
Chainer Documentation
Release 1.6.2.1

Preferred Networks, inc. and Preferred Infrastructure, inc.

February 17, 2016

Contents

1 Install Guide 3

2 Chainer Tutorial 7

3 Chainer Reference Manual 35

4 CuPy Reference Manual 97

5 Chainer Contribution Guide 169

6 API Compatibility Policy 175

7 Tips and FAQs 179

8 Comparison with Other Frameworks 181

9 Indices and tables 183

Bibliography 185

Python Module Index 187

i

ii

Chainer Documentation, Release 1.6.2.1

This is the Chainer documentation.

Contents 1

http://chainer.org

Chainer Documentation, Release 1.6.2.1

2 Contents

CHAPTER 1

Install Guide

1.1 Before installing Chainer

We recommend these platforms.

• Ubuntu 14.04 LTS 64bit

• CentOS 7 64bit

Chainer is supported on Python 2.7.6+, 3.4.3+, 3.5.0+. Chainer uses C++ compiler such as g++. You need to install it
before installing Chainer. This is typical installation method for each platform:

Ubuntu 14.04
$ apt-get install g++

CentOS 7
$ yum install gcc-c++

If you use old setuptools, upgrade it:

$ pip install -U setuptools

1.2 Install Chainer

Chainer depends on these Python packages:

• Numpy 1.9, 1.10

• Six 1.9

CUDA support

• CUDA 6.5, 7.0, 7.5

• filelock

cuDNN support

• cuDNN v2, v3

Caffe model support

• Python 2.7.6+ (Py3 is not supported)

• Protocol Buffers

3

http://www.ubuntu.com/
https://www.centos.org/
http://www.numpy.org/
https://pythonhosted.org/six/
https://developer.nvidia.com/cuda-zone
https://filelock.readthedocs.org
https://developer.nvidia.com/cudnn
https://developers.google.com/protocol-buffers/

Chainer Documentation, Release 1.6.2.1

All these libraries are automatically installed with pip or setup.py.

HDF5 serialization is optional

• h5py 2.5.0

1.2.1 Install Chainer via pip

We recommend to install Chainer via pip:

$ pip install chainer

1.2.2 Install Chainer from source

You can use setup.py to install Chainer from source:

$ tar zxf chainer-x.x.x.tar.gz
$ cd chainer-x.x.x
$ python setup.py install

1.2.3 When an error occurs...

Use -vvvv option with pip command. That shows all logs of installation. It may helps you:

$ pip install chainer -vvvv

1.2.4 Install Chainer with CUDA

You need to install CUDA Toolkit before installing Chainer. Chainer installer find CUDA automatically.

If you installed CUDA to non-default directory, you need to specify the directory with CUDA_PATH environment
variable:

$ CUDA_PATH=/opt/nvidia/cuda pip install chainer

Note: Chainer installer uses CUDA_PATH environment variable first. If it’s empty, the installer finds nvcc command
from PATH environment variable and use its parent directory. If nvcc is not found, the installer uses default directory,
such as /usr/local/cuda.

Warning: If you want to use sudo to install Chainer, note that sudo command initializes all environment
variables. Please specify CUDA_PATH environment variable inside sudo like this:

$ sudo CUDA_PATH=/opt/nvidia/cuda pip install chainer

1.2.5 Install Chainer with CUDA and cuDNN

cuDNN is a library for Deep Neural Networks that NVIDIA provides. Chainer can use cuDNN. If you want to
enable cuDNN, install cuDNN and CUDA before installing Chainer. We recommend you to install cuDNN to CUDA

4 Chapter 1. Install Guide

http://www.h5py.org/

Chainer Documentation, Release 1.6.2.1

directory. For example if you uses Ubuntu linux, copy .h files to include directory and .so files to lib64
directory:

$ cp /path/to/cudnn.h $CUDA_PATH/include
$ cp /path/to/libcudnn.so* $CUDA_PATH/lib64

The destination directories depend on your environment.

1.2.6 Install Chainer for developes

Chainer uses Cython (>=0.23). Developers need to use Cython to regenerate C++ sources from pyx files. We recom-
mend to use pip with -e option for editable mode:

$ pip install -U cython
$ cd /path/to/chainer/source
$ pip install -e .

Users need not to install Cython as a distribution package of Chainer only contains generated sources.

1.2.7 Support HDF5 serialization

Install h5py manually to activate HDF5 serialization. This feature is optional:

$ pip install h5py

Before installing h5py, you need to install libhdf5. It depends on your environment:

Ubuntu 14.04
$ apt-get install libhdf5-dev

CentOS 7
$ yum -y install epel-release
$ yum install hdf5-devel

1.3 Uninstall Chainer

Use pip to uninstall Chainer:

$ pip uninstall chainer

Note: When you upgrade Chainer, pip sometimes installed various version of Chainer in site-packages. Plese
uninstall it repeatedly until pip returns an error.

1.4 Upgrade Chainer

Just use pip with -U option:

$ pip install -U chainer

1.3. Uninstall Chainer 5

Chainer Documentation, Release 1.6.2.1

1.5 Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it. We recommend to use --no-cache-dir
option as pip sometimes uses cache:

$ pip uninstall chainer
$ pip install chainer --no-cache-dir

When you install Chainer without CUDA, and after that you want to use CUDA, please reinstall Chainer. You need to
reinstall Chainer when you want to upgrade CUDA.

1.6 What “recommend” means?

We tests Chainer automatically with Jenkins. All supported environments are tested in this environment. We cannot
guarantee that Chainer works on other environments.

1.7 FAQ

1.7.1 The installer says “hdf5.h is not found”

You don’t have libhdf5. Please install hdf5. See Before installing Chainer.

1.7.2 MemoryError happens

You maybe failed to install Cython. Please install it manually. See When an error occurs....

1.7.3 Examples says “cuDNN is not enabled”

You failed to build Chainer with cuDNN. If you don’t need cuDNN, ignore this message. Otherwise, retry to install
Chainer with cuDNN. -vvvv option helps you. See Install Chainer with CUDA and cuDNN.

6 Chapter 1. Install Guide

CHAPTER 2

Chainer Tutorial

2.1 Introduction to Chainer

This is the first section of the Chainer Tutorial. In this section, you will learn about the following things:

• Pros and cons of existing frameworks and why we are developing Chainer

• Simple example of forward and backward computation

• Usage of links and their gradient computation

• Construction of chains (a.k.a. “model” in most frameworks)

• Parameter optimization

• Serialization of links and optimizers

After reading this section, you will be able to:

• Compute gradients of some arithmetics

• Write a multi-layer perceptron with Chainer

2.1.1 Core Concept

As mentioned on the front page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so
it must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined
and fixed, and then the user periodically feeds it with minibatches. Since the network is statically defined before any
forward/backward computation, all the logic must be embedded into the network architecture as data. Consequently,
defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note that one can still
produce such a static network definition using imperative languages (e.g. Torch7 and Theano-based frameworks).

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined on-the-fly via the actual forward
computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy
enables to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic
to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of
Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.

Note: In example codes of this tutorial, we assume for simplicity that the following symbols are already imported:

7

Chainer Documentation, Release 1.6.2.1

import numpy as np
import chainer
from chainer import cuda, Function, gradient_check, Variable, optimizers, serializers, utils
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L

These imports appear widely in Chainer’s codes and examples. For simplicity, we omit this idiom in this tutorial.

2.1.2 Forward/Backward Computation

As described above, Chainer uses “Define-by-Run” scheme, so forward computation itself defines the network. In
order to start forward computation, we have to set the input array to Variable object. Here we start with simple
ndarray with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)

Warning: Chainer currently only supports 32-bit float for most computations.

A Variable object has basic arithmetic operators. In order to compute 𝑦 = 𝑥2 − 2𝑥 + 1, just write:

>>> y = x**2 - 2 * x + 1

The resulting y is also a Variable object, whose value can be extracted by accessing the data attribute:

>>> y.data
array([16.], dtype=float32)

What y holds is not only the result value. It also holds the history of computation (or computational graph), which
enables us to compute its differentiation. This is done by calling its backward() method:

>>> y.backward()

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is
computed and stored in the grad attribute of the input variable x:

>>> x.grad
array([8.], dtype=float32)

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays
of intermediate variables for memory efficiency. In order to preserve gradient information, pass the retain_grad
argument to the backward method:

>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward(retain_grad=True)
>>> z.grad
array([-1.], dtype=float32)

All these computations are easily generalized to multi-element array input. Note that if we want to start backward
computation from a variable holding a multi-element array, we must set the initial error manually. This is simply done
by setting the grad attribute of the output variable:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1

8 Chapter 2. Chainer Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([[0., 2., 4.],

[6., 8., 10.]], dtype=float32)

Note: Many functions taking Variable object(s) are defined in the functions module. You can combine them
to realize complicated functions with automatic backward computation.

2.1.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You
can use links to do this. Link is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their
parameters. We will introduce higher level links, but here think links just like functions with parameters.

Note: Actually, these are corresponding to “parameterized functions” in versions up to v1.4.

One of the most frequently-used links is the Linear link (a.k.a. fully-connected layer or affine transformation). It
represents a mathematical function 𝑓(𝑥) = 𝑊𝑥 + 𝑏, where the matrix 𝑊 and the vector 𝑏 are parameters. This
link is corresponding to its pure counterpart linear(), which accepts 𝑥,𝑊, 𝑏 as arguments. A linear link from
three-dimensional space to two-dimensional space is defined by:

>>> f = F.Linear(3, 2)

Note: Most functions and links only accept minibatch input, where the first dimension of input arrays is considered
as the batch dimension. In the above Linear link case, input must have shape of (N, 3), where N is the minibatch size.

Parameters of a link is stored as attributres. Each parameter is an instance of Variable. In the case of Linear link,
two parameters, W and b, are stored. By default, the matrix W is initialized randomly, while the vector b is initialized
with zeros.

>>> f.W.data
array([[1.01847613, 0.23103087, 0.56507462],

[1.29378033, 1.07823515, -0.56423163]], dtype=float32)
>>> f.b.data
array([0., 0.], dtype=float32)

An instance of the Linear link acts like a usual function:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.data
array([[3.1757617 , 1.75755572],

[8.61950684, 7.18090773]], dtype=float32)

Gradients of parameters are computed by backward() method. Note that gradients are accumulated by the method
rather than overwritten. So first you must initialize gradients to zero to renew the computation. It can be done by
calling the zerograds() method.

2.1. Introduction to Chainer 9

Chainer Documentation, Release 1.6.2.1

>>> f.zerograds()

Now we can compute the gradients of parameters by simply calling backward method.

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[5., 7., 9.],

[5., 7., 9.]], dtype=float32)
>>> f.b.grad
array([2., 2.], dtype=float32)

2.1.4 Write a model as a chain

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple
linear layers. We can write complex procedures with parameters by combining multiple links like:

>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)
>>> def my_forward(x):
... h = l1(x)
... return l2(h)

Here the L indicates the chainer.links module. A procedure with parameters defined in this way is hard to reuse.
More Pythonic way is combining the links and procedures into a class:

>>> class MyProc(object):
... def __init__(self):
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)

In order to make it more reusable, we want to support parameter management, CPU/GPU migration support, robust
and flexible save/load features, etc. These features are all supported by the Chain class in Chainer. Then, what we
have to do here is just defining the above class as a subclass of Chain:

>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__(
... l1=L.Linear(4, 3),
... l2=L.Linear(3, 2),
...)
...
... def __call__(self, x):
... h = self.l1(x)
... return self.l2(h)

Note: We often define a single forward method of a link by __call__ operator. Such links and chains are callable
and behave like regular functions of Variables.

It shows how a complex chain is constructed by simpler links. Links like l1 and l2 are called child links of MyChain.
Note that Chain itself inherits Link. It means we can define more complex chains that hold MyChain objects as their
child links.

10 Chapter 2. Chainer Tutorial

Chainer Documentation, Release 1.6.2.1

Another way to define a chain is using the ChainList class, which behaves like a list of links:

>>> class MyChain2(ChainList):
... def __init__(self):
... super(MyChain2, self).__init__(
... L.Linear(4, 3),
... L.Linear(3, 2),
...)
...
... def __call__(self, x):
... h = self[0](x)
... return self[1](h)

ChainList is convenient to use an arbitrary number of links. If the number of links is fixed like above case, the Chain
class is recommended as a base class.

2.1.5 Optimizer

In order to get good values for parameters, we have to optimize them by the Optimizer class. It runs a numerical
optimization algorithm given a link. Many algorithms are implemented in optimizers module. Here we use the
simplest one, called Stochastic Gradient Descent:

>>> model = MyChain()
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)

The method setup() prepares for the optimization given a link.

There are two ways to run optimization. One is manually computing gradients and then call the update() method
with no arguments. Do not forget resetting gradients beforehand!

>>> model.zerograds()
>>> # compute gradient here...
>>> optimizer.update()

The other way is just passing a loss function to the update() method. In this case, zerograds is automatically called
by the update method, so user do not have to call it manually.

>>> def lossfun(args...):
... ...
... return loss
>>> optimizer.update(lossfun, args...)

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook func-
tions to the optimizer. Hook functions are called by the update() method in advance of the actual update. For
example, we can set weight decay regularization by running the next line beforehand:

>>> optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))

Of course, you can write your own hook functions. It should be a function or a callable object, taking the optimizer as
the argument.

2.1.6 Serializer

The last core feature described in this page is serializer. Serializer is a simple interface to serialize or deserialize an
object. Link and Optimizer supports serialization by serializers.

Concrete serializers are defined in the serializers module. It supports NumPy NPZ and HDF5 formats.

2.1. Introduction to Chainer 11

Chainer Documentation, Release 1.6.2.1

For example, we can serialize a link object into NPZ file by the serializers.save_npz() function:

>>> serializers.save_npz('my.model', model)

It saves the parameters of model into the file ’my.model’ in NPZ format. The saved model can be read by the
serializers.load_npz() function:

>>> serializers.load_npz('my.model', model)

Note: Note that only the parameters and the persistent values are serialized by these serialization code. Other
attributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values
by the Link.add_persistent() method. The registered values can be accessed by attributes of the name passed
to the add_persistent method.

The state of an optimizer can also be saved by the same functions:

>>> serializers.save_npz('my.state', optimizer)
>>> serializers.load_npz('my.state', optimizer)

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum
vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to
explicitly save the target link with the optimizer to resume the optimization from saved states.

Support of the HDF5 format is enabled if the h5py package is installed. Serialization and deserialization with the
HDF5 format are almost identical to those with the NPZ format; just replace save_npz() and load_npz() by
save_hdf5() and load_hdf5(), respectively.

2.1.7 Example: Multi-layer Perceptron on MNIST

Now you can solve a multiclass classification task using a multi-layer perceptron. Here we use hand-written digits
dataset called MNIST, which is one of the long-standing de-facto “hello world” of machine learning. This MNIST
example is also found in examples/mnist directory of the official repository.

In order to use MNIST, we prepared load_mnist_data function at examples/mnist/data.py:

>>> import data
>>> mnist = data.load_mnist_data()

The mnist dataset consists of 70,000 grayscale images of size 28x28 (i.e. 784 pixels) and corresponding digit labels.
First, we scale pixels to [0, 1] values, and divide the dataset into 60,000 training samples and 10,000 test samples.

>>> x_all = mnist['data'].astype(np.float32) / 255
>>> y_all = mnist['target'].astype(np.int32)
>>> x_train, x_test = np.split(x_all, [60000])
>>> y_train, y_test = np.split(y_all, [60000])

Next, we want to define the architecture. We use a simple three-layer rectifier network with 100 units per layer as an
example.

>>> class MLP(Chain):
... def __init__(self):
... super(MLP, self).__init__(
... l1=L.Linear(784, 100),
... l2=L.Linear(100, 100),
... l3=L.Linear(100, 10),

12 Chapter 2. Chainer Tutorial

http://yann.lecun.com/exdb/mnist/

Chainer Documentation, Release 1.6.2.1

...)

...

... def __call__(self, x):

... h1 = F.relu(self.l1(x))

... h2 = F.relu(self.l2(h1))

... y = self.l3(h2)

... return y

This link uses relu() as an activation function. Note that the ’l3’ link is the final linear layer whose output
corresponds to scores for the ten digits.

In order to compute loss values or evalute the accuracy of the predictions, we define a classifier chain on top of the
above MLP chain:

>>> class Classifier(Chain):
... def __init__(self, predictor):
... super(Classifier, self).__init__(predictor=predictor)
...
... def __call__(self, x, t):
... y = self.predictor(x)
... self.loss = F.softmax_cross_entropy(y, t)
... self.accuracy = F.accuracy(y, t)
... return self.loss

This Classifier class computes accuracy and loss, and returns the loss value. softmax_cross_entropy() com-
putes the loss value given prediction and groundtruth labels. accuracy() computes the prediction accuracy. We
can set an arbitrary predictor link to an instance of the classifier.

Note that a similar class is defined as chainer.links.Classifier. So instead of using the above example, we
will use this predefined Classifier chain instead.

>>> model = L.Classifier(MLP())
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)

Finally, we can write a learning loop as following:

>>> batchsize = 100
>>> datasize = 60000
>>> for epoch in range(20):
... print('epoch %d' % epoch)
... indexes = np.random.permutation(datasize)
... for i in range(0, datasize, batchsize):
... x = Variable(x_train[indexes[i : i + batchsize]])
... t = Variable(y_train[indexes[i : i + batchsize]])
... optimizer.update(model, x, t)
epoch 0...

Only the last three lines are the code related to Chainer, which are already described above. Note that, in the last line,
we pass model as a loss function.

These three lines can also be rewritten as follows, with explicit gradient computation:

>>> batchsize = 100
>>> datasize = 60000
>>> for epoch in range(20):
... print('epoch %d' % epoch)
... indexes = np.random.permutation(datasize)
... for i in range(0, datasize, batchsize):
... x = Variable(x_train[indexes[i : i + batchsize]])

2.1. Introduction to Chainer 13

Chainer Documentation, Release 1.6.2.1

... t = Variable(y_train[indexes[i : i + batchsize]])

... model.zerograds()

... loss = model(x, t)

... loss.backward()

... optimizer.update()
epoch 0...

You may find that, at each iteration, the network is defined by forward computation, used for backprop, and then
disposed. By leveraging this “Define-by-Run” scheme, you can imagine that recurrent nets with variable length input
are simply handled by just using loop over different length input for each iteration.

After or during optimization, we want to evaluate the model on the test set. It can be achieved simply by calling
forward function:

>>> sum_loss, sum_accuracy = 0, 0
>>> for i in range(0, 10000, batchsize):
... x = Variable(x_test[i : i + batchsize])
... t = Variable(y_test[i : i + batchsize])
... loss = model(x, t)
... sum_loss += loss.data * batchsize
... sum_accuracy += model.accuracy.data * batchsize
...
>>> mean_loss = sum_loss / 10000
>>> mean_accuracy = sum_accuracy / 10000

The example code in the examples/mnist directory contains GPU support, though the essential part is same as the code
in this tutorial. We will review in later sections how to use GPU(s).

2.2 Recurrent Nets and their Computational Graph

In this section, you will learn how to write

• recurrent nets with full backprop,

• recurrent nets with truncated backprop,

• evaluation of networks with few memory.

After reading this section, you will be able to:

• Handle input sequences of variable length

• Truncate upper stream of the network during forward computation

• Use volatile variables to prevent network construction

2.2.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an
input stream 𝑥1, 𝑥2, . . . , 𝑥𝑡, . . . and the initial state ℎ0, a recurrent net iteratively updates its state by ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1),
and at some or every point in time 𝑡, it outputs 𝑦𝑡 = 𝑔(ℎ𝑡). If we expand the procedure along the time axis, it looks
like a regular feed-forward network except that same parameters are periodically used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence
of words, we want to predict the next word at each position without peeking the successive words. Suppose there
are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word
embedding).

14 Chapter 2. Chainer Tutorial

Chainer Documentation, Release 1.6.2.1

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the
chainer.links.LSTM link that implements a fully-connected stateful LSTM layer. This link looks like an ordi-
nary fully-connected layer. On construction, you pass the input and output size to the constructor:

>>> l = L.LSTM(100, 50)

Then, call on this instance l(x) executes one step of LSTM layer:

>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds
its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the
internal state. Then, the next input can be direclty fed to the LSTM instance:

>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)

Based on this LSTM link, let’s write our recurrent network as a new chain:

class RNN(Chain):
def __init__(self):

super(RNN, self).__init__(
embed=L.EmbedID(1000, 100), # word embedding
mid=L.LSTM(100, 50), # the first LSTM layer
out=L.Linear(50, 1000), # the feed-forward output layer

)

def reset_state(self):
self.mid.reset_state()

def __call__(self, cur_word):
Given the current word ID, predict the next word.
x = self.embed(cur_word)
h = self.mid(x)
y = self.out(h)
return y

rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)

Here EmbedID is a link for word embedding. It converts input integers into corresponding fixed-dimensional embed-
ding vectors. The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it
to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_list. Then, we can compute loss values for the word sequence by simple
for loop.

def compute_loss(x_list):
loss = 0
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
return loss

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its
backward() method to compute gradients of the total loss according to the model parameters:

2.2. Recurrent Nets and their Computational Graph 15

Chainer Documentation, Release 1.6.2.1

Suppose we have a list of word variables x_list.
rnn.reset_state()
model.zerograds()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()

Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state()
optimizer.update(compute_loss, x_list)

2.2.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence
is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This
technique is called truncated backprop. It is heuristic, and it makes the gradients biased. However, this technique
works well in practice if the time range is long enough.

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called back-
ward unchaining. It is implemented in the Variable.unchain_backward() method. Backward unchaining
starts from the Variable object, and it chops the computation history backwards from the variable. The chopped vari-
ables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are
no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsec-
tion. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We
can write truncated backprop using the model defined above:

loss = 0
count = 0
seqlen = len(x_list[1:])

rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
count += 1
if count % 30 == 0 or count == seqlen:

model.zerograds()
loss.backward()
loss.unchain_backward()
optimizer.update()

State is updated at model(), and the losses are accumulated to loss variable. At each 30 steps, backprop takes
place at the accumulated loss. Then, the unchain_backward() method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance
holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize
this method to different situations. For example, we can easily extend the above code to use different schedules
between backprop timing and truncation length.

2.2.3 Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables
us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

16 Chapter 2. Chainer Tutorial

Chainer Documentation, Release 1.6.2.1

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation
history. This is enabled by just passing volatile flag to all input variables. Such variables are called volatile
variables.

Volatile variable is created by passing volatile=’on’ at the construction:

x_list = [Variable(..., volatile='on') for _ in range(100)] # list of 100 words
loss = compute_loss(x_list)

Note that we cannot call loss.backward() to compute the gradient here, since the volatile variable does not
remember the computation history.

Volatile variables are also useful to evaluate feed-forward networks to reduce the memory footprint.

Variable’s volatility can be changed directly by setting the Variable.volatile attribute. This enables us to com-
bine a fixed feature extractor network and a trainable predictor network. For example, suppose we want to train a feed-
forward network predictor_func, which is located on top of another fixed pretrained network fixed_func.
We want to train predictor_func without storing the computation history for fixed_func. This is simply done
by following code snippets (suppose x_data and y_data indicate input data and label, respectively):

x = Variable(x_data, volatile='on')
feat = fixed_func(x)
feat.volatile = 'off'
y = predictor_func(feat)
y.backward()

At first, the input variable x is volatile, so fixed_func is executed in volatile mode, i.e. without memorizing the
computation history. Then the intermediate variable feat is manually set to non-volatile, so predictor_func is
executed in non-volatile mode, i.e., with memorizing the history of computation. Since the history of computation is
only memorized between variables feat and y, the backward computation stops at the feat variable.

Warning: It is not allowed to mix volatile and non-volatile variables as arguments to same function. If you want
to create a variable that behaves like a non-volatile variable while can be mixed with volatile ones, use ’auto’
flag instead of ’off’ flag.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to
manage the history of computation (a.k.a. computational graph). The example in the examples/ptb directory
implements truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next
section, we will review how to use GPU(s) in Chainer.

2.3 Using GPU(s) in Chainer

In this section, you will learn about the following things:

• Relationship between Chainer and CuPy

• Basics of CuPy

• Single-GPU usage of Chainer

• Multi-GPU usage of model-parallel computing

• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:

• Use Chainer on a CUDA-enabled GPU

2.3. Using GPU(s) in Chainer 17

Chainer Documentation, Release 1.6.2.1

• Write model-parallel computing in Chainer

• Write data-parallel computing in Chainer

2.3.1 Relationship between Chainer and CuPy

Note: As of the release of v1.3.0, Chainer changes its GPU backend from PyCUDA to CuPy. CuPy covers all features
of PyCUDA used by Chainer, though their interfaces are not compatible.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy.ndarray class is the GPU array
implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables
us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which
enables us to write fast implementations dedicated to GPU.

Note: The chainer.cuda module imports many important symbols from CuPy. For example, the cupy namespace
is referred as cuda.cupy in the Chainer code. Note that the chainer.cudamodule can be imported even if CUDA
is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and
destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since
memory allocation and release in CUDA (i.e. cudaMalloc and cudaFree functions) synchronize CPU and GPU
computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation,
Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy
to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

2.3.2 Basics of cupy.ndarray

Note: CuPy does not require explicit initialization, so cuda.init() function is removed as of v1.3.0.

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy.ndarray class is in its core,
which is a compatible GPU alternative of numpy.ndarray. CuPy implements many functions on cupy.ndarray
objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most
features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy.ndarray from numpy.ndarray is that the content is allocated on the device
memory. The allocation takes place on the current device by default. The current device can be changed by
cupy.cuda.Device object as follows:

with cupy.cuda.Device(1):
x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])

Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a
non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the
chainer.cuda.to_gpu() function copies a numpy.ndarray object to a specified device:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)

It is equivalent to the following code using CuPy:

18 Chapter 2. Chainer Tutorial

http://mathema.tician.de/software/pycuda/
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/index.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):

x_gpu = cupy.array(x_cpu)

Moving a device array to the host can be done by chainer.cuda.to_cpu() as follows:

x_cpu = cuda.to_cpu(x_gpu)

It is equivalent to the following code using CuPy:

with x_gpu.device:
x_cpu = x_gpu.get()

Note: The with statements in these codes are required to select the appropriate CUDA device. If user uses only
one device, these device switching is not needed. chainer.cuda.to_cpu() and chainer.cuda.to_gpu()
functions automatically switch the current device correctly.

Chainer also provides a convenient function chainer.cuda.get_device() to select a device. It accepts an
integer, CuPy array, NumPy array, or None (indicating the current device), and returns an appropriate device object.
If the argument is a NumPy array, then a dummy device object is returned. The dummy device object supports with
statements like above which does nothing. Here are some examples:

cuda.get_device(1).use()
x_gpu1 = cupy.empty((4, 3), dtype='f') # 'f' indicates float32

with cuda.get_device(1):
x_gpu1 = cuda.empty((4, 3), dtype='f')

with cuda.get_device(x_gpu1):
y_gpu1 = x_gpu + 1

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device
switching:

def add1(x):
with cuda.get_device(x):

return x + 1

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the
chainer.cuda.get_array_module() function. This function returns the numpy or cupy module based on
arguments. A CPU/GPU generic function is defined using it like follows:

Stable implementation of log(1 + exp(x))
def softplus(x):

xp = cuda.get_array_module(x)
return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

2.3.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand.
In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_gpu() method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu() method also accepts
a device ID like model.to_gpu(0). In this case, the link object is transferred to the appropriate GPU device. The
current device is used by default.

2.3. Using GPU(s) in Chainer 19

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 1.6.2.1

Then we have to transfer each minibatch to the GPU:

model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]]))
t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))
optimizer.update(model, x, t)

This is almost identical to the code of the original example, we just inserted a call to the cuda.to_gpu() function
to the minibatch arrays.

2.3.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”.
Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means paral-
lelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs
in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers
with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two
GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

(GPU0) input --+--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+--> output
| | |

(GPU1) +--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+

We can use the above MLP chain as following diagram:

(GPU0) input --+--> mlp1 --+--> mlp2 --+--> output
| | |

(GPU1) +--> mlp1 --+--> mlp2 --+

Let’s write a link for the whole network.

class ParallelMLP(Chain):
def __init__(self):

super(ParallelMLP, self).__init__(
mlp1_gpu0=MLP(784, 1000, 2000).to_gpu(0),
mlp1_gpu1=MLP(784, 1000, 2000).to_gpu(1),
mlp2_gpu0=MLP(2000, 1000, 10).to_gpu(0),
mlp2_gpu1=MLP(2000, 1000, 10).to_gpu(1),

)

def __call__(self, x):
assume x is on GPU 0
z0 = self.mlp1_gpu0(x)
z1 = self.mlp1_gpu1(F.copy(x, 1))

sync
h0 = F.relu(z0 + F.copy(z1, 0))
h1 = F.relu(z1 + F.copy(z0, 1))

y0 = self.mlp2_gpu0(h0)

20 Chapter 2. Chainer Tutorial

Chainer Documentation, Release 1.6.2.1

y1 = self.mlp2_gpu1(h1)

sync
y = y0 + F.copy(y1, 0)
return y

Recall that the Link.to_gpu() method returns the link itself. The copy() function copies an input variable to
specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely
transfers an output gradient to the input device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the
above code run asynchronously to the host CPU.

An almost identical example code can be found at examples/mnist/net.py.

2.3.5 Data-parallel Computation on Multiple GPUs

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it
means that a different device does computation on a different subset of the input data. In this subsection, we review
the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The
most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define
a model instance:

model_0 = L.Classifier(MLP(784, 1000, 10))

Recall that the MLP link implements the multi-layer perceptron, and the Classifier link wraps it to provide a
classifier interface. We want to make two copies of this instance on different GPUs. The Link.to_gpu() method
runs in place, so we cannot use it to make a copy. In order to make a copy, we can use Link.copy() method.

model_1 = model_0.copy()
model_0.to_gpu(0)
model_1.to_gpu(1)

The Link.copy() method copies the link into another instance. It just copies the link hierarchy, and does not copy
the arrays it holds.

Then, set up an optimizer:

optimizer = optimizers.SGD()
optimizer.setup(model_0)

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be
aggregated to those of model_0.

Then, we can write a data-parallel learning loop as follows:

batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

x_batch = x_train[indexes[i : i + batchsize]]
y_batch = y_train[indexes[i : i + batchsize]]

2.3. Using GPU(s) in Chainer 21

Chainer Documentation, Release 1.6.2.1

model_0.zerograds()
model_1.zerograds()

loss_0 = model_0(Variable(cuda.to_gpu(x_batch[:batchsize//2], 0)),
Variable(cuda.to_gpu(y_batch[:batchsize//2], 0)))

loss_1 = model_1(Variable(cuda.to_gpu(x_batch[batchsize//2:], 1)),
Variable(cuda.to_gpu(y_batch[batchsize//2:], 1)))

loss_0.backward()
loss_1.backward()

model_0.addgrads(model_1)
optimizer.update()

model_1.copyparams(model_0)

Do not forget initializing the gradients of both model copies! One half of the minibatch is forwarded to GPU 0, the
other half to GPU 1. Then the gradients are accumulated by the Link.addgrads() method. This method adds the
gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual
way. Note that the update only modifies the parameters of model_0. So we must manually copy them to model_1
using Link.copyparams() method.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please
refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define
a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple
(elementwise) CUDA kernel using Chainer’s CUDA utilities.

2.4 Define your own function

In this section, you will learn about the following things:

• How to define a function on variables

• Useful tools to write a function using a GPU

• How to test the function definition

After reading this section, you will be able to:

• Write your own functions

• Define simple kernels in the function definition

2.4.1 Differentiable Functions

Chainer provides a collection of functions in the functions module. It covers typical use cases in deep learning,
so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly and we
cannot cover all possible functions to define unseen architectures. So it is important to learn how to define your own
functions.

First, suppose we want to define an elementwise function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 * 𝑦 + 𝑧. While it is possible to implement
this equation using a combination of the * and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Any function must inherit the Function class. The skeleton
of a function looks like:

22 Chapter 2. Chainer Tutorial

Chainer Documentation, Release 1.6.2.1

class MulAdd(Function):
def forward_cpu(self, inputs):

do forward computation on CPU
return some_tuple

def backward_cpu(self, inputs, grad_outputs):
do backward computation on CPU
return some_tuple

We must implement forward_cpu() and backward_cpu()methods. The non-self arguments of these functions
are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows

class MulAdd(Function):
def forward_cpu(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward_cpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

As per the warning above, the forward_cpu method returns a tuple of single element. Note that all arrays appear-
ing in CPU functions are numpy.ndarray. The forward function is straightforward: It unpacks the input tuple,
computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of
differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in same order and returns them.

By just defining the core computation of forward and backward, Function class provides a chaining logic on it (i.e.
storing the history of computation, etc.).

Note: Assuming we implement a (forward) function 𝑦 = 𝑓(𝑥) which takes as input the vector 𝑥 ∈ R𝑛 and produces
as output a vector 𝑦 ∈ R𝑚. Then the backward method has to compute

𝜆𝑖 =

𝑚∑︁
𝑗=1

𝜕𝑦𝑗
𝜕𝑥𝑖

𝛾𝑗 for 𝑖 = 1 . . . 𝑛

where 𝛾 is the grad_outputs. Note, that the resulting vector 𝜆 must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named
forward_gpu() and backward_gpu():

class MulAdd(Function):
def forward_cpu(self, inputs):

...

2.4. Define your own function 23

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
x, y, z = inputs
w = x * y + z
return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

In GPU methods, arrays are of type cupy.ndarray . We use arithmetic operators defined for this class. These
operators implement the basic elementwise arithmetics.

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can
reduce them to forward() and backward() methods

class MulAdd(Function):
def forward(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function is used as follows:

x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd()(x, y, z)

w = muladd(x, y, z)

24 Chapter 2. Chainer Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

2.4.2 Unified forward/backward methods with NumPy/CuPy functions

CuPy also implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function 𝑓(𝑥, 𝑦) = exp(𝑥) + exp(𝑦). We name
it ExpAdd here. It can be written straight-forward as follows

class ExpAdd(Function):
def forward_cpu(self, inputs):

x, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def backward_cpu(self, inputs, grad_outputs):
x, y = inputs
gz, = grad_outputs

gx = gz * np.exp(x)
gy = gz * np.exp(y)
return gx, gy

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y = inputs
z = cupy.exp(x) + cupy.exp(y)
return z,

def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
x, y = inputs
gz, = grad_outputs

gx = gz * cupy.exp(x)
gy = gz * cupy.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note: Here we used cuda.cupy instead of directly accessing cupy . This is because the cupy module cannot be
imported if the CUDA is not installed. In order to keep the implementation valid in non-CUDA environment, we have
to defer the access to the cupy module. Note that the chainer.cuda module can be imported even if the CUDA is
not installed. Of course, the module in such environment is almost useless, but if the interpreter does not run through
the code accessing CUDA-dedicated functions, the code is still valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in GPU methods.
We can unify these functions using the cuda.get_array_module() function. This function accepts arbitrary
number of arrays, and returns an appropriate module for them. See the following code

class ExpAdd(Function):
def forward(self, inputs):

xp = cuda.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, inputs, grad_outputs):

2.4. Define your own function 25

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 1.6.2.1

xp = cuda.get_array_module(*inputs)
x, y = inputs
gz, = grad_outputs

gx = gz * xp.exp(x)
gy = gz * xp.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module function always returns numpy. We often use the name xp for the variadic module name, which is
analogous to the abbreviation np for NumPy and cp for CuPy.

2.4.3 Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward and backward computations. It might hurt performance, since the interme-
diate temporary arrays are read and written by possibly different GPU cores, which consumes much bandwidth. We
can reduce the number of invocations by defining our own kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to de-
fine elementwise kernels, the cupy.elementwise.ElementwiseKernel class, and Chainer wraps it by
cuda.elementwise() function. Our MulAdd implementation can be improved as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'float32 x, float32 y, float32 z',
'float32 w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
'''

gx = gy * gw;
gy = gx * gw;

''',
'muladd_bwd')(x, y, gw)

26 Chapter 2. Chainer Tutorial

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 1.6.2.1

gz = gw
return gx, gy, gz

cuda.elementwise() function accepts the essential implementation of the kernel function, and returns a kernel
invokation function (actually, it returns ElementwiseKernel object, which is callable). In typical usage, we pass
four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.

3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
cuda.elementwise().

The first one is binary caching: cuda.elementwise() function caches the compiled binary in the
$(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if the given code
matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order to
execute it. cuda.elementwise() function memoizes the arguments and the curent device, and if it is called with
the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'T x, T y, T z',
'T w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'T x, T y, T gw',
'T gx, T gy',
'''

gx = gy * gw;
gy = gx * gw;

''',
'muladd_bwd')(x, y, gw)

2.4. Define your own function 27

Chainer Documentation, Release 1.6.2.1

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.4.4 Links that wrap functions

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps
the function. We have already seen how to define a chain that wraps other links (by inheriting Chain class). Here we
study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and
the parameter array. It can be defined as follows:

class EltwiseParamProduct(Link):
def __init__(self, shape):

By passing a shape of the parameter, the initializer allocates a
parameter variable of the shape.
super(EltwiseParamProduct, self).__init__(W=shape)
self.W.data[...] = np.random.randn(*shape)

def __call__(self, x):
return self.W * x

We can also initialize the parameter after the initialization by the Link.add_param() method.

class EltwiseParamProduct(Link):
def __init__(self, shape):

super(EltwiseParamProduct, self).__init__()
self.add_param('W', shape)
self.W.data[...] = np.random.randn(*shape)

def __call__(self, x):
return self.W * x

Note that the initializer and the add_param() method does not initialize elements of the parameter array. We have
to manually initialize the elements by random values, zeros, etc.

For another example, assume we want to define a simple linear layer. It is already defined as Linear, so this is an
educational example. The linear layer is divided into two parts: a function and its wrapper link. First, we have to
define a function on variables:

class LinearFunction(Function):
def forward(self, inputs):

x, W, b = inputs
return x.dot(W.t) + b,

def backward(self, inputs, grad_outputs):
x, W, b = inputs
gy, = grad_outputs

gx = gy.dot(W)
gW = gy.T.dot(x)
gb = gy.sum(axis=0)
return gx, gW, gb

28 Chapter 2. Chainer Tutorial

Chainer Documentation, Release 1.6.2.1

def linear(x, W, b):
return LinearFunction()(x, W, b)

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is
inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient
module, let’s wrap it into a link:

class Linear(Link):
def __init__(self, in_size, out_size):

super(Linear, self).__init__(W=(out_size, in_size), b=out_size)
self.W.data[...] = np.random.randn(out_size, in_size) / math.sqrt(in_size)
self.b.data.fill(0)

def __call__(self, x):
return linear(x, self.W, self.b)

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase
the memory consumption during the whole forward-backward computation. If you want to train very large networks
on a GPU with limited memory, it is not recommended to cache arrays between forward and backward. There is one
exception for this: caching the output arrays does not change the memory consumption, because they are also held by
the output Variable objects.

Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

2.4.5 Testing Function

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implemen-
tations. Chainer provides simple utilities to help writing unit tests. They are defined in the gradient_check
module.

The most important test utility is the numerical_grad() function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows

x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))

f is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
numerical_grad() are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of sum(f(x)), where sum indicates the summation over all elements. The summation can
be weighted by changing gy. numerical_grad() function also accepts additional eps argument, which indicates
the quantization width of finite differences.

Note: numerical_grad() function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

2.4. Define your own function 29

Chainer Documentation, Release 1.6.2.1

Another utility is assert_allclose() function. This is similar to numpy.testing.assert_allclose()
function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We can mix them in one
invocation of assert_allclose. The default values of optional arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of functions.relu() function

import unittest

class TestReLU(unittest.TestCase):
def test_backward_cpu(self):

x = Variable(np.random.randn(3, 2).astype(np.float32))
y = F.relu(x)
y.grad = np.random.randn(3, 2).astype(np.float32)
y.backward()

f = lambda: (F.relu(x).data,)
gx, = gradient_check.numerical_grad(f, (x.data,), (y.grad,))

gradient_check.assert_allclose(gx, x.grad)

The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines
compute numerical gradient using the same forward function without backward routine. And at last, we compare these
two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing
CPU arrays to GPU arrays.

You can find many examples of function tests under tests/chainer_tests/function_tests directory.

2.5 Type check

In this section, you will learn about the following things:

• Basic usage of type check

• Detail of type information

• Internal mechanism of type check

• More complicated cases

• Call functions

• Typical type check example

After reading this section, you will be able to:

• Write a code to check types of input arguments of your own functions

2.5.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result
by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such
problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is
called just before the forward() method of the Function class. You can override this method to check the
condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

30 Chapter 2. Chainer Tutorial

http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose

Chainer Documentation, Release 1.6.2.1

def check_type_forward(self, in_types):
...

in_types is an instance of utils.type_check.TypeInfoTuple, which is a sub-class of tuple. To get type
information about the first argument, use in_types[0]. If the function gets multiple arguments, we recommend to
use new variables for readability:

x_type, y_type = in_types

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type
equals to 2, write this code:

utils.type_check.expect(x_type.ndim == 2)

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message
like this:

Traceback (most recent call last):
...
InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

2.5.2 Detail of type information

You can access three information of x_type.

• .shape is a tuple of ints. Each value is size of each dimension.

• .ndim is int value representing the number of dimensions. Note that ndim == len(shape)

• .dtype is numpy.dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect(x_type.shape[0] > 0)

You can also check data types with .dtype:

utils.type_check.expect(x_type.dtype == np.float64)

And an error is like this:

Traceback (most recent call last):
...
InvalidType: Expect: in_types[0].dtype == <type 'numpy.float64'>
Actual: float32 != <type 'numpy.float64'>

You can also check kind of dtype. This code checks if the type is floating point

utils.type_check.expect(x_type.dtype.kind == 'f')

You can compare between variables. For example, the following code checks if the first argument and the second
argument have the same length:

utils.type_check.expect(x_type.shape[1] == y_type.shape[1])

2.5. Type check 31

Chainer Documentation, Release 1.6.2.1

2.5.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If x_type is an object containing ndim
member variable, we cannot show such an error message because this equation is evaluated as a boolean value by
Python interpreter.

Actually x_type is a utils.type_check.Expr objects, and doesn’t have a ndim member variable itself.
utils.type_check.Expr represents a syntax tree. x_type.ndim makes a utils.type_check.Expr
object representing (getattr, x_type, ’ndim’). x_type.ndim == 2 makes an object like (eq,
(getattr, x_type, ’ndim’), 2). type_check.expect() gets a utils.type_check.Expr ob-
ject and evaluates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable
error message.

If you want to evaluate a utils.type_check.Expr object, call eval() method:

actual_type = x_type.eval()

actual_type is an instance of TypeInfo, while x_type is an instance of utils.type_check.Expr. In
the same way, x_type.shape[0].eval() returns an int value.

2.5.4 More powerful methods

utils.type_check.Expr class is more powerful. It supports all mathematical operators such as + and *. You
can write a condition that the first dimension of x_type is the first dimension of y_type times four:

utils.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)

When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

Traceback (most recent call last):
...
InvalidType: Expect: in_types[0].shape[0] == in_types[1].shape[0] * 4
Actual: 3 != 4

To compare a member variable of your function, wrap a value with utils.type_check.Variable to show
readable error message:

x_type.shape[0] == utils.type_check.Variable(self.in_size, "in_size")

This code can check the equivalent condition below:

x_type.shape[0] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter
code shows unreadable error message:

InvalidType: Expect: in_types[0].shape[0] == 4 # what does '4' mean?
Actual: 3 != 4

Note that the second argument of utils.type_check.Variable is only for readability.

The former shows this message:

InvalidType: Expect: in_types[0].shape[0] == in_size # OK, `in_size` is a value that is given to the constructor
Actual: 3 != 4 # You can also check actual value here

32 Chapter 2. Chainer Tutorial

Chainer Documentation, Release 1.6.2.1

2.5.5 Call functions

How to check summation of all values of shape? utils.type_check.Expr also supports function call:

sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)

Why do we need to wrap the function numpy.sum with utils.type_check.Variable? x_type.shape
is not a tuple but an object of utils.type_check.Expr as we have seen before. Therefore,
numpy.sum(x_type.shape) fails. We need to evaluate this function lazily.

The above example produces an error message like this:

Traceback (most recent call last):
...
InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10

2.5.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate
utils.type_check.Expr and get its result value with eval() method. Then check the condition and show
warning message by hand:

x_shape = x_type.shape.eval() # get actual shape (int tuple)
if not more_complicated_condition(x_shape):

expect_msg = 'Shape is expected to be ...'
actual_msg = 'Shape is ...'
raise utils.type_check.InvalidType(expect_msg, actual_msg)

Please write a readable error message. This code generates the following error message:

Traceback (most recent call last):
...
InvalidType: Expect: Shape is expected to be ...
Actual: Shape is ...

2.5.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect(in_types.size() == 2)

in_types.size() returns a utils.type_check.Expr object representing the number of arguments. You
can check it in the same way.

And then, get each type:

x_type, y_type = in_types

Don’t get each value before checking in_types.size(). When the number of argument is illegal,
type_check.expect might output unuseful error messages. For example, this code doesn’t work when the size
of in_types is 0:

2.5. Type check 33

Chainer Documentation, Release 1.6.2.1

utils.type_check.expect(
in_types.size() == 2,
in_types[0].ndim == 3,

)

After that, check each type:

utils.type_check.expect(
x_type.dtype == np.float32,
x_type.ndim == 3,
x_type.shape[1] == 2,

)

The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.

34 Chapter 2. Chainer Tutorial

CHAPTER 3

Chainer Reference Manual

3.1 Core functionalities

3.1.1 Variable

class chainer.Variable(data, volatile=OFF, name=None)
Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy.ndarray or cupy.ndarray .

A Variable object may be constructed in two ways: by the user or by some function. When a variable is created
by some function as one of its outputs, the variable holds a reference to that function. This reference is used in
error backpropagation (a.k.a. backprop). It is also used in backward unchaining. A variable that does not hold
a reference to its creator is called a root variable. A variable is root if it is created by the user, or if the reference
is deleted by unchain_backward().

Users can disable this chaining behavior by setting the volatile flag for the initial variables. When a function
gets volatile variables as its inputs, the output variables do not hold references to the function. This acts like
unchaining on every function application.

Parameters

• data (array) – Initial data array.

• volatile (Flag) – Volatility flag. String (‘on’, ‘off’, or ‘auto’) or boolean values can be
used, too.

• name (str) – Name of the variable.

data
Data array of type either numpy.ndarray or cupy.ndarray .

grad
Gradient array. It is None until backprop reaches this variable.

creator
The function who creates this variable. It is None if the variable is not created by any function.

volatile
Ternary Flag object. If ON, the variable does not keep track of any function applications. See Flag for
the detail of ternary flags.

__len__()
Returns the number of elements of the data array.

Returns the number of elements of the data array.

35

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#str
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

Return type int

addgrad(var)
Accumulates the gradient array from given source variable.

This method just runs self.grad += var.grad, except that the accumulation is even done across
the host and different devices.

Parameters var (Variable) – Source variable.

backward(retain_grad=False)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, Function.backward() is called on each Function object appearing in the backward
graph starting from this variable. The backward graph is represented by backward references from vari-
ables to their creators, and from functions to their inputs. The backprop stops at all root variables. Some
functions set None as gradients of some inputs, where further backprop does not take place at such input
variables.

This method uses grad as the initial error array. User can manually set a gradient array before calling
this method. If data contains only one element (i.e., it is scalar) and grad is None, then this method
automatically complements 1.0 as the initial error. This is useful on starting backprop from some scalar
loss value.

Parameters retain_grad (bool) – If True, the gradient arrays of all intermediate variables
are kept. Otherwise, grad of the intermediate variables are set to None on appropriate
timing, which may reduce the maximum memory consumption.

In most cases of training some model, the purpose of backprop is to compute gradients of
parameters, not of variables, so it is recommended to set this flag False.

copydata(var)
Copies the data array from given source variable.

This method just copies the data attribute from given variable to this variable, except that the copy is even
done across the host and different devices.

Parameters var (Variable) – Source variable.

label
Short text that represents the function.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

to_cpu()
Copies the data and gradient arrays to CPU.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

unchain_backward()
Deletes references between variables and functions backward.

After this method completes, intermediate variables and functions that are not referenced from anywhere
are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function,
i.e. this variable becomes root in the computation graph. It indicates that backprop after unchaining stops
at this variable. This behavior is useful to implement truncated BPTT.

36 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

zerograd()
Initializes the gradient array by zeros.

3.1.2 Flag

class chainer.Flag
Ternary flag object for variables.

It takes three values: ON, OFF, and AUTO.

ON and OFF flag can be evaluated as a boolean value. These are converted to True and False, respectively.
AUTO flag cannot be converted to boolean. In this case, ValueError is raised.

Parameters name (str, bool, or None) – Name of the flag. Following values are allowed:

• ’on’, ’ON’, or True for ON value

• ’off’, ’OFF’, or False for OFF value

• ’auto’, ’AUTO’, or None for AUTO value

chainer.ON = ON
Equivalent to Flag(‘on’).

chainer.OFF = OFF
Equivalent to Flag(‘off’).

chainer.AUTO = AUTO
Equivalent to Flag(‘auto’).

chainer.flag.aggregate_flags(flags)
Returns an aggregated flag given a sequence of flags.

If both ON and OFF are found, this function raises an error. Otherwise, either of ON and OFF that appeared is
returned. If all flags are AUTO, then it returns AUTO.

Parameters flags (sequence of Flag) – Input flags.

Returns The result of aggregation.

Return type Flag

3.1.3 Function

class chainer.Function
Function on variables with backpropagation ability.

All function implementations defined in chainer.functions inherit this class.

The main feature of this class is keeping track of function applications as a backward graph. When a function is
applied to Variable objects, its forward() method is called on data fields of input variables, and at the
same time it chains references from output variables to the function and from the function to its inputs.

Note: As of v1.5, a function instance cannot be used twice in any computational graphs. In order to reuse
a function object multiple times, use copy.copy() before the function applications to make a copy of the
instance.

3.1. Core functionalities 37

https://docs.python.org/2/library/copy.html#copy.copy

Chainer Documentation, Release 1.6.2.1

This restriction also means that we cannot make a stateful function anymore. For example, it is now not allowed
to let a function hold parameters. Define a function as a pure (stateless) procedure, and use Link to combine it
with parameter variables.

Example

Let x an instance of Variable and f an instance of Function taking only one argument. Then a line

>>> y = f(x)

computes a new variable y and creates backward references. Actually, backward references are set as per the
following diagram:

x <--- f <--- y

If an application of another function g occurs as

>>> z = g(x)

then the graph grows with a branch:

|--- f <--- y
x <-+

|--- g <--- z

Note that the branching is correctly managed on backward compuatation, i.e. the gradients from f and g are
accumulated to the gradient of x.

Every function implementation should provide forward_cpu(), forward_gpu(), backward_cpu()
and backward_gpu(). Alternatively, one can provide forward() and backward() instead of separate
methods. Backward methods have default implementations that just return None, which indicates that the
function is non- differentiable.

inputs
A tuple or list of input variables.

outputs
A tuple or list of output variables.

type_check_enable
When it is True, the function checks types of input arguments. Set CHAINER_TYPE_CHECK environ-
ment variable 0 to disable type check, or set the variable directly in your own program.

__call__(*inputs)
Applies forward propagation with chaining backward references.

Basic behavior is expressed in documentation of Function class.

Note: If the data attribute of input variables exist on GPU device, then, before it calls forward()
method, the appropriate device is selected, so in most cases implementers do not need to take care of
device selection.

Parameters inputs – Tuple of input Variable objects. The volatile flags of all input vari-
ables must agree.

Returns One Variable object or a tuple of multiple Variable objects.

38 Chapter 3. Chainer Reference Manual

Chainer Documentation, Release 1.6.2.1

backward(inputs, grad_outputs)
Applies backprop to output gradient arrays.

It delegates the procedure to backward_cpu() or backward_gpu() by default. Which it selects is
determined by the type of input arrays and output gradient arrays. Implementations of Function must
implement either cpu/gpu methods or this method, if the function is intended to be backprop-ed.

Parameters

• inputs – Tuple of input arrays.

• grad_outputs – Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be None, if the function is not
differentiable on inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_cpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters

• inputs – Tuple of input numpy.ndarray object(s).

• grad_outputs – Tuple of output gradient numpy.ndarray object(s).

Returns Tuple of input gradient numpy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_gpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters

• inputs – Tuple of input cupy.ndarray object(s).

• grad_outputs – Tuple of output gradient cupy.ndarray object(s).

Returns Tuple of input gradient cupy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

check_type_forward(in_types)
Checks types of input data before forward propagation.

Before forward() is called, this function is called. You need to validate types of input data in this
function using the type checking utilities.

3.1. Core functionalities 39

https://docs.python.org/2/library/functions.html#tuple
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple

Chainer Documentation, Release 1.6.2.1

Parameters in_types (TypeInfoTuple) – The type information of input data for
forward().

forward(inputs)
Applies forward propagation to input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which it selects is
determined by the type of input arrays. Implementations of Function must implement either cpu/gpu
methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_cpu(inputs)
Applies forward propagation to input arrays on CPU.

Parameters inputs – Tuple of numpy.ndarray object(s).

Returns Tuple of numpy.ndarray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_gpu(inputs)
Applies forward propagation to input arrays on GPU.

Parameters inputs – Tuple of cupy.ndarray object(s).

Returns Tuple of cupy.ndarray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

unchain()
Purges in/out variables and this function itself from the graph.

This method is called from Variable.unchain_backward() method.

3.1.4 Link and Chain

class chainer.Link(**params)
Building block of model definitions.

Link is a building block of neural network models that support various features like handling parameters, defin-
ing network fragments, serialization, etc.

40 Chapter 3. Chainer Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#tuple

Chainer Documentation, Release 1.6.2.1

Link is the primitive structure for the model definitions. It supports management of parameter variables
and persistent values that should be incorporated to serialization. Parameters are variables registered via the
add_param() method, or given to the initializer method. Persistent values are arrays, scalars, or any other
serializable values registered via the add_persistent() method.

Note: Whereas arbitrary serializable objects can be registered as persistent values, it is strongly recommended
to just register values that should be treated as results of learning. A typical example of persistent values is ones
computed during training and required for testing, e.g. running statistics for batch normalization.

Parameters and persistent values are referred by their names. They can be accessed as attributes of the names.
Link class itself manages the lists of names of parameters and persistent values to distinguish parameters and
persistent values from other attributes.

Link can be composed into more complex models. This composition feature is supported by child classes like
Chain and ChainList. One can create a chain by combining one or more links. See the documents for these
classes for details.

As noted above, Link supports the serialization protocol of the Serializer class. Note that only parameters
and persistent values are saved and loaded. Other attributes are considered as a part of user program (i.e. a
part of network definition). In order to construct a link from saved file, other attributes must be identically
reconstructed by user codes.

Example

This is a simple example of custom link definition. Chainer itself also provides many links defined under the
links module. They might serve as examples, too.

Consider we want to define a simple primitive link that implements a fully-connected layer based on the
linear() function. Note that this function takes input units, a weight variable, and a bias variable as ar-
guments. Then, the fully-connected layer can be defined as follows:

import chainer
import chainer.functions as F
import numpy as np

class LinearLayer(chainer.Link):

def __init__(self, n_in, n_out):
Parameters are initialized as a numpy array of given shape.
super(LinearLayer, self).__init__(

W=(n_out, n_in),
b=(n_out,),

)
self.W.data[...] = np.random.randn(n_out, n_in)
self.b.data.fill(0)

def __call__(self, x):
return F.linear(x, self.W, self.b)

This example shows that a user can define arbitrary parameters and use them in any methods. Links typically
implement the __call__ operator.

Parameters params – Shapes of initial parameters. The keywords are used as their names. The
names are also set to the parameter variables.

3.1. Core functionalities 41

Chainer Documentation, Release 1.6.2.1

name
str

Name of this link, given by the parent chain (if exists).

add_param(name, shape, dtype=<type ‘numpy.float32’>)
Registers a parameter to the link.

The registered parameter is saved and loaded on serialization and deserialization, and involved in the
optimization. The data and gradient of the variable are initialized by NaN arrays.

The parameter is set to an attribute of the link with the given name.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array.

• dtype – Data type of the parameter array.

add_persistent(name, value)
Registers a persistent value to the link.

The resitered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

copy()
Copies the link hierearchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter
variables are also shallowly copied. It means that the parameter variables of copied one are different from
ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

42 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Chainer Documentation, Release 1.6.2.1

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams()
Returns a generator of all (path, param) pairs under the hierarchy.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params()
Returns a generator of all parameters under the link hierarchy.

Returns A generator object that generates all parameters.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copoied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy .

zerograds()
Initializes all gradient arrays by zero.

This method should be called before the backward computation at every iteration of the optimizations.

class chainer.Chain(**links)
Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural net models consist of many reusable
fragments, and each model itself might be embedded into a larger learnable system. Chain enables us to write a

3.1. Core functionalities 43

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 1.6.2.1

neural net based on composition, without bothering about routine works like collecting parameters, serialization,
copying the structure with parameters shared, etc.

This class actually provides a way to compose one or more links into one structure. A chain can contain one or
more child links. Child link is a link registered to the chain with its own name. The child link is stored to an
attribute of the chain with the name. User can write a whole model or a fragment of neural nets as a child class
of Chain.

Each chain itself is also a link. Therefore, one can combine chains into higher-level chains. In this way, links
and chains construct a link hierarchy. Link hierarchy forms a tree structure, where each node is identified by the
path from the root. The path is represented by a string like a file path in UNIX, consisting of names of nodes on
the path, joined by slashes /.

Example

This is a simple example of custom chain definition. Chainer itself also provides some chains defined under the
links module. They might serve as examples, too.

Consider we want to define a multi-layer perceptron consisting of two hidden layers with rectifiers as activation
functions. We can use the Linear link as a building block:

import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
Create and register three layers for this MLP
super(MultiLayerPerceptron, self).__init__(

layer1=L.Linear(n_in, n_hidden),
layer2=L.Linear(n_hidden, n_hidden),
layer3=L.Linear(n_hidden, n_out),

)

def __call__(self, x):
Forward propagation
h1 = F.relu(self.layer1(x))
h2 = F.relu(self.layer2(h1))
return self.layer3(h2)

Child links are registered via the initializer method. They also can be registered by the add_link() method.
The forward propagation is often implemented as The __call__ operator as the above example, though it is
not mandatory.

Parameters links – Child links. The keywords are used as their names. The names are also set to
the links.

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Regsiters a child link to this chain.

The registered link is saved and loaded on serialization and deserialization, and involved in the optimiza-
tion. The registered link is called a child. The child link is set to an attribute of the chain with the given
name.

44 Chapter 3. Chainer Reference Manual

Chainer Documentation, Release 1.6.2.1

This method also sets the name attribute of the registered link. If the given link already has the name
attribute set, then it raises an error.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

class chainer.ChainList(*links)
Composable link with list-like interface.

This is another example of compositional link. Unlike Chain, this class can be used like a list of child links.
Each child link is indexed by a non-negative integer, and it maintains the current number of registered child
links. The add_link() method inserts a new link at the end of the list. It is useful to write a chain with
arbitrary number of child links, e.g. an arbitrarily deep multi-layer perceptron.

Note that this class does not implement all methods of list.

Parameters links – Initial child links.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns a number of children.

add_link(link)
Registers a child link to this chain.

The registered link is saved and loaded on serialization and deserialization, and involved in the optimiza-
tion. The registered link is called a child. The child link is accessible via children() generator, which
returns a generator running through the children in registered order.

This method also sets the name attribute of the registered link. If the given link already has the name
attribute set, then it raises an error.

Parameters link (Link) – The link object to be registered.

3.1.5 Optimizer

class chainer.Optimizer
Base class of all numerical optimizers.

This class provides basic features for all optimization methods. It optimizes parameters of a target link. The
target link is registered via the setup()method, and then the update()method updates its parameters based
on a given loss function.

Each optimizer implementation must be defined as a child class of Optimizer. It must override update()
method. An optimizer can use internal states each of which is tied to one of the parameters. State is a
dictionary of serializable values (typically arrays of size same as the corresponding parameters). In order
to use state dictionaries, the optimizer must override init_state() method (or its CPU/GPU versions,
init_state_cpu() and init_state_gpu()).

If the optimizer is based on single gradient computation (like most first-order methods), then it should inherit
GradientMethod, which adds some features dedicated for the first order methods.

3.1. Core functionalities 45

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#list
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Optimizer instance also supports hook functions. Hook function is registered by the add_hook() method.
Each hook function is called in registration order in advance of the actual parameter update.

target
Target link object. It is set by the setup() method.

t
Number of update steps. It must be incremented by the update() method.

epoch
Current epoch. It is incremented by the new_epoch() method.

accumulate_grads(grads)
Accumulates gradients from other source.

This method just adds given gradient arrays to gradients that this optimizer holds. It is typically used in
data-parallel optimization, where gradients for different shards are computed in parallel and aggregated by
this method. This method correctly treats multiple GPU devices.

Parameters grads (Iterable) – Iterable of gradient arrays to be accumulated.

Deprecated since version v1.5: Use the chainer.Link.addgrads() method of the target link in-
stead.

add_hook(hook, name=None)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depdns on the
optimization method.

Parameters

• hook (function) – Hook function. It accepts the optimizer object.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

call_hooks()
Invokes hook functions in registration order.

clip_grads(maxnorm)
Clips the norm of whole gradients up to the threshold.

Parameters maxnorm (float) – Threshold of gradient L2 norm.

Deprecated since version v1.5: Use the GradientClipping hook function instead.

compute_grads_norm()
Computes the norm of whole gradients.

Returns L2 norm of whole gradients, i.e. square root of sum of square of all gradient elements.

Return type float

Warning: This method returns a CPU-computed value, which means that this method synchronizes
between CPU and GPU if at least one of the gradients reside on the GPU.

Deprecated since version v1.5.

init_state(param, state)
Initializes the optimizer state corresponding to the parameter.

This method should add needed items to the state dictionary. Each optimizer implementation that uses
its own states should override this method or CPU/GPU dedicated versions (init_state_cpu() and
init_state_gpu()).

46 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

Chainer Documentation, Release 1.6.2.1

Parameters

• param (Variable) – Parameter variable.

• state (dict) – State dictionary.

See also:

init_state_cpu(), init_state_gpu()

init_state_cpu(param, state)
Initializes the optimizer state on CPU.

This method is called from init_state() by default.

Parameters

• param (Variable) – Parameter variable. Its data array is of type numpy.ndarray.

• state (dict) – State dictionary.

See also:

init_state()

init_state_gpu(param, state)
Initializes the optimizer state on GPU.

This method is called from init_state() by default.

Parameters

• param (Variable) – Parameter variable. Its data array is of type cupy.ndarray .

• state (dict) – State dictionary.

See also:

init_state()

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

prepare()
Prepares for an update.

This method initializes missing optimizer states (e.g. for newly added parameters after the set up), and
copies arrays in each state dictionary to CPU or GPU according to the corresponding parameter array.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

•Optimizer states

•Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

3.1. Core functionalities 47

https://docs.python.org/2/library/stdtypes.html#dict
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str

Chainer Documentation, Release 1.6.2.1

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

update(lossfun=None, *args, **kwds)
Updates the parameters and optimizer states.

This method updates the parameters of the target link and corresponding optimizer states. The behavior of
this method is different for the cases either lossfun is given or not.

If lossfun is given, then this method initializes the gradients by zeros, calls it with given extra arguments,
and calls the backward() method of its output to compute the gradients. The implementation might call
lossfun more than once.

If lossfun is not given, then this method assumes that the gardients of all parameters are already com-
puted. An implementation that requires multiple gradient computations might raise an error on this case.

In both cases, this method invokes the update procedure for all parameters.

Parameters

• lossfun (function) – Loss function. It accepts arbitrary arguments and returns one
Variable object that represents the loss (or objective) value. This argument can be
omitted for single gradient-based methods. In this case, this method assumes gradient
arrays computed.

• kwds (args,) – Arguments for the loss function.

weight_decay(decay)
Applies weight decay to the parameter/gradient pairs.

Parameters decay (float) – Coefficient of weight decay

Deprecated since version v1.5: Use the WeightDecay hook function instead.

zero_grads()
Fills all gradient arrays by zeros.

Deprecated since version v1.5: Use the chainer.Link.zerograds() method for the target link
instead.

class chainer.GradientMethod
Base class of all single gradient-based optimizers.

This is an extention of the Optimizer class. Typical gradient methods that just require the gradient at the
current parameter vector on an update can be implemented as its child class.

An implementation of a gradient method must override the following methods:

•init_state() or both init_state_cpu() and init_state_gpu()

•update_one() or both update_one_cpu() and update_one_gpu()

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

•If lossfun is given, then use it as a loss function to compute gradients.

•Otherwise, this method assumes that the gradients are already computed.

48 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#float

Chainer Documentation, Release 1.6.2.1

In both cases, the computed gradients are used to update parameters. The actual update routines
are defined by the update_one() method (or its CPU/GPU versions, update_one_cpu() and
update_one_gpu()).

update_one(param, state)
Updates a parameter based on the corresponding gradient and state.

This method calls appropriate one from update_param_cpu() or update_param_gpu().

Parameters

• param (Variable) – Parameter variable.

• state (dict) – State dictionary.

update_one_cpu(param, state)
Updates a parameter on CPU.

Parameters

• param (Variable) – Parameter variable.

• state (dict) – State dictionary.

update_one_gpu(param, state)
Updates a parameter on GPU.

Parameters

• param (Variable) – Parameter variable.

• state (dict) – State dictionary.

Hook functions

class chainer.optimizer.WeightDecay(rate)
Optimizer hook function for weight decay regularization.

This hook function adds a scaled parameter to the corresponding gradient. It can be used as a regularization.

Parameters rate (float) – Coefficient for the weight decay.

rate
float

Coefficient for the weight decay.

class chainer.optimizer.GradientClipping(threshold)
Optimizer hook function for gradient clipping.

This hook function scales all gradient arrays to fit to the defined L2 norm threshold.

Parameters threshold (float) – L2 norm threshold.

threshold
float

L2 norm threshold of gradient norm.

3.1.6 Serializer

class chainer.AbstractSerializer
Abstract base class of all serializers and deserializers.

3.1. Core functionalities 49

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

Chainer Documentation, Release 1.6.2.1

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, array, or str) – Object to be (de)serialized.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

class chainer.Serializer
Base class of all serializers.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

class chainer.Deserializer
Base class of all deserializers.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

3.1.7 FunctionSet (deprecated)

class chainer.FunctionSet(**links)
Set of links (as “parameterized functions”).

FunctionSet is a subclass of Chain. Function registration is done just by adding an attribute to :class:‘ object.

Deprecated since version v1.5: Use Chain instead.

Note: FunctionSet was used for manipulation of one or more parameterized functions. The concept of param-
eterized function is gone, and it has been replaced by Link and Chain.

__getitem__(key)
Returns an attribute by name.

50 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Chainer Documentation, Release 1.6.2.1

Parameters key (str) – Name of the attribute.

Returns Attribute.

Example

>>> model = FunctionSet(l1=L.Linear(10, 10), l2=L.Linear(10, 10))
>>> l1 = model['l1'] # equivalent to l1 = model.l1

collect_parameters()
Returns a tuple of parameters and gradients.

Returns Tuple (pair) of two tuples. The first element is a tuple of parameter arrays, and the
second is a tuple of gradient arrays.

copy_parameters_from(params)
Copies parameters from another source without reallocation.

Parameters params (Iterable) – Iterable of parameter arrays.

gradients
Tuple of gradient arrays of all registered functions.

The order of gradients is consistent with parameters() property.

parameters
Tuple of parameter arrays of all registered functions.

The order of parameters is consistent with parameters() property.

3.2 Utilities

3.2.1 CUDA utilities

Device, context and memory management on CuPy.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU computation. Following modules and classes
are imported to cuda module for convenience (refer to this table when reading chainer’s source codes).

imported name original name
chainer.cuda.cupy cupy
chainer.cuda.ndarray cupy.ndarray
chainer.cuda.cupy.cuda cupy.cuda
chainer.cuda.Device cupy.cuda.Device
chainer.cuda.Event cupy.cuda.Event
chainer.cuda.Stream cupy.cuda.Stream

Chainer replaces the default allocator of CuPy by its memory pool implementation. It enables us to reuse the device
memory over multiple forward/backward computations, and temporary arrays for consecutive elementwise operations.

Devices

chainer.cuda.get_device(*args)
Gets the device from an ID integer or an array object.

3.2. Utilities 51

https://docs.python.org/2/library/functions.html#str

Chainer Documentation, Release 1.6.2.1

This is a convenient utility to select a correct device if the type of arg is unknown (i.e., one can use this function
on arrays that may be on CPU or GPU). The returned device object supports the context management protocol
of Python for the with statement.

Parameters args – Values to specify a GPU device. numpy.ndarray objects are skipped. If
all arguments are numpy.ndarray objects, it returns a dummy device object. Otherwise, the first
non-numpy object is used to select a device. If it is a cupy.ndarray object, its device is
returned. Otherwise, the argument is passed to the initializer of Device and it is returned.

Returns Device object specified by given args.

See also:

See cupy.cuda.Device for the device selection not by arrays.

CuPy array allocation and copy

Note: As of v1.3.0, the following array construction wrappers are marked as deprecated. Use the corresponding
functions of the cupy module instead. The main difference of them is that the default dtype is changed from float32
to float64.

Deprecated functions Recommended functions
chainer.cuda.empty cupy.empty()
chainer.cuda.empty_like cupy.empty_like()
chainer.cuda.zeros cupy.zeros()
chainer.cuda.zeros_like cupy.zeros_like()
chainer.cuda.ones cupy.ones()
chainer.cuda.ones_like cupy.ones_like()
chainer.cuda.full cupy.full()
chainer.cuda.full_like cupy.full_like()

chainer.cuda.copy(array, out=None, out_device=None, stream=None)
Copies a cupy.ndarray object using the default stream.

This function can copy the device array to the destination array on another device.

Parameters

• array (cupy.ndarray) – Array to be copied.

• out (cupy.ndarray) – Destination array. If it is not None, then out_device argu-
ment is ignored.

• out_device – Destination device specifier. Actual device object is obtained by passing
this value to get_device().

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Copied array.

If out is not specified, then the array is allocated on the device specified by out_device
argument.

Return type cupy.ndarray

chainer.cuda.to_cpu(array, stream=None)
Copies the given GPU array to host CPU.

52 Chapter 3. Chainer Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

Parameters

• array – Array to be sent to CPU.

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Array on CPU.

If given array is already on CPU, then this function just returns array without performing
any copy.

Return type numpy.ndarray

chainer.cuda.to_gpu(array, device=None, stream=None)
Copies the given CPU array to specified device.

Parameters

• array – Array to be sent to GPU.

• device – Device specifier.

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Array on GPU.

If array is already on GPU, then this function just returns array without performing any
copy. Note that this function does not copy cupy.ndarray into specified device.

Return type cupy.ndarray

Kernel definition utilities

chainer.cuda.memoize(for_each_device=False)
Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that this function can be used in the global
scope even if CUDA is not available. In such case, this function does nothing.

Note: This decorator acts as a dummy if CUDA is not available. It cannot be used for general purpose
memoization even if for_each_device is set to False.

chainer.cuda.elementwise()
Creates an elementwise kernel function.

This function uses memoize() to cache the kernel object, i.e. the resulting kernel object is cached for each
argument combination and CUDA device.

The arguments are the same as those for cupy.ElementwiseKernel, except that the name argument is
mandatory.

chainer.cuda.reduce()
Creates a global reduction kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached
for each argument combination and CUDA device.

The arguments are the same as those for cupy.ReductionKernel, except that the name argument is
mandatory.

3.2. Utilities 53

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

CPU/GPU generic code support

chainer.cuda.get_array_module(*args)
Gets an appropriate one from numpy or cupy .

This is almost equivalent to cupy.get_array_module(). The only difference is that this function can be
used even if CUDA is not available.

Parameters args – Values to determine whether NumPy or CuPy should be used.

Returns cupy or numpy is returned based on the types of the arguments.

Return type module

3.2.2 Common algorithms

class chainer.utils.WalkerAlias(probs)
Implementation of Walker’s alias method.

This method generates a random sample from given probabilities 𝑝1, . . . , 𝑝𝑛 in 𝑂(1) time. It is more efficient
than choice(). This class works on both CPU and GPU.

Parameters probs (float list) – Probabilities of entries. They are normalized with
sum(probs).

See: Wikipedia article

sample(shape)
Generates a random sample based on given probabilities.

Parameters shape (tuple of int) – Shape of a return value.

Returns Returns a generated array with the given shape. If a sampler is in CPU mode the
return value is a numpy.ndarray object, and if it is in GPU mode the return value is a
cupy.ndarray object.

to_gpu()
Make a sampler GPU mode.

3.3 Assertion and Testing

Chainer provides some facilities to make debugging easy.

Function uses a systematic type checking of the chainer.utils.type_check module. It enables users to
easily find bugs of forward and backward implementations. You can find examples of type checking in some function
implementations.

Most function implementations are numerically tested by gradient checking. This method computes numerical gradi-
ents of forward routines and compares their results with the corresponding backward routines. It enables us to make
the source of issues clear when we hit an error of gradient computations. The chainer.gradient_check module
makes it easy to implement the gradient checking.

3.3.1 Type checking utilites

class chainer.utils.type_check.Expr(priority)
Abstract syntax tree of an expression.

54 Chapter 3. Chainer Reference Manual

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html#numpy.random.choice
https://en.wikipedia.org/wiki/Alias_method
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

It represents an abstract syntax tree, and isn’t a value. You can get its actual value with eval() function, and
get syntax representation with the __str__() method. Each comparison operator (e.g. ==) generates a new
Expr object which represents the result of comparison between two expressions.

Example

Let x and y be instances of Expr, then

>>> c = (x == y)

is also an instance of Expr. To evaluate and get its value, call eval() method:

>>> c.eval()
True # when x.eval() == y.eval()

Call str function to get a representation of the original equaltion:

>>> str(c)
'x + y' # when str(x) == 'x' and str(y) == 'y'

You can actually compare an expression with a value:

>>> (x == 1).eval()

Note that you can’t use boolean operators such as and, as they try to cast expressions to boolean values:

>>> x == y and y == z # raises an error

eval()
Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() funciton.

chainer.utils.type_check.expect(*bool_exprs)
Evaluates and tests all given expressions.

This function evaluates given boolean expressions in order. When at least one expression is evaluated as False,
that means the given condition is not satisfied. You can check conditions with this function.

Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to
evaluate.

class chainer.utils.type_check.TypeInfo(shape, dtype)
Type information of an input/gradient array.

It contains type information of an array, such as the shape of array and the number of dimensions. This infor-
mation is independent of CPU or GPU array.

class chainer.utils.type_check.TypeInfoTuple
Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element of this object contains type information of the
i-th input/gradinent data. As each element is Expr, you can easily check its validity.

size()
Returns an expression representing its length.

Returns An expression object representig length of the tuple.

Return type Expr

3.3. Assertion and Testing 55

Chainer Documentation, Release 1.6.2.1

3.3.2 Gradient checking utilities

chainer.gradient_check.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)
Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.

Parameters

• x – Left-hand-side array.

• y – Right-hand-side array.

• atol (float) – Absolute tolerance.

• rtol (float) – Relative tolerance.

• verbose (bool) – If True, it outputs verbose messages on error.

chainer.gradient_check.check_backward(func, x_data, y_grad, params=(), eps=0.001, atol=1e-
05, rtol=0.0001)

Test backward procedure of a given function.

This function automatically check backward-process of given function. For example, when you have a
Function class MyFunc, that gets two arguments and returns one value, you can make its test like this:

>> def test_my_func(self):
>> func = MyFunc()
>> x1_data = xp.array(...)
>> x2_data = xp.array(...)
>> gy_data = xp.array(...)
>> check_backward(func, (x1_data, x2_data), gy_data)

This method creates Variable objects with x_data and calls func with the Variable s to get its result
as Variable. Then, it sets y_grad array to grad attribute of the result and calls backward method to
get gradients of the inputs. To check correctness of the gradients, the function calls numerical_grad() to
calculate numerically the gradients and compares the types of gradients with assert_allclose(). If input
objects (x1_data or/and x2_data in this example) represent integer variables, their gradients are ignored.

You can simplify a test when MyFunc gets only one argument:

>> check_backward(func, x1_data, gy_data)

If MyFunc is a loss function which returns a zero-dimensional array, pass None to gy_data. In this case, it
sets 1 to grad attribute of the result:

>> check_backward(my_loss_func, (x1_data, x2_data), None)

If MyFunc returns multiple outputs, pass all gradients for outputs as a tuple:

>> gy1_data = xp.array(...)
>> gy2_data = xp.array(...)
>> check_backward(func, x1_data, (gy1_data, gy2_data))

You can also test a Link. To check gradients of parameters of the link, set a tuple of the parameters to params
arguments:

>> check_backward(my_link, (x1_data, x2_data), gy_data,
>> (my_link.W, my_link.b))

Note that params are not ndarray s, but Variables s.

Function objects are acceptable as func argument:

56 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

>> check_backward(lambda x1, x2: f(x1, x2),
>> (x1_data, x2_data), gy_data)

Note: func is called many times to get numerical gradients for all inputs. This function doesn’t work correctly
when func behaves randomly as it gets different gradients.

Parameters

• func (callable) – A function which gets Variable s and returns Variable s. func
must returns a tuple of Variable s or one Variable. You can use Function object,
Link object or a function satisfying the condition.

• x_data (ndarray or tuple of ndarrays) – A set of ndarray s to be passed to
func. If x_data is one ndarray object, it is treated as (x_data,).

• y_grad (ndarray or tuple of ndarrays or None) – A set of ndarray s
representing gradinents of return-values of func. If y_grad is one ndarray object,
it is treated as (y_grad,). If func is a loss-function, y_grad should be set to None.

• params (Variable) – A set of Variable s whose gradients are checked. When func
is a Link object, set its parameters as params. If params is one Variable object, it is
treated as (params,).

• eps (float) – Epsilon value to be passed to numerical_grad().

• atol (float) – Absolute tolerance to be passed to assert_allclose().

• rtol (float) – Relative tolerance to be passed to assert_allclose().

See: numerical_grad()

chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001)
Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of
chainer.functions.

Parameters

• f (function) – Python function with no arguments that runs forward computation and
returns the result.

• inputs (tuple of arrays) – Tuple of arrays that should be treated as inputs. Each
element of them is slightly modified to realize numerical gradient by finite differences.

• grad_outputs (tuple of arrays) – Tuple of arrays that are treated as output gra-
dients.

• eps (float) – Epsilon value of finite differences.

Returns Numerical gradient arrays corresponding to inputs.

Return type tuple

3.4 Standard Function implementations

Chainer provides basic Function implementations in the chainer.functions package. Most of them are
wrapped by plain Python functions, which users should use.

3.4. Standard Function implementations 57

https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#tuple

Chainer Documentation, Release 1.6.2.1

Note: As of v1.5, the concept of parameterized functions are gone, and they are replaced by corresponding Link
implementations. They are still put in the functions namespace for backward compatibility, though it is strongly
recommended to use them via the chainer.links package.

3.4.1 Activation functions

chainer.functions.clipped_relu(x, z=20.0)
Clipped Rectifier Unit function.

This function is expressed as 𝐶𝑙𝑖𝑝𝑝𝑒𝑑𝑅𝑒𝐿𝑈(𝑥, 𝑧) = min(max(0, 𝑥), 𝑧), where 𝑧(> 0) is a clipping value.

Parameters

• x (Variable) – Input variable.

• z (float) – Clipping value. (default = 20.0)

Returns Output variable.

Return type Variable

chainer.functions.elu(x, alpha=1.0)
Exponential Linear Unit function.

This function is expressed as

𝑓(𝑥) =

{︂
𝑥 if 𝑥 ≥ 0
𝛼(exp(𝑥) − 1) if 𝑥 < 0,

where 𝛼 is a parameter. See: http://arxiv.org/abs/1511.07289

Parameters

• x (Variable) – Input variable.

• alpha (float) – Parameter 𝛼.

Returns Output variable.

Return type Variable

chainer.functions.leaky_relu(x, slope=0.2)
Leaky Rectified Linear Unit function.

This function is expressed as 𝑓(𝑥) = max(𝑥, 𝑎𝑥), where 𝑎 is a configurable slope value.

Parameters

• x (Variable) – Input variable.

• slope (float) – Slope value 𝑎.

Returns Output variable.

Return type Variable

chainer.functions.lstm(c_prev, x)
Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state 𝑐prev and the incoming signal
𝑥.

58 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#float
http://arxiv.org/abs/1511.07289
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float

Chainer Documentation, Release 1.6.2.1

First, the incoming signal 𝑥 is split into four arrays 𝑎, 𝑖, 𝑓, 𝑜 of the same shapes along the second axis. It means
that 𝑥 ‘s second axis must have 4 times the length of 𝑐prev.

The splitted input signals are corresponding to:

•𝑎 : sources of cell input

•𝑖 : sources of input gate

•𝑓 : sources of forget gate

•𝑜 : sources of output gate

Second, it computes outputs as:

𝑐 = tanh(𝑎)sigmoid(𝑖) + 𝑐prevsigmoid(𝑓),

ℎ = tanh(𝑐)sigmoid(𝑜).

These are returned as a tuple of two variables.

Parameters

• c_prev (Variable) – Variable that holds the previous cell state. The cell state should be
a zero array or the output of the previous call of LSTM.

• x (Variable) – Variable that holds the incoming signal. It must have the second dimen-
sion four times of that of the cell state,

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.

Example

Assuming y is the current input signal, c is the previous cell state, and h is the previous output signal from an
lstm function. Each of y, c and h has n_units channels. Most typical preparation of x is:

>>> model = FunctionSet(w=F.Linear(n_units, 4 * n_units),
... v=F.Linear(n_units, 4 * n_units),
... ...)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)

It corresponds to calculate the input sources 𝑎, 𝑖, 𝑓, 𝑜 from the current input y and the previous output h. Differ-
ent parameters are used for different kind of input sources.

chainer.functions.maxout(x, pool_size, axis=1)
Maxout activation function.

It accepts an input tensor x, reshapes the axis dimension (say the size being M * pool_size) into two
dimensions (M, pool_size), and takes maximum along the axis dimension. The output of this function
is same as x except that axis dimension is transformed from M * pool_size to M.

Typically, x is the output of a linear layer or a convolution layer. The following is the example where we use
maxout() in combination with a Linear link.

3.4. Standard Function implementations 59

https://docs.python.org/2/library/functions.html#tuple
http://www.felixgers.de/papers/phd.pdf
http://www.felixgers.de/papers/phd.pdf

Chainer Documentation, Release 1.6.2.1

>>> l = L.Linear(in_size, out_size * pool_size)
... x = Variable(...) # prepare data
... x = l(x)
... y = maxout(x, pool_size)

Parameters x (Variable) – Input variable. Its first dimension is assumed to be the minibatch
dimension. The other dimensions are treated as one concatenated dimension.

Returns Output variable.

Return type Variable

See also:

Maxout

chainer.functions.prelu(x, W)
Parametric ReLU function.

It accepts two arguments: an input x and a weight array W and computes the output as 𝑃𝑅𝑒𝐿𝑈(𝑥) =
max(𝑥,𝑊 * 𝑥), where * is an elementwise multiplication for each sample in the batch.

When the PReLU function is combined with two-dimensional convolution, the elements of parameter 𝑎 are
typically shared across the same filter of different pixels. In order to support such usage, this function supports
the shape of parameter array that indicates leading dimensions of input arrays except the batch dimension.

For example 𝑊 has the shape of (2, 3, 4), 𝑥 must have the shape of (𝐵, 2, 3, 4, 𝑆1, ..., 𝑆𝑁) where B is batchsize
and the number of trailing S’s is arbitrary non-negative integer.

Parameters x (Variable) – Input variable.

Its first argument is assumed to be the minibatch dimension. W (~chainer.Variable): Weight variable.

Returns Output variable

Return type Variable

See also:

PReLU

chainer.functions.relu(x, use_cudnn=True)
Rectified Linear Unit function 𝑓(𝑥) = max(0, 𝑥).

Parameters

• x (Variable) – Input variable.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

chainer.functions.sigmoid(x, use_cudnn=True)
Elementwise sigmoid logistic function 𝑓(𝑥) = (1 + exp(−𝑥))−1.

Parameters

• x (Variable) – Input variable.

60 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

chainer.functions.softmax(x, use_cudnn=True)
Channelwise softmax function.

This function computes its softmax along the second axis. Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑)⊤ be the d dimensional
index array and 𝑓(𝑥) be the d dimensional input array. For each index 𝑥 of the input array 𝑓(𝑥), it computes the
probability 𝑝(𝑥) defined as 𝑝(𝑥) = exp(𝑓(𝑥))∑︀

𝑥2
exp(𝑓(𝑥)) .

Parameters

• x (Variable) – Input variable.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

chainer.functions.softplus(x, beta=1.0)
Elementwise softplus function.

This function is expressed as 𝑓(𝑥) = 1
𝛽 log(1 + exp(𝛽𝑥)), where 𝛽 is a parameter.

Parameters

• x (Variable) – Input variable.

• beta (float) – Parameter 𝛽.

Returns Output variable.

Return type Variable

chainer.functions.tanh(x, use_cudnn=True)
Elementwise hyperbolic tangent function.

Parameters

• x (Variable) – Input variable.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

3.4.2 Array manipulations

chainer.functions.broadcast(*args)
Broadcast given variables.

Parameters args (Variables) – Variables to be broadcasted.

Returns tuple: Tuple of Variable objects which are broadcasted from given arguments.

chainer.functions.broadcast_to(x, shape)
Broadcast a given variable to a given shape.

3.4. Standard Function implementations 61

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

Parameters

• x (Variable) – Variable to be broadcasted.

• shape (tuple of int) – The shape of the output variable.

Returns Output variable broacasted to the given shape.

Return type Variable

chainer.functions.concat(xs, axis=1)
Concatenates given variables along an axis.

Parameters

• xs (tuple of Variables) – Variables to be concatenated.

• axis (int) – Axis that the input arrays are concatenated along.

Returns Output variable.

Return type Variable

chainer.functions.copy(x, dst)
Copies the input variable onto the specified device.

This function copies the array of input variable onto the device specified by dst if the original array is on GPU,
and otherwise just copies the array within host memory.

Parameters

• x (Variable) – Variable to be copied.

• dst – Target device specifier.

Returns Output variable.

Return type Variable

chainer.functions.expand_dims(x, axis)
Expands dimensions of an input variable without copy.

Parameters

• x (Variable) – Input variable.

• axis (int) – Position where new axis is to be inserted.

Returns Variable that holds a expanded input.

Return type Variable

chainer.functions.reshape(x, shape)
Reshapes an input variable without copy.

Parameters

• x (Variable) – Input variable.

• shape (tuple of ints) – Target shape.

Returns Variable that holds a reshaped version of the input variable.

Return type Variable

chainer.functions.select_item(x, t)
Select elements stored in given indicies.

This function returns ‘t.choose(x.T)‘, that means ‘y[i] == x[i, t[i]]‘ for all ‘i‘.

62 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Parameters

• x (Variable) – Variable storing arrays.

• t (Variable) – Variable storing index numbers.

Returns Variable that holds ‘t‘-th element of ‘x‘.

Return type Variable

chainer.functions.split_axis(x, indices_or_sections, axis)
Splits given variables along an axis.

Parameters

• x (tuple of Variables) – Variables to be split.

• indices_or_sections (int or 1-D array) – If this argument is an integer, N,
the array will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers,
it indicates the positions where the array is split.

• axis (int) – Axis that the input array is split along.

Returns tuple or Variable: Tuple of Variable objects if the number of outputs is more than
1 or Variable otherwise.

Note: This function raises ValueError if at least one of the outputs is splitted to zero-size (i.e. axis-th value
of its shape is zero).

chainer.functions.swapaxes(x, axis1, axis2)
Swap two axes of a variable.

Parameters

• x (Variable) – Input variable.

• axis1 (int) – The first axis to swap.

• axis2 (int) – The second axis to swap.

Returns Variable whose axes are swapped.

Return type Variable

chainer.functions.transpose(x, axes=None)
Permute the dimensions of an input variable without copy.

Parameters

• x (Variable) – Input variable.

• axes (tuple of ints) – By default, reverse the dimensions, otherwise permute the
axes according to the values given.

Returns Variable whose axes are permuted.

Return type Variable

chainer.functions.where(condition, x, y)
Choose elements dependeing on condition.

This function choose values depending on a given condition. All condition, x, and y must have the same
shape.

Parameters

3.4. Standard Function implementations 63

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

• condition (Variable) – Variable containing the condition. Only boolean array is per-
mitted.

• x (Variable) – Variable chosen when condition is True.

• y (Variable) – Variable chosen when condition is False.

Returns Variable containing chosen values.

Return type Variable

3.4.3 Neural network connections

chainer.functions.bilinear(e1, e2, W, V1=None, V2=None, b=None)
Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables
and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by 𝑒1 ∈ R𝐼·𝐽 , 𝑒2 ∈ R𝐼·𝐾 , 𝑊 ∈ R𝐽·𝐾·𝐿, 𝑉 1 ∈ R𝐽·𝐿,
𝑉 2 ∈ R𝐾·𝐿, and 𝑏 ∈ R𝐿, where 𝐼 is mini-batch size. In this document, we call 𝑉 1, 𝑉 2, and 𝑏 linear parameters.

The output of forward propagation is calculated as

𝑦𝑖𝑙 =
∑︁
𝑗𝑘

𝑒1𝑖𝑗𝑒
2
𝑖𝑘𝑊𝑗𝑘𝑙 +

∑︁
𝑗

𝑒1𝑖𝑗𝑉
1
𝑗𝑙 +

∑︁
𝑘

𝑒2𝑖𝑘𝑉
2
𝑘𝑙 + 𝑏𝑙.

Note that V1, V2, b are optional. If these are not given, then this function omits the last three terms in the above
equation.

Note: This function accepts an input variable e1 or e2 of a non-matrix array. In this case, the leading
dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

Note: In the original paper, 𝐽 and 𝐾 must be equal and the author denotes [𝑉 1𝑉 2] (concatenation of matrices)
by 𝑉 .

Parameters

• e1 (Variable) – Left input variable.

• e2 (Variable) – Right input variable.

• W (Variable) – Quadratic weight variable.

• V1 (Variable) – Left coefficient variable.

• V2 (Variable) – Right coefficient variable.

• b (Variable) – Bias variable.

Returns Output variable.

Return type Variable

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

64 Chapter 3. Chainer Reference Manual

http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion

Chainer Documentation, Release 1.6.2.1

chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, use_cudnn=True)
Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image
x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

•𝑛 is the batch size.

•𝑐𝐼 and 𝑐𝑂 are the number of the input and output, respectively.

•ℎ and 𝑤 are the height and width of the input image, respectively.

•𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (Variable) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or (int, int) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or (int, int) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• use_cudnn (bool) – If True, then this function uses CuDNN if available.

Returns Output variable.

Return type Variable

The two-dimensional convolution function is defined as follows. Then the Convolution2D function com-
putes correlations between filters and patches of size (𝑘𝐻 , 𝑘𝑊) in x. Note that correlation here is equivalent to
the inner product between expanded vectors. Patches are extracted at positions shifted by multiples of stride
from the first position -pad for each spatial axis. The right-most (or bottom-most) patches do not run over the
padded spatial size.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application, and (𝑝𝐻 , 𝑝𝑊) the spatial padding size. Then, the output size
(ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ + 2𝑝𝐻 − 𝑘𝐻)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊)/𝑠𝑋 + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

Convolution2D

chainer.functions.deconvolution_2d(x, W, b=None, stride=1, pad=0, outsize=None,
use_cudnn=True)

Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. It takes three variables: input image x, the filter
weight W, and the bias vector b.

Parameters

• x (Variable) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤)

3.4. Standard Function implementations 65

https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

• W (Variable) – Weight variable of shape

:param :: 𝑡𝑦𝑝𝑒 : 𝑚𝑎𝑡ℎ :: c_I, c_O, k_H, k_W :param b: Bias variable of length 𝑐𝑂 (optional). :type b:
~chainer.Variable :param stride: Stride of filter applications.

stride=s and stride=(s, s) are equivalent.

Parameters

• pad (int or (int, int) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• outsize (tuple) – Expected output size of deconvolutional operation. It should be pair
of height and width (𝑜𝑢𝑡𝐻 , 𝑜𝑢𝑡𝑊). Default value is None and the outsize is estimated by
input size, stride and pad.

• use_cudnn (bool) – If True, then this function uses CuDNN if available.

The filter weight has four dimensions (𝑐𝐼 , 𝑐𝑂, 𝑘𝐻 , 𝑘𝑊) which indicate the number of the number of input chan-
nels, output channels, height and width of the kernels, respectively.

The bias vector is of size 𝑐𝑂.

Let 𝑋 be the input tensor of dimensions (𝑛, 𝑐𝐼 , ℎ, 𝑤), (𝑠𝑌 , 𝑠𝑋) the stride of filter application, and (𝑝𝐻 , 𝑝𝑊) the
spatial padding size. Then, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = 𝑠𝑌 (ℎ− 1) + 𝑘𝐻 − 2𝑝𝐻 ,

𝑤𝑂 = 𝑠𝑋(𝑤 − 1) + 𝑘𝑊 − 2𝑝𝑊 .

chainer.functions.embed_id(x, W)
Efficient linear function for one-hot input.

This function implements so called word embedding. It takes two arguments: a set of IDs (words) x in 𝐵
dimensional integer vector, and a set of all ID (word) embeddings W in 𝑉 × 𝑑 float32 matrix. It outputs 𝐵 × 𝑑
matrix whose i-th column is the x[i]-th column of W.

This function is only differentiable on the input W.

Parameters

• x (Variable) – Input variable with one-hot representation.

• W (Variable) – Representation of each ID (a.k.a. word embeddings).

Returns Output variable.

Return type Variable

See also:

EmbedID

chainer.functions.linear(x, W, b=None)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It
computes 𝑌 = 𝑥𝑊⊤ + 𝑏.

Parameters

• x (Variable) – Input variable. Its first dimension is assumed to be the minibatch dimen-
sion. The other dimensions are treated as concatenated one dimension whose size must be
N.

66 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

• W (Variable) – Weight variable of shape (M, N).

• b (Variable) – Bias variable (optional) of shape (M,)..

Returns Output variable.

Return type Variable

See also:

Linear

3.4.4 Evaluation functions

chainer.functions.accuracy(y, t)
Computes muticlass classification accuracy of the minibatch.

Parameters

• y (Variable) – Variable holding a matrix whose (i, j)-th element indicates the score of
the class j at the i-th example.

• t (Variable) – Variable holding an int32 vector of groundtruth labels.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

3.4.5 Loss functions

chainer.functions.connectionist_temporal_classification(x, t, blank_symbol)
Connectionist Temporal Classification loss function.

Connectionist Temporal Classification(CTC) [Graves2006] is a loss function of sequence labeling where the
alignment between the inputs and target is unknown. See also [Graves2012]

Parameters

• x (sequence of Variable) – RNN output at each time. x must be a list of
Variable s. Each element of x, x[i] is a Variable representing output of RNN
at time i.

• t (Variable) – Expected label sequence.

• blank_symbol (int) – Index of blank_symbol. This value must be non-negative.

Returns A variable holding a scalar value of the CTC loss.

Return type Variable

Note: You need to input x without applying to activation functions(e.g. softmax function), because this
function applies softmax functions to x before calculating CTC loss to avoid numerical limitations. You also
need to apply softmax function to fowarded values before you decode it.

3.4. Standard Function implementations 67

https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Note: This function is differentiable only by x.

Note: This function supports (batch, sequence, 1-dimensional input)-data.

chainer.functions.contrastive(x0, x1, y, margin=1)
Computes contrastive loss.

It takes a pair of variables and a label as inputs. The label is 1 when those two input variables are similar, or 0
when they are dissimilar. Let 𝑁 and 𝐾 denote mini-batchsize and the dimension of input variables, respectively.
The shape of both input variables should be (N, K).

𝐿 =
1

2𝑁

(︃
𝑁∑︁

𝑛=1

𝑦𝑛𝑑
2
𝑛 + (1 − 𝑦𝑛) max(margin − 𝑑𝑛, 0)2

)︃

where 𝑑𝑛 = ‖x0𝑛 − x1𝑛‖2. 𝑁 denotes the mini-batch size. Input variables, x0 and x1, have 𝑁 vectors, and
each vector is K-dimensional. Therefore, x0𝑛 and x1𝑛 are 𝑛-th K-dimensional vectors of x0 and x1.

Parameters

• x0 (Variable) – The first input variable. The shape should be (N, K), where N denotes
the minibatch size, and K denotes the dimension of x0.

• x1 (Variable) – The second input variable. The shape should be the same as x0.

• y (Variable) – Labels. All values should be 0 or 1. The shape should be (N,), where N
denotes the minibatch size.

• margin (float) – A parameter for contrastive loss. It should be positive value.

Returns A variable holding a scalar that is the loss value calculated by the above equation.

Return type Varible

Note: This cost can be used to train siamese networks. See Learning a Similarity Metric Discriminatively, with
Application to Face Verification <http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf> for details.

chainer.functions.cross_covariance(y, z)
Computes the sum-squared cross-covariance penalty between y and z

Parameters

• y (Variable) – Variable holding a matrix where the first dimension corresponds to the
batches

• z (Variable) – Variable holding a matrix where the first dimension corresponds to the
batches

Returns A variable holding a scalar of the cross covariance loss.

Return type Variable

Note: This cost can be used to disentangle variables. See http://arxiv.org/abs/1412.6583v3 for details.

chainer.functions.mean_squared_error(x0, x1)
Mean squared error function.

68 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#float
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
http://arxiv.org/abs/1412.6583v3

Chainer Documentation, Release 1.6.2.1

This function computes mean squared error between two variables. The mean is taken over the minibatch. Note
that the error is not scaled by 1/2.

chainer.functions.negative_sampling(x, t, W, sampler, sample_size)
Negative sampling loss function.

In natural language processing, especially language modeling, the number of vocabulary is very large. There-
fore, you need to spend a lot of time to calculate the gradient of the embedding matrix.

Instead, in negative sampling trick, you only need to calculate the gradient for a few sampled negative examples.

The objective function is below:

𝑓(𝑥, 𝑝) = log 𝜎(𝑥⊤𝑤𝑝) + 𝑘𝐸𝑖∼𝑃 (𝑖)[log 𝜎(−𝑥⊤𝑤𝑖)],

where 𝜎(·) is a sigmoid function, 𝑤𝑖 is the weight vector for the word 𝑖, and 𝑝 is a positive example. It is
approximeted with 𝑘 examples 𝑁 sampled from probability 𝑃 (𝑖), like this:

𝑓(𝑥, 𝑝) ≈ log 𝜎(𝑥⊤𝑤𝑝) +
∑︁
𝑛∈𝑁

log 𝜎(−𝑥⊤𝑤𝑛).

Each sample of 𝑁 is drawn from the word distribution 𝑃 (𝑤). This is calculated as 𝑃 (𝑤) = 1
𝑍 𝑐(𝑤)𝛼, where

𝑐(𝑤) is the unigram count of the word 𝑤, 𝛼 is a hyper-parameter, and 𝑍 is the normalization constant.

Parameters

• x (Variable) – Batch of input vectors.

• t (Variable) – Vector of groundtruth labels.

• W (Variable) – Weight matrix.

• sampler (function) – Sampling function. It takes a shape and returns an integer ar-
ray of the shape. Each element of this array is a sample from the word distribution. A
WalkerAlias object built with the power distribution of word frequency is recommended.

• sample_size (int) – Number of samples.

See: Distributed Representations of Words and Phrases and their Compositionality

See also:

NegativeSampling.

chainer.functions.sigmoid_cross_entropy(x, t, use_cudnn=True, normalize=True)
Computes cross entropy loss for sigmoid activations.

Parameters

• x (Variable) – A variable object holding a matrix whose (i, j)-th element indicates the
unnormalized log probability of the j-th unit at the i-th example.

• t (Variable) – Variable holding an int32 vector of groundtruth labels. If t[i] == -1,
correspondig x[i] is ignored. Loss is zero if all groundtruth labels are -1.

• normalize (bool) – Variable holding a boolean value which determines the normaliza-
tion constant. If true, this function normalizes the cross entropy loss across all instances. If
else, it only normalizes along a batch size.

Returns A variable object holding a scalar array of the cross entropy loss.

Return type Variable

Note: This function is differentiable only by x.

3.4. Standard Function implementations 69

https://docs.python.org/2/library/functions.html#int
http://arxiv.org/abs/1310.4546
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

chainer.functions.softmax_cross_entropy(x, t, use_cudnn=True, normalize=True)
Computes cross entropy loss for pre-softmax activations.

Parameters

• x (Variable) – Variable holding a multidimensional array whose element indicates un-
normalized log probability: the first axis of the variable represents the number of samples,
and the second axis represents the number of classes. While this function computes a usual
softmax cross entropy if the number of dimensions is equal to 2, it computes a cross entropy
of the replicated softmax if the number of dimensions is greater than 2.

• t (Variable) – Variable holding an int32 vector of groundtruth labels. If t[i] == -1,
correspondig x[i] is ignored.

• normalize (Variable) – Variable holding a boolean value which determines the nor-
malization constant. If true, this function normalizes the cross entropy loss across all in-
stances. If else, it only normalizes along a batch size.

Returns A variable holding a scalar array of the cross entropy loss.

Return type Variable

Note: This function is differentiable only by x.

chainer.functions.hinge(x, t, norm=’L1’)
Computes the hinge loss for a one-of-many classification task.

𝐿 =
1

𝑁

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

[max(0, 1 − 𝛿{𝑙𝑛 = 𝑘}𝑡𝑛𝑘)]
𝑝

where 𝑁 denotes the batchsize, 𝐾 is the number of classes of interest,

𝛿{condition} =

{︂
1 if condition
−1 otherwise,

and

𝑝 =

{︂
1 if norm = ′L1′

2 if norm = ′L2′.

Parameters

• x (Variable) – Input variable. The shape of x should be (𝑁 , 𝐾).

• t (Variable) – The 𝑁 -dimensional label vector l with values 𝑙𝑛 ∈ {0, 1, 2, . . . ,𝐾 − 1}.
The shape of t should be (𝑁 ,).

• norm (string) – Specifies norm type. Only either ‘L1’ or ‘L2’ is acceptable.

Returns A variable object holding a scalar array of the hinge loss 𝐿.

Return type Variable

Loss functions for VAE

chainer.functions.bernoulli_nll(x, y)
Computes the negative log-likelihood of a Bernoulli distribution.

70 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/string.html#module-string

Chainer Documentation, Release 1.6.2.1

This function calculates the negative log-likelihood of a Bernoulli distribution.

−𝐵(𝑥; 𝑝) = −
∑︁
𝑖

𝑥𝑖 log(𝑝𝑖) + (1 − 𝑥𝑖) log(1 − 𝑝𝑖),

where 𝑝 = 𝜎(𝑦), and 𝜎(·) is a sigmoid funciton.

Note: As this funtion uses a sigmoid function, you can pass a result of fully-connected layer (that means
Linear) to this function directly.

Parameters

• x (Variable) – Input variable.

• y (Variable) – A variable representing the parameter of Bernoulli distribution.

Returns A variable representing negative log-likelihood.

Return type Variable

chainer.functions.gaussian_kl_divergence(mean, ln_var)
Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function returns a variable rep-
resenting the KL-divergence between the given multi-dimensional Gaussian 𝑁(𝜇, 𝑆) and the standard Gaussian
𝑁(0, 𝐼)

𝐷KL(𝑁(𝜇, 𝑆)‖𝑁(0, 𝐼)),

where 𝑆 is a diagonal matrix such that 𝑆𝑖𝑖 = 𝜎2
𝑖 and 𝐼 is an identity matrix.

Parameters

• mean (Variable) – A variable representing mean of given gaussian distribution, 𝜇.

• ln_var (Variable) – A variable representing logarithm of variance of given gaussian
distribution, log(𝜎2).

Returns A variable representing KL-divergence between given gaussian distribution and the stan-
dard gaussian.

Return type Variable

chainer.functions.gaussian_nll(x, mean, ln_var)
Computes the negative log-likelihood of a Gaussian distribution.

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function returns the negative
log-likelihood of 𝑥 on a Gaussian distribution 𝑁(𝜇, 𝑆),

− log𝑁(𝑥;𝜇, 𝜎2) = log

(︂√︁
(2𝜋)𝐷|𝑆|

)︂
+

1

2
(𝑥− 𝜇)⊤𝑆−1(𝑥− 𝜇),

where 𝐷 is a dimension of 𝑥 and 𝑆 is a diagonal matrix where 𝑆𝑖𝑖 = 𝜎2
𝑖 .

Parameters

• x (Variable) – Input variable.

• mean (Variable) – A variable representing mean of a Gaussian distribution, 𝜇.

• ln_var (Variable) – A variable representing logarithm of variance of a Gaussian dis-
tribution, log(𝜎2).

3.4. Standard Function implementations 71

Chainer Documentation, Release 1.6.2.1

Returns A variable representing the negative log-likelihood.

Return type Variable

3.4.6 Mathematical functions

chainer.functions.batch_inv(a)
Computes the inverse of a batch of square matrices.

Parameters

• a (Variable) – Input array to compute the determinant for.

• of the array should be ‘‘ (Shape) –

• matrices in the batch, and n is the dimensionality of a
square (of) –

• matrix. –

Returns Inverse of every matrix in the batch of matrices.

Return type Variable

chainer.functions.batch_l2_norm_squared(x)
L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

Parameters x (Variable) – Input variable. The first dimension is assumed to be the minibatch
dimension. If x has more than two dimensions all but the first dimension are flattened to one
dimension.

Returns Two dimensional output variable.

Return type Variable

chainer.functions.batch_matmul(a, b, transa=False, transb=False)
Computes the batch matrix multiplications of two sets of arrays.

Parameters

• a (Variable) – The left operand of the batch matrix multiplications. A 2-D array of shape
(B, N,) is considered as B Nx1 matrices. A 3-D array of shape (B, M, N) is considered as B
MxN matrices.

• b (Variable) – The right operand of the batch matrix multiplications. Its array is treated
as matrices in the same way as a‘s array.

• transa (bool) – If true, transpose each matrix in a.

• transb (bool) – If true, transpose each matrix in b.

Returns The result of the batch matrix multiplications as a 3-D array.

Return type Variable

chainer.functions.cos(x)
Elementwise cos function.

chainer.functions.exp(x)
Elementwise exponential function.

chainer.functions.identity(*inputs)
Just returns input variables.

72 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

chainer.functions.inv(a)
Computes the inverse of of square matrix.

Parameters

• a (Variable) – Input array to compute the determinant for.

• of the array should be ‘‘ (Shape) –

• of a square matrix. (dimensionality) –

Returns Matrix inverse of a.

Return type Variable

chainer.functions.log(x)
Elementwise natural logarithm function.

chainer.functions.matmul(a, b, transa=False, transb=False)
Computes the matrix multiplication of two arrays.

Parameters

• a (Variable) – The left operand of the matrix multiplication. A 1-D array of shape (N,) is
considered as an Nx1 matrix. A 2-D array of shape (M, N) is considered as an MxN matrix.

• b (Variable) – The right operand of the matrix multiplication. Its array is treated as a
matrix in the same way as a‘s array.

• transa (bool) – If true, transpose a.

• transb (bool) – If true, transpose b.

Returns The result of the matrix multiplication as a 2-D array.

Return type Variable

chainer.functions.max(x, axis=None, keepdims=False)
Maximum of array elements over a given axis.

Parameters

• x (Variable) – Array to be maximized.

• axis (None, int, or tuple of int) – Axis over which a max is performed. The
default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.min(x, axis=None, keepdims=False)
Minimum of array elements over a given axis.

Parameters

• x (Variable) – Array to be minimized.

• axis (None, int, or tuple of int) – Axis over which a min is performed. The
default (axis = None) is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.sin(x)
Elementwise sin function.

3.4. Standard Function implementations 73

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

chainer.functions.sum(x, axis=None)
Sum of array elements over a given axis.

Parameters

• x (Variable) – Elements to sum.

• axis (None, int, or tuple of int) – Axis which a sum is performed. The de-
fault (axis = None) is perform a sum over all the dimensions of the input array.

Returns Output variable.

Return type Variable

3.4.7 Noise injections

chainer.functions.dropout(x, ratio=0.5, train=True)
Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and scales the remaining elements by
factor 1 / (1 - ratio). In testing mode, it does nothing and just returns x.

Parameters

• x (Variable) – Input variable.

• ratio (float) – Dropout ratio.

• train (bool) – If True, executes dropout. Otherwise, does nothing.

Returns Output variable.

Return type Variable

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

chainer.functions.gaussian(mean, ln_var)
Gaussian sampling function.

It takes mean 𝜇 and logarithm of variance log(𝜎2) as input and output a sample drawn from gaussian 𝑁(𝜇, 𝜎).

Parameters

• mean (Variable) – Input variable representing mean 𝜇.

• ln_var (Variable) – Input variable representing logarithm of variance log(𝜎2).

Returns Output variable.

Return type Variable

3.4.8 Normalization functions

chainer.functions.batch_normalization(x, gamma, beta, eps=1e-05)
Batch normalization function.

It takes the input variable x and two parameter variables gamma and beta. The input must have the batch
size and the features (or channels) as the first two dimensions of its shape. The input can have more than two
dimensions, where the remained dimensions are considered as spatial dimensions, which are considered as a
part of the batch size.

Parameters

• x (Variable) – The input variable.

74 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
http://arxiv.org/abs/1207.0580

Chainer Documentation, Release 1.6.2.1

• gamma (Variable) – The scaling parameter of normalized data.

• beta (Variable) – The shifting parameter of scaled normalized data.

• eps (float) – Epsilon value for numerical stability.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

links.BatchNormalization

chainer.functions.fixed_batch_normalization(x, gamma, beta, mean, var, eps=1e-05)
Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as vari-
ables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used for
prediction consistency.

Parameters

• x (Variable) – The input variable.

• gamma (Variable) – The scaling parameter of normalized data.

• beta (Variable) – The shifting parameter of scaled normalized data.

• mean (Variable) – The shifting parameter of input.

• var (Variable) – The square of scaling parameter of input.

• eps (float) – Epsilon value for numerical stability.

See also:

functions.batch_normalization(), links.BatchNormalization

chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)
Local response normalization across neighboring channels.

This function implements normalization across channels. Let 𝑥 an input image with 𝑁 channels. Then, this
function computes an output image 𝑦 by following formula:

𝑦𝑖 =
𝑥𝑖(︁

𝑘 + 𝛼
∑︀min𝑁,𝑖+𝑛/2

𝑗=max 1,𝑖−𝑛/2 𝑥2
𝑗

)︁𝛽 .
Parameters

• x (Variable) – Input variable.

• n (int) – Normalization window width.

• k (float) – Smoothing parameter.

• alpha (float) – Normalizer scaling parameter.

• beta (float) – Normalizer power parameter.

Returns Output variable.

Return type Variable

See: SSec. 3.3 of ImageNet Classification with Deep Convolutional Neural Networks

3.4. Standard Function implementations 75

https://docs.python.org/2/library/functions.html#float
http://arxiv.org/abs/1502.03167
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Chainer Documentation, Release 1.6.2.1

3.4.9 Spatial pooling

chainer.functions.average_pooling_2d(x, ksize, stride=None, pad=0, use_cudnn=True)
Spatial average pooling function.

This function acts similarly to Convolution2D, but it computes the average of input spatial patch for each
channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or (int, int) – Size of pooling window. ksize=k and ksize=(k,
k) are equivalent.

• stride (int or (int, int) – Stride of pooling applications. stride=s and
stride=(s, s) are equivalent. If None is specified, then it uses same stride as the
pooling window size.

• pad (int or (int, int) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_2d(). Average pool-
ing runs in non-cover-all mode.

chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True,
use_cudnn=True)

Spatial max pooling function.

This function acts similarly to Convolution2D, but it computes the maximum of input spatial patch for each
channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or (int, int) – Size of pooling window. ksize=k and ksize=(k,
k) are equivalent.

• stride (int or (int, int) – Stride of pooling applications. stride=s and
stride=(s, s) are equivalent. If None is specified, then it uses same stride as the
pooling window size.

• pad (int or (int, int) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Ouptut variable.

Return type Variable

76 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling_class,
use_cudnn=True)

Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array x with different kernel sizes and padding sizes, and then
flattens all dimensions except first dimension of all pooling results, and finally concatenates them along 2nd
dimension.

At 𝑖-th pyramid level, the kernel size (𝑘
(𝑖)
ℎ , 𝑘

(𝑖)
𝑤) and padding size (𝑝

(𝑖)
ℎ , 𝑝

(𝑖)
𝑤) of pooling operation are calculated

as below:

𝑘
(𝑖)
ℎ = ⌈𝑏ℎ/2𝑖⌉,

𝑘(𝑖)𝑤 = ⌈𝑏𝑤/2𝑖⌉,

𝑝
(𝑖)
ℎ = (2𝑖𝑘

(𝑖)
ℎ − 𝑏ℎ)/2,

𝑝(𝑖)𝑤 = (2𝑖𝑘(𝑖)𝑤 − 𝑏𝑤)/2,

where ⌈·⌉ denotes the ceiling function, and 𝑏ℎ, 𝑏𝑤 are height and width of input variable x, respectively. Note
that index of pyramid level 𝑖 is zero-based.

See detail in paper: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

Parameters

• x (Variable) – Input variable. The shape of x should be (batchsize, # of channels, height,
width).

• pyramid_height (int) – the number of pyramid levels

• pooling_class (MaxPooling2D or AveragePooling2D) – Only MaxPool-
ing2D class can be available for now.

• use_cudnn (bool) – If True and CuDNN is enabled, then this function uses CuDNN as
the core implementation.

Returns Ouptut variable. The shape of the output variable will be (batchsize, 𝑐
∑︀𝐻−1

ℎ=0 22ℎ, 1, 1),
where 𝑐 is the number of channels of input variable x and 𝐻 is the number of pyramid levels.

Return type Variable

Note: This function uses some pooling classes as components to perform spatial pyramid pooling. Now it
supports only MaxPooling2D as elemental pooling operator so far.

3.5 Standard Link implementations

Chainer provides many Link implementations in the chainer.links package.

Note: Some of the links are originally defined in the chainer.functions namespace. They are still left in the
namespace for backward compatibility, though it is strongly recommended to use them via the chainer.links
package.

3.5. Standard Link implementations 77

http://arxiv.org/abs/1406.4729
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

3.5.1 Learnable connections

class chainer.links.Bilinear(left_size, right_size, out_size, nobias=False, initialW=None, ini-
tial_bias=None)

Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the bilinear() functions. It holds parameters W, V1, V2, and b
corresponding to the arguments of bilinear().

Parameters

• left_size (int) – Dimension of input vector 𝑒1 (𝐽)

• right_size (int) – Dimension of input vector 𝑒2 (𝐾)

• out_size (int) – Dimension of output vector 𝑦 (𝐿)

• nobias (bool) – If True, parameters V1, V2, and b are omitted.

• initialW (3-D numpy array) – Initial value of 𝑊 . Shape of this argument must
be (left_size, right_size, out_size). If None, 𝑊 is initialized by centered
Gaussian distribution properly scaled according to the dimension of inputs and outputs.

• initial_bias (tuple) – Intial values of 𝑉 1, 𝑉 2 and 𝑏. The length this argu-
ment must be 3. Each element of this tuple must have the shapes of (left_size,
output_size), (right_size, output_size), and (output_size,), respec-
tively. If None, 𝑉 1 and 𝑉 2 is initialized by scaled centered Gaussian distributions and 𝑏 is
set to 0.

See also:

See chainer.functions.bilinear() for details.

W
~chainer.Variable

Bilinear weight parameter.

V1
~chainer.Variable

Linear weight parameter for the first argument.

V2
~chainer.Variable

Linear weight parameter for the second argument.

b
~chainer.Variable

Bias parameter.

__call__(e1, e2)
Applies the bilinear function to inputs and the internal parameters.

Parameters

• e1 (Variable) – Left input.

• e2 (Variable) – Right input.

Returns Output variable.

Return type Variable

78 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#tuple

Chainer Documentation, Release 1.6.2.1

class chainer.links.Convolution2D(in_channels, out_channels, ksize, stride=1, pad=0, wscale=1,
bias=0, nobias=False, use_cudnn=True, initialW=None, ini-
tial_bias=None)

Two-dimensional convolutional layer.

This link wraps the convolution_2d() function and holds the filter weight and bias vector as parameters.

Parameters

• in_channels (int) – Number of channels of input arrays.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or (int, int) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or (int, int) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or (int, int) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• wscale (float) – Scaling factor of the initial weight.

• bias (float) – Initial bias value.

• nobias (bool) – If True, then this link does not use the bias term.

• use_cudnn (bool) – If True, then this link uses CuDNN if available.

• initialW (4-D array) – Initial weight value. If None, then this function uses to ini-
tialize wscale.

• initial_bias (1-D array) – Initial bias value. If None, then this function uses to
initialize bias.

See also:

See chainer.functions.convolution_2d() for the definition of two-dimensional convolution.

W
~chainer.Variable

Weight parameter.

b
~chainer.Variable

Bias parameter.

__call__(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

class chainer.links.Deconvolution2D(in_channels, out_channels, ksize, stride=1, pad=0,
wscale=1, bias=0, nobias=False, outsize=None,
use_cudnn=True, initialW=None, initial_bias=None)

Two dimensional deconvolution function.

This link wraps the convolution_2d() function and holds the filter weight and bias vector as parameters.

Parameters

3.5. Standard Link implementations 79

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

• in_channels (int) – Number of channels of input arrays.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or (int, int) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or (int, int) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or (int, int) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• wscale (float) – Scaling factor of the initial weight.

• bias (float) – Initial bias value.

• nobias (bool) – If True, then this function does not use the bias term.

• outsize (tuple) – Expected output size of deconvolutional operation. It should be pair
of height and width (𝑜𝑢𝑡𝐻 , 𝑜𝑢𝑡𝑊). Default value is None and the outsize is estimated by
input size, stride and pad.

• use_cudnn (bool) – If True, then this function uses CuDNN if available.

• initialW (4-D array) – Initial weight value. If None, then this function uses to ini-
tialize wscale.

• initial_bias (1-D array) – Initial bias value. If None, then this function uses to
initialize bias.

The filter weight has four dimensions (𝑐𝐼 , 𝑐𝑂, 𝑘𝐻 , 𝑘𝑊) which indicate the number of the number of input chan-
nels, output channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d.
Gaussian random samples, each of which has zero mean and deviation

√︀
1/(𝑐𝐼𝑘𝐻𝑘𝑊) by default. The devia-

tion is scaled by wscale if specified.

The bias vector is of size 𝑐𝑂. Its elements are initialized by bias argument. If nobias argument is set to
True, then this function does not hold the bias parameter.

See also:

See chainer.functions.deconvolution_2d() for the definition of two-dimensional convolution.

class chainer.links.EmbedID(in_size, out_size)
Efficient linear layer for one-hot input.

This is a link that wraps the embed_id() function. This link holds the ID (word) embedding matrix W as a
parameter.

Parameters

• in_size (int) – Number of different identifiers (a.k.a. vocabulary size).

• out_size (int) – Size of embedding vector.

See also:

chainer.functions.embed_id()

W
~chainer.Variable

Embedding parameter matrix.

__call__(x)
Extracts the word embedding of given IDs.

80 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Parameters x (Variable) – Batch vectors of IDs.

Returns Batch of corresponding embeddings.

Return type Variable

class chainer.links.GRU(n_units, n_inputs=None)
Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . All these parameters are 𝑛× 𝑛 matricies, where
𝑛 is the dimension of hidden vectors.

Given two inputs a previous hidden vector ℎ and an input vector 𝑥, GRU returns the next hidden vector ℎ′

defined as

𝑟 =

𝜎(𝑊𝑟𝑥 + 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥 + 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥 + 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1 − 𝑧) ⊙ ℎ + 𝑧 ⊙ ℎ̄,

where 𝜎 is the sigmoid function, and ⊙ is the element-wise product.

GRU does not hold the value of hidden vector ℎ. So this is stateless. Use StatefulGRU as a stateful GRU.

Parameters

• n_units (int) – Dimension of hidden vector ℎ.

• n_inputs (int) – Dimension of input vector 𝑥. If None,

• is set to the same value as n_units. (it) –

See:

• On the Properties of Neural Machine Translation: Encoder-Decoder Approaches [Cho+, SSST2014].

• Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Chung+NIPS2014
DLWorkshop].

See also:

StatefulGRU

class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool)
Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension.
Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1
convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and
3x3 max pooling.

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate
padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

3.5. Standard Link implementations 81

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
http://www.aclweb.org/anthology/W14-4012
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1409.4842

Chainer Documentation, Release 1.6.2.1

• in_channels (int) – Number of channels of input arrays.

• out1 (int) – Output size of 1x1 convolution path.

• proj3 (int) – Projection size of 3x3 convolution path.

• out3 (int) – Output size of 3x3 convolution path.

• proj5 (int) – Projection size of 5x5 convolution path.

• out5 (int) – Output size of 5x5 convolution path.

• proj_pool (int) – Projection size of max pooling path.

__call__(x)
Computes the output of the Inception module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array. The channel dimension has size out1 + out3 + out5 + proj_pool.

Return type Variable

class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype,
proj_pool=None, stride=1)

Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the BatchNormalization on top of each con-
volution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling
method is configurable.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Parameters

• in_channels (int) – Number of channels of input arrays.

• out1 (int) – Output size of the 1x1 convolution path.

• proj3 (int) – Projection size of the single 3x3 convolution path.

• out3 (int) – Output size of the single 3x3 convolution path.

• proj33 (int) – Projection size of the double 3x3 convolutions path.

• out33 (int) – Output size of the double 3x3 convolutions path.

• pooltype (str) – Pooling type. It must be either ’max’ or ’avg’.

• proj_pool (bool) – If True, do projection in the pooling path.

• stride (int) – Stride parameter of the last convolution of each path.

See also:

Inception

train
bool

If True, then batch normalization layers are used in training mode. If False, they are used in testing mode.

class chainer.links.Linear(in_size, out_size, wscale=1, bias=0, nobias=False, initialW=None, ini-
tial_bias=None)

Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the linear() function, and holds a weight matrix W and optionally a bias vector b as
parameters.

82 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
http://arxiv.org/abs/1502.03167
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

The weight matrix W is initialized with i.i.d. Gaussian samples, each of which has zero mean and deviation
√︀

1/

Parameters
•in_size (int) – Dimension of input vectors.
•out_size (int) – Dimension of output vectors.
•wscale (float) – Scaling factor of the weight matrix.
•bias (float) – Initial bias value.
•nobias (bool) – If True, then this function does not use the bias.
•initialW (2-D array) – Initial weight value. If None, then this function uses to initialize wscale.
•initial_bias (1-D array) – Initial bias value. If None, then this function uses to initialize bias.

See also:

linear()

W
~chainer.Variable

Weight parameter.

b
~chainer.Variable

Bias parameter.

__call__(x)
Applies the linear layer.

Parameters x (Variable) – Batch of input vectors.

Returns Output of the linear layer.

Return type Variable

class chainer.links.LSTM(in_size, out_size)
Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, which is defined as a stateless
activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be
used as a stateful LSTM.

Parameters

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of output vectors.

upward
chainer.links.Linear

Linear layer of upward connections.

lateral
chainer.links.Linear

Linear layer of lateral connections.

c
chainer.Variable

Cell states of LSTM units.

3.5. Standard Link implementations 83

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

h
chainer.Variable

Output at the previous timestep.

__call__(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

reset_state()
Resets the internal state.

It sets None to the c and h attributes.

class chainer.links.MLPConvolution2D(in_channels, out_channels, ksize, stride=1, pad=0, ws-
cale=1, activation=<function relu>, use_cudnn=True)

Two-dimensional MLP convolution layer of Network in Network.

This is an “mlpconv” layer from the Network in Network paper. This layer is a two-dimensional convolution
layer followed by 1x1 convolution layers and interleaved activation functions.

Note that it does not apply the activation function to the output of the last 1x1 convolution layer.

Parameters

• in_channels (int) – Number of channels of input arrays.

• out_channels (tuple of ints) – Tuple of number of channels. The i-th integer
indicates the number of filters of the i-th convolution.

• ksize (int or (int, int) – Size of filters (a.k.a. kernels) of the first convolution
layer. ksize=k and ksize=(k, k) are equivalent.

• stride (int or (int, int) – Stride of filter applications at the first convolution
layer. stride=s and stride=(s, s) are equivalent.

• pad (int or (int, int) – Spatial padding width for input arrays at the first convolu-
tion layer. pad=p and pad=(p, p) are equivalent.

• activation (function) – Activation function for internal hidden units. Note that this
function is not applied to the output of this link.

• use_cudnn (bool) – If True, then this link uses CuDNN if available.

See: Network in Network <http://arxiv.org/abs/1312.4400v3>.

activation
function

Activation function.

__call__(x)
Computes the output of the mlpconv layer.

Parameters x (Variable) – Input image.

Returns Output of the mlpconv layer.

Return type Variable

84 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

class chainer.links.StatefulGRU(in_size, out_size)
Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . All these parameters are 𝑛×𝑛 matricies,
where 𝑛 is the dimension of hidden vectors.

Given input vector 𝑥, Stateful GRU returns the next hidden vector ℎ′ defined as

𝑟 =

𝜎(𝑊𝑟𝑥 + 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥 + 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥 + 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1 − 𝑧) ⊙ ℎ + 𝑧 ⊙ ℎ̄,

where ℎ is current hidden vector.

As the name indicates, StatefulGRU is stateful, meaning that it also holds the next hidden vector h’ as a
state. Use GRU as a stateless version of GRU.

Parameters

• in_size (int) – Dimension of input vector 𝑥.

• out_size (int) – Dimension of hidden vector ℎ.

h
~chainer.Variable

Hidden vector that indicates the state of

:class:‘~chainer.links.StatefulGRU‘.

See also:

GRU

3.5.2 Activation/loss/normalization functions with parameters

class chainer.links.BatchNormalization(size, decay=0.9, eps=1e-05, dtype=<type
‘numpy.float32’>)

Batch normalization layer on outputs of linear or convolution functions.

This link wraps the batch_normalization() and fixed_batch_normalization() functions.

It runs in three modes: training mode, fintuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statistics
by moving averages, which can be used for instant evaluation in testing mode.

In finetuning mode, it accumulates the input to compute population statistics. In order to correctly compute the
population statistics, a user must use this mode to feed mini batches running through whole training dataset.

In testing mode, it uses precmoputed population statistics to normalize the input variable. The population
statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by finetuning
mode.

Parameters

3.5. Standard Link implementations 85

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

batch_normalization(), fixed_batch_normalization()

gamma
~chainer.Variable

Scaling parameter.

beta
~chainer.Variable

Shifting parameter.

avg_mean
~chainer.Variable

Population mean.

avg_var
~chainer.Variable

Population variance.

N
int

Count of batches given for finetuning.

decay
float

Decay rate of moving average. It is used on training.

eps
float

Epsilon value for numerical stability. This value is added to the batch variances.

__call__(x, test=False, finetune=False)
Invokes the forward propagation of BatchNormalization.

BatchNormalization accepts additional arguments, which controlls three different running mode.

Parameters

• x (Variable) – An input variable.

• test (bool) – If True, BatchNormalization runs in testing mode; it normalizes the
input using precomputed statistics.

• finetune (bool) – If True, BatchNormalization runs in finetuning mode; it accumu-
lates the input array to compute population statistics for normalization, and normalizes the
input using batch statistics.

86 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
http://arxiv.org/abs/1502.03167
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

If test and finetune are both False, then BatchNormalization runs in training mode; it computes
moving averages of mean and variance for evaluation during training, and normalizes the input using batch
statistics.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the finetuning mode. Otherwise, this method should
be called before starting the finetuning mode again.

class chainer.links.BinaryHierarchicalSoftmax(in_size, tree)
Hierarchical softmax layer over binary tree.

In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical
softmax uses product of sigmoid functions. It costs only 𝑂(log(𝑛)) time where 𝑛 is the vocabulary size in
average.

At first a user need to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When
a word 𝑥 is given, exactly one path from the root of the tree to the leaf of the word exists. Let path(𝑥) =
((𝑒1, 𝑏1), . . . , (𝑒𝑚, 𝑏𝑚)) be the path of 𝑥, where 𝑒𝑖 is an index of 𝑖-th internal node, and 𝑏𝑖 ∈ {−1, 1} indicates
direction to move at 𝑖-th internal node (-1 is left, and 1 is right). Then, the probability of 𝑥 is given as below:

𝑃 (𝑥) =
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝑃 (𝑏𝑖|𝑒𝑖)

=
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝜎(𝑏𝑖𝑥

⊤𝑤𝑒𝑖),

where 𝜎(·) is a sigmoid function, and 𝑤 is a weight matrix.

This function costs 𝑂(log(𝑛)) time as an average length of paths is 𝑂(log(𝑛)), and 𝑂(𝑛) memory as the number
of internal nodes equals 𝑛− 1.

Parameters

• in_size (int) – Dimension of input vectors.

• tree – A binary tree made with tuples like ((1, 2), 3).

W
~chainer.Variable

Weight parameter matrix.

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

__call__(x, t)
Computes the loss value for given input and groundtruth labels.

Parameters

• x (Variable) – Input to the classifier at each node.

• t (Variable) – Batch of groundtruth labels.

Returns Loss value.

Return type Variable

static create_huffman_tree(word_counts)
Makes a huffman tree from a dictionary containing word counts.

This method creates a binary huffman tree, that is required for BinaryHierarchicalSoftmax. For
example, {0: 8, 1: 5, 2: 6, 3: 4} is converted to ((3, 1), (2, 0)).

3.5. Standard Link implementations 87

https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Parameters word_counts (dict of int key and int or float values) –
Dictionary representing counts of words.

Returns Binary huffman tree with tuples and keys of word_coutns.

class chainer.links.PReLU(shape=(), init=0.25)
Parameteric ReLU function as a link.

Parameters

• shape (tuple of ints) – Shape of the parameter array.

• init (float) – Initial parameter value.

See the paper for details: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification.

See also:

chainer.functions.prelu()

W
~chainer.Variable

Coefficient of parameteric ReLU.

__call__(x)
Applies the parametric ReLU activation function.

Parameters x (Variable) – Input variable.

Returns Output of the parametric ReLU function.

Return type Variable

class chainer.links.Maxout(in_size, out_size, pool_size, wscale=1, initialW=None, initial_bias=0)
Fully-connected maxout layer.

Let M, P and N be an input dimension, a pool size, and an output dimension, respectively. For an input vector 𝑥
of size M, it computes

𝑌𝑖 = max𝑗(𝑊𝑖𝑗·𝑥 + 𝑏𝑖𝑗).

Here 𝑊 is a weight tensor of shape (M, P, N), 𝑏 an optional bias vector of shape (M, P) and 𝑊𝑖𝑗· is a sub-
vector extracted from 𝑊 by fixing first and second dimensions to 𝑖 and 𝑗, respectively. Minibatch dimension is
omitted in the above equation.

As for the actual implementation, this chain has a Linear link with a (M * P, N) weight matrix and an
optional M * P dimensional bias vector.

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimension of output vectors.

• pool_size (int) – Number of channels.

• wscale (float) – Scaling factor of the weight matrix.

• initialW (3-D array or None) – Initial weight value. If None, then this function
uses wscale to initialize.

• initial_bias (2-D array, float or None) – Initial bias value. If it is float,
initial bias is filled with this value. If it is None, bias is omitted.

88 Chapter 3. Chainer Reference Manual

https://docs.python.org/2/library/functions.html#float
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float

Chainer Documentation, Release 1.6.2.1

linear
~chainer.Link

The Linear link that performs

affine transformation.

See also:

maxout()

See also:

Goodfellow, I., Warde-farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout Networks. In Pro-
ceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 1319-1327). URL

__call__(x)
Applies the maxout layer.

Parameters x (Variable) – Batch of input vectors.

Returns Output of the maxout layer.

Return type Variable

class chainer.links.NegativeSampling(in_size, counts, sample_size, power=0.75)
Negative sampling loss layer.

This link wraps the negative_sampling() function. It holds the weight matrix as a parameter. It also
builds a sampler internally given a list of word counts.

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

• power (float) – Power factor 𝛼.

See also:

negative_sampling() for more detail.

W
~chainer.Variable

Weight parameter matrix.

__call__(x, t)
Computes the loss value for given input and groundtruth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.

• t (Variable) – Batch of groundtruth labels.

Returns Loss value.

Return type Variable

3.5. Standard Link implementations 89

http://jmlr.org/proceedings/papers/v28/goodfellow13.html
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float

Chainer Documentation, Release 1.6.2.1

3.5.3 Machine learning models

class chainer.links.Classifier(predictor, lossfun=<function softmax_cross_entropy>)
A simple classifier model.

This is an example of chain that wraps another chain. It computes the loss and accuracy based on a given
input/label pair.

Parameters

• predictor (Link) – Predictor network.

• lossfun (function) – Loss function.

predictor
~chainer.Link

Predictor network.

lossfun
function

Loss function.

y
~chainer.Variable

Prediction for the last minibatch.

loss
~chainer.Variable

Loss value for the last minibatch.

accuracy
~chainer.Variable

Accuracy for the last minibatch.

compute_accuracy
bool

If True, compute accuracy on the forward computation. The default value is True.

__call__(x, t)
Computes the loss value for an input and label pair.

It also computes accuracy and stores it to the attribute.

Parameters

• x (Variable) – Input minibatch.

• t (Variable) – Corresponding groundtruth labels.

Returns Loss value.

Return type Variable

3.5.4 Deprecated links

class chainer.links.Parameter(array)
Link that just holds a parameter and returns it.

Deprecated since version v1.5: The parameters are stored as variables as of v1.5. Use them directly instead.

90 Chapter 3. Chainer Reference Manual

Chainer Documentation, Release 1.6.2.1

Parameters array – Initial parameter array.

W
~chainer.Variable

Parameter variable.

__call__(volatile=’off’)
Returns the parameter variable.

Parameters volatile (Flag) – The volatility of the returned variable.

Returns A copy of the parameter variable with given volatility.

Return type Variable

3.6 Optimizers

class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)
Zeiler’s ADADELTA.

See: http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)
AdaGrad implementation.

See: http://jmlr.org/papers/v12/duchi11a.html

class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08)
Adam optimization algorithm.

See: http://arxiv.org/abs/1412.6980v8

class chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)
Classical momentum SGD.

class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)
Nesterov’s Accelarated Gradient.

Formulated as the linear combination coefficients of the velocity and gradient contributions at each iteration.

See: http://arxiv.org/abs/1212.0901

class chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08)
Hinton’s RMSprop.

class chainer.optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.9, eps=0.0001)
Alex Graves’s RMSprop.

See http://arxiv.org/abs/1308.0850

class chainer.optimizers.SGD(lr=0.01)
Vanilla Stochastic Gradient Descent.

3.7 Serializers

3.7.1 Serialization in Numpy NPZ format

NumPy seriazliers can be used in arbitrary environments that Chainer runs with. It consists of asymmetric serial-
izer/deserializer due to the fact that numpy.savez() does not support online serialization. Therefore, serialization

3.6. Optimizers 91

http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
http://jmlr.org/papers/v12/duchi11a.html
http://arxiv.org/abs/1412.6980v8
http://arxiv.org/abs/1212.0901
http://arxiv.org/abs/1308.0850
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez

Chainer Documentation, Release 1.6.2.1

requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.

class chainer.serializers.DictionarySerializer(target=None, path=’‘)
Serializer for dictionary.

This is the standard serializer in Chainer. The hierarchy of objects are simply mapped to a flat dictionary with
keys representing the paths to objects in the hierarchy.

Note: Despite of its name, this serializer DOES NOT serialize the object into external files. It just build a
flat dictionary of arrays that can be fed into numpy.savez() and numpy.savez_compressed(). If you
want to use this serializer directly, you have to manually send a resulting dictionary to one of these functions.

Parameters

• target (dict) – The dictionary that this serializer saves the objects to. If target is None,
then a new dictionary is created.

• path (str) – The base path in the hierarchy that this serializer indicates.

target
dict

The target dictionary. Once the serialization completes, this dictionary can be fed into numpy.savez()
or numpy.savez_compressed() to serialize it in the NPZ format.

class chainer.serializers.NpzDeserializer(npz, path=’‘)
Deserializer for NPZ format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
save_npz().

Parameters

• npz – npz file opbject.

• path – The base path that the deserialization starts from.

chainer.serializers.save_npz(filename, obj, compression=True)
Saves an object to the file in NPZ format.

This is a short-cut function to save only one object into an NPZ file.

Parameters

• filename (str) – Target file name.

• obj – Object to be serialized. It must support serialization protocol.

• compression (bool) – If True, compression in the resulting zip file is enabled.

chainer.serializers.load_npz(filename, obj)
Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only one object.

Parameters

• filename (str) – Name of the file to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

92 Chapter 3. Chainer Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str

Chainer Documentation, Release 1.6.2.1

3.7.2 Serialization in HDF5 format

class chainer.serializers.HDF5Serializer(group, compression=4)
Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply mapped to HDF5 hierarchical groups.

Parameters

• group (h5py.Group) – The group that this serializer represents.

• compression (int) – Gzip compression level.

class chainer.serializers.HDF5Deserializer(group)
Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
HDF5Serializer.

Parameters group (h5py.Group) – The group that the deserialization starts from.

chainer.serializers.save_hdf5(filename, obj, compression=4)
Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If you want to save multiple objects to
one HDF5 file, use HDF5Serializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Target file name.

• obj – Object to be serialized. It must support serialization protocol.

• compression (int) – Gzip compression level.

chainer.serializers.load_hdf5(filename, obj)
Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only one object. If you want to load multiple
objects from one HDF5 file, use HDF5Deserializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Name of the file to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

3.8 Caffe Reference Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities,
and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference
models in their Model Zoo, one of the reason why this framework gets popular.

Chainer can import the reference models and emulate the network by Function implementations. This functionality
is provided by the chainer.functions.caffe.CaffeFunction class.

class chainer.functions.caffe.CaffeFunction(model_path)
Caffe emulator based on the model file of Caffe.

Given a binary protobuf file of a Caffe model, this class loads and emulates it on Variable objects. It supports
the official reference models provided by BVLC.

3.8. Caffe Reference Model Support 93

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
http://caffe.berkeleyvision.org/
http://bvlc.eecs.berkeley.edu/
http://caffe.berkeleyvision.org/model_zoo.html

Chainer Documentation, Release 1.6.2.1

Note: This class only supports Python 2.7, since the compiled module for protocol buffers only supports Python
2. The __init__ function raises an exception in Python 3.

Note: CaffeFunction ignores the following layers:

•Layers that CaffeFunction does not support (including data layers)

•Layers that have no top blobs

•Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)

Warning: It does not support full compatibility against Caffe. Some layers and configurations are not
implemented in Chainer yet, though the reference models provided by the BVLC team are supported except
data layers.

Example

Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference
CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply written as follows:

Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
... # (Fill the minibatch here)

Forward the pretrained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])

The result y contains the Variable corresponding to the fc8 blob. The computational graph is memorized as a
usual forward computation in Chainer, so we can run backprop through this pretrained net.

Parameters model_path (str) – Path to the binary-proto model file of Caffe.

fs
FunctionSet

A set of functions corresponding to parameterized layers of Caffe. The names of its attributes are same as
the layer names of the given network.

forwards
dict

A mapping from layer names to corresponding functions.

__call__(inputs, outputs, disable=[], train=True)
Executes a subnetwork of the network.

94 Chapter 3. Chainer Reference Manual

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
https://docs.python.org/2/library/functions.html#str

Chainer Documentation, Release 1.6.2.1

This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each
layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output
blobs as Variable objects.

Parameters

• inputs (dict) – A dictionary whose key-value pairs indicate initial correspondences
between blob names and Variable objects.

• outputs (Iterable) – A list of blob names whose corresponding Variable objects
are returned.

• disable (Iterable) – A list of layer names that will be ignored during the forward
computation.

• train (bool) – If True, this function emulates the TRAIN phase of the Caffe layers.
Otherwise, it emulates the TEST phase.

Returns A tuple of output Variable objects corresponding to elements of the outputs argu-
ment.

Return type tuple

3.9 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed
properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by in-
voking build_computational_graph(). Generated computational graphs are dumped to specified format
(Currently Dot Language is supported).

Basic usage is as follows:

import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:

o.write(g.dump())

where vs is list of Variable instances and g is an instance of ComputationalGraph. This code generates the
computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of
vs.

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from
example/imagenet.

chainer.computational_graph.build_computational_graph(outputs, remove_split=True)
Builds a graph of functions and variables backward-reachable from outputs.

Parameters

• outputs (list) – nodes from which the graph is constructed. Each element of outputs
must be either Variable object or Function object.

• remove_split (bool) – It must be True. This argument is left for backward compati-
bility.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of
outputs.

3.9. Visualization of Computational Graph 95

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#tuple
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://arxiv.org/abs/1409.4842
https://docs.python.org/2/library/functions.html#list
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

If unchain_backward was called in some variable in the computational graph before this
function, backward step is stopped at this variable.

For example, suppose that computational graph is as follows:

|--> f ---> y
x --+

|--> g ---> z

Let outputs = [y, z]. Then the full graph is emitted.

Next, let outputs = [y]. Note that z and g are not backward-reachable from y. The result-
ing graph would be following:

x ---> f ---> y

See TestGraphBuilder for details.

Return type ComputationalGraph

class chainer.computational_graph.ComputationalGraph(nodes, edges)
Class that represents computational graph.

Note: We assume that the computational graph is directed and acyclic.

dump(format=’dot’)
Dumps graph as a text.

Args format(str): The graph language name of the output. Currently, it must be ‘dot’.

Returns str: The graph in specified format.

96 Chapter 3. Chainer Reference Manual

CHAPTER 4

CuPy Reference Manual

This is the official documentation of CuPy, a multi-dimensional array on CUDA with a subset of NumPy interface.

4.1 CuPy Overview

CuPy is an implementation of NumPy-compatible multi-dimensional array on CUDA. CuPy consists of the core multi-
dimensional array class, cupy.ndarray , and many functions on it. It supports a subset of numpy.ndarray
interface that is enough for Chainer.

The following is a brief overview of supported subset of NumPy interface:

• Basic indexing (indexing by ints, slices, newaxes, and Ellipsis)

• Element types (dtypes): bool_, (u)int{8, 16, 32, 64}, float{16, 32, 64}

• Most of the array creation routines

• Reshaping and transposition

• All operators with broadcasting

• All Universal functions (a.k.a. ufuncs) for elementwise operations except those for complex numbers

• Dot product functions (except einsum) using cuBLAS

• Reduction along axes (sum, max, argmax, etc.)

CuPy also includes following features for performance:

• Customizable memory allocator, and a simple memory pool as an example

• User-defined elementwise kernels

• User-defined reduction kernels

• cuDNN utilities

CuPy uses on-the-fly kernel synthesis: when a kernel call is required, it compiles a kernel code optimized for
the shapes and dtypes of given arguments, sends it to the GPU device, and executes the kernel. The compiled
code is cached to $(HOME)/.cupy/kernel_cache directory (this cache path can be overwritten by setting the
CUPY_CACHE_DIR environment variable). It may make things slower at the first kernel call, though this slow down
will be resolved at the second execution. CuPy also caches the kernel code sent to GPU device within the process,
which reduces the kernel transfer time on further calls.

97

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
http://docs.scipy.org/doc/numpy/reference/ufuncs.html

Chainer Documentation, Release 1.6.2.1

4.1.1 A list of supported attributes, properties, and methods of ndarray

Memory layout

base ctypes itemsize flags nbytes shape size strides

Data type

dtype

Other attributes

T

Array conversion

tolist() tofile() dump() dumps() astype() copy() view() fill()

Shape manipulation

reshape() transpose() swapaxes() ravel() squeeze()

Item selection and manipulation

take() diagonal()

Calculation

max() argmax() min() argmin() clip() trace() sum() mean() var() std() prod() dot()

Arithmetic and comparison operations

__lt__() __le__() __gt__() __ge__() __eq__() __ne__() __nonzero__() __neg__()
__pos__() __abs__() __invert__() __add__() __sub__() __mul__() __div__()
__truediv__() __floordiv__() __mod__() __divmod__() __pow__() __lshift__()
__rshift__() __and__() __or__() __xor__() __iadd__() __isub__() __imul__()
__idiv__() __itruediv__() __ifloordiv__() __imod__() __ipow__() __ilshift__()
__irshift__() __iand__() __ior__() __ixor__()

Special methods

__copy__() __deepcopy__() __reduce__() __array__() __len__() __getitem__()
__setitem__() __int__() __long__() __float__() __oct__() __hex__() __repr__()
__str__()

Memory transfer

get() set()

98 Chapter 4. CuPy Reference Manual

Chainer Documentation, Release 1.6.2.1

4.1.2 A list of supported routines of cupy module

Array creation routines

empty() empty_like() eye() identity() ones() ones_like() zeros() zeros_like()
full() full_like()

array() asarray() ascontiguousarray() copy()

arange() linspace()

diag() diagflat()

Array manipulation routines

copyto()

reshape() ravel()

rollaxis() swapaxes() transpose()

atleast_1d() atleast_2d() atleast_3d() broadcast broadcast_arrays()
broadcast_to() expand_dims() squeeze()

column_stack() concatenate() dstack() hstack() vstack()

array_split() dsplit() hsplit() split() vsplit()

roll()

Binary operations

bitwise_and bitwise_or bitwise_xor invert left_shift right_shift

Indexing routines

take() diagonal()

Input and output

load() save() savez() savez_compressed()

array_repr() array_str()

Linear algebra

dot() vdot() inner() outer() tensordot()

trace()

4.1. CuPy Overview 99

Chainer Documentation, Release 1.6.2.1

Logic functions

isfinite isinf isnan

logical_and logical_or logical_not logical_xor

greater greater_equal less less_equal equal not_equal

Mathematical functions

sin cos tan arcsin arccos arctan hypot arctan2 deg2rad rad2deg degrees radians

sinh cosh tanh arcsinh arccosh arctanh

rint floor ceil trunc

sum() prod()

exp expm1 exp2 log log10 log2 log1p logaddexp logaddexp2

signbit copysign ldexp frexp nextafter

add reciprocal negative multiply divide power subtract true_divide floor_divide fmod
mod modf remainder

clip() sqrt square absolute sign maximum minimum fmax fmin

Sorting, searching, and counting

argmax() argmin() count_nonzero() where()

Statistics

amin() amax()

mean() var() std()

bincount()

Other

asnumpy()

4.2 Multi-Dimensional Array (ndarray)

class cupy.ndarray
Multi-dimensional array on a CUDA device.

This class implements a subset of methods of numpy.ndarray. The difference is that this class allocates the
array content on the current GPU device.

Parameters

• shape (tuple of ints) – Length of axes.

• dtype – Data type. It must be an argument of numpy.dtype.

100 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Chainer Documentation, Release 1.6.2.1

• memptr (cupy.cuda.MemoryPointer) – Pointer to the array content head.

• strides (tuple of ints) – The strides for axes.

base
None or cupy.ndarray

Base array from which this array is created as a view.

data
cupy.cuda.MemoryPointer

Pointer to the array content head.

dtype
numpy.dtype

Dtype object of element type.

See also:

Data type objects (dtype)

size
int

Number of elements this array holds.

This is equivalent to product over the shape tuple.

See also:

numpy.ndarray.size

T
Shape-reversed view of the array.

If ndim < 2, then this is just a reference to the array itself.

__abs__

__add__
x.__add__(y) <==> x+y

__and__
x.__and__(y) <==> x&y

__delitem__
x.__delitem__(y) <==> del x[y]

__div__
x.__div__(y) <==> x/y

__divmod__

__eq__
x.__eq__(y) <==> x==y

__float__

__floordiv__
x.__floordiv__(y) <==> x//y

__ge__
x.__ge__(y) <==> x>=y

4.2. Multi-Dimensional Array (ndarray) 101

http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size

Chainer Documentation, Release 1.6.2.1

__getitem__
x.__getitem__(y) <==> x[y]

__gt__
x.__gt__(y) <==> x>y

__hex__

__iadd__
x.__iadd__(y) <==> x+=y

__iand__
x.__iand__(y) <==> x&=y

__idiv__
x.__idiv__(y) <==> x/=y

__ifloordiv__
x.__ifloordiv__(y) <==> x//y

__ilshift__
x.__ilshift__(y) <==> x<<=y

__imod__
x.__imod__(y) <==> x%=y

__imul__
x.__imul__(y) <==> x*=y

__int__

__invert__
x.__invert__() <==> ~x

__ior__
x.__ior__(y) <==> x|=y

__ipow__
x.__ipow__(y) <==> x**=y

__irshift__
x.__irshift__(y) <==> x>>=y

__isub__
x.__isub__(y) <==> x-=y

__itruediv__
x.__itruediv__(y) <==> x/y

__ixor__
x.__ixor__(y) <==> x^=y

__le__
x.__le__(y) <==> x<=y

__len__

__long__

__lshift__
x.__lshift__(y) <==> x<<y

__lt__
x.__lt__(y) <==> x<y

102 Chapter 4. CuPy Reference Manual

Chainer Documentation, Release 1.6.2.1

__mod__
x.__mod__(y) <==> x%y

__mul__
x.__mul__(y) <==> x*y

__ne__
x.__ne__(y) <==> x!=y

__neg__
x.__neg__() <==> -x

__nonzero__
x.__nonzero__() <==> x != 0

__oct__

__or__
x.__or__(y) <==> x|y

__pos__
x.__pos__() <==> +x

__pow__

__radd__
x.__radd__(y) <==> y+x

__rand__
x.__rand__(y) <==> y&x

__rdiv__
x.__rdiv__(y) <==> y/x

__rdivmod__

__repr__

__rfloordiv__
x.__rfloordiv__(y) <==> y//x

__rlshift__
x.__rlshift__(y) <==> y<<x

__rmod__
x.__rmod__(y) <==> y%x

__rmul__
x.__rmul__(y) <==> y*x

__ror__
x.__ror__(y) <==> y|x

__rpow__

__rrshift__
x.__rrshift__(y) <==> y>>x

__rshift__
x.__rshift__(y) <==> x>>y

__rsub__
x.__rsub__(y) <==> y-x

4.2. Multi-Dimensional Array (ndarray) 103

Chainer Documentation, Release 1.6.2.1

__rtruediv__
x.__rtruediv__(y) <==> y/x

__rxor__
x.__rxor__(y) <==> y^x

__setitem__
x.__setitem__(i, y) <==> x[i]=y

__str__

__sub__
x.__sub__(y) <==> x-y

__truediv__
x.__truediv__(y) <==> x/y

__xor__
x.__xor__(y) <==> x^y

argmax()
Returns the indices of the maximum along a given axis.

See also:

cupy.argmax() for full documentation, numpy.ndarray.argmax()

argmin()
Returns the indices of the minimum along a given axis.

See also:

cupy.argmin() for full documentation, numpy.ndarray.argmin()

astype()
Casts the array to given data type.

Parameters

• dtype – Type specifier.

• copy (bool) – If it is False and no cast happens, then this method returns the array itself.
Otherwise, a copy is returned.

Returns If copy is False and no cast is required, then the array itself is returned. Otherwise, it
returns a (possibly casted) copy of the array.

Note: This method currently does not support order, casting, and subok arguments.

See also:

numpy.ndarray.astype()

clip()
Returns an array with values limited to [a_min, a_max].

See also:

cupy.clip() for full documentation, numpy.ndarray.clip()

copy()
Returns a copy of the array.

See also:

104 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip

Chainer Documentation, Release 1.6.2.1

cupy.copy() for full documentation, numpy.ndarray.copy()

cstruct
C representation of the array.

This property is used for sending an array to CUDA kernels. The type of returned C structure is different
for different dtypes and ndims. The definition of C type is written in cupy/carray.cuh.

device
CUDA device on which this array resides.

diagonal()
Returns a view of the specified diagonals.

See also:

cupy.diagonal() for full documentation, numpy.ndarray.diagonal()

dot()
Returns the dot product with given array.

See also:

cupy.dot() for full documentation, numpy.ndarray.dot()

dump()
Dumps a pickle of the array to a file.

Dumped file can be read back to cupy.ndarray by cupy.load().

dumps()
Dumps a pickle of the array to a string.

fill()
Fills the array with a scalar value.

Parameters value – A scalar value to fill the array content.

See also:

numpy.ndarray.fill()

flags
Object containing memory-layout information.

It only contains c_contiguous, f_contiguous, and owndata attributes. All of these are read-only.
Accessing by indexes is also supported.

See also:

numpy.ndarray.flags

flatten()
Returns a copy of the array flatten into one dimension.

It currently supports C-order only.

Returns A copy of the array with one dimension.

Return type cupy.ndarray

See also:

numpy.ndarray.flatten()

get()
Returns a copy of the array on host memory.

4.2. Multi-Dimensional Array (ndarray) 105

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.diagonal.html#numpy.ndarray.diagonal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten

Chainer Documentation, Release 1.6.2.1

Parameters stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy
runs asynchronously. Otherwise, the copy is synchronous.

Returns Copy of the array on host memory.

Return type numpy.ndarray

itemsize
Size of each element in bytes.

See also:

numpy.ndarray.itemsize

max()
Returns the maximum along a given axis.

See also:

cupy.amax() for full documentation, numpy.ndarray.max()

mean()
Returns the mean along a given axis.

See also:

cupy.mean() for full documentation, numpy.ndarray.mean()

min()
Returns the minimum along a given axis.

See also:

cupy.amin() for full documentation, numpy.ndarray.min()

nbytes
Size of whole elements in bytes.

It does not count skips between elements.

See also:

numpy.ndarray.nbytes

ndim
Number of dimensions.

a.ndim is equivalent to len(a.shape).

See also:

numpy.ndarray.ndim

prod()
Returns the product along a given axis.

See also:

cupy.prod() for full documentation, numpy.ndarray.prod()

ravel()
Returns an array flattend into one dimension.

See also:

cupy.ravel() for full documentation, numpy.ndarray.ravel()

106 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel

Chainer Documentation, Release 1.6.2.1

reduced_view()
Returns a view of the array with minimum number of dimensions.

Parameters dtype – Data type specifier. If it is given, then the memory sequence is reinter-
preted as the new type.

Returns A view of the array with reduced dimensions.

Return type cupy.ndarray

repeat()
Returns an array with repeated arrays along an axis.

See also:

cupy.repeat() for full documentation, numpy.ndarray.repeat()

reshape()
Returns an array of a different shape and the same content.

See also:

cupy.reshape() for full documentation, numpy.ndarray.reshape()

set()
Copies an array on the host memory to cuda.ndarray.

Parameters

• arr (numpy.ndarray) – The source array on the host memory.

• stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs
asynchronously. Otherwise, the copy is synchronous.

shape
Lengths of axes.

Setter of this property involves reshaping without copy. If the array cannot be reshaped without copy, it
raises an exception.

squeeze()
Returns a view with size-one axes removed.

See also:

cupy.squeeze() for full documentation, numpy.ndarray.squeeze()

std()
Returns the standard deviation along a given axis.

See also:

cupy.std() for full documentation, numpy.ndarray.std()

strides
Strides of axes in bytes.

See also:

numpy.ndarray.strides

sum()
Returns the sum along a given axis.

See also:

cupy.sum() for full documentation, numpy.ndarray.sum()

4.2. Multi-Dimensional Array (ndarray) 107

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.squeeze.html#numpy.ndarray.squeeze
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum

Chainer Documentation, Release 1.6.2.1

swapaxes()
Returns a view of the array with two axes swapped.

See also:

cupy.swapaxes() for full documentation, numpy.ndarray.swapaxes()

take()
Returns an array of elements at given indices along the axis.

See also:

cupy.take() for full documentation, numpy.ndarray.take()

tofile()
Writes the array to a file.

See also:

numpy.ndarray.tolist()

tolist()
Converts the array to a (possibly nested) Python list.

Returns The possibly nested Python list of array elements.

Return type list

See also:

numpy.ndarray.tolist()

trace()
Returns the sum along diagonals of the array.

See also:

cupy.trace() for full documentation, numpy.ndarray.trace()

transpose()
Returns a view of the array with axes permuted.

See also:

cupy.transpose() for full documentation, numpy.ndarray.reshape()

var()
Returns the variance along a given axis.

See also:

cupy.var() for full documentation, numpy.ndarray.var()

view()
Returns a view of the array.

Parameters dtype – If this is different from the data type of the array, the returned view rein-
terpret the memory sequence as an array of this type.

Returns A view of the array. A reference to the original array is stored at the base attribute.

Return type cupy.ndarray

See also:

numpy.ndarray.view()

108 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist
https://docs.python.org/2/library/functions.html#list
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.trace.html#numpy.ndarray.trace
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view

Chainer Documentation, Release 1.6.2.1

cupy.asnumpy(a, stream=None)
Returns an array on the host memory from an arbitrary source array.

Parameters

• a – Arbitrary object that can be converted to numpy.ndarray.

• stream (cupy.cuda.Stream) – CUDA stream object. If it is specified, then the device-
to-host copy runs asynchronously. Otherwise, the copy is synchronous. Note that if a is not
a cupy.ndarray object, then this argument has no effect.

Returns Converted array on the host memory.

Return type numpy.ndarray

4.3 Universal Functions (ufunc)

CuPy provides universal functions (a.k.a. ufuncs) to support various elementwise operations. CuPy’s ufunc supports
following features of NumPy’s one:

• Broadcasting

• Output type determination

• Casting rules

CuPy’s ufunc currently does not provide methods such as reduce, accumulate, reduceat, outer, and at.

4.3.1 Ufunc class

class cupy.ufunc
Universal function.

name
str

The name of the universal function.

nin
int

Number of input arguments.

nout
int

Number of output arguments.

nargs
int

Number of all arguments.

__call__()
Applies the universal function to arguments elementwise.

Parameters

• args – Input arguments. Each of them can be a cupy.ndarray object or a scalar. The
output arguments can be omitted or be specified by the out argument.

• out (cupy.ndarray) – Output array. It outputs to new arrays default.

4.3. Universal Functions (ufunc) 109

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

• dtype – Data type specifier.

Returns Output array or a tuple of output arrays.

types
A list of type signatures.

Each type signature is represented by type character codes of inputs and outputs separated by ‘->’.

4.3.2 Available ufuncs

Math operations

add subtract multiply divide logaddexp logaddexp2 true_divide floor_divide negative
power remainder mod fmod absolute rint sign exp exp2 log log2 log10 expm1 log1p sqrt
square reciprocal

Trigonometric functions

sin cos tan arcsin arccos arctan arctan2 hypot sinh cosh tanh arcsinh arccosh arctanh
deg2rad rad2deg

Bit-twiddling functions

bitwise_and bitwise_or bitwise_xor invert left_shift right_shift

Comparison functions

greater greater_equal less less_equal not_equal equal logical_and logical_or
logical_xor logical_not maximum minimum fmax fmin

Floating point values

isfinite isinf isnan signbit copysign nextafter modf ldexp frexp fmod floor ceil trunc

4.4 Routines

The following pages describe NumPy-compatible routines. These functions cover a subset of NumPy routines.

4.4.1 Array Creation Routines

Basic creation routines

cupy.empty(shape, dtype=<type ‘float’>)
Returns an array without initializing the elements.

This function currently does not support order option.

Parameters

110 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/routines.html

Chainer Documentation, Release 1.6.2.1

• shape (tuple of ints) – Dimensionalities of the array.

• dtype – Data type specifier.

Returns A new array with elements not initialized.

Return type cupy.ndarray

See also:

numpy.empty()

cupy.empty_like(a, dtype=None)
Returns a new array with same shape and dtype of a given array.

This function currently does not support order and subok options.

Parameters

• a (cupy.ndarray) – Base array.

• dtype – Data type specifier. The data type of a is used by default.

Returns A new array with same shape and dtype of a with elements not initialized.

Return type cupy.ndarray

See also:

numpy.empty_like()

cupy.eye(N, M=None, k=0, dtype=<type ‘float’>)
Returns a 2-D array with ones on the diagonals and zeros elsewhere.

Parameters

• N (int) – Number of rows.

• M (int) – Number of columns. M == N by default.

• k (int) – Index of the diagonal. Zero indicates the main diagonal, a positive index an upper
diagonal, and a negative index a lower diagonal.

• dtype – Data type specifier.

Returns A 2-D array with given diagonals filled with ones and zeros elsewhere.

Return type cupy.ndarray

See also:

numpy.eye()

cupy.identity(n, dtype=<type ‘float’>)
Returns a 2-D identity array.

It is equivalent to eye(n, n, dtype).

Parameters

• n (int) – Number of rows and columns.

• dtype – Data type specifier.

Returns A 2-D identity array.

Return type cupy.ndarray

4.4. Routines 111

http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty
http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty_like.html#numpy.empty_like
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html#numpy.eye
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

See also:

numpy.identity()

cupy.ones(shape, dtype=<type ‘float’>)
Returns a new array of given shape and dtype, filled with ones.

This function currently does not support order option.

Parameters

• shape (tuple of ints) – Dimensionalities of the array.

• dtype – Data type specifier.

Returns An array filled with ones.

Return type cupy.ndarray

See also:

numpy.ones()

cupy.ones_like(a, dtype=None)
Returns an array of ones with same shape and dtype as a given array.

This function currently does not support order and subok options.

Parameters

• a (cupy.ndarray) – Base array.

• dtype – Data type specifier. The dtype of a is used by default.

Returns An array filled with ones.

Return type cupy.ndarray

See also:

numpy.ones_like()

cupy.zeros(shape, dtype=<type ‘float’>)
Returns a new array of given shape and dtype, filled with zeros.

This function currently does not support order option.

Parameters

• shape (tuple of ints) – Dimensionalities of the array.

• dtype – Data type specifier.

Returns An array filled with ones.

Return type cupy.ndarray

See also:

numpy.zeros()

cupy.zeros_like(a, dtype=None)
Returns an array of zeros with same shape and dtype as a given array.

This function currently does not support order and subok options.

Parameters

• a (cupy.ndarray) – Base array.

112 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.identity.html#numpy.identity
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones_like.html#numpy.ones_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros

Chainer Documentation, Release 1.6.2.1

• dtype – Data type specifier. The dtype of a is used by default.

Returns An array filled with ones.

Return type cupy.ndarray

See also:

numpy.zeros_like()

cupy.full(shape, fill_value, dtype=None)
Returns a new array of given shape and dtype, filled with a given value.

This function currently does not support order option.

Parameters

• shape (tuple of ints) – Dimensionalities of the array.

• fill_value – A scalar value to fill a new array.

• dtype – Data type specifier.

Returns An array filled with fill_value.

Return type cupy.ndarray

See also:

numpy.full()

cupy.full_like(a, fill_value, dtype=None)
Returns a full array with same shape and dtype as a given array.

This function currently does not support order and subok options.

Parameters

• a (cupy.ndarray) – Base array.

• fill_value – A scalar value to fill a new array.

• dtype – Data type specifier. The dtype of a is used by default.

Returns An array filled with fill_value.

Return type cupy.ndarray

See also:

numpy.full_like()

Creation from other data

cupy.array(obj, dtype=None, copy=True, ndmin=0)
Creates an array on the current device.

This function currently does not support the order and subok options.

Parameters

• obj – cupy.ndarray object or any other object that can be passed to numpy.array().

• dtype – Data type specifier.

• copy (bool) – If False, this function returns obj if possible. Otherwise this function
always returns a new array.

4.4. Routines 113

http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html#numpy.zeros_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full
http://docs.scipy.org/doc/numpy/reference/generated/numpy.full_like.html#numpy.full_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

• ndmin (int) – Minimum number of dimensions. Ones are inserted to the head of the shape
if needed.

Returns An array on the current device.

Return type cupy.ndarray

See also:

numpy.array()

cupy.asarray(a, dtype=None)
Converts an object to array.

This is equivalent to array(a, dtype, copy=False). This function currently does not support the
order option.

Parameters

• a – The source object.

• dtype – Data type specifier. It is inferred from the input by default.

Returns An array on the current device. If a is already on the device, no copy is performed.

Return type cupy.ndarray

See also:

numpy.asarray()

cupy.asanyarray(a, dtype=None)
Converts an object to array.

This is currently equivalent to asarray(), since there is no subclass of ndarray in CuPy. Note that the original
numpy.asanyarray() returns the input array as is if it is an instance of a subtype of numpy.ndarray.

See also:

cupy.asarray(), numpy.asanyarray()

cupy.ascontiguousarray(a, dtype=None)
Returns a C-contiguous array.

Parameters

• a (cupy.ndarray) – Source array.

• dtype – Data type specifier.

Returns If no copy is required, it returns a. Otherwise, it returns a copy of a.

Return type cupy.ndarray

See also:

numpy.ascontiguousarray()

cupy.copy(a)
Creates a copy of a given array on the current device.

This function allocates the new array on the current device. If the given array is allocated on the different device,
then this function tries to copy the contents over the devices.

Parameters a (cupy.ndarray) – The source array.

Returns The copy of a on the current device.

Return type cupy.ndarray

114 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray

Chainer Documentation, Release 1.6.2.1

See: numpy.copy(), cupy.ndarray.copy()

Numerical ranges

cupy.arange(start, stop=None, step=1, dtype=None)
Rerurns an array with evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop). The first three arguments are mapped like the
range built-in function, i.e. start and step are optional.

Parameters

• start – Start of the interval.

• stop – End of the interval.

• step – Step width between each pair of consecutive values.

• dtype – Data type specifier. It is inferred from other arguments by default.

Returns The 1-D array of range values.

Return type cupy.ndarray

See also:

numpy.arange()

cupy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
Returns an array with evenly-spaced values within a given interval.

Instead of specifying the step width like cupy.arange(), this function requires the total number of elements
specified.

Parameters

• start – Start of the interval.

• stop – End of the interval.

• num – Number of elements.

• endpoint (bool) – If True, the stop value is included as the last element. Otherwise, the
stop value is omitted.

• retstep (bool) – If True, this function returns (array, step). Otherwise, it returns only
the array.

• dtype – Data type specifier. It is inferred from the start and stop arguments by default.

Returns The 1-D array of ranged values.

Return type cupy.ndarray

Matrix creation

cupy.diag(v, k=0)
Returns a diagonal or a diagonal array.

Parameters

• v (array-like) – Array or array-like object.

• k (int) – Index of diagonals. Zero indicates the main diagonal, a positive value an upper
diagonal, and a negative value a lower diagonal.

4.4. Routines 115

http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html#numpy.copy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Returns If v indicates a 1-D array, then it returns a 2-D array with the specified diagonal filled by
v. If v indicates a 2-D array, then it returns the specified diagonal of v. In latter case, if v is a
cupy.ndarray object, then its view is returned.

Return type cupy.ndarray

See also:

numpy.diag()

cupy.diagflat(v, k=0)
Creates a diagonal array from the flattened input.

Parameters

• v (array-like) – Array or array-like object.

• k (int) – Index of diagonals. See cupy.diag() for detail.

Returns A 2-D diagonal array with the diagonal copied from v.

Return type cupy.ndarray

4.4.2 Array Manipulation Routines

Basic manipulations

cupy.copyto(dst, src, casting=’same_kind’, where=None)
Copies values from one array to another with broadcasting.

This function can be called for arrays on different devices. In this case, casting, where, and broadcasting is not
supported, and an exception is raised if these are used.

Parameters

• dst (cupy.ndarray) – Target array.

• src (cupy.ndarray) – Source array.

• casting (str) – Casting rule. See numpy.can_cast() for detail.

• where (cupy.ndarray of bool) – If specified, this array acts as a mask, and an
element is copied only if the corresponding element of where is True.

See also:

numpy.copyto()

Shape manipulation

cupy.reshape(a, newshape)
Returns an array with new shape and same elements.

It tries to return a view if possible, otherwise returns a copy.

This function currently does not support order option.

Parameters

• a (cupy.ndarray) – Array to be reshaped.

116 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
http://docs.scipy.org/doc/numpy/reference/generated/numpy.can_cast.html#numpy.can_cast
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copyto.html#numpy.copyto

Chainer Documentation, Release 1.6.2.1

• newshape (int or tuple of ints) – The new shape of the array to return. If it is
an integer, then it is treated as a tuple of length one. It should be compatible with a.size.
One of the elements can be -1, which is automatically replaced with the appropriate value
to make the shape compatible with a.size.

Returns A reshaped view of a if possible, otherwise a copy.

Return type cupy.ndarray

See also:

numpy.reshape()

cupy.ravel(a)
Returns a flattened array.

It tries to return a view if possible, otherwise returns a copy.

This function currently does not support order option.

Parameters a (cupy.ndarray) – Array to be flattened.

Returns A flattened view of a if possible, otherwise a copy.

Return type cupy.ndarray

See also:

numpy.ravel()

Transposition

cupy.rollaxis(a, axis, start=0)
Moves the specified axis backwards to the given place.

Parameters

• a (cupy.ndarray) – Array to move the axis.

• axis (int) – The axis to move.

• start (int) – The place to which the axis is moved.

Returns A view of a that the axis is moved to start.

Return type cupy.ndarray

See also:

numpy.rollaxis()

cupy.swapaxes(a, axis1, axis2)
Swaps the two axes.

Parameters

• a (cupy.ndarray) – Array to swap the axes.

• axis1 (int) – The first axis to swap.

• axis2 (int) – The second axis to swap.

Returns A view of a that the two axes are swapped.

Return type cupy.ndarray

4.4. Routines 117

http://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html#numpy.ravel
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html#numpy.rollaxis
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

See also:

numpy.swapaxes()

cupy.transpose(a, axes=None)
Permutes the dimensions of an array.

Parameters

• a (cupy.ndarray) – Array to permute the dimensions.

• axes (tuple of ints) – Permutation of the dimensions. This function reverses the
shape by default.

Returns A view of a that the dimensions are permuted.

Return type cupy.ndarray

See also:

numpy.transpose()

Edit dimensionalities

cupy.atleast_1d(*arys)
Converts arrays to arrays with dimensions >= 1.

Parameters arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects. Only zero-dimensional array is affected.

Returns If there are only one input, then it returns its converted version. Otherwise, it returns a list
of converted arrays.

See also:

numpy.atleast_1d()

cupy.atleast_2d(*arys)
Converts arrays to arrays with dimensions >= 2.

If an input array has dimensions less than two, then this function inserts new axes at the head of dimensions to
make it have two dimensions.

Parameters arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.

Returns If there are only one input, then it returns its converted version. Otherwise, it returns a list
of converted arrays.

See also:

numpy.atleast_2d()

cupy.atleast_3d(*arys)
Converts arrays to arrays with dimensions >= 3.

If an input array has dimensions less than three, then this function inserts new axes to make it have three
dimensions. The place of the new axes are following:

•If its shape is (), then the shape of output is (1, 1, 1).

•If its shape is (N,), then the shape of output is (1, N, 1).

•If its shape is (M, N), then the shape of output is (M, N, 1).

•Otherwise, the output is the input array itself.

118 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.swapaxes.html#numpy.swapaxes
http://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose
http://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_1d.html#numpy.atleast_1d
http://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_2d.html#numpy.atleast_2d

Chainer Documentation, Release 1.6.2.1

Parameters arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.

Returns If there are only one input, then it returns its converted version. Otherwise, it returns a list
of converted arrays.

See also:

numpy.atleast_3d()

class cupy.broadcast
Object that performs broadcasting.

CuPy actually uses this class to support broadcasting in various operations. Note that this class does not provide
an iterator.

Parameters arrays (tuple of arrays) – Arrays to be broadcasted.

shape
tuple of ints

The broadcasted shape.

nd
int

Number of dimensions of the broadcasted shape.

size
int

Total size of the broadcasted shape.

values
list of arrays

The broadcasted arrays.

See also:

numpy.broadcast

cupy.broadcast_arrays(*args)
Broadcasts given arrays.

Parameters args (tuple of arrays) – Arrays to broadcast for each other.

Returns A list of broadcasted arrays.

Return type list

See also:

numpy.broadcast_arrays()

cupy.broadcast_to(array, shape)
Broadcast an array to a given shape.

Parameters

• array (cupy.ndarray) – Array to broadcast.

• shape (tuple of int) – The shape of the desired array.

Returns Broadcasted view.

Return type cupy.ndarray

4.4. Routines 119

http://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_3d.html#numpy.atleast_3d
http://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast.html#numpy.broadcast
https://docs.python.org/2/library/functions.html#list
http://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays

Chainer Documentation, Release 1.6.2.1

See also:

numpy.broadcast_to()

cupy.expand_dims(a, axis)
Expands given arrays.

Parameters

• a (cupy.ndarray) – Array to be expanded.

• axis (int) – Position where new axis is to be inserted.

Returns The number of dimensions is one greater than that of the input array.

Return type cupy.ndarray

See also:

numpy.expand_dims()

cupy.squeeze(a, axis=None)
Removes size-one axes from the shape of an array.

Parameters

• a (cupy.ndarray) – Array to be reshaped.

• axis (int or tuple of ints) – Axes to be removed. This function removes all
size-one axes by default. If one of the specified axes is not of size one, an exception is
raised.

Returns An array without (specified) size-one axes.

Return type cupy.ndarray

See also:

numpy.squeeze()

Joining arrays along axis

cupy.column_stack(tup)
Stacks 1-D and 2-D arrays as columns into a 2-D array.

A 1-D array is first converted to a 2-D column array. Then, the 2-D arrays are concatenated along the second
axis.

Parameters tup (sequence of arrays) – 1-D or 2-D arrays to be stacked.

Returns A new 2-D array of stacked columns.

Return type cupy.ndarray

See also:

numpy.column_stack()

cupy.concatenate(tup, axis=0)
Joins arrays along an axis.

Parameters

• tup (sequence of arrays) – Arrays to be joined. All of these should have same
dimensionalities except the specified axis.

• axis (int) – The axis to join arrays along.

120 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.expand_dims.html#numpy.expand_dims
http://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html#numpy.squeeze
http://docs.scipy.org/doc/numpy/reference/generated/numpy.column_stack.html#numpy.column_stack
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Returns Joined array.

Return type cupy.ndarray

See also:

numpy.concatenate()

cupy.vstack(tup)
Stacks arrays vertically.

If an input array has one dimension, then the array is treated as a horizontal vector and stacked along the
additional axis at the head. Otherwise, the array is stacked along the first axis.

Parameters tup (sequence of arrays) – Arrays to be stacked. Each array is converted by
cupy.atleast_2d() before stacking.

Returns Stacked array.

Return type cupy.ndarray

See also:

numpy.dstack()

cupy.hstack(tup)
Stacks arrays horizontally.

If an input array has one dimension, then the array is treated as a horizontal vector and stacked along the first
axis. Otherwise, the array is stacked along the second axis.

Parameters tup (sequence of arrays) – Arrays to be stacked.

Returns Stacked array.

Return type cupy.ndarray

See also:

numpy.hstack()

cupy.dstack(tup)
Stacks arrays along the third axis.

Parameters tup (sequence of arrays) – Arrays to be stacked. Each array is converted by
cupy.atleast_3d() before stacking.

Returns Stacked array.

Return type cupy.ndarray

See also:

numpy.dstack()

Splitting arrays along axis

cupy.array_split(ary, indices_or_sections, axis=0)
Splits an array into multiple sub arrays along a given axis.

This function is almost equivalent to cupy.split(). The only difference is that this function allows an
integer sections that does not evenly divide the axis.

See also:

cupy.split() for more detail, numpy.array_split()

4.4. Routines 121

http://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html#numpy.concatenate
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html#numpy.dstack
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html#numpy.hstack
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html#numpy.dstack
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_split.html#numpy.array_split

Chainer Documentation, Release 1.6.2.1

cupy.split(ary, indices_or_sections, axis=0)
Splits an array into multiple sub arrays along a given axis.

Parameters

• ary (cupy.ndarray) – Array to split.

• indices_or_sections (int or sequence of ints) – A value indicating how
to divide the axis. If it is an integer, then is treated as the number of sections, and the axis
is evenly divided. Otherwise, the integers indicate indices to split at. Note that the sequence
on the device memory is not allowed.

• axis (int) – Axis along which the array is split.

Returns A list of sub arrays. Eacy array is a view of the corresponding input array.

See also:

numpy.split()

cupy.vsplit(ary, indices_or_sections)
Splits an array into multiple sub arrays along the first axis.

This is equivalent to split with axis=0.

See also:

cupy.split() for more detail, numpy.dsplit()

cupy.hsplit(ary, indices_or_sections)
Splits an array into multiple sub arrays horizontally.

This is equivalent to split with axis=0 if ary has one dimension, and otherwise that with axis=1.

See also:

cupy.split() for more detail, numpy.hsplit()

cupy.dsplit(ary, indices_or_sections)
Splits an array into multiple sub arrays along the third axis.

This is equivalent to split with axis=2.

See also:

cupy.split() for more detail, numpy.dsplit()

4.4.3 Repeating part of arrays along axis

cupy.tile(A, reps)
Construct an array by repeating A the number of times given by reps.

Parameters

• A (cupy.ndarray) – Array to transform.

• reps (int or tuple) – The number of repeats.

Returns Transformed array with repeats.

Return type cupy.ndarray

See also:

numpy.tile()

122 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html#numpy.split
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html#numpy.dsplit
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hsplit.html#numpy.hsplit
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html#numpy.dsplit
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html#numpy.tile

Chainer Documentation, Release 1.6.2.1

cupy.repeat(a, repeats, axis=None)
Repeat arrays along an axis.

Parameters

• a (cupy.ndarray) – Array to transform.

• repeats (int, list or tuple) – The number of repeats.

• axis (int) – The axis to repeat.

Returns Transformed array with repeats.

Return type cupy.ndarray

See also:

numpy.repeat()

4.4.4 Rearranging elements

cupy.roll(a, shift, axis=None)
Roll array elements along a given axis.

Parameters

• a (ndarray) – Array to be rolled.

• shift (int) – The number of places by which elements are shifted.

• axis (int or None) – The axis along which elements are shifted. If axis is None,
the array is flattend before shifting, and afther that it is reshaped to the original shape.

Returns Output array.

Return type ndarray

See also:

numpy.roll()

4.4.5 Binary Operations

Elementwise bit operations

cupy.bitwise_and = <ufunc ‘cupy_bitwise_and’>
Computes the bitwise AND of two arrays elementwise.

Only integer and boolean arrays are handled.

See also:

numpy.bitwise_and

cupy.bitwise_or = <ufunc ‘cupy_bitwise_or’>
Computes the bitwise OR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also:

numpy.bitwise_or

4.4. Routines 123

https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html#numpy.repeat
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html#numpy.roll
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or

Chainer Documentation, Release 1.6.2.1

cupy.bitwise_xor = <ufunc ‘cupy_bitwise_xor’>
Computes the bitwise XOR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also:

numpy.bitwise_xor

cupy.invert = <ufunc ‘cupy_invert’>
Computes the bitwise NOT of an array elementwise.

Only integer and boolean arrays are handled.

See also:

numpy.invert

cupy.left_shift = <ufunc ‘cupy_left_shift’>
Shifts the bits of each integer element to the left.

Only integer arrays are handled.

See also:

numpy.left_shift

cupy.right_shift = <ufunc ‘cupy_right_shift’>
Shifts the bits of each integer element to the right.

Only integer arrays are handled

See also:

numpy.right_shift

4.4.6 Indexing Routines

cupy.take(a, indices, axis=None, out=None)
Takes elements of an array at specified indices along an axis.

This is an implementation of “fancy indexing” at single axis.

This function does not support mode option.

Parameters

• a (cupy.ndarray) – Array to extract elements.

• indices (int or array-like) – Indices of elements that this function takes.

• axis (int) – The axis along which to select indices. The flattened input is used by default.

• out (cupy.ndarray) – Output array. If provided, it should be of appropriate shape and
dtype.

Returns The result of fancy indexing.

Return type cupy.ndarray

See also:

numpy.take()

124 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor
http://docs.scipy.org/doc/numpy/reference/generated/numpy.invert.html#numpy.invert
http://docs.scipy.org/doc/numpy/reference/generated/numpy.left_shift.html#numpy.left_shift
http://docs.scipy.org/doc/numpy/reference/generated/numpy.right_shift.html#numpy.right_shift
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take

Chainer Documentation, Release 1.6.2.1

cupy.diagonal(a, offset=0, axis1=0, axis2=1)
Returns specified diagonals.

This function extracts the diagonals along two specified axes. The other axes are not changed. This function
returns a writable view of this array as NumPy 1.10 will do.

Parameters

• a (cupy.ndarray) – Array from which the diagonals are taken.

• offset (int) – Index of the diagonals. Zero indicates the main diagonals, a positive value
upper diagonals, and a negative value lower diagonals.

• axis1 (int) – The first axis to take diagonals from.

• axis2 (int) – The second axis to take diagonals from.

Returns A view of the diagonals of a.

Return type cupy.ndarray

See also:

numpy.diagonal()

4.4.7 Input and Output

NPZ files

cupy.load(file, mmap_mode=None)
Loads arrays or pickled objects from .npy, .npz or pickled file.

This function just calls numpy.load and then sends the arrays to the current device. NPZ file is converted to
NpzFile object, which defers the transfer to the time of accessing the items.

Parameters

• file (file-like object or string) – The file to read.

• mmap_mode (None, ’r+’, ’r’, ’w+’, ’c’) – If not None, memory-map the file
to construct an intermediate numpy.ndarray object and transfer it to the current device.

Returns CuPy array or NpzFile object depending on the type of the file. NpzFile object is a
dictionary-like object with the context manager protocol (which enables us to use with state-
ment on it).

See also:

numpy.load()

cupy.save(file, arr)
Saves an array to a binary file in .npy format.

Parameters

• file (file or str) – File or filename to save.

• arr (array_like) – Array to save. It should be able to feed to cupy.asnumpy().

See also:

numpy.save()

4.4. Routines 125

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.diagonal.html#numpy.diagonal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load
http://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html#numpy.save

Chainer Documentation, Release 1.6.2.1

cupy.savez(file, *args, **kwds)
Saves one or more arrays into a file in uncompressed .npz format.

Arguments without keys are treated as arguments with automatic keys named arr_0, arr_1, etc. correspond-
ing to the positions in the argument list. The keys of arguments are used as keys in the .npz file, which are
used for accessing NpzFile object when the file is read by cupy.load() function.

Parameters

• file (file or str) – File or filename to save.

• *args – Arrays with implicit keys.

• **kwds – Arrays with explicit keys.

See also:

numpy.savez()

cupy.savez_compressed(file, *args, **kwds)
Saves one or more arrays into a file in compressed .npz format.

It is equivalent to cupy.savez() function except the outptu file is compressed.

See also:

cupy.savez() for more detail, numpy.savez_compressed()

String formatting

cupy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)
Returns the string representation of an array.

Parameters

• arr (array_like) – Input array. It should be able to feed to cupy.asnumpy().

• max_line_width (int) – The maximum number of line lengths.

• precision (int) – Floating point precision. It uses the current printing precision of
NumPy.

• suppress_small (bool) – If True, very small numbers are printed as zeros

Returns The string representation of arr.

Return type str

See also:

numpy.array_repr()

cupy.array_str(arr, max_line_width=None, precision=None, suppress_small=None)
Returns the string representation of the content of an array.

Parameters

• arr (array_like) – Input array. It should be able to feed to cupy.asnumpy().

• max_line_width (int) – The maximum number of line lengths.

• precision (int) – Floating point precision. It uses the current printing precision of
NumPy.

• suppress_small (bool) – If True, very small number are printed as zeros.

126 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_repr.html#numpy.array_repr
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

See also:

numpy.array_str()

4.4.8 Linear Algebra

Matrix and vector products

cupy.dot(a, b, out=None)
Returns a dot product of two arrays.

For arrays with more than one axis, it computes the dot product along the last axis of a and the second-to-last
axis of b. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an
axis to take dot product over.

Parameters

• a (cupy.ndarray) – The left argument.

• b (cupy.ndarray) – The right argument.

• out (cupy.ndarray) – Output array.

Returns The dot product of a and b.

Return type cupy.ndarray

See also:

numpy.dot()

cupy.vdot(a, b)
Returns the dot product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs inner product of these vectors.

Parameters

• a (cupy.ndarray) – The first argument.

• b (cupy.ndarray) – The second argument.

Returns Zero-dimensional array of the dot product result.

Return type cupy.ndarray

See also:

numpy.vdot()

cupy.inner(a, b)
Returns the inner product of two arrays.

It uses the last axis of each argument to take sum product.

Parameters

• a (cupy.ndarray) – The first argument.

• b (cupy.ndarray) – The second argument.

Returns The inner product of a and b.

Return type cupy.ndarray

4.4. Routines 127

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_str.html#numpy.array_str
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot
http://docs.scipy.org/doc/numpy/reference/generated/numpy.vdot.html#numpy.vdot

Chainer Documentation, Release 1.6.2.1

See also:

numpy.inner()

cupy.outer(a, b, out=None)
Returns the outer product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs outer product of these vectors.

Parameters

• a (cupy.ndarray) – The first argument.

• b (cupy.ndarray) – The second argument.

• out (cupy.ndarray) – Output array.

Returns 2-D array of the outer product of a and b.

Return type cupy.ndarray

See also:

numpy.outer()

cupy.tensordot(a, b, axes=2)
Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping.

Parameters

• a (cupy.ndarray) – The first argument.

• b (cupy.ndarray) – The second argument.

• axes –

– If it is an integer, then axes axes at the last of a and the first of b are used.

– If it is a pair of sequences of integers, then these two sequences specify the list of axes for
a and b. The corresponding axes are paired for sum-product.

• out (cupy.ndarray) – Output array.

Returns The tensor dot product of a and b along the axes specified by axes.

Return type cupy.ndarray

See also:

numpy.tensordot()

Norms etc.

cupy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Returns the sum along the diagonals of an array.

It computes the sum along the diagonals at axis1 and axis2.

Parameters

• a (cupy.ndarray) – Array to take trace.

• offset (int) – Index of diagonals. Zero indicates the main diagonal, a positive value an
upper diagonal, and a negative value a lower diagonal.

• axis1 (int) – The first axis along which the trace is taken.

128 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.inner.html#numpy.inner
http://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html#numpy.outer
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

• axis2 (int) – The second axis along which the trace is taken.

• dtype – Data type specifier of the output.

• out (cupy.ndarray) – Output array.

Returns The trace of a along axes (axis1, axis2).

Return type cupy.ndarray

See also:

numpy.trace()

4.4.9 Logic Functions

Infinities and NaNs

cupy.isfinite = <ufunc ‘cupy_isfinite’>
Tests finiteness elementwise.

Each element of returned array is True only if the corresponding element of the input is finite (i.e. not an infinity
nor NaN).

See also:

numpy.isfinite

cupy.isinf = <ufunc ‘cupy_isinf’>
Tests if each element is the positive or negative infinity.

See also:

numpy.isinf

cupy.isnan = <ufunc ‘cupy_isnan’>
Tests if each element is a NaN.

See also:

numpy.isnan

Logic operations

cupy.logical_and = <ufunc ‘cupy_logical_and’>
Computes the logical AND of two arrays.

See also:

numpy.logical_and

cupy.logical_or = <ufunc ‘cupy_logical_or’>
Computes the logical OR of two arrays.

See also:

numpy.logical_or

cupy.logical_not = <ufunc ‘cupy_logical_not’>
Computes the logical NOT of an array.

See also:

numpy.logical_not

4.4. Routines 129

https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.trace.html#numpy.trace
http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html#numpy.isfinite
http://docs.scipy.org/doc/numpy/reference/generated/numpy.isinf.html#numpy.isinf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html#numpy.isnan
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html#numpy.logical_and
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_or.html#numpy.logical_or
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html#numpy.logical_not

Chainer Documentation, Release 1.6.2.1

cupy.logical_xor = <ufunc ‘cupy_logical_xor’>
Computes the logical XOR of two arrays.

See also:

numpy.logical_xor

Comparison operations

cupy.greater = <ufunc ‘cupy_greater’>
Tests elementwise if x1 > x2.

See also:

numpy.greater

cupy.greater_equal = <ufunc ‘cupy_greater_equal’>
Tests elementwise if x1 >= x2.

See also:

numpy.greater_equal

cupy.less = <ufunc ‘cupy_less’>
Tests elementwise if x1 < x2.

See also:

numpy.less

cupy.less_equal = <ufunc ‘cupy_less_equal’>
Tests elementwise if x1 <= x2.

See also:

numpy.less_equal

cupy.equal = <ufunc ‘cupy_equal’>
Tests elementwise if x1 == x2.

See also:

numpy.equal

cupy.not_equal = <ufunc ‘cupy_not_equal’>
Tests elementwise if x1 != x2.

See also:

numpy.equal

4.4.10 Mathematical Functions

Trigonometric functions

cupy.sin = <ufunc ‘cupy_sin’>
Elementwise sine function.

See also:

numpy.sin

130 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_xor.html#numpy.logical_xor
http://docs.scipy.org/doc/numpy/reference/generated/numpy.greater.html#numpy.greater
http://docs.scipy.org/doc/numpy/reference/generated/numpy.greater_equal.html#numpy.greater_equal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.less.html#numpy.less
http://docs.scipy.org/doc/numpy/reference/generated/numpy.less_equal.html#numpy.less_equal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin

Chainer Documentation, Release 1.6.2.1

cupy.cos = <ufunc ‘cupy_cos’>
Elementwise cosine function.

See also:

numpy.cos

cupy.tan = <ufunc ‘cupy_tan’>
Elementwise tangent function.

See also:

numpy.tan

cupy.arcsin = <ufunc ‘cupy_arcsin’>
Elementwise inverse-sine function (a.k.a. arcsine function).

See also:

numpy.arcsin

cupy.arccos = <ufunc ‘cupy_arccos’>
Elementwise inverse-cosine function (a.k.a. arccosine function).

See also:

numpy.arccos

cupy.arctan = <ufunc ‘cupy_arctan’>
Elementwise inverse-tangent function (a.k.a. arctangent function).

See also:

numpy.arctan

cupy.hypot = <ufunc ‘cupy_hypot’>
Computes the hypoteneous of orthogonal vectors of given length.

This is equivalent to sqrt(x1 **2 + x2 ** 2), while this function is more efficient.

See also:

numpy.hypot

cupy.arctan2 = <ufunc ‘cupy_arctan2’>
Elementwise inverse-tangent of the ratio of two arrays.

See also:

numpy.arctan2

cupy.deg2rad = <ufunc ‘cupy_deg2rad’>
Converts angles from degrees to radians elementwise.

See also:

numpy.deg2rad, numpy.radians

cupy.rad2deg = <ufunc ‘cupy_rad2deg’>
Converts angles from radians to degrees elementwise.

See also:

numpy.rad2deg, numpy.degrees

cupy.degrees = <ufunc ‘cupy_rad2deg’>
Converts angles from radians to degrees elementwise.

4.4. Routines 131

http://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tan.html#numpy.tan
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html#numpy.arcsin
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arccos.html#numpy.arccos
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan.html#numpy.arctan
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hypot.html#numpy.hypot
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html#numpy.arctan2
http://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html#numpy.deg2rad
http://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html#numpy.radians
http://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html#numpy.rad2deg
http://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html#numpy.degrees

Chainer Documentation, Release 1.6.2.1

See also:

numpy.rad2deg, numpy.degrees

cupy.radians = <ufunc ‘cupy_deg2rad’>
Converts angles from degrees to radians elementwise.

See also:

numpy.deg2rad, numpy.radians

Hyperbolic functions

cupy.sinh = <ufunc ‘cupy_sinh’>
Elementwise hypoerbolic sine function.

See also:

numpy.sinh

cupy.cosh = <ufunc ‘cupy_cosh’>
Elementwise hypoerbolic cosine function.

See also:

numpy.cosh

cupy.tanh = <ufunc ‘cupy_tanh’>
Elementwise hyperbolic tangent function.

See also:

numpy.tanh

cupy.arcsinh = <ufunc ‘cupy_arcsinh’>
Elementwise inverse of hyperbolic sine function.

See also:

numpy.arcsinh

cupy.arccosh = <ufunc ‘cupy_arccosh’>
Elementwise inverse of hyperbolic cosine function.

See also:

numpy.arccosh

cupy.arctanh = <ufunc ‘cupy_arctanh’>
Elementwise inverse of hyperbolic tangent function.

See also:

numpy.arctanh

Rounding

cupy.rint = <ufunc ‘cupy_rint’>
Rounds eacy element of an array to the nearest integer.

See also:

numpy.rint

132 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html#numpy.rad2deg
http://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html#numpy.degrees
http://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html#numpy.deg2rad
http://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html#numpy.radians
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sinh.html#numpy.sinh
http://docs.scipy.org/doc/numpy/reference/generated/numpy.cosh.html#numpy.cosh
http://docs.scipy.org/doc/numpy/reference/generated/numpy.tanh.html#numpy.tanh
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsinh.html#numpy.arcsinh
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arccosh.html#numpy.arccosh
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arctanh.html#numpy.arctanh
http://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html#numpy.rint

Chainer Documentation, Release 1.6.2.1

cupy.floor = <ufunc ‘cupy_floor’>
Rounds each element of an array to its floow integer.

See also:

numpy.floor

cupy.ceil = <ufunc ‘cupy_ceil’>
Rounds each element of an array to its ceil integer.

See also:

numpy.ceil

cupy.trunc = <ufunc ‘cupy_trunc’>
Rounds each element of an array towards zero.

See also:

numpy.trunc

Sums and products

cupy.sum(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the sum of an array along given axes.

Parameters

• a (cupy.ndarray) – Array to take sum.

• axis (int or sequence of ints) – Axes along which the sum is taken.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns The result array.

Return type cupy.ndarray

See also:

numpy.sum()

cupy.prod(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the product of an array along given axes.

Parameters

• a (cupy.ndarray) – Array to take product.

• axis (int or sequence of ints) – Axes along which the product is taken.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns The result array.

Return type cupy.ndarray

See also:

numpy.prod()

4.4. Routines 133

http://docs.scipy.org/doc/numpy/reference/generated/numpy.floor.html#numpy.floor
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html#numpy.ceil
http://docs.scipy.org/doc/numpy/reference/generated/numpy.trunc.html#numpy.trunc
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html#numpy.sum
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.prod.html#numpy.prod

Chainer Documentation, Release 1.6.2.1

Exponential and logarithm functions

cupy.exp = <ufunc ‘cupy_exp’>
Elementwise exponential function.

See also:

numpy.exp

cupy.expm1 = <ufunc ‘cupy_expm1’>
Computes exp(x) - 1 elementwise.

See also:

numpy.expm1

cupy.exp2 = <ufunc ‘cupy_exp2’>
Elementwise exponentiation with base 2.

See also:

numpy.exp2

cupy.log = <ufunc ‘cupy_log’>
Elementwise natural logarithm function.

See also:

numpy.log

cupy.log10 = <ufunc ‘cupy_log10’>
Elementwise common logarithm function.

See also:

numpy.log10

cupy.log2 = <ufunc ‘cupy_log2’>
Elementwise binary logarithm function.

See also:

numpy.log2

cupy.log1p = <ufunc ‘cupy_log1p’>
Computes log(1 + x) elementwise.

See also:

numpy.log1p

cupy.logaddexp = <ufunc ‘cupy_logaddexp’>
Computes log(exp(x1) + exp(x2)) elementwise.

See also:

numpy.logaddexp

cupy.logaddexp2 = <ufunc ‘cupy_logaddexp2’>
Computes log2(exp2(x1) + exp2(x2)) elementwise.

See also:

numpy.logaddexp2

134 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp
http://docs.scipy.org/doc/numpy/reference/generated/numpy.expm1.html#numpy.expm1
http://docs.scipy.org/doc/numpy/reference/generated/numpy.exp2.html#numpy.exp2
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log10.html#numpy.log10
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log2.html#numpy.log2
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html#numpy.log1p
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html#numpy.logaddexp
http://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2

Chainer Documentation, Release 1.6.2.1

Floating point manipulations

cupy.signbit = <ufunc ‘cupy_signbit’>
Tests elementwise if the sign bit is set (i.e. less than zero).

See also:

numpy.signbit

cupy.copysign = <ufunc ‘cupy_copysign’>
Returns the first arugment with the sign bit of the second elementwise.

See also:

numpy.copysign

cupy.ldexp = <ufunc ‘cupy_ldexp’>
Computes x1 * 2 ** x2 elementwise.

See also:

numpy.ldexp

cupy.frexp = <ufunc ‘cupy_frexp’>
Decomposes each element to mantissa and two’s exponent.

This ufunc outputs two arrays of the input dtype and the int dtype.

See also:

numpy.frexp

cupy.nextafter = <ufunc ‘cupy_nextafter’>
Computes the nearest neighbor float values towards the second argument.

See also:

numpy.nextafter

Arithmetic operations

cupy.negative = <ufunc ‘cupy_negative’>
Takes numerical negative elementwise.

See also:

numpy.negative

cupy.add = <ufunc ‘cupy_add’>
Adds two arrays elementwise.

See also:

numpy.add

cupy.subtract = <ufunc ‘cupy_subtract’>
Subtracts arguments elementwise.

See also:

numpy.subtract

cupy.multiply = <ufunc ‘cupy_multiply’>
Multiplies two arrays elementwise.

See also:

4.4. Routines 135

http://docs.scipy.org/doc/numpy/reference/generated/numpy.signbit.html#numpy.signbit
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copysign.html#numpy.copysign
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ldexp.html#numpy.ldexp
http://docs.scipy.org/doc/numpy/reference/generated/numpy.frexp.html#numpy.frexp
http://docs.scipy.org/doc/numpy/reference/generated/numpy.negative.html#numpy.negative
http://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html#numpy.add
http://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract

Chainer Documentation, Release 1.6.2.1

numpy.multiply

cupy.divide = <ufunc ‘cupy_divide’>
Divides arguments elementwise.

See also:

numpy.divide

cupy.true_divide = <ufunc ‘cupy_true_divide’>
Elementwise true division (i.e. division as floating values).

See also:

numpy.true_divide

cupy.floor_divide = <ufunc ‘cupy_floor_divide’>
Elementwise floor division (i.e. integer quotient).

See also:

numpy.floor_divide

cupy.power = <ufunc ‘cupy_power’>
Computes x1 ** x2 elementwise.

See also:

numpy.power

cupy.fmod = <ufunc ‘cupy_fmod’>
Computes the remainder of C division elementwise.

See also:

numpy.fmod

cupy.mod = <ufunc ‘cupy_remainder’>
Computes the remainder of Python division elementwise.

See also:

numpy.remainder

cupy.remainder = <ufunc ‘cupy_remainder’>
Computes the remainder of Python division elementwise.

See also:

numpy.remainder

cupy.modf = <ufunc ‘cupy_modf’>
Extracts the fractional and integral parts of an array elementwise.

This ufunc returns two arrays.

See also:

numpy.modf

cupy.reciprocal = <ufunc ‘cupy_reciprocal’>
Computes 1 / x elementwise.

See also:

numpy.reciprocal

136 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply
http://docs.scipy.org/doc/numpy/reference/generated/numpy.divide.html#numpy.divide
http://docs.scipy.org/doc/numpy/reference/generated/numpy.true_divide.html#numpy.true_divide
http://docs.scipy.org/doc/numpy/reference/generated/numpy.floor_divide.html#numpy.floor_divide
http://docs.scipy.org/doc/numpy/reference/generated/numpy.power.html#numpy.power
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fmod.html#numpy.fmod
http://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder
http://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder
http://docs.scipy.org/doc/numpy/reference/generated/numpy.modf.html#numpy.modf
http://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html#numpy.reciprocal

Chainer Documentation, Release 1.6.2.1

Miscellaneous

cupy.clip(a, a_min, a_max, out=None)
Clips the values of an array to a given interval.

This is equivalent to maximum(minimum(a, a_max), a_min), while this function is more efficient.

Parameters

• a (cupy.ndarray) – The source array.

• a_min (scalar or cupy.ndarray) – The left side of the interval.

• a_max (scalar or cupy.ndarray) – The right side of the interval.

• out (cupy.ndarray) – Output array.

Returns Clipped array.

Return type cupy.ndarray

See also:

numpy.clip()

cupy.sqrt = <ufunc ‘cupy_sqrt’>
Elementwise positive square-root function.

Note: This ufunc outputs float32 arrays for float16 arrays input by default as well as NumPy 1.9. If you want
to override this behavior, specify the dtype argument explicitly, or use cupy.math.misc.sqrt_fixed
instead.

See also:

numpy.sqrt

cupy.square = <ufunc ‘cupy_square’>
Elementwise square function.

See also:

numpy.square

cupy.absolute = <ufunc ‘cupy_absolute’>
Elementwise absolute value function.

See also:

numpy.absolute

cupy.sign = <ufunc ‘cupy_sign’>
Elementwise sign function.

It returns -1, 0, or 1 depending on the sign of the input.

See also:

numpy.sign

cupy.maximum = <ufunc ‘cupy_maximum’>
Takes the maximum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also:

4.4. Routines 137

http://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt
http://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html#numpy.square
http://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sign.html#numpy.sign

Chainer Documentation, Release 1.6.2.1

numpy.maximum

cupy.minimum = <ufunc ‘cupy_minimum’>
Takes the minimum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also:

numpy.minimum

cupy.fmax = <ufunc ‘cupy_fmax’>
Takes the maximum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also:

numpy.fmax

cupy.fmin = <ufunc ‘cupy_fmin’>
Takes the minimum of two arrays elementwise.

If NaN apperas, it returns the other operand.

See also:

numpy.fmin

4.4.11 Random Sampling (cupy.random)

CuPy’s random number generation routines are based on cuRAND. They cover a small fraction of numpy.random.

The big difference of cupy.random from numpy.random is that cupy.random supports dtype option for
most functions. This option enables us to generate float32 values directly without any space overhead.

Sample random data

cupy.random.rand(*size, **kwarg)
Returns an array of uniform random values over the interval [0, 1).

Each element of the array is uniformly distributed on the half-open interval [0, 1). All elements are identi-
cally and independently distributed (i.i.d.).

Parameters

• size (tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only float32 and float64 types are allowed. The default is
float64.

Returns A random array.

Return type cupy.ndarray

See also:

numpy.random.rand()

cupy.random.randn(*size, **kwarg)
Returns an array of standand normal random values.

Each element of the array is normally distributed with zero mean and unit variance. All elements are identically
and independently distributed (i.i.d.).

138 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html#numpy.maximum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html#numpy.minimum
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fmax.html#numpy.fmax
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fmin.html#numpy.fmin
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand

Chainer Documentation, Release 1.6.2.1

Parameters

• size (tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only float32 and float64 types are allowed. The default is
float64.

Returns An array of standanr normal random values.

Return type cupy.ndarray

See also:

numpy.random.randn()

cupy.random.randint(low, high=None, size=None)
Returns a scalar or an array of integer values over [low, high).

Each element of returned values are independently sampled from uniform distribution over left-close and right-
open interval [low, high).

Parameters

• low (int) – If high is not None, it is the lower bound of the interval. Otherwise, it is the
upper bound of the interval and lower bound of the inteval is set to 0.

• high (int) – Upper bound of the interval.

• size (None or int or tuple of ints) – The shape of returned value.

Returns If size is None, it is single integer sampled. If size is integer, it is the 1D-array of length
size element. Otherwise, it is the array whose shape specified by size.

Return type int or cupy.ndarray of ints

cupy.random.random_integers(low, high=None, size=None)
Return a scalar or an array of interger values over [low, high]

Each element of returned values are independently sampled from uniform distribution over closed interval
[low, high].

Parameters

• low (int) – If high is not None, it is the lower bound of the interval. Otherwise, it is the
upper bound of the interval and the lower bound is set to 1.

• high (int) – Upper bound of the interval.

• size (None or int or tuple of ints) – The shape of returned value.

Returns If size is None, it is single integer sampled. If size is integer, it is the 1D-array of length
size element. Otherwise, it is the array whose shape specified by size.

Return type int or cupy.ndarray of ints

cupy.random.random_sample(size=None, dtype=<type ‘float’>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters

• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only float32 and float64 types are allowed.

Returns An array of uniformly distributed random values.

4.4. Routines 139

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Return type cupy.ndarray

See also:

numpy.random.random_sample()

cupy.random.random(size=None, dtype=<type ‘float’>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters

• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only float32 and float64 types are allowed.

Returns An array of uniformly distributed random values.

Return type cupy.ndarray

See also:

numpy.random.random_sample()

cupy.random.ranf(size=None, dtype=<type ‘float’>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters

• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only float32 and float64 types are allowed.

Returns An array of uniformly distributed random values.

Return type cupy.ndarray

See also:

numpy.random.random_sample()

cupy.random.sample(size=None, dtype=<type ‘float’>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters

• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only float32 and float64 types are allowed.

Returns An array of uniformly distributed random values.

Return type cupy.ndarray

See also:

numpy.random.random_sample()

140 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample

Chainer Documentation, Release 1.6.2.1

Distributions

cupy.random.lognormal(mean=0.0, sigma=1.0, size=None, dtype=<type ‘float’>)
Returns an array of samples drawn from a log normal distribution.

The samples are natural log of samples drawn from a normal distribution with mean mean and deviation sigma.

Parameters

• mean (float) – Mean of the normal distribution.

• sigma (float) – Standard deviation of the normal distribution.

• size (int or tuple of ints) – The shape of the array. If None, a zero- dimen-
sional array is generated.

• dtype – Data type specifier. Only float32 and float64 types are allowed.

Returns Samples drawn from the log normal distribution.

Return type cupy.ndarray

See also:

numpy.random.lognormal()

cupy.random.normal(loc=0.0, scale=1.0, size=None, dtype=<type ‘float’>)
Returns an array of normally distributed samples.

Parameters

• loc (float) – Mean of the normal distribution.

• scale (float) – Standard deviation of the normal distribution.

• size (int or tuple of ints) – The shape of the array. If None, a zero- dimen-
sional array is generated.

• dtype – Data type specifier. Only float32 and float64 types are allowed.

Returns Normally distributed samples.

Return type cupy.ndarray

See also:

numpy.random.normal()

cupy.random.standard_normal(size=None, dtype=<type ‘float’>)
Returns an array of samples drawn from the standard normal distribution.

This is a variant of cupy.random.randn().

Parameters

• size (int or tuple of ints) – The shape of the array. If None, a zero- dimen-
sional array is generated.

• dtype – Data type specifier.

Returns Samples drawn from the standard normal distribution.

Return type cupy.ndarray

See also:

numpy.randomm.standard_normal()

4.4. Routines 141

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.lognormal.html#numpy.random.lognormal
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html#numpy.random.normal

Chainer Documentation, Release 1.6.2.1

cupy.random.uniform(low=0.0, high=1.0, size=None, dtype=<type ‘float’>)
Returns an array of uniformlly-distributed samples over an interval.

Samples are drawn from a uniform distribution over the half-open interaval [low, high).

Parameters

• low (float) – Lower end of the interval.

• high (float) – Upper end of the interval.

• size (int or tuple of ints) – The shape of the array. If None, a zero- dimen-
sional array is generated.

• dtype – Data type specifier.

Returns Samples drawn from the uniform distribution.

Return type cupy.ndarray

See also:

numpy.random.uniform()

Random number generator

cupy.random.seed(seed=None)
Resets the state of the random number generator with a seed.

This function resets the state of the global random number generator for the current device. Be careful that
generators for other devices are not affected.

Parameters seed (None or int) – Seed for the random number generator. If None, it uses
os.urandom() if available or time.clock() otherwise. Note that this function does not
support seeding by an integer array.

cupy.random.get_random_state()
Gets the state of the random number generator for the current device.

If the state for the current device is not created yet, this function creates a new one, initializes it, and stores it as
the state for the current device.

Returns The state of the random number generator for the device.

Return type RandomState

class cupy.random.RandomState(seed=None, method=100)
Portable container of a pseudo-random number generator.

An instance of this class holds the state of a random number generator. The state is available only on the device
which has been current at the initialization of the instance.

Functions of cupy.random use global instances of this class. Different instances are
used for different devices. The global state for the current device can be obtained by the
cupy.random.get_random_state() function.

Parameters

• seed (None or int) – Seed of the random number generator. See the seed() method
for detail.

• method (int) – Method of the random number generator. Following values are available:

142 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html#numpy.random.uniform
https://docs.python.org/2/library/os.html#os.urandom
https://docs.python.org/2/library/time.html#time.clock
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

cupy.cuda.curand.CURAND_RNG_PSEUDO_DEFAULT
cupy.cuda.curand.CURAND_RNG_XORWOW
cupy.cuda.curand.CURAND_RNG_MRG32K3A
cupy.cuda.curand.CURAND_RNG_MTGP32
cupy.cuda.curand.CURAND_RNG_MT19937
cupy.cuda.curand.CURAND_RNG_PHILOX4_32_10

interval(mx, size)
Generate multiple integers independently sampled uniformly from [0, mx].

Parameters

• mx (int) – Upper bound of the interval

• size (None or int or tuple) – Shape of the array or the scalar returned.

Returns If None, an ndarray with shape () is returned. If int, 1-D array of length size is
returned. If tuple, multi-dimensional array with shape size is returned. Currently, each
element of the array is numpy.int32.

Return type int or cupy.ndarray

lognormal(mean=0.0, sigma=1.0, size=None, dtype=<type ‘float’>)
Returns an array of samples drawn from a log normal distribution.

See also:

cupy.random.lognormal() for full documentation, numpy.random.RandomState.lognormal()

normal(loc=0.0, scale=1.0, size=None, dtype=<type ‘float’>)
Returns an array of normally distributed samples.

See also:

cupy.random.normal() for full documentation, numpy.random.RandomState.normal()

rand(*size, **kwarg)
Returns uniform random values over the interval [0, 1).

See also:

cupy.random.rand() for full documentation, numpy.random.RandomState.rand()

randn(*size, **kwarg)
Returns an array of standand normal random values.

See also:

cupy.random.randn() for full documentation, numpy.random.RandomState.randn()

random_sample(size=None, dtype=<type ‘float’>)
Returns an array of random values over the interval [0, 1).

See also:

cupy.random.random_sample() for full documentation, numpy.random.RandomState.random_sample()

seed(seed=None)
Resets the state of the random number generator with a seed.

..seealso:: cupy.random.seed() for full documentation, numpy.random.RandomState.seed()

standard_normal(size=None, dtype=<type ‘float’>)
Returns samples drawn from the standard normal distribution.

See also:

4.4. Routines 143

https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.lognormal.html#numpy.random.RandomState.lognormal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.normal.html#numpy.random.RandomState.normal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.rand.html#numpy.random.RandomState.rand
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.randn.html#numpy.random.RandomState.randn
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.random_sample.html#numpy.random.RandomState.random_sample
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.seed.html#numpy.random.RandomState.seed

Chainer Documentation, Release 1.6.2.1

cupy.random.standard_normal() for full documentation, numpy.random.RandomState.standard_normal()

uniform(low=0.0, high=1.0, size=None, dtype=<type ‘float’>)
Returns an array of uniformlly-distributed samples over an interval.

See also:

cupy.random.uniform() for full documentation, numpy.random.RandomState.uniform()

4.4.12 Sorting, Searching, and Counting

cupy.argmax(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the indices of the maximum along an axis.

Parameters

• a (cupy.ndarray) – Array to take argmax.

• axis (int) – Along which axis to find the maximum. a is flattened by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis axis is preserved as an axis of length one.

Returns The indices of the maximum of a along an axis.

Return type cupy.ndarray

See also:

numpy.argmax()

cupy.argmin(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the indices of the minimum along an axis.

Parameters

• a (cupy.ndarray) – Array to take argmin.

• axis (int) – Along which axis to find the minimum. a is flattened by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis axis is preserved as an axis of length one.

Returns The indices of the minimum of a along an axis.

Return type cupy.ndarray

See also:

numpy.argmin()

cupy.count_nonzero(x)
Counts the number of non-zero values in the array.

Parameters x (cupy.ndarray) – The array for which to count non-zeros.

Returns Number of non-zero values in the array.

Return type int

144 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.standard_normal.html#numpy.random.RandomState.standard_normal
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.uniform.html#numpy.random.RandomState.uniform
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html#numpy.argmax
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html#numpy.argmin
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

cupy.where(condition, x=None, y=None)
Return elements, either from x or y, depending on condition.

Note: Currently Cupy doesn’t support where(condition), that Numpy supports.

Parameters

• condition (cupy.ndarray) – When True, take x, otherwise take y.

• x (cupy.ndarray) – Values from which to choose on True.

• y (cupy.ndarray) – Values from which to choose on False.

Returns Each element of output contains elements of x when condition is True, otherwise
elements of y.

Return type cupy.ndarray

4.4.13 Statistics

Order statistics

cupy.amin(a, axis=None, out=None, keepdims=False, dtype=None)
Returns the minimum of an array or the minimum along an axis.

Parameters

• a (cupy.ndarray) – Array to take the minimum.

• axis (int) – Along which axis to take the minimum. The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

• dtype – Data type specifier.

Returns The minimum of a, along the axis if specified.

Return type cupy.ndarray

See also:

numpy.amin()

cupy.amax(a, axis=None, out=None, keepdims=False, dtype=None)
Returns the maximum of an array or the maximum along an axis.

Parameters

• a (cupy.ndarray) – Array to take the maximum.

• axis (int) – Along which axis to take the maximum. The flattened array is used by
default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

• dtype – Data type specifier.

Returns The maximum of a, along the axis if specified.

4.4. Routines 145

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.amin.html#numpy.amin
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

Return type cupy.ndarray

See also:

numpy.amax()

Means and variances

cupy.mean(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the arithmetic mean along an axis.

Parameters

• a (cupy.ndarray) – Array to compute mean.

• axis (int) – Along which axis to compute mean. The flattened array is used by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns The mean of the input array along the axis.

Return type cupy.ndarray

See also:

numpy.mean()

cupy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance along an axis.

Parameters

• a (cupy.ndarray) – Array to compute variance.

• axis (int) – Along which axis to compute variance. The flattened array is used by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns The variance of the input array along the axis.

Return type cupy.ndarray

See also:

numpy.var()

cupy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation along an axis.

Parameters

• a (cupy.ndarray) – Array to compute standard deviation.

• axis (int) – Along which axis to compute standard deviation. The flattened array is used
by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

146 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.amax.html#numpy.amax
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns The standard deviation of the input array along the axis.

Return type cupy.ndarray

See also:

numpy.std()

Histograms

cupy.bincount(x, weights=None, minlength=None)
Count number of occurrences of each value in array of non-negative ints.

Parameters

• x (cupy.ndarray) – Input array.

• weights (cupy.ndarray) – Weights array which has the same shpae as x.

• minlength (int) – A minimum number of bins for the output array.

Returns The result of binning the input array. The length of output is equal to max(cupy.max(x)
+ 1, minlength).

Return type cupy.ndarray

See also:

numpy.bincount()

4.5 NumPy-CuPy Generic Code Support

cupy.get_array_module(*args)
Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of the arguments is a
cupy.ndarray object, the cupy module is returned.

Parameters args – Values to determine whether NumPy or CuPy should be used.

Returns cupy or numpy is returned based on the types of the arguments.

Return type module

Example

A NumPy/CuPy generic function can be written as follows:

def softplus(x):
xp = cupy.get_array_module(x)
return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

4.5. NumPy-CuPy Generic Code Support 147

https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html#numpy.bincount
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 1.6.2.1

4.6 Low-Level CUDA Support

4.6.1 Device management

class cupy.cuda.Device
Object that represents a CUDA device.

This class provides some basic manipulations on CUDA devices.

It supports the context protocol. For example, the following code is an example of temporarily switching the
current device:

with Device(0):
do_something_on_device_0()

After the with statement gets done, the current device is reset to the original one.

Parameters device (int or cupy.cuda.Device) – Index of the device to manipulate. Be
careful that the device ID (a.k.a. GPU ID) is zero origin. If it is a Device object, then its ID is
used. The current device is selected by default.

id
int

ID of this device.

__eq__
x.__eq__(y) <==> x==y

__ge__
x.__ge__(y) <==> x>=y

__gt__
x.__gt__(y) <==> x>y

__int__

__le__
x.__le__(y) <==> x<=y

__long__

__lt__
x.__lt__(y) <==> x<y

__ne__
x.__ne__(y) <==> x!=y

__repr__

compute_capability
Compute capability of this device.

The capability is represented by a string containing the major index and the minor index. For example,
compute capability 3.5 is represented by the string ‘35’.

cublas_handle
The cuBLAS handle for this device.

The same handle is used for the same device even if the Device instance itself is different.

synchronize()
Synchronizes the current thread to the device.

148 Chapter 4. CuPy Reference Manual

Chainer Documentation, Release 1.6.2.1

use()
Makes this device current.

If you want to switch a device temporarily, use the with statement.

4.6.2 Memory management

class cupy.cuda.Memory
Memory allocation on a CUDA device.

This class provides an RAII interface of the CUDA memory allocation.

Parameters

• device (cupy.cuda.Device) – Device whose memory the pointer refers to.

• size (int) – Size of the memory allocation in bytes.

__int__
Returns the pointer value to the head of the allocation.

__long__

class cupy.cuda.MemoryPointer
Pointer to a point on a device memory.

An instance of this class holds a reference to the original memory buffer and a pointer to a place within this
buffer.

Parameters

• mem (Memory) – The device memory buffer.

• offset (int) – An offset from the head of the buffer to the place this pointer refers.

device
cupy.cuda.Device

Device whose memory the pointer refers to.

mem
Memory

The device memory buffer.

ptr
int

Pointer to the place within the buffer.

__add__
Adds an offset to the pointer.

__iadd__
Adds an offset to the pointer in place.

__int__
Returns the pointer value.

__isub__
Subtracts an offset from the pointer in place.

__long__

4.6. Low-Level CUDA Support 149

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

__radd__
x.__radd__(y) <==> y+x

__rsub__
x.__rsub__(y) <==> y-x

__sub__
Subtracts an offset from the pointer.

copy_from()
Copies a memory sequence from a (possibly different) device or host.

This function is a useful interface that selects appropriate one from copy_from_device() and
copy_from_host().

Parameters

• mem (ctypes.c_void_p or cupy.cuda.MemoryPointer) – Source memory
pointer.

• size (int) – Size of the sequence in bytes.

copy_from_async()
Copies a memory sequence from an arbitrary place asynchronously.

This function is a useful interface that selects appropriate one from copy_from_device_async()
and copy_from_host_async().

Parameters

• mem (ctypes.c_void_p or cupy.cuda.MemoryPointer) – Source memory
pointer.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream.

copy_from_device()
Copies a memory sequence from a (possibly different) device.

Parameters

• src (cupy.cuda.MemoryPointer) – Source memory pointer.

• size (int) – Size of the sequence in bytes.

copy_from_device_async()
Copies a memory sequence from a (possibly different) device asynchronously.

Parameters

• src (cupy.cuda.MemoryPointer) – Source memory pointer.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream.

copy_from_host()
Copies a memory sequence from the host memory.

Parameters

• mem (ctypes.c_void_p) – Source memory pointer.

• size (int) – Size of the sequence in bytes.

150 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

copy_from_host_async()
Copies a memory sequence from the host memory asynchronously.

Parameters

• src (ctypes.c_void_p) – Source memory pointer. It must be a pinned memory.

• size (int) – Size of the sequence in bytes.

copy_to_host()
Copies a memory sequence to the host memory.

Parameters

• mem (ctypes.c_void_p) – Target memory pointer.

• size (int) – Size of the sequence in bytes.

copy_to_host_async()
Copies a memory sequence to the host memory asynchronously.

Parameters

• mem (ctypes.c_void_p) – Target memory pointer. It must be a pinned memory.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream.

memset()
Fills a memory sequence by constant byte value.

Parameters

• value (int) – Value to fill.

• size (int) – Size of the sequence in bytes.

memset_async()
Fills a memory sequence by constant byte value asynchronously.

Parameters

• value (int) – Value to fill.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream.

cupy.cuda.alloc()
Calls the current allocator.

Use set_allocator() to change the current allocator.

Parameters size (int) – Size of the memory allocation.

Returns Pointer to the allocated buffer.

Return type MemoryPointer

cupy.cuda.set_allocator()
Sets the current allocator.

Parameters allocator (function) – CuPy memory allocator. It must have the same interface
as the cupy.cuda.alloc() function, which takes the buffer size as an argument and returns
the device buffer of that size.

4.6. Low-Level CUDA Support 151

https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

class cupy.cuda.MemoryPool
Memory pool for all devices on the machine.

A memory pool preserves any allocations even if they are freed by the user. Freed memory buffers are held
by the memory pool as free blocks, and they are reused for further memory allocations of the same sizes. The
allocated blocks are managed for each device, so one instance of this class can be used for multiple devices.

Note: When the allocation is skipped by reusing the pre-allocated block, it does not call cudaMalloc and
therefore CPU-GPU synchronization does not occur. It makes interleaves of memory allocations and kernel
invocations very fast.

Note: The memory pool holds allocated blocks without freeing as much as possible. It makes the program
hold most of the device memory, which may make other CUDA programs running in parallel out-of-memory
situation.

Parameters allocator (function) – The base CuPy memory allocator. It is used for allocating
new blocks when the blocks of the required size are all in use.

free_all_free()
Release free blocks.

malloc()
Allocates the memory, from the pool if possible.

This method can be used as a CuPy memory allocator. The simplest way to use a memory pool as the
default allocator is the following code:

set_allocator(MemoryPool().malloc)

Parameters size (int) – Size of the memory buffer to allocate in bytes.

Returns Pointer to the allocated buffer.

Return type MemoryPointer

n_free_blocks()
Count the total number of free blocks.

Returns The total number of free blocks.

Return type int

4.6.3 Streams and events

class cupy.cuda.Stream(null=False, non_blocking=False)
CUDA stream.

This class handles the CUDA stream handle in RAII way, i.e., when an Stream instance is destroyed by the GC,
its handle is also destroyed.

Parameters

• null (bool) – If True, the stream is a null stream (i.e. the default stream that synchronizes
with all streams). Otherwise, a plain new stream is created.

• non_blocking (bool) – If True, the stream does not synchronize with the NULL stream.

152 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

ptr
cupy.cuda.runtime.Stream

Raw stream handle. It can be passed to the CUDA Runtime API via ctypes.

add_callback(callback, arg)
Adds a callback that is called when all queued work is done.

Parameters

• callback (function) – Callback function. It must take three arguments (Stream ob-
ject, int error status, and user data object), and returns nothing.

• arg (object) – Argument to the callback.

done
True if all work on this stream has been done.

record(event=None)
Records an event on the stream.

Parameters event (None or cupy.cuda.Event) – CUDA event. If None, then a new
plain event is created and used.

Returns The recorded event.

Return type cupy.cuda.Event

See also:

cupy.cuda.Event.record()

synchronize()
Waits for the stream completing all queued work.

wait_event(event)
Makes the stream wait for an event.

The future work on this stream will be done after the event.

Parameters event (cupy.cuda.Event) – CUDA event.

class cupy.cuda.Event(block=False, disable_timing=False, interprocess=False)
CUDA event, a synchronization point of CUDA streams.

This class handles the CUDA event handle in RAII way, i.e., when an Event instance is destroyed by the GC, its
handle is also destroyed.

Parameters

• block (bool) – If True, the event blocks on the synchronize() method.

• disable_timing (bool) – If True, the event does not prepare the timing data.

• interprocess (bool) – If True, the event can be passed to other processes.

ptr
cupy.cuda.runtime.Stream

Raw stream handle. It can be passed to the CUDA Runtime API via ctypes.

done
True if the event is done.

record(stream=None)
Records the event to a stream.

4.6. Low-Level CUDA Support 153

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

Parameters stream (cupy.cuda.Stream) – CUDA stream to record event. The null
stream is used by default.

See also:

cupy.cuda.Stream.record()

synchronize()
Synchronizes all device work to the event.

If the event is created as a blocking event, it also blocks the CPU thread until the event is done.

cupy.cuda.get_elapsed_time(start_event, end_event)
Gets the elapsed time between two events.

Parameters

• start_event (Event) – Earlier event.

• end_event (Event) – Later event.

Returns Elapsed time in milliseconds.

Return type float

4.7 Kernel binary memoization

cupy.memoize()
Makes a function memoizing the result for each argument and device.

This decorator provides automatic memoization of the function result.

Parameters for_each_device (bool) – If True, it memoizes the results for each device. Oth-
erwise, it memoizes the results only based on the arguments.

cupy.clear_memo()
Clears the memoized results for all functions decorated by memoize.

4.8 User-Defined Kernels

CuPy provides easy ways to define two types of CUDA kernels: elementwise kernels and reduction kernels. We first
describe how to define and call elementwise kernels, and then describe how to define and call reduction kernels.

4.8.1 Basics of elementwise kernels

An elementwise kernel can be defined by the ElementwiseKernel class. The instance of this class defines a
CUDA kernel which can be invoked by the __call__ method of this instance.

A definition of an elementwise kernel consists of four parts: an input argument list, an output argument list, a loop
body code, and the kernel name. For example, a kernel that computes a squared difference 𝑓(𝑥, 𝑦) = (𝑥 − 𝑦)2 is
defined as follows:

>>> squared_diff = cupy.ElementwiseKernel(
... 'float32 x, float32 y',
... 'float32 z',
... 'z = (x - y) * (x - y)',
... 'squared_diff')

154 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

The argument lists consist of comma-separated argument definitions. Each argument definition consists of a type
specifier and an argument name. Names of NumPy data types can be used as type specifiers.

Note: n, i, and names starting with an underscore _ are reserved for the internal use.

The above kernel can be called on either scalars or arrays with broadcasting:

>>> x = cupy.arange(10, dtype=np.float32).reshape(2, 5)
>>> y = cupy.arange(5, dtype=np.float32)
>>> squared_diff(x, y)
array([[0., 0., 0., 0., 0.],

[25., 25., 25., 25., 25.]], dtype=float32)
>>> squared_diff(x, 5)
array([[25., 16., 9., 4., 1.],

[0., 1., 4., 9., 16.]], dtype=float32)

Output arguments can be explicitly specified (next to the input arguments):

>>> z = cupy.empty((2, 5), dtype=np.float32)
>>> squared_diff(x, y, z)
array([[0., 0., 0., 0., 0.],

[25., 25., 25., 25., 25.]], dtype=float32)

4.8.2 Type-generic kernels

If a type specifier is one character, then it is treated as a type placeholder. It can be used to define a type-generic
kernels. For example, the above squared_diff kernel can be made type-generic as follows:

>>> squared_diff_generic = cupy.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... 'z = (x - y) * (x - y)',
... 'squared_diff_generic')

Type placeholders of a same character in the kernel definition indicate the same type. The actual type of these place-
holders is determined by the actual argument type. The ElementwiseKernel class first checks the output arguments
and then the input arguments to determine the actual type. If no output arguments are given on the kernel invocation,
then only the input arguments are used to determine the type.

The type placeholder can be used in the loop body code:

>>> squared_diff_generic = cupy.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... '''
... T diff = x - y;
... z = diff * diff;
... ''',
... 'squared_diff_generic')

More than one type placeholder can be used in a kernel definition. For example, the above kernel can be further made
generic over multiple arguments:

>>> squared_diff_super_generic = cupy.ElementwiseKernel(
... 'X x, Y y',
... 'Z z',

4.8. User-Defined Kernels 155

Chainer Documentation, Release 1.6.2.1

... 'z = (x - y) * (x - y)',

... 'squared_diff_super_generic')

Note that this kernel requires the output argument explicitly specified, because the type Z cannot be automatically
determined from the input arguments.

4.8.3 Raw argument specifiers

The ElementwiseKernel class does the indexing with broadcasting automatically, which is useful to define most el-
ementwise computations. On the other hand, we sometimes want to write a kernel with manual indexing for some
arguments. We can tell the ElementwiseKernel class to use manual indexing by adding the raw keyword preceding
the type specifier.

We can use the special variables n and i for the manual indexing. n indicates total number of elements to apply
the elementwise operation. i indicates the index within the loop. For example, a kernel that adds two vectors with
reversing one of them can be written as follows:

>>> add_reverse = cupy.ElementwiseKernel(
... 'T x, raw T y', 'T z',
... 'z = x + y[n - i - 1]',
... 'add_reverse')

(Note that this is an artificial example and you can write such operation just by z = x + y[::-1] without defining
a new kernel). A raw argument can be used like an array. The indexing operator y[n - i] involves an indexing
computation on y, so y can be arbitrarily shaped and strided.

Note that raw arguments are not involved in the broadcasting and the determination of n. If you want to mark all
arguments as raw, you must specify the size argument on invocation, which defines the value of n.

4.8.4 Reduction kernels

Reduction kernels can be defined by the ReductionKernel class. We can use it by defining four parts of the kernel
code:

1. Identity value: This value is used for the initial value of reduction.

2. Mapping expression: It is used for the preprocessing of each element to be reduced.

3. Reduction expression: It is an operator to reduce the multiple mapped values. The special variables a and b are
used for its operands.

4. Post mapping expression: It is used to transform the resulting reduced values. The special variable a is used as
its input. Output should be written to the output parameter.

ReductionKernel class automatically inserts other code fragments that are required for an efficient and flexible reduc-
tion implementation.

For example, L2 norm along specified axes can be written as follows:

>>> l2norm_kernel = cupy.ReductionKernel(
... 'T x', # input params
... 'T y', # output params
... 'x * x', # map
... 'a + b', # reduce
... 'y = sqrt(a)', # post-reduction map
... '0', # identity value
... 'l2norm' # kernel name
...)

156 Chapter 4. CuPy Reference Manual

Chainer Documentation, Release 1.6.2.1

>>> x = cupy.arange(10, dtype='f').reshape(2, 5)
>>> l2norm_kernel(x, axis=1)
array([5.47722578, 15.96871948], dtype=float32)

Note: raw specifier is restricted for usages that the axes to be reduced are put at the head of the shape. It means,
if you want to use raw specifier for at least one argument, the axis argument must be 0 or a contiguous increasing
sequence of integers starting from 0, like (0, 1), (0, 1, 2), etc.

4.8.5 Reference

class cupy.ElementwiseKernel
User-defined elementwise kernel.

This class can be used to define an elementwise kernel with or without broadcasting.

The kernel is compiled at an invocation of the __call__() method, which is cached for each device. The
compiled binary is also cached into a file under the $HOME/.cupy/kernel_cache/ directory with a hashed
file name. The cached binary is reused by other processes.

Parameters

• in_params (str) – Input argument list.

• out_params (str) – Output argument list.

• operation (str) – The body in the loop written in CUDA-C/C++.

• name (str) – Name of the kernel function. It should be set for readability of the perfor-
mance profiling.

• reduce_dims (bool) – If False, the shapes of array arguments are kept within the ker-
nel invocation. The shapes are reduced (i.e., the arrays are reshaped without copy to the
minimum ndims) by default. It may make the kernel fast by reducing the index calculations.

• options (list) – Options passed to the nvcc command.

• preamble (str) – Fragment of the CUDA-C/C++ code that is inserted at the top of the
cu file.

• loop_prep (str) – Fragment of the CUDA-C/C++ code that is inserted at the top of the
kernel function definition and above the for loop.

• after_loop (str) – Fragment of the CUDA-C/C++ code that is inserted at the bottom
of the kernel function definition.

__call__
Compiles and invokes the elementwise kernel.

The compilation runs only if the kernel is not cached. Note that the kernels with different argument dtypes
or ndims are not compatible. It means that single ElementwiseKernel object may be compiled into multiple
kernel binaries.

Parameters

• args – Argumens of the kernel.

• size (int) – Range size of the indices. If specified, the variable n is set to this value.
Otherwise, the result of broadcasting is used to determine the value of n.

4.8. User-Defined Kernels 157

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#list
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int

Chainer Documentation, Release 1.6.2.1

Returns Arrays are returned according to the out_params argument of the __init__
method.

class cupy.ReductionKernel
User-defined reduction kernel.

This class can be used to define a reduction kernel with or without broadcasting.

The kernel is compiled at an invocation of the __call__() method, which is cached for each device. The
compiled binary is also cached into a file under the $HOME/.cupy/kernel_cache/ directory with a hashed
file name. The cached binary is resued by other processes.

Parameters

• in_params (str) – Input argument list.

• out_params (str) – Output argument list.

• map_expr (str) – Mapping expression for input values.

• reduce_expr (str) – Reduction expression.

• post_map_expr (str) – Mapping expression for reduced values.

• identity (str) – Identity value for starting the reduction.

• name (str) – Name of the kernel function. It should be set for readability of the perfor-
mance profiling.

• reduce_type (str) – Type of values to be used for reduction. This type is used to store
the special variables a.

• reduce_dims (bool) – If True, input arrays are reshaped without copy to smaller di-
mensions for efficiency.

• preamble (str) – Fragment of the CUDA-C/C++ code that is inserted at the top of the
cu file.

• options (tuple of str) – Additional compilation options.

__call__()
Compiles and invokes the reduction kernel.

The compilation runs only if the kernel is not cached. Note that the kernels with different argument
dtypes, ndims, or axis are not compatible. It means that single ReductionKernel object may be compiled
into multiple kernel binaries.

Parameters args – Arguments of the kernel.

Returns Arrays are returned according to the out_params argument of the __init__
method.

4.9 Testing Modules

CuPy offers testing utilities to support unit testing. They are under namespace cupy.testing.

4.9.1 Standard Assertions

The assertions have same names as NumPy’s ones. The difference from NumPy is that they can accept both
numpy.ndarray and cupy.ndarray .

158 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 1.6.2.1

cupy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, err_msg=’‘, verbose=True)
Raises an AssertionError if objects are not equal up to desired tolerance.

Parameters

• actual (numpy.ndarray or cupy.ndarray) – The actual object to check.

• desired (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• rtol (float) – Relative torelance.

• atol (float) – Absolute torelance.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

See also:

numpy.testing.assert_allclose()

cupy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg=’‘, verbose=True)
Raises an AssertionError if objects are not equal up to desired precision.

Parameters

• x (numpy.ndarray or cupy.ndarray) – The actual object to check.

• y (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• decimal (int) – Desired precision.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

See also:

numpy.testing.assert_array_almost_equal()

cupy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)
Compare two arrays relatively to their spacing.

Parameters

• x (numpy.ndarray or cupy.ndarray) – The actual object to check.

• y (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• nulp (int) – The maximum number of unit in the last place for tolerance.

See also:

numpy.testing.assert_array_almost_equal_nulp()

cupy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)
Check that all items of arrays differ in at most N Units in the Last Place.

Parameters

• a (numpy.ndarray or cupy.ndarray) – The actual object to check.

• b (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• maxulp (int) – The maximum number of units in the last place that elements of a and b
can differ.

• dtype (numpy.dtype) – Data-type to convert a and b to if given.

4.9. Testing Modules 159

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_almost_equal.html#numpy.testing.assert_array_almost_equal
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_almost_equal_nulp.html#numpy.testing.assert_array_almost_equal_nulp
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Chainer Documentation, Release 1.6.2.1

See also:

numpy.testing.assert_array_max_ulp()

cupy.testing.assert_array_equal(x, y, err_msg=’‘, verbose=True)
Raises an AssertionError if two array_like objects are not equal.

Parameters

• x (numpy.ndarray or cupy.ndarray) – The actual object to check.

• y (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

See also:

numpy.testing.assert_array_equal()

cupy.testing.assert_array_list_equal(xlist, ylist, err_msg=’‘, verbose=True)
Compares lists of arrays pairwise with assert_array_equal.

Parameters

• x (array_like) – Array of the actual objects.

• y (array_like) – Array of the desired, expected objects.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

Each element of x and y must be either numpy.ndarray or cupy.ndarray . x and y must have same
length. Otherwise, this function raises AssertionError. It compares elements of x and y pairwise with
assert_array_equal() and raises error if at least one pair is not equal.

See also:

numpy.testing.assert_array_equal()

cupy.testing.assert_array_less(x, y, err_msg=’‘, verbose=True)
Raises an AssertionError if array_like objects are not ordered by less than.

Parameters

• x (numpy.ndarray or cupy.ndarray) – The smaller object to check.

• y (numpy.ndarray or cupy.ndarray) – The larger object to compare.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

See also:

numpy.testing.assert_array_less()

4.9.2 NumPy-CuPy Consistency Check

The following decorators are for testing consistency between CuPy’s functions and corresponding NumPy’s ones.

cupy.testing.numpy_cupy_allclose(rtol=1e-07, atol=0, err_msg=’‘, verbose=True, name=’xp’,
type_check=True, accept_error=True)

Decorator that checks NumPy results and CuPy ones are close.

160 Chapter 4. CuPy Reference Manual

http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_max_ulp.html#numpy.testing.assert_array_max_ulp
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
http://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_less.html#numpy.testing.assert_array_less

Chainer Documentation, Release 1.6.2.1

Parameters

• rtol (float) – Relative torelance.

• atol (float) – Absolute torelance

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool) – If True, errors are not raised as long as the errors occured are
identical between NumPy and CuPy.

Decorated test fixture is required to return the arrays whose values are close between numpy case and cupy
case. For example, this test case checks numpy.foo and cupy.foo should return same value.

>>> @testing.gpu
... class TestFoo(unittest.TestCase):
...
... @testing.numpy_cupy_allclose()
... def test_foo(self, xp):
... # ...
... # Prepare data with xp
... # ...
...
... xp_result = xp.foo(...)
... return xp_result

See also:

cupy.testing.assert_allclose()

cupy.testing.numpy_cupy_array_almost_equal(decimal=6, err_msg=’‘, verbose=True,
name=’xp’, type_check=True, ac-
cept_error=True)

Decorator that checks NumPy results and CuPy ones are almost equal.

Parameters

• decimal (int) – Desired precision.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool) – If True, errors are not raised as long as the errors occured are
identical between NumPy and CuPy.

Decorated test fixture is required to return the same arrays in the sense of
cupy.testing.assert_array_almost_equal() (except the type of array module) even if xp
is numpy or cupy.

See also:

cupy.testing.assert_array_almost_equal()

4.9. Testing Modules 161

https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

cupy.testing.numpy_cupy_array_almost_equal_nulp(nulp=1, name=’xp’, type_check=True,
accept_error=True)

Decorator that checks results of NumPy and CuPy are equal w.r.t. spacing.

Parameters

• nulp (int) – The maximum number of unit in the last place for tolerance.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool) – If True, errors are not raised as long as the errors occured are
identical between NumPy and CuPy.

Decorated test fixture is required to return the same arrays in the sense of
cupy.testing.assert_array_almost_equal_nulp() (except the type of array module) even if
xp is numpy or cupy.

See also:

cupy.testing.assert_array_almost_equal_nulp()

cupy.testing.numpy_cupy_array_max_ulp(maxulp=1, dtype=None, name=’xp’,
type_check=True, accept_error=True)

Decorator that checks results of NumPy and CuPy ones are equal w.r.t. ulp.

Parameters

• maxulp (int) – The maximum number of units in the last place that elements of resulting
two arrays can differ.

• dtype (numpy.dtype) – Data-type to convert the resulting two array to if given.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool) – If True, errors are not raised as long as the errors occured are
identical between NumPy and CuPy.

Decorated test fixture is required to return the same arrays in the sense of assert_array_max_ulp()
(except the type of array module) even if xp is numpy or cupy.

See also:

cupy.testing.assert_array_max_ulp()

cupy.testing.numpy_cupy_array_equal(err_msg=’‘, verbose=True, name=’xp’,
type_check=True, accept_error=True)

Decorator that checks NumPy results and CuPy ones are equal.

Parameters

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool) – If True, errors are not raised as long as the errors occured are
identical between NumPy and CuPy.

162 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

Decorated test fixture is required to return the same arrays in the sense of numpy_cupy_array_equal()
(except the type of array module) even if xp is numpy or cupy.

See also:

cupy.testing.assert_array_equal()

cupy.testing.numpy_cupy_array_list_equal(err_msg=’‘, verbose=True, name=’xp’)
Decorator that checks the resulting lists of NumPy and CuPy’s one are equal.

Parameters

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

Decorated test fixture is required to return the same list of arrays (except the type of array module) even if xp is
numpy or cupy.

See also:

cupy.testing.assert_array_list_equal()

cupy.testing.numpy_cupy_array_less(err_msg=’‘, verbose=True, name=’xp’, type_check=True,
accept_error=True)

Decorator that checks the CuPy result is less than NumPy result.

Parameters

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool) – If True, errors are not raised as long as the errors occured are
identical between NumPy and CuPy.

Decorated test fixture is required to return the smaller array when xp is cupy than the one when xp is numpy.

See also:

cupy.testing.assert_array_less()

cupy.testing.numpy_cupy_raises(name=’xp’)
Decorator that checks the NumPy and CuPy throw same errors.

Parameters

• name (str) – Argument name whose value is either

• or cupy module. (numpy) –

Decorated test fixture is required throw same errors even if xp is numpy or cupy.

See also:

cupy.testing.assert_array_less()

4.9. Testing Modules 163

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 1.6.2.1

4.9.3 Parameterized dtype Test

The following decorators offers the standard way for parameterized test with respect to single or the combination of
dtype(s).

cupy.testing.for_dtypes(dtypes, name=’dtype’)
Decorator for parameterized dtype test.

Parameters

• dtypes (list of dtypes) – dtypes to be tested.

• name (str) – Argument name to which specified dtypes are passed.

This decorator adds a keyword argument specified by name to the test fixture. Then, it runs the fixtures in
parallel by passing the each element of dtypes to the named arugment.

cupy.testing.for_all_dtypes(name=’dtype’, no_float16=False, no_bool=False)
Decorator that checks the fixture with all dtypes.

Parameters

• name (str) – Argument name to which specified dtypes are passed.

• no_float16 (bool) – If, True, numpy.float16 is omitted from candidate dtypes.

• no_bool (bool) – If, True, numpy.bool_ is omitted from candidate dtypes.

dtypes to be tested: numpy.float16 (optional), numpy.float32, numpy.float64,
numpy.dtype(’b’), numpy.dtype(’h’), numpy.dtype(’i’), numpy.dtype(’l’),
numpy.dtype(’q’), numpy.dtype(’B’), numpy.dtype(’H’), numpy.dtype(’I’),
numpy.dtype(’L’), numpy.dtype(’Q’), and numpy.bool_ (optional).

The usage is as follows. This test fixture checks if cPickle successfully reconstructs cupy.ndarray for
various dtypes. dtype is an argument inserted by the decorator.

>>> @testing.gpu
... class TestNpz(unittest.TestCase):
...
... @testing.for_all_dtypes()
... def test_pickle(self, dtype):
... a = testing.shaped_arange((2, 3, 4), dtype=dtype)
... s = six.moves.cPickle.dumps(a)
... b = six.moves.cPickle.loads(s)
... testing.assert_array_equal(a, b)

Typically, we use this decorator in combination with decorators that check consistency between NumPy and
CuPy like cupy.testing.numpy_cupy_allclose(). The following is such an example.

>>> @testing.gpu
... class TestMean(unittest.TestCase):
...
... @testing.for_all_dtypes()
... @testing.numpy_cupy_allclose()
... def test_mean_all(self, xp, dtype):
... a = testing.shaped_arange((2, 3), xp, dtype)
... return a.mean()

See also:

cupy.testing.for_dtypes()

164 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

cupy.testing.for_float_dtypes(name=’dtype’, no_float16=False)
Decorator that checks the fixture with all float dtypes.

Parameters

• name (str) – Argument name to which specified dtypes are passed.

• no_float16 (bool) – If, True, numpy.float16 is omitted from candidate dtypes.

dtypes to be tested are numpy.float16 (optional), numpy.float32, and numpy.float64.

See also:

cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_signed_dtypes(name=’dtype’)
Decorator that checks the fixture with signed dtypes.

Parameters name (str) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype(’b’), numpy.dtype(’h’), numpy.dtype(’i’),
numpy.dtype(’l’), and numpy.dtype(’q’).

See also:

cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_unsigned_dtypes(name=’dtype’)
Decorator that checks the fixture with all dtypes.

Parameters name (str) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype(’B’), numpy.dtype(’H’),

numpy.dtype(’I’), numpy.dtype(’L’), and numpy.dtype(’Q’).

See also:

cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_int_dtypes(name=’dtype’, no_bool=False)
Decorator that checks the fixture with integer and optionally bool dtypes.

Parameters

• name (str) – Argument name to which specified dtypes are passed.

• no_bool (bool) – If True, numpy.bool_ is omitted from candidate dtypes.

dtypes to be tested are numpy.dtype(’b’), numpy.dtype(’h’), numpy.dtype(’i’),
numpy.dtype(’l’), numpy.dtype(’q’), numpy.dtype(’B’), numpy.dtype(’H’),
numpy.dtype(’I’), numpy.dtype(’L’), numpy.dtype(’Q’), and numpy.bool_ (optional).

See also:

cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_dtypes_combination(types, names=[’dtype’], full=None)
Decorator that checks the fixture with a product set of dtypes.

Parameters

• types (list of dtypes) – dtypes to be tested.

• names (list of str) – Argument names to which dtypes are passed.

• full (bool) – If True, then all combinations of dtypes will be tested. Otherwise, the
subset of combinations will be tested (see the description below).

4.9. Testing Modules 165

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

Decorator adds the keyword arguments specified by names to the test fixture. Then, it runs the fixtures in
parallel with passing (possibly a subset of) the product set of dtypes. The range of dtypes is specified by
types.

The combination of dtypes to be tested changes depending on the option full. If full is True, all combi-
nations of types are tested. Sometimes, such an exhaustive test can be costly. So, if full is False, only
the subset of possible combinations is tested. Specificially, at first, the shuffled lists of types are made for
each argument name in names. Let the lists be D1, D2, ..., Dn where 𝑛 is the number of arguments. Then,
the combinations to be tested will be zip(D1, ..., Dn). If full is None, the behaivior is switched by
setting the environment variable CUPY_TEST_FULL_COMBINATION=1.

For example, let types be [float16, float32, float64] and names be [’a_type’,
’b_type’]. If full is True, then the decorated test fixture is executed with all 23 patterns. On the other
hand, if full is False, shuffled lists are made for a_type and b_type. Suppose the lists are (16, 64,
32) for a_type and (32, 64, 16) for b_type (prefixes are removed for short). Then the combinations
of (a_type, b_type) to be tested are (16, 32), (64, 64) and (32, 16).

cupy.testing.for_all_dtypes_combination(names=[’dtyes’], no_float16=False,
no_bool=False, full=None)

Decorator that checks the fixture with a product set of all dtypes.

Parameters

• names (list of str) – Argument names to which dtypes are passed.

• no_float16 (bool) – If True, numpy.float16 is omitted from candidate dtypes.

• no_bool (bool) – If True, numpy.bool_ is omitted from candidate dtypes.

• full (bool) – If True, then all combinations of dtypes will be tested.
Otherwise, the subset of combinations will be tested (see description in
cupy.testing.for_dtypes_combination()).

See also:

cupy.testing.for_dtypes_combination()

cupy.testing.for_signed_dtypes_combination(names=[’dtype’], full=None)
Decorator for parameterized test w.r.t. the product set of signed dtypes.

Parameters

• names (list of str) – Argument names to which dtypes are passed.

• full (bool) – If True, then all combinations of dtypes will be tested.
Otherwise, the subset of combinations will be tested (see description in
cupy.testing.for_dtypes_combination()).

See also:

cupy.testing.for_dtypes_combination()

cupy.testing.for_unsigned_dtypes_combination(names=[’dtype’], full=None)
Decorator for parameterized test w.r.t. the product set of unsigned dtypes.

Parameters

• names (list of str) – Argument names to which dtypes are passed.

• full (bool) – If True, then all combinations of dtypes will be tested.
Otherwise, the subset of combinations will be tested (see description in
cupy.testing.for_dtypes_combination()).

166 Chapter 4. CuPy Reference Manual

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

See also:

cupy.testing.for_dtypes_combination()

cupy.testing.for_int_dtypes_combination(names=[’dtype’], no_bool=False, full=None)
Decorator for parameterized test w.r.t. the product set of int and boolean.

Parameters

• names (list of str) – Argument names to which dtypes are passed.

• no_bool (bool) – If True, numpy.bool_ is omitted from candidate dtypes.

• full (bool) – If True, then all combinations of dtypes will be tested.
Otherwise, the subset of combinations will be tested (see description in
cupy.testing.for_dtypes_combination()).

See also:

cupy.testing.for_dtypes_combination()

4.9. Testing Modules 167

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Chainer Documentation, Release 1.6.2.1

168 Chapter 4. CuPy Reference Manual

CHAPTER 5

Chainer Contribution Guide

This is a guide for all contributions to Chainer. The development of Chainer is running on the official repository at
GitHub. Anyone that wants to register an issue or to send a pull request should read through this document.

5.1 Classification of Contributions

There are several ways to contribute to Chainer community:

1. Registering an issue

2. Sending a pull request (PR)

3. Sending a question to Chainer User Group

4. Open-sourcing an external example

5. Writing a post about Chainer

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

5.2 Release and Milestone

We are using GitHub Flow as our basic working process. In particular, we are using the master branch for our
development, and releases are made as tags.

Releases are classified into three groups: major, minor, and revision. This classification is based on following criteria:

• A major release contains catastrophic changes on the interface that may break existing user codes.

• A minor release contains additions and modifications on the interface. It may break some existing user codes,
though they must be fixed by small efforts.

• A revision release contains changes that does not affect the documented interface. It mainly consists of bug
fixes, implementation improvements, and test/document/example updates.

The release classification is reflected into the version number x.y.z, where x, y, and z corresponds to major, minor, and
revision updates, respectively.

We sets milestones for some future releases. A milestone for a revision release is set right after the last release. On the
other hand, a milestone for a minor or major release is set four weeks prior to its due.

169

https://github.com/pfnet/chainer
https://github.com/pfnet/chainer
https://groups.google.com/forum/#!forum/chainer
http://scottchacon.com/2011/08/31/github-flow.html

Chainer Documentation, Release 1.6.2.1

5.3 Issues and PRs

Issues and PRs are classified into following categories:

• Bug: bug reports (isseus) and bug fixes (PRs)

• Enhancement: implementation improvements without breaking the interface

• Feature: feature requests (issues) and their implementations (PRs)

• Test: test fixes and updates

• Document: document fixes and improvements

• Example: fixes and improvements on the examples

• Other: other issues and PRs

Issues and PRs are labeled by these categories. This classification is often reflected into its corresponding release
category: Feature issues/PRs are contained into minor/major releases, while other issues/PRs can be contained into
any releases including revision ones.

On registering an issue, write precise explanations on what you want Chainer to be. Bug reports must include necessary
and sufficient conditions to reproduce the bugs. Feature requests must include what you want to do (and why you
want to do, if needed). You can contain your thoughts on how to realize it into the feature requests, though what part
is most important for discussions.

Warning: If you have a question on usages of Chainer, it is highly recommended to send a post to Chainer User
Group instead of the issue tracker. The issue tracker is not a place to share knowledge on practices. We may
redirect question issues to Chainer User Group.

If you can write codes to fix an issue, send a PR to the master branch. Before writing your codes for PRs, read through
the Coding Guidelines. The description of any PR must contain a precise explanation of what and how you want to
do; it is the first documentation of your codes for developers, a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI. After the automatic test passes, some of the core developers
will start reviewing your codes. Note that this automatic PR test only includes CPU tests.

Note: We are also running continuous integrations with GPU tests for the master branch. Since this service is running
on our internal server, we do not use it for automatic PR tests to keep the server secure.

Even if your codes are not complete, you can send a pull request as a work-in-progress PR by putting the [WIP]
prefix to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join
the discussion about how to proceed the PR.

5.4 Coding Guidelines

We use PEP8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

Before checking your code, you can use automatic formatter to set appropriate spacing, etc. We recommend you to
install the pyformat and isort packages, and run the following commands:

$ pyformat -i path/to/your/code.py
$ isort path/to/your/code.py

170 Chapter 5. Chainer Contribution Guide

https://groups.google.com/forum/#!forum/chainer
https://groups.google.com/forum/#!forum/chainer
https://travis-ci.org/pfnet/chainer/
https://www.python.org/dev/peps/pep-0008/
http://docs.openstack.org/developer/hacking/

Chainer Documentation, Release 1.6.2.1

Note that these formatters do not cover all part of the style guidelines.

To check your code, use flake8 command installed by hacking package:

$ pip install hacking
$ flake8 path/to/your/code.py

The flake8 command lets you know the part of your code not obeying our style guidelines. Before sending a pull
request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect. It does not check some of the style guidelines. Here is a (not-complete)
list of the rules that flake8 cannot check.

• Relative imports are prohibited. [H304]

• Importing non-module symbols is prohibited.

• Import statements must be organized into three parts: standard libraries, third-party libraries, and internal im-
ports. [H306]

In addition, we restrict the usage of shortcut symbols in our code base. They are symbols im-
ported by packages and subpackages of chainer. For example, chainer.Variable is a shortcut of
chainer.variable.Variable. It is not allowed to use such shortcuts in the ‘‘chainer‘‘ library imple-
mentation. Note that you can still use them in tests and examples directories. Also note that you should use
shortcut names of CuPy APIs in Chainer implementation.

Once you send a pull request, your coding style is automatically checked by Travis-CI. The reviewing process starts
after the check passes.

5.5 Testing Guidelines

Testing is one of the most important part of your code. You must test your code by unit tests following our testing
guidelines. Note that we are using the nose package and the mock package for testing, so install nose and mock before
writing your codes:

$ pip install nose mock

In order to run unittests at the repository root, you first have to build Cython files in place by running the following
command:

$ python setup.py develop

Once the Cython modules are built, you can run unit tests simply by running nosetests command at the repository
root:

$ nosetests

It requires CUDA by default. In order to run unit tests that do not require CUDA, pass --attr=’!gpu’ option to
the nosetests command:

$ nosetests path/to/your/test.py --attr='!gpu'

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify the
number of available GPUs by --attr=’gpu<N’ where N is a concrete integer. For example, if you have only one
GPU, launch nosetests by the following command to skip multi-GPU tests:

$ nosetests path/to/gpu/test.py --attr='gpu<2'

5.5. Testing Guidelines 171

https://travis-ci.org/pfnet/chainer/

Chainer Documentation, Release 1.6.2.1

Tests are put into the tests/chainer_tests and tests/cupy_tests directories. These have the same struc-
ture as that of chainer and cupy directories, respectively. In order to enable test runner to find test scripts correctly,
we are using special naming convention for the test subdirectories and the test scripts.

• The name of each subdirectory of tests must end with the _tests suffix.

• The name of each test script must start with the test_ prefix.

Following this naming convention, you can run all the tests by just typing nosetests at the repository root:

$ nosetests

Or you can also specify a root directory to search test scripts from:

$ nosetests tests/chainer_tests # to just run tests of Chainer
$ nosetests tests/cupy_tests # to just run tests of CuPy

If you modify the code related to existing unit tests, you must run appropriate commands.

Note: CuPy tests include type-exhaustive test functions which take long time to execute. If you are running tests on
a multi-core machine, you can parallelize the tests by following options:

$ nosetests --processes=12 --process-timeout=1000 tests/cupy_tests

The magic numbers can be modified for your usage. Note that some tests require many CUDA compilations, which
require a bit long time. Without the process-timeout option, the timeout is set shorter, causing timeout failures
for many test cases.

There are many examples of unit tests under the tests directory. They simply use the unittest package of the
standard library.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability. Test functions that re-
quire CUDA must be tagged by the chainer.testing.attr.gpu decorator (or cupy.testing.attr.gpu
for testing CuPy APIs):

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.gpu
def test_my_gpu_func(self):

...

The functions tagged by the gpu decorator are skipped if --attr=’!gpu’ is given. We also have the
chainer.testing.attr.cudnn decorator to let nosetests know that the test depends on CuDNN.

The test functions decorated by gpu must not depend on multiple GPUs. In order to write tests for multiple GPUs, use
chainer.testing.attr.multi_gpu() or cupy.testing.attr.multi_gpu() decorators instead:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.multi_gpu(2) # specify the number of required GPUs here
def test_my_two_gpu_func(self):

...

172 Chapter 5. Chainer Contribution Guide

Chainer Documentation, Release 1.6.2.1

Once you send a pull request, your code is automatically tested by Travis-CI with –attr=’!gpu’ option. Since Travis-
CI does not support CUDA, we cannot check your CUDA-related code automatically. The reviewing process starts
after the test passes. Note that reviewers will test your code without the option to check CUDA-related code.

Note: Some of numerically unstable tests might cause errors irrelevant to your changes. In such a case, we ignore the
failures and go on to the review process, so do not worry about it.

5.5. Testing Guidelines 173

https://travis-ci.org/pfnet/chainer/

Chainer Documentation, Release 1.6.2.1

174 Chapter 5. Chainer Contribution Guide

CHAPTER 6

API Compatibility Policy

This document expresses the design policy on compatilibities of Chainer APIs. Dev team should obey this policy on
deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers. Users can decide the level of dependencies on Chainer’s
implementations in their codes based on this document. Developers should read through this document before creating
pull requests that contain changes on the interface. Note that this document may contain ambiguities on the level of
supported compatibilities.

6.1 Targetted Versions

This policy is applied to Chainer of versions v1.5.1 and higher. Note that this policy is not applied to Chainer of lower
versions.

6.2 Versioning and Backward Compatibilities

The updates of Chainer are classified into three levels: major, minor, and revision. These types have distinct levels of
backward compatibilities.

• Major update contains disruptive changes that break the backward compatibility.

• Minor update contains addition and extension to the APIs keeping the supported backward compatibility.

• Revision update contains improvements on the API implementations without changing any API specifications.

Note that we do not support full backward compatibility, which is almost infeasible for Python-based APIs, since there
is no way to completely hide the implementation details.

6.3 Processes to Break Backward Compatibilities

6.3.1 Deprecation, Dropping, and Its Preparation

Any APIs may be deprecated at some minor updates. In such a case, the deprecation note is added to the API
documentation, and the API implementation is changed to fire deprecation warning (if possible). There should be
another way to reimplement the same things previously written with the deprecated APIs.

175

Chainer Documentation, Release 1.6.2.1

Any APIs may be marked as to be dropped in the future. In such a case, the dropping is stated in the documentation
with the major version number on which the API is planned to be dropped, and the API implementation is changed to
fire the future warning (if possible).

The actual dropping should be done through the following steps:

• Make the API deprecated. At this point, users should not need the deprecated API in their new application
codes.

• After that, mark the API as to be dropped in the future. It must be done in the minor update different from that
of the deprecation.

• At the major version announced in the above update, drop the API.

Consequently, it takes at least two minor versions to drop any APIs after the first deprecation. Since each minor update
is made for every six weeks, this dropping procedure takes at least 12 weeks (~ 3 months).

6.3.2 API Changes and Its Preparation

Any APIs may be marked as to be changed in the future for changes without backward compatibility. In such a case,
the change is stated in the documentation with the version number on which the API is planned to be changed, and the
API implementation is changed to fire the future warning on the certain usages.

The actual change should be done in the following steps:

• Announce that the API will be changed in the future. At this point, the actual version of change need not be
accurate.

• After the announcement, mark the API as to be changed in the future with version number of planned changes.
At this point, users should not use the marked API in their new application codes.

• At the major update announced in the above update, change the API.

6.4 Supported Backward Compatibility

This section defines backward compatibilites that minor updates must maintain.

6.4.1 Documented Interface

Chainer has the official API documentation. Many applications can be written based on the documented features.
We support backward compatibilities of documented features. In other words, codes only based on the documented
features run correctly with minor/revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes
outside of the documented APIs should have one or more underscores at the prefix of their names.

6.4.2 Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined. Undocumented behaviors are not
guaranteed to be stable between different minor/revision versions.

Minor update may contain changes to undocumented behaviors. For example, suppose an API X is added at the
minor update. In the previous version, attempts to use X cause AttributeError. This behavior is not stated in the
documentation, so this is undefined. Thus, adding the API X in minor version is permissible.

176 Chapter 6. API Compatibility Policy

Chainer Documentation, Release 1.6.2.1

Revision update may also contain changes to undefined behaviors. Typical example is a bug fix. Another example is an
improvement on implementation, which may change the internal object structures not shown in the documentation. As
a consequence, even revision updates do not support compatibility of pickling, unless the full layout of pickled
objects is clearly documented.

6.4.3 Documentation Error

Compatibility is basically determined based on the documentation, though it sometimes contains errors. It may make
the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the
documentation errors in any updates that may break the compatibility in regard to the documentation.

Note: Developers MUST NOT fix the documentation and implementation of the same functionality at the same time
in revision updates as “bug fix”. Such a change completely breaks the backward compatibility. If you want to fix the
bugs in both sides, first fix the documentation to fit it into the implementation, and start the API changing procedure
described above.

6.4.4 Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other at minor updates. It does not break the user
codes, except the codes depend on how the attributes and properties are implemented.

6.4.5 Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values in minor
updates. It does not break the user codes, except the codes depend on how the methods and callable attributes are
implemented.

6.4.6 Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception
is raised in the future versions with correct usages that the documentation allows, unless the API changing process is
completed.

On the other hand, warnings may be added at any minor updates for any APIs. It means minor updates do not keep
backward compatibility of warnings.

6.5 Model Format Compatibility

Objects serialized by official serializers that Chainer provides are correctly loaded with the higher (future) versions.
They might not be correctly loaded with Chainer of the lower versions.

Note: Current serialization APIs do not support versioning (at least in v1.6.1). It prevents us from introducing changes
in the layout of objects that support serialization. We are discussing about introducing versioning in serialization APIs.

6.5. Model Format Compatibility 177

Chainer Documentation, Release 1.6.2.1

6.6 Installation Compatibility

The installation process is another concern of compatibilities. We support environmental compatibilities in the follow-
ing ways.

• Any changes of dependent libraries that force modifications on the existing environments must be done in major
updates. Such changes include following cases:

– dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

– adding new mandatory dependencies (e.g. adding h5py to setup_requires)

• Supporting optional packages/libraries may be done in minor updates (e.g. supporting h5py in optional features).

Note: The installation compatibility does not guarantee that all the features of Chainer correctly run on supported
environments. It may contain bugs that only occurs in certain environments. Such bugs should be fixed in some
updates.

178 Chapter 6. API Compatibility Policy

CHAPTER 7

Tips and FAQs

7.1 It takes too long time to compile a computational graph. Can I
skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels. CuPy compiles kernels on demand to make
kernels optimized to the number of dimensions and element types of input arguments. Precompilation is not available,
because we have to compile an exponential number of kernels to support all CuPy functionalities. This restriction is
unavoidable because Python cannot call CUDA/C++ template functions in generic way. Note that every framework
using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as
cutorch) and Chainer is whether a kernel is compiled at installtion or at the first use.

These compilations should run only at the first use of the kernels. The compiled binaries are cached to the
$(HOME)/.cupy/kernel_cache directory by default. If you see that compilations run everytime you run the
same script, then the caching is failed. Please check that the directory is kept as is between multiple executions of the
script. If your home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel
caching directory by setting the CUPY_CACHE_DIR environment variable to an appropriate path. See CuPy Overview
for more details.

179

Chainer Documentation, Release 1.6.2.1

180 Chapter 7. Tips and FAQs

CHAPTER 8

Comparison with Other Frameworks

8.1 A table for quick comparison

This table compares Chainer with other popular deep learning frameworks. We hope it helps you to choose an appro-
priate framework for the demand.

Note: This chart may be out-dated, since the developers of Chainer do not perfectly follow the latest development
status of each framework. Please report us if you find an out-dated cell. Requests for new comparison axes are also
welcome.

Chainer Theano-based Torch7 Caffe

Specs

Scripting Python Python LuaJIT Python
Net definition language Python Python LuaJIT Protocol Buffers
Define-by-Run scheme Y
CPU Array backend NumPy NumPy Tensor
GPU Array backend CuPy CudaNdarray 1 CudaTensor

NNs

Reverse-mode AD Y Y Y Y
Basic RNN support Y Y Y (nnx) #2033
Variable-length loops Y Y (scan)
Stateful RNNs 2 Y Y 6

Per-batch architectures Y

Perf

CUDA support Y Y Y Y
cuDNN support Y Y Y (cudnn.torch) Y
FFT-based convolution Y Y (fbcunn) #544
CPU/GPU generic coding 3 Y 4 Y
Multi GPU (data parallel) Y Y (fbcunn) Y
Multi GPU (model parallel) Y Y (fbcunn)

Misc
Type checking Y Y Y N/A
Model serialization Y (pickle) Y (pickle) Y Y
Caffe reference model Y 5 Y (loadcaffe) Y

1They are also developing libgpuarray
2Stateful RNN is a type of RNN implementation that maintains states in the loops. It should enable us to use the states arbitrarily to update

them.
6Also available in the Torch RNN package <https://github.com/Element-Research/rnn>
3This row shows whether each array API supports unified codes for CPU and GPU.
4The array backend of Theano does not have compatible interface with NumPy, though most users write code on theano variables, which is

generic for CPU and GPU.
5Depending on the frameworks.

181

https://github.com/BVLC/caffe/pull/2033
https://github.com/BVLC/caffe/pull/544
http://deeplearning.net/software/libgpuarray/

Chainer Documentation, Release 1.6.2.1

8.2 Benchmarks

We are preparing for the benchmarks.

182 Chapter 8. Comparison with Other Frameworks

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

183

Chainer Documentation, Release 1.6.2.1

184 Chapter 9. Indices and tables

Bibliography

[Graves2006] Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber, Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

[Graves2012] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks

185

ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
http://www.cs.toronto.edu/~graves/preprint.pdf

Chainer Documentation, Release 1.6.2.1

186 Bibliography

Python Module Index

c
chainer, 35
chainer.computational_graph, 95
chainer.cuda, 51
chainer.functions, 57
chainer.functions.caffe, 93
chainer.gradient_check, 56
chainer.links, 77
chainer.serializers, 91
chainer.utils, 54
chainer.utils.type_check, 54
cupy, 110
cupy.random, 138
cupy.testing, 158

187

Chainer Documentation, Release 1.6.2.1

188 Python Module Index

Index

Symbols
__abs__ (cupy.ndarray attribute), 101
__add__ (cupy.cuda.MemoryPointer attribute), 149
__add__ (cupy.ndarray attribute), 101
__and__ (cupy.ndarray attribute), 101
__call__ (cupy.ElementwiseKernel attribute), 157
__call__() (chainer.AbstractSerializer method), 49
__call__() (chainer.Function method), 38
__call__() (chainer.functions.caffe.CaffeFunction

method), 94
__call__() (chainer.links.BatchNormalization method),

86
__call__() (chainer.links.Bilinear method), 78
__call__() (chainer.links.BinaryHierarchicalSoftmax

method), 87
__call__() (chainer.links.Classifier method), 90
__call__() (chainer.links.Convolution2D method), 79
__call__() (chainer.links.EmbedID method), 80
__call__() (chainer.links.Inception method), 82
__call__() (chainer.links.LSTM method), 84
__call__() (chainer.links.Linear method), 83
__call__() (chainer.links.MLPConvolution2D method),

84
__call__() (chainer.links.Maxout method), 89
__call__() (chainer.links.NegativeSampling method), 89
__call__() (chainer.links.PReLU method), 88
__call__() (chainer.links.Parameter method), 91
__call__() (cupy.ReductionKernel method), 158
__call__() (cupy.ufunc method), 109
__delitem__ (cupy.ndarray attribute), 101
__div__ (cupy.ndarray attribute), 101
__divmod__ (cupy.ndarray attribute), 101
__eq__ (cupy.cuda.Device attribute), 148
__eq__ (cupy.ndarray attribute), 101
__float__ (cupy.ndarray attribute), 101
__floordiv__ (cupy.ndarray attribute), 101
__ge__ (cupy.cuda.Device attribute), 148
__ge__ (cupy.ndarray attribute), 101
__getitem__ (cupy.ndarray attribute), 101
__getitem__() (chainer.AbstractSerializer method), 50

__getitem__() (chainer.Chain method), 44
__getitem__() (chainer.ChainList method), 45
__getitem__() (chainer.FunctionSet method), 50
__gt__ (cupy.cuda.Device attribute), 148
__gt__ (cupy.ndarray attribute), 102
__hex__ (cupy.ndarray attribute), 102
__iadd__ (cupy.cuda.MemoryPointer attribute), 149
__iadd__ (cupy.ndarray attribute), 102
__iand__ (cupy.ndarray attribute), 102
__idiv__ (cupy.ndarray attribute), 102
__ifloordiv__ (cupy.ndarray attribute), 102
__ilshift__ (cupy.ndarray attribute), 102
__imod__ (cupy.ndarray attribute), 102
__imul__ (cupy.ndarray attribute), 102
__int__ (cupy.cuda.Device attribute), 148
__int__ (cupy.cuda.Memory attribute), 149
__int__ (cupy.cuda.MemoryPointer attribute), 149
__int__ (cupy.ndarray attribute), 102
__invert__ (cupy.ndarray attribute), 102
__ior__ (cupy.ndarray attribute), 102
__ipow__ (cupy.ndarray attribute), 102
__irshift__ (cupy.ndarray attribute), 102
__isub__ (cupy.cuda.MemoryPointer attribute), 149
__isub__ (cupy.ndarray attribute), 102
__itruediv__ (cupy.ndarray attribute), 102
__ixor__ (cupy.ndarray attribute), 102
__le__ (cupy.cuda.Device attribute), 148
__le__ (cupy.ndarray attribute), 102
__len__ (cupy.ndarray attribute), 102
__len__() (chainer.ChainList method), 45
__len__() (chainer.Variable method), 35
__long__ (cupy.cuda.Device attribute), 148
__long__ (cupy.cuda.Memory attribute), 149
__long__ (cupy.cuda.MemoryPointer attribute), 149
__long__ (cupy.ndarray attribute), 102
__lshift__ (cupy.ndarray attribute), 102
__lt__ (cupy.cuda.Device attribute), 148
__lt__ (cupy.ndarray attribute), 102
__mod__ (cupy.ndarray attribute), 102
__mul__ (cupy.ndarray attribute), 103
__ne__ (cupy.cuda.Device attribute), 148

189

Chainer Documentation, Release 1.6.2.1

__ne__ (cupy.ndarray attribute), 103
__neg__ (cupy.ndarray attribute), 103
__nonzero__ (cupy.ndarray attribute), 103
__oct__ (cupy.ndarray attribute), 103
__or__ (cupy.ndarray attribute), 103
__pos__ (cupy.ndarray attribute), 103
__pow__ (cupy.ndarray attribute), 103
__radd__ (cupy.cuda.MemoryPointer attribute), 149
__radd__ (cupy.ndarray attribute), 103
__rand__ (cupy.ndarray attribute), 103
__rdiv__ (cupy.ndarray attribute), 103
__rdivmod__ (cupy.ndarray attribute), 103
__repr__ (cupy.cuda.Device attribute), 148
__repr__ (cupy.ndarray attribute), 103
__rfloordiv__ (cupy.ndarray attribute), 103
__rlshift__ (cupy.ndarray attribute), 103
__rmod__ (cupy.ndarray attribute), 103
__rmul__ (cupy.ndarray attribute), 103
__ror__ (cupy.ndarray attribute), 103
__rpow__ (cupy.ndarray attribute), 103
__rrshift__ (cupy.ndarray attribute), 103
__rshift__ (cupy.ndarray attribute), 103
__rsub__ (cupy.cuda.MemoryPointer attribute), 150
__rsub__ (cupy.ndarray attribute), 103
__rtruediv__ (cupy.ndarray attribute), 103
__rxor__ (cupy.ndarray attribute), 104
__setitem__ (cupy.ndarray attribute), 104
__str__ (cupy.ndarray attribute), 104
__sub__ (cupy.cuda.MemoryPointer attribute), 150
__sub__ (cupy.ndarray attribute), 104
__truediv__ (cupy.ndarray attribute), 104
__xor__ (cupy.ndarray attribute), 104

A
absolute (in module cupy), 137
AbstractSerializer (class in chainer), 49
accumulate_grads() (chainer.Optimizer method), 46
accuracy (chainer.links.Classifier attribute), 90
accuracy() (in module chainer.functions), 67
activation (chainer.links.MLPConvolution2D attribute),

84
AdaDelta (class in chainer.optimizers), 91
AdaGrad (class in chainer.optimizers), 91
Adam (class in chainer.optimizers), 91
add (in module cupy), 135
add_callback() (cupy.cuda.Stream method), 153
add_hook() (chainer.Optimizer method), 46
add_link() (chainer.Chain method), 44
add_link() (chainer.ChainList method), 45
add_param() (chainer.Link method), 42
add_persistent() (chainer.Link method), 42
addgrad() (chainer.Variable method), 36
addgrads() (chainer.Link method), 42
aggregate_flags() (in module chainer.flag), 37

alloc() (in module cupy.cuda), 151
amax() (in module cupy), 145
amin() (in module cupy), 145
arange() (in module cupy), 115
arccos (in module cupy), 131
arccosh (in module cupy), 132
arcsin (in module cupy), 131
arcsinh (in module cupy), 132
arctan (in module cupy), 131
arctan2 (in module cupy), 131
arctanh (in module cupy), 132
argmax() (cupy.ndarray method), 104
argmax() (in module cupy), 144
argmin() (cupy.ndarray method), 104
argmin() (in module cupy), 144
array() (in module cupy), 113
array_repr() (in module cupy), 126
array_split() (in module cupy), 121
array_str() (in module cupy), 126
asanyarray() (in module cupy), 114
asarray() (in module cupy), 114
ascontiguousarray() (in module cupy), 114
asnumpy() (in module cupy), 108
assert_allclose() (in module chainer.gradient_check), 56
assert_allclose() (in module cupy.testing), 158
assert_array_almost_equal() (in module cupy.testing),

159
assert_array_almost_equal_nulp() (in module

cupy.testing), 159
assert_array_equal() (in module cupy.testing), 160
assert_array_less() (in module cupy.testing), 160
assert_array_list_equal() (in module cupy.testing), 160
assert_array_max_ulp() (in module cupy.testing), 159
astype() (cupy.ndarray method), 104
atleast_1d() (in module cupy), 118
atleast_2d() (in module cupy), 118
atleast_3d() (in module cupy), 118
AUTO (in module chainer), 37
average_pooling_2d() (in module chainer.functions), 76
avg_mean (chainer.links.BatchNormalization attribute),

86
avg_var (chainer.links.BatchNormalization attribute), 86

B
b (chainer.links.Bilinear attribute), 78
b (chainer.links.Convolution2D attribute), 79
b (chainer.links.Linear attribute), 83
backward() (chainer.Function method), 38
backward() (chainer.Variable method), 36
backward_cpu() (chainer.Function method), 39
backward_gpu() (chainer.Function method), 39
base (ndarray attribute), 101
batch_inv() (in module chainer.functions), 72

190 Index

Chainer Documentation, Release 1.6.2.1

batch_l2_norm_squared() (in module chainer.functions),
72

batch_matmul() (in module chainer.functions), 72
batch_normalization() (in module chainer.functions), 74
BatchNormalization (class in chainer.links), 85
bernoulli_nll() (in module chainer.functions), 70
beta (chainer.links.BatchNormalization attribute), 86
Bilinear (class in chainer.links), 78
bilinear() (in module chainer.functions), 64
BinaryHierarchicalSoftmax (class in chainer.links), 87
bincount() (in module cupy), 147
bitwise_and (in module cupy), 123
bitwise_or (in module cupy), 123
bitwise_xor (in module cupy), 123
broadcast (class in cupy), 119
broadcast() (in module chainer.functions), 61
broadcast_arrays() (in module cupy), 119
broadcast_to() (in module chainer.functions), 61
broadcast_to() (in module cupy), 119
build_computational_graph() (in module

chainer.computational_graph), 95

C
c (chainer.links.LSTM attribute), 83
CaffeFunction (class in chainer.functions.caffe), 93
call_hooks() (chainer.Optimizer method), 46
ceil (in module cupy), 133
Chain (class in chainer), 43
chainer (module), 35
chainer.computational_graph (module), 95
chainer.cuda (module), 51
chainer.functions (module), 57
chainer.functions.caffe (module), 93
chainer.gradient_check (module), 56
chainer.links (module), 77
chainer.serializers (module), 91
chainer.utils (module), 54
chainer.utils.type_check (module), 54
ChainList (class in chainer), 45
check_backward() (in module chainer.gradient_check),

56
check_type_forward() (chainer.Function method), 39
children() (chainer.Link method), 42
Classifier (class in chainer.links), 90
clear_memo() (in module cupy), 154
clip() (cupy.ndarray method), 104
clip() (in module cupy), 137
clip_grads() (chainer.Optimizer method), 46
clipped_relu() (in module chainer.functions), 58
collect_parameters() (chainer.FunctionSet method), 51
column_stack() (in module cupy), 120
ComputationalGraph (class in

chainer.computational_graph), 96
compute_accuracy (chainer.links.Classifier attribute), 90

compute_capability (cupy.cuda.Device attribute), 148
compute_grads_norm() (chainer.Optimizer method), 46
concat() (in module chainer.functions), 62
concatenate() (in module cupy), 120
connectionist_temporal_classification() (in module

chainer.functions), 67
contrastive() (in module chainer.functions), 68
Convolution2D (class in chainer.links), 78
convolution_2d() (in module chainer.functions), 64
copy() (chainer.Link method), 42
copy() (cupy.ndarray method), 104
copy() (in module chainer.cuda), 52
copy() (in module chainer.functions), 62
copy() (in module cupy), 114
copy_from() (cupy.cuda.MemoryPointer method), 150
copy_from_async() (cupy.cuda.MemoryPointer method),

150
copy_from_device() (cupy.cuda.MemoryPointer

method), 150
copy_from_device_async() (cupy.cuda.MemoryPointer

method), 150
copy_from_host() (cupy.cuda.MemoryPointer method),

150
copy_from_host_async() (cupy.cuda.MemoryPointer

method), 150
copy_parameters_from() (chainer.FunctionSet method),

51
copy_to_host() (cupy.cuda.MemoryPointer method), 151
copy_to_host_async() (cupy.cuda.MemoryPointer

method), 151
copydata() (chainer.Variable method), 36
copyparams() (chainer.Link method), 42
copysign (in module cupy), 135
copyto() (in module cupy), 116
cos (in module cupy), 130
cos() (in module chainer.functions), 72
cosh (in module cupy), 132
count_nonzero() (in module cupy), 144
create_huffman_tree() (chainer.links.BinaryHierarchicalSoftmax

static method), 87
creator (chainer.Variable attribute), 35
cross_covariance() (in module chainer.functions), 68
cstruct (cupy.ndarray attribute), 105
cublas_handle (cupy.cuda.Device attribute), 148
cupy (module), 97, 110, 157
cupy.random (module), 138
cupy.testing (module), 158

D
data (chainer.Variable attribute), 35
data (ndarray attribute), 101
decay (chainer.links.BatchNormalization attribute), 86
Deconvolution2D (class in chainer.links), 79
deconvolution_2d() (in module chainer.functions), 65

Index 191

Chainer Documentation, Release 1.6.2.1

deg2rad (in module cupy), 131
degrees (in module cupy), 131
Deserializer (class in chainer), 50
Device (class in cupy.cuda), 148
device (cupy.ndarray attribute), 105
device (MemoryPointer attribute), 149
diag() (in module cupy), 115
diagflat() (in module cupy), 116
diagonal() (cupy.ndarray method), 105
diagonal() (in module cupy), 124
DictionarySerializer (class in chainer.serializers), 92
divide (in module cupy), 136
done (cupy.cuda.Event attribute), 153
done (cupy.cuda.Stream attribute), 153
dot() (cupy.ndarray method), 105
dot() (in module cupy), 127
dropout() (in module chainer.functions), 74
dsplit() (in module cupy), 122
dstack() (in module cupy), 121
dtype (ndarray attribute), 101
dump() (chainer.computational_graph.ComputationalGraph

method), 96
dump() (cupy.ndarray method), 105
dumps() (cupy.ndarray method), 105

E
elementwise() (in module chainer.cuda), 53
ElementwiseKernel (class in cupy), 157
elu() (in module chainer.functions), 58
embed_id() (in module chainer.functions), 66
EmbedID (class in chainer.links), 80
empty() (in module cupy), 110
empty_like() (in module cupy), 111
epoch (chainer.Optimizer attribute), 46
eps (chainer.links.BatchNormalization attribute), 86
equal (in module cupy), 130
eval() (chainer.utils.type_check.Expr method), 55
Event (class in cupy.cuda), 153
exp (in module cupy), 134
exp() (in module chainer.functions), 72
exp2 (in module cupy), 134
expand_dims() (in module chainer.functions), 62
expand_dims() (in module cupy), 120
expect() (in module chainer.utils.type_check), 55
expm1 (in module cupy), 134
Expr (class in chainer.utils.type_check), 54
eye() (in module cupy), 111

F
fill() (cupy.ndarray method), 105
fixed_batch_normalization() (in module

chainer.functions), 75
Flag (class in chainer), 37
flags (cupy.ndarray attribute), 105

flatten() (cupy.ndarray method), 105
floor (in module cupy), 132
floor_divide (in module cupy), 136
fmax (in module cupy), 138
fmin (in module cupy), 138
fmod (in module cupy), 136
for_all_dtypes() (in module cupy.testing), 164
for_all_dtypes_combination() (in module cupy.testing),

166
for_dtypes() (in module cupy.testing), 164
for_dtypes_combination() (in module cupy.testing), 165
for_float_dtypes() (in module cupy.testing), 164
for_int_dtypes() (in module cupy.testing), 165
for_int_dtypes_combination() (in module cupy.testing),

167
for_signed_dtypes() (in module cupy.testing), 165
for_signed_dtypes_combination() (in module

cupy.testing), 166
for_unsigned_dtypes() (in module cupy.testing), 165
for_unsigned_dtypes_combination() (in module

cupy.testing), 166
forward() (chainer.Function method), 40
forward_cpu() (chainer.Function method), 40
forward_gpu() (chainer.Function method), 40
forwards (chainer.functions.caffe.CaffeFunction at-

tribute), 94
free_all_free() (cupy.cuda.MemoryPool method), 152
frexp (in module cupy), 135
fs (chainer.functions.caffe.CaffeFunction attribute), 94
full() (in module cupy), 113
full_like() (in module cupy), 113
Function (class in chainer), 37
FunctionSet (class in chainer), 50

G
gamma (chainer.links.BatchNormalization attribute), 86
gaussian() (in module chainer.functions), 74
gaussian_kl_divergence() (in module chainer.functions),

71
gaussian_nll() (in module chainer.functions), 71
get() (cupy.ndarray method), 105
get_array_module() (in module chainer.cuda), 54
get_array_module() (in module cupy), 147
get_device() (in module chainer.cuda), 51
get_elapsed_time() (in module cupy.cuda), 154
get_random_state() (in module cupy.random), 142
grad (chainer.Variable attribute), 35
GradientClipping (class in chainer.optimizer), 49
GradientMethod (class in chainer), 48
gradients (chainer.FunctionSet attribute), 51
greater (in module cupy), 130
greater_equal (in module cupy), 130
GRU (class in chainer.links), 81

192 Index

Chainer Documentation, Release 1.6.2.1

H
h (chainer.links.LSTM attribute), 83
h (chainer.links.StatefulGRU attribute), 85
HDF5Deserializer (class in chainer.serializers), 93
HDF5Serializer (class in chainer.serializers), 93
hinge() (in module chainer.functions), 70
hsplit() (in module cupy), 122
hstack() (in module cupy), 121
hypot (in module cupy), 131

I
id (Device attribute), 148
identity() (in module chainer.functions), 72
identity() (in module cupy), 111
Inception (class in chainer.links), 81
InceptionBN (class in chainer.links), 82
init_state() (chainer.Optimizer method), 46
init_state_cpu() (chainer.Optimizer method), 47
init_state_gpu() (chainer.Optimizer method), 47
inner() (in module cupy), 127
inputs (chainer.Function attribute), 38
interval() (cupy.random.RandomState method), 143
inv() (in module chainer.functions), 72
invert (in module cupy), 124
isfinite (in module cupy), 129
isinf (in module cupy), 129
isnan (in module cupy), 129
itemsize (cupy.ndarray attribute), 106

L
label (chainer.Function attribute), 40
label (chainer.Variable attribute), 36
lateral (chainer.links.LSTM attribute), 83
ldexp (in module cupy), 135
leaky_relu() (in module chainer.functions), 58
left_shift (in module cupy), 124
less (in module cupy), 130
less_equal (in module cupy), 130
linear (chainer.links.Maxout attribute), 88
Linear (class in chainer.links), 82
linear() (in module chainer.functions), 66
Link (class in chainer), 40
links() (chainer.Link method), 42
linspace() (in module cupy), 115
load() (chainer.Deserializer method), 50
load() (in module cupy), 125
load_hdf5() (in module chainer.serializers), 93
load_npz() (in module chainer.serializers), 92
local_response_normalization() (in module

chainer.functions), 75
log (in module cupy), 134
log() (in module chainer.functions), 73
log10 (in module cupy), 134

log1p (in module cupy), 134
log2 (in module cupy), 134
logaddexp (in module cupy), 134
logaddexp2 (in module cupy), 134
logical_and (in module cupy), 129
logical_not (in module cupy), 129
logical_or (in module cupy), 129
logical_xor (in module cupy), 129
lognormal() (cupy.random.RandomState method), 143
lognormal() (in module cupy.random), 141
loss (chainer.links.Classifier attribute), 90
lossfun (chainer.links.Classifier attribute), 90
LSTM (class in chainer.links), 83
lstm() (in module chainer.functions), 58

M
malloc() (cupy.cuda.MemoryPool method), 152
matmul() (in module chainer.functions), 73
max() (cupy.ndarray method), 106
max() (in module chainer.functions), 73
max_pooling_2d() (in module chainer.functions), 76
maximum (in module cupy), 137
Maxout (class in chainer.links), 88
maxout() (in module chainer.functions), 59
mean() (cupy.ndarray method), 106
mean() (in module cupy), 146
mean_squared_error() (in module chainer.functions), 68
mem (MemoryPointer attribute), 149
memoize() (in module chainer.cuda), 53
memoize() (in module cupy), 154
Memory (class in cupy.cuda), 149
MemoryPointer (class in cupy.cuda), 149
MemoryPool (class in cupy.cuda), 151
memset() (cupy.cuda.MemoryPointer method), 151
memset_async() (cupy.cuda.MemoryPointer method),

151
min() (cupy.ndarray method), 106
min() (in module chainer.functions), 73
minimum (in module cupy), 138
MLPConvolution2D (class in chainer.links), 84
mod (in module cupy), 136
modf (in module cupy), 136
MomentumSGD (class in chainer.optimizers), 91
multiply (in module cupy), 135

N
N (chainer.links.BatchNormalization attribute), 86
n_free_blocks() (cupy.cuda.MemoryPool method), 152
name (chainer.Link attribute), 41
name (ufunc attribute), 109
namedlinks() (chainer.Link method), 43
namedparams() (chainer.Link method), 43
nargs (ufunc attribute), 109
nbytes (cupy.ndarray attribute), 106

Index 193

Chainer Documentation, Release 1.6.2.1

nd (broadcast attribute), 119
ndarray (class in cupy), 100
ndim (cupy.ndarray attribute), 106
negative (in module cupy), 135
negative_sampling() (in module chainer.functions), 69
NegativeSampling (class in chainer.links), 89
NesterovAG (class in chainer.optimizers), 91
new_epoch() (chainer.Optimizer method), 47
nextafter (in module cupy), 135
nin (ufunc attribute), 109
normal() (cupy.random.RandomState method), 143
normal() (in module cupy.random), 141
not_equal (in module cupy), 130
nout (ufunc attribute), 109
NpzDeserializer (class in chainer.serializers), 92
numerical_grad() (in module chainer.gradient_check), 57
numpy_cupy_allclose() (in module cupy.testing), 160
numpy_cupy_array_almost_equal() (in module

cupy.testing), 161
numpy_cupy_array_almost_equal_nulp() (in module

cupy.testing), 161
numpy_cupy_array_equal() (in module cupy.testing), 162
numpy_cupy_array_less() (in module cupy.testing), 163
numpy_cupy_array_list_equal() (in module cupy.testing),

163
numpy_cupy_array_max_ulp() (in module cupy.testing),

162
numpy_cupy_raises() (in module cupy.testing), 163

O
OFF (in module chainer), 37
ON (in module chainer), 37
ones() (in module cupy), 112
ones_like() (in module cupy), 112
Optimizer (class in chainer), 45
outer() (in module cupy), 128
outputs (chainer.Function attribute), 38

P
Parameter (class in chainer.links), 90
parameters (chainer.FunctionSet attribute), 51
params() (chainer.Link method), 43
power (in module cupy), 136
predictor (chainer.links.Classifier attribute), 90
PReLU (class in chainer.links), 88
prelu() (in module chainer.functions), 60
prepare() (chainer.Optimizer method), 47
prod() (cupy.ndarray method), 106
prod() (in module cupy), 133
ptr (Event attribute), 153
ptr (MemoryPointer attribute), 149
ptr (Stream attribute), 153

R
rad2deg (in module cupy), 131
radians (in module cupy), 132
rand() (cupy.random.RandomState method), 143
rand() (in module cupy.random), 138
randint() (in module cupy.random), 139
randn() (cupy.random.RandomState method), 143
randn() (in module cupy.random), 138
random() (in module cupy.random), 140
random_integers() (in module cupy.random), 139
random_sample() (cupy.random.RandomState method),

143
random_sample() (in module cupy.random), 139
RandomState (class in cupy.random), 142
ranf() (in module cupy.random), 140
rate (chainer.WeightDecay attribute), 49
ravel() (cupy.ndarray method), 106
ravel() (in module cupy), 117
reciprocal (in module cupy), 136
record() (cupy.cuda.Event method), 153
record() (cupy.cuda.Stream method), 153
reduce() (in module chainer.cuda), 53
reduced_view() (cupy.ndarray method), 106
ReductionKernel (class in cupy), 158
relu() (in module chainer.functions), 60
remainder (in module cupy), 136
remove_hook() (chainer.Optimizer method), 47
repeat() (cupy.ndarray method), 107
repeat() (in module cupy), 122
reset_state() (chainer.links.LSTM method), 84
reshape() (cupy.ndarray method), 107
reshape() (in module chainer.functions), 62
reshape() (in module cupy), 116
right_shift (in module cupy), 124
rint (in module cupy), 132
RMSprop (class in chainer.optimizers), 91
RMSpropGraves (class in chainer.optimizers), 91
roll() (in module cupy), 123
rollaxis() (in module cupy), 117

S
sample() (chainer.utils.WalkerAlias method), 54
sample() (in module cupy.random), 140
save() (chainer.Serializer method), 50
save() (in module cupy), 125
save_hdf5() (in module chainer.serializers), 93
save_npz() (in module chainer.serializers), 92
savez() (in module cupy), 125
savez_compressed() (in module cupy), 126
seed() (cupy.random.RandomState method), 143
seed() (in module cupy.random), 142
select_item() (in module chainer.functions), 62
serialize() (chainer.Link method), 43
serialize() (chainer.Optimizer method), 47

194 Index

Chainer Documentation, Release 1.6.2.1

Serializer (class in chainer), 50
set() (cupy.ndarray method), 107
set_allocator() (in module cupy.cuda), 151
set_creator() (chainer.Variable method), 36
setup() (chainer.Optimizer method), 47
SGD (class in chainer.optimizers), 91
shape (broadcast attribute), 119
shape (cupy.ndarray attribute), 107
sigmoid() (in module chainer.functions), 60
sigmoid_cross_entropy() (in module chainer.functions),

69
sign (in module cupy), 137
signbit (in module cupy), 135
sin (in module cupy), 130
sin() (in module chainer.functions), 73
sinh (in module cupy), 132
size (broadcast attribute), 119
size (ndarray attribute), 101
size() (chainer.utils.type_check.TypeInfoTuple method),

55
softmax() (in module chainer.functions), 61
softmax_cross_entropy() (in module chainer.functions),

69
softplus() (in module chainer.functions), 61
spatial_pyramid_pooling_2d() (in module

chainer.functions), 76
split() (in module cupy), 121
split_axis() (in module chainer.functions), 63
sqrt (in module cupy), 137
square (in module cupy), 137
squeeze() (cupy.ndarray method), 107
squeeze() (in module cupy), 120
standard_normal() (cupy.random.RandomState method),

143
standard_normal() (in module cupy.random), 141
start_finetuning() (chainer.links.BatchNormalization

method), 87
StatefulGRU (class in chainer.links), 84
std() (cupy.ndarray method), 107
std() (in module cupy), 146
Stream (class in cupy.cuda), 152
strides (cupy.ndarray attribute), 107
subtract (in module cupy), 135
sum() (cupy.ndarray method), 107
sum() (in module chainer.functions), 73
sum() (in module cupy), 133
swapaxes() (cupy.ndarray method), 107
swapaxes() (in module chainer.functions), 63
swapaxes() (in module cupy), 117
synchronize() (cupy.cuda.Device method), 148
synchronize() (cupy.cuda.Event method), 154
synchronize() (cupy.cuda.Stream method), 153

T
t (chainer.Optimizer attribute), 46
T (cupy.ndarray attribute), 101
take() (cupy.ndarray method), 108
take() (in module cupy), 124
tan (in module cupy), 131
tanh (in module cupy), 132
tanh() (in module chainer.functions), 61
target (chainer.Optimizer attribute), 46
target (chainer.serializers.DictionarySerializer attribute),

92
tensordot() (in module cupy), 128
threshold (chainer.GradientClipping attribute), 49
tile() (in module cupy), 122
to_cpu() (chainer.Link method), 43
to_cpu() (chainer.Variable method), 36
to_cpu() (in module chainer.cuda), 52
to_gpu() (chainer.Link method), 43
to_gpu() (chainer.utils.WalkerAlias method), 54
to_gpu() (chainer.Variable method), 36
to_gpu() (in module chainer.cuda), 53
tofile() (cupy.ndarray method), 108
tolist() (cupy.ndarray method), 108
trace() (cupy.ndarray method), 108
trace() (in module cupy), 128
train (chainer.links.InceptionBN attribute), 82
transpose() (cupy.ndarray method), 108
transpose() (in module chainer.functions), 63
transpose() (in module cupy), 118
true_divide (in module cupy), 136
trunc (in module cupy), 133
type_check_enable (chainer.Function attribute), 38
TypeInfo (class in chainer.utils.type_check), 55
TypeInfoTuple (class in chainer.utils.type_check), 55
types (cupy.ufunc attribute), 110

U
ufunc (class in cupy), 109
unchain() (chainer.Function method), 40
unchain_backward() (chainer.Variable method), 36
uniform() (cupy.random.RandomState method), 144
uniform() (in module cupy.random), 141
update() (chainer.GradientMethod method), 48
update() (chainer.Optimizer method), 48
update_one() (chainer.GradientMethod method), 49
update_one_cpu() (chainer.GradientMethod method), 49
update_one_gpu() (chainer.GradientMethod method), 49
upward (chainer.links.LSTM attribute), 83
use() (cupy.cuda.Device method), 148

V
V1 (chainer.links.Bilinear attribute), 78
V2 (chainer.links.Bilinear attribute), 78

Index 195

Chainer Documentation, Release 1.6.2.1

values (broadcast attribute), 119
var() (cupy.ndarray method), 108
var() (in module cupy), 146
Variable (class in chainer), 35
vdot() (in module cupy), 127
view() (cupy.ndarray method), 108
volatile (chainer.Variable attribute), 35
vsplit() (in module cupy), 122
vstack() (in module cupy), 121

W
W (chainer.links.Bilinear attribute), 78
W (chainer.links.BinaryHierarchicalSoftmax attribute),

87
W (chainer.links.Convolution2D attribute), 79
W (chainer.links.EmbedID attribute), 80
W (chainer.links.Linear attribute), 83
W (chainer.links.NegativeSampling attribute), 89
W (chainer.links.Parameter attribute), 91
W (chainer.links.PReLU attribute), 88
wait_event() (cupy.cuda.Stream method), 153
WalkerAlias (class in chainer.utils), 54
weight_decay() (chainer.Optimizer method), 48
WeightDecay (class in chainer.optimizer), 49
where() (in module chainer.functions), 63
where() (in module cupy), 144

X
xp (chainer.Link attribute), 43

Y
y (chainer.links.Classifier attribute), 90

Z
zero_grads() (chainer.Optimizer method), 48
zerograd() (chainer.Variable method), 36
zerograds() (chainer.Link method), 43
zeros() (in module cupy), 112
zeros_like() (in module cupy), 112

196 Index

	Install Guide
	Chainer Tutorial
	Chainer Reference Manual
	CuPy Reference Manual
	Chainer Contribution Guide
	API Compatibility Policy
	Tips and FAQs
	Comparison with Other Frameworks
	Indices and tables
	Bibliography
	Python Module Index

