Parameters:	
	image (PIL.Image or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input image.
If an input is numpy.ndarray, its shape must be
(height, width), (height, width, channels),
or (channels, height, width), and
the order of the channels must be RGB.

	size (pair of ints) – Size of converted images.
If None, the given image is not resized.






	Returns:	The converted output array.




	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
















Deprecated links


Parameter


	
class chainer.links.Parameter(array)

	Link that just holds a parameter and returns it.


Deprecated since version v1.5: The parameters are stored as variables as of v1.5. Use them directly
instead.







	Parameters:	array – Initial parameter array.


	Variables:	W (Variable) – Parameter variable.






	
__call__(volatile='off')

	Returns the parameter variable.





	Parameters:	volatile (Flag) – The volatility of the returned variable.


	Returns:	A copy of the parameter variable with given
volatility.


	Return type:	Variable





















          

      

      

    

  

    
      
          
            
  
Optimizers


	
class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)

	Zeiler’s ADADELTA.

See: http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf






	
class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)

	AdaGrad implementation.

See: http://jmlr.org/papers/v12/duchi11a.html






	
class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08)

	Adam optimization algorithm.

See: https://arxiv.org/abs/1412.6980v8






	
class chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)

	Classical momentum SGD.






	
class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)

	Nesterov’s Accelerated Gradient.

Formulated as the linear combination coefficients of the velocity and
gradient contributions at each iteration.

See: https://arxiv.org/abs/1212.0901






	
class chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08)

	Hinton’s RMSprop.






	
class chainer.optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.9, eps=0.0001)

	Alex Graves’s RMSprop.

See https://arxiv.org/abs/1308.0850






	
class chainer.optimizers.SGD(lr=0.01)

	Vanilla Stochastic Gradient Descent.






	
class chainer.optimizers.SMORMS3(lr=0.001, eps=1e-16)

	Simon Funk’s SMORMS3.

See http://sifter.org/~simon/journal/20150420.html.









          

      

      

    

  

    
      
          
            
  
Serializers


Serialization in NumPy NPZ format

NumPy serializers can be used in arbitrary environments that Chainer runs with.
It consists of asymmetric serializer/deserializer due to the fact that numpy.savez() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez] does not support online serialization.
Therefore, serialization requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.


	
class chainer.serializers.DictionarySerializer(target=None, path='')

	Serializer for dictionary.

This is the standard serializer in Chainer. The hierarchy of objects are
simply mapped to a flat dictionary with keys representing the paths to
objects in the hierarchy.


Note

Despite of its name, this serializer DOES NOT serialize the
object into external files. It just build a flat dictionary of arrays
that can be fed into numpy.savez() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez] and
numpy.savez_compressed() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed]. If you want to use this serializer
directly, you have to manually send a resulting dictionary to one of
these functions.







	Parameters:	
	target (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dictionary that this serializer saves the objects
to. If target is None, then a new dictionary is created.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base path in the hierarchy that this serializer
indicates.






	Variables:	target (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The target dictionary. Once the serialization completes,
this dictionary can be fed into numpy.savez() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez] or
numpy.savez_compressed() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed] to serialize it in the NPZ format.












	
class chainer.serializers.NpzDeserializer(npz, path='', strict=True)

	Deserializer for NPZ format.

This is the standard deserializer in Chainer. This deserializer can be used
to read an object serialized by save_npz().





	Parameters:	
	npz – npz file object.

	path – The base path that the deserialization starts from.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the deserializer raises an error when an
expected value is not found in the given NPZ file. Otherwise,
it ignores the value and skip deserialization.














	
chainer.serializers.save_npz(filename, obj, compression=True)

	Saves an object to the file in NPZ format.

This is a short-cut function to save only one object into an NPZ file.





	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target file name.

	obj – Object to be serialized. It must support serialization protocol.

	compression (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, compression in the resulting zip file
is enabled.














	
chainer.serializers.load_npz(filename, obj)

	Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only
one object.





	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to be loaded.

	obj – Object to be deserialized. It must support serialization protocol.
















Serialization in HDF5 format


	
class chainer.serializers.HDF5Serializer(group, compression=4)

	Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply
mapped to HDF5 hierarchical groups.





	Parameters:	
	group (h5py.Group) – The group that this serializer represents.

	compression (int [https://docs.python.org/3/library/functions.html#int]) – Gzip compression level.














	
class chainer.serializers.HDF5Deserializer(group, strict=True)

	Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used
to read an object serialized by HDF5Serializer.





	Parameters:	
	group (h5py.Group) – The group that the deserialization starts from.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the deserializer raises an error when an
expected value is not found in the given HDF5 file. Otherwise,
it ignores the value and skip deserialization.














	
chainer.serializers.save_hdf5(filename, obj, compression=4)

	Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If
you want to save multiple objects to one HDF5 file, use
HDF5Serializer directly by passing appropriate h5py.Group
objects.





	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target file name.

	obj – Object to be serialized. It must support serialization protocol.

	compression (int [https://docs.python.org/3/library/functions.html#int]) – Gzip compression level.














	
chainer.serializers.load_hdf5(filename, obj)

	Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only
one object. If you want to load multiple objects from one HDF5 file, use
HDF5Deserializer directly by passing appropriate
h5py.Group objects.





	Parameters:	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to be loaded.

	obj – Object to be deserialized. It must support serialization protocol.



















          

      

      

    

  

    
      
          
            
  
Function hooks

Chainer provides a function-hook mechanism that enriches
the behavior of forward and backward propagation of Function.


Base class


	
class chainer.function.FunctionHook

	Base class of hooks for Functions.

FunctionHook is an callback object
that is registered to Function.
Registered function hooks are invoked before and after
forward and backward operations of each function.

Function hooks that derive FunctionHook are required
to implement four methods:
forward_preprocess(),
forward_postprocess(),
backward_preprocess(), and
backward_postprocess().
By default, these methods do nothing.

Specifically, when __call__()
method of some function is invoked,
forward_preprocess()
(resp. forward_postprocess())
of all function hooks registered to this function are called before
(resp. after) forward propagation.

Likewise, when backward() of some
Variable is invoked,
backward_preprocess()
(resp. backward_postprocess())
of all function hooks registered to the function which holds this variable
as a gradient are called before (resp. after) backward propagation.

There are two ways to register FunctionHook
objects to Function objects.

First one is to use with statement. Function hooks hooked
in this way are registered to all functions within with statement
and are unregistered at the end of with statement.


Example

The following code is a simple example in which
we measure the elapsed time of a part of forward propagation procedure
with TimerHook, which is a subclass of
FunctionHook.

>>> from chainer import function_hooks
>>> class Model(chainer.Chain):
...     def __call__(self, x1):
...         return F.exp(self.l(x1))
>>> model1 = Model(l=L.Linear(10, 10))
>>> model2 = Model(l=L.Linear(10, 10))
>>> x = chainer.Variable(np.zeros((1, 10), 'f'))
>>> with chainer.function_hooks.TimerHook() as m:
...     _ = model1(x)
...     y = model2(x)
...     print("Total time : " + str(m.total_time()))
...     model3 = Model(l=L.Linear(10, 10))
...     z = model3(y) 
Total time : ...





In this example, we measure the elapsed times for each forward
propagation of all functions in model1 and model2
(specifically, LinearFunction and
Exp of model1 and model2).
Note that model3 is not a target of measurement
as TimerHook is unregistered
before forward propagation of model3.




Note

Chainer stores the dictionary of registered function hooks
as a thread local object. So, function hooks registered
are different depending on threads.



The other one is to register directly to
Function object with
add_hook() method.
Function hooks registered in this way can be removed by
delete_hook() method.
Contrary to former registration method, function hooks are registered
only to the function which add_hook()
is called.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this function hook.






	
backward_postprocess(function, in_data, out_grad)

	Callback function invoked after backward propagation.





	Parameters:	
	function (Function) – Function object to which
the function hook is registered.

	in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input of forward propagation.

	out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) – Gradient data of backward propagation.














	
backward_preprocess(function, in_data, out_grad)

	Callback function invoked before backward propagation.





	Parameters:	
	function (Function) – Function object to which
the function hook is registered.

	in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input data of forward propagation.

	out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) – Gradient data of backward propagation.














	
forward_postprocess(function, in_data)

	Callback function invoked after forward propagation.





	Parameters:	
	function (Function) – Function object to which
the function hook is registered.

	in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input data of forward propagation.














	
forward_preprocess(function, in_data)

	Callback function invoked before forward propagation.





	Parameters:	
	function (Function) – Function object to which
the function hook is registered.

	in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input data of forward propagation.




















Concrete function hooks


	
class chainer.function_hooks.PrintHook(sep='', end='n', file=<open file '<stdout>', mode 'w'>, flush=True)

	Function hook that prints debug information.

This function hook outputs the debug information of input arguments of
forward and backward methods involved in the hooked functions
at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions
at every function to be inspected, we can show the information
of all functions involved with single with statement.

Further, this hook enables us to show the information of
backward methods without inserting print functions into
Chainer’s library code.





	Variables:	
	sep – Separator of print function.

	end – Character to be added at the end of print function.

	file – Output file_like object that that redirect to.

	flush – If True, this hook forcibly flushes the text stream
at the end of preprocessing.










Example

The basic usage is to use it with with statement.

>>> from chainer import function_hooks
>>> l = L.Linear(10, 10)
>>> x = chainer.Variable(np.zeros((1, 10), 'f'))
>>> with chainer.function_hooks.PrintHook():
...     y = l(x)
...     z = F.sum(y)
...     z.backward() 





In this example, PrintHook shows the debug information of
forward propagation of LinearFunction (which is implicitly
called by l) and Sum (called by F.sum)
and backward propagation of z and y.








	
class chainer.function_hooks.TimerHook

	Function hook for measuring elapsed time of functions.





	Variables:	call_history – List of measurement results. It consists of pairs of
the function that calls this hook and the elapsed time
the function consumes.






	
total_time()

	Returns total elapsed time in seconds.















          

      

      

    

  

    
      
          
            
  
Weight Initializers

Weight initializer is an instance of Initializer that
destructively edits the contents of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray.
Typically, weight initializers are passed to __init__ of Link
and initializes its the weights and biases.


Base class


	
class chainer.initializer.Initializer(dtype=None)

	Initializes array.

It initializes the given array.





	Variables:	dtype – Data type specifier. It is for type check in __call__
function.






	
__call__(array)

	Initializes given array.

This method destructively changes the value of array.
The derived class is required to implement this method.
The algorithms used to make the new values depend on the
concrete derived classes.





	Parameters:	array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – An array to be initialized by this initializer.
















Concrete initializers


	
class chainer.initializers.Identity(scale=1.0, dtype=None)

	Initializes array with the identity matrix.

It initializes the given array with the constant
multiple of the identity matrix.
Note that arrays to be passed must be 2D squared matrices.





	Variables:	scale (scalar) – A constant to be multiplied to identity matrices.










	
class chainer.initializers.Constant(fill_value, dtype=None)

	Initializes array with constant value.





	Variables:	
	fill_value (scalar or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – A constant to be assigned to the initialized array.
Broadcast is allowed on this assignment.

	dtype – Data type specifier.














	
chainer.initializers.Zero(dtype=None)

	Returns initializer that initializes array with the all-zero array.





	Parameters:	dtype – Data type specifier.


	Returns:	An initialized array.


	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray










	
chainer.initializers.One(dtype=None)

	Returns initializer that initializes array with the all-one array.





	Parameters:	dtype – Data type specifier.


	Returns:	An initialized array.


	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray










	
class chainer.initializers.Normal(scale=0.05, dtype=None)

	Initializes array with a normal distribution.

Each element of the array is initialized by the value drawn
independently from Gaussian distribution whose mean is 0,
and standard deviation is scale.





	Parameters:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of Gaussian distribution.

	dtype – Data type specifier.














	
class chainer.initializers.GlorotNormal(scale=1.0, dtype=None)

	Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn
independently from Gaussian distribution whose mean is 0,
and standard deviation is
\(scale \times \sqrt{\frac{2}{fan_{in} + fan_{out}}}\),
where \(fan_{in}\) and \(fan_{out}\) are the number of
input and output units, respectively.

Reference: Glorot & Bengio, AISTATS 2010





	Parameters:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – A constant that determines the scale
of the standard deviation.

	dtype – Data type specifier.














	
class chainer.initializers.HeNormal(scale=1.0, dtype=None)

	Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn
independently from Gaussian distribution whose mean is 0,
and standard deviation is
\(scale \times \sqrt{\frac{2}{fan_{in}}}\),
where \(fan_{in}\) is the number of input units.

Reference:  He et al., https://arxiv.org/abs/1502.01852





	Parameters:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – A constant that determines the scale
of the standard deviation.

	dtype – Data type specifier.














	
class chainer.initializers.Orthogonal(scale=1.1, dtype=None)

	Initializes array with an orthogonal system.

This initializer first makes a matrix of the same shape as the
array to be initialized whose elements are drawn independently from
standard Gaussian distribution.
Next, it applies Singular Value Decomposition (SVD) to the matrix.
Then, it initializes the array with either side of resultant
orthogonal matrices, depending on the shape of the input array.
Finally, the array is multiplied by the constant scale.

If the ndim of the input array is more than 2, we consider the array
to be a matrix by concatenating all axes except the first one.

The number of vectors consisting of the orthogonal system
(i.e. first element of the shape of the array) must be equal to or smaller
than the dimension of each vector (i.e. second element of the shape of
the array).





	Variables:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – A constant to be multiplied by.

	dtype – Data type specifier.









Reference: Saxe et al., https://arxiv.org/abs/1312.6120






	
class chainer.initializers.Uniform(scale=0.05, dtype=None)

	Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn
independently from uniform distribution \([-scale, scale]\).





	Variables:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – A constant that determines the
scale of the uniform distribution.

	dtype – Data type specifier.














	
class chainer.initializers.LeCunUniform(scale=1.0, dtype=None)

	Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn
independently from uniform distribution \([-s, s]\)
where \(s = scale \times \sqrt{\frac{3}{fan_{in}}}\).
Here \(fan_{in}\) is the number of input units.

Reference: LeCun 98, Efficient Backprop
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf





	Variables:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – A constant that determines the
scale of the uniform distribution.

	dtype – Data type specifier.














	
class chainer.initializers.GlorotUniform(scale=1.0, dtype=None)

	Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn
independently from uniform distribution \([-s, s]\)
where \(s = scale \times \sqrt{\frac{6}{fan_{in} + fan_{out}}}\).
Here, \(fan_{in}\) and fan_{out} are the number of
input and output units, respectively.





	Variables:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – A constant that determines the
scale of the uniform distribution.

	dtype – Data type specifier.














	
class chainer.initializers.HeUniform(scale=1.0, dtype=None)

	Initializes array with scaled uniform distribution.

Each element of the array is initialized by the value drawn
independently from uniform distribution \([-s, s]\)
where \(s = scale \times \sqrt{\frac{6}{fan_{in}}}\).
Here, \(fan_{in}\) is the number of input units.





	Variables:	
	scale (float [https://docs.python.org/3/library/functions.html#float]) – A constant that determines the
scale of the uniform distribution.

	dtype – Data type specifier.
















Helper function


	
chainer.init_weight(weights, initializer, scale=1.0)

	Helper function for initialization of the weight tensor.

This function accepts several types of initializer, prepares
the appropriate ~chainer.Initializer if necessary,
and does the initialization.





	Parameters:	
	weights (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – Weight tensor to be initialized.

	initializer – The value used to initialize the data.
May be None (in which case
HeNormal
is used as an initializer), a scalar to set all values to,
an numpy.ndarray to be assigned,
or a callable that takes numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
or cupy.ndarray and edits its value.

	scale (scalar) – A constant to multiply initializer by.



















          

      

      

    

  

    
      
          
            
  
Dataset examples

The most basic dataset implementation is an array.
Both NumPy and CuPy arrays can be used directly as datasets.

In many cases, though, the simple arrays are not enough to write the training procedure.
In order to cover most of such cases, Chainer provides many built-in implementations of datasets.

These built-in datasets are divided into two groups.
One is a group of general datasets.
Most of them are wrapper of other datasets to introduce some structures (e.g., tuple or dict) to each data point.
The other one is a group of concrete, popular datasets.
These concrete examples use the downloading utilities in the chainer.dataset module to cache downloaded and converted datasets.


General datasets

General datasets are further divided into three types.

The first one is DictDataset and TupleDataset, both of which combine other datasets and introduce some structures on them.

The second one is SubDataset, which represents a subset of an existing dataset. It can be used to separate a dataset for hold-out validation or cross validation. Convenient functions to make random splits are also provided.

The third one is TransformDataset, which wraps around a dataset by applying a function to data indexed from the underlying dataset.
It can be used to modify behavior of a dataset that is already prepared.

The last one is a group of domain-specific datasets. Currently, ImageDataset and LabeledImageDataset are provided for datasets of images.


DictDataset


	
class chainer.datasets.DictDataset(**datasets)

	Dataset of a dictionary of datasets.

It combines multiple datasets into one dataset. Each example is represented
by a dictionary mapping a key to an example of the corresponding dataset.





	Parameters:	datasets – Underlying datasets. The keys are used as the keys of each
example. All datasets must have the same length.












TupleDataset


	
class chainer.datasets.TupleDataset(*datasets)

	Dataset of a tuple of datasets.

It combines multiple datasets into one dataset. Each example is represented
by a tuple whose i-th item corresponds to the i-th dataset.





	Parameters:	datasets – Underlying datasets. The i-th one is used for the
i-th item of each example. All datasets must have the same
length.












SubDataset


	
class chainer.datasets.SubDataset(dataset, start, finish, order=None)

	Subset of a base dataset.

SubDataset defines a subset of a given base dataset. The subset is defined
as an interval of indexes, optionally with a given permutation.

If order is given, then the i-th example of this dataset is the
order[start + i]-th example of the base dataset, where i is a
non-negative integer. If order is not given, then the i-th example
of this dataset is the start + i-th example of the base dataset.
Negative indexing is also allowed: in this case, the term start + i is
replaced by finish + i.

SubDataset is often used to split a dataset into training and validation
subsets. The training set is used for training, while the validation set is
used to track the generalization performance, i.e. how the learned model
works well on unseen data. We can tune hyperparameters (e.g. number of
hidden units, weight initializers, learning rate, etc.) by comparing the
validation performance. Note that we often use another set called test set
to measure the quality of the tuned hyperparameter, which can be made by
nesting multiple SubDatasets.

There are two ways to make training-validation splits. One is a single
split, where the dataset is split just into two subsets. It can be done by
split_dataset() or split_dataset_random(). The other one is a
\(k\)-fold cross validation, in which the dataset is divided into
\(k\) subsets, and \(k\) different splits are generated using each
of the \(k\) subsets as a validation set and the rest as a training
set. It can be done by get_cross_validation_datasets().





	Parameters:	
	dataset – Base dataset.

	start (int [https://docs.python.org/3/library/functions.html#int]) – The first index in the interval.

	finish (int [https://docs.python.org/3/library/functions.html#int]) – The next-to-the-last index in the interval.

	order (sequence of ints) – Permutation of indexes in the base dataset.
If this is None, then the ascending order of indexes is used.














	
chainer.datasets.split_dataset(dataset, split_at, order=None)

	Splits a dataset into two subsets.

This function creates two instances of SubDataset. These instances
do not share any examples, and they together cover all examples of the
original dataset.





	Parameters:	
	dataset – Dataset to split.

	split_at (int [https://docs.python.org/3/library/functions.html#int]) – Position at which the base dataset is split.

	order (sequence of ints) – Permutation of indexes in the base dataset.
See the document of SubDataset for details.






	Returns:	
	Two SubDataset objects. The first subset represents the

	examples of indexes order[:split_at] while the second subset
represents the examples of indexes order[split_at:].










	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]












	
chainer.datasets.split_dataset_random(dataset, first_size, seed=None)

	Splits a dataset into two subsets randomly.

This function creates two instances of SubDataset. These instances
do not share any examples, and they together cover all examples of the
original dataset. The split is automatically done randomly.





	Parameters:	
	dataset – Dataset to split.

	first_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the first subset.

	seed (int [https://docs.python.org/3/library/functions.html#int]) – Seed the generator used for the permutation of indexes.
If an integer being convertible to 32 bit unsigned integers is
specified, it is guaranteed that each sample
in the given dataset always belongs to a specific subset.
If None, the permutation is changed randomly.






	Returns:	
	Two SubDataset objects. The first subset contains

	first_size examples randomly chosen from the dataset without
replacement, and the second subset contains the rest of the
dataset.










	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]












	
chainer.datasets.get_cross_validation_datasets(dataset, n_fold, order=None)

	Creates a set of training/test splits for cross validation.

This function generates n_fold splits of the given dataset. The first
part of each split corresponds to the training dataset, while the second
part to the test dataset. No pairs of test datasets share any examples, and
all test datasets together cover the whole base dataset. Each test dataset
contains almost same number of examples (the numbers may differ up to 1).





	Parameters:	
	dataset – Dataset to split.

	n_fold (int [https://docs.python.org/3/library/functions.html#int]) – Number of splits for cross validation.

	order (sequence of ints) – Order of indexes with which each split is
determined. If it is None, then no permutation is used.






	Returns:	List of dataset splits.




	Return type:	list of tuples












	
chainer.datasets.get_cross_validation_datasets_random(dataset, n_fold, seed=None)

	Creates a set of training/test splits for cross validation randomly.

This function acts almost same as get_cross_validation_dataset(),
except automatically generating random permutation.





	Parameters:	
	dataset – Dataset to split.

	n_fold (int [https://docs.python.org/3/library/functions.html#int]) – Number of splits for cross validation.

	seed (int [https://docs.python.org/3/library/functions.html#int]) – Seed the generator used for the permutation of indexes.
If an integer beging convertible to 32 bit unsigned integers is
specified, it is guaranteed that each sample
in the given dataset always belongs to a specific subset.
If None, the permutation is changed randomly.






	Returns:	List of dataset splits.




	Return type:	list of tuples














TransformDataset


	
class chainer.datasets.TransformDataset(dataset, transform)

	Dataset that indexes the base dataset and transforms the data.

This dataset wraps the base dataset by modifying the behavior of the base
dataset’s __getitem__(). Arrays returned by __getitem__() of
the base dataset with integer as an argument are transformed by the given
function transform.
Also, __len__() returns the integer returned by the base dataset’s
__len__().

The function transform takes, as an argument, in_data, which
is the output of the base dataset’s __getitem__(), and returns
the transformed arrays as output. Please see the following example.

>>> from chainer.datasets import get_mnist
>>> from chainer.datasets import TransformDataset
>>> dataset, _ = get_mnist()
>>> def transform(in_data):
...     img, label = in_data
...     img -= 0.5  # scale to [-0.5, -0.5]
...     return img, label
>>> dataset = TransformDataset(dataset, transform)









	Parameters:	
	dataset – The underlying dataset. The index of this dataset corresponds
to the index of the base dataset. This object needs to support
functions __getitem__() and __len__() as described
above.

	transform (callable [https://docs.python.org/3/library/functions.html#callable]) – A function that is called to transform values
returned by the underlying dataset’s __getitem__().
















ImageDataset


	
class chainer.datasets.ImageDataset(paths, root='.', dtype=<type 'numpy.float32'>)

	Dataset of images built from a list of paths to image files.

This dataset reads an external image file on every call of the
__getitem__() operator. The paths to the image to retrieve is given
as either a list of strings or a text file that contains paths in distinct
lines.

Each image is automatically converted to arrays of shape
channels, height, width, where channels represents the number of
channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color
images).


Note

This dataset requires the Pillow package being installed. In order
to use this dataset, install Pillow (e.g. by using the command pip
install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG
images).







	Parameters:	
	paths (str [https://docs.python.org/3/library/stdtypes.html#str] or list of strs) – If it is a string, it is a path to a text
file that contains paths to images in distinct lines. If it is a
list of paths, the i-th element represents the path to the
i-th image. In both cases, each path is a relative one from the
root path given by another argument.

	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Root directory to retrieve images from.

	dtype – Data type of resulting image arrays.
















LabeledImageDataset


	
class chainer.datasets.LabeledImageDataset(pairs, root='.', dtype=<type 'numpy.float32'>, label_dtype=<type 'numpy.int32'>)

	Dataset of image and label pairs built from a list of paths and labels.

This dataset reads an external image file like ImageDataset. The
difference from ImageDataset is that this dataset also returns a
label integer. The paths and labels are given as either a list of pairs or
a text file contains paths/labels pairs in distinct lines. In the latter
case, each path and corresponding label are separated by white spaces. This
format is same as one used in Caffe.


Note

This dataset requires the Pillow package being installed. In order
to use this dataset, install Pillow (e.g. by using the command pip
install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG
images).







	Parameters:	
	pairs (str [https://docs.python.org/3/library/stdtypes.html#str] or list of tuples) – If it is a string, it is a path to a
text file that contains paths to images in distinct lines. If it is
a list of pairs, the i-th element represents a pair of the path
to the i-th image and the corresponding label. In both cases,
each path is a relative one from the root path given by another
argument.

	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Root directory to retrieve images from.

	dtype – Data type of resulting image arrays.

	label_dtype – Data type of the labels.


















Concrete datasets


MNIST


	
chainer.datasets.get_mnist(withlabel=True, ndim=1, scale=1.0, dtype=<type 'numpy.float32'>, label_dtype=<type 'numpy.int32'>)

	Gets the MNIST dataset.

MNIST [http://yann.lecun.com/exdb/mnist/] is a set of hand-written
digits represented by grey-scale 28x28 images. In the original images, each
pixel is represented by one-byte unsigned integer. This function
scales the pixels to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official
MNIST dataset. If withlabel is True, each dataset consists of
tuples of images and labels, otherwise it only consists of images.





	Parameters:	
	withlabel (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it returns datasets with labels. In this
case, each example is a tuple of an image and a label. Otherwise,
the datasets only contain images.

	ndim (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions of each image. The shape of each image
is determined depending on ndim as follows:


	ndim == 1: the shape is (784,)

	ndim == 2: the shape is (28, 28)

	ndim == 3: the shape is (1, 28, 28)





	scale (float [https://docs.python.org/3/library/functions.html#float]) – Pixel value scale. If it is 1 (default), pixels are
scaled to the interval [0, 1].

	dtype – Data type of resulting image arrays.

	label_dtype – Data type of the labels.






	Returns:	A tuple of two datasets. If withlabel is True, both datasets
are TupleDataset instances. Otherwise, both
datasets are arrays of images.














CIFAR10/100


	
chainer.datasets.get_cifar10(withlabel=True, ndim=3, scale=1.0)

	Gets the CIFAR-10 dataset.

CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html] is a set of small
natural images. Each example is an RGB color image of size 32x32,
classified into 10 groups. In the original images, each component of pixels
is represented by one-byte unsigned integer. This function scales the
components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official
CIFAR-10 dataset. If withlabel is True, each dataset consists of
tuples of images and labels, otherwise it only consists of images.





	Parameters:	
	withlabel (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it returns datasets with labels. In this
case, each example is a tuple of an image and a label. Otherwise,
the datasets only contain images.

	ndim (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions of each image. The shape of each image
is determined depending on ndim as follows:


	ndim == 1: the shape is (3072,)

	ndim == 3: the shape is (3, 32, 32)





	scale (float [https://docs.python.org/3/library/functions.html#float]) – Pixel value scale. If it is 1 (default), pixels are
scaled to the interval [0, 1].






	Returns:	A tuple of two datasets. If withlabel is True, both datasets
are TupleDataset instances. Otherwise, both
datasets are arrays of images.












	
chainer.datasets.get_cifar100(withlabel=True, ndim=3, scale=1.0)

	Gets the CIFAR-100 dataset.

CIFAR-100 [https://www.cs.toronto.edu/~kriz/cifar.html] is a set of
small natural images. Each example is an RGB color image of size 32x32,
classified into 100 groups. In the original images, each component
pixels is represented by one-byte unsigned integer. This function scales
the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official
CIFAR-100 dataset. If withlabel is True, each dataset consists of
tuples of images and labels, otherwise it only consists of images.





	Parameters:	
	withlabel (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it returns datasets with labels. In this
case, each example is a tuple of an image and a label. Otherwise,
the datasets only contain images.

	ndim (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions of each image. The shape of each image
is determined depending on ndim as follows:


	ndim == 1: the shape is (3072,)

	ndim == 3: the shape is (3, 32, 32)





	scale (float [https://docs.python.org/3/library/functions.html#float]) – Pixel value scale. If it is 1 (default), pixels are
scaled to the interval [0, 1].






	Returns:	A tuple of two datasets. If withlabel is True, both
are TupleDataset instances. Otherwise, both
datasets are arrays of images.














Penn Tree Bank


	
chainer.datasets.get_ptb_words()

	Gets the Penn Tree Bank dataset as long word sequences.

Penn Tree Bank [https://www.cis.upenn.edu/~treebank/] is originally a
corpus of English sentences with linguistic structure annotations. This
function uses a variant distributed at
https://github.com/tomsercu/lstm,
which omits the annotation and splits the dataset into three parts:
training, validation, and test.

This function returns the training, validation, and test sets, each of
which is represented as a long array of word IDs. All sentences in the
dataset are concatenated by End-of-Sentence mark ‘<eos>’, which is treated
as one of the vocabulary.





	Returns:	Int32 vectors of word IDs.


	Return type:	tuple of numpy.ndarray






See also

Use get_ptb_words_vocabulary() to get the mapping between the
words and word IDs.








	
chainer.datasets.get_ptb_words_vocabulary()

	Gets the Penn Tree Bank word vocabulary.





	Returns:	
	Dictionary that maps words to corresponding word IDs. The IDs are

	used in the Penn Tree Bank long sequence datasets.






	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]






See also

See get_ptb_words() for the actual datasets.















          

      

      

    

  

    
      
          
            
  
Iterator examples

Chainer provides some iterators that implement typical strategies to create mini-batches by iterating over datasets.
SerialIterator is the simplest one, which extract mini batches in the main thread.
MultiprocessIterator is a parallelized version of SerialIterator. It maintains worker subprocesses to load the next mini-batch in parallel.


SerialIterator


	
class chainer.iterators.SerialIterator(dataset, batch_size, repeat=True, shuffle=True)

	Dataset iterator that serially reads the examples.

This is a simple implementation of Iterator
that just visits each example in either the order of indexes or a shuffled
order.

To avoid unintentional performance degradation, the shuffle option is
set to True by default. For validation, it is better to set it to
False when the underlying dataset supports fast slicing. If the
order of examples has an important meaning and the updater depends on the
original order, this option should be set to False.

This iterator saves -1 instead of None in snapshots since some
serializers do not support None.





	Parameters:	
	dataset – Dataset to iterate.

	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of examples within each batch.

	repeat (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it infinitely loops over the dataset.
Otherwise, it stops iteration at the end of the first epoch.

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the order of examples is shuffled at the
beginning of each epoch. Otherwise, examples are extracted in the
order of indexes.
















MultiprocessIterator


	
class chainer.iterators.MultiprocessIterator(dataset, batch_size, repeat=True, shuffle=True, n_processes=None, n_prefetch=1, shared_mem=None)

	Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads
examples with worker processes. It uses the standard multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing]
module to parallelize the loading. The dataset is sent to the worker
processes in the standard way using pickle.

Note that this iterator effectively prefetches the examples for the next
batch asynchronously after the current batch is returned.

This iterator saves -1 instead of None in snapshots since some
serializers do not support None.





	Parameters:	
	dataset (Dataset) – Dataset to iterate.

	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of examples within each batch.

	repeat (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it infinitely loops over the dataset.
Otherwise, it stops iteration at the end of the first epoch.

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the order of examples is shuffled at the
beginning of each epoch. Otherwise, examples are extracted in the
order of indexes.

	n_processes (int [https://docs.python.org/3/library/functions.html#int]) – Number of worker processes. The number of CPUs is
used by default.

	n_prefetch (int [https://docs.python.org/3/library/functions.html#int]) – Number of prefetch batches.

	shared_mem (int [https://docs.python.org/3/library/functions.html#int]) – The size of using shared memory per data.
If None, size is adjusted automatically.



















          

      

      

    

  

    
      
          
            
  
Trainer extensions


dump_graph


	
chainer.training.extensions.dump_graph(root_name, out_name='cg.dot', variable_style=None, function_style=None)

	Returns a trainer extension to dump a computational graph.

This extension dumps a computational graph. The graph is output in DOT
language.

It only dumps a graph at the first iteration by default.





	Parameters:	
	root_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the root of the computational graph. The
root variable is retrieved by this name from the observation
dictionary of the trainer.

	out_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output file name.

	variable_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dot node style for variables. Each variable is
rendered by an octagon by default.

	function_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dot node style for functions. Each function is
rendered by a rectangular by default.










See also

See build_computational_graph()
for the variable_style and function_style arguments.










Evaluator


	
class chainer.training.extensions.Evaluator(iterator, target, converter=<function concat_examples>, device=None, eval_hook=None, eval_func=None)

	Trainer extension to evaluate models on a validation set.

This extension evaluates the current models by a given evaluation function.
It creates a Reporter object to store values observed in
the evaluation function on each iteration. The report for all iterations
are aggregated to DictSummary. The collected mean values
are further reported to the reporter object of the trainer, where the name
of each observation is prefixed by the evaluator name. See
Reporter for details in naming rules of the reports.

Evaluator has a structure to customize similar to that of
StandardUpdater. The main differences are:


	There are no optimizers in an evaluator. Instead, it holds links
to evaluate.

	An evaluation loop function is used instead of an update function.

	Preparation routine can be customized, which is called before each
evaluation. It can be used, e.g., to initialize the state of stateful
recurrent networks.



There are two ways to modify the evaluation behavior besides setting a
custom evaluation function. One is by setting a custom evaluation loop via
the eval_func argument. The other is by inheriting this class and
overriding the evaluate() method. In latter case, users have to
create and handle a reporter object manually. Users also have to copy the
iterators before using them, in order to reuse them at the next time of
evaluation.

This extension is called at the end of each epoch by default.





	Parameters:	
	iterator – Dataset iterator for the validation dataset. It can also be
a dictionary of iterators. If this is just an iterator, the
iterator is registered by the name 'main'.

	target – Link object or a dictionary of links to evaluate. If this is
just a link object, the link is registered by the name 'main'.

	converter – Converter function to build input arrays.
concat_examples() is used by default.

	device – Device to which the training data is sent. Negative value
indicates the host memory (CPU).

	eval_hook – Function to prepare for each evaluation process. It is
called at the beginning of the evaluation. The evaluator extension
object is passed at each call.

	eval_func – Evaluation function called at each iteration. The target
link to evaluate as a callable is used by default.






	Variables:	
	converter – Converter function.

	device – Device to which the training data is sent.

	eval_hook – Function to prepare for each evaluation process.

	eval_func – Evaluation function called at each iteration.










	
__call__(trainer=None)

	Executes the evaluator extension.

Unlike usual extensions, this extension can be executed without passing
a trainer object. This extension reports the performance on validation
dataset using the report() function. Thus, users can use
this extension independently from any trainer by manually configuring
a Reporter object.





	Parameters:	trainer (Trainer) – Trainer object that invokes
this extension. It can be omitted in case of calling this
extension manually.


	Returns:	
	Result dictionary that contains mean statistics of values

	reported by the evaluation function.






	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
evaluate()

	Evaluates the model and returns a result dictionary.

This method runs the evaluation loop over the validation dataset. It
accumulates the reported values to DictSummary and
returns a dictionary whose values are means computed by the summary.

Users can override this method to customize the evaluation routine.





	Returns:	
	Result dictionary. This dictionary is further reported via

	report() without specifying any observer.






	Return type:	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
get_all_iterators()

	Returns a dictionary of all iterators.






	
get_all_targets()

	Returns a dictionary of all target links.






	
get_iterator(name)

	Returns the iterator of the given name.






	
get_target(name)

	Returns the target link of the given name.












ExponentialShift


	
class chainer.training.extensions.ExponentialShift(attr, rate, init=None, target=None, optimizer=None)

	Trainer extension to exponentially shift an optimizer attribute.

This extension exponentially increases or decreases the specified attribute
of the optimizer. The typical use case is an exponential decay of the
learning rate.

This extension is also called before the training loop starts by default.





	Parameters:	
	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the attribute to shift.

	rate (float [https://docs.python.org/3/library/functions.html#float]) – Rate of the exponential shift. This value is multiplied
to the attribute at each call.

	init (float [https://docs.python.org/3/library/functions.html#float]) – Initial value of the attribute. If it is None, the
extension extracts the attribute at the first call and uses it as
the initial value.

	target (float [https://docs.python.org/3/library/functions.html#float]) – Target value of the attribute. If the attribute reaches
this value, the shift stops.

	optimizer (Optimizer) – Target optimizer to adjust the
attribute. If it is None, the main optimizer of the updater is
used.
















LinearShift


	
class chainer.training.extensions.LinearShift(attr, value_range, time_range, optimizer=None)

	Trainer extension to change an optimizer attribute linearly.

This extension changes an optimizer attribute from the first value to the
last value linearly within a specified duration. The typical use case is
warming up of the momentum coefficient.

For example, suppose that this extension is called at every iteration, and
value_range == (x, y) and time_range == (i, j). Then, this
extension keeps the attribute to be x up to the i-th iteration,
linearly shifts the value to y by the j-th iteration, and then
keeps the value to be y after the j-th iteration.

This extension is also called before the training loop starts by default.





	Parameters:	
	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the optimizer attribute to adjust.

	value_range (tuple of float) – The first and the last values of the
attribute.

	time_range (tuple of ints) – The first and last counts of calls in which
the attribute is adjusted.

	optimizer (Optimizer) – Target optimizer object. If it is None,
the main optimizer of the trainer is used.
















LogReport


	
class chainer.training.extensions.LogReport(keys=None, trigger=(1, 'epoch'), postprocess=None, log_name='log')

	Trainer extension to output the accumulated results to a log file.

This extension accumulates the observations of the trainer to
DictSummary at a regular interval specified by a supplied
trigger, and writes them into a log file in JSON format.

There are two triggers to handle this extension. One is the trigger to
invoke this extension, which is used to handle the timing of accumulating
the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns
True, this extension appends the summary of accumulated values to the list
of past summaries, and writes the list to the log file. Then, this
extension makes a new fresh summary object which is used until the next
time that the trigger fires.

It also adds some entries to each result dictionary.


	'epoch' and 'iteration' are the epoch and iteration counts at the
output, respectively.

	'elapsed_time' is the elapsed time in seconds since the training
begins. The value is taken from Trainer.elapsed_time.







	Parameters:	
	keys (iterable of strs) – Keys of values to accumulate. If this is None,
all the values are accumulated and output to the log file.

	trigger – Trigger that decides when to aggregate the result and output
the values. This is distinct from the trigger of this extension
itself. If it is a tuple in the form <int>, 'epoch' or
<int>, 'iteration', it is passed to IntervalTrigger.

	postprocess – Callback to postprocess the result dictionaries. Each
result dictionary is passed to this callback on the output. This
callback can modify the result dictionaries, which are used to
output to the log file.

	log_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the log file under the output directory. It can
be a format string: the last result dictionary is passed for the
formatting. For example, users can use ‘{iteration}’ to separate
the log files for different iterations. If the log name is None, it
does not output the log to any file.










	
log

	The current list of observation dictionaries.












observe_lr


	
chainer.training.extensions.observe_lr(optimizer_name='main', observation_key='lr')

	Returns a trainer extension to record the learning rate.





	Parameters:	
	optimizer_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of optimizer whose learning rate is
recorded.

	observation_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of observation to record.






	Returns:	The extension function.














observe_value


	
chainer.training.extensions.observe_value(observation_key, target_func)

	Returns a trainer extension to continuously record a value.





	Parameters:	
	observation_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of observation to record.

	target_func (function) – Function that returns the value to record.
It must take one argument: :class:~chainer.training.Trainer object.






	Returns:	The extension function.














snapshot


	
chainer.training.extensions.snapshot(savefun=<function save_npz>, filename='snapshot_iter_{.updater.iteration}', trigger=(1, 'epoch'))

	Returns a trainer extension to take snapshots of the trainer.

This extension serializes the trainer object and saves it to the output
directory. It is used to support resuming the training loop from the saved
state.

This extension is called once for each epoch by default. The default
priority is -100, which is lower than that of most built-in extensions.


Note

This extension first writes the serialized object to a temporary file
and then rename it to the target file name. Thus, if the program stops
right before the renaming, the temporary file might be left in the
output directory.







	Parameters:	
	savefun – Function to save the trainer. It takes two arguments: the
output file path and the trainer object.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file into which the trainer is serialized.
It can be a format string, where the trainer object is passed to
the str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] method.

	trigger – Trigger that decides when to take snapshot. It can be either
an already built trigger object (i.e., a callable object that
accepts a trainer object and returns a bool value), or a tuple in
the form <int>, 'epoch' or <int>, 'iteration'. In latter
case, the tuple is passed to IntervalTrigger.
















snapshot_object


	
chainer.training.extensions.snapshot_object(target, filename, savefun=<function save_npz>, trigger=(1, 'epoch'))

	Returns a trainer extension to take snapshots of a given object.

This extension serializes the given object and saves it to the output
directory.

This extension is called once for each epoch by default. The default
priority is -100, which is lower than that of most built-in extensions.





	Parameters:	
	target – Object to serialize.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file into which the object is serialized.
It can be a format string, where the trainer object is passed to
the str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] method. For example,
'snapshot_{.updater.iteration}' is converted to
'snapshot_10000' at the 10,000th iteration.

	savefun – Function to save the object. It takes two arguments: the
output file path and the object to serialize.

	trigger – Trigger that decides when to take snapshot. It can be either
an already built trigger object (i.e., a callable object that
accepts a trainer object and returns a bool value), or a tuple in
the form <int>, 'epoch' or <int>, 'iteration'. In latter
case, the tuple is passed to IntervalTrigger.






	Returns:	An extension function.














PlotReport


	
class chainer.training.extensions.PlotReport(y_keys, x_key='iteration', trigger=(1, 'epoch'), postprocess=None, file_name='plot.png', marker='x', grid=True)

	Trainer extension to output plots.

This extension accumulates the observations of the trainer to
DictSummary at a regular interval specified by a supplied
trigger, and plot a graph with using them.

There are two triggers to handle this extension. One is the trigger to
invoke this extension, which is used to handle the timing of accumulating
the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns
True, this extension appends the summary of accumulated values to the list
of past summaries, and writes the list to the log file. Then, this
extension makes a new fresh summary object which is used until the next
time that the trigger fires.

It also adds 'epoch' and 'iteration' entries to each result
dictionary, which are the epoch and iteration counts at the output.


Warning

If your environment needs to specify a backend of matplotlib
explicitly, please call matplotlib.use before importing Chainer.
For example:

import matplotlib
matplotlib.use('Agg')

import chainer





Then, once chainer.training.extensions is imported,
matplotlib.use will have no effect.



For the details, please see here:
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend





	Parameters:	
	y_keys (iterable of strs) – Keys of values regarded as y. If this is
None, nothing is output to the graph.

	x_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Keys of values regarded as x. The default value is
‘iteration’.

	trigger – Trigger that decides when to aggregate the result and output
the values. This is distinct from the trigger of this extension
itself. If it is a tuple in the form <int>, 'epoch' or <int>,
'iteration', it is passed to IntervalTrigger.

	postprocess – Callback to postprocess the result dictionaries. Figure
object, Axes object, and all plot data are passed to this callback
in this order. This callback can modify the figure.

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the figure file under the output directory.
It can be a format string.

	marker (str [https://docs.python.org/3/library/stdtypes.html#str]) – The marker used to plot the graph. Default is 'x'. If
None is given, it draws with no markers.

	grid (bool [https://docs.python.org/3/library/functions.html#bool]) – Set the axis grid on if True. Default is True.
















PrintReport


	
class chainer.training.extensions.PrintReport(entries, log_report='LogReport', out=<open file '<stdout>', mode 'w'>)

	Trainer extension to print the accumulated results.

This extension uses the log accumulated by a LogReport extension
to print specified entries of the log in a human-readable format.





	Parameters:	
	entries (list of str) – List of keys of observations to print.

	log_report (str [https://docs.python.org/3/library/stdtypes.html#str] or LogReport) – Log report to accumulate the
observations. This is either the name of a LogReport extensions
registered to the trainer, or a LogReport instance to use
internally.

	out – Stream to print the bar. Standard output is used by default.
















ProgressBar


	
class chainer.training.extensions.ProgressBar(training_length=None, update_interval=100, bar_length=50, out=<open file '<stdout>', mode 'w'>)

	Trainer extension to print a progress bar and recent training status.

This extension prints a progress bar at every call. It watches the current
iteration and epoch to print the bar.





	Parameters:	
	training_length (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Length of whole training. It consists of an
integer and either 'epoch' or 'iteration'. If this value is
omitted and the stop trigger of the trainer is
IntervalTrigger, this extension uses its attributes to
determine the length of the training.

	update_interval (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations to skip printing the
progress bar.

	bar_length (int [https://docs.python.org/3/library/functions.html#int]) – Length of the progress bar in characters.

	out – Stream to print the bar. Standard output is used by default.



















          

      

      

    

  

    
      
          
            
  
Trainer triggers


Interval


	
class chainer.training.triggers.IntervalTrigger(period, unit)

	Trigger based on a fixed interval.

This trigger accepts iterations divided by a given interval. There are two
ways to specify the interval: per iterations and epochs. Iteration means
the number of updates, while epoch means the number of sweeps over the
training dataset. Fractional values are allowed if the interval is a
number of epochs; the trigger uses the iteration and epoch_detail
attributes defined by the updater.

For the description of triggers, see get_trigger().





	Parameters:	
	period (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – Length of the interval. Must be an integer if
unit is 'iteration'.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unit of the length specified by period. It must be
either 'iteration' or 'epoch'.










	
__call__(trainer)

	Decides whether the extension should be called on this iteration.





	Parameters:	trainer (Trainer) – Trainer object that this trigger is associated
with. The updater associated with this trainer is used to
determine if the trigger should fire.


	Returns:	
	True if the corresponding extension should be invoked in this

	iteration.






	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]
















ManualSchedule


	
class chainer.training.triggers.ManualScheduleTrigger(points, unit)

	Trigger invoked at specified point(s) of iterations or epochs.

This trigger accepts iterations or epochs indicated by given point(s).
There are two ways to specify the point(s): iteration and epoch.
iteration means the number of updates, while epoch means the number
of sweeps over the training dataset. Fractional values are allowed
if the point is a number of epochs; the trigger uses the iteration
and epoch_detail attributes defined by the updater.





	Parameters:	
	points (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], or list of int or float [https://docs.python.org/3/library/functions.html#float]) – time of the trigger.
Must be an integer or list of integer if unit is 'iteration'.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unit of the time specified by points. It must be
either 'iteration' or 'epoch'.










	
__call__(trainer)

	Decides whether the extension should be called on this iteration.





	Parameters:	trainer (Trainer) – Trainer object that this trigger is associated
with. The updater associated with this trainer is used to
determine if the trigger should fire.


	Returns:	
	True if the corresponding extension should be invoked in this

	iteration.






	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]
















Minimum and maximum values


	
class chainer.training.triggers.MaxValueTrigger(key, trigger=(1, 'epoch'))

	Trigger invoked when specific value becomes maximum.

For example you can use this trigger to take snapshot on the epoch the
validation accuracy is maximum.





	Parameters:	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of value. The trigger fires when the value associated
with this key becomes maximum.

	trigger – Trigger that decides the comparison interval between current
best value and new value. This must be a tuple in the form of
<int>, 'epoch' or <int>, 'iteration' which is passed to
IntervalTrigger.














	
class chainer.training.triggers.MinValueTrigger(key, trigger=(1, 'epoch'))

	Trigger invoked when specific value becomes minimum.

For example you can use this trigger to take snapshot on the epoch the
validation loss is minimum.





	Parameters:	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of value. The trigger fires when the value associated
with this key becomes minimum.

	trigger – Trigger that decides the comparison interval between current
best value and new value. This must be a tuple in the form of
<int>, 'epoch' or <int>, 'iteration' which is passed to
IntervalTrigger.



















          

      

      

    

  

    
      
          
            
  
Caffe Reference Model Support

Caffe [http://caffe.berkeleyvision.org/] is a popular framework maintained by BVLC [http://bvlc.eecs.berkeley.edu/] at UC Berkeley.
It is widely used by computer vision communities, and aims at fast computation and easy usage without any programming.
The BVLC team provides trained reference models in their Model Zoo [http://caffe.berkeleyvision.org/model_zoo.html], one of the reason why this framework gets popular.

Chainer can import the reference models and emulate the network by Link implementations.
This functionality is provided by the chainer.links.caffe.CaffeFunction class.


	
class chainer.links.caffe.CaffeFunction(model_path)

	Caffe emulator based on the model file of Caffe.

Given a protocol buffers file of a Caffe model, this class loads and
emulates it on Variable objects. It supports the official
reference models provided by BVLC.


Note

protobuf>=3.0.0 is required if you use Python 3 because protobuf 2 is
not supported on Python 3.




Note

CaffeFunction ignores the following layers:


	Layers that CaffeFunction does not support (including data layers)

	Layers that have no top blobs

	Layers whose bottom blobs are incomplete (i.e., some or all of them
are not given nor computed)






Warning

It does not support full compatibility against Caffe. Some layers and
configurations are not implemented in Chainer yet, though the reference
models provided by the BVLC team are supported except data layers.




Example

Consider we want to extract the (unnormalized) log class probability
of given images using BVLC reference CaffeNet. The model can be
downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply
written as follows:

# Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

# Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
...  # (Fill the minibatch here)

# Forward the pre-trained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])





The result y contains the Variable corresponding to the fc8
blob. The computational graph is memorized as a usual forward
computation in Chainer, so we can run backprop through this pre-trained
net.







	Parameters:	model_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the binary-proto model file of Caffe.


	Variables:	forwards (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping from layer names to corresponding functions.






	
__call__(inputs, outputs, disable=(), train=True)

	Executes a sub-network of the network.

This function acts as an interpreter of the network definition for
Caffe. On execution, it interprets each layer one by one, and if the
bottom blobs are already computed, then emulates the layer and stores
output blobs as Variable objects.





	Parameters:	
	inputs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary whose key-value pairs indicate initial
correspondences between blob names and
Variable objects.

	outputs (Iterable) – A list of blob names whose corresponding
Variable objects are returned.

	disable (Iterable) – A list of layer names that will be ignored
during the forward computation.

	train (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function emulates the TRAIN phase
of the Caffe layers. Otherwise, it emulates the TEST phase.






	Returns:	
	A tuple of output Variable objects

	corresponding to elements of the  outputs argument.










	Return type:	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]



















          

      

      

    

  

    
      
          
            
  
Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed properly.
Chainer supports visualization of computational graphs.
Users can generate computational graphs by invoking build_computational_graph(). Generated computational graphs are dumped to specified format (Currently Dot Language [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] is supported).

Basic usage is as follows:

import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:
    o.write(g.dump())





where vs is list of Variable instances and g is an instance of ComputationalGraph.
This code generates the computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of vs.

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet [https://arxiv.org/abs/1409.4842]). This example is from example/imagenet.


[image: ../_images/googlenet.png]



	
chainer.computational_graph.build_computational_graph(outputs, remove_split=True, variable_style={'shape': 'octagon', 'style': 'filled', 'fillcolor': '#E0E0E0'}, function_style={'shape': 'record', 'style': 'filled', 'fillcolor': '#6495ED'}, rankdir='TB', remove_variable=False, show_name=True)

	Builds a graph of functions and variables backward-reachable from outputs.





	Parameters:	
	outputs (list [https://docs.python.org/3/library/stdtypes.html#list]) – nodes from which the graph is constructed.
Each element of outputs must be either Variable
object or Function object.

	remove_split (bool [https://docs.python.org/3/library/functions.html#bool]) – It must be True. This argument is left for
backward compatibility.

	variable_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dot node style for variable.
Possible keys are ‘shape’, ‘color’, ‘fillcolor’, ‘style’, and etc.

	function_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dot node style for function.

	rankdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Direction of the graph that must be
TB (top to bottom), BT (bottom to top), LR (left to right)
or RL (right to left).

	remove_variable (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, :class:`~chainer.Variable`s are
removed from the resulting computational graph. Only
:class:`~chainer.Function`s are shown in the output.

	show_name (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the name attribute of each node is
added to the label of the node. Default is True.






	Returns:	A graph consisting of nodes and edges that
are backward-reachable from at least one of outputs.

If unchain_backward was called in some variable in the
computational graph before this function, backward step is
stopped at this variable.

For example, suppose that computational graph is as follows:

    |--> f ---> y
x --+
    |--> g ---> z





Let outputs = [y, z].
Then the full graph is emitted.

Next, let outputs = [y]. Note that z and g
are not backward-reachable from y.
The resulting graph would be following:

x ---> f ---> y





See TestGraphBuilder for details.






	Return type:	ComputationalGraph








Note

The default behavior of ComputationalGraph has been
changed from v1.23.0, so that it ouputs the richest representation of
a graph as default, namely, styles are set and names of functions and
variables are shown. To reproduce the same result as previous versions
(<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.








	
class chainer.computational_graph.ComputationalGraph(nodes, edges, variable_style={'shape': 'octagon', 'style': 'filled', 'fillcolor': '#E0E0E0'}, function_style={'shape': 'record', 'style': 'filled', 'fillcolor': '#6495ED'}, rankdir='TB', remove_variable=False, show_name=True)

	Class that represents computational graph.


Note

We assume that the computational graph is directed and acyclic.







	Parameters:	
	nodes (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of nodes. Each node is either
Variable object or Function object.

	edges (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of edges. Each edge consists of pair of nodes.

	variable_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dot node style for variable.

	function_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dot node style for function.

	rankdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Direction of the graph that must be
TB (top to bottom), BT (bottom to top), LR (left to right)
or RL (right to left).

	remove_variable (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, :class:`~chainer.Variable`s are
removed from the resulting computational graph. Only
:class:`~chainer.Function`s are shown in the output.

	show_name (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the name attribute of each node is
added to the label of the node. Default is True.










Note

The default behavior of ComputationalGraph has been
changed from v1.23.0, so that it ouputs the richest representation of
a graph as default, namely, styles are set and names of functions and
variables are shown. To reproduce the same result as previous versions
(<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.




	
dump(format='dot')

	Dumps graph as a text.





	Parameters:	
	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – The graph language name of the output.

	it must be 'dot'. (Currently,) – 






	Returns:	The graph in specified format.




	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]



















          

      

      

    

  

    
      
          
            
  
Environment variables

Here are the environment variables Chainer uses.







	CHAINER_CUDNN
	Set 0 to disable cuDNN in Chainer.
Otherwise cuDNN is enabled automatically.


	CHAINER_SEED
	Default seed value of random number generators for CUDA.
If it is not set, the seed value is generated from Python random module.
Set an integer value in decimal format.


	CHAINER_TYPE_CHECK
	Set 0 to disable type checking.
Otherwise type checking is enabled automatically.
See Function for details.









          

      

      

    

  

    
      
          
            
  
CuPy Reference Manual

This is the official documentation of CuPy, a multi-dimensional array on CUDA with a subset of NumPy interface.



	CuPy Overview
	A list of supported attributes, properties, and methods of ndarray

	A list of supported routines of cupy module





	Multi-Dimensional Array (ndarray)

	Universal Functions (ufunc)
	Ufunc class

	Available ufuncs

	ufunc.at





	Routines
	Array Creation Routines

	Array Manipulation Routines

	Repeating part of arrays along axis

	Rearranging elements

	Binary Operations

	Indexing Routines

	Input and Output

	Linear Algebra

	Logic Functions

	Mathematical Functions

	Random Sampling (cupy.random)

	Sorting, Searching, and Counting

	Statistics

	External Functions





	NumPy-CuPy Generic Code Support

	Low-Level CUDA Support
	Device management

	Memory management

	Streams and events

	Profiler





	Kernel binary memoization

	User-Defined Kernels
	Basics of elementwise kernels

	Type-generic kernels

	Raw argument specifiers

	Reduction kernels

	Reference





	Testing Modules
	Standard Assertions

	NumPy-CuPy Consistency Check

	Parameterized dtype Test

	Parameterized order Test





	Environment variables
	For install





	Difference between CuPy and NumPy
	Cast behavior from float to integer

	Boolean values squared

	Random methods support dtype argument

	Out-of-bounds indices

	Duplicate values in indices













          

      

      

    

  

    
      
          
            
  
CuPy Overview

CuPy is an implementation of NumPy-compatible multi-dimensional array on CUDA.
CuPy consists of the core multi-dimensional array class, cupy.ndarray,
and many functions on it. It supports a subset of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
interface that is enough for Chainer.

The following is a brief overview of supported subset of NumPy interface:


	Basic indexing [http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html]
(indexing by ints, slices, newaxes, and Ellipsis)

	Element types (dtypes): bool_, (u)int{8, 16, 32, 64}, float{16, 32, 64}

	Most of the array creation routines

	Reshaping and transposition

	All operators with broadcasting

	All Universal functions [http://docs.scipy.org/doc/numpy/reference/ufuncs.html] (a.k.a. ufuncs)
for elementwise operations except those for complex numbers

	Dot product functions (except einsum) using cuBLAS

	Reduction along axes (sum, max, argmax, etc.)



CuPy also includes following features for performance:


	Customizable memory allocator, and a simple memory pool as an example

	User-defined elementwise kernels

	User-defined reduction kernels

	cuDNN utilities



CuPy uses on-the-fly kernel synthesis: when a kernel call is required, it
compiles a kernel code optimized for the shapes and dtypes of given arguments,
sends it to the GPU device, and executes the kernel. The compiled code is
cached to $(HOME)/.cupy/kernel_cache directory (this cache path can be
overwritten by setting the CUPY_CACHE_DIR environment variable). It may
make things slower at the first kernel call, though this slow down will be
resolved at the second execution. CuPy also caches the kernel code sent to GPU
device within the process, which reduces the kernel transfer time on further
calls.


A list of supported attributes, properties, and methods of ndarray


Memory layout

base
ctypes
itemsize
flags
nbytes
shape
size
strides




Data type

dtype




Other attributes

T




Array conversion

tolist()
tofile()
dump()
dumps()
astype()
copy()
view()
fill()




Shape manipulation

reshape()
transpose()
swapaxes()
ravel()
squeeze()




Item selection and manipulation

take()
diagonal()




Calculation

max()
argmax()
min()
argmin()
clip()
trace()
sum()
mean()
var()
std()
prod()
dot()




Arithmetic and comparison operations

__lt__()
__le__()
__gt__()
__ge__()
__eq__()
__ne__()
__nonzero__()
__neg__()
__pos__()
__abs__()
__invert__()
__add__()
__sub__()
__mul__()
__div__()
__truediv__()
__floordiv__()
__mod__()
__divmod__()
__pow__()
__lshift__()
__rshift__()
__and__()
__or__()
__xor__()
__iadd__()
__isub__()
__imul__()
__idiv__()
__itruediv__()
__ifloordiv__()
__imod__()
__ipow__()
__ilshift__()
__irshift__()
__iand__()
__ior__()
__ixor__()




Special methods

__copy__()
__deepcopy__()
__reduce__()
__array__()
__len__()
__getitem__()
__setitem__()
__int__()
__long__()
__float__()
__oct__()
__hex__()
__repr__()
__str__()




Memory transfer

get()
set()






A list of supported routines of cupy module


Array creation routines

empty()
empty_like()
eye()
identity()
ones()
ones_like()
zeros()
zeros_like()
full()
full_like()

array()
asarray()
ascontiguousarray()
copy()

arange()
linspace()

diag()
diagflat()




Array manipulation routines

copyto()

reshape()
ravel()

rollaxis()
swapaxes()
transpose()

atleast_1d()
atleast_2d()
atleast_3d()
broadcast
broadcast_arrays()
broadcast_to()
expand_dims()
squeeze()

column_stack()
concatenate()
dstack()
hstack()
vstack()

array_split()
dsplit()
hsplit()
split()
vsplit()

roll()




Binary operations

bitwise_and
bitwise_or
bitwise_xor
invert
left_shift
right_shift




Indexing routines

take()
diagonal()




Input and output

load()
save()
savez()
savez_compressed()

array_repr()
array_str()




Linear algebra

dot()
vdot()
inner()
outer()
tensordot()

trace()




Logic functions

isfinite
isinf
isnan

logical_and
logical_or
logical_not
logical_xor

greater
greater_equal
less
less_equal
equal
not_equal




Mathematical functions

sin
cos
tan
arcsin
arccos
arctan
hypot
arctan2
deg2rad
rad2deg
degrees
radians

sinh
cosh
tanh
arcsinh
arccosh
arctanh

rint
floor
ceil
trunc

sum()
prod()

exp
expm1
exp2
log
log10
log2
log1p
logaddexp
logaddexp2

signbit
copysign
ldexp
frexp
nextafter

add
reciprocal
negative
multiply
divide
power
subtract
true_divide
floor_divide
fmod
mod
modf
remainder

clip()
sqrt
square
absolute
sign
maximum
minimum
fmax
fmin




Sorting, searching, and counting

argmax()
argmin()
count_nonzero()
nonzero()
flatnonzero()
where()




Statistics

amin()
amax()

mean()
var()
std()

bincount()




Padding

pad()




External Functions

scatter_add()




Other

asnumpy()









          

      

      

    

  

    
      
          
            
  
Multi-Dimensional Array (ndarray)


	
class cupy.ndarray

	Multi-dimensional array on a CUDA device.

This class implements a subset of methods of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].
The difference is that this class allocates the array content on the
current GPU device.





	Parameters:	
	shape (tuple of ints) – Length of axes.

	dtype – Data type. It must be an argument of numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype].

	memptr (cupy.cuda.MemoryPointer) – Pointer to the array content head.

	strides (tuple of ints) – The strides for axes.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.






	Variables:	
	base (None [https://docs.python.org/3/library/constants.html#None] or cupy.ndarray) – Base array from which this array is
created as a view.

	data (cupy.cuda.MemoryPointer) – Pointer to the array content head.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Dtype object of element type.


See also

Data type objects (dtype) [http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html]





	size (int [https://docs.python.org/3/library/functions.html#int]) – Number of elements this array holds.

This is equivalent to product over the shape tuple.


See also

numpy.ndarray.size [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size]














	
T

	Shape-reversed view of the array.

If ndim < 2, then this is just a reference to the array itself.






	
__abs__

	




	
__add__

	x.__add__(y) <==> x+y






	
__and__

	x.__and__(y) <==> x&y






	
__delitem__

	x.__delitem__(y) <==> del x[y]






	
__div__

	x.__div__(y) <==> x/y






	
__divmod__

	




	
__eq__

	x.__eq__(y) <==> x==y






	
__float__

	




	
__floordiv__

	x.__floordiv__(y) <==> x//y






	
__ge__

	x.__ge__(y) <==> x>=y






	
__getitem__

	x.__getitem__(y) <==> x[y]

Supports both basic and advanced indexing.


Note

Currently, it does not support slices that consists of more
than one boolean arrays




Note

CuPy handles out-of-bounds indices differently from NumPy.
NumPy handles them by raising an error, but CuPy wraps around them.

>>> a = cupy.arange(3)
>>> a[[1, 3]]
array([1, 0])












	
__gt__

	x.__gt__(y) <==> x>y






	
__hex__

	




	
__iadd__

	x.__iadd__(y) <==> x+=y






	
__iand__

	x.__iand__(y) <==> x&=y






	
__idiv__

	x.__idiv__(y) <==> x/=y






	
__ifloordiv__

	x.__ifloordiv__(y) <==> x//=y






	
__ilshift__

	x.__ilshift__(y) <==> x<<=y






	
__imod__

	x.__imod__(y) <==> x%=y






	
__imul__

	x.__imul__(y) <==> x*=y






	
__int__

	




	
__invert__

	x.__invert__() <==> ~x






	
__ior__

	x.__ior__(y) <==> x|=y






	
__ipow__

	x.__ipow__(y) <==> x**=y






	
__irshift__

	x.__irshift__(y) <==> x>>=y






	
__isub__

	x.__isub__(y) <==> x-=y






	
__itruediv__

	x.__itruediv__(y) <==> x/=y






	
__ixor__

	x.__ixor__(y) <==> x^=y






	
__le__

	x.__le__(y) <==> x<=y






	
__len__

	




	
__long__

	




	
__lshift__

	x.__lshift__(y) <==> x<<y






	
__lt__

	x.__lt__(y) <==> x<y






	
__mod__

	x.__mod__(y) <==> x%y






	
__mul__

	x.__mul__(y) <==> x*y






	
__ne__

	x.__ne__(y) <==> x!=y






	
__neg__

	x.__neg__() <==> -x






	
__nonzero__

	x.__nonzero__() <==> x != 0






	
__oct__

	




	
__or__

	x.__or__(y) <==> x|y






	
__pos__

	x.__pos__() <==> +x






	
__pow__

	




	
__radd__

	x.__radd__(y) <==> y+x






	
__rand__

	x.__rand__(y) <==> y&x






	
__rdiv__

	x.__rdiv__(y) <==> y/x






	
__rdivmod__

	




	
__repr__

	




	
__rfloordiv__

	x.__rfloordiv__(y) <==> y//x






	
__rlshift__

	x.__rlshift__(y) <==> y<<x






	
__rmod__

	x.__rmod__(y) <==> y%x






	
__rmul__

	x.__rmul__(y) <==> y*x






	
__ror__

	x.__ror__(y) <==> y|x






	
__rpow__

	




	
__rrshift__

	x.__rrshift__(y) <==> y>>x






	
__rshift__

	x.__rshift__(y) <==> x>>y






	
__rsub__

	x.__rsub__(y) <==> y-x






	
__rtruediv__

	x.__rtruediv__(y) <==> y/x






	
__rxor__

	x.__rxor__(y) <==> y^x






	
__setitem__

	x.__setitem__(slices, y) <==> x[slices] = y

Supports both basic and advanced indexing.


Note

Currently, it does not support slices that consists of more
than one boolean arrays




Note

CuPy handles out-of-bounds indices differently from NumPy when
using integer array indexing.
NumPy handles them by raising an error, but CuPy wraps around them.

>>> import cupy
>>> x = cupy.arange(3)
>>> x[[1, 3]] = 10
>>> x
array([10, 10,  2])








Note

The behavior differs from NumPy when integer arrays in slices
reference the same location multiple times.
In that case, the value that is actually stored is undefined.

>>> import cupy; import numpy
>>> a = cupy.zeros((2,))
>>> i = cupy.arange(10000) % 2
>>> v = cupy.arange(10000).astype(numpy.float)
>>> a[i] = v
>>> a  
array([ 9150.,  9151.])





On the other hand, NumPy stores the value corresponding to the
last index among the indices referencing duplicate locations.

>>> import numpy
>>> a_cpu = numpy.zeros((2,))
>>> i_cpu = numpy.arange(10000) % 2
>>> v_cpu = numpy.arange(10000).astype(numpy.float)
>>> a_cpu[i_cpu] = v_cpu
>>> a_cpu
array([ 9998.,  9999.])












	
__str__

	




	
__sub__

	x.__sub__(y) <==> x-y






	
__truediv__

	x.__truediv__(y) <==> x/y






	
__xor__

	x.__xor__(y) <==> x^y






	
argmax()

	Returns the indices of the maximum along a given axis.


See also

cupy.argmax() for full documentation,
numpy.ndarray.argmax() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax]








	
argmin()

	Returns the indices of the minimum along a given axis.


See also

cupy.argmin() for full documentation,
numpy.ndarray.argmin() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin]








	
astype()

	Casts the array to given data type.





	Parameters:	
	dtype – Type specifier.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If it is False and no cast happens, then this method
returns the array itself. Otherwise, a copy is returned.






	Returns:	If copy is False and no cast is required, then the array itself
is returned. Otherwise, it returns a (possibly casted) copy of the
array.








Note

This method currently does not support order, casting, and
subok arguments.




See also

numpy.ndarray.astype() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype]








	
clip()

	Returns an array with values limited to [a_min, a_max].


See also

cupy.clip() for full documentation,
numpy.ndarray.clip() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip]








	
copy()

	Returns a copy of the array.





	Parameters:	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order. This function currently does not
support order ‘A’ and ‘K’.






See also

cupy.copy() for full documentation,
numpy.ndarray.copy() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy]








	
cstruct

	C representation of the array.

This property is used for sending an array to CUDA kernels. The type of
returned C structure is different for different dtypes and ndims. The
definition of C type is written in cupy/carray.cuh.






	
device

	CUDA device on which this array resides.






	
diagonal()

	Returns a view of the specified diagonals.


See also

cupy.diagonal() for full documentation,
numpy.ndarray.diagonal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.diagonal.html#numpy.ndarray.diagonal]








	
dot()

	Returns the dot product with given array.


See also

cupy.dot() for full documentation,
numpy.ndarray.dot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot]








	
dump()

	Dumps a pickle of the array to a file.

Dumped file can be read back to cupy.ndarray by
cupy.load().






	
dumps()

	Dumps a pickle of the array to a string.






	
fill()

	Fills the array with a scalar value.





	Parameters:	value – A scalar value to fill the array content.






See also

numpy.ndarray.fill() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill]








	
flags

	Object containing memory-layout information.

It only contains c_contiguous, f_contiguous, and owndata
attributes. All of these are read-only. Accessing by indexes is also
supported.


See also

numpy.ndarray.flags [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags]








	
flatten()

	Returns a copy of the array flatten into one dimension.

It currently supports C-order only.





	Returns:	A copy of the array with one dimension.


	Return type:	cupy.ndarray






See also

numpy.ndarray.flatten() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten]








	
get()

	Returns a copy of the array on host memory.





	Parameters:	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.


	Returns:	Copy of the array on host memory.


	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
itemsize

	Size of each element in bytes.


See also

numpy.ndarray.itemsize [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize]








	
max()

	Returns the maximum along a given axis.


See also

cupy.amax() for full documentation,
numpy.ndarray.max() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max]








	
mean()

	Returns the mean along a given axis.


See also

cupy.mean() for full documentation,
numpy.ndarray.mean() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean]








	
min()

	Returns the minimum along a given axis.


See also

cupy.amin() for full documentation,
numpy.ndarray.min() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min]








	
nbytes

	Size of whole elements in bytes.

It does not count skips between elements.


See also

numpy.ndarray.nbytes [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes]








	
ndim

	Number of dimensions.

a.ndim is equivalent to len(a.shape).


See also

numpy.ndarray.ndim [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim]








	
nonzero()

	Return the indices of the elements that are non-zero.

Returned Array is containing the indices of the non-zero elements
in that dimension.





	Returns:	Indices of elements that are non-zero.


	Return type:	tuple of arrays






See also

numpy.nonzero() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html#numpy.nonzero]








	
prod()

	Returns the product along a given axis.


See also

cupy.prod() for full documentation,
numpy.ndarray.prod() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod]








	
ravel()

	Returns an array flattened into one dimension.


See also

cupy.ravel() for full documentation,
numpy.ndarray.ravel() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel]








	
reduced_view()

	Returns a view of the array with minimum number of dimensions.





	Parameters:	dtype – Data type specifier. If it is given, then the memory
sequence is reinterpreted as the new type.


	Returns:	A view of the array with reduced dimensions.


	Return type:	cupy.ndarray










	
repeat()

	Returns an array with repeated arrays along an axis.


See also

cupy.repeat() for full documentation,
numpy.ndarray.repeat() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat]








	
reshape()

	Returns an array of a different shape and the same content.


See also

cupy.reshape() for full documentation,
numpy.ndarray.reshape() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape]








	
scatter_add()

	Adds given values to specified elements of an array.


See also

cupy.scatter_add() for full documentation.








	
set()

	Copies an array on the host memory to cupy.ndarray.





	Parameters:	
	arr (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The source array on the host memory.

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.














	
shape

	Lengths of axes.

Setter of this property involves reshaping without copy. If the array
cannot be reshaped without copy, it raises an exception.






	
squeeze()

	Returns a view with size-one axes removed.


See also

cupy.squeeze() for full documentation,
numpy.ndarray.squeeze() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.squeeze.html#numpy.ndarray.squeeze]








	
std()

	Returns the standard deviation along a given axis.


See also

cupy.std() for full documentation,
numpy.ndarray.std() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std]








	
strides

	Strides of axes in bytes.


See also

numpy.ndarray.strides [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides]








	
sum()

	Returns the sum along a given axis.


See also

cupy.sum() for full documentation,
numpy.ndarray.sum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum]








	
swapaxes()

	Returns a view of the array with two axes swapped.


See also

cupy.swapaxes() for full documentation,
numpy.ndarray.swapaxes() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes]








	
take()

	Returns an array of elements at given indices along the axis.


See also

cupy.take() for full documentation,
numpy.ndarray.take() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take]








	
tofile()

	Writes the array to a file.


See also

numpy.ndarray.tolist() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist]








	
tolist()

	Converts the array to a (possibly nested) Python list.





	Returns:	The possibly nested Python list of array elements.


	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]






See also

numpy.ndarray.tolist() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist]








	
trace()

	Returns the sum along diagonals of the array.


See also

cupy.trace() for full documentation,
numpy.ndarray.trace() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.trace.html#numpy.ndarray.trace]








	
transpose()

	Returns a view of the array with axes permuted.


See also

cupy.transpose() for full documentation,
numpy.ndarray.reshape() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape]








	
var()

	Returns the variance along a given axis.


See also

cupy.var() for full documentation,
numpy.ndarray.var() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var]








	
view()

	Returns a view of the array.





	Parameters:	dtype – If this is different from the data type of the array, the
returned view reinterpret the memory sequence as an array of
this type.


	Returns:	A view of the array. A reference to the original
array is stored at the base attribute.


	Return type:	cupy.ndarray






See also

numpy.ndarray.view() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view]












	
cupy.asnumpy(a, stream=None)

	Returns an array on the host memory from an arbitrary source array.





	Parameters:	
	a – Arbitrary object that can be converted to numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

	stream (cupy.cuda.Stream) – CUDA stream object. If it is specified, then
the device-to-host copy runs asynchronously. Otherwise, the copy is
synchronous. Note that if a is not a cupy.ndarray
object, then this argument has no effect.






	Returns:	Converted array on the host memory.




	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]















          

      

      

    

  

    
      
          
            
  
Universal Functions (ufunc)

CuPy provides universal functions (a.k.a. ufuncs) to support various elementwise operations.
CuPy’s ufunc supports following features of NumPy’s one:


	Broadcasting

	Output type determination

	Casting rules



CuPy’s ufunc currently does not provide methods such as reduce, accumulate, reduceat, outer, and at.


Ufunc class


	
class cupy.ufunc

	Universal function.





	Variables:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the universal function.

	nin (int [https://docs.python.org/3/library/functions.html#int]) – Number of input arguments.

	nout (int [https://docs.python.org/3/library/functions.html#int]) – Number of output arguments.

	nargs (int [https://docs.python.org/3/library/functions.html#int]) – Number of all arguments.










	
__call__()

	Applies the universal function to arguments elementwise.





	Parameters:	
	args – Input arguments. Each of them can be a cupy.ndarray
object or a scalar. The output arguments can be omitted or be
specified by the out argument.

	out (cupy.ndarray) – Output array. It outputs to new arrays
default.

	dtype – Data type specifier.






	Returns:	Output array or a tuple of output arrays.












	
types

	A list of type signatures.

Each type signature is represented by type character codes of inputs
and outputs separated by ‘->’.












Available ufuncs


Math operations

add
subtract
multiply
divide
logaddexp
logaddexp2
true_divide
floor_divide
negative
power
remainder
mod
fmod
absolute
rint
sign
exp
exp2
log
log2
log10
expm1
log1p
sqrt
square
reciprocal




Trigonometric functions

sin
cos
tan
arcsin
arccos
arctan
arctan2
hypot
sinh
cosh
tanh
arcsinh
arccosh
arctanh
deg2rad
rad2deg




Bit-twiddling functions

bitwise_and
bitwise_or
bitwise_xor
invert
left_shift
right_shift




Comparison functions

greater
greater_equal
less
less_equal
not_equal
equal
logical_and
logical_or
logical_xor
logical_not
maximum
minimum
fmax
fmin




Floating point values

isfinite
isinf
isnan
signbit
copysign
nextafter
modf
ldexp
frexp
fmod
floor
ceil
trunc






ufunc.at

Currently, CuPy does not support at for ufuncs in general.
However, cupy.scatter_add() can substitute add.at as both behave identically.







          

      

      

    

  

    
      
          
            
  
Routines

The following pages describe NumPy-compatible routines.
These functions cover a subset of
NumPy routines [http://docs.scipy.org/doc/numpy/reference/routines.html].



	Array Creation Routines
	Basic creation routines

	Creation from other data

	Numerical ranges

	Matrix creation





	Array Manipulation Routines
	Basic manipulations

	Shape manipulation

	Transposition

	Edit dimensionalities

	Changing kind of array

	Joining arrays along axis

	Splitting arrays along axis





	Repeating part of arrays along axis

	Rearranging elements

	Binary Operations
	Elementwise bit operations





	Indexing Routines

	Input and Output
	NPZ files

	String formatting





	Linear Algebra
	Matrix and vector products

	Decompositions

	Norms etc.





	Logic Functions
	Infinities and NaNs

	Logic operations

	Comparison operations





	Mathematical Functions
	Trigonometric functions

	Hyperbolic functions

	Rounding

	Sums and products

	Exponential and logarithm functions

	Floating point manipulations

	Arithmetic operations

	Miscellaneous





	Random Sampling (cupy.random)
	Sample random data

	Distributions

	Random number generator





	Sorting, Searching, and Counting

	Statistics
	Order statistics

	Means and variances

	Histograms





	External Functions









          

      

      

    

  

    
      
          
            
  
Array Creation Routines


Basic creation routines


	
cupy.empty(shape, dtype=<type 'float'>, order='C')

	Returns an array without initializing the elements.





	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	dtype – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.






	Returns:	A new array with elements not initialized.




	Return type:	cupy.ndarray








See also

numpy.empty() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty]








	
cupy.empty_like(a, dtype=None)

	Returns a new array with same shape and dtype of a given array.

This function currently does not support order and subok options.





	Parameters:	
	a (cupy.ndarray) – Base array.

	dtype – Data type specifier. The data type of a is used by default.






	Returns:	A new array with same shape and dtype of a with
elements not initialized.




	Return type:	cupy.ndarray








See also

numpy.empty_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty_like.html#numpy.empty_like]








	
cupy.eye(N, M=None, k=0, dtype=<type 'float'>)

	Returns a 2-D array with ones on the diagonals and zeros elsewhere.





	Parameters:	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of columns. M == N by default.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of the diagonal. Zero indicates the main diagonal,
a positive index an upper diagonal, and a negative index a lower
diagonal.

	dtype – Data type specifier.






	Returns:	A 2-D array with given diagonals filled with ones and
zeros elsewhere.




	Return type:	cupy.ndarray








See also

numpy.eye() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html#numpy.eye]








	
cupy.identity(n, dtype=<type 'float'>)

	Returns a 2-D identity array.

It is equivalent to eye(n, n, dtype).





	Parameters:	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows and columns.

	dtype – Data type specifier.






	Returns:	A 2-D identity array.




	Return type:	cupy.ndarray








See also

numpy.identity() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.identity.html#numpy.identity]








	
cupy.ones(shape, dtype=<type 'float'>)

	Returns a new array of given shape and dtype, filled with ones.

This function currently does not support order option.





	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	dtype – Data type specifier.






	Returns:	An array filled with ones.




	Return type:	cupy.ndarray








See also

numpy.ones() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones]








	
cupy.ones_like(a, dtype=None)

	Returns an array of ones with same shape and dtype as a given array.

This function currently does not support order and subok options.





	Parameters:	
	a (cupy.ndarray) – Base array.

	dtype – Data type specifier. The dtype of a is used by default.






	Returns:	An array filled with ones.




	Return type:	cupy.ndarray








See also

numpy.ones_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones_like.html#numpy.ones_like]








	
cupy.zeros(shape, dtype=<type 'float'>, order='C')

	Returns a new array of given shape and dtype, filled with zeros.





	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	dtype – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.






	Returns:	An array filled with ones.




	Return type:	cupy.ndarray








See also

numpy.zeros() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros]








	
cupy.zeros_like(a, dtype=None)

	Returns an array of zeros with same shape and dtype as a given array.

This function currently does not support order and subok options.





	Parameters:	
	a (cupy.ndarray) – Base array.

	dtype – Data type specifier. The dtype of a is used by default.






	Returns:	An array filled with ones.




	Return type:	cupy.ndarray








See also

numpy.zeros_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html#numpy.zeros_like]








	
cupy.full(shape, fill_value, dtype=None)

	Returns a new array of given shape and dtype, filled with a given value.

This function currently does not support order option.





	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	fill_value – A scalar value to fill a new array.

	dtype – Data type specifier.






	Returns:	An array filled with fill_value.




	Return type:	cupy.ndarray








See also

numpy.full() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full]








	
cupy.full_like(a, fill_value, dtype=None)

	Returns a full array with same shape and dtype as a given array.

This function currently does not support order and subok options.





	Parameters:	
	a (cupy.ndarray) – Base array.

	fill_value – A scalar value to fill a new array.

	dtype – Data type specifier. The dtype of a is used by default.






	Returns:	An array filled with fill_value.




	Return type:	cupy.ndarray








See also

numpy.full_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.full_like.html#numpy.full_like]










Creation from other data


	
cupy.array(obj, dtype=None, copy=True, ndmin=0)

	Creates an array on the current device.

This function currently does not support the order and subok
options.





	Parameters:	
	obj – cupy.ndarray object or any other object that can be
passed to numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array].

	dtype – Data type specifier.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, this function returns obj if possible.
Otherwise this function always returns a new array.

	ndmin (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of dimensions. Ones are inserted to the
head of the shape if needed.






	Returns:	An array on the current device.




	Return type:	cupy.ndarray








See also

numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]








	
cupy.asarray(a, dtype=None)

	Converts an object to array.

This is equivalent to array(a, dtype, copy=False).
This function currently does not support the order option.





	Parameters:	
	a – The source object.

	dtype – Data type specifier. It is inferred from the input by default.






	Returns:	An array on the current device. If a is already on
the device, no copy is performed.




	Return type:	cupy.ndarray








See also

numpy.asarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray]








	
cupy.asanyarray(a, dtype=None)

	Converts an object to array.

This is currently equivalent to asarray(), since there is no
subclass of ndarray in CuPy. Note that the original
numpy.asanyarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray] returns the input array as is if it is an instance
of a subtype of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].


See also

cupy.asarray(), numpy.asanyarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray]








	
cupy.ascontiguousarray(a, dtype=None)

	Returns a C-contiguous array.





	Parameters:	
	a (cupy.ndarray) – Source array.

	dtype – Data type specifier.






	Returns:	If no copy is required, it returns a. Otherwise, it
returns a copy of a.




	Return type:	cupy.ndarray








See also

numpy.ascontiguousarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]








	
cupy.copy(*args, **kwargs)

	






Numerical ranges


	
cupy.arange(start, stop=None, step=1, dtype=None)

	Returns an array with evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop). The first
three arguments are mapped like the range built-in function, i.e. start
and step are optional.





	Parameters:	
	start – Start of the interval.

	stop – End of the interval.

	step – Step width between each pair of consecutive values.

	dtype – Data type specifier. It is inferred from other arguments by
default.






	Returns:	The 1-D array of range values.




	Return type:	cupy.ndarray








See also

numpy.arange() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange]








	
cupy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

	Returns an array with evenly-spaced values within a given interval.

Instead of specifying the step width like cupy.arange(), this
function requires the total number of elements specified.





	Parameters:	
	start – Start of the interval.

	stop – End of the interval.

	num – Number of elements.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stop value is included as the last
element. Otherwise, the stop value is omitted.

	retstep (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function returns (array, step).
Otherwise, it returns only the array.

	dtype – Data type specifier. It is inferred from the start and stop
arguments by default.






	Returns:	The 1-D array of ranged values.




	Return type:	cupy.ndarray












	
cupy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

	Returns an array with evenly-spaced values on a log-scale.

Instead of specifying the step width like cupy.arange(), this
function requires the total number of elements specified.





	Parameters:	
	start – Start of the interval.

	stop – End of the interval.

	num – Number of elements.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stop value is included as the last
element. Otherwise, the stop value is omitted.

	base (float [https://docs.python.org/3/library/functions.html#float]) – Base of the log space. The step sizes between the
elements on a log-scale are the same as base.

	dtype – Data type specifier. It is inferred from the start and stop
arguments by default.






	Returns:	The 1-D array of ranged values.




	Return type:	cupy.ndarray












	
cupy.meshgrid(*xi, **kwargs)

	Return coordinate matrices from coordinate vectors.

Given one-dimensional coordinate arrays x1, x2, ..., xn, this function
makes N-D grids.

For one-dimensional arrays x1, x2, ..., xn with lengths Ni = len(xi),
this function returns (N1, N2, N3, ..., Nn) shaped arrays
if indexing=’ij’ or (N2, N1, N3, ..., Nn) shaped arrays
if indexing=’xy’.

Unlike NumPy, CuPy currently only supports 1-D arrays as inputs.
Also, CuPy does not support sparse option yet.





	Parameters:	
	xi (tuple of ndarrays) – 1-D arrays representing the coordinates
of a grid.

	indexing ({'xy', 'ij'}, optional) – Cartesian (‘xy’, default) or
matrix (‘ij’) indexing of output.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, a view
into the original arrays are returned. Default is True.






	Returns:	list of cupy.ndarray








See also

numpy.meshgrid() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html#numpy.meshgrid]










Matrix creation


	
cupy.diag(v, k=0)

	Returns a diagonal or a diagonal array.





	Parameters:	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.






	Returns:	If v indicates a 1-D array, then it returns a 2-D
array with the specified diagonal filled by v. If v indicates a
2-D array, then it returns the specified diagonal of v. In latter
case, if v is a cupy.ndarray object, then its view is
returned.




	Return type:	cupy.ndarray








See also

numpy.diag() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag]








	
cupy.diagflat(v, k=0)

	Creates a diagonal array from the flattened input.





	Parameters:	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. See cupy.diag() for detail.






	Returns:	A 2-D diagonal array with the diagonal copied from v.




	Return type:	cupy.ndarray

















          

      

      

    

  

    
      
          
            
  
Array Manipulation Routines


Basic manipulations


	
cupy.copyto(dst, src, casting='same_kind', where=None)

	Copies values from one array to another with broadcasting.

This function can be called for arrays on different devices. In this case,
casting, where, and broadcasting is not supported, and an exception is
raised if these are used.





	Parameters:	
	dst (cupy.ndarray) – Target array.

	src (cupy.ndarray) – Source array.

	casting (str [https://docs.python.org/3/library/stdtypes.html#str]) – Casting rule. See numpy.can_cast() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.can_cast.html#numpy.can_cast] for detail.

	where (cupy.ndarray of bool) – If specified, this array acts as a mask,
and an element is copied only if the corresponding element of
where is True.










See also

numpy.copyto() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.copyto.html#numpy.copyto]










Shape manipulation


	
cupy.reshape(a, newshape)

	Returns an array with new shape and same elements.

It tries to return a view if possible, otherwise returns a copy.

This function currently does not support order option.





	Parameters:	
	a (cupy.ndarray) – Array to be reshaped.

	newshape (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The new shape of the array to return.
If it is an integer, then it is treated as a tuple of length one.
It should be compatible with a.size. One of the elements can be
-1, which is automatically replaced with the appropriate value to
make the shape compatible with a.size.






	Returns:	A reshaped view of a if possible, otherwise a copy.




	Return type:	cupy.ndarray








See also

numpy.reshape() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape]








	
cupy.ravel(a)

	Returns a flattened array.

It tries to return a view if possible, otherwise returns a copy.

This function currently does not support order option.





	Parameters:	a (cupy.ndarray) – Array to be flattened.


	Returns:	A flattened view of a if possible, otherwise a copy.


	Return type:	cupy.ndarray






See also

numpy.ravel() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html#numpy.ravel]










Transposition


	
cupy.rollaxis(a, axis, start=0)

	Moves the specified axis backwards to the given place.





	Parameters:	
	a (cupy.ndarray) – Array to move the axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to move.

	start (int [https://docs.python.org/3/library/functions.html#int]) – The place to which the axis is moved.






	Returns:	A view of a that the axis is moved to start.




	Return type:	cupy.ndarray








See also

numpy.rollaxis() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html#numpy.rollaxis]








	
cupy.swapaxes(a, axis1, axis2)

	Swaps the two axes.





	Parameters:	
	a (cupy.ndarray) – Array to swap the axes.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis to swap.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis to swap.






	Returns:	A view of a that the two axes are swapped.




	Return type:	cupy.ndarray








See also

numpy.swapaxes() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.swapaxes.html#numpy.swapaxes]








	
cupy.transpose(a, axes=None)

	Permutes the dimensions of an array.





	Parameters:	
	a (cupy.ndarray) – Array to permute the dimensions.

	axes (tuple of ints) – Permutation of the dimensions. This function
reverses the shape by default.






	Returns:	A view of a that the dimensions are permuted.




	Return type:	cupy.ndarray








See also

numpy.transpose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose]










Edit dimensionalities


	
cupy.atleast_1d(*arys)

	Converts arrays to arrays with dimensions >= 1.





	Parameters:	arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects. Only zero-dimensional array is
affected.


	Returns:	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.






See also

numpy.atleast_1d() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_1d.html#numpy.atleast_1d]








	
cupy.atleast_2d(*arys)

	Converts arrays to arrays with dimensions >= 2.

If an input array has dimensions less than two, then this function inserts
new axes at the head of dimensions to make it have two dimensions.





	Parameters:	arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.


	Returns:	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.






See also

numpy.atleast_2d() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_2d.html#numpy.atleast_2d]








	
cupy.atleast_3d(*arys)

	Converts arrays to arrays with dimensions >= 3.

If an input array has dimensions less than three, then this function
inserts new axes to make it have three dimensions. The place of the new
axes are following:


	If its shape is (), then the shape of output is (1, 1, 1).

	If its shape is (N,), then the shape of output is (1, N, 1).

	If its shape is (M, N), then the shape of output is (M, N, 1).

	Otherwise, the output is the input array itself.







	Parameters:	arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.


	Returns:	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.






See also

numpy.atleast_3d() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_3d.html#numpy.atleast_3d]








	
class cupy.broadcast

	Object that performs broadcasting.

CuPy actually uses this class to support broadcasting in various
operations. Note that this class does not provide an iterator.





	Parameters:	arrays (tuple of arrays) – Arrays to be broadcasted.




	Variables:	
	shape (tuple of ints) – The broadcasted shape.

	nd (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions of the broadcasted shape.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Total size of the broadcasted shape.

	values (list of arrays) – The broadcasted arrays.










See also

numpy.broadcast [https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast.html#numpy.broadcast]








	
cupy.broadcast_arrays(*args)

	Broadcasts given arrays.





	Parameters:	args (tuple of arrays) – Arrays to broadcast for each other.


	Returns:	A list of broadcasted arrays.


	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]






See also

numpy.broadcast_arrays() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays]








	
cupy.broadcast_to(array, shape)

	Broadcast an array to a given shape.





	Parameters:	
	array (cupy.ndarray) – Array to broadcast.

	shape (tuple of int) – The shape of the desired array.






	Returns:	Broadcasted view.




	Return type:	cupy.ndarray








See also

numpy.broadcast_to() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to]








	
cupy.expand_dims(a, axis)

	Expands given arrays.





	Parameters:	
	a (cupy.ndarray) – Array to be expanded.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Position where new axis is to be inserted.






	Returns:	
	The number of dimensions is one greater than that of

	the input array.










	Return type:	cupy.ndarray








See also

numpy.expand_dims() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.expand_dims.html#numpy.expand_dims]








	
cupy.squeeze(a, axis=None)

	Removes size-one axes from the shape of an array.





	Parameters:	
	a (cupy.ndarray) – Array to be reshaped.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Axes to be removed. This function removes
all size-one axes by default. If one of the specified axes is not
of size one, an exception is raised.






	Returns:	An array without (specified) size-one axes.




	Return type:	cupy.ndarray








See also

numpy.squeeze() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html#numpy.squeeze]










Changing kind of array


	
cupy.asfortranarray(a, dtype=None)

	Return an array laid out in Fortran order in memory.





	Parameters:	
	a (ndarray) – The input array.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype object, optional) – By default, the data-type is
inferred from the input data.






	Returns:	The input a in Fortran, or column-major, order.




	Return type:	ndarray








See also

numpy.asfortranarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asfortranarray.html#numpy.asfortranarray]










Joining arrays along axis


	
cupy.column_stack(tup)

	Stacks 1-D and 2-D arrays as columns into a 2-D array.

A 1-D array is first converted to a 2-D column array. Then, the 2-D arrays
are concatenated along the second axis.





	Parameters:	tup (sequence of arrays) – 1-D or 2-D arrays to be stacked.


	Returns:	A new 2-D array of stacked columns.


	Return type:	cupy.ndarray






See also

numpy.column_stack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.column_stack.html#numpy.column_stack]








	
cupy.concatenate(tup, axis=0)

	Joins arrays along an axis.





	Parameters:	
	tup (sequence of arrays) – Arrays to be joined. All of these should have
same dimensionalities except the specified axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to join arrays along.






	Returns:	Joined array.




	Return type:	cupy.ndarray








See also

numpy.concatenate() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html#numpy.concatenate]








	
cupy.vstack(tup)

	Stacks arrays vertically.

If an input array has one dimension, then the array is treated as a
horizontal vector and stacked along the additional axis at the head.
Otherwise, the array is stacked along the first axis.





	Parameters:	tup (sequence of arrays) – Arrays to be stacked. Each array is converted
by cupy.atleast_2d() before stacking.


	Returns:	Stacked array.


	Return type:	cupy.ndarray






See also

numpy.dstack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html#numpy.dstack]








	
cupy.hstack(tup)

	Stacks arrays horizontally.

If an input array has one dimension, then the array is treated as a
horizontal vector and stacked along the first axis. Otherwise, the array is
stacked along the second axis.





	Parameters:	tup (sequence of arrays) – Arrays to be stacked.


	Returns:	Stacked array.


	Return type:	cupy.ndarray






See also

numpy.hstack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html#numpy.hstack]








	
cupy.dstack(tup)

	Stacks arrays along the third axis.





	Parameters:	tup (sequence of arrays) – Arrays to be stacked. Each array is converted
by cupy.atleast_3d() before stacking.


	Returns:	Stacked array.


	Return type:	cupy.ndarray






See also

numpy.dstack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html#numpy.dstack]








	
cupy.stack(tup, axis=0)

	Stacks arrays along a new axis.





	Parameters:	
	tup (sequence of arrays) – Arrays to be stacked.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the arrays are stacked.






	Returns:	Stacked array.




	Return type:	cupy.ndarray








See also

numpy.stack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.stack.html#numpy.stack]










Splitting arrays along axis


	
cupy.array_split(ary, indices_or_sections, axis=0)

	Splits an array into multiple sub arrays along a given axis.

This function is almost equivalent to cupy.split(). The only
difference is that this function allows an integer sections that does not
evenly divide the axis.


See also

cupy.split() for more detail, numpy.array_split() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_split.html#numpy.array_split]








	
cupy.split(ary, indices_or_sections, axis=0)

	Splits an array into multiple sub arrays along a given axis.





	Parameters:	
	ary (cupy.ndarray) – Array to split.

	indices_or_sections (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – A value indicating how
to divide the axis. If it is an integer, then is treated as the
number of sections, and the axis is evenly divided. Otherwise,
the integers indicate indices to split at. Note that the sequence
on the device memory is not allowed.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the array is split.






	Returns:	A list of sub arrays. Each array is a view of the corresponding input
array.








See also

numpy.split() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html#numpy.split]








	
cupy.vsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays along the first axis.

This is equivalent to split with axis=0.


See also

cupy.split() for more detail, numpy.dsplit() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html#numpy.dsplit]








	
cupy.hsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays horizontally.

This is equivalent to split with axis=0 if ary has one
dimension, and otherwise that with axis=1.


See also

cupy.split() for more detail, numpy.hsplit() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hsplit.html#numpy.hsplit]








	
cupy.dsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays along the third axis.

This is equivalent to split with axis=2.


See also

cupy.split() for more detail, numpy.dsplit() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html#numpy.dsplit]












Repeating part of arrays along axis


	
cupy.tile(A, reps)

	Construct an array by repeating A the number of times given by reps.





	Parameters:	
	A (cupy.ndarray) – Array to transform.

	reps (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The number of repeats.






	Returns:	Transformed array with repeats.




	Return type:	cupy.ndarray








See also

numpy.tile() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html#numpy.tile]








	
cupy.repeat(a, repeats, axis=None)

	Repeat arrays along an axis.





	Parameters:	
	a (cupy.ndarray) – Array to transform.

	repeats (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The number of repeats.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to repeat.






	Returns:	Transformed array with repeats.




	Return type:	cupy.ndarray








See also

numpy.repeat() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html#numpy.repeat]










Rearranging elements


	
cupy.flip(a, axis)

	Reverse the order of elements in an array along the given axis.

Note that flip function has been introduced since NumPy v1.12.
The contents of this document is the same as the original one.





	Parameters:	
	a (ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis in array, which entries are reversed.






	Returns:	Output array.




	Return type:	ndarray








See also

numpy.flip() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html#numpy.flip]








	
cupy.fliplr(a)

	Flip array in the left/right direction.

Flip the entries in each row in the left/right direction. Columns
are preserved, but appear in a different order than before.





	Parameters:	a (ndarray) – Input array.


	Returns:	Output array.


	Return type:	ndarray






See also

numpy.fliplr() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fliplr.html#numpy.fliplr]








	
cupy.flipud(a)

	Flip array in the up/down direction.

Flip the entries in each column in the up/down direction. Rows are
preserved, but appear in a different order than before.





	Parameters:	a (ndarray) – Input array.


	Returns:	Output array.


	Return type:	ndarray






See also

numpy.flipud() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.flipud.html#numpy.flipud]








	
cupy.roll(a, shift, axis=None)

	Roll array elements along a given axis.





	Parameters:	
	a (ndarray) – Array to be rolled.

	shift (int [https://docs.python.org/3/library/functions.html#int]) – The number of places by which elements are shifted.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The axis along which elements are shifted.
If axis is None, the array is flattened before shifting,
and after that it is reshaped to the original shape.






	Returns:	Output array.




	Return type:	ndarray








See also

numpy.roll() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html#numpy.roll]








	
cupy.rot90(a, k=1, axes=(0, 1))

	Rotate an array by 90 degrees in the plane specified by axes.

Note that axes argument has been introduced since NumPy v1.12.
The contents of this document is the same as the original one.





	Parameters:	
	a (ndarray) – Array of two or more dimensions.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Number of times the array is rotated by 90 degrees.

	axes – (tuple of ints): The array is rotated in the plane defined by
the axes. Axes must be different.






	Returns:	Output array.




	Return type:	ndarray








See also

numpy.rot90() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rot90.html#numpy.rot90]











          

      

      

    

  

    
      
          
            
  
Binary Operations


Elementwise bit operations


	
cupy.bitwise_and = <ufunc 'cupy_bitwise_and'>

	Computes the bitwise AND of two arrays elementwise.

Only integer and boolean arrays are handled.


See also

numpy.bitwise_and [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and]








	
cupy.bitwise_or = <ufunc 'cupy_bitwise_or'>

	Computes the bitwise OR of two arrays elementwise.

Only integer and boolean arrays are handled.


See also

numpy.bitwise_or [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or]








	
cupy.bitwise_xor = <ufunc 'cupy_bitwise_xor'>

	Computes the bitwise XOR of two arrays elementwise.

Only integer and boolean arrays are handled.


See also

numpy.bitwise_xor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor]








	
cupy.invert = <ufunc 'cupy_invert'>

	Computes the bitwise NOT of an array elementwise.

Only integer and boolean arrays are handled.


See also

numpy.invert [https://docs.scipy.org/doc/numpy/reference/generated/numpy.invert.html#numpy.invert]








	
cupy.left_shift = <ufunc 'cupy_left_shift'>

	Shifts the bits of each integer element to the left.

Only integer arrays are handled.


See also

numpy.left_shift [https://docs.scipy.org/doc/numpy/reference/generated/numpy.left_shift.html#numpy.left_shift]








	
cupy.right_shift = <ufunc 'cupy_right_shift'>

	Shifts the bits of each integer element to the right.

Only integer arrays are handled


See also

numpy.right_shift [https://docs.scipy.org/doc/numpy/reference/generated/numpy.right_shift.html#numpy.right_shift]













          

      

      

    

  

    
      
          
            
  
Indexing Routines


	
cupy.take(a, indices, axis=None, out=None)

	Takes elements of an array at specified indices along an axis.

This is an implementation of “fancy indexing” at single axis.

This function does not support mode option.





	Parameters:	
	a (cupy.ndarray) – Array to extract elements.

	indices (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Indices of elements that this function
takes.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which to select indices. The flattened input
is used by default.

	out (cupy.ndarray) – Output array. If provided, it should be of
appropriate shape and dtype.






	Returns:	The result of fancy indexing.




	Return type:	cupy.ndarray








See also

numpy.take() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take]








	
cupy.diagonal(a, offset=0, axis1=0, axis2=1)

	Returns specified diagonals.

This function extracts the diagonals along two specified axes. The other
axes are not changed. This function returns a writable view of this array
as NumPy 1.10 will do.





	Parameters:	
	a (cupy.ndarray) – Array from which the diagonals are taken.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Index of the diagonals. Zero indicates the main
diagonals, a positive value upper diagonals, and a negative value
lower diagonals.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis to take diagonals from.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis to take diagonals from.






	Returns:	A view of the diagonals of a.




	Return type:	cupy.ndarray








See also

numpy.diagonal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.diagonal.html#numpy.diagonal]








	
cupy.ix_(*args)

	Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N
dimensions each, such that the shape is 1 in all but one dimension
and the dimension with the non-unit shape value cycles through all
N dimensions.

Using ix_ one can quickly construct index arrays that will index
the cross product. a[cupy.ix_([1,3],[2,5])] returns the array
[[a[1,2] a[1,5]], [a[3,2] a[3,5]]].





	Parameters:	*args – 1-D sequences


	Returns:	N arrays with N dimensions each, with N the number of input sequences.
Together these arrays form an open mesh.


	Return type:	tuple of ndarrays





Examples

>>> a = cupy.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])
>>> ixgrid = cupy.ix_([0,1], [2,4])
>>> ixgrid
(array([[0],
       [1]]), array([[2, 4]]))







See also

numpy.ix_() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ix_.html#numpy.ix_]











	
cupy.fill_diagonal(a, val, wrap=False)

	Fill the main diagonal of the given array of any dimensionality.

For an array a with a.ndim > 2, the diagonal is the list of
locations with indices a[i, i, ..., i] all identical. This function
modifies the input array in-place, it does not return a value.





	Parameters:	
	a (cupy.ndarray) – The array, at least 2-D.

	val (scalar) – The value to be written on the diagonal.
Its type must be compatible with that of the array a.

	wrap (bool [https://docs.python.org/3/library/functions.html#bool]) – If specified, the diagonal is “wrapped” after N columns.
This affects only tall matrices.









Examples

>>> a = cupy.zeros((3, 3), int)
>>> cupy.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
       [0, 5, 0],
       [0, 0, 5]])







See also

numpy.fill_diagonal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fill_diagonal.html#numpy.fill_diagonal]











	
cupy.c_ = <cupy.indexing.generate.CClass object>

	Translates slice objects to concatenation along the second axis.

This is a CuPy object that corresponds to cupy.r_(), which is
useful because of its common occurrence. In particular, arrays will be
stacked along their last axis after being upgraded to at least 2-D with
1’s post-pended to the shape (column vectors made out of 1-D arrays).

For detailed documentation, see r_().

This implementation is partially borrowed from NumPy’s one.





	Parameters:	a function, so takes no parameters (Not) – 


	Returns:	Joined array.


	Return type:	cupy.ndarray






See also

numpy.c_()



Examples

>>> a = cupy.array([[1, 2, 3]], dtype=np.int32)
>>> b = cupy.array([[4, 5, 6]], dtype=np.int32)
>>> cupy.c_[a, 0, 0, b]
array([[1, 2, 3, 0, 0, 4, 5, 6]], dtype=int32)










	
cupy.r_ = <cupy.indexing.generate.RClass object>

	Translates slice objects to concatenation along the first axis.

This is a simple way to build up arrays quickly.
If the index expression contains comma separated arrays, then stack
them along their first axis.

This object can build up from normal CuPy arrays.
Therefore, the other objects (e.g. writing strings like ‘2,3,4’,
or using imaginary numbers like [1,2,3j],
or using string integers like ‘-1’) are not implemented yet
compared with NumPy.

This implementation is partially borrowed from NumPy’s one.





	Parameters:	a function, so takes no parameters (Not) – 


	Returns:	Joined array.


	Return type:	cupy.ndarray






See also

numpy.r_()



Examples

>>> a = cupy.array([1, 2, 3], dtype=np.int32)
>>> b = cupy.array([4, 5, 6], dtype=np.int32)
>>> cupy.r_[a, 0, 0, b]
array([1, 2, 3, 0, 0, 4, 5, 6], dtype=int32)













          

      

      

    

  

    
      
          
            
  
Input and Output


NPZ files


	
cupy.load(file, mmap_mode=None)

	Loads arrays or pickled objects from .npy, .npz or pickled file.

This function just calls numpy.load and then sends the arrays to the
current device. NPZ file is converted to NpzFile object, which defers the
transfer to the time of accessing the items.





	Parameters:	
	file (file-like object or string [https://docs.python.org/3/library/string.html#module-string]) – The file to read.

	mmap_mode (None [https://docs.python.org/3/library/constants.html#None], 'r+', 'r', 'w+', 'c') – If not None, memory-map the
file to construct an intermediate numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object and
transfer it to the current device.






	Returns:	CuPy array or NpzFile object depending on the type of the file. NpzFile
object is a dictionary-like object with the context manager protocol
(which enables us to use with statement on it).








See also

numpy.load() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load]








	
cupy.save(file, arr)

	Saves an array to a binary file in .npy format.





	Parameters:	
	file (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – File or filename to save.

	arr (array_like) – Array to save. It should be able to feed to
cupy.asnumpy().










See also

numpy.save() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html#numpy.save]








	
cupy.savez(file, *args, **kwds)

	Saves one or more arrays into a file in uncompressed .npz format.

Arguments without keys are treated as arguments with automatic keys named
arr_0, arr_1, etc. corresponding to the positions in the argument
list. The keys of arguments are used as keys in the .npz file, which
are used for accessing NpzFile object when the file is read by
cupy.load() function.





	Parameters:	
	file (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – File or filename to save.

	*args – Arrays with implicit keys.

	**kwds – Arrays with explicit keys.










See also

numpy.savez() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez]








	
cupy.savez_compressed(file, *args, **kwds)

	Saves one or more arrays into a file in compressed .npz format.

It is equivalent to cupy.savez() function except the output file is
compressed.


See also

cupy.savez() for more detail,
numpy.savez_compressed() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed]










String formatting


	
cupy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)

	Returns the string representation of an array.





	Parameters:	
	arr (array_like) – Input array. It should be able to feed to
cupy.asnumpy().

	max_line_width (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of line lengths.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – Floating point precision. It uses the current printing
precision of NumPy.

	suppress_small (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, very small numbers are printed as
zeros






	Returns:	The string representation of arr.




	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]








See also

numpy.array_repr() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_repr.html#numpy.array_repr]








	
cupy.array_str(arr, max_line_width=None, precision=None, suppress_small=None)

	Returns the string representation of the content of an array.





	Parameters:	
	arr (array_like) – Input array. It should be able to feed to
cupy.asnumpy().

	max_line_width (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of line lengths.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – Floating point precision. It uses the current printing
precision of NumPy.

	suppress_small (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, very small number are printed as
zeros.










See also

numpy.array_str() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_str.html#numpy.array_str]













          

      

      

    

  

    
      
          
            
  
Linear Algebra


Matrix and vector products


	
cupy.dot(a, b, out=None)

	Returns a dot product of two arrays.

For arrays with more than one axis, it computes the dot product along the
last axis of a and the second-to-last axis of b. This is just a
matrix product if the both arrays are 2-D. For 1-D arrays, it uses their
unique axis as an axis to take dot product over.





	Parameters:	
	a (cupy.ndarray) – The left argument.

	b (cupy.ndarray) – The right argument.

	out (cupy.ndarray) – Output array.






	Returns:	The dot product of a and b.




	Return type:	cupy.ndarray








See also

numpy.dot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot]








	
cupy.vdot(a, b)

	Returns the dot product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs inner
product of these vectors.





	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.






	Returns:	Zero-dimensional array of the dot product result.




	Return type:	cupy.ndarray








See also

numpy.vdot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.vdot.html#numpy.vdot]








	
cupy.inner(a, b)

	Returns the inner product of two arrays.

It uses the last axis of each argument to take sum product.





	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.






	Returns:	The inner product of a and b.




	Return type:	cupy.ndarray








See also

numpy.inner() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.inner.html#numpy.inner]








	
cupy.outer(a, b, out=None)

	Returns the outer product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs outer
product of these vectors.





	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	out (cupy.ndarray) – Output array.






	Returns:	2-D array of the outer product of a and b.




	Return type:	cupy.ndarray








See also

numpy.outer() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html#numpy.outer]








	
cupy.tensordot(a, b, axes=2)

	Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which
are treated as one axis by reshaping.





	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	axes – 
	If it is an integer, then axes axes at the last of a and
the first of b are used.

	If it is a pair of sequences of integers, then these two
sequences specify the list of axes for a and b. The
corresponding axes are paired for sum-product.





	out (cupy.ndarray) – Output array.






	Returns:	The tensor dot product of a and b along the
axes specified by axes.




	Return type:	cupy.ndarray








See also

numpy.tensordot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot]










Decompositions


	
cupy.linalg.cholesky(a)

	Cholesky decomposition.

Decompose a given two-dimensional square matrix into L * L.T,
where L is a lower-triangular matrix and .T is a conjugate
transpose operator. Note that in the current implementation a must be
a real matrix, and only float32 and float64 are supported.





	Parameters:	a (cupy.ndarray) – The input matrix with dimension (N, N)






See also

numpy.linalg.cholesky() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky]








	
cupy.linalg.qr(a, mode='reduced')

	QR decomposition.

Decompose a given two-dimensional matrix into Q * R, where Q
is an orthonormal and R is an upper-triangular matrix.





	Parameters:	
	a (cupy.ndarray) – The input matrix.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The mode of decomposition. Currently ‘reduced’,
‘complete’, ‘r’, and ‘raw’ modes are supported. The default mode
is ‘reduced’, and decompose a matrix A = (M, N) into Q,
R with dimensions (M, K), (K, N), where
K = min(M, N).










See also

numpy.linalg.qr() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr]








	
cupy.linalg.svd(a, full_matrices=True, compute_uv=True)

	Singular Value Decomposition.

Factorizes the matrix a as u * np.diag(s) * v, where u and
v are unitary and s is an one-dimensional array of a‘s
singular values.





	Parameters:	
	a (cupy.ndarray) – The input matrix with dimension (M, N).

	full_matrices (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it returns U and V with dimensions
(M, M) and (N, N). Otherwise, the dimensions of U and V
are respectively (M, K) and (K, N), where
K = min(M, N).

	compute_uv (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it only returns singular values.










See also

numpy.linalg.svd() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd]










Norms etc.


	
cupy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Returns the sum along the diagonals of an array.

It computes the sum along the diagonals at axis1 and axis2.





	Parameters:	
	a (cupy.ndarray) – Array to take trace.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis along which the trace is taken.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis along which the trace is taken.

	dtype – Data type specifier of the output.

	out (cupy.ndarray) – Output array.






	Returns:	The trace of a along axes (axis1, axis2).




	Return type:	cupy.ndarray








See also

numpy.trace() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.trace.html#numpy.trace]













          

      

      

    

  

    
      
          
            
  
Logic Functions


Infinities and NaNs


	
cupy.isfinite = <ufunc 'cupy_isfinite'>

	Tests finiteness elementwise.

Each element of returned array is True only if the corresponding
element of the input is finite (i.e. not an infinity nor NaN).


See also

numpy.isfinite [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html#numpy.isfinite]








	
cupy.isinf = <ufunc 'cupy_isinf'>

	Tests if each element is the positive or negative infinity.


See also

numpy.isinf [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isinf.html#numpy.isinf]








	
cupy.isnan = <ufunc 'cupy_isnan'>

	Tests if each element is a NaN.


See also

numpy.isnan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html#numpy.isnan]










Logic operations


	
cupy.logical_and = <ufunc 'cupy_logical_and'>

	Computes the logical AND of two arrays.


See also

numpy.logical_and [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html#numpy.logical_and]








	
cupy.logical_or = <ufunc 'cupy_logical_or'>

	Computes the logical OR of two arrays.


See also

numpy.logical_or [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_or.html#numpy.logical_or]








	
cupy.logical_not = <ufunc 'cupy_logical_not'>

	Computes the logical NOT of an array.


See also

numpy.logical_not [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html#numpy.logical_not]








	
cupy.logical_xor = <ufunc 'cupy_logical_xor'>

	Computes the logical XOR of two arrays.


See also

numpy.logical_xor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_xor.html#numpy.logical_xor]










Comparison operations


	
cupy.greater = <ufunc 'cupy_greater'>

	Tests elementwise if x1 > x2.


See also

numpy.greater [https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater.html#numpy.greater]








	
cupy.greater_equal = <ufunc 'cupy_greater_equal'>

	Tests elementwise if x1 >= x2.


See also

numpy.greater_equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater_equal.html#numpy.greater_equal]








	
cupy.less = <ufunc 'cupy_less'>

	Tests elementwise if x1 < x2.


See also

numpy.less [https://docs.scipy.org/doc/numpy/reference/generated/numpy.less.html#numpy.less]








	
cupy.less_equal = <ufunc 'cupy_less_equal'>

	Tests elementwise if x1 <= x2.


See also

numpy.less_equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.less_equal.html#numpy.less_equal]








	
cupy.equal = <ufunc 'cupy_equal'>

	Tests elementwise if x1 == x2.


See also

numpy.equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal]








	
cupy.not_equal = <ufunc 'cupy_not_equal'>

	Tests elementwise if x1 != x2.


See also

numpy.equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal]













          

      

      

    

  

    
      
          
            
  
Mathematical Functions


Trigonometric functions


	
cupy.sin = <ufunc 'cupy_sin'>

	Elementwise sine function.


See also

numpy.sin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin]








	
cupy.cos = <ufunc 'cupy_cos'>

	Elementwise cosine function.


See also

numpy.cos [https://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos]








	
cupy.tan = <ufunc 'cupy_tan'>

	Elementwise tangent function.


See also

numpy.tan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tan.html#numpy.tan]








	
cupy.arcsin = <ufunc 'cupy_arcsin'>

	Elementwise inverse-sine function (a.k.a. arcsine function).


See also

numpy.arcsin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html#numpy.arcsin]








	
cupy.arccos = <ufunc 'cupy_arccos'>

	Elementwise inverse-cosine function (a.k.a. arccosine function).


See also

numpy.arccos [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arccos.html#numpy.arccos]








	
cupy.arctan = <ufunc 'cupy_arctan'>

	Elementwise inverse-tangent function (a.k.a. arctangent function).


See also

numpy.arctan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan.html#numpy.arctan]








	
cupy.hypot = <ufunc 'cupy_hypot'>

	Computes the hypoteneous of orthogonal vectors of given length.

This is equivalent to sqrt(x1 **2 + x2 ** 2), while this function is
more efficient.


See also

numpy.hypot [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hypot.html#numpy.hypot]








	
cupy.arctan2 = <ufunc 'cupy_arctan2'>

	Elementwise inverse-tangent of the ratio of two arrays.


See also

numpy.arctan2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html#numpy.arctan2]








	
cupy.deg2rad = <ufunc 'cupy_deg2rad'>

	Converts angles from degrees to radians elementwise.


See also

numpy.deg2rad [https://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html#numpy.radians]








	
cupy.rad2deg = <ufunc 'cupy_rad2deg'>

	Converts angles from radians to degrees elementwise.


See also

numpy.rad2deg [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html#numpy.degrees]








	
cupy.degrees = <ufunc 'cupy_rad2deg'>

	Converts angles from radians to degrees elementwise.


See also

numpy.rad2deg [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html#numpy.degrees]








	
cupy.radians = <ufunc 'cupy_deg2rad'>

	Converts angles from degrees to radians elementwise.


See also

numpy.deg2rad [https://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html#numpy.radians]










Hyperbolic functions


	
cupy.sinh = <ufunc 'cupy_sinh'>

	Elementwise hyperbolic sine function.


See also

numpy.sinh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sinh.html#numpy.sinh]








	
cupy.cosh = <ufunc 'cupy_cosh'>

	Elementwise hyperbolic cosine function.


See also

numpy.cosh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.cosh.html#numpy.cosh]








	
cupy.tanh = <ufunc 'cupy_tanh'>

	Elementwise hyperbolic tangent function.


See also

numpy.tanh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tanh.html#numpy.tanh]








	
cupy.arcsinh = <ufunc 'cupy_arcsinh'>

	Elementwise inverse of hyperbolic sine function.


See also

numpy.arcsinh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsinh.html#numpy.arcsinh]








	
cupy.arccosh = <ufunc 'cupy_arccosh'>

	Elementwise inverse of hyperbolic cosine function.


See also

numpy.arccosh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arccosh.html#numpy.arccosh]








	
cupy.arctanh = <ufunc 'cupy_arctanh'>

	Elementwise inverse of hyperbolic tangent function.


See also

numpy.arctanh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctanh.html#numpy.arctanh]










Rounding


	
cupy.rint = <ufunc 'cupy_rint'>

	Rounds each element of an array to the nearest integer.


See also

numpy.rint [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html#numpy.rint]








	
cupy.floor = <ufunc 'cupy_floor'>

	Rounds each element of an array to its floor integer.


See also

numpy.floor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.floor.html#numpy.floor]








	
cupy.ceil = <ufunc 'cupy_ceil'>

	Rounds each element of an array to its ceiling integer.


See also

numpy.ceil [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html#numpy.ceil]








	
cupy.trunc = <ufunc 'cupy_trunc'>

	Rounds each element of an array towards zero.


See also

numpy.trunc [https://docs.scipy.org/doc/numpy/reference/generated/numpy.trunc.html#numpy.trunc]










Sums and products


	
cupy.sum(*args, **kwargs)

	




	
cupy.prod(*args, **kwargs)

	






Exponential and logarithm functions


	
cupy.exp = <ufunc 'cupy_exp'>

	Elementwise exponential function.


See also

numpy.exp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp]








	
cupy.expm1 = <ufunc 'cupy_expm1'>

	Computes exp(x) - 1 elementwise.


See also

numpy.expm1 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.expm1.html#numpy.expm1]








	
cupy.exp2 = <ufunc 'cupy_exp2'>

	Elementwise exponentiation with base 2.


See also

numpy.exp2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp2.html#numpy.exp2]








	
cupy.log = <ufunc 'cupy_log'>

	Elementwise natural logarithm function.


See also

numpy.log [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log]








	
cupy.log10 = <ufunc 'cupy_log10'>

	Elementwise common logarithm function.


See also

numpy.log10 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log10.html#numpy.log10]








	
cupy.log2 = <ufunc 'cupy_log2'>

	Elementwise binary logarithm function.


See also

numpy.log2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log2.html#numpy.log2]








	
cupy.log1p = <ufunc 'cupy_log1p'>

	Computes log(1 + x) elementwise.


See also

numpy.log1p [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html#numpy.log1p]








	
cupy.logaddexp = <ufunc 'cupy_logaddexp'>

	Computes log(exp(x1) + exp(x2)) elementwise.


See also

numpy.logaddexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html#numpy.logaddexp]








	
cupy.logaddexp2 = <ufunc 'cupy_logaddexp2'>

	Computes log2(exp2(x1) + exp2(x2)) elementwise.


See also

numpy.logaddexp2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2]










Floating point manipulations


	
cupy.signbit = <ufunc 'cupy_signbit'>

	Tests elementwise if the sign bit is set (i.e. less than zero).


See also

numpy.signbit [https://docs.scipy.org/doc/numpy/reference/generated/numpy.signbit.html#numpy.signbit]








	
cupy.copysign = <ufunc 'cupy_copysign'>

	Returns the first argument with the sign bit of the second elementwise.


See also

numpy.copysign [https://docs.scipy.org/doc/numpy/reference/generated/numpy.copysign.html#numpy.copysign]








	
cupy.ldexp = <ufunc 'cupy_ldexp'>

	Computes x1 * 2 ** x2 elementwise.


See also

numpy.ldexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ldexp.html#numpy.ldexp]








	
cupy.frexp = <ufunc 'cupy_frexp'>

	Decomposes each element to mantissa and two’s exponent.

This ufunc outputs two arrays of the input dtype and the int dtype.


See also

numpy.frexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.frexp.html#numpy.frexp]








	
cupy.nextafter = <ufunc 'cupy_nextafter'>

	Computes the nearest neighbor float values towards the second argument.


See also

numpy.nextafter










Arithmetic operations


	
cupy.negative = <ufunc 'cupy_negative'>

	Takes numerical negative elementwise.


See also

numpy.negative [https://docs.scipy.org/doc/numpy/reference/generated/numpy.negative.html#numpy.negative]








	
cupy.add = <ufunc 'cupy_add'>

	Adds two arrays elementwise.


See also

numpy.add [https://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html#numpy.add]








	
cupy.subtract = <ufunc 'cupy_subtract'>

	Subtracts arguments elementwise.


See also

numpy.subtract [https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract]








	
cupy.multiply = <ufunc 'cupy_multiply'>

	Multiplies two arrays elementwise.


See also

numpy.multiply [https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply]








	
cupy.divide = <ufunc 'cupy_divide'>

	Divides arguments elementwise.


See also

numpy.divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.divide.html#numpy.divide]








	
cupy.true_divide = <ufunc 'cupy_true_divide'>

	Elementwise true division (i.e. division as floating values).


See also

numpy.true_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.true_divide.html#numpy.true_divide]








	
cupy.floor_divide = <ufunc 'cupy_floor_divide'>

	Elementwise floor division (i.e. integer quotient).


See also

numpy.floor_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.floor_divide.html#numpy.floor_divide]








	
cupy.power = <ufunc 'cupy_power'>

	Computes x1 ** x2 elementwise.


See also

numpy.power [https://docs.scipy.org/doc/numpy/reference/generated/numpy.power.html#numpy.power]








	
cupy.fmod = <ufunc 'cupy_fmod'>

	Computes the remainder of C division elementwise.


See also

numpy.fmod [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmod.html#numpy.fmod]








	
cupy.mod = <ufunc 'cupy_remainder'>

	Computes the remainder of Python division elementwise.


See also

numpy.remainder [https://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder]








	
cupy.remainder = <ufunc 'cupy_remainder'>

	Computes the remainder of Python division elementwise.


See also

numpy.remainder [https://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder]








	
cupy.modf = <ufunc 'cupy_modf'>

	Extracts the fractional and integral parts of an array elementwise.

This ufunc returns two arrays.


See also

numpy.modf [https://docs.scipy.org/doc/numpy/reference/generated/numpy.modf.html#numpy.modf]








	
cupy.reciprocal = <ufunc 'cupy_reciprocal'>

	Computes 1 / x elementwise.


See also

numpy.reciprocal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html#numpy.reciprocal]










Miscellaneous


	
cupy.clip(*args, **kwargs)

	




	
cupy.sqrt = <ufunc 'cupy_sqrt'>

	




	
cupy.square = <ufunc 'cupy_square'>

	Elementwise square function.


See also

numpy.square [https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html#numpy.square]








	
cupy.absolute = <ufunc 'cupy_absolute'>

	Elementwise absolute value function.


See also

numpy.absolute [https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute]








	
cupy.sign = <ufunc 'cupy_sign'>

	Elementwise sign function.

It returns -1, 0, or 1 depending on the sign of the input.


See also

numpy.sign [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sign.html#numpy.sign]








	
cupy.maximum = <ufunc 'cupy_maximum'>

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the NaN.


See also

numpy.maximum [https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html#numpy.maximum]








	
cupy.minimum = <ufunc 'cupy_minimum'>

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the NaN.


See also

numpy.minimum [https://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html#numpy.minimum]








	
cupy.fmax = <ufunc 'cupy_fmax'>

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the other operand.


See also

numpy.fmax [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmax.html#numpy.fmax]








	
cupy.fmin = <ufunc 'cupy_fmin'>

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the other operand.


See also

numpy.fmin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmin.html#numpy.fmin]













          

      

      

    

  

    
      
          
            
  
Random Sampling (cupy.random)

CuPy’s random number generation routines are based on cuRAND.
They cover a small fraction of numpy.random.

The big difference of cupy.random from numpy.random is that cupy.random supports dtype option for most functions.
This option enables us to generate float32 values directly without any space overhead.


Sample random data


	
cupy.random.choice(a, size=None, replace=True, p=None)

	Returns an array of random values from a given 1-D array.

Each element of the returned array is independently sampled
from a according to p or uniformly.





	Parameters:	
	a (1-D array-like or int [https://docs.python.org/3/library/functions.html#int]) – If an array-like,
a random sample is generated from its elements.
If an int, the random sample is generated as if a was
cupy.arange(n)

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	replace (boolean) – Whether the sample is with or without replacement

	p (1-D array-like) – The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.






	Returns:	
	An array of a values distributed according to

	p or uniformly.










	Return type:	cupy.ndarray








See also

numpy.random.choice() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html#numpy.random.choice]








	
cupy.random.rand(*size, **kwarg)

	Returns an array of uniform random values over the interval [0, 1).

Each element of the array is uniformly distributed on the half-open
interval [0, 1). All elements are identically and independently
distributed (i.i.d.).





	Parameters:	
	size (tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed. The default is
numpy.float64.






	Returns:	A random array.




	Return type:	cupy.ndarray








See also

numpy.random.rand() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand]








	
cupy.random.randn(*size, **kwarg)

	Returns an array of standard normal random values.

Each element of the array is normally distributed with zero mean and unit
variance. All elements are identically and independently distributed
(i.i.d.).





	Parameters:	
	size (tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.
The default is numpy.float64.






	Returns:	An array of standard normal random values.




	Return type:	cupy.ndarray








See also

numpy.random.randn() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn]








	
cupy.random.randint(low, high=None, size=None)

	Returns a scalar or an array of integer values over [low, high).

Each element of returned values are independently sampled from
uniform distribution over left-close and right-open interval
[low, high).





	Parameters:	
	low (int [https://docs.python.org/3/library/functions.html#int]) – If high is not None,
it is the lower bound of the interval.
Otherwise, it is the upper bound of the interval
and lower bound of the interval is set to 0.

	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval.

	size (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of returned value.






	Returns:	If size is None,
it is single integer sampled.
If size is integer, it is the 1D-array of length size element.
Otherwise, it is the array whose shape specified by size.




	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints












	
cupy.random.random_integers(low, high=None, size=None)

	Return a scalar or an array of integer values over [low, high]

Each element of returned values are independently sampled from
uniform distribution over closed interval [low, high].





	Parameters:	
	low (int [https://docs.python.org/3/library/functions.html#int]) – If high is not None,
it is the lower bound of the interval.
Otherwise, it is the upper bound of the interval
and the lower bound is set to 1.

	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval.

	size (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of returned value.






	Returns:	If size is None,
it is single integer sampled.
If size is integer, it is the 1D-array of length size element.
Otherwise, it is the array whose shape specified by size.




	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints












	
cupy.random.random_sample(size=None, dtype=<type 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().





	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.






	Returns:	An array of uniformly distributed random values.




	Return type:	cupy.ndarray








See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]








	
cupy.random.random(size=None, dtype=<type 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().





	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.






	Returns:	An array of uniformly distributed random values.




	Return type:	cupy.ndarray








See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]








	
cupy.random.ranf(size=None, dtype=<type 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().





	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.






	Returns:	An array of uniformly distributed random values.




	Return type:	cupy.ndarray








See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]








	
cupy.random.sample(size=None, dtype=<type 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().





	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.






	Returns:	An array of uniformly distributed random values.




	Return type:	cupy.ndarray








See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]










Distributions


	
cupy.random.gumbel(loc=0.0, scale=1.0, size=None, dtype=<type 'float'>)

	Returns an array of samples drawn from a Gumbel distribution.

The samples are drawn from a Gumbel distribution with location loc
and scale scale.
Its probability density function is defined as


\[f(x) = \frac{1}{\eta}            \exp\left\{ - \frac{x - \mu}{\eta} \right\}            \exp\left[-\exp\left\{-\frac{x - \mu}{\eta}            \right\}\right],\]

where \(\mu\) is loc and \(\eta\) is scale.





	Parameters:	
	loc (float [https://docs.python.org/3/library/functions.html#float]) – The location of the mode \(\mu\).

	scale (float [https://docs.python.org/3/library/functions.html#float]) – The scale parameter \(\eta\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.






	Returns:	Samples drawn from the Gumbel destribution.




	Return type:	cupy.ndarray








See also

numpy.random.gumbel() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.gumbel.html#numpy.random.gumbel]








	
cupy.random.lognormal(mean=0.0, sigma=1.0, size=None, dtype=<type 'float'>)

	Returns an array of samples drawn from a log normal distribution.

The samples are natural log of samples drawn from a normal distribution
with mean mean and deviation sigma.





	Parameters:	
	mean (float [https://docs.python.org/3/library/functions.html#float]) – Mean of the normal distribution.

	sigma (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of the normal distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.






	Returns:	Samples drawn from the log normal distribution.




	Return type:	cupy.ndarray








See also

numpy.random.lognormal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.lognormal.html#numpy.random.lognormal]








	
cupy.random.normal(loc=0.0, scale=1.0, size=None, dtype=<type 'float'>)

	Returns an array of normally distributed samples.





	Parameters:	
	loc (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Mean of the normal distribution.

	scale (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Standard deviation of the normal distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.






	Returns:	Normally distributed samples.




	Return type:	cupy.ndarray








See also

numpy.random.normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html#numpy.random.normal]








	
cupy.random.standard_normal(size=None, dtype=<type 'float'>)

	Returns an array of samples drawn from the standard normal distribution.

This is a variant of cupy.random.randn().





	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier.






	Returns:	Samples drawn from the standard normal distribution.




	Return type:	cupy.ndarray








See also

numpy.random.standard_normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_normal.html#numpy.random.standard_normal]








	
cupy.random.uniform(low=0.0, high=1.0, size=None, dtype=<type 'float'>)

	Returns an array of uniformly-distributed samples over an interval.

Samples are drawn from a uniform distribution over the half-open interval
[low, high).





	Parameters:	
	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower end of the interval.

	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper end of the interval.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier.






	Returns:	Samples drawn from the uniform distribution.




	Return type:	cupy.ndarray








See also

numpy.random.uniform() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html#numpy.random.uniform]










Random number generator


	
cupy.random.seed(seed=None)

	Resets the state of the random number generator with a seed.

This function resets the state of the global random number generator for
the current device. Be careful that generators for other devices are not
affected.





	Parameters:	seed (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Seed for the random number generator. If None,
it uses os.urandom() [https://docs.python.org/3/library/os.html#os.urandom] if available or time.clock() [https://docs.python.org/3/library/time.html#time.clock]
otherwise. Note that this function does not support seeding by an
integer array.










	
cupy.random.get_random_state()

	Gets the state of the random number generator for the current device.

If the state for the current device is not created yet, this function
creates a new one, initializes it, and stores it as the state for the
current device.





	Returns:	The state of the random number generator for the
device.


	Return type:	RandomState










	
class cupy.random.RandomState(seed=None, method=100)

	Portable container of a pseudo-random number generator.

An instance of this class holds the state of a random number generator. The
state is available only on the device which has been current at the
initialization of the instance.

Functions of cupy.random use global instances of this class.
Different instances are used for different devices. The global state for
the current device can be obtained by the
cupy.random.get_random_state() function.





	Parameters:	
	seed (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Seed of the random number generator. See the
seed() method for detail.

	method (int [https://docs.python.org/3/library/functions.html#int]) – Method of the random number generator. Following values
are available:

cupy.cuda.curand.CURAND_RNG_PSEUDO_DEFAULT
cupy.cuda.curand.CURAND_RNG_XORWOW
cupy.cuda.curand.CURAND_RNG_MRG32K3A
cupy.cuda.curand.CURAND_RNG_MTGP32
cupy.cuda.curand.CURAND_RNG_MT19937
cupy.cuda.curand.CURAND_RNG_PHILOX4_32_10
















	
choice(a, size=None, replace=True, p=None)

	Returns an array of random values from a given 1-D array.


See also

cupy.random.choice() for full document,
numpy.random.choice()








	
interval(mx, size)

	Generate multiple integers independently sampled uniformly from [0, mx].





	Parameters:	
	mx (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval

	size (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of the array or the scalar
returned.






	Returns:	If None, an cupy.ndarray with
shape () is returned.
If int, 1-D array of length size is returned.
If tuple, multi-dimensional array with shape
size is returned.
Currently, each element of the array is numpy.int32.




	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray












	
lognormal(mean=0.0, sigma=1.0, size=None, dtype=<type 'float'>)

	Returns an array of samples drawn from a log normal distribution.


See also

cupy.random.lognormal() for full documentation,
numpy.random.RandomState.lognormal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.lognormal.html#numpy.random.RandomState.lognormal]








	
normal(loc=0.0, scale=1.0, size=None, dtype=<type 'float'>)

	Returns an array of normally distributed samples.


See also

cupy.random.normal() for full documentation,
numpy.random.RandomState.normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.normal.html#numpy.random.RandomState.normal]








	
rand(*size, **kwarg)

	Returns uniform random values over the interval [0, 1).


See also

cupy.random.rand() for full documentation,
numpy.random.RandomState.rand() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.rand.html#numpy.random.RandomState.rand]








	
randn(*size, **kwarg)

	Returns an array of standard normal random values.


See also

cupy.random.randn() for full documentation,
numpy.random.RandomState.randn() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.randn.html#numpy.random.RandomState.randn]








	
random_sample(size=None, dtype=<type 'float'>)

	Returns an array of random values over the interval [0, 1).


See also

cupy.random.random_sample() for full documentation,
numpy.random.RandomState.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.random_sample.html#numpy.random.RandomState.random_sample]








	
seed(seed=None)

	Resets the state of the random number generator with a seed.


See also

cupy.random.seed() for full documentation,
numpy.random.RandomState.seed() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.seed.html#numpy.random.RandomState.seed]








	
standard_normal(size=None, dtype=<type 'float'>)

	Returns samples drawn from the standard normal distribution.


See also

cupy.random.standard_normal() for full documentation,
numpy.random.RandomState.standard_normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.standard_normal.html#numpy.random.RandomState.standard_normal]








	
uniform(low=0.0, high=1.0, size=None, dtype=<type 'float'>)

	Returns an array of uniformly-distributed samples over an interval.


See also

cupy.random.uniform() for full documentation,
numpy.random.RandomState.uniform() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.uniform.html#numpy.random.RandomState.uniform]

















          

      

      

    

  

    
      
          
            
  
Sorting, Searching, and Counting


	
cupy.argmax(a, axis=None, dtype=None, out=None, keepdims=False)

	Returns the indices of the maximum along an axis.





	Parameters:	
	a (cupy.ndarray) – Array to take argmax.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the maximum. a is flattened by
default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis axis is preserved as an axis
of length one.






	Returns:	The indices of the maximum of a along an axis.




	Return type:	cupy.ndarray








See also

numpy.argmax() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html#numpy.argmax]








	
cupy.argmin(a, axis=None, dtype=None, out=None, keepdims=False)

	Returns the indices of the minimum along an axis.





	Parameters:	
	a (cupy.ndarray) – Array to take argmin.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the minimum. a is flattened by
default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis axis is preserved as an axis
of length one.






	Returns:	The indices of the minimum of a along an axis.




	Return type:	cupy.ndarray








See also

numpy.argmin() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html#numpy.argmin]








	
cupy.count_nonzero(a, axis=None)

	Counts the number of non-zero values in the array.





	Parameters:	
	a (cupy.ndarray) – The array for which to count non-zeros.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Axis or tuple of axes along which to
count non-zeros. Default is None, meaning that non-zeros will be
counted along a flattened version of a






	Returns:	
	Number of non-zero values in the array

	along a given axis. Otherwise, the total number of non-zero values
in the array is returned.










	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of int












	
cupy.nonzero(a)

	Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that dimension.





	Parameters:	a (cupy.ndarray) – array


	Returns:	Indices of elements that are non-zero.


	Return type:	tuple of arrays






See also

numpy.nonzero() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html#numpy.nonzero]








	
cupy.flatnonzero(a)

	Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero()[0].





	Parameters:	a (cupy.ndarray) – input array


	Returns:	Output array,
containing the indices of the elements of a.ravel() that are non-zero.


	Return type:	cupy.ndarray






See also

numpy.flatnonzero() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.flatnonzero.html#numpy.flatnonzero]








	
cupy.where(*args, **kwargs)

	







          

      

      

    

  

    
      
          
            
  
Statistics


Order statistics


	
cupy.amin(*args, **kwargs)

	




	
cupy.amax(*args, **kwargs)

	




	
cupy.nanmin(a, axis=None, out=None, keepdims=False)

	Returns the minimum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
is raised and NaN is returned.





	Parameters:	
	a (cupy.ndarray) – Array to take the minimum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the minimum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.






	Returns:	The minimum of a, along the axis if specified.




	Return type:	cupy.ndarray








See also

numpy.nanmin() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nanmin.html#numpy.nanmin]








	
cupy.nanmax(a, axis=None, out=None, keepdims=False)

	Returns the maximum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
is raised and NaN is returned.





	Parameters:	
	a (cupy.ndarray) – Array to take the maximum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the maximum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.






	Returns:	The maximum of a, along the axis if specified.




	Return type:	cupy.ndarray








See also

numpy.nanmax() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nanmax.html#numpy.nanmax]










Means and variances


	
cupy.mean(a, axis=None, dtype=None, out=None, keepdims=False)

	Returns the arithmetic mean along an axis.





	Parameters:	
	a (cupy.ndarray) – Array to compute mean.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute mean. The flattened array is
used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.






	Returns:	The mean of the input array along the axis.




	Return type:	cupy.ndarray








See also

numpy.mean() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean]








	
cupy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

	Returns the variance along an axis.





	Parameters:	
	a (cupy.ndarray) – Array to compute variance.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute variance. The flattened array
is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.






	Returns:	The variance of the input array along the axis.




	Return type:	cupy.ndarray








See also

numpy.var() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var]








	
cupy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

	Returns the standard deviation along an axis.





	Parameters:	
	a (cupy.ndarray) – Array to compute standard deviation.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute standard deviation. The
flattened array is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.






	Returns:	The standard deviation of the input array along the axis.




	Return type:	cupy.ndarray








See also

numpy.std() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std]










Histograms


	
cupy.bincount(x, weights=None, minlength=None)

	Count number of occurrences of each value in array of non-negative ints.





	Parameters:	
	x (cupy.ndarray) – Input array.

	weights (cupy.ndarray) – Weights array which has the same shape as
x.

	minlength (int [https://docs.python.org/3/library/functions.html#int]) – A minimum number of bins for the output array.






	Returns:	
	The result of binning the input array. The length of

	output is equal to max(cupy.max(x) + 1, minlength).










	Return type:	cupy.ndarray








See also

numpy.bincount() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html#numpy.bincount]













          

      

      

    

  

    
      
          
            
  
External Functions


	
cupy.scatter_add(a, slices, value)

	Adds given values to specified elements of an array.

It adds value to the specified elements of a.
If all of the indices target different locations, the operation of
scatter_add() is equivalent to a[slices] = a[slices] + value.
If there are multiple elements targeting the same location,
scatter_add() uses all of these values for addition. On the other
hand, a[slices] = a[slices] + value only adds the contribution from one
of the indices targeting the same location.

Note that just like an array indexing, negative indices are interpreted as
counting from the end of an array.

Also note that scatter_add() behaves identically
to numpy.add.at().

Example

>>> import numpy
>>> import cupy
>>> a = cupy.zeros((6,), dtype=numpy.float32)
>>> i = cupy.array([1, 0, 1])
>>> v = cupy.array([1., 1., 1.])
>>> cupy.scatter_add(a, i, v);
>>> a
array([ 1.,  2.,  0.,  0.,  0.,  0.], dtype=float32)









	Parameters:	
	a (ndarray) – An array that gets added.

	slices – It is integer, slices, ellipsis, numpy.newaxis,
integer array-like, boolean array-like or tuple of them.
It works for slices used for
cupy.ndarray.__getitem__() and
cupy.ndarray.__setitem__().

	v (array-like) – Values to increment a at referenced locations.










Note

It only supports types that are supported by CUDA’s atomicAdd when
an integer array is included in slices.
The supported types are numpy.float32, numpy.int32,
numpy.uint32, numpy.uint64 and numpy.ulonglong.




Note

scatter_add() does not raise an error when indices exceed size of
axes. Instead, it wraps indices.




See also

numpy.add.at().











          

      

      

    

  

    
      
          
            
  
NumPy-CuPy Generic Code Support


	
cupy.get_array_module(*args)

	Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of
the arguments is a cupy.ndarray object, the cupy module is
returned.





	Parameters:	args – Values to determine whether NumPy or CuPy should be used.


	Returns:	cupy or numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] is returned based on the types of
the arguments.


	Return type:	module






Example

A NumPy/CuPy generic function can be written as follows

>>> def softplus(x):
...     xp = cupy.get_array_module(x)
...     return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))















          

      

      

    

  

    
      
          
            
  
Low-Level CUDA Support


Device management


	
class cupy.cuda.Device

	Object that represents a CUDA device.

This class provides some basic manipulations on CUDA devices.

It supports the context protocol. For example, the following code is an
example of temporarily switching the current device:

with Device(0):
    do_something_on_device_0()





After the with statement gets done, the current device is reset to the
original one.





	Parameters:	device (int [https://docs.python.org/3/library/functions.html#int] or cupy.cuda.Device) – Index of the device to manipulate. Be
careful that the device ID (a.k.a. GPU ID) is zero origin. If it is
a Device object, then its ID is used. The current device is
selected by default.


	Variables:	id [https://docs.python.org/3/library/functions.html#id] (int [https://docs.python.org/3/library/functions.html#int]) – ID of this device.






	
__eq__

	x.__eq__(y) <==> x==y






	
__ge__

	x.__ge__(y) <==> x>=y






	
__gt__

	x.__gt__(y) <==> x>y






	
__int__

	




	
__le__

	x.__le__(y) <==> x<=y






	
__long__

	




	
__lt__

	x.__lt__(y) <==> x<y






	
__ne__

	x.__ne__(y) <==> x!=y






	
__repr__

	




	
compute_capability

	Compute capability of this device.

The capability is represented by a string containing the major index
and the minor index. For example, compute capability 3.5 is represented
by the string ‘35’.






	
cublas_handle

	The cuBLAS handle for this device.

The same handle is used for the same device even if the Device instance
itself is different.






	
cusolver_handle

	The cuSOLVER handle for this device.

The same handle is used for the same device even if the Device instance
itself is different.






	
synchronize()

	Synchronizes the current thread to the device.






	
use()

	Makes this device current.

If you want to switch a device temporarily, use the with statement.












Memory management


	
class cupy.cuda.Memory

	Memory allocation on a CUDA device.

This class provides an RAII interface of the CUDA memory allocation.





	Parameters:	
	device (cupy.cuda.Device) – Device whose memory the pointer refers to.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.










	
__int__

	Returns the pointer value to the head of the allocation.






	
__long__

	








	
class cupy.cuda.MemoryPointer

	Pointer to a point on a device memory.

An instance of this class holds a reference to the original memory buffer
and a pointer to a place within this buffer.





	Parameters:	
	mem (Memory) – The device memory buffer.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – An offset from the head of the buffer to the place this
pointer refers.






	Variables:	
	device (cupy.cuda.Device) – Device whose memory the pointer refers to.

	mem (Memory) – The device memory buffer.

	ptr (int [https://docs.python.org/3/library/functions.html#int]) – Pointer to the place within the buffer.










	
__add__

	Adds an offset to the pointer.






	
__iadd__

	Adds an offset to the pointer in place.






	
__int__

	Returns the pointer value.






	
__isub__

	Subtracts an offset from the pointer in place.






	
__long__

	




	
__radd__

	x.__radd__(y) <==> y+x






	
__rsub__

	x.__rsub__(y) <==> y-x






	
__sub__

	Subtracts an offset from the pointer.






	
copy_from()

	Copies a memory sequence from a (possibly different) device or host.

This function is a useful interface that selects appropriate one from
copy_from_device() and
copy_from_host().





	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p] or cupy.cuda.MemoryPointer) – Source memory
pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.














	
copy_from_async()

	Copies a memory sequence from an arbitrary place asynchronously.

This function is a useful interface that selects appropriate one from
copy_from_device_async() and
copy_from_host_async().





	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p] or cupy.cuda.MemoryPointer) – Source memory
pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.














	
copy_from_device()

	Copies a memory sequence from a (possibly different) device.





	Parameters:	
	src (cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.














	
copy_from_device_async()

	Copies a memory from a (possibly different) device asynchronously.





	Parameters:	
	src (cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.














	
copy_from_host()

	Copies a memory sequence from the host memory.





	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.














	
copy_from_host_async()

	Copies a memory sequence from the host memory asynchronously.





	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Source memory pointer. It must be a pinned
memory.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.














	
copy_to_host()

	Copies a memory sequence to the host memory.





	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Target memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.














	
copy_to_host_async()

	Copies a memory sequence to the host memory asynchronously.





	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Target memory pointer. It must be a pinned
memory.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.














	
memset()

	Fills a memory sequence by constant byte value.





	Parameters:	
	value (int [https://docs.python.org/3/library/functions.html#int]) – Value to fill.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.














	
memset_async()

	Fills a memory sequence by constant byte value asynchronously.





	Parameters:	
	value (int [https://docs.python.org/3/library/functions.html#int]) – Value to fill.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.


















	
cupy.cuda.alloc()

	Calls the current allocator.

Use set_allocator() to change the current allocator.





	Parameters:	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation.


	Returns:	Pointer to the allocated buffer.


	Return type:	MemoryPointer










	
cupy.cuda.set_allocator()

	Sets the current allocator.





	Parameters:	allocator (function) – CuPy memory allocator. It must have the same
interface as the cupy.cuda.alloc() function, which takes the
buffer size as an argument and returns the device buffer of that
size.










	
class cupy.cuda.MemoryPool

	Memory pool for all devices on the machine.

A memory pool preserves any allocations even if they are freed by the user.
Freed memory buffers are held by the memory pool as free blocks, and they
are reused for further memory allocations of the same sizes. The allocated
blocks are managed for each device, so one instance of this class can be
used for multiple devices.


Note

When the allocation is skipped by reusing the pre-allocated block, it
does not call cudaMalloc and therefore CPU-GPU synchronization does
not occur. It makes interleaves of memory allocations and kernel
invocations very fast.




Note

The memory pool holds allocated blocks without freeing as much as
possible. It makes the program hold most of the device memory, which may
make other CUDA programs running in parallel out-of-memory situation.







	Parameters:	allocator (function) – The base CuPy memory allocator. It is used for
allocating new blocks when the blocks of the required size are all
in use.






	
free_all_blocks()

	Release free blocks.






	
free_all_free()

	Release free blocks.






	
malloc()

	Allocates the memory, from the pool if possible.

This method can be used as a CuPy memory allocator. The simplest way to
use a memory pool as the default allocator is the following code:

set_allocator(MemoryPool().malloc)









	Parameters:	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory buffer to allocate in bytes.


	Returns:	Pointer to the allocated buffer.


	Return type:	MemoryPointer










	
n_free_blocks()

	Count the total number of free blocks.





	Returns:	The total number of free blocks.


	Return type:	int [https://docs.python.org/3/library/functions.html#int]
















Streams and events


	
class cupy.cuda.Stream(null=False, non_blocking=False)

	CUDA stream.

This class handles the CUDA stream handle in RAII way, i.e., when an Stream
instance is destroyed by the GC, its handle is also destroyed.





	Parameters:	
	null (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stream is a null stream (i.e. the default
stream that synchronizes with all streams). Otherwise, a plain new
stream is created.

	non_blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stream does not synchronize with
the NULL stream.






	Variables:	ptr (cupy.cuda.runtime.Stream) – Raw stream handle. It can be passed to
the CUDA Runtime API via ctypes.








	
add_callback(callback, arg)

	Adds a callback that is called when all queued work is done.





	Parameters:	
	callback (function) – Callback function. It must take three
arguments (Stream object, int error status, and user data
object), and returns nothing.

	arg (object [https://docs.python.org/3/library/functions.html#object]) – Argument to the callback.














	
done

	True if all work on this stream has been done.






	
record(event=None)

	Records an event on the stream.





	Parameters:	event (None [https://docs.python.org/3/library/constants.html#None] or cupy.cuda.Event) – CUDA event. If None, then a
new plain event is created and used.


	Returns:	The recorded event.


	Return type:	cupy.cuda.Event






See also

cupy.cuda.Event.record()








	
synchronize()

	Waits for the stream completing all queued work.






	
wait_event(event)

	Makes the stream wait for an event.

The future work on this stream will be done after the event.





	Parameters:	event (cupy.cuda.Event) – CUDA event.














	
class cupy.cuda.Event(block=False, disable_timing=False, interprocess=False)

	CUDA event, a synchronization point of CUDA streams.

This class handles the CUDA event handle in RAII way, i.e., when an Event
instance is destroyed by the GC, its handle is also destroyed.





	Parameters:	
	block (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event blocks on the
synchronize() method.

	disable_timing (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event does not prepare the
timing data.

	interprocess (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event can be passed to other
processes.






	Variables:	ptr (cupy.cuda.runtime.Stream) – Raw stream handle. It can be passed to
the CUDA Runtime API via ctypes.








	
done

	True if the event is done.






	
record(stream=None)

	Records the event to a stream.





	Parameters:	stream (cupy.cuda.Stream) – CUDA stream to record event. The null
stream is used by default.






See also

cupy.cuda.Stream.record()








	
synchronize()

	Synchronizes all device work to the event.

If the event is created as a blocking event, it also blocks the CPU
thread until the event is done.










	
cupy.cuda.get_elapsed_time(start_event, end_event)

	Gets the elapsed time between two events.





	Parameters:	
	start_event (Event) – Earlier event.

	end_event (Event) – Later event.






	Returns:	Elapsed time in milliseconds.




	Return type:	float [https://docs.python.org/3/library/functions.html#float]














Profiler


	
cupy.cuda.profile(*args, **kwds)

	Enable CUDA profiling during with statement.

This function enables profiling on entering a with statement, and disables
profiling on leaving the statement.

>>> with cupy.cuda.profile():
...    # do something you want to measure
...    pass










	
cupy.cuda.profiler.initialize()

	Initialize the CUDA profiler.

This function initialize the CUDA profiler. See the CUDA document for
detail.





	Parameters:	
	config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the configuration file.

	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the coutput file.

	output_mode (int [https://docs.python.org/3/library/functions.html#int]) – cupy.cuda.profiler.cudaKeyValuePair or
cupy.cuda.profiler.cudaCSV.














	
cupy.cuda.profiler.start()

	Enable profiling.

A user can enable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.






	
cupy.cuda.profiler.stop()

	Disable profiling.

A user can disable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.






	
cupy.cuda.nvtx.Mark()

	Marks an instantaneous event (marker) in the application.

Markes are used to describe events at a specific time during execution of
the application.





	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a marker.

	id_color (int [https://docs.python.org/3/library/functions.html#int]) – ID of color for a marker.














	
cupy.cuda.nvtx.MarkC()

	Marks an instantaneous event (marker) in the application.

Markes are used to describe events at a specific time during execution of
the application.





	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a marker.

	color (uint32) – Color code for a marker.














	
cupy.cuda.nvtx.RangePush()

	Starts a nestead range.

Ranges are used to describe events over a time span during execution of
the application. The duration of a range is defined by the corresponding
pair of RangePush*() to RangePop() calls.





	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range.

	id_color (int [https://docs.python.org/3/library/functions.html#int]) – ID of color for a range.














	
cupy.cuda.nvtx.RangePushC()

	Starts a nestead range.

Ranges are used to describe events over a time span during execution of
the application. The duration of a range is defined by the corresponding
pair of RangePush*() to RangePop() calls.





	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range.

	color (uint32) – ARGB color for a range.














	
cupy.cuda.nvtx.RangePop()

	Ends a nestead range.

Ranges are used to describe events over a time span during execution of
the application. The duration of a range is defined by the corresponding
pair of RangePush*() to RangePop() calls.











          

      

      

    

  

    
      
          
            
  
Kernel binary memoization


	
cupy.memoize()

	Makes a function memoizing the result for each argument and device.

This decorator provides automatic memoization of the function result.





	Parameters:	for_each_device (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it memoizes the results for each
device. Otherwise, it memoizes the results only based on the
arguments.










	
cupy.clear_memo()

	Clears the memoized results for all functions decorated by memoize.









          

      

      

    

  

    
      
          
            
  
User-Defined Kernels

CuPy provides easy ways to define two types of CUDA kernels: elementwise kernels and reduction kernels.
We first describe how to define and call elementwise kernels, and then describe how to define and call reduction kernels.


Basics of elementwise kernels

An elementwise kernel can be defined by the ElementwiseKernel class.
The instance of this class defines a CUDA kernel which can be invoked by the __call__ method of this instance.

A definition of an elementwise kernel consists of four parts: an input argument list, an output argument list, a loop body code, and the kernel name.
For example, a kernel that computes a squared difference \(f(x, y) = (x - y)^2\) is defined as follows:

>>> squared_diff = cupy.ElementwiseKernel(
...    'float32 x, float32 y',
...    'float32 z',
...    'z = (x - y) * (x - y)',
...    'squared_diff')





The argument lists consist of comma-separated argument definitions.
Each argument definition consists of a type specifier and an argument name.
Names of NumPy data types can be used as type specifiers.


Note

n, i, and names starting with an underscore _ are reserved for the internal use.



The above kernel can be called on either scalars or arrays with broadcasting:

>>> x = cupy.arange(10, dtype=np.float32).reshape(2, 5)
>>> y = cupy.arange(5, dtype=np.float32)
>>> squared_diff(x, y)
array([[  0.,   0.,   0.,   0.,   0.],
       [ 25.,  25.,  25.,  25.,  25.]], dtype=float32)
>>> squared_diff(x, 5)
array([[ 25.,  16.,   9.,   4.,   1.],
       [  0.,   1.,   4.,   9.,  16.]], dtype=float32)





Output arguments can be explicitly specified (next to the input arguments):

>>> z = cupy.empty((2, 5), dtype=np.float32)
>>> squared_diff(x, y, z)
array([[  0.,   0.,   0.,   0.,   0.],
       [ 25.,  25.,  25.,  25.,  25.]], dtype=float32)








Type-generic kernels

If a type specifier is one character, then it is treated as a type placeholder.
It can be used to define a type-generic kernels.
For example, the above squared_diff kernel can be made type-generic as follows:

>>> squared_diff_generic = cupy.ElementwiseKernel(
...     'T x, T y',
...     'T z',
...     'z = (x - y) * (x - y)',
...     'squared_diff_generic')





Type placeholders of a same character in the kernel definition indicate the same type.
The actual type of these placeholders is determined by the actual argument type.
The ElementwiseKernel class first checks the output arguments and then the input arguments to determine the actual type.
If no output arguments are given on the kernel invocation, then only the input arguments are used to determine the type.

The type placeholder can be used in the loop body code:

>>> squared_diff_generic = cupy.ElementwiseKernel(
...     'T x, T y',
...     'T z',
...     '''
...         T diff = x - y;
...         z = diff * diff;
...     ''',
...     'squared_diff_generic')





More than one type placeholder can be used in a kernel definition.
For example, the above kernel can be further made generic over multiple arguments:

>>> squared_diff_super_generic = cupy.ElementwiseKernel(
...     'X x, Y y',
...     'Z z',
...     'z = (x - y) * (x - y)',
...     'squared_diff_super_generic')





Note that this kernel requires the output argument explicitly specified, because the type Z cannot be automatically determined from the input arguments.




Raw argument specifiers

The ElementwiseKernel class does the indexing with broadcasting automatically, which is useful to define most elementwise computations.
On the other hand, we sometimes want to write a kernel with manual indexing for some arguments.
We can tell the ElementwiseKernel class to use manual indexing by adding the raw keyword preceding the type specifier.

We can use the special variable i and method _ind.size() for the manual indexing.
i indicates the index within the loop.
_ind.size() indicates total number of elements to apply the elementwise operation.
Note that it represents the size after broadcast operation.

For example, a kernel that adds two vectors with reversing one of them can be written as follows:

>>> add_reverse = cupy.ElementwiseKernel(
...     'T x, raw T y', 'T z',
...     'z = x + y[_ind.size() - i - 1]',
...     'add_reverse')





(Note that this is an artificial example and you can write such operation just by z = x + y[::-1] without defining a new kernel).
A raw argument can be used like an array.
The indexing operator y[_ind.size() - i - 1] involves an indexing computation on y, so y can be arbitrarily shaped and strode.

Note that raw arguments are not involved in the broadcasting.
If you want to mark all arguments as raw, you must specify the size argument on invocation, which defines the value of _ind.size().




Reduction kernels

Reduction kernels can be defined by the ReductionKernel class.
We can use it by defining four parts of the kernel code:


	Identity value: This value is used for the initial value of reduction.

	Mapping expression: It is used for the pre-processing of each element to be reduced.

	Reduction expression: It is an operator to reduce the multiple mapped values.
The special variables a and b are used for its operands.

	Post mapping expression: It is used to transform the resulting reduced values.
The special variable a is used as its input.
Output should be written to the output parameter.



ReductionKernel class automatically inserts other code fragments that are required for an efficient and flexible reduction implementation.

For example, L2 norm along specified axes can be written as follows:

>>> l2norm_kernel = cupy.ReductionKernel(
...     'T x',  # input params
...     'T y',  # output params
...     'x * x',  # map
...     'a + b',  # reduce
...     'y = sqrt(a)',  # post-reduction map
...     '0',  # identity value
...     'l2norm'  # kernel name
... )
>>> x = cupy.arange(10, dtype='f').reshape(2, 5)
>>> l2norm_kernel(x, axis=1)
array([  5.47722578,  15.96871948], dtype=float32)






Note

raw specifier is restricted for usages that the axes to be reduced are put at the head of the shape.
It means, if you want to use raw specifier for at least one argument, the axis argument must be 0 or a contiguous increasing sequence of integers starting from 0, like (0, 1), (0, 1, 2), etc.






Reference


	
class cupy.ElementwiseKernel

	User-defined elementwise kernel.

This class can be used to define an elementwise kernel with or without
broadcasting.

The kernel is compiled at an invocation of the
__call__() method,
which is cached for each device.
The compiled binary is also cached into a file under the
$HOME/.cupy/kernel_cache/ directory with a hashed file name. The cached
binary is reused by other processes.





	Parameters:	
	in_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input argument list.

	out_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output argument list.

	operation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The body in the loop written in CUDA-C/C++.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function. It should be set for
readability of the performance profiling.

	reduce_dims (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the shapes of array arguments are
kept within the kernel invocation. The shapes are reduced
(i.e., the arrays are reshaped without copy to the minimum
dimension) by default. It may make the kernel fast by reducing the
index calculations.

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – Options passed to the nvcc command.

	preamble (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at the
top of the cu file.

	loop_prep (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at
the top of the kernel function definition and above the for
loop.

	after_loop (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at
the bottom of the kernel function definition.










	
__call__

	Compiles and invokes the elementwise kernel.

The compilation runs only if the kernel is not cached. Note that the
kernels with different argument dtypes or dimensions are not
compatible. It means that single ElementwiseKernel object may be
compiled into multiple kernel binaries.





	Parameters:	
	args – Arguments of the kernel.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Range size of the indices. If specified, the variable
n is set to this value. Otherwise, the result of
broadcasting is used to determine the value of n.






	Returns:	Arrays are returned according to the out_params argument of the
__init__ method.
















	
class cupy.ReductionKernel

	User-defined reduction kernel.

This class can be used to define a reduction kernel with or without
broadcasting.

The kernel is compiled at an invocation of the
__call__() method, which is cached for each device.
The compiled binary is also cached into a file under the
$HOME/.cupy/kernel_cache/ directory with a hashed file name. The cached
binary is reused by other processes.





	Parameters:	
	in_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input argument list.

	out_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output argument list.

	map_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mapping expression for input values.

	reduce_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction expression.

	post_map_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mapping expression for reduced values.

	identity (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identity value for starting the reduction.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function. It should be set for
readability of the performance profiling.

	reduce_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of values to be used for reduction. This type
is used to store the special variables a.

	reduce_dims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, input arrays are reshaped without copy
to smaller dimensions for efficiency.

	preamble (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at the
top of the cu file.

	options (tuple of str) – Additional compilation options.










	
__call__()

	Compiles and invokes the reduction kernel.

The compilation runs only if the kernel is not cached. Note that the
kernels with different argument dtypes, ndims, or axis are not
compatible. It means that single ReductionKernel object may be compiled
into multiple kernel binaries.





	Parameters:	args – Arguments of the kernel.


	Returns:	Arrays are returned according to the out_params argument of the
__init__ method.



















          

      

      

    

  

    
      
          
            
  
Testing Modules

CuPy offers testing utilities to support unit testing.
They are under namespace cupy.testing.


Standard Assertions

The assertions have same names as NumPy’s ones.
The difference from NumPy is that they can accept both numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
and cupy.ndarray.


	
cupy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True)

	Raises an AssertionError if objects are not equal up to desired tolerance.





	Parameters:	
	actual (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	desired (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	rtol (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Absolute tolerance.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting
values are appended to the error message.










See also

numpy.testing.assert_allclose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose]








	
cupy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True)

	Raises an AssertionError if objects are not equal up to desired precision.





	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	decimal (int [https://docs.python.org/3/library/functions.html#int]) – Desired precision.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting
values are appended to the error message.










See also

numpy.testing.assert_array_almost_equal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_almost_equal.html#numpy.testing.assert_array_almost_equal]








	
cupy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)

	Compare two arrays relatively to their spacing.





	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	nulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of unit in the last place for tolerance.










See also

numpy.testing.assert_array_almost_equal_nulp() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_almost_equal_nulp.html#numpy.testing.assert_array_almost_equal_nulp]








	
cupy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)

	Check that all items of arrays differ in at most N Units in the Last Place.





	Parameters:	
	a (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	b (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	maxulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of units in the last place
that elements of a and b can differ.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Data-type to convert a and b to if given.










See also

numpy.testing.assert_array_max_ulp() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_max_ulp.html#numpy.testing.assert_array_max_ulp]








	
cupy.testing.assert_array_equal(x, y, err_msg='', verbose=True)

	Raises an AssertionError if two array_like objects are not equal.





	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.










See also

numpy.testing.assert_array_equal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal]








	
cupy.testing.assert_array_list_equal(xlist, ylist, err_msg='', verbose=True)

	Compares lists of arrays pairwise with assert_array_equal.





	Parameters:	
	x (array_like) – Array of the actual objects.

	y (array_like) – Array of the desired, expected objects.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.









Each element of x and y must be either numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
or cupy.ndarray. x and y must have same length.
Otherwise, this function raises AssertionError.
It compares elements of x and y pairwise
with assert_array_equal() and raises error if at least one
pair is not equal.


See also

numpy.testing.assert_array_equal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal]








	
cupy.testing.assert_array_less(x, y, err_msg='', verbose=True)

	Raises an AssertionError if array_like objects are not ordered by less than.





	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The smaller object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The larger object to compare.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.










See also

numpy.testing.assert_array_less() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_less.html#numpy.testing.assert_array_less]










NumPy-CuPy Consistency Check

The following decorators are for testing consistency
between CuPy’s functions and corresponding NumPy’s ones.


	
cupy.testing.numpy_cupy_allclose(rtol=1e-07, atol=0, err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks NumPy results and CuPy ones are close.





	Parameters:	
	rtol (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Absolute tolerance

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.









Decorated test fixture is required to return the arrays whose values are
close between numpy case and cupy case.
For example, this test case checks numpy.zeros and cupy.zeros
should return same value.

>>> import unittest
>>> from cupy import testing
>>> @testing.gpu
... class TestFoo(unittest.TestCase):
...
...     @testing.numpy_cupy_allclose()
...     def test_foo(self, xp):
...         # ...
...         # Prepare data with xp
...         # ...
...
...         xp_result = xp.zeros(10)
...         return xp_result






See also

cupy.testing.assert_allclose()








	
cupy.testing.numpy_cupy_array_almost_equal(decimal=6, err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks NumPy results and CuPy ones are almost equal.





	Parameters:	
	decimal (int [https://docs.python.org/3/library/functions.html#int]) – Desired precision.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.









Decorated test fixture is required to return the same arrays
in the sense of cupy.testing.assert_array_almost_equal()
(except the type of array module) even if xp is numpy or cupy.


See also

cupy.testing.assert_array_almost_equal()








	
cupy.testing.numpy_cupy_array_almost_equal_nulp(nulp=1, name='xp', type_check=True, accept_error=False)

	Decorator that checks results of NumPy and CuPy are equal w.r.t. spacing.





	Parameters:	
	nulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of unit in the last place for tolerance.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.









Decorated test fixture is required to return the same arrays
in the sense of cupy.testing.assert_array_almost_equal_nulp()
(except the type of array module) even if xp is numpy or cupy.


See also

cupy.testing.assert_array_almost_equal_nulp()








	
cupy.testing.numpy_cupy_array_max_ulp(maxulp=1, dtype=None, name='xp', type_check=True, accept_error=False)

	Decorator that checks results of NumPy and CuPy ones are equal w.r.t. ulp.





	Parameters:	
	maxulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of units in the last place
that elements of resulting two arrays can differ.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Data-type to convert the resulting
two array to if given.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.









Decorated test fixture is required to return the same arrays
in the sense of assert_array_max_ulp()
(except the type of array module) even if xp is numpy or cupy.


See also

cupy.testing.assert_array_max_ulp()








	
cupy.testing.numpy_cupy_array_equal(err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks NumPy results and CuPy ones are equal.





	Parameters:	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.









Decorated test fixture is required to return the same arrays
in the sense of numpy_cupy_array_equal()
(except the type of array module) even if xp is numpy or cupy.


See also

cupy.testing.assert_array_equal()








	
cupy.testing.numpy_cupy_array_list_equal(err_msg='', verbose=True, name='xp')

	Decorator that checks the resulting lists of NumPy and CuPy’s one are equal.





	Parameters:	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are appended
to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.









Decorated test fixture is required to return the same list of arrays
(except the type of array module) even if xp is numpy or cupy.


See also

cupy.testing.assert_array_list_equal()








	
cupy.testing.numpy_cupy_array_less(err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks the CuPy result is less than NumPy result.





	Parameters:	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.









Decorated test fixture is required to return the smaller array
when xp is cupy than the one when xp is numpy.


See also

cupy.testing.assert_array_less()








	
cupy.testing.numpy_cupy_raises(name='xp')

	Decorator that checks the NumPy and CuPy throw same errors.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either

	or cupy module. (numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy]) – 









Decorated test fixture is required throw same errors
even if xp is numpy or cupy.


See also

cupy.testing.assert_array_less()










Parameterized dtype Test

The following decorators offer the standard way for
parameterized test with respect to single or the
combination of dtype(s).


	
cupy.testing.for_dtypes(dtypes, name='dtype')

	Decorator for parameterized dtype test.





	Parameters:	
	dtypes (list of dtypes) – dtypes to be tested.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.









This decorator adds a keyword argument specified by name
to the test fixture. Then, it runs the fixtures in parallel
by passing the each element of dtypes to the named
argument.






	
cupy.testing.for_all_dtypes(name='dtype', no_float16=False, no_bool=False)

	Decorator that checks the fixture with all dtypes.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If, True, numpy.float16 is
omitted from candidate dtypes.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If, True, numpy.bool_ is
omitted from candidate dtypes.









dtypes to be tested: numpy.float16 (optional), numpy.float32,
numpy.float64, numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), numpy.dtype('q'),
numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'),
numpy.dtype('L'), numpy.dtype('Q'), and numpy.bool_ (optional).

The usage is as follows.
This test fixture checks if cPickle successfully reconstructs
cupy.ndarray for various dtypes.
dtype is an argument inserted by the decorator.

>>> import unittest
>>> from cupy import testing
>>> @testing.gpu
... class TestNpz(unittest.TestCase):
...
...     @testing.for_all_dtypes()
...     def test_pickle(self, dtype):
...         a = testing.shaped_arange((2, 3, 4), dtype=dtype)
...         s = six.moves.cPickle.dumps(a)
...         b = six.moves.cPickle.loads(s)
...         testing.assert_array_equal(a, b)





Typically, we use this decorator in combination with
decorators that check consistency between NumPy and CuPy like
cupy.testing.numpy_cupy_allclose().
The following is such an example.

>>> import unittest
>>> from cupy import testing
>>> @testing.gpu
... class TestMean(unittest.TestCase):
...
...     @testing.for_all_dtypes()
...     @testing.numpy_cupy_allclose()
...     def test_mean_all(self, xp, dtype):
...         a = testing.shaped_arange((2, 3), xp, dtype)
...         return a.mean()






See also

cupy.testing.for_dtypes()








	
cupy.testing.for_float_dtypes(name='dtype', no_float16=False)

	Decorator that checks the fixture with all float dtypes.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If, True, numpy.float16 is
omitted from candidate dtypes.









dtypes to be tested are numpy.float16 (optional), numpy.float32,
and numpy.float64.


See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()








	
cupy.testing.for_signed_dtypes(name='dtype')

	Decorator that checks the fixture with signed dtypes.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.





dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), and numpy.dtype('q').


See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()








	
cupy.testing.for_unsigned_dtypes(name='dtype')

	Decorator that checks the fixture with all dtypes.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.





dtypes to be tested are numpy.dtype('B'), numpy.dtype('H'),


numpy.dtype('I'), numpy.dtype('L'), and numpy.dtype('Q').



See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()








	
cupy.testing.for_int_dtypes(name='dtype', no_bool=False)

	Decorator that checks the fixture with integer and optionally bool dtypes.





	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.









dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), numpy.dtype('q'),
numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'),
numpy.dtype('L'), numpy.dtype('Q'), and numpy.bool_ (optional).


See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()








	
cupy.testing.for_dtypes_combination(types, names=('dtype', ), full=None)

	Decorator that checks the fixture with a product set of dtypes.





	Parameters:	
	types (list of dtypes) – dtypes to be tested.

	names (list of str) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations
of dtypes will be tested.
Otherwise, the subset of combinations will be tested
(see the description below).









Decorator adds the keyword arguments specified by names
to the test fixture. Then, it runs the fixtures in parallel
with passing (possibly a subset of) the product set of dtypes.
The range of dtypes is specified by types.

The combination of dtypes to be tested changes depending
on the option full. If full is True,
all combinations of types are tested.
Sometimes, such an exhaustive test can be costly.
So, if full is False, only the subset of possible
combinations is tested. Specifically, at first,
the shuffled lists of types are made for each argument
name in names.
Let the lists be D1, D2, ..., Dn
where \(n\) is the number of arguments.
Then, the combinations to be tested will be zip(D1, ..., Dn).
If full is None, the behavior is switched
by setting the environment variable CUPY_TEST_FULL_COMBINATION=1.

For example, let types be [float16, float32, float64]
and names be ['a_type', 'b_type']. If full is True,
then the decorated test fixture is executed with all
\(2^3\) patterns. On the other hand, if full is False,
shuffled lists are made for a_type and b_type.
Suppose the lists are (16, 64, 32) for a_type and
(32, 64, 16) for b_type (prefixes are removed for short).
Then the combinations of (a_type, b_type) to be tested are
(16, 32), (64, 64) and (32, 16).






	
cupy.testing.for_all_dtypes_combination(names=('dtyes', ), no_float16=False, no_bool=False, full=None)

	Decorator that checks the fixture with a product set of all dtypes.





	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.float16 is
omitted from candidate dtypes.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).










See also

cupy.testing.for_dtypes_combination()








	
cupy.testing.for_signed_dtypes_combination(names=('dtype', ), full=None)

	Decorator for parameterized test w.r.t. the product set of signed dtypes.





	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).










See also

cupy.testing.for_dtypes_combination()








	
cupy.testing.for_unsigned_dtypes_combination(names=('dtype', ), full=None)

	Decorator for parameterized test w.r.t. the product set of unsigned dtypes.





	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).










See also

cupy.testing.for_dtypes_combination()








	
cupy.testing.for_int_dtypes_combination(names=('dtype', ), no_bool=False, full=None)

	Decorator for parameterized test w.r.t. the product set of int and boolean.





	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).










See also

cupy.testing.for_dtypes_combination()










Parameterized order Test

The following decorators offer the standard way to parameterize tests with
orders.


	
cupy.testing.for_orders(orders, name='order')

	Decorator to parameterize tests with order.





	Parameters:	
	orders (list of orders) – orders to be tested.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which the specified order is passed.









This decorator adds a keyword argument specified by name
to the test fixtures. Then, the fixtures run by passing each element of
orders to the named argument.






	
cupy.testing.for_CF_orders(name='order')

	Decorator that checks the fixture with orders ‘C’ and ‘F’.





	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which the specified order is passed.






See also

cupy.testing.for_all_dtypes()













          

      

      

    

  

    
      
          
            
  
Environment variables

Here are the environment variables Chainer uses.







	CUPY_CACHE_DIR
	Path to the directory to store kernel cache.
$(HOME)/.cupy.kernel_cache is used by default.
See CuPy Overview for detail.






For install

These environment variables are only used during installation.







	CUDA_PATH
	Path to the directory containing CUDA.
The parent of the directory containing nvcc is used as default.
When nvcc is not found, /usr/local/cuda is used.
See Install Chainer with CUDA for details.











          

      

      

    

  

    
      
          
            
  
Difference between CuPy and NumPy

The interface of CuPy is designed to obey that of NumPy.
However, there are some differeneces.


Cast behavior from float to integer

Some casting behaviors from float to integer are not defined in C++ specification.
The casting from a negative float to unsigned integer and infinity to integer is one of such eamples.
The behavior of NumPy depends on your CPU architecture.
This is Intel CPU result.

>>> np.array([-1], dtype='f').astype('I')
array([4294967295], dtype=uint32)
>>> cupy.array([-1], dtype='f').astype('I')
array([0], dtype=uint32)





>>> np.array([float('inf')], dtype='f').astype('i')
array([-2147483648], dtype=int32)
>>> cupy.array([float('inf')], dtype='f').astype('i')
array([2147483647], dtype=int32)








Boolean values squared

In NumPy implementation, x ** 2 is calculated using multiplication operator as x * x.
Because the result of the multiplication of boolean values is boolean, True ** 2 return boolean value.
However, when you use power operator with other arguments, it returns int values.
If we aligned the behavior of the squared boolean values of CuPy to that of NumPy, we would have to check their values in advance of the calculation.
But it would be slow because it would force CPUs to wait until the calculation on GPUs end.
So we decided not to check its value.

>>> np.array([True]) ** 2
array([ True], dtype=bool)
>>> cupy.array([True]) ** 2
array([1])








Random methods support dtype argument

NumPy’s random value generator does not support dtype option and it always resturns a float32 value.
We support the option in CuPy because cuRAND, which is used in CuPy, supports any types of float values.

>>> np.random.randn(dtype='f')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: randn() got an unexpected keyword argument 'dtype'
>>> cupy.random.randn(dtype='f')    
array(0.10689262300729752, dtype=float32)








Out-of-bounds indices

CuPy handles out-of-bounds indices differently by default from NumPy when
using integer array indexing.
NumPy handles them by raising an error, but CuPy wraps around them.

>>> x = np.array([0, 1, 2])
>>> x[[1, 3]] = 10
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 1 with size 3
>>> x = cupy.array([0, 1, 2])
>>> x[[1, 3]] = 10
>>> x
array([10, 10,  2])








Duplicate values in indices

CuPy’s __setitem__ behaves differently from NumPy when integer arrays
reference the same location multiple times.
In that case, the value that is actually stored is undefined.
Here is an example of CuPy.

>>> a = cupy.zeros((2,))
>>> i = cupy.arange(10000) % 2
>>> v = cupy.arange(10000).astype(np.float)
>>> a[i] = v
>>> a  
array([ 9150.,  9151.])





NumPy stores the value corresponding to the
last element among elements referencing duplicate locations.

>>> a_cpu = np.zeros((2,))
>>> i_cpu = np.arange(10000) % 2
>>> v_cpu = np.arange(10000).astype(np.float)
>>> a_cpu[i_cpu] = v_cpu
>>> a_cpu
array([ 9998.,  9999.])











          

      

      

    

  

    
      
          
            
  
Chainer Contribution Guide

This is a guide for all contributions to Chainer.
The development of Chainer is running on the official repository at GitHub [https://github.com/pfnet/chainer].
Anyone that wants to register an issue or to send a pull request should read through this document.


Classification of Contributions

There are several ways to contribute to Chainer community:


	Registering an issue

	Sending a pull request (PR)

	Sending a question to Chainer User Group [https://groups.google.com/forum/#!forum/chainer]

	Open-sourcing an external example

	Writing a post about Chainer



This document mainly focuses on 1 and 2, though other contributions are also appreciated.




Release and Milestone

We are using GitHub Flow [http://scottchacon.com/2011/08/31/github-flow.html] as our basic working process.
In particular, we are using the master branch for our development, and releases are made as tags.

Releases are classified into three groups: major, minor, and revision.
This classification is based on following criteria:


	Major update contains disruptive changes that break the backward compatibility.

	Minor update contains additions and extensions to the APIs keeping the supported backward compatibility.

	Revision update contains improvements on the API implementations without changing any API specification.



The release classification is reflected into the version number x.y.z, where x, y, and z corresponds to major, minor, and revision updates, respectively.

We set a milestone for an upcoming release.
The milestone is of name ‘vX.Y.Z’, where the version number represents a revision release at the outset.
If at least one feature PR is merged in the period, we rename the milestone to represent a minor release (see the next section for the PR types).

See also API Compatibility Policy.




Issues and PRs

Issues and PRs are classified into following categories:


	Bug: bug reports (issues) and bug fixes (PRs)

	Enhancement: implementation improvements without breaking the interface

	Feature: feature requests (issues) and their implementations (PRs)

	NoCompat: disrupts backward compatibility

	Test: test fixes and updates

	Document: document fixes and improvements

	Example: fixes and improvements on the examples

	Install: fixes installation script

	Contribution-Welcome: issues that we request for contribution (only issues are categorized to this)

	Other: other issues and PRs



Issues and PRs are labeled by these categories.
This classification is often reflected into its corresponding release category: Feature issues/PRs are contained into minor/major releases and NoCompat issues/PRs are contained into major releases, while other issues/PRs can be contained into any releases including revision ones.

On registering an issue, write precise explanations on what you want Chainer to be.
Bug reports must include necessary and sufficient conditions to reproduce the bugs.
Feature requests must include what you want to do (and why you want to do, if needed).
You can contain your thoughts on how to realize it into the feature requests, though what part is most important for discussions.


Warning

If you have a question on usages of Chainer, it is highly recommended to send a post to Chainer User Group [https://groups.google.com/forum/#!forum/chainer] instead of the issue tracker.
The issue tracker is not a place to share knowledge on practices.
We may redirect question issues to Chainer User Group.



If you can write code to fix an issue, send a PR to the master branch.
Before writing your code for PRs, read through the Coding Guidelines.
The description of any PR must contain a precise explanation of what and how you want to do; it is the first documentation of your code for developers, a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI [https://travis-ci.org/pfnet/chainer/] for Linux and Mac OS X, and on AppVeyor [https://ci.appveyor.com/project/pfnet/chainer] for Windows.
Your PR need to pass at least the test for Linux on Travis CI.
After the automatic test passes, some of the core developers will start reviewing your code.
Note that this automatic PR test only includes CPU tests.


Note

We are also running continuous integration with GPU tests for the master branch.
Since this service is running on our internal server, we do not use it for automatic PR tests to keep the server secure.



Even if your code is not complete, you can send a pull request as a work-in-progress PR by putting the [WIP] prefix to the PR title.
If you write a precise explanation about the PR, core developers and other contributors can join the discussion about how to proceed the PR.




Coding Guidelines

We use PEP8 [https://www.python.org/dev/peps/pep-0008/] and a part of OpenStack Style Guidelines [http://docs.openstack.org/developer/hacking/] related to general coding style as our basic style guidelines.

To check your code, use autopep8 and flake8 command installed by hacking package:

$ pip install autopep8 hacking
$ autopep8 --global-config .pep8 path/to/your/code.py
$ flake8 path/to/your/code.py





To check Cython code, use .flake8.cython configuration file:

$ flake8 --config=.flake8.cython path/to/your/cython/code.pyx





The autopep8 supports automatically correct Python code to conform to the PEP 8 style guide:

$ autopep8 --in-place --global-config .pep8 path/to/your/code.py





The flake8 command lets you know the part of your code not obeying our style guidelines.
Before sending a pull request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect.
It does not check some of the style guidelines.
Here is a (not-complete) list of the rules that flake8 cannot check.


	Relative imports are prohibited. [H304]

	Importing non-module symbols is prohibited.

	Import statements must be organized into three parts: standard libraries, third-party libraries, and internal imports. [H306]



In addition, we restrict the usage of shortcut symbols in our code base.
They are symbols imported by packages and sub-packages of chainer.
For example, chainer.Variable is a shortcut of chainer.variable.Variable.
It is not allowed to use such shortcuts in the ``chainer`` library implementation.
Note that you can still use them in tests and examples directories.
Also note that you should use shortcut names of CuPy APIs in Chainer implementation.

Once you send a pull request, your coding style is automatically checked by Travis-CI [https://travis-ci.org/pfnet/chainer/].
The reviewing process starts after the check passes.

The CuPy is designed based on NumPy’s API design. CuPy’s source code and documents contain the original NumPy ones.
Please note the followings when writing the document.


	In order to identify overlapping parts, it is preferable to add some remarks
that this document is just copied or altered from the original one. It is
also preferable to briefly explain the specification of the function in a
short paragraph, and refer to the corresponding function in NumPy so that
users can read the detailed document. However, it is possible to include a
complete copy of the document with such a remark if users cannot summarize
in such a way.

	If a function in CuPy only implements a limited amount of features in the
original one, users should explicitly describe only what is implemented in
the document.






Testing Guidelines

Testing is one of the most important part of your code.
You must test your code by unit tests following our testing guidelines.
Note that we are using the nose package and the mock package for testing, so install nose and mock before writing your code:

$ pip install nose mock





In order to run unit tests at the repository root, you first have to build Cython files in place by running the following command:

$ python setup.py develop





Once the Cython modules are built, you can run unit tests simply by running nosetests command at the repository root:

$ nosetests





It requires CUDA by default.
In order to run unit tests that do not require CUDA, pass --attr='!gpu' option to the nosetests command:

$ nosetests path/to/your/test.py --attr='!gpu'





Some GPU tests involve multiple GPUs.
If you want to run GPU tests with insufficient number of GPUs, specify the number of available GPUs by --eval-attr='gpu<N' where N is a concrete integer.
For example, if you have only one GPU, launch nosetests by the following command to skip multi-GPU tests:

$ nosetests path/to/gpu/test.py --eval-attr='gpu<2'





Some tests spend too much time.
If you want to skip such tests, pass --attr='!slow' option to the nosetests command:

$ nosetests path/to/your/test.py --attr='!slow'





Tests are put into the tests/chainer_tests, tests/cupy_tests and tests/install_tests directories.
These have the same structure as that of chainer, cupy and install directories, respectively.
In order to enable test runner to find test scripts correctly, we are using special naming convention for the test subdirectories and the test scripts.


	The name of each subdirectory of tests must end with the _tests suffix.

	The name of each test script must start with the test_ prefix.



Following this naming convention, you can run all the tests by just typing nosetests at the repository root:

$ nosetests





Or you can also specify a root directory to search test scripts from:

$ nosetests tests/chainer_tests  # to just run tests of Chainer
$ nosetests tests/cupy_tests     # to just run tests of CuPy
$ nosetests tests/install_tests  # to just run tests of installation modules





If you modify the code related to existing unit tests, you must run appropriate commands.


Note

CuPy tests include type-exhaustive test functions which take long time to execute.
If you are running tests on a multi-core machine, you can parallelize the tests by following options:

$ nosetests --processes=12 --process-timeout=1000 tests/cupy_tests





The magic numbers can be modified for your usage.
Note that some tests require many CUDA compilations, which require a bit long time.
Without the process-timeout option, the timeout is set shorter, causing timeout failures for many test cases.



There are many examples of unit tests under the tests directory.
They simply use the unittest package of the standard library.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability.
Test functions that require CUDA must be tagged by the chainer.testing.attr.gpu decorator (or cupy.testing.attr.gpu for testing CuPy APIs):

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
    ...

    @attr.gpu
    def test_my_gpu_func(self):
        ...





The functions tagged by the gpu decorator are skipped if --attr='!gpu' is given.
We also have the chainer.testing.attr.cudnn decorator to let nosetests know that the test depends on cuDNN.

The test functions decorated by gpu must not depend on multiple GPUs.
In order to write tests for multiple GPUs, use chainer.testing.attr.multi_gpu() or cupy.testing.attr.multi_gpu() decorators instead:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
    ...

    @attr.multi_gpu(2)  # specify the number of required GPUs here
    def test_my_two_gpu_func(self):
        ...





If your test requires too much time, add chainer.testing.attr.slow decorator.
The test functions decorated by slow are skipped if --attr='!slow' is given:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
    ...

    @attr.slow
    def test_my_slow_func(self):
        ...






Note

If you want to specify more than two attributes, separate them with a comma such as --attr='!gpu,!slow'.
See detail in the document of nose [https://nose.readthedocs.io/en/latest/plugins/attrib.html#simple-syntax].



Once you send a pull request, your code is automatically tested by Travis-CI [https://travis-ci.org/pfnet/chainer/] with –attr=’!gpu,!slow’ option.
Since Travis-CI does not support CUDA, we cannot check your CUDA-related code automatically.
The reviewing process starts after the test passes.
Note that reviewers will test your code without the option to check CUDA-related code.


Note

Some of numerically unstable tests might cause errors irrelevant to your changes.
In such a case, we ignore the failures and go on to the review process, so do not worry about it.









          

      

      

    

  

    
      
          
            
  
API Compatibility Policy

This document expresses the design policy on compatibilities of Chainer APIs.
Development team should obey this policy on deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers.
Users can decide the level of dependencies on Chainer’s implementations in their codes based on this document.
Developers should read through this document before creating pull requests that contain changes on the interface.
Note that this document may contain ambiguities on the level of supported compatibilities.


Targeted Versions

This policy is applied to Chainer of versions v1.5.1 and higher.
Note that this policy is not applied to Chainer of lower versions.




Versioning and Backward Compatibilities

The updates of Chainer are classified into three levels: major, minor, and revision.
These types have distinct levels of backward compatibilities.


	Major update contains disruptive changes that break the backward compatibility.

	Minor update contains addition and extension to the APIs keeping the supported backward compatibility.

	Revision update contains improvements on the API implementations without changing any API specifications.



Note that we do not support full backward compatibility, which is almost infeasible for Python-based APIs, since there is no way to completely hide the implementation details.




Processes to Break Backward Compatibilities


Deprecation, Dropping, and Its Preparation

Any APIs may be deprecated at some minor updates.
In such a case, the deprecation note is added to the API documentation, and the API implementation is changed to fire deprecation warning (if possible).
There should be another way to reimplement the same things previously written with the deprecated APIs.

Any APIs may be marked as to be dropped in the future.
In such a case, the dropping is stated in the documentation with the major version number on which the API is planned to be dropped, and the API implementation is changed to fire the future warning (if possible).

The actual dropping should be done through the following steps:


	Make the API deprecated.
At this point, users should not need the deprecated API in their new application codes.

	After that, mark the API as to be dropped in the future.
It must be done in the minor update different from that of the deprecation.

	At the major version announced in the above update, drop the API.



Consequently, it takes at least two minor versions to drop any APIs after the first deprecation.




API Changes and Its Preparation

Any APIs may be marked as to be changed in the future for changes without backward compatibility.
In such a case, the change is stated in the documentation with the version number on which the API is planned to be changed, and the API implementation is changed to fire the future warning on the certain usages.

The actual change should be done in the following steps:


	Announce that the API will be changed in the future.
At this point, the actual version of change need not be accurate.

	After the announcement, mark the API as to be changed in the future with version number of planned changes.
At this point, users should not use the marked API in their new application codes.

	At the major update announced in the above update, change the API.








Experimental APIs

Thanks to many contributors, we have introduced many new features to Chainer.

However, we have sometimes released new features only to later notice that their APIs are not appropriate.
The objective of experimental APIs is to avoid such issues by allowing the developer to mark any newly added API as experimental.

Any newly added API can be marked as experimental.
Any API that is not experimental is called stable in this document.


Note

Undocumented behaviors are not considered as APIs. So they are not experimental nor stable.
The treatment of undocumented behaviors are described in Undocumented behaviors section.



Chainer can change the interfaces and documents of experimental APIs at any version up.
This change is not considered as a break of backward compatibility.
Chainer can promote an experimental API to become stable at any minor or major version up.
Once experimental APIs become stable, they cannot revert to experimental again.

When users use experimental APIs for the first time, warnings are raised once for each experimental API,
unless users explicitly disable the emission of the warnings in advance.

See the document of chainer.utils.experimental() how developers mark APIs as experimental
and how users enable or disable the warnings practically.


Note

It is up to developers if APIs should be annotated as experimental or not.
We recommend to make the APIs experimental if they implement large modules or
make a decision from several design choices.






Supported Backward Compatibility

This section defines backward compatibilities that minor updates must maintain.


Documented Interface

Chainer has the official API documentation.
Many applications can be written based on the documented features.
We support backward compatibilities of documented features.
In other words, codes only based on the documented features run correctly with minor/revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details.
For example, attributes outside of the documented APIs should have one or more underscores at the prefix of their names.




Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined.
Undocumented behaviors are not guaranteed to be stable between different minor/revision versions.

Minor update may contain changes to undocumented behaviors.
For example, suppose an API X is added at the minor update.
In the previous version, attempts to use X cause AttributeError.
This behavior is not stated in the documentation, so this is undefined.
Thus, adding the API X in minor version is permissible.

Revision update may also contain changes to undefined behaviors.
Typical example is a bug fix.
Another example is an improvement on implementation, which may change the internal object structures not shown in the documentation.
As a consequence, even revision updates do not support compatibility of pickling, unless the full layout of pickled objects is clearly documented.




Documentation Error

Compatibility is basically determined based on the documentation, though it sometimes contains errors.
It may make the APIs confusing to assume the documentation always stronger than the implementations.
We therefore may fix the documentation errors in any updates that may break the compatibility in regard to the documentation.


Note

Developers MUST NOT fix the documentation and implementation of the same functionality at the same time in revision updates as “bug fix”.
Such a change completely breaks the backward compatibility.
If you want to fix the bugs in both sides, first fix the documentation to fit it into the implementation, and start the API changing procedure described above.






Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other at minor updates.
It does not break the user codes, except the codes depend on how the attributes and properties are implemented.




Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values in minor updates.
It does not break the user codes, except the codes depend on how the methods and callable attributes are implemented.




Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities.
No exception is raised in the future versions with correct usages that the documentation allows, unless the API changing process is completed.

On the other hand, warnings may be added at any minor updates for any APIs.
It means minor updates do not keep backward compatibility of warnings.






Model Format Compatibility

Objects serialized by official serializers that Chainer provides are correctly loaded with the higher (future) versions.
They might not be correctly loaded with Chainer of the lower versions.


Note

Current serialization APIs do not support versioning (at least in v1.6.1).
It prevents us from introducing changes in the layout of objects that support serialization.
We are discussing about introducing versioning in serialization APIs.






Installation Compatibility

The installation process is another concern of compatibilities.
We support environmental compatibilities in the following ways.


	Any changes of dependent libraries that force modifications on the existing environments must be done in major updates.
Such changes include following cases:
	dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

	adding new mandatory dependencies (e.g. adding h5py to setup_requires)





	Supporting optional packages/libraries may be done in minor updates (e.g. supporting h5py in optional features).




Note

The installation compatibility does not guarantee that all the features of Chainer correctly run on supported environments.
It may contain bugs that only occurs in certain environments.
Such bugs should be fixed in some updates.









          

      

      

    

  

    
      
          
            
  
Tips and FAQs


It takes too long time to compile a computational graph. Can I skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels.
CuPy compiles kernels on demand to make kernels optimized to the number of dimensions and element types of input arguments.
Pre-compilation is not available, because we have to compile an exponential number of kernels to support all CuPy functionalities.
This restriction is unavoidable because Python cannot call CUDA/C++ template functions in generic way.
Note that every framework using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as cutorch) and Chainer is whether a kernel is compiled at installation or at the first use.

These compilations should run only at the first use of the kernels.
The compiled binaries are cached to the $(HOME)/.cupy/kernel_cache directory by default.
If you see that compilations run every time you run the same script, then the caching is failed.
Please check that the directory is kept as is between multiple executions of the script.
If your home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel caching directory by setting the CUPY_CACHE_DIR environment variable to an appropriate path.
See CuPy Overview for more details.




mnist example does not converge in CPU mode on Mac OS X

Many users reported that mnist example does not work correctly on Mac OS X.
We are suspecting it is caused by vecLib, that is a default BLAS library installed on Mac OS X.


Note

Mac OS X is not officially supported.
I mean it is not tested continuously on our test server.



We recommend to use other BLAS libraries such as OpenBLAS [http://www.openblas.net/].
We empirically found that it fixes this problem.
It is necessary to reinstall NumPy to use replaced BLAS library.
Here is an instruction to install NumPy with OpenBLAS using Homebrew [http://brew.sh/].

$ brew tap homebrew/science
$ brew install openblas
$ brew install numpy --with-openblas





If you want to install NumPy with pip, use site.cfg [https://github.com/numpy/numpy/blob/master/site.cfg.example] file.

You can check if NumPy uses OpenBLAS with numpy.show_config method.
Check if blas_opt_info refers to openblas.

>>> import numpy
>>> numpy.show_config()
lapack_opt_info:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/usr/local/opt/openblas/lib']
    define_macros = [('HAVE_CBLAS', None)]
    language = c
blas_opt_info:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/usr/local/opt/openblas/lib']
    define_macros = [('HAVE_CBLAS', None)]
    language = c
openblas_info:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/usr/local/opt/openblas/lib']
    define_macros = [('HAVE_CBLAS', None)]
    language = c
openblas_lapack_info:
    libraries = ['openblas', 'openblas']
    library_dirs = ['/usr/local/opt/openblas/lib']
    define_macros = [('HAVE_CBLAS', None)]
    language = c
blas_mkl_info:
    NOT AVAILABLE





See detail about this problem in issue #704 [https://github.com/pfnet/chainer/issues/704].







          

      

      

    

  

    
      
          
            
  
Comparison with Other Frameworks


A table for quick comparison

This table compares Chainer with other popular deep learning frameworks.
We hope it helps you to choose an appropriate framework for the demand.


Note

This chart may be out-dated, since the developers of Chainer do not perfectly follow the latest development status of each framework.
Please report us if you find an out-dated cell.
Requests for new comparison axes are also welcome.













	 
	 
	Chainer
	Theano-based
	Torch7
	Caffe




	Specs
	Scripting
	Python
	Python
	LuaJIT
	Python


	Net definition language
	Python
	Python
	LuaJIT
	Protocol Buffers


	Define-by-Run scheme
	Y
	 
	 
	 


	CPU Array backend
	NumPy
	NumPy
	Tensor
	 


	GPU Array backend
	CuPy
	CudaNdarray [1]
	CudaTensor
	 


	NNs
	Reverse-mode AD
	Y
	Y
	Y
	Y


	Basic RNN support
	Y
	Y
	Y (nnx)
	#2033 [https://github.com/BVLC/caffe/pull/2033]


	Variable-length loops
	Y
	Y (scan)
	 
	 


	Stateful RNNs [2]
	Y
	Y
	Y [6]
	 


	Per-batch architectures
	Y
	 
	 
	 


	Perf
	CUDA support
	Y
	Y
	Y
	Y


	cuDNN support
	Y
	Y
	Y (cudnn.torch)
	Y


	FFT-based convolution
	 
	Y
	Y (fbcunn)
	#544 [https://github.com/BVLC/caffe/pull/544]


	CPU/GPU generic coding [3]
	Y
	[4]
	Y
	 


	Multi GPU (data parallel)
	Y
	Y [7]
	Y (fbcunn)
	Y


	Multi GPU (model parallel)
	Y
	Y [8]
	Y (fbcunn)
	 


	Misc
	Type checking
	Y
	Y
	Y
	N/A


	Model serialization
	Y
	Y (pickle)
	Y
	Y


	Caffe reference model
	Y
	[5]
	Y (loadcaffe)
	Y








	[1]	They are also developing libgpuarray [http://deeplearning.net/software/libgpuarray/]







	[2]	Stateful RNN is a type of RNN implementation that maintains states in the loops. It should enable us to use the states arbitrarily to update them.







	[3]	This row shows whether each array API supports unified codes for CPU and GPU.







	[4]	The array backend of Theano does not have compatible interface with NumPy, though most users write code on Theano variables, which is generic for CPU and GPU.







	[5]	Depending on the frameworks.







	[6]	Also available in the Torch RNN package [https://github.com/Element-Research/rnn]







	[7]	Via Platoon [https://github.com/mila-udem/platoon/]







	[8]	Experimental as May 2016 [http://deeplearning.net/software/theano/tutorial/using_multi_gpu.html]







Benchmarks

We are preparing for the benchmarks.







          

      

      

    

  

    
      
          
            
  
License

Copyright (c) 2015 Preferred Infrastructure, Inc.

Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.


CuPy

The CuPy is designed based on NumPy’s API.
CuPy’s source code and documents contain the original NumPy ones.

Copyright (c) 2005-2016, NumPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright


notice, this list of conditions and the following disclaimer.



	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the NumPy Developers nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.



THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Profiling


time range


	
cupy.prof.TimeRangeDecorator(message=None, color_id=None, argb_color=None)

	Decorator to mark function calls with range in NVIDIA profiler

Decorated function calls are marked as ranges in NVIDIA profiler timeline.

>>> from cupy import prof
>>> @cupy.prof.TimeRangeDecorator()
... def function_to_profile():
...     pass









	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range, default use func.__name__.

	color_id – range color ID

	argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)










See also

cupy.nvtx.range()
cupy.cuda.nvtx.RangePush()
cupy.cuda.nvtx.RangePop()








	
cupy.prof.time_range(*args, **kwds)

	A context manager to describe the enclosed block as a nested range

>>> from cupy import prof
>>> with cupy.prof.time_range('some range in green', color_id=0):
...    # do something you want to measure
...    pass









	Parameters:	
	message – Name of a range.

	color_id – range color ID

	argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)










See also

cupy.cuda.nvtx.RangePush()
cupy.cuda.nvtx.RangePop()













          

      

      

    

  

    
      
          
            
  
Padding


	
cupy.pad(array, pad_width, mode, **keywords)

	Returns padded array. You can specify the padded widths and values.

This function currently supports only mode=constant .





	Parameters:	
	array (array-like) – Input array of rank N.

	pad_width (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Number of values padded
to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) uniquely pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
You cannot specify cupy.ndarray .

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – 
	‘constant’

	Pads with a constant values.





	constant_values (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Used in
constant.
The values are padded for each axis.
((before_1, after_1), ... (before_N, after_N)) uniquely pad
constants for each axis.
((before, after),) yields same before and after constants for each
axis.
(constant,) or int is a shortcut for before = after = constant for
all axes.
Default is 0. You cannot specify cupy.ndarray .






	Returns:	Padded array of rank equal to array with shape increased according
to pad_width .




	Return type:	cupy.ndarray








See also

numpy.pad() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html#numpy.pad]
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