Contents

1 Tutorial 3
2 Reference Manual 63
3 API Compatibility Policy 507
4 Contribution Guide 511
5 Installation Guide 519
6 Tips and FAQs 523
7 Upgrade Guide from v1 to v2 525
8 Comparison with Other Frameworks 541
9 License 545
10 Indices and tables 547
Bibliography 549
Python Module Index 551
This is the Chainer documentation.
1.1 Introduction to Chainer

This is the first section of the Chainer Tutorial. In this section, you will learn about the following things:

- Pros and cons of existing frameworks and why we are developing Chainer
- Simple example of forward and backward computation
- Usage of links and their gradient computation
- Construction of chains (a.k.a. “model” in most frameworks)
- Parameter optimization
- Serialization of links and optimizers

After reading this section, you will be able to:

- Compute gradients of some arithmetics
- Write a multi-layer perceptron with Chainer

1.1.1 Core Concept

As mentioned on the front page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined and fixed, and then the user periodically feeds it with mini-batches. Since the network is statically defined before any forward/backward computation, all the logic must be embedded into the network architecture as data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based frameworks, and TensorFlow).
Define-by-Run

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined on-the-fly via the actual forward computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation. We will review such amenities in later sections of this tutorial.

Chainer represents a network as an execution path on a computational graph. A computational graph is a series of function applications, so that it can be described with multiple Function objects. When such function is a layer of neural network, the parameters of the function will be updated through training. Therefore, the function needs to keep trainable parameters inside, so that Chainer has Link class that can keep trainable parameters in the object of the class. The parameters of the function performed inside the Link object are represented as Variable objects. In short, the difference between these two objects, Link and Function, is whether it contains trainable parameters or not. A neural network model is typically described as a series of Function and Link.

You can build a computational graph by dynamically ‘chaining’ various kinds of Links and Functions to define a Chain. In the framework, the network is defined by running the chained graph, hence the name is Chainer.

Note: In the example code of this tutorial, we assume for simplicity that the following symbols are already imported:

```python
import numpy as np
import chainer
from chainer import cuda, Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

These imports appear widely in Chainer code and examples. For simplicity, we omit these imports in this tutorial.

1.1.2 Forward/Backward Computation

As described above, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network. In order to start forward computation, we have to set the input array to a Variable object. Here we start with a simple ndarray with only one element:

```python
>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)
```

A Variable object has basic arithmetic operators. In order to compute \(y = x^2 - 2x + 1 \), just write:

```python
>>> y = x**2 - 2 * x + 1
```

The resulting \(y \) is also a Variable object, whose value can be extracted by accessing the data attribute:

```python
>>> y.data
array([ 16.], dtype=float32)
```

What \(y \) holds is not only the result value. It also holds the history of computation (i.e., computational graph), which enables to compute its differentiation. This is done by calling its backward() method:
This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is computed and stored in the `grad` attribute of the input variable `x`:

```
>>> x.grad
array([ 8.], dtype=float32)
```

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays of intermediate variables for memory efficiency. In order to preserve gradient information, pass the `retain_grad` argument to the `backward` method:

```
>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward(retain_grad=True)
>>> z.grad
array([-1.], dtype=float32)
```

Otherwise, `z.grad` will be `None` as follows:

```
>>> y.backward()  # The default value of retain_grad is False
>>> z.grad is None
True
```

All these computations are easily generalized to multi-element array input. Note that if we want to start backward computation from a variable holding a multi-element array, we must set the initial error manually. Because when the size of a variable (it means the number of elements in the array) is 1, it’s considered as a variable object that represents a loss value, so that the `grad` attribute of the variable is automatically filled with 1. On the other hand, when the size of a variable is larger than 1, the `grad` attribute remains `None`, and it is necessary to set the initial error explicitly before running `backward()`. This is simply done by setting the `grad` attribute of the output variable as follows:

```
>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([[ 0.,  2.,  4.],
       [ 6.,  8., 10.]], dtype=float32)
```

Note: Many functions taking `Variable` object(s) are defined in the `functions` module. You can combine them to realize complicated functions with automatic backward computation.

1.1.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You can use links to do this. A Link is an object that holds parameters (i.e., optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the Linear link (a.k.a. fully-connected layer or affine transformation). It represents a mathematical function $f(x) = Wx + b$, where the matrix W and the vector b are parameters. This
link corresponds to its pure counterpart \texttt{linear()}, which accepts x, W, b as arguments. A linear link from three-dimensional space to two-dimensional space is defined by the following line:

\begin{verbatim}
>>> f = L.Linear(3, 2)
\end{verbatim}

\textbf{Note:} Most functions and links only accept mini-batch input, where the first dimension of the input array is considered as the \textit{batch dimension}. In the above Linear link case, input must have shape of (N, 3), where N is the mini-batch size.

The parameters of a link are stored as attributes. Each parameter is an instance of \texttt{Variable}. In the case of the Linear link, two parameters, W and b, are stored. By default, the matrix W is initialized randomly, while the vector b is initialized with zeros.

\begin{verbatim}
>>> f.W.data
array([[1.01847613, 0.23103087, 0.56507462],
 [1.29378033, 1.07823515, -0.56423163]], dtype=float32)
>>> f.b.data
array([0., 0.], dtype=float32)
\end{verbatim}

An instance of the Linear link acts like a usual function:

\begin{verbatim}
>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.data
array([[3.1757617 , 1.75755572],
 [8.61950684, 7.18090773]], dtype=float32)
\end{verbatim}

\textbf{Note:} Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of (de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch. For example, the following line creates a linear link whose output dimension is two:

\begin{verbatim}
f = L.Linear(2)
\end{verbatim}

If we feed a mini-batch of shape (N, M), the input dimension will be inferred as M, which means $f.W$ will be a 2 x M matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, f does not have W attribute if no data is put to the link.

Gradients of parameters are computed by the \texttt{backward()} method. Note that gradients are \texttt{accumulated} by the method rather than overwritten. So first you must clear gradients to renew the computation. It can be done by calling the \texttt{cleargrads()} method.

\begin{verbatim}
>>> f.cleargrads()
\end{verbatim}

\textbf{Note:} \texttt{cleargrads()} is introduced in v1.15 to replace \texttt{zerograds()} for efficiency. \texttt{zerograds()} is left only for backward compatibility.

Now we can compute the gradients of parameters by simply calling the backward method.

\begin{verbatim}
>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[5., 7., 9.],
 [6., 8., 10.]])
\end{verbatim}
1.1.4 Write a model as a chain

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple linear layers. We can write complex procedures with trainable parameters by combining multiple links like this:

```python
>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)
>>> def my_forward(x):
...     h = l1(x)
...     return l2(h)
```

Here the `L` indicates the `links` module. A procedure with parameters defined in this way is hard to reuse. More Pythonic way is combining the links and procedures into a class:

```python
>>> class MyProc(object):
...     def __init__(self):
...         self.l1 = L.Linear(4, 3)
...         self.l2 = L.Linear(3, 2)
...     def forward(self, x):
...         h = self.l1(x)
...         return self.l2(h)
```

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible save/load features, etc. These features are all supported by the `Chain` class in Chainer. Then, what we have to do here is just define the above class as a subclass of Chain:

```python
>>> class MyChain(Chain):
...     def __init__(self):
...         super(MyChain, self).__init__()
...         with self.init_scope():
...             self.l1 = L.Linear(4, 3)
...             self.l2 = L.Linear(3, 2)
...     def __call__(self, x):
...         h = self.l1(x)
...         return self.l2(h)
```

It shows how a complex chain is constructed by simpler links. Links like `l1` and `l2` are called child links of `MyChain`.

Note: Chain itself inherits Link. It means we can define more complex chains that hold `MyChain` objects as their child links.

Note: We often define a single forward method of a link by the `__call__` operator. Such links and chains are callable and behave like regular functions of Variables.

Note: In Chainer v1, we could also register the trainable layers (i.e., `Link`s) to the model by putting them to the `__init__()` of `Chain` or registering them via `add_link()`. But as these ways are deprecated in Chainer v2, users are recommended to use the way explained above.
Another way to define a chain is using the `ChainList` class, which behaves like a list of links:

```python
>>> class MyChain2(ChainList):
...     def __init__(self):
...         super(MyChain2, self).__init__(
...             L.Linear(4, 3),
...             L.Linear(3, 2),
...         )
...     def __call__(self, x):
...         h = self[0](x)
...         return self[1](h)
```

`ChainList` can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above case, the Chain class is recommended as a base class.

1.1.5 Optimizer

In order to get good values for parameters, we have to optimize them by the `Optimizer` class. It runs a numerical optimization algorithm on a given link. Many algorithms are implemented in the `optimizers` module. Here we use the simplest one, called Stochastic Gradient Descent (SGD):

```python
>>> model = MyChain()
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)
```

The method `setup()` prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook functions to the optimizer. Hook functions are called after the gradient computation and right before the actual update of parameters. For example, we can set weight decay regularization by running the next line beforehand:

```python
>>> optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))
```

Of course, you can write your own hook functions. It should be a function or a callable object, taking the optimizer as the argument.

There are two ways to use the optimizer. One is using it via `Trainer`, which we will see in the following sections. The other way is using it directly. We here review the latter case. If you are interested in getting able to use the optimizer in a simple way, skip this section and go to the next one.

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the `update()` method with no arguments. Do not forget to clear the gradients beforehand!

```python
>>> x = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> model.cleargrads()
>>> # compute gradient here...
>>> loss = F.sum(model(chainer.Variable(x)))
>>> loss.backward()
>>> optimizer.update()
```

The other way is just passing a loss function to the `update()` method. In this case, `cleargrads()` is automatically called by the update method, so the user does not have to call it manually.

```python
>>> def lossfun(arg1, arg2):
...     # calculate loss
...     loss = F.sum(model(arg1 - arg2))
```
.. return::

```python
>>> arg1 = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))
```

See :func:`Optimizer.update` for the full specification.

1.1.6 Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times. A typical training loop consists of the following procedures:

1. Iterations over training datasets
2. Preprocessing of extracted mini-batches
3. Forward/backward computations of the neural networks
4. Parameter updates
5. Evaluations of the current parameters on validation datasets
6. Logging and printing of the intermediate results

Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop abstraction mainly consists of two components:

- **Dataset abstraction.** It implements 1 and 2 in the above list. The core components are defined in the :mod:`dataset` module. There are also many implementations of datasets and iterators in :mod:`datasets` and :mod:`iterators` modules, respectively.

- **Trainer.** It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by :class:`Trainer`. The way to update parameters (3 and 4) is defined by :class:`Updater`, which can be freely customized. 5 and 6 are implemented by instances of :class:`Extension`, which appends an extra procedure to the training loop. Users can freely customize the training procedure by adding extensions. Users can also implement their own extensions.

We will see how to use :class:`Trainer` in the example section below.

1.1.7 Serializer

Before proceeding to the first example, we introduce Serializer, which is the last core feature described in this page. Serializer is a simple interface to serialize or deserialize an object. :class:`Link`, :class:`Optimizer`, and :class:`Trainer` supports serialization.

Concrete serializers are defined in the :mod:`serializers` module. It supports NumPy NPZ and HDF5 formats.

For example, we can serialize a link object into NPZ file by the :func:`serializers.save_npz` function:

```python
>>> serializers.save_npz('my.model', model)
```

It saves the parameters of :obj:`model` into the file 'my.model' in NPZ format. The saved model can be read by the :func:`serializers.load_npz` function:

```python
>>> serializers.load_npz('my.model', model)
```

Note: Note that only the parameters and the persistent values are serialized by this serialization code. Other attributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values by the

1.1. Introduction to Chainer
Link.add_persistent() method. The registered values can be accessed by attributes of the name passed to the add_persistent method.

The state of an optimizer can also be saved by the same functions:

```python
>>> serializers.save_npz('my.state', optimizer)
>>> serializers.load_npz('my.state', optimizer)
```

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to explicitly save the target link with the optimizer to resume the optimization from saved states.

Support of the HDF5 format is enabled if the h5py package is installed. Serialization and deserialization with the HDF5 format are almost identical to those with the NPZ format; just replace save_npz() and load_npz() by save_hdf5() and load_hdf5(), respectively.

1.1.8 Example: Multi-layer Perceptron on MNIST

Now you can solve a multiclass classification task using a multi-layer perceptron (MLP). We use a hand-written digits dataset called MNIST, which is one of the long-standing de facto “hello world” examples used in machine learning. This MNIST example is also found in the examples/mnist directory of the official repository. We show how to use Trainer to construct and run the training loop in this section.

We first have to prepare the MNIST dataset. The MNIST dataset consists of 70,000 greyscale images of size 28x28 (i.e. 784 pixels) and corresponding digit labels. The dataset is divided into 60,000 training images and 10,000 test images by default. We can obtain the vectorized version (i.e., a set of 784 dimensional vectors) by datasets.

```python
>>> train, test = datasets.get_mnist()
...
```

This code automatically downloads the MNIST dataset and saves the NumPy arrays to the $(HOME)/.chainer directory. The returned train and test can be seen as lists of image-label pairs (strictly speaking, they are instances of TupleDataset).

We also have to define how to iterate over these datasets. We want to shuffle the training dataset for every epoch, i.e. at the beginning of every sweep over the dataset. In this case, we can use iterators.SerialIterator.

```python
>>> train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)
```

On the other hand, we do not have to shuffle the test dataset. In this case, we can pass shuffle=False argument to disable the shuffling. It makes the iteration faster when the underlying dataset supports fast slicing.

```python
>>> test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)
```

We also pass repeat=False, which means we stop iteration when all examples are visited. This option is usually required for the test/validation datasets; without this option, the iteration enters an infinite loop.

Next, we define the architecture. We use a simple three-layer rectifier network with 100 units per layer as an example.

```python
>>> class MLP(Chain):
...     def __init__(self, n_units, n_out):
...         super(MLP, self).__init__()
```
with self.init_scope():

the size of the inputs to each layer will be inferred
self.l1 = L.Linear(None, n_units) # n_in -> n_units
self.l2 = L.Linear(None, n_units) # n_units -> n_units
self.l3 = L.Linear(None, n_out) # n_units -> n_out

def __call__(self, x):
 h1 = F.relu(self.l1(x))
 h2 = F.relu(self.l2(h1))
 y = self.l3(h2)
 return y

This link uses \texttt{relu()} as an activation function. Note that the \texttt{l3} link is the final linear layer whose output corresponds to scores for the ten digits.

In order to compute loss values or evaluate the accuracy of the predictions, we define a classifier chain on top of the above MLP chain:

```python
>>> class Classifier(Chain):
...     def __init__(self, predictor):
...         super(Classifier, self).__init__()
...         with self.init_scope():
...             self.predictor = predictor
...     def __call__(self, x, t):
...         y = self.predictor(x)
...         loss = F.softmax_cross_entropy(y, t)
...         accuracy = F.accuracy(y, t)
...         report({'loss': loss, 'accuracy': accuracy}, self)
...         return loss
```

This Classifier class computes accuracy and loss, and returns the loss value. The pair of arguments \(x\) and \(t\) corresponds to each example in the datasets (a tuple of an image and a label). \texttt{softmax_cross_entropy()} computes the loss value given prediction and ground truth labels. \texttt{accuracy()} computes the prediction accuracy. We can set an arbitrary predictor link to an instance of the classifier.

The \texttt{report()} function reports the loss and accuracy values to the trainer. For the detailed mechanism of collecting training statistics, see \texttt{Reporter}. You can also collect other types of observations like activation statistics in a similar ways.

Note that a class similar to the Classifier above is defined as \texttt{chainer.links.Classifier}. So instead of using the above example, we will use this predefined Classifier chain.

```python
>>> model = L.Classifier(MLP(100, 10))  # the input size, 784, is inferred
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)
```

Now we can build a trainer object.

```python
>>> updater = training.StandardUpdater(train_iter, optimizer)
>>> trainer = training.Trainer(updater, (20, 'epoch'), out='result')
```

The second argument \((20, \text{`epoch'\})\) represents the duration of training. We can use either \texttt{epoch} or \texttt{iteration} as the unit. In this case, we train the multi-layer perceptron by iterating over the training set 20 times.

In order to invoke the training loop, we just call the \texttt{run()} method.
```python
>>> trainer.run()
```

This method executes the whole training sequence.

The above code just optimizes the parameters. In most cases, we want to see how the training proceeds, where we can use extensions inserted before calling the `run` method.

```python
>>> trainer.extend(extensions.Evaluator(test_iter, model))
>>> trainer.extend(extensions.LogReport())
>>> trainer.extend(extensions.PrintReport(['epoch', 'main/accuracy', 'validation/main/accuracy']))
>>> trainer.extend(extensions.ProgressBar())
>>> trainer.run()
```

These extensions perform the following tasks:

- **Evaluator** Evaluates the current model on the test dataset at the end of every epoch. It automatically switches to the test mode (see Configuring Chainer for details), and so we do not have to take any special function for functions that behave differently in training/test modes (e.g. `dropout`, `BatchNormalization`).
- **LogReport** Accumulates the reported values and emits them to the log file in the output directory.
- **PrintReport** Prints the selected items in the LogReport.
- **ProgressBar** Shows the progress bar.

There are many extensions implemented in the `chainer.training.extensions` module. The most important one that is not included above is `snapshot`, which saves the snapshot of the training procedure (i.e., the Trainer object) to a file in the output directory.

The example code in the `examples/mnist` directory additionally contains GPU support, though the essential part is the same as the code in this tutorial. We will review in later sections how to use GPU(s).

1.2 How to Write a New Network

1.2.1 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

- A small convolutional network with a model class that is inherited from `Chain`,
- A large convolutional network that has several building block networks with `ChainList`.

After reading this section, you will be able to:

- Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmentation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is \((N, C, H, W)\), where

- \(N\) denotes the number of images in a mini-batch,
- \(C\) denotes the number of channels of those images,
- \(H\) and \(W\) denote the height and width of those images,
respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes. It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task, etc.

Note: The below example code assumes that some packages are already imported. Please see the details here: Introduction to Chainer.

LeNet5

Here, let's start by defining LeNet5 [LeCun98] in Chainer. This is a ConvNet model that has 5 layers comprised of 3 convolutional layers and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In Chainer, the model can be written as follows:

```python
class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_channels=1, out_channels=6, ksize=5, stride=1)
            self.conv2 = L.Convolution2D(
                in_channels=6, out_channels=16, ksize=5, stride=1)
            self.conv3 = L.Convolution2D(
                in_channels=16, out_channels=120, ksize=4, stride=1)
            self.fc4 = L.Linear(84)
            self.fc5 = L.Linear(10)
    def __call__(self, x):
        h = F.sigmoid(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv2(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv3(h))
        h = F.sigmoid(self.fc4(h))
        if chainer.config.train:
            return self.fc5(h)
        return F.softmax(self.fc5(h))
```

A typical way to write your network is creating a new class inherited from `Chain` class. When defining your model in this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects of `Link` as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors simply by calling the model object like a function, `__call__()` is usually defined in the model class. This method performs the forward computation of the model. Chainer uses the powerful autograd system for any computational graphs written with `Function`s and `Link`s (actually a `Link` calls a corresponding `Function` inside of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the data, then give it to the model. The way this works is the resulting output `Variable` from the forward computation has a `backward()` method to perform autograd. In the above model, `__call__()` has a `if` statement at the end to switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as a global variable `chainer.config.train`. When it’s in training mode, `__call__()` returns the output value of the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating `softmax()`.

Note: In Chainer v1, if a function or link behaved differently in training and other modes, it was common that it held an attribute that represented its running mode or was provided with the mode from outside as an argument. In Chainer
v2, it is recommended to use the global configuration `chainer.config.train` to switch the running mode.

If you don’t want to write `conv1` and the other layers more than once, you can also write the model like in this way:

```python
class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__()
        net = [('conv1', L.Convolution2D(1, 6, 5, 1))]
        net += [('sigm1', F.Sigmoid())]
        net += [('mpool1', F.MaxPooling2D(2, 2))]
        net += [('conv2', L.Convolution2D(6, 16, 5, 1))]
        net += [('sigm2', F.Sigmoid())]
        net += [('mpool2', F.MaxPooling2D(2, 2))]
        net += [('conv3', L.Convolution2D(16, 120, 4, 1))]
        net += [('sigm3', F.Sigmoid())]
        net += [('mpool3', F.MaxPooling2D(2, 2))]
        net += [('fc4', L.Linear(None, 84))]
        net += [('sigm4', F.Sigmoid())]
        net += [('fc5', L.Linear(84, 10))]
        net += [('sigm5', F.Sigmoid())]
        with self.init_scope():
            for n in net:
                if not n[0].startswith('_):
                    setattr(self, n[0], n[1])
        self.forward = net

    def __call__(self, x):
        for n, f in self.forward:
            if not n.startswith('_'):
                x = getattr(self, n)(x)
            else:
                x = f(x)
        if chainer.config.train:
            return x
        return F.softmax(x)
```

This code creates a list of all `Link` s and `Function`s after calling its superclass’s constructor. Then the elements of the list are registered to this model as trainable layers when the name of an element doesn’t start with `_` character. This operation can be freely replaced with many other ways because those names are just designed to select `Link` s only from the list `net` easily. `Function` doesn’t have any trainable parameters, so that we can’t register it to the model, but we want to use `Function` s for constructing a forward path. The list `net` is stored as an attribute `forward` to refer it in `__call__`(). In `__call__`(), it retrieves all layers in the network from `self.forward` sequentially regardless of what types of object (`Link` or `Function`) it is, and gives the input variable or the intermediate output from the previous layer to the current layer. The last part of the `__call__()` to switch its behavior by the training/inference mode is the same as the former way.

Ways to calculate loss

When you train the model with label vector `t`, the loss should be calculated using the output from the model. There also are several ways to calculate the loss:

```python
model = LeNet5()

# Input data and label
x = np.random.rand(32, 1, 28, 28).astype(np.float32)
t = np.random.randint(0, 10, size=(32,)).astype(np.int32)
```
Forward computation
y = model(x)

Loss calculation
loss = F.softmax_cross_entropy(y, t)

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation can be included in the model itself by wrapping the model object (Chain or ChainList object) with a class inherited from Chain. The outer Chain should take the model defined above and register it with init_scope(). Chain is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain. Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually, there is already a Classifier class that can be used to wrap the model and include the loss computation as well. It can be used like this:

model = L.Classifier(LeNet5())

Forward & Loss calculation
loss = model(x, t)

This class takes a model object as an input argument and registers it to a predictor property as a trained parameter. As shown above, the returned object can then be called like a function in which we pass x and t as the input arguments and the resulting loss value (which we recall is a Variable) is returned.

See the detailed implementation of Classifier from here: chainer.links.Classifier and check the implementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block networks, ChainList is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

class VGG16(chainer.ChainList):
 def __init__(self):
 super(VGG16, self).__init__(
 VGGBlock(64),
 VGGBlock(128),
 VGGBlock(256, 3),
 VGGBlock(512, 3),
 VGGBlock(512, 3, True))

 def __call__(self, x):
 for f in self.children():
 x = f(x)
 if chainer.config.train:
 return x
 return F.softmax(x)

class VGGBlock(chainer.Chain):
 def __init__(self, n_channels, n_convs=2, fc=False):
 w = chainer.initializers.HeNormal()
 super(VGGBlock, self).__init__()
 with self.init_scope():

1.2. How to Write a New Network
self.conv1 = L.Convolution2D(None, n_channels, 3, 1, 1, initialW=w)
self.conv2 = L.Convolution2D(n_channels, n_channels, 3, 1, 1, initialW=w)
if n_convs == 3:
 self.conv3 = L.Convolution2D(n_channels, n_channels, 3, 1, 1, initialW=w)
if fc:
 self.fc4 = L.Linear(None, 4096, initialW=w)
 self.fc5 = L.Linear(4096, 4096, initialW=w)
 self.fc6 = L.Linear(4096, 1000, initialW=w)

self.n_convs = n_convs
self.fc = fc

def __call__(self, x):
 h = F.relu(self.conv1(x))
 h = F.relu(self.conv2(h))
 if self.n_convs == 3:
 h = F.relu(self.conv3(h))
 h = F.max_pooling_2d(h, 2, 2)
 if self.fc:
 h = F.dropout(F.relu(self.fc4(h)))
 h = F.dropout(F.relu(self.fc5(h)))
 h = self.fc6(h)
 return h

That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists of several building blocks that have the same architecture, we can build the whole network by re-using the building block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu()) following them, and max_pooling_2d() operations. This block is written as VGGBlock in the above example code. And the whole network just calls this block one by one in sequential manner.

ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16, having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNet152(chainer.Chain):
 def __init__(self, n_blocks=[3, 8, 36, 3]):
 w = chainer.initializers.HeNormal()
 super(ResNet152, self).__init__(
 conv1=L.Convolution2D(None, 64, 7, 2, 3, initialW=w, nobias=True),
 bn1=L.BatchNormalization(64),
 res2=ResBlock(n_blocks[0], 64, 64, 256, 1),
 res3=ResBlock(n_blocks[1], 256, 128, 512),
 res4=ResBlock(n_blocks[2], 512, 256, 1024),
 res5=ResBlock(n_blocks[3], 1024, 512, 2048),
 fc6=L.Linear(2048, 1000))

 def __call__(self, x):
 h = self.bn1(self.conv1(x))
 h = F.max_pooling_2d(F.relu(h), 2, 2)
h = self.res2(h)
h = self.res3(h)
h = self.res4(h)
h = self.res5(h)
h = F.average_pooling_2d(h, h.shape[2:], stride=1)
h = self.fc6(h)
if chainer.config.train:
 return h
return F.softmax(h)

class ResBlock(chainer.ChainList):
 def __init__(self, n_layers, n_in, n_mid, n_out, stride=2):
 w = chainer.initializers.HeNormal()
 super(ResBlock, self).__init__()
 self.add_link(BottleNeck(n_in, n_mid, n_out, stride, True))
 for _ in range(n_layers - 1):
 self.add_link(BottleNeck(n_out, n_mid, n_out))

 def __call__(self, x):
 for f in self.children():
 x = f(x)
 return x

class BottleNeck(chainer.Chain):
 def __init__(self, n_in, n_mid, n_out, stride=1, proj=False):
 w = chainer.initializers.HeNormal()
 super(BottleNeck, self).__init__()
 with self.init_scope():
 self.conv1x1a = L.Convolution2D(n_in, n_mid, 1, stride, 0, initialW=w, nobias=True)
 self.conv3x3b = L.Convolution2D(n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True)
 self.conv1x1c = L.Convolution2D(n_mid, n_out, 1, 1, 0, initialW=w, nobias=True)
 self.bn_a = L.BatchNormalization(n_mid)
 self.bn_b = L.BatchNormalization(n_mid)
 self.bn_c = L.BatchNormalization(n_out)
 if proj:
 self.conv1x1r = L.Convolution2D(n_in, n_out, 1, stride, 0, initialW=w, nobias=True)
 self.bn_r = L.BatchNormalization(n_out)
 self.proj = proj

 def __call__(self, x):
 h = F.relu(self.bn_a(self.conv1x1a(x)))
 h = F.relu(self.bn_b(self.conv3x3b(h)))
 h = self.bn_c(self.conv1x1c(h))
 if self.proj:
 x = self.bn_r(self.conv1x1r(x))
 return F.relu(h + x)

In the BottleNeck class, depending on the value of the proj argument supplied to the initializer, it will conditionally compute a convolutional layer conv1x1r which will extend the number of channels of the input x to be equal to the number of channels of the output of conv1x1c, and followed by a batch normalization layer before the final ReLU layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in __class__() by flags but also the parameter registration. In this case, when proj is False, the BottleNeck
doesn't have \textit{conv1x1r} and \textit{bn}_r layers, so the memory usage would be efficient compared to the case when it registers both anyway and just ignore them if \texttt{proj} is \texttt{False}.

Using nested \textit{Chain}s and \textit{ChainList} for sequential part enables us to write complex and very deep models easily.

\section*{Use Pre-trained Models}

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these models as follows:

```python
from chainer.links import VGG16Layers
model = VGG16Layers()
```

When \texttt{VGG16Layers} is instantiated, the pre-trained parameters are automatically downloaded from the author’s server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the details of this model here: \texttt{chainer.links.VGG16Layers}.

In the case of ResNet models, there are three variations differing in the number of layers. We have \texttt{chainer.links.ResNet50}, \texttt{chainer.links.ResNet101}, and \texttt{chainer.links.ResNet152} models with easy parameter loading feature. ResNet’s pre-trained parameters are not available for direct downloading, so you need to download the weight from the author’s web page first, and then place it into the dir \texttt{$CHAINER_DATSET_ROOT/pfnet/chainer/models} or your favorite place. Once the preparation is finished, the usage is the same as VGG16:

```python
from chainer.links import ResNet152Layers
model = ResNet152Layers()
```

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: \texttt{chainer.links.ResNet50}.

\section*{References}

\subsection*{1.2.2 Recurrent Nets and their Computational Graph}

In this section, you will learn how to write

\begin{itemize}
\item recurrent nets with full backprop,
\item recurrent nets with truncated backprop,
\item evaluation of networks with few memory.
\end{itemize}

After reading this section, you will be able to:

\begin{itemize}
\item Handle input sequences of variable length
\item Truncate upper stream of the network during forward computation
\item Use no-backprop mode to prevent network construction
\end{itemize}

\section*{Recurrent Nets}

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an input stream $x_1, x_2, \ldots, x_t, \ldots$ and the initial state h_0, a recurrent net iteratively updates its state by $h_t = f(x_t, h_{t-1})$,
and at some or every point in time t, it outputs $y_t = g(h_t)$. If we expand the procedure along the time axis, it looks like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence of words, we want to predict the next word at each position without peeking the successive words. Suppose there are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the `chainer.links.LSTM` link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-connected layer. On construction, you pass the input and output size to the constructor:

```python
>>> l = L.LSTM(100, 50)
```

Then, call on this instance $l(x)$ executes one step of LSTM layer:

```python
>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)
```

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the internal state. Then, the next input can be directly fed to the LSTM instance:

```python
>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)
```

Based on this LSTM link, let’s write our recurrent network as a new chain:

```python
class RNN(Chain):
    def __init__(self):
        super(RNN, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(1000, 100)  # word embedding
            self.mid = L.LSTM(100, 50)  # the first LSTM layer
            self.out = L.Linear(50, 1000)  # the feed-forward output layer

    def reset_state(self):
        self.mid.reset_state()

    def __call__(self, cur_word):
        # Given the current word ID, predict the next word.
        x = self.embed(cur_word)
        h = self.mid(x)
        y = self.out(h)
        return y

rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)
```

Here `EmbedID` is a link for word embedding. It converts input integers into corresponding fixed-dimensional embedding vectors. The last linear link `out` represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it to process sequences by just feeding items in a sequence straight to the chain.
Suppose we have a list of word variables `x_list`. Then, we can compute loss values for the word sequence by simple for loop.

```python
def compute_loss(x_list):
    loss = 0
    for cur_word, next_word in zip(x_list, x_list[1:]):
        loss += model(cur_word, next_word)
    return loss
```

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its `backward()` method to compute gradients of the total loss according to the model parameters:

```python
# Suppose we have a list of word variables x_list.
rnn.reset_state()
model.cleargrads()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()
```

Or equivalently we can use the `compute_loss` as a loss function:

```python
rnn.reset_state()
optimizer.update(compute_loss, x_list)
```

Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This technique is called truncated backprop. It is heuristic, and it makes the gradients biased. However, this technique works well in practice if the time range is long enough.

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called backward unchaining. It is implemented in the `Variable.unchain_backward()` method. Backward unchaining starts from the Variable object, and it chops the computation history backwards from the variable. The chopped variables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsection. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We can write truncated backprop using the model defined above:

```python
loss = 0
count = 0
seqlen = len(x_list[1:])

rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):
    loss += model(cur_word, next_word)
    count += 1
    if count % 30 == 0 or count == seqlen:
        model.cleargrads()
        loss.backward()
        loss.unchain_backward()
        optimizer.update()
```

State is updated at `model()`, and the losses are accumulated to `loss` variable. At each 30 steps, backprop takes place at the accumulated loss. Then, the `unchain_backward()` method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize this method to different situations. For example, we can easily extend the above code to use different schedules between backprop timing and truncation length.

Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation history. This is enabled by just calling `no_backprop_mode()` context:

```python
with chainer.no_backprop_mode():
    x_list = [Variable(...) for _ in range(100)]  # list of 100 words
    loss = compute_loss(x_list)
```

Note that we cannot call `loss.backward()` to compute the gradient here, since the variable created in the no-backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.

We can combine a fixed feature extractor network and a trainable predictor network using `no_backprop_mode()`. For example, suppose we want to train a feed-forward network `predictor_func`, which is located on top of another fixed pre-trained network `fixed_func`. We want to train `predictor_func` without storing the computation history for `fixed_func`. This is simply done by following code snippets (suppose `x_data` and `y_data` indicate input data and label, respectively):

```python
with chainer.no_backprop_mode():
    x = Variable(x_data)
    feat = fixed_func(x)
    y = predictor_func(feat)
    y.backward()
```

At first, the input variable `x` is in no-backprop mode, so `fixed_func` does not memorize the computation history. Then `predictor_func` is executed in backprop mode, i.e., with memorizing the history of computation. Since the history of computation is only memorized between variables `feat` and `y`, the backward computation stops at the `feat` variable.

Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word sequence, in which each sentence is separated by a special word `<eos>`, which stands for “End of Sequence”. This dataset is easily obtained by `chainer.datasets.get_ptb_words()`. This function returns train, validation, and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different locations to form mini-batches. It means we maintain B indices pointing to different locations in the sequence, read from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the end of the whole sequence, we turn the index back to 0.
In order to implement this training procedure, we have to customize the following components of Trainer:

- **Iterator.** Built-in iterators do not support reading from different locations and aggregating them into a mini-batch.
- **Update function.** The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface is not fixed. On the other hand, the iterator must support the `Iterator` interface. The important methods and attributes to implement are `batch_size`, `epoch`, `epoch_detail`, `is_new_epoch`, `iteration`, `__next__`, and `serialize`. Following is a code from the official example in the `examples/ptb` directory.

```python
class ParallelSequentialIterator(chainer.dataset.Iterator):
    def __init__(self, dataset, batch_size, repeat=True):
        self.dataset = dataset
        self.batch_size = batch_size
        self.epoch = 0
        self.is_new_epoch = False
        self.repeat = repeat
        self.offsets = [i * len(dataset) // batch_size for i in range(batch_size)]
        self.iteration = 0

    def __next__(self):
        length = len(self.dataset)
        if not self.repeat and self.iteration * self.batch_size >= length:
            raise StopIteration
        cur_words = self.get_words()
        self.iteration += 1
        next_words = self.get_words()
        epoch = self.iteration * self.batch_size // length
        self.is_new_epoch = self.epoch < epoch
        if self.is_new_epoch:
            self.epoch = epoch
            return list(zip(cur_words, next_words))

    @property
    def epoch_detail(self):
        return self.iteration * self.batch_size / len(self.dataset)

    def get_words(self):
        return [self.dataset[(offset + self.iteration) % len(self.dataset)]
                for offset in self.offsets]

    def serialize(self, serializer):
        self.iteration = serializer('iteration', self.iteration)
        self.epoch = serializer('epoch', self.epoch)

train_iter = ParallelSequentialIterator(train, 20)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)
```

Although the code is slightly long, the idea is simple. First, this iterator creates `offsets` pointing to positions equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset. The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of integer arrays by the `concat_examples` function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.
class BPTTUpdater(training.StandardUpdater):
 def __init__(self, train_iter, optimizer, bprop_len):
 super(BPTTUpdater, self).__init__(train_iter, optimizer)
 self.bprop_len = bprop_len

 # The core part of the update routine can be customized by overriding.
 def update_core(self):
 loss = 0
 # When we pass one iterator and optimizer to StandardUpdater.__init__,
 # they are automatically named 'main'.
 train_iter = self.get_iterator('main')
 optimizer = self.get_optimizer('main')

 # Progress the dataset iterator for bprop_len words at each iteration.
 for i in range(self.bprop_len):
 # Get the next batch (a list of tuples of two word IDs)
 batch = train_iter.__next__()

 # Concatenate the word IDs to matrices and send them to the device
 # self.converter does this job
 # (it is chainer.dataset.concat_examples by default)
 x, t = self.converter(batch)

 # Compute the loss at this time step and accumulate it
 loss += optimizer.target(chainer.Variable(x), chainer.Variable(t))

 optimizer.target.cleargrads() # Clear the parameter gradients
 loss.backward() # Backprop
 loss.unchain_backward() # Truncate the graph
 optimizer.update() # Update the parameters

updater = BPTTUpdater(train_iter, optimizer, bprop_len) # instantiation

In this case, we update the parameters on every bprop_len consecutive words. The call of unchain_backward cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to manage the history of computation (a.k.a. computational graph). The example in the examples/ptb directory implements truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will review how to use GPU(s) in Chainer.

1.3 How to Train a Network

1.3.1 How to write a training loop in Chainer

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are 10 classes for the labels.

Chainer provides a feature called Trainer that can simplify the training procedure of your model. However, it is also good to know how the training works in Chainer before starting to use the useful Trainer class that hides the
actual processes. Writing your own training loop can be useful for learning how Trainer works or for implementing features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. **Prepare a dataset**
2. **Create a dataset iterator**
3. **Define a network**
4. **Select an optimization algorithm**
5. **Write a training loop**
 (a) Retrieve a set of examples (mini-batch) from the training dataset.
 (b) Feed the mini-batch to your network.
 (c) Run a forward pass of the network and compute the loss.
 (d) Just call the `backward()` method from the loss Variable to compute the gradients for all trainable parameters.
 (e) Run the optimizer to update those parameters.
6. **Save the trained model**
7. **Perform classification by the saved model** and check the network performance on validation/test sets.

1. Prepare a dataset

Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to make sure the images are correctly obtained.

```python
from __future__ import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

# Download the MNIST data if you haven't downloaded it yet
train, test = mnist.get_mnist(withlabel=True, ndim=1)

# Display an example from the MNIST dataset.
# `x` contains the input image array and `t` contains that target class
# label as an integer.
x, t = train[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('5.png')
print('label:', t)
```

```
label: 5
```

The saved image `5.png` will look like:
2. Create a dataset iterator

Although this is an optional step, we’d like to introduce the `Iterator` class that retrieves a set of data and labels from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use `SerialIterator`, which is also a subclass of `Iterator` in the example code below. The `SerialIterator` can provide mini-batches with or without shuffling the order of data in the given dataset.

All `Iterator`s produce a new mini-batch by calling its `next()` method. All `Iterator`s also have properties to know how many times we have taken all the data from the given dataset (`epoch`) and whether the next mini-batch will be the start of a new epoch (`is_new_epoch`), and so on.

The code below shows how to create a `SerialIterator` object from a dataset object.

```python
from chainer import iterators

# Choose the minibatch size.
batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,
        repeat=False, shuffle=False)
```

Note: `Iterator`s can take a built-in Python list as a given dataset. It means that the example code below is able to work.

```python
train = [(x1, t1), (x2, t2), ...]  # A list of tuples
train_iter = iterators.SerialIterator(train, batchsize)
```

where `x1, x2, ...` denote the input data and `t1, t2, ...` denote the corresponding labels.
Details of SerialIterator

- **SerialIterator** is a built-in subclass of **Iterator** that can retrieve a mini-batch from a given dataset in either sequential or shuffled order.
- The **Iterator**’s constructor takes two arguments: a dataset object and a mini-batch size.
- If you want to use the same dataset repeatedly during the training process, set the `repeat` argument to `True` (default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.
- If you want to shuffle the training dataset every epoch, set the `shuffle` argument to `True`. Otherwise, the order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set `batchsize = 128` in both `train_iter` and `test_iter`. So, these iterators will provide 128 images and corresponding labels at a time.

3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of **Chain**. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be instantiated and assigned to a property in the scope specified by `init_scope()`:

2. Define a `__call__()` method that represents the actual forward computation of your network. This method takes one or more `Variable`, `numpy.array`, or `cupy.array` as its inputs and calculates the forward pass using them.

```python
class MyNetwork(Chain):
    def __init__(self, n_mid_units=100, n_out=10):
        super(MyNetwork, self).__init__()
        with self.init_scope():
            self.l1 = L.Linear(None, n_mid_units)
            self.l2 = L.Linear(n_mid_units, n_mid_units)
            self.l3 = L.Linear(n_mid_units, n_out)

    def __call__(self, x):
        h = F.relu(self.l1(x))
        h = F.relu(self.l2(h))
        return self.l3(h)

model = MyNetwork()
```

Link, **Chain**, **ChainList**, and those subclass objects which contain trainable parameters should be registered to the model by assigning it as a property inside the `init_scope()`. For example, a **Function** does not contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want to use `relu()` in your network, using it as a function in `__call__()` works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words, we can conceptually think of the computation graph for our network being constructed dynamically as this forward
computation code executes. This allows Chainer to describe networks in which different computations can be per-
formed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key
feature of Chainer that we call Define-by-Run.

4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during
training. They are located in optimizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by
MomentumSGD. To use the optimizer, we give the network object (typically it’s a Chain or ChainList) to the
setup() method of the optimizer object to register it. In this way, the Optimizer can automatically find the
model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example,
you could try to change MomentumSGD to Adam, RMSprop, etc.

```python
from chainer import optimizers

# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)

# Give the optimizer a reference to the model so that it
# can locate the model's parameters.
optimizer.setup(model)
```

Note: In the above example, we set lr to 0.01 in the constructor. This value is known as the “learning rate”, one
of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various
optimizers may each have different hyperparameters and so be sure to check the documentation for the details.

5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use
softmax_cross_entropy() as the loss function for the optimizer to minimize. For other types of problems,
such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed
information on the various loss functions for more details.

Our training loop will be structured as follows.

1. We will first get a mini-batch of examples from the training dataset.
2. We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute
 the forward-pass code that are written in the __call__() method.
3. This will return the network output that represents class label predictions. We supply it to the loss function along
 with the true (that is, target) values. The loss function will output the loss as a Variable object.
4. We then clear any previous gradients in the network and perform the backward pass by calling the backward()
 method on the loss variable which computes the parameter gradients. We need to clear the gradients first because
 the backward() method accumulates gradients instead of overwriting the previous values.
5. Since the optimizer already has a reference to the network, it has access to the parameters and the computed
 gradients so that we can now call the update() method of the optimizer which will update the model param-
 eters.
In addition to the above steps, you might want to check the performance of the network with a validation dataset. This allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to the training data. The code below checks the performance on the test set at the end of each epoch. The code has the same structure as the training code except that no backpropagation is performed and we also compute the accuracy on the test data using the \texttt{accuracy()} function.

The training loop code is as follows:

```python
import numpy as np
from chainer.dataset import concat_examples
from chainer.cuda import to_cpu

max_epoch = 10

while train_iter.epoch < max_epoch:
    # ---------- One iteration of the training loop ----------
    train_batch = train_iter.next()
    image_train, target_train = concat_examples(train_batch, gpu_id)

    # Calculate the prediction of the network
    prediction_train = model(image_train)

    # Calculate the loss with softmax_cross_entropy
    loss = F.softmax_cross_entropy(prediction_train, target_train)

    # Calculate the gradients in the network
    model.cleargrads()
    loss.backward()

    # Update all the trainable parameters
    optimizer.update()

    # --------------------- until here ---------------------

    # Check the validation accuracy of prediction after every epoch
    if train_iter.is_new_epoch:  # If this iteration is the final iteration of the current epoch
        test_losses = []
        test_accuracies = []
        while True:
            test_batch = test_iter.next()
            image_test, target_test = concat_examples(test_batch, gpu_id)

            # Forward the test data
            prediction_test = model(image_test)

            # Calculate the loss
            loss_test = F.softmax_cross_entropy(prediction_test, target_test)
            test_losses.append(to_cpu(loss_test.data))

            # Calculate the accuracy
            accuracy = F.accuracy(prediction_test, target_test)
            accuracy.to_cpu()
            test_accuracies.append(accuracy.data)
```

28 Chapter 1. Tutorial
if test_iter.is_new_epoch:
 test_iter.epoch = 0
 test_iter.current_position = 0
 test_iter.is_new_epoch = False
 test_iter._pushed_position = None
 break

print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
 np.mean(test_losses), np.mean(test_accuracies)))

Output

epoch:01 train_loss:0.8072 val_loss:0.7592 val_accuracy:0.8289
epoch:02 train_loss:0.5021 val_loss:0.4467 val_accuracy:0.8841
epoch:03 train_loss:0.3539 val_loss:0.3673 val_accuracy:0.9007
epoch:04 train_loss:0.2524 val_loss:0.3307 val_accuracy:0.9067
epoch:05 train_loss:0.4232 val_loss:0.3076 val_accuracy:0.9136
epoch:06 train_loss:0.3033 val_loss:0.2910 val_accuracy:0.9167
epoch:07 train_loss:0.2004 val_loss:0.2773 val_accuracy:0.9222
epoch:08 train_loss:0.2885 val_loss:0.2679 val_accuracy:0.9239
epoch:09 train_loss:0.2818 val_loss:0.2579 val_accuracy:0.9266
epoch:10 train_loss:0.2403 val_loss:0.2484 val_accuracy:0.9307

6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the HDF5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

serializers.save_npz('my_mnist.model', model)

7. Perform classification by the saved model

Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform the following two steps:

1. Instantiate the same network as what you trained.
2. Overwrite all parameters in the model instance with the saved weights using the load_npz() function.

Once the model is restored, it can be used to predict image labels on new input data.

from chainer import serializers

Create an instance of the network you trained
model = MyNetwork()

Load the saved parameters into the instance
serializers.load_npz('my_mnist.model', model)

Get a test image and label
x, t = test[0]
The saved test image looks like:

![Image of a handwritten digit 7]

The prediction result looks correct. Yay!
1.3.2 Let’s try using the Trainer feature

By using *Trainer*, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides many useful extensions that can be used with *Trainer* to visualize your results, evaluate your model, store and manage log files more easily.

This example will show how to use the *Trainer* to train a fully-connected feed-forward neural network on the MNIST dataset.

Note: If you would like to know how to write a training loop without using the *Trainer*, please check *How to write a training loop in Chainer* instead of this tutorial.

1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

```
from chainer.datasets import mnist
train, test = mnist.get_mnist()
```

Note: You can use a Python list as a dataset. That’s because *Iterator* can take any object as a dataset whose elements can be accessed via [] accessor and whose length can be obtained with len() function. For example,

```
train = [(x1, t1), (x2, t2), ...]
```

a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in *datasets*. It’s recommended to utilize them in the actual applications.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those data into a list like above. In that case, you can use *ImageDataset*, which just keeps the paths to image files. The actual image data will be loaded from the disk when the corresponding element is requested via [] accessor. Until then, no images are loaded to the memory to reduce memory use.

2. Prepare the dataset iterations

Iterator creates a mini-batch from the given dataset.

```
batchsize = 128
train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize, False, False)
```

3. Prepare the model

Here, we are going to use the same model as the one defined in *How to write a training loop in Chainer*.

```
class MLP(Chain):
    def __init__(self, n_mid_units=100, n_out=10):
```

1.3. How to Train a Network
super(MLP, self).__init__()

with self.init_scope():
 self.l1 = L.Linear(None, n_mid_units)
 self.l2 = L.Linear(None, n_mid_units)
 self.l3 = L.Linear(None, n_out)

 def __call__(self, x):
 h1 = F.relu(self.l1(x))
 h2 = F.relu(self.l2(h1))
 return self.l3(h2)

gpu_id = 0 # Set to -1 if you use CPU

model = MLP()
if gpu_id >= 0:
 model.to_gpu(gpu_id)

4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown below.

Basically, all you need to pass to *Trainer* is an *Updater*. However, *Updater* contains an *Iterator* and
Optimizer. Since Iterator can access the dataset and Optimizer has references to the model, Updater can access to the model to update its parameters.

So, Updater can perform the training procedure as shown below:

1. Retrieve the data from dataset and construct a mini-batch (Iterator)
2. Pass the mini-batch to the model and calculate the loss
3. Update the parameters of the model (Optimizer)

Now let’s create the Updater object!

```python
max_epoch = 10

# Wrapp your model by Classifier and include the process of loss calculation within your model.
# Since we do not specify a loss function here, the default 'softmax_cross_entropy' is used.
model = L.Classifier(model)

# selection of your optimizing method
optimizer = optimizers.MomentumSGD()

# Give the optimizer a reference to the model
optimizer.setup(model)

# Get an updater that uses the Iterator and Optimizer
updater = training.StandardUpdater(train_iter, optimizer)
```

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier, which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you give the input data and the corresponding class labels to the model by the () operator,

1. __call__() of the model is invoked. The data is then given to predictor to obtain the output y.
2. Next, together with the given labels, the output y is passed to the loss function which is determined by lossfun argument in the constructor of Classifier.
3. The loss is returned as a Variable.

In Classifier, the lossfun is set to softmax_cross_entropy() as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like (length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will never be stopped.

```python
# Setup a Trainer
trainer = training.Trainer(updater, (max_epoch, 'epoch'), out='mnist_result')
```
The `out` argument specifies an output directory used to save the log files, the image files of plots to show the time progress of loss, accuracy, etc. when you use `PlotReport` extension. Next, we will explain how to display or save those information by using trainer `Extension`.

6. Add Extensions to the Trainer object

The `Trainer` extensions provide the following capabilities:

- Save log files automatically (`LogReport`)
- Display the training information to the terminal periodically (`PrintReport`)
- Visualize the loss progress by plotting a graph periodically and save it as an image file (`PlotReport`)
- Automatically serialize the state periodically (`snapshot() / snapshot_object()`)
- Display a progress bar to the terminal to show the progress of training (`ProgressBar`)
- Save the model architecture as a Graphviz’s dot file (`dump_graph()`)

To use these wide variety of tools for your training task, pass `Extension` objects to the `extend()` method of your `Trainer` object.

```python
trainer.extend(extensions.LogReport())
trainer.extend(extensions.snapshot(filename='snapshot_epoch-{.updater.epoch}'))
trainer.extend(extensions.snapshot_object(model.predictor, filename='model_epoch-{.updater.epoch}'))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], x_key='epoch', file_name='loss.png'))
trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], x_key='epoch', file_name='accuracy.png'))
trainer.extend(extensions.dump_graph('main/loss'))
```

LogReport

Collect loss and accuracy automatically every epoch or iteration and store the information under the log file in the directory specified by the `out` argument when you create a `Trainer` object.

snapshot()

The `snapshot()` method saves the `Trainer` object at the designated timing (default: every epoch) in the directory specified by `out`. The `Trainer` object, as mentioned before, has an `Updater` which contains an `Optimizer` and a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make inferences using the previously trained model later.

snapshot_object()

However, when you keep the whole `Trainer` object, in some cases, it is very tedious to retrieve only the inside of the model. By using `snapshot_object()`, you can save the particular object (in this case, the model wrapped by `Classifier`) as a separated snapshot. `Classifier` is a `Chain` object which keeps the model that is also a `Chain` object as its `predictor` property, and all the parameters are under the `predictor`, so taking the snapshot of `predictor` is enough to keep all the trained parameters.
dump_graph()

This method saves the structure of the computational graph of the model. The graph is saved in the Graphviz
<http://www.graphviz.org>_’s dot format. The output location (directory) to save the graph is set by the
:attr:`~chainer.training.Trainer.out` argument of Trainer.

Evaluator

The Iterator that uses the evaluation dataset and the model object are required to use Evaluator. It evaluates
the model using the given dataset (typically it’s a validation dataset) at the specified timing interval.

PrintReport

It outputs the specified values to the standard output.

PlotReport

PlotReport plots the values specified by its arguments saves it as a image file which has the same name as the
file_name argument.

Each Extension class has different options and some extensions are not mentioned here. And one of other important feature is, for instance, by using the trigger option, you can set individual timings to fire the Extension. To know more details of all extensions, please take a look at the official document: Trainer extensions <reference/extensions.html>_.

7. Start Training

Just call run() method from Trainer object to start training.

trainer.run()

<table>
<thead>
<tr>
<th>epoch</th>
<th>main/loss</th>
<th>main/accuracy</th>
<th>validation/main/loss</th>
<th>validation/main/accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.53241</td>
<td>0.638409</td>
<td>0.74935</td>
<td>0.835839</td>
</tr>
<tr>
<td></td>
<td>4.93409</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.578334</td>
<td>0.858059</td>
<td>0.444722</td>
<td>0.882812</td>
</tr>
<tr>
<td></td>
<td>7.72883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.418569</td>
<td>0.886844</td>
<td>0.364943</td>
<td>0.899229</td>
</tr>
<tr>
<td></td>
<td>10.4229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.362342</td>
<td>0.899089</td>
<td>0.327569</td>
<td>0.905558</td>
</tr>
<tr>
<td></td>
<td>13.148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.331067</td>
<td>0.906517</td>
<td>0.304399</td>
<td>0.911788</td>
</tr>
<tr>
<td></td>
<td>15.846</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.309019</td>
<td>0.911964</td>
<td>0.288295</td>
<td>0.917722</td>
</tr>
<tr>
<td></td>
<td>18.5395</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.292312</td>
<td>0.916128</td>
<td>0.272073</td>
<td>0.921776</td>
</tr>
<tr>
<td></td>
<td>21.2173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.278291</td>
<td>0.920590</td>
<td>0.261351</td>
<td>0.923457</td>
</tr>
<tr>
<td></td>
<td>23.9211</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let's see the plot of loss progress saved in the `mnist_result` directory.

![Loss Progress Plot](image)

How about the accuracy?

![Accuracy Plot](image)

Furthermore, let's visualize the computational graph saved with `dump_graph()` using Graphviz.

```
dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png
```
1.3. How to Train a Network
From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and parameters are passed to the Functions.

8. Evaluate a pre-trained model

Evaluation using the snapshot of a model is as easy as what explained in the *How to write a training loop in Chainer*.

```python
from matplotlib.pyplot import imshow
import matplotlib.pyplot as plt

model = MLP()
serializers.load_npz('mnist_result/model_epoch-10', model)

# Show the output
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.show()
print('label:', t)
y = model(x)
print('predicted_label:', y.argmax(axis=1)[0])

label: 7
predicted_label: 7
```

The prediction looks correct. Success!

1.4 Using GPU(s) in Chainer

In this section, you will learn about the following things:

- Relationship between Chainer and CuPy
• Basics of CuPy
• Single-GPU usage of Chainer
• Multi-GPU usage of model-parallel computing
• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:
• Use Chainer on a CUDA-enabled GPU
• Write model-parallel computing in Chainer
• Write data-parallel computing in Chainer

1.4.1 Relationship between Chainer and CuPy

Note: From v2.0.0, CuPy is turned into a separate package and repository. Even if you have CUDA installed in your environment, you have to install CuPy separately to use GPUs. See Enable CUDA/cuDNN support for the way to set up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy.ndarray class is the GPU array implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which enables us to write fast implementations dedicated to GPU.

Note: The chainer.cuda module imports many important symbols from CuPy. For example, the cupy namespace is referred as cuda.cupy in the Chainer code. Note that the chainer.cuda module can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since memory allocation and release in CUDA (i.e. cudaMalloc and cudaFree functions) synchronize CPU and GPU computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation, Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

1.4.2 Basics of cupy.ndarray

See the document of CuPy for the basic usage of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy.ndarray class is in its core, which is a compatible GPU alternative of numpy.ndarray. CuPy implements many functions on cupy.ndarray objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy.ndarray from numpy.ndarray is that the content is allocated on the device memory. The allocation takes place on the current device by default. The current device can be changed by cupy.cuda.Device object as follows:

```python
with cupy.cuda.Device(1):
    x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])
```
Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the `chainer.cuda.to_gpu()` function copies a `numpy.ndarray` object to a specified device:

```python
x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)
```

It is equivalent to the following code using CuPy:

```python
x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):
    x_gpu = cupy.array(x_cpu)
```

Moving a device array to the host can be done by `chainer.cuda.to_cpu()` as follows:

```python
x_cpu = cuda.to_cpu(x_gpu)
```

It is equivalent to the following code using CuPy:

```python
with x_gpu.device:
    x_cpu = x_gpu.get()
```

Note: The `with` statements in these codes are required to select the appropriate CUDA device. If user uses only one device, these device switching is not needed. `chainer.cuda.to_cpu()` and `chainer.cuda.to_gpu()` functions automatically switch the current device correctly.

Chainer also provides a convenient function `chainer.cuda.get_device_from_id()` and `chainer.cuda.get_device_from_array()` to select a device. The former function accepts an integer or `None`. When `None` is given, it returns a dummy device object. Otherwise, it returns a corresponding device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device object also supports `with` statements like the above example but does nothing. Here are some other examples:

```python
cuda.get_device_from_id(1).use()
x_gpu1 = cupy.empty((4, 3), dtype='f') # 'f' indicates float32
with cuda.get_device_from_id(1):
    x_gpu1 = cupy.empty((4, 3), dtype='f')
with cuda.get_device_from_array(x_gpu1):
    y_gpu1 = x_gpu + 1
```

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device switching:

```python
def add1(x):
    with cuda.get_device_from_array(x):
        return x + 1
```

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the `chainer.cuda.get_array_module()` function. This function returns the `numpy` or `cupy` module based on arguments. A CPU/GPU generic function is defined using it like follows:

```python
1.4.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand. In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_gpu() method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu() method also accepts a device ID like model.to_gpu(0). In this case, the link object is transferred to the appropriate GPU device. The current device is used by default.

If we use chainer.training.Trainer, what we have to do is just let the updater know the device ID to send each mini-batch.

```python
updater = training.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')
```

We also have to specify the device ID for an evaluator extension as well.

```python
trainer.extend(extensions.Evaluator(test_iter, model, device=0))
```

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

```python
model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):
 print('epoch %d' % epoch)
 indexes = np.random.permutation(datasize)
 for i in range(0, datasize, batchsize):
 x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]])
 t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]])
 optimizer.update(model, x, t)
```

1.4.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”. Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means parallelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

```
(GPU0) input -> 11 -> 12 -> 13 --|---> 14 --|-- 15 --|-- 16 --|-- output
 | | |
(GPU1) +--> 11 -> 12 -> 13 --|---> 14 --|-- 15 --|-- 16 -->+
```

We can use the above MLP chain as following diagram:
Let’s write a link for the whole network.

```python
class ParallelMLP(Chain):
 def __init__(self):
 super(ParallelMLP, self).__init__(
 # the input size, 784, is inferred
 mlp1_gpu0=MLP(1000, 2000).to_gpu(0),
 mlp1_gpu1=MLP(1000, 2000).to_gpu(1),

 # the input size, 2000, is inferred
 mlp2_gpu0=MLP(1000, 10).to_gpu(0),
 mlp2_gpu1=MLP(1000, 10).to_gpu(1),
)

 def __call__(self, x):
 # assume x is on GPU 0
 z0 = self.mlp1_gpu0(x)
 z1 = self.mlp1_gpu1(F.copy(x, 1))

 # sync
 h0 = F.relu(z0 + F.copy(z1, 0))
 h1 = F.relu(z1 + F.copy(z0, 1))

 y0 = self.mlp2_gpu0(h0)
 y1 = self.mlp2_gpu1(h1)

 # sync
 y = y0 + F.copy(y1, 0)
 return y # output is on GPU0
```

Recall that the `Link.to_gpu()` method returns the link itself. The `copy()` function copies an input variable to specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely transfers an output gradient to the input device.

**Note:** Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the above code run asynchronously to the host CPU.

An almost identical example code can be found at `examples/mnist/train_mnist_model_parallel.py`.

### 1.4.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it means that a different device does computation on a different subset of the input data. In this subsection, we review the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define a model and optimizer instances:
model = L.Classifier(MLP(1000, 10))  # the input size, 784, is inferred
optimizer = optimizers.SGD()
optimizer.setup(model)

Recall that the \texttt{MLP} link implements the multi-layer perceptron, and the \texttt{Classifier} link wraps it to provide a classifier interface. We used \texttt{StandardUpdater} in the previous example. In order to enable data-parallel computation with multiple GPUs, we only have to replace it with \texttt{ParallelUpdater}.

```
updater = training.ParallelUpdater(train_iter, optimizer,
 devices={'main': 0, 'second': 1})
```

The \texttt{devices} option specifies which devices to use in data-parallel learning. The device with name 'main' is used as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the updated parameters are sent to GPU 1 again.

See also the example code in \texttt{examples/mnist/train_mnist_data_parallel.py}.

### 1.4.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of \texttt{Trainer}. Most users can skip this section. If you are interested in how to write a data-parallel computation by yourself, this section should be informative. It is also helpful to, e.g., customize the \texttt{ParallelUpdater} class.

We again start from the MNIST example. At this time, we use a suffix like 
\texttt{_0} and \texttt{_1} to distinguish objects on each device. First, we define a model.

```
model_0 = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred
```

We want to make two copies of this instance on different GPUs. The \texttt{Link.to_gpu()} method runs in place, so we cannot use it to make a copy. In order to make a copy, we can use \texttt{Link.copy()} method.

```
import copy
model_1 = copy.deepcopy(model_0)
model_0.to_gpu(0)
model_1.to_gpu(1)
```

The \texttt{Link.copy()} method copies the link into another instance. It just copies the link hierarchy, and does not copy the arrays it holds.

Then, set up an optimizer:

```
optimizer = optimizers.SGD()
optimizer.setup(model_0)
```

Here we use the first copy of the model as the master model. Before its update, gradients of \texttt{model_1} must be aggregated to those of \texttt{model_0}.

Then, we can write a data-parallel learning loop as follows:

```
batchsize = 100
data_size = len(x_train)
for epoch in range(20):
 print('epoch %d' % epoch)
 indexes = np.random.permutation(data_size)
 for i in range(0, data_size, batchsize):
 for j in range(batchsize):
 indexes[j] = indexes[j] % data_size
```
x_batch = x_train[indexes[i : i + batchsize]]
y_batch = y_train[indexes[i : i + batchsize]]

x0 = Variable(cuda.to_gpu(x_batch[:batchsize//2], 0))
t0 = Variable(cuda.to_gpu(y_batch[:batchsize//2], 0))
x1 = Variable(cuda.to_gpu(x_batch[batchsize//2:], 1))
t1 = Variable(cuda.to_gpu(y_batch[batchsize//2:], 1))

loss_0 = model_0(x0, t0)
loss_1 = model_1(x1, t1)

model_0.cleargrads()
model_1.cleargrads()

loss_0.backward()
loss_1.backward()

model_0.addgrads(model_1)
optimizer.update()
model_1.copyparams(model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU 0, the other half to GPU 1. Then the gradients are accumulated by the Link.addgrads() method. This method adds the gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual way. Note that the update only modifies the parameters of model_0. So we must manually copy them to model_1 using Link.copyparams() method.

**Note:** If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the number of models, when we aggregate gradients from all models by chainer.Link.addgrads(). So you need to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple (elementwise) CUDA kernel using Chainer’s CUDA utilities.

### 1.5 Customizing Chainer

#### 1.5.1 Define your own function

In this section, you will learn about the following things:

- How to define a function on variables
- Useful tools to write a function using a GPU
- How to test the function definition

After reading this section, you will be able to:

- Write your own functions
- Define simple kernels in the function definition
Differentiable Functions

Chainer provides a collection of functions in the `functions` module. It covers typical use cases in deep learning, so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly and we cannot cover all possible functions to define unseen architectures. So it is important to learn how to define your own functions.

First, suppose we want to define an elementwise function $f(x, y, z) = x \cdot y + z$. While it is possible to implement this equation using a combination of the * and + functions, defining it as a single function may reduce memory consumption, so it is not only a toy example. Here we call this function `MulAdd`.

Let’s start with defining MulAdd working on the CPU. Any function must inherit the `Function` class. The skeleton of a function looks like:

```python
class MulAdd(Function):
 def forward_cpu(self, inputs):
 # do forward computation on CPU
 return some_tuple

 def backward_cpu(self, inputs, grad_outputs):
 # do backward computation on CPU
 return some_tuple
```

We must implement `forward_cpu()` and `backward_cpu()` methods. The non-self arguments of these functions are tuples of array(s), and these functions must return a tuple of array(s).

**Warning:** Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows

```python
class MulAdd(Function):
 def forward_cpu(self, inputs):
 x, y, z = inputs
 w = x * y + z
 return w,

 def backward_cpu(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs
 gx = y * gw
 gy = x * gw
 gz = gw
 return gx, gy, gz
```

As per the warning above, the `forward_cpu` method returns a tuple of single element. Note that all arrays appearing in CPU functions are `numpy.ndarray`. The forward function is straightforward: It unpacks the input tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just packs the gradient of each input in same order and returns them.

By just defining the core computation of forward and backward, Function class provides a chaining logic on it (i.e. storing the history of computation, etc.).

**Note:** Assuming we implement a (forward) function $y = f(x)$ which takes as input the vector $x \in \mathbb{R}^n$ and produces
as output a vector $y \in \mathbb{R}^m$. Then the backward method has to compute

$$\lambda_i = \sum_{j=1}^m \frac{\partial y_j}{\partial x_i} \gamma_j \text{ for } i = 1 \ldots n$$

where $\gamma$ is the grad_outputs. Note, that the resulting vector $\lambda$ must have the same shape as the arguments of the forward method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named forward_gpu() and backward_gpu():

```python
class MulAdd(Function):
 def forward_cpu(self, inputs):
 ...
 def backward_cpu(self, inputs, grad_outputs):
 ...
 def forward_gpu(self, inputs):
 x, y, z = inputs
 w = x * y + z
 return w,
 def backward_gpu(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs
 gx = y * gw
 gy = x * gw
 gz = gw
 return gx, gy, gz
```

In GPU methods, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class. These operators implement the basic elementwise arithmetics.

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can reduce them to forward() and backward() methods:

```python
class MulAdd(Function):
 def forward(self, inputs):
 x, y, z = inputs
 w = x * y + z
 return w,
 def backward(self, inputs, grad_outputs):
 x, y, z = inputs
 gw, = grad_outputs
 gx = y * gw
 gy = x * gw
 gz = gw
 return gx, gy, gz
```

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified methods in most cases.

The MulAdd function is used as follows:
x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In Chainer, we often define a thin wrapper Python function that hide the instantiation:

```python
def muladd(x, y, z):
 return MulAdd()(x, y, z)
w = muladd(x, y, z)
```

### Unified forward/backward methods with NumPy/CuPy functions

CuPy also implements many functions that are compatible to those of NumPy. We can write unified forward/backward methods with them. Consider that we want to write a backprop-able function $f(x, y) = \exp(x) + \exp(y)$. We name it `ExpAdd` here. It can be written straight-forward as follows

```python
class ExpAdd(Function):
 def forward_cpu(self, inputs):
 x, y = inputs
 z = np.exp(x) + np.exp(y)
 return z,
 def backward_cpu(self, inputs, grad_outputs):
 x, y = inputs
 gz, = grad_outputs
 gx = gz * np.exp(x)
gy = gz * np.exp(y)
 return gx, gy
 def forward_gpu(self, inputs):
 cupy = cuda.cupy
 x, y = inputs
 z = cupy.exp(x) + cupy.exp(y)
 return z,
 def backward_gpu(self, inputs, grad_outputs):
 cupy = cuda.cupy
 x, y = inputs
 gz, = grad_outputs
 gx = gz * cupy.exp(x)
gy = gz * cupy.exp(y)
 return gx, gy

def expadd(x, y):
 return ExpAdd()(x, y)
```

**Note:** Here we used `cuda.cupy` instead of directly accessing `cupy`. This is because the `cupy` module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-CUDA environment, we have to defer the access to the `cupy` module. Note that the `chainer.cudnn` module can be imported even if the CUDA is
not installed. Of course, the module in such environment is almost useless, but if the interpreter does not run through
the code accessing CUDA-dedicated functions, the code is still valid.

The CPU and GPU implementations are almost same, except that \texttt{numpy} is replaced by \texttt{cupy} in GPU methods.
We can unify these functions using the \texttt{cuda.get_array_module()} function. This function accepts arbitrary
number of arrays, and returns an appropriate module for them. See the following code

```python
class ExpAdd(Function):
 def forward(self, inputs):
 xp = cuda.get_array_module(*inputs)
 x, y = inputs
 z = xp.exp(x) + xp.exp(y)
 return z,

 def backward(self, inputs, grad_outputs):
 xp = cuda.get_array_module(*inputs)
 x, y = inputs
 gz, = grad_outputs
 gx = gz * xp.exp(x)
 gy = gz * xp.exp(y)
 return gx, gy

def expadd(x, y):
 return ExpAdd()(x, y)
```

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
\texttt{get_array_module} function always returns \texttt{numpy}. We often use the name \texttt{xp} for the variadic module name, which is
analogous to the abbreviation \texttt{np} for NumPy and \texttt{cp} for CuPy.

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward and backward computations. It might hurt performance, since the interme-
diate temporary arrays are read and written by possibly different GPU cores, which consumes much bandwidth. We
can reduce the number of invocations by defining our own kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define ele-
mentwise kernels, the \texttt{cupy.elementwise.ElementwiseKernel} class, and Chainer wraps it by \texttt{cuda.
elementwise()} function. Our MulAdd implementation can be improved as follows:

```python
class MulAdd(Function):
 def forward_cpu(self, inputs):
 ...

 def backward_cpu(self, inputs, grad_outputs):
 ...

 def forward_gpu(self, inputs):
 cupy = cuda.cupy
 x, y, z = inputs
 w = cupy.elementwise(
 'float32 x, float32 y, float32 z',
 'float32 w',
 'w = x * y + z',
```
def muladd_fwd(x, y, z)
    return w,

def backward_gpu(self, inputs, grad_outputs):
    x, y, z = inputs
    gw, = grad_outputs
    gx, gy = cuda.elementwise(
        'float32 x, float32 y, float32 gw',
        'float32 gx, float32 gy',
        '''
        gx = y * gw;
        gy = x * gw;
        ''',
        'muladd_bwd')(x, y, gw)
    gz = gw
    return gx, gy, gz

cuda.elementwise() function accepts the essential implementation of the kernel function, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable). In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and an argument name.

2. Output argument list in the same format as the input argument list.

3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by cuda.elementwise().

The first one is binary caching: cuda.elementwise() function caches the compiled binary in the $HOME/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order to execute it. cuda.elementwise() function memoizes the arguments and the current device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single character as type specifier:

    class MulAdd(Function):
        def forward_cpu(self, inputs):
            ...

        def backward_cpu(self, inputs, grad_outputs):
            ...

        def forward_gpu(self, inputs):
            cupy = cuda.cupy
            x, y, z = inputs
            w = cuda.elementwise(
                'T x, T y, T z',
                'T w',

1.5. Customizing Chainer
The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels for more details.

Write a function with training/test mode

We sometimes want to make a function behave differently in training and test modes. The training/test mode in Chainer is configured by `chainer.config`. This is a thread-local configuration object, and users can substitute True or False to its `train` attribute. You can refer to Configuring Chainer to see how to configure this flag as well as other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the value of the boolean flag `chainer.config.train` and branch appropriately.

For example, consider the following simple dropout function:

```python
def dropout(x):
 xp = cuda.get_array_module(x.data)
 mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
 return x * mask
```

This function applies dropout to each element and doubles survived elements to preserve the scale. The above implementation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

```python
def dropout(x):
 if not chainer.config.train:
 return x
 xp = cuda.get_array_module(x.data)
 mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
 return x * mask
```

The function now supports test mode. Note that you usually do not have to implement your own dropout function because `dropout()` is officially provided.
Links that wrap functions

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps the function. We have already seen how to define a chain that wraps other links (by inheriting Chain class). Here we study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and the parameter array. It can be defined as follows:

```python
class EltwiseParamProduct(Link):
 def __init__(self, shape):
 super(EltwiseParamProduct, self).__init__()
 with self.init_scope():
 self.W = chainer.Parameter(initializers.Normal(scale=1.), shape)

 def __call__(self, x):
 return self.W * x
```

For another example, assume we want to define a simple linear layer. It is already defined as Linear, so this is an educational example. The linear layer is divided into two parts: a function and its wrapper link. First, we have to define a function on variables:

```python
class LinearFunction(Function):
 def forward(self, inputs):
 x, W, b = inputs
 return x.dot(W.T) + b,

 def backward(self, inputs, grad_outputs):
 x, W, b = inputs
 gy, = grad_outputs
 gx = gy.dot(W)
 gW = gy.T.dot(x)
 gb = gy.sum(axis=0)
 return gx, gW, gb

def linear(x, W, b):
 return LinearFunction()(x, W, b)
```

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient module, let’s wrap it into a link:

```python
class Linear(Link):
 def __init__(self, in_size, out_size):
 super(Linear, self).__init__()
 with self.init_scope():
 self.W = chainer.Parameter(
 initializers.Normal(1. / math.sqrt(in_size)),
 (out_size, in_size))
 self.b = chainer.Parameter(0, (out_size,))

 def __call__(self, x):
 return linear(x, self.W, self.b)
```

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase
the memory consumption during the whole forward-backward computation. If you want to train very large networks
on a GPU with limited memory, it is not recommended to cache arrays between forward and backward. There is one
exception for this: caching the output arrays does not change the memory consumption, because they are also held by
the output Variable objects.

**Warning:** You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

---

### Testing Function

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implement-
ations. Chainer provides simple utilities to help writing unit tests. They are defined in the `gradient_check`
module.

The most important test utility is the `numerical_grad()` function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows

```python
x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))
```

`f` is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
`numerical_grad()` are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of `sum(f(x))`, where `sum` indicates the summation over all elements. The summation can
be weighted by changing `gy`. `numerical_grad()` function also accepts additional `eps` argument, which indicates
the quantization width of finite differences.

**Note:** `numerical_grad()` function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

Another utility is `chainer.testing.assert_allclose()` function. This is similar to `numpy.testing.assert_allclose()`
function. The difference is that Chainer's version accepts CPU and GPU arrays as inputs. We
can mix them in one invocation of `chainer.testing.assert_allclose()`. The default values of optional
arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of `functions.relu()` function

```python
import unittest
from chainer import testing

class TestReLU(unittest.TestCase):
 def test_backward_cpu(self):
 x = Variable(np.random.randn(3, 2).astype(np.float32))
y = F.relu(x)
y.grad = np.random.randn(3, 2).astype(np.float32)
y.backward()

 def f():
 return F.relu(x).data,
```
The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines compute numerical gradient using the same forward function without backward routine. And at last, we compare these two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function `chainer.gradient_check.check_backward()` that follows this procedure.

```
import unittest
from chainer import gradient_check

class TestReLU(unittest.TestCase):
 def test_backward_cpu(self):
 def f(x):
 return F.relu(x)
 x = np.random.randn(3, 2).astype(np.float32)
 y_grad = np.random.randn(3, 2).astype(np.float32)
 gradient_check.check_backward(f, x, y_grad, atol=1e-4, rtol=1e-4)
```

You can find many examples of function tests under `tests/chainer_tests/function_tests` directory.

### 1.5.2 Create your own trainer extension

In this section, you will learn about the following things:

- **What is trainer Extension?**
- **How to create your own trainer extension**
  - by defining a simple function
  - by defining a function decorated with `@make_extension`
  - by defining a class inherited from `Extension` class

**What is trainer Extension?**

`Extension` is a callable object that takes a `Trainer` object as an argument. Adding an `Extension` to a `Trainer` using `extend()` method, the `Extension` will be called at the given timing you specified by using `trigger` object (See the details in `1. trigger`)

A `Trainer` object has all information used in a training loop, e.g., models, optimizers, updaters, iterators, and datasets, etc. So you can change the settings of optimizers

**Write a simple function**

You can make a new `Extension` by writing a simple function which takes `Trainer` object as its argument. For example, when you want to reduce the learning rate at specified timing during training, `lr_drop` extension can be
written as follows:

```python
def lr_drop(trainer):
 trainer.updater.get_optimizer('main').lr *= 0.1
```

Then you can add this function to a `Trainer` object via `extend()` method.

```python
trainer.extend(lr_drop, trigger=(10, 'epoch'))
```

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

**Write a function decorated with `@make_extension`**

`make_extension()` is a decorator that adds some attributes to a given function. For example, the simple extension we created above can be written in this form:

```python
@training.make_extension(trigger=(10, 'epoch'))
def lr_drop(trainer):
 trainer.updater.get_optimizer('main').lr *= 0.1
```

The difference between the above one and this is whether it has a default `trigger` or not. In this latter case, `lr_drop()` has its default `trigger` so that unless another `trigger` is specified via `extend()` method, the `trigger` specified in `make_extension()` is used as default. So the code below acts the same as the former example, i.e., it reduces the learning rate every 10 epochs.

```python
trainer.extend(lr_drop)
```

There are several attributes you can add using the `make_extension()` decorator.

**1. trigger**

`trigger` is an object that takes a `Trainer` object as an argument and returns a boolean value. If a tuple in a form `(period, unit)` is given as a trigger, it will be considered as an `IntervalTrigger` that invokes the extension at every `period unit`. For example, when the given tuple is `(10, 'epoch')`, the extension will be fired at every 10 epochs.

`trigger` can also be given to the `extend()` method that adds an extension to a `Trainer` object. The priority of triggers is as follows:

- When both `extend()` and a given `Extension` have `trigger`s, the `trigger` given to `extend()` is used.
- When `None` is given to `extend()` as the `trigger` argument and a given `Extension` has `trigger`, the `trigger` given to the `Extension` is used.
- When both `trigger` attributes in `extend()` and `Extension` are `None`, the `Extension` will be fired every iteration.

See the details in the documentation of `get_trigger()`.

**2. default_name**

An `Extension` is kept in a dictionary which is a property in a `Trainer`. This argument gives the name of the `Extension`. Users will see this name in keys of the snapshot which is a dictionary generated by serialization.
3. priority

The priority that is used to determine the order of execution of extensions in a Trainer object. There are three standard values for the priorities:

- **PRIORITY_WRITER**: The priority for extensions that write some records to the observation dictionary. It includes cases that the extension directly adds values to the observation dictionary, or the extension uses the chainer.report() function to report values to the observation dictionary. Extensions which write something to reporter should go first because the other Extensions which read those values could be added.

- **PRIORITY_EDITOR**: The priority for extensions that edit the observation dictionary based on already reported values. Extensions which edit some values of reported ones should go after the extensions which write values to reporter but before extensions which read the final values.

- **PRIORITY_READER**: The priority for extensions that only read records from the observation dictionary. This is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the reported values should be fired after all the extensions which have other priorities, e.g, PRIORITY_WRITER and PRIORITY_EDITOR because it should read the final values.

See the details in the documentation of Trainer.

4. finalizer

You can specify a function which takes Trainer object to finalize the extension. It is called once at the end of the whole training loops, namely, the run() finished.

5. initializer

You can specify a function which takes Trainer object to initialize the extension. It is called once at the beginning of the training loop, namely, before starting the actual loop.

**Write a class inherited from Extension class**

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this equation:

$$ \eta = \eta_{\text{init}} \left(1 - \frac{t}{t_{\text{max}}}\right)^{\text{power}} $$

The learning rate will be dropped like the curve below with power = 0.5:
class PolynomialShift(training.Extension):

    def __init__(self, attr, power, stop_trigger, batchsize=None, len_dataset=None):
        self._attr = attr
        self._power = power
        self._init = None
        self._t = 0
        self._last_value = 0

        if stop_trigger[1] == 'iteration':
            self._maxiter = stop_trigger[0]
        elif stop_trigger[1] == 'epoch':
            if batchsize is None or len_dataset is None:
                raise ValueError('When the unit of stop_trigger is epoch, '
                                 'batchsize and len_dataset should be '
                                 'specified to calculate the maximum iteration.')
            n_iter_per_epoch = len_dataset / float(batchsize)
            self._maxiter = float(stop_trigger[0] * n_iter_per_epoch)

    def initialize(self, trainer):
        optimizer = trainer.updater.get_optimizer('main')
        # ensure that _init is set
        if self._init is None:
            self._init = getattr(optimizer, self._attr)

    def __call__(self, trainer):
        pass
self._t += 1

optimizer = trainer.updater.get_optimizer('main')
value = self._init * ((1 - (self._t / self._maxiter)) ** self._power)
setattr(optimizer, self._attr, value)
self._last_value = value

def serialize(self, serializer):
    self._t = serializer('_t', self._t)
    self._last_value = serializer('_last_value', self._last_value)
    if isinstance(self._last_value, np.ndarray):
        self._last_value = np.asscalar(self._last_value)

stop_trigger = (10000, 'iteration')
trainer.extend(PolynomialShift('lr', 0.5, stop_trigger)

This extension PolynomialShift takes five arguments.

- attr: The name of optimizer property you want to update by this extension.
- power: The power of the above equation to calculate the learning rate.
- stop_trigger: The trigger given to the Trainer object to specify when to stop the training loop.
- batchsize: The training mini-batchsize.
- len_dataset: The length of dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed in training by using stop_trigger, batchsize, and len_dataset, then store it as a property _maxiter. This property will be used in __call__() method to update the learning rate. initialize() method obtains the initial learning rate from the optimizer set to give Trainer object. serialize() method stores or recovers the properties, _t (number of iterations) and _last_value (the latest learning rate), which this extension has.

1.6 Type check

In this section, you will learn about the following things:

- Basic usage of type check
- Detail of type information
- Internal mechanism of type check
- More complicated cases
- Call functions
- Typical type check example

After reading this section, you will be able to:

- Write a code to check types of input arguments of your own functions

1.6.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is called just before the forward() method of the Function class. You can override this method to check the condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

```python
def check_type_forward(self, in_types):
 ...
```

in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the first argument, use in_types[0]. If the function gets multiple arguments, we recommend to use new variables for readability:

```python
x_type, y_type = in_types
```

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type equals to 2, write this code:

```python
utils.type_check.expect(x_type.ndim == 2)
```

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message like this:

```
Traceback (most recent call last):
... chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2
```

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

### 1.6.2 Detail of type information

You can access three information of x_type.

- .shape is a tuple of ints. Each value is size of each dimension.
- .ndim is int value representing the number of dimensions. Note that ndim == len(shape)
- .dtype is numpy.dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

```python
utils.type_check.expect(x_type.shape[0] > 0)
```

You can also check data types with .dtype:

```python
utils.type_check.expect(x_type.dtype == np.float64)
```

And an error is like this:

```
Traceback (most recent call last):
...
```
You can also check `kind` of `dtype`. This code checks if the type is floating point:

```
utils.type_check.expect(x_type.dtype.kind == 'f')
```

You can compare between variables. For example, the following code checks if the first argument and the second argument have the same length:

```
utils.type_check.expect(x_type.shape[1] == y_type.shape[1])
```

### 1.6.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If `x_type` is an object containing `ndim` member variable, we cannot show such an error message because this equation is evaluated as a boolean value by Python interpreter.

Actually `x_type` is a `Expr` object, and doesn’t have a `ndim` member variable itself. `Expr` represents a syntax tree. `x_type.ndim` makes a `Expr` object representing `(getattr, x_type, 'ndim')`. `x_type.ndim == 2` makes an object like `(eq, (getattr, x_type, 'ndim'), 2)`. `type_check.expect()` gets a `Expr` object and evaluates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable error message.

If you want to evaluate a `Expr` object, call `eval()` method:

```
actual_type = x_type.eval()
```

`actual_type` is an instance of `TypeInfo`, while `x_type` is an instance of `Expr`. In the same way, `x_type.shape[0].eval()` returns an int value.

### 1.6.4 More powerful methods

`Expr` class is more powerful. It supports all mathematical operators such as `+` and `*`. You can write a condition that the first dimension of `x_type` is the first dimension of `y_type` times four:

```
utils.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)
```

When `x_type.shape[0] == 3` and `y_type.shape[0] == 1`, users can get the error message below:

```
... chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1].shape[0] * 4 Actual: 3 != 4
```

To compare a member variable of your function, wrap a value with `Variable` to show readable error message:

```
x_type.shape[0] == utils.type_check.Variable(self.in_size, "in_size")
```

This code can check the equivalent condition below:
x_type.shape[0] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter code shows unreadable error message:

```
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4 # what does '4' mean?
Actual: 3 != 4
```

Note that the second argument of `utils.type_check.Variable` is only for readability. The former shows this message:

```
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size # OK, 'in_size' is a value that is given to the constructor
Actual: 3 != 4 # You can also check actual value here
```

### 1.6.5 Call functions

How to check summation of all values of shape? `Expr` also supports function call:

```
sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)
```

Why do we need to wrap the function `numpy.sum` with `utils.type_check.Variable`? `x_type.shape` is not a tuple but an object of `Expr` as we have seen before. Therefore, `numpy.sum(x_type.shape)` fails. We need to evaluate this function lazily.

The above example produces an error message like this:

```
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10
```

### 1.6.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate `Expr` and get its result value with `eval()` method. Then check the condition and show warning message by hand:

```
x_shape = x_type.shape.eval() # get actual shape (int tuple)
if not more_complicated_condition(x_shape):
 expect_msg = 'Shape is expected to be ...
 actual_msg = 'Shape is ...
raise utils.type_check.InvalidType(expect_msg, actual_msg)
```

Please write a readable error message. This code generates the following error message:

```
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: Shape is expected to be ...
Actual: Shape is ...
```
1.6.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

```python
utils.type_check.expect(in_types.size() == 2)
```

`in_types.size()` returns a `Expr` object representing the number of arguments. You can check it in the same way.

And then, get each type:

```python
x_type, y_type = in_types
```

Don’t get each value before checking `in_types.size()`. When the number of argument is illegal, `type_check.expect` might output unuseful error messages. For example, this code doesn’t work when the size of `in_types` is 0:

```python
utils.type_check.expect(
 in_types.size() == 2,
 in_types[0].ndim == 3,
)
```

After that, check each type:

```python
utils.type_check.expect(
 x_type.dtype == np.float32,
 x_type.ndim == 3,
 x_type.shape[1] == 2,
)
```

The above example works correctly even when `x_type.ndim == 0` as all conditions are evaluated lazily.
2.1 Core functionalities

2.1.1 Variable and Parameter

<table>
<thead>
<tr>
<th>chainer.Variable</th>
<th>Array with a structure to keep track of computation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.as_variable</td>
<td>Converts an array or a variable into Variable.</td>
</tr>
<tr>
<td>chainer.Parameter</td>
<td>Parameter variable that can be registered to a link.</td>
</tr>
<tr>
<td>chainer.variable.VariableNode</td>
<td>Node in the backward computational graph representing a variable.</td>
</tr>
</tbody>
</table>

chainer.Variable

class chainer.Variable(data=None, *, name=None, grad=None, requires_grad=True)

Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy.ndarray or cupy.ndarray.

A variable object holds a data array and a VariableNode object of a computational graph. If the variable is constructed by the user, the node is root and does not hold any parent. If the variable is constructed by a FunctionNode object, the node holds a reference to its parent called creator_node. This reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling no_backprop_mode() (resp. force_backprop_mode()). In the former context, a variable never creates a computational graph, whereas in the latter context, it is forced to create.

Warning: volatile argument is not supported anymore since v2. Instead, use chainer.no_backprop_mode().

Parameters
• **data** *(numpy.ndarray or cupy.ndarray)* – Initial data array.
• **name** *(str)* – Name of the variable.
• **grad** *(numpy.ndarray or cupy.ndarray)* – Initial gradient array.
• **requires_grad** *(bool)* – Boolean indicating whether grad will be set in backward calculation.

**Methods**

__getitem__(x, slices)

Extract elements from array with specified shape, axes and offsets.

**Parameters**

• **x** *(Variable)* – A variable to be sliced.
• **slices** *(int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them)* – It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

**Returns** A Variable object which contains sliced array of x.

**Note:** It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64 and numpy.ulonglong.

**Note:** It does not support slices that contains multiple boolean arrays.

**Note:** See NumPy document for details of indexing.

__len__()

Returns the first dimension of the data array.

**Returns** Number of the first dimension of the data array.

**Return type** int

__copy__()

addgrad(var)

Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even done across the host and different devices. If this variable has uninitialized data/grad arrays, this method initializes it with the shape of the given variable and then accumulates the gradient.

**Parameters** var *(Variable)* – Source variable.

backward(retain_grad=False, enable_double_backprop=False)

Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in the backward graph starting from this variable. The backward graph is represented by backward references from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling
this method. If data contains only one element (i.e., it is scalar) and grad is None, then this method
automatically complements 1.0 as the initial error. This is useful on starting backprop from some scalar
loss value.

Note that this method does not support differentiable backprop. Use grad() to compute the gradient of
gradients.

Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients of
parameters, not of all variables, and therefore it is recommended to set this flag False.

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

cleargrad()
Clears the gradient array.

copydata(var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable) – Source variable.

depg_print()
Display a summary of the stored data and location of the Variable

reshape(*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator (gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

set_creator_node (fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) – Function node that has this variable as an output.

2.1. Core functionalities 65
**summary()**

**to_cpu()**
Copies the data and gradient arrays to CPU.

**to_gpu**(device=None)
Copies the data and gradient arrays to specified GPU.

  **Parameters device** – Target device specifier. If omitted, the current device is used.

**transpose**(axes)
Permute the dimensions of an input variable without copy.

  **See also:**
  
  *chainer.functions.transpose()* for full documentation.

**unchain()**
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
**unchain_backward()**, it does not backtrack the graph.

This method is equivalent to *self.creator_node = None*.

**unchain_backward()**
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from anywhere are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

**zerograd()**
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method because this operation breaks the backprop validity.

**Deprecated since version v1.15:** Use **cleargrad()** instead.

**__eq__**(other)

**__ne__**(other)

**__lt__**(other)

**__le__**(other)

**__gt__**(other)

**__ge__**(other)

**__nonzero__**(other)

**__bool__**(other)

**Attributes**

**T**
Transposition of this variable.
array
The underlying data array.
It is either \texttt{numpy.ndarray} or \texttt{cupy.ndarray} object, or \texttt{None} if the variable is in an uninitialized state.

creator
Function implementation that created this variable.
When this variable has been created by an old-style function (i.e., it is implemented as a subclass of \texttt{Function}), this property returns that \texttt{Function} object.
When this variable has been created by a new-style function (i.e., it is implemented as a subclass of \texttt{FunctionNode} class), this property returns that node object.

creator_node
\texttt{FunctionNode} object that created this variable.
This property has a setter to which \texttt{None} can be set. Setting \texttt{None} to this property is equivalent to call \texttt{unchain()}; it purges the variable from the function that created this variable.
The setter also accepts the original \texttt{FunctionNode} object that created this variable. For example, you can once set \texttt{None} to this property and then set the original value again.

\textbf{Note:} Setting an irrelevant \texttt{FunctionNode()} object does not emit any error immediately, whereas the behavior is undefined. Do not set a \texttt{FunctionNode()} object that did not create this variable object.

data
The underlying data array (equivalent to \texttt{array}).
Note that using this attribute directly is discouraged; use \texttt{array} instead. Using \texttt{array}, you can find an error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute \texttt{.array} while it has \texttt{.data}.

dtype
grad
Gradient array of this variable.
Note that this property returns the underlying array of the gradient variable instead of the gradient variable itself; to get/set gradient variable, use \texttt{grad_var} instead.

grad_var
Gradient variable.

label
Short text that represents the variable.

name
ndim
node
rank
requires_grad
It indicates that \texttt{grad} will be set in backward calculation.

shape
size
chainer.as_variable

chainer.as_variable(obj)

Converts an array or a variable into Variable.

This is a convenient function to get a Variable object transparently from a raw array or a variable.

Note that this function should only be used for type consistency (i.e., to enforce the return value of an API having type Variable). The requires_grad flag is kept as is; if obj is a raw array, the newly created variable has requires_grad = False. In order to make a variable w.r.t. which you want to compute the gradient, you should use Variable directly.

Parameters

- **obj** (numpy.ndarray or cupy.ndarray or Variable) – An array or a variable that you want to convert to Variable.

Returns

A variable converted from obj. If obj is a raw array, this is a new Variable object that wraps the array. If obj is already a Variable object, this function returns obj as is.

Return type

Variable

chainer.Parameter

class chainer.Parameter(initializer=None, shape=None, name=None)

Parameter variable that can be registered to a link.

Parameter is a subclass of Variable. It almost behaves as same as a usual variable except that a parameter can be registered to a Link object just by assigning it to an attribute of the link within an init_scope() context.

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to an GradientMethod, an update rule is set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient array.

Parameters

- **initializer** (Initializer or numpy.ndarray or cupy.ndarray) – Initializer of the data array. If shape is given, this initializer is immediately used to initialize the data array. Otherwise, if it is an array, it is immediately used as the data array, and otherwise the data array is left uninitialized and will be initialized by this initializer in initialize(). It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

- **shape** (int or tuple of int or None) – Shape of the parameter. If it is None, the initialization is deferred to the call of initialize().

- **name** (str) – Name of the parameter.

Variables

- **initializer** – Initializer of the data array. It is used for initializing the data array of an uninitialized variable.

- **update_rule** – UpdateRule instance that updates this variable as a parameter. This argument is set to update_rule.
Methods

__getitem__(x, slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

- x (Variable) – A variable to be sliced.
- slices (int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them) – It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

Returns

A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy document for details of indexing.

__len__()  
Returns the first dimension of the data array.

Returns  
Number of the first dimension of the data array.

Return type  
int

__copy__()  

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even done across the host and different devices. If this variable has uninitialized data/grad arrays, this method initializes it with the shape of the given variable and then accumulates the gradient.

Parameters  
var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in the backward graph starting from this variable. The backward graph is represented by backward references from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this method. If data contains only one element (i.e., it is scalar) and grad is None, then this method automatically complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

Note that this method does not support differentiable backprop. Use grad() to compute the gradient of gradients.
Parameters

- **retain_grad** (bool) – If True, the gradient arrays of all intermediate variables are kept. Otherwise, grad of the intermediate variables are set to None on appropriate timing, which may reduce the maximum memory consumption.

  In most cases of training some models, the purpose of backprop is to compute gradients of parameters, not of all variables, and therefore it is recommended to set this flag False.

- **enable_double_backprop** (bool) – (Added in v3.0) If True, computational trace of the whole backpropagation procedure is recorded to the computational graph so that one can further do backpropagation from the resulting gradients. Note that enabling it results in larger memory consumption needed to store the gradients w.r.t intermediate variables that are required for the second gradient computation.

**cleargrad()**

**copydata**(var)

Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays reside on different devices, including across the host and a GPU device. If this variable has an uninitialized data array, this method initializes it by the data array of the given variable. Similarly, if the given variable has an uninitialized data array, this method initializes it by the data array of this variable (self). If both are uninitialized, this method does nothing.

**Parameters**

**var** (Variable) – Source variable.

**debug_print()**

Display a summary of the stored data and location of the Variable

**initialize**(shape)

Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and initializes the data array. The shape of the variable can be left unknown until this method is called.

**Parameters**

**shape** (tuple of int) – Shape of the data array.

**reshape**(*shape)

Returns a variable of a different shape and the same content.

See also:

- **chainer.functions.reshape()** for full documentation,

**retain_data()**

Lets the corresponding variable node keep the underlying array.

**set_creator**(gen_func)

Notifies the variable that the given function is its creator.

**Parameters**

**gen_func** (Function) – Function object that creates this variable as one of its outputs.

**set_creator_node**(fnode)

Notifies the variable that the given node is its creator.

**Parameters**

**fnode** (FunctionNode) – Function node that has this variable as an output.

**summary()**

**to_cpu()**

**to_gpu**(device=None)
**transpose** (*axes*)

Permute the dimensions of an input variable without copy.

**See also:**

*chainer.functions.transpose()* for full documentation.

**unchain()**

Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike *unchain_backward()* it does not backtrack the graph.

This method is equivalent to *self.creator_node = None*.

**unchain_backward()**

Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from anywhere are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

**update()**

Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

**zerograd()**

**__eq__**(other)

**__ne__**(other)

**__lt__**(other)

**__le__**(other)

**__gt__**(other)

**__ge__**(other)

**__nonzero__**(()

**__bool__**(()

**Attributes**

**T**

Transposition of this variable.

**array**

The underlying data array.

It is either *numpy.ndarray* or *cupy.ndarray* object, or *None* if the variable is in an uninitialized state.

**creator**

Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of *Function*), this property returns that *Function* object.
When this variable has been created by a new-style function (i.e., it is implemented as a subclass of `FunctionNode` class), this property returns that node object.

**creator_node**

`FunctionNode` object that created this variable.

This property has a setter to which `None` can be set. Setting `None` to this property is equivalent to call `unchain()`; it purges the variable from the function that created this variable.

The setter also accepts the original `FunctionNode` object that created this variable. For example, you can once set `None` to this property and then set the original value again.

**Note:** Setting an irrelevant `FunctionNode()` object does not emit any error immediately, whereas the behavior is undefined. Do not set a `FunctionNode()` object that did not create this variable object.

**data**

The underlying data array (equivalent to `array`).

Note that using this attribute directly is discouraged; use `array` instead. Using `array`, you can find an error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute `.array` while it has `.data`.

**dtype**

**grad**

Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable itself; to get/set gradient variable, use `grad_var` instead.

**grad_var**

Gradient variable.

**initializer = None**

**label**

Short text that represents the variable.

**name**

**ndim**

**node**

**rank**

**requires_grad**

It indicates that `grad` will be set in backward calculation.

**shape**

**size**

**chainer.variable.VariableNode**

```python
class chainer.variable.VariableNode(variable, name, **kwargs)
```

Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation (a.k.a. backprop) to determine which gradient to be passed to each function.
A variable node is held by the corresponding Variable object, which is managed by users. Function objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a weak reference to the variable object, and thus the data array is accessible via the weak reference.
2. If retain_data() is called, the node holds a reference to the data array. It is mainly called by a function that needs the input or output data array in its backprop procedure. See Function.retain_inputs() and Function.retain_outputs() for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed by Chainer, and any interface that is beneficial for users is also provided by Variable.

**Parameters**

- `variable (Variable)` – The corresponding variable object.
- `name (str)` – Name of the variable node.

**Variables**

- `dtype` – Data type of the data array.
- `shape` – Shape of the data array.
- `name (str)` – Name of the variable node.

**Methods**

get_variable()

Returns the corresponding Variable object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by this property. Otherwise, this property creates a new Variable object from this node object and returns it.

**Returns** The variable object that refers this node.

**Return type** Variable

retain_data()

Lets the node hold a reference to the underlying data array.

This method gets the data array of the corresponding variable and keeps it. If the weak reference to the corresponding variable is dead, it raises an error.

set_creator (creator)

Sets a Function object that created this node.

This method is equivalent to self.creator = creator. A FunctionNode object can also be passed.

**Parameters**

- `creator (Function or FunctionNode)` – Function that has created this variable.

set_creator_node (creator_node)

Sets a FunctionNode object that created this node.

This method is equivalent to self.creator_node = creator_node. A Function object can also be passed, in which case the node object is extracted.
Parameters `creator_node` *(FunctionNode or Function)* – Function node that has this variable as an output.

`unchain()`

Deletes the reference to the creator of this variable node.

This method is equivalent to `self.creator_node = None`.

**Attributes**

`creator`

Function object that created this variable node.

When the function is implemented with the old-style API (i.e., it uses `Function` class), this property returns the `Function` object. The object is extracted from the `FunctionAdapter` object, so the returned object is not the function node, but instead the actual implementation of forward and backward procedures.

When the function is implemented with the new-style API (i.e., it uses `FunctionNode` class), this property returns the function node object. In this case, the returned object is same as `creator_node`.

**Warning:** As of v3.0.0, when the creator is an old-style function, the following code is invalid:

```python
creator = v.creator
v.creator = None
...
v.creator = creator
```

The point is that `FunctionNode` objects are used as nodes in the computational graph instead of `Function`, and each `Function` object only holds a *weak reference* to the corresponding `FunctionNode`. Since `creator` returns the `Function` object, the `FunctionNode` object is not kept by preserving `creator`.

The above code should be fixed as follows.

```python
creator_node = v.creator_node
v.creator_node = None
...
v.creator_node = creator_node
```

`creator_node`

Function node that has this variable as an output.

See `FunctionNode` for the definition of a function node.

`data`

Data array of the corresponding variable.

If the data is not available, it returns `None`.

`grad`

Gradient array of the corresponding variable.

If the variable is not available, it returns `None`.

`grad_var`

Gradient variable of the corresponding variable.

If the corresponding variable is not available, it return `None`. 
**Chainer Documentation, Release 3.1.0**

**label**

Short text that represents the variable node.

**rank**

**requires_grad**

It indicates that grad will be set in backward calculation.

### 2.1.2 Function

<table>
<thead>
<tr>
<th>Class/Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>chainer.Function</strong></td>
<td>Old-style interface of a differentiable function.</td>
</tr>
<tr>
<td><strong>chainer.FunctionAdapter</strong></td>
<td>Adapter class to wrap Function with FunctionNode.</td>
</tr>
<tr>
<td><strong>chainer.FunctionNode</strong></td>
<td>Function node of the computational graph.</td>
</tr>
<tr>
<td><strong>chainer.force_backprop_mode</strong></td>
<td>Make a context manager which enables back-propagation.</td>
</tr>
<tr>
<td><strong>chainer.no_backprop_mode</strong></td>
<td>Make a context manager which disables back-propagation.</td>
</tr>
<tr>
<td><strong>chainer.grad</strong></td>
<td>Computes the gradient of output variables w.r.t. the input variables.</td>
</tr>
</tbody>
</table>

**chainer.Function**

**class chainer.Function**

Old-style interface of a differentiable function.

This class provides an interface to implement an old-style differentiable function (i.e., the function application is recorded to the computational graph). The subclass of `Function` that implement `forward()` and `backward()` can be used to run the forward computation and automatically induce the backpropagation procedure.

There is another way to implement such a function: subclassing `FunctionNode`. There are mainly two differences between them:

1. The *differentiable backprop* is available for `FunctionNode`, while it is not for `Function` because the `backward()` of the latter directly operates on the arrays instead of `Variable` objects so that it cannot record the history of the computation.

2. The information passed to `backward()` is different. In `FunctionNode`, which inputs the function node has to compute the gradients w.r.t. is passed so that it can omit unnecessary computations, while `Function` always has to compute gradients w.r.t. all the input nodes. The `FunctionNode` also accepts the current gradient values of the input nodes so that the accumulation work can be merged with the gradient computation if an efficient kernel is available.

This class uses `FunctionAdapter` to convert the interface to that of `FunctionNode` and adds the `FunctionNode` object to the computational graph.

See `FunctionNode` for the details of building the computational graph in Chainer.

**Methods**

**__call__(*inputs)**

Applies forward propagation with chaining backward references.

This method creates a new `FunctionAdapter` object and runs the forward propagation using it.

See `FunctionNode` for the detailed behavior of building the computational graph.

---

**2.1. Core functionalities**
Parameters **inputs** – Tuple of input `Variable`, `numpy.ndarray` or `cupy.ndarray` objects. If the input is an `numpy.ndarray` or a `cupy.ndarray`, it is automatically wrapped with `Variable`.

Returns One `Variable` object or a tuple of multiple `Variable` objects.

**add_hook** *(hook, name=None)*

Registers a function hook.

See `FunctionNode.add_hook()` for the detail.

Parameters

- **hook** (`FunctionHook`) – Function hook to be registered.
- **name** (`str`) – Name of the function hook. name must be unique among function hooks registered to the function. If `None`, default name of the function hook is used.

**backward** *(inputs, grad_outputs)*

Applies backprop to output gradient arrays.

It delegates the procedure to `backward_cpu()` or `backward_gpu()` by default. Which it selects is determined by the type of input arrays and output gradient arrays. Implementations of `Function` must implement either CPU/GPU methods or this method, if the function is intended to be backprop-ed.

Parameters

- **inputs** – Tuple of input arrays.
- **grad_outputs** – Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be `None`, if the function is not differentiable on inputs.

Return type `tuple`

**Warning:** Implementations of `Function` must take care that the return value must be a tuple even if it returns only one array.

**backward_cpu** *(inputs, grad_outputs)*

Applies backprop to output gradient arrays on CPU.

Parameters

- **inputs** – Tuple of input `numpy.ndarray` object(s).
- **grad_outputs** – Tuple of output gradient `numpy.ndarray` object(s).

Returns Tuple of input gradient `numpy.ndarray` object(s). Some or all of them can be `None`, if the function is not differentiable on corresponding inputs.

Return type `tuple`

**Warning:** Implementations of `Function` must take care that the return value must be a tuple even if it returns only one array.

**backward_gpu** *(inputs, grad_outputs)*

Applies backprop to output gradient arrays on GPU.

Parameters
• **inputs** – Tuple of input `cupy.ndarray` object(s).

• **grad_outputs** – Tuple of output gradient `cupy.ndarray` object(s).

**Returns** Tuple of input gradient `cupy.ndarray` object(s). Some or all of them can be `None`, if the function is not differentiable on corresponding inputs.

**Return type** `tuple`

**Warning:** Implementations of `Function` must take care that the return value must be a tuple even if it returns only one array.

`check_type_forward(in_types)`
Checks types of input data before forward propagation.

Before `forward()` is called, this function is called. You need to validate types of input data in this function using the type checking utilities.

**Parameters**

- **in_types** (`TypeInfoTuple`) – The type information of input data for `forward()`.

`delete_hook(name)`
Unregisters the specified function hook.

**Parameters**

- **name** (`str`) – the name of the function hook to be unregistered.

`forward(inputs)`
Applies forward propagation to input arrays.

It delegates the procedure to `forward_cpu()` or `forward_gpu()` by default. Which it selects is determined by the type of input arrays. Implementations of `Function` must implement either CPU/GPU methods or this method.

**Parameters**

- **inputs** – Tuple of input array(s).

**Returns** Tuple of output array(s).

**Warning:** Implementations of `Function` must take care that the return value must be a tuple even if it returns only one array.

`forward_cpu(inputs)`
Applies forward propagation to input arrays on CPU.

**Parameters**

- **inputs** – Tuple of `numpy.ndarray` object(s).

**Returns** Tuple of `numpy.ndarray` object(s).

**Return type** `tuple`

**Warning:** Implementations of `Function` must take care that the return value must be a tuple even if it returns only one array.

`forward_gpu(inputs)`
Applies forward propagation to input arrays on GPU.

**Parameters**

- **inputs** – Tuple of `cupy.ndarray` object(s).

**Returns** Tuple of `cupy.ndarray` object(s).
Return type  tuple

<table>
<thead>
<tr>
<th>Warning:</th>
<th>Implementations of Function must take care that the return value must be a tuple even if it returns only one array.</th>
</tr>
</thead>
</table>

retain_inputs (indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function can specify which inputs are required for backprop.

If this method is not called, the function keeps all input arrays. If you want to release all input arrays, call this method by passing an empty sequence. Note that this behavior is different from that of FunctionNode.retain_inputs().

Note that this method must not be called from the outside of forward method.

Parameters indexes (iterable of int) – Indexes of input variables that the function will require for backprop.

retain_outputs (indexes, retain_after_backward=False)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function can specify which outputs are required for backprop. If this method is not called, any output variables are not marked to keep the data array at the point of returning from __call__(). The retained arrays are stored to output_data.

Note: It is STRONGLY RECOMMENDED to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, whereas it might influence on the performance of later function applications to the output variables.

Note that this method must not be called from the outside of forward method.

Parameters

- indexes (iterable of int) – Indexes of input variables that the function will require for backprop.
- retain_after_backward (bool) – This option has no effect. It is left only for the backward compatibility.

unchain()
Purges in/out nodes and this function itself from the graph.

See FunctionNode.unchain() for the detail.

Attributes

inputs
The input nodes of the function.

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more information.
**local_function_hooks**
Ordered Dictionary of registered function hooks.

See `FunctionNode.local_function_hooks` for the detail.

**node**
The `FunctionAdapter` object that wraps this Function.

If the Function does not have a node object, this property automatically creates a new one.

**output_data**
A tuple of the retained output arrays.

It has the same length as the `outputs`. Elements that are not retained are set to `None`.

**outputs**
Weak references to the output nodes of the function.

**rank**
The topological ordinal of the corresponding function node.

### `chainer.FunctionAdapter`

**class** `chainer.FunctionAdapter (function)`
Adapter class to wrap Function with FunctionNode.

While `FunctionNode` provides the interface of new-style differentiable functions, the old-style `Function` can still be used for the backward compatibility. This class provides an adapter of there interface; it adds `FunctionNode` interface to any `Function` object by delegation.

**Note:** The ownership of `FunctionAdapter` and `Function` is a bit tricky. At the initialization, `FunctionAdapter` is owned by the `Function` object. Once the function is applied to variables, the ownership is reversed; the adapter becomes the owner of the `Function` object and the `Function` object changes the reference to a weak one.

**Parameters**
- **function** (`Function`) – The function object to wrap.

New in version 3.0.0.

**Methods**

- **__call__(**`*args`, **`**kwargs`)**

- **add_hook (hook, name=None)**
  Registers a function hook.

  **Parameters**
  - **hook** (`FunctionHook`) – Function hook to be registered.
  - **name** (`str`) – Name of the function hook. The name must be unique among function hooks registered to this function. If `None`, the default name of the function hook is used.
apply \((inputs)\)
Computes output variables and grows the computational graph.
Basic behavior is expressed in the documentation of FunctionNode.

**Note:** If the data attribute of input variables exist on a GPU device, that device is made current before calling `forward()`, so implementors do not need to take care of device selection in most cases.

**Parameters** inputs – Tuple of input variables. Each element can be either Variable, `numpy.ndarray`, or `cupy.ndarray`. If the element is an ndarray, it is automatically wrapped with Variable.

**Returns** A tuple of output Variable objects.

backward \((target_input_indexes, grad_outputs)\)
backward_accumulate \((target_input_indexes, grad_outputs, grad_inputs)\)
Computes gradients w.r.t.specified inputs and accumulates them.
This method provides a way to fuse the backward computation and the gradient accumulations in the case that the multiple functions are applied to the same variable.
Users have to override either of this method or `backward()`. It is often simpler to implement `backward()` and is recommended if you do not need to provide efficient gradient accumulation.

**Parameters**
- **target_input_indexes** (tuple of int) – Indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.
- **grad_outputs** (tuple of Variable) – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is None.
- **grad_inputs** (tuple of Variable) – Gradients w.r.t. the input variables specified by `target_input_indexes`. These values are computed by other computation paths. If there is no gradient value existing for the variable, the corresponding element is None. See also the note below.

**Returns** Tuple of variables that represent the gradients w.r.t. specified input variables. Unlike `backward()`, the length of the tuple must be same as that of `target_input_indices`.

**Note:** When the same variable is passed to the multiple input arguments of a function, only the first position of `grad_inputs` corresponding to these input arguments may contain the gradient variable corresponding to that input variable, and other entries are set to None. This is an implementation-detail convention to avoid the complication of correctly accumulating gradients in such a case. This behavior might be changed in a future version.

check_type_forward \((in_types)\)
delete_hook \((name)\)
Unregisters the function hook.

**Parameters**
- **name** (str) – The name of the function hook to be unregistered.

forward \((inputs)\)
forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables.

get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this method is called; in this case, this method creates a fresh variable node that acts as an output node of the function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are required for backprop. The input variables with retained arrays can then be obtained by calling get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of :meth:`forward`.

Parameters indexes (iterable of int) – Indexes of input variables that the function will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from `apply()`. The output variables with retained arrays can then be obtained by calling `get_retained_outputs()` from inside `backward()`.

**Note:** It is recommended to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, although it might affect the performance of later function applications on the output variables.

Note that **this method must not be called from the outside of `forward`**.

**Parameters**

- `indexes` *(iterable of int)* – Indexes of output variables that the function will require for backprop.

`unchain()`

Purges in/out nodes and this function node itself from the graph.

**Attributes**

- `function` – The `Function` object that this adapter is wrapping.
- `inputs` = `None`
- `label`
- `local_function_hooks` – Ordered dictionary of registered function hooks.
  
  Contrary to `chainer.thread_local.function_hooks`, which registers its elements to all functions, Function hooks in this property is specific to this function.
- `output_data` – A tuple of the retained output arrays.
  
  This property is mainly used by `Function`. Users basically do not have to use this property; use `get_retained_outputs()` instead.
- `outputs` = `None`
- `rank` = `0`
- `stack` = `None`

**Class chainer.FunctionNode**

Function node of the computational graph.

FunctionNode is a class representing a node in a computational graph. The node corresponds to an application of a differentiable function to input variables.

When a differentiable function is applied to `Variable` objects, it creates an instance of `FunctionNode` implementation and calls its `apply()` method. The `apply()` method basically does the following three things.

1. Adding an edge from the function node to the variable node corresponding to each input. The node of each input is extracted by `Variable.node`.
2. Computing the output arrays of the function.
3. Creating a `Variable` object for each output array and adding an edge from the node of the variable to the function node.

The output variables are then returned.

**Example**

Let `x` be an instance of `Variable` and `f` be an instance of `FunctionNode` taking only one argument. Then the following code

```python
>>> import numpy, chainer, chainer.functions as F
>>> x = chainer.Variable(numpy.zeros(10))
>>> f = F.Identity()
>>> y = f.apply((x,))[0]
```

computes a new variable `y` and creates backward references. The backward references are actually set as per the following diagram:

```
x.node <---- f <---- y.node
```

If an application of another function `g` occurs as

```python
>>> g = F.Identity()
>>> z = g.apply((x,))[0]
```

then the graph grows with a branch:

```
|--- f <---- y.node
x.node <--+
|--- g <---- z.node
```

Note that the branching is correctly managed on backward computation, i.e. the gradients from `f` and `g` are accumulated to the gradient of `x`.

Every function-node implementation should provide `forward()` and `backward()`. Instead of overriding `forward()`, one can also implement `forward_cpu()` and `forward_gpu()` when the implementations for CPU and GPU arrays are totally different.

Note that the input and output variables are inaccessible from `backward()` by default. If it needs accesses to these variables, the `forward()` method (or its CPU/GPU variants) has to call `retain_inputs()` and `retain_outputs()` appropriately. The retained input/output variables can be accessed from `backward()` by calling `get_retained_inputs()` and `get_retained_outputs()`.

Note: There are two types of differentiable functions in Chainer (since v3). The first type is of a function using a subclass of `Function`, which is called old-style differentiable function. The second type is of a function using a subclass of `FunctionNode`, which is called new-style differentiable function. There are several advantages on using the new-style differentiable function.

- The new-style differentiable function supports differentiable backpropagation. The backpropagated gradients computed through the new-style differentiable functions themselves support further backpropagations so that the automatic higher-order differentiation is available.
- The backpropagation of the new-style differentiable function can be more computationally efficient because the interface allows an implementation to omit the computation of unneeded input gradients.

2.1. Core functionalities
Note that the new-style differentiable function is the standard way of defining a function node of the computational graph in Chainer; old-style differentiable functions are implemented as wrappers of the new-style differentiable functions.

### Variables

- **inputs** – A tuple of the input `VariableNode` objects.
- **outputs** – A tuple of weak references to the output `VariableNode` objects.
- **rank** (`int`) – An ordinal following the topological order of the computational graph.
- **stack** – Stack trace retrieved at the forward computation. The stack trace is available only in the debug mode.

New in version 3.0.0.

### Methods

- **`__call__`**(*args, **kwargs*)

- **`add_hook`**(*hook, name=None*)
  Registers a function hook.
  
  **Parameters**
  
  - **hook** (`FunctionHook`) – Function hook to be registered.
  - **name** (`str`) – Name of the function hook. The name must be unique among function hooks registered to this function. If `None`, the default name of the function hook is used.

- **`apply`**(*inputs*)
  Computes output variables and grows the computational graph.
  
  Basic behavior is expressed in the documentation of `FunctionNode`.

  **Note:** If the `data` attribute of input variables exist on a GPU device, that device is made current before calling `forward()`, so implementors do not need to take care of device selection in most cases.

  **Parameters** **inputs** – Tuple of input variables. Each element can be either `Variable`, `numpy.ndarray`, or `cupy.ndarray`. If the element is an ndarray, it is automatically wrapped with `Variable`.

  **Returns** A tuple of output `Variable` objects.

- **`backward`**(*target_input_indexes, grad_outputs*)
  Computes gradients w.r.t. specified inputs given output gradients.
  
  This method is used to compute one step of the backpropagation corresponding to the forward computation of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t. specified input variables. Note that this method does not need to compute any input gradients not specified by `target_input_indices`.

  Unlike `Function.backward()`, gradients are given as `Variable` objects and this method itself has to return input gradients as `Variable` objects. It enables the function node to return the input gradients with the full computational history, in which case it supports differentiable backpropagation or higher-order differentiation.
The default implementation returns `None`, which means the function is not differentiable.

**Parameters**

- `target_input_indexes (tuple of int)` – Indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

- `grad_outputs (tuple of Variable)` – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is `None`.

**Returns** Tuple of variables that represent the gradients w.r.t. specified input variables. The length of the tuple can be same as either `len(target_input_indexes)` or the number of inputs. In the latter case, the elements not specified by `target_input_indexes` will be discarded.

See also:

`backward_accumulate()` provides an alternative interface that allows you to implement the backward computation fused with the gradient accumulation.

**backward_accumulate**(*target_input_indexes, grad_outputs, grad_inputs*)

Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case that the multiple functions are applied to the same variable.

Users have to override either of this method or `backward()`. It is often simpler to implement `backward()` and is recommended if you do not need to provide efficient gradient accumulation.

**Parameters**

- `target_input_indexes (tuple of int)` – Indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

- `grad_outputs (tuple of Variable)` – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is `None`.

- `grad_inputs (tuple of Variable)` – Gradients w.r.t. the input variables specified by `target_input_indexes`. These values are computed by other computation paths. If there is no gradient value existing for the variable, the corresponding element is `None`. See also the note below.

**Returns** Tuple of variables that represent the gradients w.r.t. specified input variables. Unlike `backward()`, the length of the tuple **must** be same as that of `target_input_indexes`.

**Note:** When the same variable is passed to the multiple input arguments of a function, only the first position of `grad_inputs` corresponding to these input arguments may contain the gradient variable corresponding to that input variable, and other entries are set to `None`. This is an implementation-detail convention to avoid the complication of correctly accumulating gradients in such a case. This behavior might be changed in a future version.

**check_type_forward**(*in_types*)

Checks types of input data before forward propagation.

This method is called before `forward()` and validates the types of input variables using the type checking utilities.
Parameters `in_types` (TypeInfoTuple) – The type information of input variables for `forward()`.

`delete_hook(name)`
Unregisters the function hook.

Parameters `name` (str) – The name of the function hook to be unregistered.

`forward(inputs)`
Computes the output arrays from the input arrays.

It delegates the procedure to `forward_cpu()` or `forward_gpu()` by default. Which of them this method selects is determined by the type of input arrays. Implementations of `FunctionNode` must implement either CPU/GPU methods or this method.

Parameters `inputs` – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of `FunctionNode` must take care that the return value must be a tuple even if it returns only one array.

`forward_cpu(inputs)`
Computes the output arrays from the input NumPy arrays.

Parameters `inputs` – Tuple of input `numpy.ndarray` objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of `FunctionNode` must take care that the return value must be a tuple even if it returns only one array.

`forward_gpu(inputs)`
Computes the output arrays from the input CuPy arrays.

Parameters `inputs` – Tuple of input `cupy.ndarray` objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of `FunctionNode` must take care that the return value must be a tuple even if it returns only one array.

`get_retained_inputs()`
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in `forward()`.

Returns A tuple of retained input variables.

`get_retained_outputs()`
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in `forward()`.

Returns A tuple of retained output variables.
### retain_inputs (indexes)

Lets specified input variable nodes keep data arrays. By calling this method from `forward()`, the function node can specify which inputs are required for backprop. The input variables with retained arrays can then be obtained by calling `get_retained_inputs()` from inside `backward()`.

Unlike `Function`, the function node DOES NOT keep input arrays by default. If you want to keep some or all input arrays, do not forget to call this method.

**Note:** This method must not be called from the outside of :meth:`forward`.

**Parameters**
- `indexes` \(\text{(iterable of int)}\) – Indexes of input variables that the function will require for backprop.

### retain_outputs (indexes)

Lets specified output variable nodes keep data arrays. By calling this method from `forward()`, the function node can specify which outputs are required for backprop. If this method is not called, no output variables will be marked to keep their data array at the point of returning from `apply()`. The output variables with retained arrays can then be obtained by calling `get_retained_outputs()` from inside `backward()`.

**Note:** It is recommended to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, although it might affect the performance of later function applications on the output variables.

**Note:** This method must not be called from the outside of :meth:`forward`.

**Parameters**
- `indexes` \(\text{(iterable of int)}\) – Indexes of output variables that the function will require for backprop.

### unchain()

Purges in/out nodes and this function node itself from the graph.

### Attributes

- **inputs** = None
- **label**
  - Short text that represents the function.
  - The default implementation returns its type name. Each function should override it to give more information.
- **local_function_hooks**
  - Ordered dictionary of registered function hooks.
  - Contrary to `chainer.thread_local.function_hooks`, which registers its elements to all functions, Function hooks in this property is specific to this function.
- **output_data**
  - A tuple of the retained output arrays.
This property is mainly used by `Function`. Users basically do not have to use this property; use `get_retained_outputs()` instead.

```python
outputs = None
rank = 0
stack = None
```

### chainer.force_backprop_mode

`chainer.force_backprop_mode()`

Make a context manager which enables back-propagation.

When you want to enable back-propagation in `no_backprop_mode()`, call this method. A `Variable` created in this context always has a computational graph unless overridden by deeper contexts. If you call this method outside of `no_backprop_mode()` context, it changes nothing.

In the following example, `y` has a computational graph and calling `backward()` on `y` will compute and accumulate the gradients of the variables in the graph, in this case only `x`.

```python
>>> x = chainer.Variable(np.array([1,], 'f'))
>>> with chainer.no_backprop_mode():
... with chainer.force_backprop_mode():
... y = x + 1
... y.backward()
>>> x.grad
array([1.], dtype=float32)
```

See also:

See `no_backprop_mode()` for details on disabled back-propagation mode.

### chainer.no_backprop_mode

`chainer.no_backprop_mode()`

Make a context manager which disables back-propagation.

In this context, Chainer does not make a computational graph. It has the benefit of reducing memory consumption. However, a `Variable` created in this context does not hold a reference to the `FunctionNode` that created itself so no gradients are accumulated by `backward()`.

In the following example, `y` is created in this context, which means that calling `backward()` on `y` has no effect on the gradients of `x`.

```python
>>> x = chainer.Variable(np.array([1,], 'f'))
>>> with chainer.no_backprop_mode():
... y = x + 1
... y.backward()
>>> x.grad is None
True
```

See also:

See `force_backprop_mode()` for details on how to override this context.
chainer.grad

chainer.grad(outputs, inputs, grad_outputs=None, grad_inputs=None, set_grad=False, retain_grad=False, enable_double_backprop=False)

Computes the gradient of output variables w.r.t. the input variables.

This function implements the backpropagation algorithm. While Variable.backward() also implements backprop, this function selects the smallest paths in the computational graph needed to compute the gradients w.r.t. inputs. The error is backpropagated only through these selected paths, which may reduce the overall computational cost.

This function also differs from Variable.backward() in the way to return the gradients; it directly returns the gradient variables as a list instead of setting gradients to the Variable.grad_var attribute of the original variable. It means users do not need to clear the gradient w.r.t. each variable before computing the gradient using this function. If set_grad option is set to True, the computed gradient is also stored in the Variable.grad_var attribute of each variable, in which case any original value of Variable.grad_var will be updated even if it had already been set.

Parameters

- **outputs** (tuple or list of Variable) – A sequence of output variables from which backprop starts.
- **inputs** (tuple or list of Variable) – A sequence of input variables each of which this function computes the gradient w.r.t.
- **grad_outputs** (tuple or list of Variable or None) – A sequence of variables that gives the initial value of each output gradient. If an element is set to None, an array filled with 1 is used. If this argument itself is None, it is treated as a sequence of Nones.
- **grad_inputs** (tuple or list of Variable or None) – A sequence of variables that gives the initial value of each input gradient. The gradients computed by the backprop algorithm are accumulated to them (not in-place). If an element is set to None, the gradient is not accumulated to this value. If this argument itself is None, it is treated as a sequence of Nones.
- **set_grad** (bool) – If it is True, the Variable.grad_var attribute of each input variable is set to the corresponding computed gradient variable.
- **retain_grad** (bool) – If it is True, the gradients w.r.t. all the intermediate variables are stored in the Variable.grad_var attribute. In this case, the set_grad option is ignored.
- **enable_double_backprop** (bool) – If it is True, the computed gradients can be further backpropagated. Enabling it may increase the memory consumption (and possibly the computational time) to remember the intermediate gradient values for the second backpropagation.

Returns A list of gradient variables w.r.t. the inputs.

2.1.3 Link and Chain

<table>
<thead>
<tr>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.Link</td>
<td>Building block of model definitions.</td>
</tr>
<tr>
<td>chainer.Chain</td>
<td>Composable link with object-like interface.</td>
</tr>
<tr>
<td>chainer.ChainList</td>
<td>Composable link with list-like interface.</td>
</tr>
</tbody>
</table>
**chainer.Link**

```python
class chainer.Link(**params)
 Building block of model definitions.
```

Link is a building block of neural network models that support various features like handling parameters, defining network fragments, serialization, etc.

Link is the primitive structure for the model definitions. It supports management of parameter variables and persistent values that should be incorporated to serialization.

Parameter is an instance of `Parameter` registered to a link. A `Parameter` object can be registered as a parameter of the link by assigning it to an attribute within an initialization scope, which is a code surrounded by a `init_scope()` context manager using the `with` statement.

Persistent values are arrays, scalars, or any other serializable values registered via `register_persistent()` or `add_persistent()`.

**Note:** Whereas arbitrary serializable objects can be registered as persistent values, it is strongly recommended to just register values that should be treated as results of learning. A typical example of persistent values is ones computed during training and required for testing, e.g., running statistics for batch normalization.

Parameters and persistent values are referred by their names. They can be accessed as attributes of the links. Link class itself manages the lists of names of parameters and persistent values to distinguish parameters and persistent values from other attributes.

Link can be composed into more complex models. This composition feature is supported by child classes like `Chain` and `ChainList`. One can create a chain by combining one or more links. See the documents for these classes for details.

As noted above, Link supports the serialization protocol of the `Serializer` class. **Note that only parameters and persistent values are saved and loaded.** Other attributes are considered as a part of user program (i.e., a part of network definition). In order to construct a link from saved file, other attributes must be identically reconstructed by user codes.

**Example**

This is a simple example of custom link definition. Chainer itself also provides many links defined under the `links` module. They might serve as examples, too.

Consider we want to define a simple primitive link that implements a fully-connected layer based on the `linear()` function. Note that this function takes input units, a weight variable, and a bias variable as arguments. Then, the fully-connected layer can be defined as follows:

```python
import chainer
import chainer.functions as F
from chainer import initializers
import numpy as np

class LinearLayer(chainer.Link):
 def __init__(self, n_in, n_out):
 super(LinearLayer, self).__init__()
 with self.init_scope():
 self.W = chainer.Parameter(initializers.Normal(), (n_out, n_in))
 self.b = chainer.Parameter
```
initializers.Zero(), (n_out,))

def __call__(self, x):
    return F.linear(x, self.W, self.b)

This example shows that a user can define arbitrary parameters and use them in any methods. Links typically implement the __call__ operator, although they can also provide other methods to implement the forward propagation.

**Parameters**

- **params** *(deprecated since v2.0.0)* Names, shapes, and optional dtypes of initial parameters. The keywords are used as the parameter names and the corresponding values consist either of the shape or a tuple of shape and a dtype *(shape, dtype)*. If only the shape is supplied, the default dtype will be used.

- **Variables**

  - **name** *(str)* – Name of this link, given by the parent chain (if exists).

**Methods**

- **add_param** *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

  Registers a parameter to the link.

  Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
 link.add_param('W', shape=(5, 3))
  ```

  can be replaced by the following assignment.

  ```python
 with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
  ```

  The latter is easier for IDEs to keep track of the attribute’s type.

  **Parameters**

  - **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
  - **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
  - **dtype** – Data type of the parameter array.
  - **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

- **add_persistent** *(name, value)*

  Registers a persistent value to the link.

  The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

  **Parameters**

  - **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
  - **value** – Value to be registered.
addgrads (link)
Accumulates gradient values from given link.
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams (link)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

**Parameters**

- **device** – Target device specifier. If omitted, the current device is used.

**Returns**

self

**zerograds ()**

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

**Attributes**

- **update_enabled**
  True if at least one parameter has an update rule enabled.

- **within_init_scope**
  True if the current code is inside of an initialization scope.

  See `init_scope()` for the details of the initialization scope.

- **xp**
  Array module for this link.

  Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

**chainer.Chain**

**class chainer.Chain(**links)**

Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural net models consist of many reusable fragments, and each model itself might be embedded into a larger learnable system. Chain enables us to write a neural net based on composition, without bothering about routine works like collecting parameters, serialization, copying the structure with parameters shared, etc.

This class actually provides a way to compose one or more links into one structure. A chain can contain one or more child links. Child link is a link registered to the chain with its own name. The child link is stored to an attribute of the chain with the name. User can write a whole model or a fragment of neural nets as a child class of Chain.

Each chain itself is also a link. Therefore, one can combine chains into higher-level chains. In this way, links and chains construct a link hierarchy. Link hierarchy forms a tree structure, where each node is identified by the path from the root. The path is represented by a string like a file path in UNIX, consisting of names of nodes on the path, joined by slashes `/`.

A child link can be added just by assigning it to an attribute of the chain within `init_scope()`.

The registered child link is saved and loaded on serialization and deserialization, and involved in the optimization. The registered link is called a child. The child link is accessible via `children()` generator, which returns a generator running through the children in registered order.

On registration of a child link, its name attribute is also set (or overwritten if the link has already been registered to another chain).
Example

This is a simple example of custom chain definition. Chainer itself also provides some chains defined under the `links` module. They might serve as examples, too.

Consider we want to define a multi-layer perceptron consisting of two hidden layers with rectifiers as activation functions. We can use the `Linear` link as a building block:

```python
import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):
 def __init__(self, n_in, n_hidden, n_out):
 super(MultiLayerPerceptron, self).__init__()
 with self.init_scope():
 self.layer1 = L.Linear(n_in, n_hidden)
 self.layer2 = L.Linear(n_hidden, n_hidden)
 self.layer3 = L.Linear(n_hidden, n_out)

 def __call__(self, x):
 # Forward propagation
 h1 = F.relu(self.layer1(x))
 h2 = F.relu(self.layer2(h1))
 return self.layer3(h2)
```

Child links are registered via the assignment within a `with self.init_scope():` block. The forward propagation is often implemented as the `__call__` operator as the above example, though it is not mandatory.

**Parameters**

- **links** – Child links. The keywords are used as their names. The names are also set to the links.

  Deprecated since version v2.0.0: Assign child links directly to attributes instead.

**Methods**

- **__getitem__(name)**
  Equivalent to `getattr`.

- **add_link(name, link)**
  Registers a child link to this chain.

  Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
 chain.add_link('ll', L.Linear(3, 5))
  ```

  can be replaced by the following line.

  ```python
 with chain.init_scope():
 chain.ll = L.Linear(3, 5)
  ```

  The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

2.1. Core functionalitites
• **name**(str) – Name of the child link. This name is also used as the attribute name.

• **link**(Link) – The link object to be registered.

**add_param**(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

• **name**(str) – Name of the parameter. This name is also used as the attribute name.

• **shape**(int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

**add_persistent**(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

• **name**(str) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

**addgrads**(link)

**children**()

**cleargrads**()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy**()

**copyparams**(link)

**disable_update**()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

**enable_update**()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

Links  

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>links</td>
<td>skipself=False</td>
</tr>
<tr>
<td>namedlinks</td>
<td>skipself=False</td>
</tr>
<tr>
<td>namedparams</td>
<td>include_uninit=True</td>
</tr>
<tr>
<td>params</td>
<td>include_uninit=True</td>
</tr>
<tr>
<td>register_persistent</td>
<td>name</td>
</tr>
</tbody>
</table>

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters  

- **name** (str) – Name of the attribute to be registered.

Serialize  

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>serialize</td>
<td>serializer</td>
</tr>
</tbody>
</table>

to_cpu()

to_gpu(device=None)

zerograd()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes  

- **update_enabled**
  True if at least one parameter has an update rule enabled.

- **within_init_scope**
  True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.
xp
Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

**chainer.ChainList**

*class* `chainer.ChainList(*links)`

Composable link with list-like interface.

This is another example of compositional link. Unlike `Chain`, this class can be used like a list of child links. Each child link is indexed by a non-negative integer, and it maintains the current number of registered child links. The `add_link()` method inserts a new link at the end of the list. It is useful to write a chain with arbitrary number of child links, e.g. an arbitrarily deep multi-layer perceptron.

Note that this class does not implement all methods of `list`.

**Parameters**

- `links` – Initial child links.

**Methods**

- `__getitem__(index)`
  Returns the child at given index.
  
  **Parameters**
  - `index` (`int`) – Index of the child in the list.
  
  **Returns**
  The `index`-th child link.

- `__len__()`
  Returns the number of children.

- `__iter__()`

- `add_link(link)`
  Registers a child link and adds it to the tail of the list.
  
  **Parameters**
  - `link` (`Link`) – The link object to be registered.

- `add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`
  Registers a parameter to the link.
  
  Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
 link.add_param('W', shape=(5, 3))
  ```
  
  can be replaced by the following assignment.

  ```python
 with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
  ```
  
  The latter is easier for IDEs to keep track of the attribute’s type.

  **Parameters**

  - `name` (`str`) – Name of the parameter. This name is also used as the attribute name.

  - `shape` (`int` or `tuple of ints`) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• **dtype** – Data type of the parameter array.

• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

### add_persistent

`add_persistent(name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

### addgrads

`addgrads(link)`

### append

`append(link)`

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the `list` interface.

**Parameters**

• **link** *(Link)* – The link object to be registered.

### children

### cleargrads

`cleargrads()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

### copy

### copyparams

`copyparams(link)`

### disable_update

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

### enable_update

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

### init_scope

`init_scope()`

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

### Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
```
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu ()
to_gpu (device=None)

zerograds ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads () instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

2.1.4 Optimizer

<table>
<thead>
<tr>
<th>chainer.optimizer.Hyperparameter</th>
<th>Set of hyperparameter entries of an optimizer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.UpdateRule</td>
<td>Base class of all update rules.</td>
</tr>
<tr>
<td>chainer.Optimizer</td>
<td>Base class of all numerical optimizers.</td>
</tr>
<tr>
<td>chainer.GradientMethod</td>
<td>Base class of all single gradient-based optimizers.</td>
</tr>
</tbody>
</table>
chainer.optimizer.Hyperparameter

class chainer.optimizer.Hyperparameter (parent=None)
Set of hyperparameter entries of an optimizer.

This is a utility class to provide a set of hyperparameter entries for update rules and an optimizer. Each entry can be set as an attribute of a hyperparameter object.

A hyperparameter object can hold a reference to its parent hyperparameter object. When an attribute does not exist in the child hyperparameter, it automatically refers to the parent. We typically set the hyperparameter of the gradient method as the parent of the hyperparameter of each update rule. It enables us to centralize the management of hyperparameters (e.g. we can change the learning rate of all update rules just by modifying the hyperparameter of the central optimizer object), while users can freely customize the hyperparameter of each update rule if needed.

Parameters parent (Hyperparameter) – Parent hyperparameter.

Methods

get_dict ()
Converts the hyperparameter into a dictionary.

    Returns Dictionary containing all entries that can be referred by this hyperparameter object.

Attributes

parent
Parent hyperparameter object.

chainer.UpdateRule

class chainer.UpdateRule (parent_hyperparam=None)
Base class of all update rules.

Update rule is an object that implements how to update one parameter variable using the gradient of a loss function. This class provides the interface and the common features of any update rules.

An update rule can be set to a Variable object that represents a parameter array of a model. An Optimizer instance defines which parameters to update, and the update rule instance of each parameter defines how to update it.

Hook functions can be set to any update rule instance. The hook function is called just before any updates in the order of registrations.

An implementation of update rule should override update_core() or its device-dependent variants (i.e., update_core_cpu() and update_core_gpu()).

The state (e.g. a moving average of the gradient) of the update rule is stored into the state dictionary. An implementation of update rule using state should also override init_state() to initialize the state at the first update. The values of the state dictionary are automatically copied to the appropriate device before the update based on the data and grad arrays.

Parameters parent_hyperparam (Hyperparameter) – Hyperparameter that provides the default values.

Variables
• **enabled** *(bool)* – Flag to configure if this update rule is active. If the update rule is not active (i.e., *enabled* = False), the *update()* method does not update the parameter.

• **hyperparam** *(Hyperparameter)* – Hyperparameter of the update rule.

• **t** *(int)* – Number of updates made by this update rule.

### Methods

**add_hook** *(hook, name=None)*

Adds a hook function.

The hook function is called before any updates.

**Parameters**

• **hook** *(callable)* – Hook function to be added. It takes two arguments: the update rule object and the parameter variable.

• **name** *(str)* – Name of the hook function. The name attribute of the hook function is used by default.

**init_state** *(param)*

Initializes the state.

Any implementations that use the state should override this method. This method is called at the first update.

**Parameters**

• **param** *(Variable)* – Parameter variable. It can be used to extract the shape and the data type of the parameter.

**remove_hook** *(name)*

Removes the specified hook function.

**Parameters**

• **name** *(str)* – Name of the hook function to be removed. The hook function registered with this name will be removed.

**serialize** *(serializer)*

Serializes the update rule state.

Be careful that this method only saves/loads the state of the update rule. The parameters of the target link is not saved/loaded by this method, and so you need to serialize the target link separately if you want to fully recover the training state including parameters.

**Parameters**

• **serializer** *(AbstractSerializer)* – Serializer object.

**update** *(param)*

Invokes hook functions and updates the parameter.

**Parameters**

• **param** *(Variable)* – Variable to be updated.

**update_core** *(param)*

Updates the parameter.

Implementation of UpdateRule should override this method or both of *update_core_cpu()* and *update_core_gpu()*.

**Parameters**

• **param** *(Variable)* – Variable to be updated.

**update_core_cpu** *(param)*

Updates the parameter on CPU.

See *update_core()* for details.
Parameters `param` *(Variable)* – Variable to be updated.

`update_core_gpu(param)`

Updates the parameter on GPU.

See `update_core()` for details.

Parameters `param` *(Variable)* – Variable to be updated.

**Attributes**

- `state`
  - State dictionary.

---

**chainer.Optimizer**

**class** `chainer.Optimizer`

Base class of all numerical optimizers.

This class provides basic features for all optimization methods. It optimizes parameters of a *target link*. The target link is registered via the `setup()` method, and then the `update()` method updates its parameters based on a given loss function.

Each optimizer implementation must be defined as a child class of Optimizer. It must override `update()` method.

If the optimizer is based on single gradient computation (like most first-order methods), then it should inherit `GradientMethod`, which adds some features dedicated for the first order methods, including the support of `UpdateRule`.

Optimizer instance also supports *hook functions*. Hook function is registered by the `add_hook()` method. Each hook function is called in registration order in advance of the actual parameter update. If the hook function has an attribute `call_for_each_param` and its value is `True`, the hook function is used as a hook function of all update rules (i.e., it is invoked for every parameter by passing the corresponding update rule and the parameter).

**Variables**

- `target` – Target link object. It is set by the `setup()` method.
- `t` – Number of update steps. It must be incremented by the `update()` method.
- `epoch` – Current epoch. It is incremented by the `new_epoch()` method.

**Methods**

`add_hook(hook, name=None)`

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

**Parameters**

- `hook (function)` – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- `name (str)` – Name of the registration. If omitted, `hook.name` is used by default.
call_hooks()
Invokes hook functions in registration order.

new_epoch()
Starts a new epoch.
This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

remove_hook(name)
Removes a hook function.

Parameters
name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.
It only saves or loads the following things:
• Optimizer states
• Global states (t and epoch)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters
serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)
Sets a target link and initializes the optimizer states.
Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

Parameters
link (fLink) – Target link object.

update(lossfun=None, *args, **kwds)
Updates the parameters.
This method updates the parameters of the target link. The behavior of this method is different for the cases either lossfun is given or not.

If lossfun is given, this method typically clears the gradients, calls the loss function with given extra arguments, and calls the backward() method of its output to compute the gradients. The actual implementation might call lossfun more than once.

If lossfun is not given, then this method assumes that the gradients of all parameters are already computed. An implementation that requires multiple gradient computations might raise an error on this case.

In both cases, this method invokes the update procedure for all parameters.

Parameters
• lossfun (function) – Loss function. It accepts arbitrary arguments and returns one Variable object that represents the loss (or objective) value. This argument can be omitted for single gradient-based methods. In this case, this method assumes gradient arrays computed.
• kwds (args,) – Arguments for the loss function.

class chainer.GradientMethod
Base class of all single gradient-based optimizers.
This is an extension of the Optimizer class. Typical gradient methods that just require the gradient at the current parameter vector on an update can be implemented as its child class.

This class uses UpdateRule to manage the update rule of each parameter. A child class of GradientMethod should override create_update_rule() to create the default update rule of each parameter.

This class also provides hyperparam, which is the hyperparameter used as the default configuration of each update rule. All built-in gradient method implementations also provide proxy properties that act as aliases to the attributes of hyperparam. It is recommended to provide such an alias to each attribute. It can be done by only adding one line for each attribute using HyperparameterProxy.

Variables hyperparam (Hyperparameter) – The hyperparameter of the gradient method. It is used as the default configuration of each update rule (i.e., the hyperparameter of each update rule refers this hyperparameter as its parent).

Methods

add_hook (hook, name=None)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

call_hooks()
Invokes hook functions in registration order.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each parameter. Each implementation of the gradient method should override this method to provide the default update rule implementation.

Returns Update rule object.

Return type UpdateRule

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook (name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.
 serialize(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (t and epoch)

**It does not saves nor loads the parameters of the target link.** They should be separately saved or loaded.

**Parameters**

- `serializer (AbstractSerializer)` – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)

Enables or disables use of `cleargrads()` in `update`.

**Parameters**

- `use (bool)` – If `True`, this function enables use of `cleargrads`. If `False`, disables
use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default.
`cleargrads()` is more efficient than `zerograds()`, so one does not have to call
`use_cleargrads()`. This method remains for backward compatibility.

**Hook functions**

<table>
<thead>
<tr>
<th>chainer.optimizer.WeightDecay</th>
<th>Optimizer/UpdateRule hook function for weight decay regularization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.optimizer.Lasso</td>
<td>Optimizer/UpdateRule hook function for Lasso regularization.</td>
</tr>
<tr>
<td>chainer.optimizer.GradientClipping</td>
<td>Optimizer hook function for gradient clipping.</td>
</tr>
<tr>
<td>chainer.optimizer.GradientNoise</td>
<td>Optimizer/UpdateRule hook function for adding gradient noise.</td>
</tr>
</tbody>
</table>

**chainer.optimizer.WeightDecay**

class chainer.optimizer.WeightDecay(rate)

Optimizer/UpdateRule hook function for weight decay regularization.

This hook function adds a scaled parameter to the corresponding gradient. It can be used as a regularization.

**Parameters**

- `rate (float)` – Coefficient for the weight decay.

**Variables**

- `rate (float)` – Coefficient for the weight decay.
Methods

__call__(rule, param)

Attributes

call_for_each_param = True
name = ‘WeightDecay’

chainer.optimizer.Lasso

class chainer.optimizer.Lasso(rate)
   Optimizer/UpdateRule hook function for Lasso regularization.
   This hook function adds a scaled parameter to the sign of each weight. It can be used as a regularization.
   Parameters rate(float) – Coefficient for the weight decay.
   Variables rate(float) – Coefficient for the weight decay.

Methods

__call__(rule, param)

Attributes

call_for_each_param = True
name = ‘Lasso’

chainer.optimizer.GradientClipping

class chainer.optimizer.GradientClipping(threshold)
   Optimizer hook function for gradient clipping.
   This hook function scales all gradient arrays to fit to the defined L2 norm threshold.
   Parameters threshold(float) – L2 norm threshold.
   Variables threshold(float) – L2 norm threshold of gradient norm.

Methods

__call__(opt)

Attributes

name = ‘GradientClipping’
chainer.optimizer.GradientNoise

class chainer.optimizer.GradientNoise(eta, noise_func=<function exponential_decay_noise>)

Optimizer/UpdateRule hook function for adding gradient noise.

This hook function simply adds noise generated by the noise_func to the gradient. By default it adds time-dependent annealed Gaussian noise to the gradient at every training step:

\[ g_t \leftarrow g_t + N(0, \sigma_t^2) \]

where

\[ \sigma_t^2 = \eta \left(1 + \frac{t}{\gamma}\right) \]

with \( \eta \) selected from \{0.01, 0.3, 1.0\} and \( \gamma = 0.55 \).

Parameters

- **eta** (float) – Parameter that defines the scale of the noise, which for the default noise function is recommended to be either 0.01, 0.3 or 1.0.
- **noise_func** (function) – Noise generating function which by default is given by Adding Gradient Noise Improves Learning for Very Deep Networks.

Methods

- **__call__**(rule, param)

Attributes

- **call_for_each_param** = True
- **name** = ‘GradientNoise’

2.1.5 Serializer

chainer.AbstractSerializer

class chainer.AbstractSerializer

Abstract base class of all serializers and deserializers.

chainer.Serializer

Base class of all serializers.

chainer.Deserializer

Base class of all deserializers.

chainer.AbstractSerializer

class chainer.AbstractSerializer

Abstract base class of all serializers and deserializers.

Methods

- **__call__**(key, value)

  Serializes or deserializes a value by given name.

  This operator saves or loads a value by given name.
If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the value argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the value argument. String values are treated like scalars.

**Note:** As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When value is None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved None value is loaded by a deserializer, it should quietly return the None value without modifying the value object.

**Parameters**

- **key** *(str)* – Name of the serialization entry.
- **value** *(scalar, numpy.ndarray, cupy.ndarray, None, or str)* – Object to be (de)serialized. None is only supported by deserializers.

**Returns** Serialized or deserialized value.

---

**__getitem__(key)**

Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

**Parameters** key *(str)* – Name of the child serializer.

---

**chainer.Serializer**

**class** chainer.Serializer

Base class of all serializers.

**Methods**

**__call__(key, value)**

Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the value argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the value argument. String values are treated like scalars.

**Note:** As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When value is None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved None value is loaded by a deserializer, it should quietly return the None value without modifying the value object.
Parameters

- **key (str)** – Name of the serialization entry.
- **value (scalar, numpy.ndarray, cupy.ndarray, None, or str)** – Object to be (de)serialized. None is only supported by deserializers.

Returns

Serialized or deserialized value.

**__getitem__(key)**

Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters

- **key (str)** – Name of the child serializer.

**save(obj)**

Saves an object by this serializer.

This is equivalent to `obj.serialize(self)`.

Parameters

- **obj** – Target object to be serialized.

**class chainer.Deserializer**

Base class of all deserializers.

Methods

**__call__(key, value)**

Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the value argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When value is None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved None value is loaded by a deserializer, it should quietly return the None value without modifying the value object.

Parameters

- **key (str)** – Name of the serialization entry.
- **value (scalar, numpy.ndarray, cupy.ndarray, None, or str)** – Object to be (de)serialized. None is only supported by deserializers.

Returns

Serialized or deserialized value.
__getitem__(key)

  Gets a child serializer.

  This operator creates a _child_ serializer represented by the given key.

  Parameters
  
  **key** (str) – Name of the child serializer.

load(obj)

  Loads an object from this deserializer.

  This is equivalent to obj.serialize(self).

  Parameters
  
  **obj** – Target object to be serialized.

2.1.6 Dataset abstraction

Chainer has a support of common interface of training and validation datasets. The dataset support consists of three components: datasets, iterators, and batch conversion functions.

**Dataset** represents a set of examples. The interface is only determined by combination with iterators you want to use on it. The built-in iterators of Chainer requires the dataset to support __getitem__ and __len__ method. In particular, the __getitem__ method should support indexing by both an integer and a slice. We can easily support slice indexing by inheriting DatasetMixin, in which case users only have to implement get_example() method for indexing. Some iterators also restrict the type of each example. Basically, datasets are considered as stateless objects, so that we do not need to save the dataset as a checkpoint of the training procedure.

**Iterator** iterates over the dataset, and at each iteration, it yields a mini batch of examples as a list. Iterators should support the Iterator interface, which includes the standard iterator protocol of Python. Iterators manage where to read next, which means they are stateful.

**Batch conversion function** converts the mini batch into arrays to feed to the neural nets. They are also responsible to send each array to an appropriate device. Chainer currently provides concat_examples() as the only example of batch conversion functions.

These components are all customizable, and designed to have a minimum interface to restrict the types of datasets and ways to handle them. In most cases, though, implementations provided by Chainer itself are enough to cover the usages.

Chainer also has a light system to download, manage, and cache concrete examples of datasets. All datasets managed through the system are saved under the dataset root directory, which is determined by the CHAINER_DATASET_ROOT environment variable, and can also be set by the set_dataset_root() function.

**Dataset representation**

See Dataset examples for dataset implementations.

chainer.dataset.DatasetMixin

Default implementation of dataset indexing.

chainer.dataset.DatasetMixin

class chainer.dataset.DatasetMixin

  Default implementation of dataset indexing.

  DatasetMixin provides the __getitem__() operator. The default implementation uses get_example() to extract each example, and combines the results into a list. This mixin makes it easy to implement a new dataset that does not support efficient slicing.
Dataset implementation using DatasetMixin still has to provide the __len__() operator explicitly.

**Methods**

__getitem__(index)

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

**Parameters**

- **index** (*int, slice, list or numpy.ndarray*) – An index of an example or indexes of examples.

**Returns**

- If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

**Example**

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()

Returns the number of data points.

get_example(i)

Returns the i-th example.

Implementations should override it. It should raise `IndexError` if the index is invalid.

**Parameters**

- **i** (*int*) – The index of the example.

**Returns**

- The i-th example.

**Iterator interface**

See *Iterator examples* for dataset iterator implementations.
chainer.dataset.Iterator

class chainer.dataset.Iterator
Base class of all dataset iterators.

Iterator iterates over the dataset, yielding a minibatch at each iteration. Minibatch is a list of examples. Each implementation should implement an iterator protocol (e.g., the __next__() method).

Note that, even if the iterator supports setting the batch size, it does not guarantee that each batch always contains the same number of examples. For example, if you let the iterator to stop at the end of the sweep, the last batch may contain a fewer number of examples.

The interface between the iterator and the underlying dataset is not fixed, and up to the implementation.

Each implementation should provide the following attributes (not needed to be writable).

- batch_size: Number of examples within each minibatch.
- epoch: Number of completed sweeps over the dataset.
- epoch_detail: Floating point number version of the epoch. For example, if the iterator is at the middle of the dataset at the third epoch, then this value is 2.5.
- previous_epoch_detail: The value of epoch_detail at the previous iteration. This value is None before the first iteration.
- is_new_epoch: True if the epoch count was incremented at the last update.

Each implementation should also support serialization to resume/suspend the iteration.

Methods

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal resources.

next()
Python2 alternative of __next__.

It calls __next__() by default.

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support serializer protocol of Chainer.
Note: It should only serialize the internal state that changes over the iteration. It should not serialize what is set manually by users such as the batch size.

Batch conversion function

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.dataset.concat_examples</code></td>
<td>Concatenates a list of examples into array(s).</td>
</tr>
<tr>
<td><code>chainer.dataset.to_device</code></td>
<td>Send an array to a given device.</td>
</tr>
</tbody>
</table>

**chainer.dataset.concat_examples**

```python
def chainer.dataset.concat_examples(batch, device=None, padding=None):
 # Concatenates a list of examples into array(s).
 # Dataset iterator yields a list of examples. If each example is an array, this function concatenates them along
 # the newly-inserted first axis (called batch dimension) into one array. The basic behavior is same for examples
 # consisting of multiple arrays, i.e., corresponding arrays of all examples are concatenated.

 For instance, consider each example consists of two arrays (x, y). Then, this function concatenates x ‘s into
 # one array, and y ‘s into another array, and returns a tuple of these two arrays. Another example: consider each
 # example is a dictionary of two entries whose keys are 'x' and 'y', respectively, and values are arrays. Then,
 # this function concatenates x ‘s into one array, and y ‘s into another array, and returns a dictionary with two
 # entries x and y whose values are the concatenated arrays.

 When the arrays to concatenate have different shapes, the behavior depends on the padding value. If
 # padding is None (default), it raises an error. Otherwise, it builds an array of the minimum shape that the
 # contents of all arrays can be substituted to. The padding value is then used to the extra elements of the resulting
 # arrays.

 TODO(beam2d): Add an example.

Parameters

- **batch (list)** – A list of examples. This is typically given by a dataset iterator.
- **device (int)** – Device ID to which each array is sent. Negative value indicates the host
 memory (CPU). If it is omitted, all arrays are left in the original device.
- **padding** – Scalar value for extra elements. If this is None (default), an error is raised on
 shape mismatch. Otherwise, an array of minimum dimensionalities that can accommodate all arrays is created, and elements outside of the examples are padded by this value.

Returns

Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each
example in the batch.

chainer.dataset.to_device

```python
def chainer.dataset.to_device(device, x):
    # Send an array to a given device.
    # This method sends a given array to a given device. This method is used in concat_examples().
    # You can also use this method in a custom converter method used in Updater and Extension such as
    # StandardUpdater and Evaluator.
    # See also chainer.dataset.concat_examples().
```
Parameters

- **device** (*int or None*) – Device ID to which an array is sent. If it is negative value, an array is sent to CPU. If it is positive, an array is sent to GPU with the given ID. If it is None, an array is left in the original device.

- **x** (*numpy.ndarray or cupy.ndarray*) – An array to send.

Returns Converted array.

Dataset management

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.dataset.get_dataset_root</code></td>
<td>Gets the path to the root directory to download and cache datasets.</td>
</tr>
<tr>
<td><code>chainer.dataset.set_dataset_root</code></td>
<td>Sets the root directory to download and cache datasets.</td>
</tr>
<tr>
<td><code>chainer.dataset.cached_download</code></td>
<td>Downloads a file and caches it.</td>
</tr>
<tr>
<td><code>chainer.dataset.cache_or_load_file</code></td>
<td>Caches a file if it does not exist, or loads it otherwise.</td>
</tr>
</tbody>
</table>

chainer.dataset.get_dataset_root

`chainer.dataset.get_dataset_root()`

Gets the path to the root directory to download and cache datasets.

Returns The path to the dataset root directory.

Return type `str`

chainer.dataset.set_dataset_root

`chainer.dataset.set_dataset_root(path)`

Sets the root directory to download and cache datasets.

There are two ways to set the dataset root directory. One is by setting the environment variable `CHAINER_DATASET_ROOT`. The other is by using this function. If both are specified, one specified via this function is used. The default dataset root is `$HOME/.chainer/dataset`.

Parameters path (**str**) – Path to the new dataset root directory.

chainer.dataset.cached_download

`chainer.dataset.cached_download(url)`

Downloads a file and caches it.

It downloads a file from the URL if there is no corresponding cache. After the download, this function stores a cache to the directory under the dataset root (see `set_dataset_root()`). If there is already a cache for the given URL, it just returns the path to the cache without downloading the same file.

Note: This function raises `OSError` when it fails to create the cache directory. In older version, it raised `RuntimeError`.

Parameters url (**str**) – URL to download from.

Returns Path to the downloaded file.

2.1. Core functionalities
chainer.dataset.cache_or_load_file

chainer.dataset.cache_or_load_file(path, creator, loader)

Caches a file if it does not exist, or loads it otherwise.

This is a utility function used in dataset loading routines. The creator creates the file to given path, and returns the content. If the file already exists, the loader is called instead, and it loads the file and returns the content.

Note that the path passed to the creator is temporary one, and not same as the path given to this function. This function safely renames the file created by the creator to a given path, even if this function is called simultaneously by multiple threads or processes.

Parameters

- **path (str)** – Path to save the cached file.
- **creator** – Function to create the file and returns the content. It takes a path to temporary place as the argument. Before calling the creator, there is no file at the temporary path.
- **loader** – Function to load the cached file and returns the content.

Returns It returns the returned values by the creator or the loader.

2.1.7 Training loop abstraction

Chainer provides a standard implementation of the training loops under the `chainer.training` module. It is built on top of many other core features of Chainer, including Variable and Function, Link/Chain/ChainList, Optimizer, Dataset, and Reporter/Summary. Compared to the training loop abstraction of other machine learning tool kits, Chainer’s training framework aims at maximal flexibility, while keeps the simplicity for the typical usages. Most components are pluggable, and users can overwrite the definition.

The core of the training loop abstraction is `Trainer`, which implements the training loop itself. The training loop consists of two parts: one is `Updater`, which actually updates the parameters to train, and the other is `Extension` for arbitrary functionalities other than the parameter update.

Updater and some extensions use `chainer.dataset` and `Iterator` to scan the datasets and load mini batches. The trainer also uses `Reporter` to collect the observed values, and some extensions use `DictSummary` to accumulate them and computes the statistics.

You can find many examples for the usage of this training utilities from the official examples. You can also search the extension implementations from `Trainer extensions`.

Trainer

chainer.training.Trainer

The standard training loop in Chainer.

class chainer.training.Trainer(updater, stop_trigger=None, out='result')

The standard training loop in Chainer.

Trainer is an implementation of a training loop. Users can invoke the training by calling the `run()` method.
Each iteration of the training loop proceeds as follows.

- Update of the parameters. It includes the mini-batch loading, forward and backward computations, and an execution of the update formula. These are all done by the update object held by the trainer.

- Invocation of trainer extensions in the descending order of their priorities. A trigger object is attached to each extension, and it decides at each iteration whether the extension should be executed. Trigger objects are callable objects that take the trainer object as the argument and return a boolean value indicating whether the extension should be called or not.

Extensions are callable objects that take the trainer object as the argument. There are three ways to define custom extensions: inheriting the `Extension` class, decorating functions by `make_extension()`, and defining any callable including lambda functions. See `Extension` for more details on custom extensions and how to configure them.

Users can register extensions to the trainer by calling the `extend()` method, where some configurations can be added.

- Trigger object, which is also explained above. In most cases, `IntervalTrigger` is used, in which case users can simply specify a tuple of the interval length and its unit, like `(1000, 'iteration')` or `(1, 'epoch')`.

- The order of execution of extensions is determined by their priorities. Extensions of higher priorities are invoked earlier. There are three standard values for the priorities:
 - `PRIORITY_WRITER`. This is the priority for extensions that write some records to the observation dictionary. It includes cases that the extension directly adds values to the observation dictionary, or the extension uses the `chainer.report()` function to report values to the observation dictionary.
 - `PRIORITY_EDITOR`. This is the priority for extensions that edit the observation dictionary based on already reported values.
 - `PRIORITY_READER`. This is the priority for extensions that only read records from the observation dictionary. This is also suitable for extensions that do not use the observation dictionary at all.

The current state of the trainer object and objects handled by the trainer can be serialized through the standard serialization protocol of Chainer. It enables us to easily suspend and resume the training loop.

Note: The serialization does not recover everything of the training loop. It only recovers the states which change over the training (e.g. parameters, optimizer states, the batch iterator state, extension states, etc.). You must initialize the objects correctly before deserializing the states.

On the other hand, it means that users can change the settings on deserialization. For example, the exit condition can be changed on the deserialization, so users can train the model for some iterations, suspend it, and then resume it with larger number of total iterations.

During the training, it also creates a `Reporter` object to store observed values on each update. For each iteration, it creates a fresh observation dictionary and stores it in the `observation` attribute.

Links of the target model of each optimizer are registered to the reporter object as observers, where the name of each observer is constructed as the format `<optimizer name><link name>`. The link name is given by the `chainer.Link.namedlink()` method, which represents the path to each link in the hierarchy. Other observers can be registered by accessing the reporter object via the `reporter` attribute.

The default trainer is `plain`, i.e., it does not contain any extensions.
• **updater** *(Updater)* – Updater object. It defines how to update the models.

• **stop_trigger** – Trigger that determines when to stop the training loop. If it is not callable, it is passed to IntervalTrigger.

Variables

• **updater** – The updater object for this trainer.

• **stop_trigger** – Trigger that determines when to stop the training loop. The training loop stops at the iteration on which this trigger returns True.

• **observation** – Observation of values made at the last update. See the `Reporter` class for details.

• **out** – Output directory.

• **reporter** – Reporter object to report observed values.

Methods

`extend(extension, name=None, trigger=None, priority=None, **kwargs)`

Registers an extension to the trainer.

Extension is a callable object which is called after each update unless the corresponding trigger object decides to skip the iteration. The order of execution is determined by priorities: extensions with higher priorities are called earlier in each iteration. Extensions with the same priority are invoked in the order of registrations.

If two or more extensions with the same name are registered, suffixes are added to the names of the second to last extensions. The suffix is _N where N is the ordinal of the extensions.

See *Extension* for the interface of extensions.

Parameters

• **extension** – Extension to register.

• **name** *(str)* – Name of the extension. If it is omitted, the `default_name` attribute of the extension is used instead. Note that the name would be suffixed by an ordinal in case of duplicated names as explained above.

• **trigger** *(tuple or Trigger)* – Trigger object that determines when to invoke the extension. If it is None, `extension.trigger` is used instead. If it is None and the extension does not have the trigger attribute, the extension is triggered at every iteration by default. If the trigger is not callable, it is passed to `IntervalTrigger` to build an interval trigger.

• **priority** *(int)* – Invocation priority of the extension. Extensions are invoked in the descending order of priorities in each iteration. If this is None, `extension.priority` is used instead.

`get_extension(name)`

Returns the extension of a given name.

Parameters `name` *(str)* – Name of the extension.

Returns Extension.

`run(show_loop_exception_msg=True)`

Executes the training loop.

This method is the core of *Trainer*. It executes the whole loop of training the models.
Note that this method cannot run multiple times for one trainer object.

```python
serialize(serializer)
```

Attributes

- **elapsed_time**
 Total time used for the training.

 The time is in seconds. If the training is resumed from snapshot, it includes the time of all the previous training to get the current state of the trainer.

Updater

```python
class chainer.training.Updater

Updater implements a training iteration as `update()`. Typically, the updating iteration proceeds as follows.

- Fetch a minibatch from `dataset` via `Iterator`.
- Run forward and backward process of `Chain`.
- Update parameters according to their `UpdateRule`.

The first line is processed by `Iterator.__next__`. The second and third are processed by `Optimizer.update`. Users can also implement their original updating iteration by overriding `Updater.update`.

**Methods**

- **connect_trainer(trainer)**
  Connects the updater to the trainer that will call it.
  
  The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of `Trainer`. The default implementation does nothing.

  **Parameters**
  - `trainer (Trainer)` – Trainer object to which the updater is registered.

- **finalize()**
  Finalizes the updater object.
  
  This method is called at the end of training loops. It should finalize each dataset iterator used in this updater.

- **get_all_optimizers()**
  Gets a dictionary of all optimizers for this updater.

  **Returns** Dictionary that maps names to optimizers.
Return type  dict

get_optimizer(name)

Gets the optimizer of given name.

Updater holds one or more optimizers with names. They can be retrieved by this method.

Parameters  name (str) – Name of the optimizer.

Returns  Optimizer of the name.

Return type  Optimizer

serialize (serializer)

Serializes the current state of the updater object.

update ()

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

chainer.training.StandardUpdater

class chainer.training.StandardUpdater(iterator, optimizer, converter=<function concat_examples>, device=None, loss_func=None)

Standard implementation of Updater.

This is the standard implementation of Updater. It accepts one or more training datasets and one or more optimizers. The default update routine assumes that there is only one training dataset and one optimizer. Users can override this update routine by inheriting this class and overriding the update_core() method. Each batch is converted to input arrays by concat_examples() by default, which can also be manually set by converter argument.

Parameters

- iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.
- optimizer – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.
- converter – Converter function to build input arrays. Each batch extracted by the main iterator and the device option are passed to this function. concat_examples() is used by default.
- device – Device to which the training data is sent. Negative value indicates the host memory (CPU).
- loss_func – Loss function. The target link of the main optimizer is used by default.

Variables

- converter – Converter function.
- loss_func – Loss function. If it is None, the target link of the main optimizer is used instead.
- device – Device to which the training data is sent.
• **iteration** – Current number of completed updates.

### Methods

**connect_trainer**(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of `Trainer`. The default implementation does nothing.

**Parameters**

- **trainer** (`Trainer`) – Trainer object to which the updater is registered.

**finalize**()
Finalizes the updater object.

This method calls the `finalize` method of each iterator that this updater has. It is called at the end of training loops.

**get_all_optimizers**()
Gets a dictionary of all optimizers for this updater.

**Returns** Dictionary that maps names to optimizers.

**Return type** `dict`

**get_iterator**(name)
Gets the dataset iterator of given name.

**Parameters**

- **name** (`str`) – Name of the dataset iterator.

**Returns** Corresponding dataset iterator.

**Return type** `Iterator`

**get_optimizer**(name)
Gets the optimizer of given name.

**Parameters**

- **name** (`str`) – Name of the optimizer.

**Returns** Corresponding optimizer.

**Return type** `Optimizer`

**serialize**(serializer)
Serializes the current state of the updater object.

**update**()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

**update_core**()

### Attributes

- **epoch**
- **epoch_detail**
- **is_new_epoch**

2.1. Core functionalities
class chainer.training.ParallelUpdater(iterator, optimizer, converter=<function concat_examples>, models=None, devices=None, loss_func=None)

Implementation of a parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs. It behaves similarly to StandardUpdater. The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device.

Parameters

- **iterator** – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

- **optimizer** – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

- **converter** – Converter function to build input arrays. Each batch extracted by the main iterator is split equally between the devices and then passed with corresponding device option to this function. concat_examples() is used by default.

- **models** – Dictionary of models. The main model should be the same model attached to the 'main' optimizer.

- **devices** – Dictionary of devices to which the training data is sent. The devices should be arranged in a dictionary with the same structure as models.

- **loss_func** – Loss function. The model is used as a loss function by default.

Methods

connect_trainer(trainer)

finalize()

Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training loops.

get_all_optimizers()

Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)

Gets the dataset iterator of given name.

Parameters name(str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator
get_optimizer(name)

Gets the optimizer of given name.

Parameters

- name (str) – Name of the optimizer.

Returns

Corresponding optimizer.

Return type

Optimizer

serialize(serializer)

Serializes the current state of the updater object.

update()

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

Attributes

ePOCH

ePOCH_DETAIL

is_new_epoch

previous_epoch_detail

chainer.training.updaters.MultiprocessParallelUpdater

class chainer.training.updaters.MultiprocessParallelUpdater(iterators, optimizer, converter=<function concat_examples>, devices=None)

Implementation of a multiprocess parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs with multi-process data parallelism. It uses Nvidia NCCL for communication between multiple GPUs.

It behaves similarly to StandardUpdater. The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device.

It does not transfer the values collected by Reporter in the sub devices to the main device. So you can only see the reported values in the main device.

Parameters

- **iterators** – List of dataset iterator for the training dataset. The number of the iterators must be same to the number of GPUs you use.

- **optimizer** – Optimizer to update parameters. The model should be attached to the optimizer.

- **converter** – Converter function to build input arrays. Each batch extracted by the iterator is split equally between the devices and then passed with corresponding device option to this function. concat_examples() is used by default.
• **devices** – Dictionary or list of devices to which the training data is sent. The master device will be the first one in the list or the value attached to the key 'main'.

### Methods

**static available()**

**connect_trainer(trainer)**

Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of Trainer. The default implementation does nothing.

**Parameters**

- **trainer** *(Trainer)* – Trainer object to which the updater is registered.

**finalize()**

**get_all_optimizers()**

Gets a dictionary of all optimizers for this updater.

**Returns**

- Dictionary that maps names to optimizers.

**Return type**

- dict

**get_iterator(name)**

Gets the dataset iterator of given name.

**Parameters**

- **name** *(str)* – Name of the dataset iterator.

**Returns**

- Corresponding dataset iterator.

**Return type**

- Iterator

**get_optimizer(name)**

Gets the optimizer of given name.

**Parameters**

- **name** *(str)* – Name of the optimizer.

**Returns**

- Corresponding optimizer.

**Return type**

- Optimizer

**serialize(serializer)**

Serializes the current state of the updater object.

**setup_workers()**

**update()**

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

**update_core()**

### Attributes

- **epoch**

- **epoch_detail**
Extension

| `chainer.training.Extension` | Base class of trainer extensions. |
| `chainer.training.make_extension` | Decorator to make given functions into trainer extensions. |

**`chainer.training.Extension`**

**class** `chainer.training.Extension`

Base class of trainer extensions.

Extension of `Trainer` is a callable object that takes the trainer object as the argument. It also provides some default configurations as its attributes, e.g. the default trigger and the default priority. This class provides a set of typical default values for these attributes.

There are three ways to define users’ own extensions: inheriting this class, decorating closures by `make_extension()`, or using any callable including lambda functions as extensions. Decorator can slightly reduce the overhead and is much easier to use, while this class provides more flexibility (for example, it can have methods to configure the behavior). Using a lambda function allows one-line coding for simple purposes, but users have to specify the configurations as arguments to `Trainer.extend()`. For a callable not inheriting this class, the default configurations of this class are used unless the user explicitly specifies them in `Trainer.extend()` method.

**Variables**

- **`trigger`** – Default value of trigger for this extension. It is set to `(1, 'iteration')` by default.
- **`priority`** – Default priority of the extension. It is set to `PRIORITY_READER` by default.

**Methods**

- **`__call__()`**
  Invokes the extension.
  Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

  **Parameters**
  - `trainer` *(`Trainer`)* – Trainer object that calls this operator.

- **`finalize()`**
  Finalizes the extension.
  This method is called at the end of the training loop.

- **`initialize()`**
  Initializes up the trainer state.
  This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

  When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.
For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

**Parameters**

- **trainer** *(Trainer)* – Trainer object that runs the training loop.

- **serialize** *(serializer)*
  Serializes the extension state.
  It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

**Attributes**

- **default_name**
  Default name of the extension.
  It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

- **priority** = 100

- **trigger** = (1, ‘iteration’)

**chainer.training.make_extension**

```python
crawler.training.make_extension(trigger=None, default_name=None, priority=None, finalizer=None, initializer=None, **kwargs)
```

Decorator to make given functions into trainer extensions.

This decorator just adds some attributes to a given function. The value of the attributes are given by the arguments of this decorator.

**See** `Extension` for details of trainer extensions. Most of the default values of arguments also follow those for this class.

**Parameters**

- **trigger** – Default trigger of the extension.
- **default_name** – Default name of the extension. The name of a given function is used by default.
- **priority** *(int)* – Default priority of the extension.
- **finalizer** – Finalizer function of this extension. It is called at the end of the training loop.
- **initializer** – Initializer function of this extension. It is called at the beginning of the training loop.

**Trigger**

Trigger is a callable object to decide when to process some specific event within the training loop. It takes a Trainer object as the argument, and returns True if some event should be fired.

It is mainly used to determine when to call an extension. It is also used to determine when to quit the training loop.
chainer.training.get_trigger

chainer.training.get_trigger(trigger)

Gets a trigger object.

Trigger object is a callable that accepts a Trainer object as an argument and returns a boolean value. When it returns True, various kinds of events can occur depending on the context in which the trigger is used. For example, if the trigger is passed to the Trainer as the stop trigger, the training loop breaks when the trigger returns True. If the trigger is passed to the extend() method of a trainer, then the registered extension is invoked only when the trigger returns True.

This function returns a trigger object based on the argument. If trigger is already a callable, it just returns the trigger. If trigger is None, it returns a trigger that never fires. Otherwise, it passes the value to IntervalTrigger.

Parameters trigger – Trigger object. It can be either an already built trigger object (i.e., a callable object that accepts a trainer object and returns a bool value), or a tuple. In latter case, the tuple is passed to IntervalTrigger.

Returns trigger if it is a callable, otherwise a IntervalTrigger object made from trigger.

2.1.8 Debug mode

In debug mode, Chainer checks values of variables on runtime and shows more detailed error messages. It helps you to debug your programs. Instead it requires additional overhead time.

In debug mode, Chainer checks all results of forward and backward computation, and if it founds a NaN value, it raises RuntimeError. Some functions and links also check validity of input values.

As of v2.0.0, it is recommended to turn on the debug mode using chainer.config.debug. See Configuring Chainer for the way to use the config object. We leave the reference of the conventional ways (which have been available since Chainer v1) as follows.

chainer.is_debug

chainer.is_debug()

Get the debug mode.

Returns Return True if Chainer is in debug mode.

Return type bool

chainer.set_debug

chainer.set_debug(debug)

Set the debug mode.
Note: This method changes global state. When you use this method on multi-threading environment, it may affects other threads.

Parameters debug (bool) – New debug mode.

c tether. DebugMode
class chainer. DebugMode (debug)
  Debug mode context.

  This class provides a context manager for debug mode. When entering the context, it sets the debug mode to the value of debug parameter with memorizing its original value. When exiting the context, it sets the debug mode back to the original value.

  Deprecated since version v2.0.0: DebugMode is deprecated. Use using_config('debug', debug) instead.

  Parameters debug (bool) – Debug mode used in the context.

  Methods

  __enter__ ()
  __exit__ (*args)

2.1.9 Configuring Chainer

Chainer provides some global settings that affect the behavior of some functionalities. Such settings can be configured using the unified configuration system. The system provides a transparent way to manage the configuration for each process and for each thread.

The configuration is managed by two global objects: chainer.global_config and chainer.config.

  • The global_config object maintains the configuration shared in the Python process. This is an instance of the GlobalConfig class. It can be used just as a plain object, and users can freely set any attributes on it.

  • The config object, on the other hand, maintains the configuration for the current thread. This is an instance of the LocalConfig class. It behaves like a thread-local object, and any attribute modifications are only visible to the current thread.

If no value is set to config for a given key, global_config is transparently referred. Thanks to this transparent lookup, users can always use config to read any configuration so that the thread-local configuration is used if available and otherwise the default global setting is used.

The following entries of the configuration are currently provided by Chainer. Some entries support environment variables to set the default values. Note that the default values are set in the global config.

chainer.config.cudnn_deterministic Flag to configure deterministic computations in cuDNN APIs. If it is True, convolution functions that use cuDNN use the deterministic mode (i.e, the computation is reproducible). Otherwise, the results of convolution functions using cuDNN may be non-deterministic in exchange for the performance. The default value is False.

chainer.config.debug Debug mode flag. If it is True, Chainer runs in the debug mode. See Debug mode for more information of the debug mode. The default value is given by CHAINER_DEBUG environment variable (set to 0 or 1) if available, otherwise uses False.
**chainer.config.enable_backprop** Flag to enable backpropagation support. If it is True, computational graphs are created during forward passes by `FunctionNode`'s, allowing backpropagation to start from any `Variable` in the graph. Otherwise, computational graphs are not created but memory consumptions are reduced. So calling `backward()` on the results of a function will not compute any gradients of any input. The default value is True.

**chainer.config.keep_graph_on_report** Flag to configure whether or not to let `report()` keep the computational graph. If it is False, `report()` does not keep the computational graph when a `Variable` object is reported. It means that `report()` stores a copy of the `Variable` object which is purged from the computational graph. If it is True, `report()` just stores the `Variable` object as is with the computational graph left attached. The default value is False.

**chainer.config.train** Training mode flag. If it is True, Chainer runs in training mode. Otherwise, it runs in the testing (evaluation) mode. This configuration alters the behavior of e.g. `chainer.functions.dropout()` and `chainer.functions.batch_normalization()`. It does not reduce memory consumption or affect the creation of computational graphs required in order to compute gradients. The default value is True.

**chainer.config.type_check** Type checking mode flag. If it is True, Chainer checks the types (data types and shapes) of inputs on `Function` applications. Otherwise, it skips type checking. The default value is given by `CHAINER_TYPE_CHECK` environment variable (set to 0 or 1) if available, otherwise uses True.

**chainer.config.use_cudnn** Flag to configure whether or not to use cuDNN. This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of each flag is as follows.

- If it is 'always', Chainer will try to use cuDNN everywhere if possible.
- If it is 'auto', Chainer will use cuDNN only if it is known that the usage does not degrade the performance.
- If it is 'never', Chainer will never use cuDNN anywhere.

The default value is 'auto'.

**chainer.config.autotune** Autotune for convolutional networks flag. If it is True, Chainer uses the cuDNN autotune feature to find the fastest calculation process for `chainer.links.Convolution2D`, `ConvolutionND`, `Deconvolution2D`, or `DeconvolutionND` links. The default value is False.

Users can also define their own configurations. There are two ways:

1. Use Chainer’s configuration objects. In this case, it is **strongly recommended to prefix the name by “user_”** to avoid name conflicts with configurations introduced to Chainer in the future.

2. Use your own configuration objects. Users can define their own configuration objects using `chainer.configuration.GlobalConfig` and `chainer.configuration.LocalConfig`. In this case, there is no need to take care of the name conflicts.

**Example**

If you want to share a setting within the process, set an attribute to the global configuration.

```python
>>> chainer.global_config.user_my_setting = 123
```

This value is automatically extracted by referring to the local config.

```python
>>> chainer.config.user_my_setting
123
```

If you set an attribute to the local configuration, the value is only visible to the current thread.
We often want to temporarily modify the configuration for the current thread. It can be done by using `using_config()`. For example, if you only want to enable debug mode in a fragment of code, write as follows.

```python
>>> with chainer.using_config('debug', True):
 ... pass # code running in the debug mode
```

We often want to switch to the test mode for an evaluation. This is also done in the same way.

```python
>>> with chainer.using_config('train', False):
 ... pass # code running in the test mode
```

Note that `Evaluator` automatically switches to the test mode, and thus you do not need to manually switch in the loss function for the evaluation.

You can also make your own code behave differently in training and test modes as follows.

```python
if chainer.config.train:
 pass # code only running in the training mode
else:
 pass # code only running in the test mode
```

---

### chainer.global_config

Global configuration of Chainer.

It is an instance of `chainer.configuration.GlobalConfig`. See `Configuring Chainer` for details.

### chainer.config

Thread-local configuration of Chainer.

It is an instance of `chainer.configuration.LocalConfig`, and is referring to `global_config` as its default configuration. See `Configuring Chainer` for details.

### chainer.using_config

Context manager to temporarily change the thread-local configuration.

**Parameters**
• **name** (*str*) – Name of the configuration to change.
• **value** – Temporary value of the configuration entry.
• **config** (*LocalConfig*) – Configuration object. Chainer’s thread-local configuration is used by default.

**chainer.configuration.GlobalConfig**

```python
class chainer.configuration.GlobalConfig

The plain object that represents the global configuration of Chainer.

Methods

show (*file=sys.stdout*)

Prints the global config entries.

The entries are sorted in the lexicographical order of the entry name.

Parameters

- **file** – Output file-like object.
```

**chainer.configuration.LocalConfig**

```python
class chainer.configuration.LocalConfig(*global_config*)

Thread-local configuration of Chainer.

This class implements the local configuration. When a value is set to this object, the configuration is only updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically retrieves a value from the global configuration.

Methods

show (*file=sys.stdout*)

Prints the config entries.

The entries are sorted in the lexicographical order of the entry names.

Parameters

- **file** – Output file-like object.
```

**Example**

You can easily print the list of configurations used in the current thread.

```python
>>> chainer.config.show()
done
debug False
enable_backprop True
type_check True
```

2.1. Core functionalities
2.2 Utilities

2.2.1 Convolution/Deconvolution utilities

chainer.utils.get_conv_outsize

chainer.utils.get_conv_outsize(size, k, s, p, cover_all=False, d=1)

Calculates output size of convolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then calculates the output feature map size of that dimension.

See also:

get_deconv_outsize()

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature map.
• k (int) – The size of convolution kernel.
• s (int) – The size of stride.
• p (int) – The size of padding.
• cover_all (bool) – Use cover_all option or not.
• d (int) – The size of dilation.

Returns The expected output size of the convolution operation.

Return type int

chainer.utils.get_deconv_outsize

chainer.utils.get_deconv_outsize(size, k, s, p, cover_all=False)

Calculates output size of deconvolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then calculates the output feature map size of that dimension.

See also:

get_conv_outsize()

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature map.
• k (int) – The size of deconvolution kernel.
• s (int) – The size of stride.
• p (int) – The size of padding.
• **cover_all**(bool) – Use cover_all option or not.

**Returns** The expected output size of the deconvolution operation.

**Return type** int

### 2.2.2 CUDA utilities

Device, context and memory management on CuPy.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU computation. Following modules and classes defined in CuPy are imported to `chainer.cuda` module for convenience (refer to this table when reading chainer’s source codes).

<table>
<thead>
<tr>
<th>imported name</th>
<th>original name</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.cuda.cupy</td>
<td>cupy</td>
</tr>
<tr>
<td>chainer.cuda.ndarray</td>
<td>cupy.ndarray</td>
</tr>
<tr>
<td>chainer.cuda.cupy.cuda</td>
<td>cupy.cuda</td>
</tr>
<tr>
<td>chainer.cuda.Device</td>
<td>cupy.cuda.Device</td>
</tr>
<tr>
<td>chainer.cuda.Event</td>
<td>cupy.cuda.Event</td>
</tr>
<tr>
<td>chainer.cuda.Stream</td>
<td>cupy.cuda.Stream</td>
</tr>
</tbody>
</table>

Chainer replaces the default allocator of CuPy by its memory pool implementation. It enables us to reuse the device memory over multiple forward/backward computations, and temporary arrays for consecutive elementwise operations.

#### Devices

<table>
<thead>
<tr>
<th>chainer.cuda.get_device</th>
<th>Gets the device from a device object, an ID integer or an array object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.cuda.get_device_from_id</td>
<td>Gets the device from an ID integer.</td>
</tr>
<tr>
<td>chainer.cuda.get_device_from_array</td>
<td>Gets the device from a list of CuPy array or a single CuPy array.</td>
</tr>
</tbody>
</table>

**chainer.cuda.get_device**

**chainer.cuda.get_device**(*args*)

Gets the device from a device object, an ID integer or an array object.

**Note:** This API is deprecated. Please use **get_device_from_id()** or **get_device_from_array()** instead.

This is a convenient utility to select a correct device if the type of arg is unknown (i.e., one can use this function on arrays that may be on CPU or GPU). The returned device object supports the context management protocol of Python for the with statement.

**Parameters** **args** – Values to specify a GPU device. The first device object, integer or cupy.ndarray object is used to select a device. If it is a device object, it is returned. If it is an integer, the corresponding device is returned. If it is a CuPy array, the device on which this array reside is returned. If any arguments are neither integers nor CuPy arrays, a dummy device object representing CPU is returned.

**Returns** Device object specified by given args.

**See also:**
See `cupy.cuda.Device` for the device selection not by arrays.

**chainer.cuda.get_device_from_id**

`chainer.cuda.get_device_from_id(device_id)`

Gets the device from an ID integer.

**Parameters**

`device_id` (*int or None*) – The ID of the device which this function returns.

**chainer.cuda.get_device_from_array**

`chainer.cuda.get_device_from_array(*arrays)`

Gets the device from a list of CuPy array or a single CuPy array.

The device on which the given CuPy array reside is returned.

**Parameters**

`array` (*cupy.ndarray or list of cupy.ndarray*) – A CuPy array which this function returns the device corresponding to. If a list of `cupy.ndarray` s are given, it returns the first device object of an array in the list.

### CuPy array allocation and copy

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.cuda.copy</code></td>
<td>Copies a <code>cupy.ndarray</code> object using the default stream.</td>
</tr>
<tr>
<td><code>chainer.cuda.to_cpu</code></td>
<td>Copies the given GPU array to host CPU.</td>
</tr>
<tr>
<td><code>chainer.cuda.to_gpu</code></td>
<td>Copies the given CPU array to the specified device.</td>
</tr>
</tbody>
</table>

**chainer.cuda.copy**

`chainer.cuda.copy(array, out=None, out_device=None, stream=None)`

Copies a `cupy.ndarray` object using the default stream.

This function can copy the device array to the destination array on another device.

**Parameters**

- `array` (*cupy.ndarray*) – Array to be copied.
- `out` (*cupy.ndarray*) – Destination array. If it is not None, then `out_device` argument is ignored.
- `out_device` – Destination device specifier. Actual device object is obtained by passing this value to `get_device()`.

**Returns**

Copied array.

If `out` is not specified, then the array is allocated on the device specified by `out_device` argument.

**Return type** `cupy.ndarray`
chainer.cuda.to_cpu

chainer.cuda.to_cpu(array, stream=None)
Copies the given GPU array to host CPU.

Parameters
  - array – Array to be sent to CPU.
  - stream (cupy.cuda.Stream) – CUDA stream.

Returns
  Array on CPU.
  If given array is already on CPU, then this function just returns array without performing any copy.

Return type  numpy.ndarray

chainer.cuda.to_gpu

chainer.cuda.to_gpu(array, device=None, stream=None)
Copies the given CPU array to the specified device.

Parameters
  - array – Array to be sent to GPU.
  - device – Device specifier.
  - stream (Stream) – (deprecated since v3.0.0) CUDA stream. If not None, the copy runs asynchronously.

Returns
  Array on GPU.
  If array is already on the GPU device specified by device, this function just returns array without performing any copy.

Return type  cupy.ndarray

Kernel definition utilities

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.cuda.memoize</td>
<td>Makes a function memoizing the result for each argument and device.</td>
</tr>
<tr>
<td>chainer.cuda.clear_memo</td>
<td>Clears the memoized results for all functions decorated by memoize.</td>
</tr>
<tr>
<td>chainer.cuda.elementwise</td>
<td>Creates an elementwise kernel function.</td>
</tr>
<tr>
<td>chainer.cuda.reduce</td>
<td>Creates a global reduction kernel function.</td>
</tr>
</tbody>
</table>

chainer.cuda.memoize

chainer.cuda.memoize(for_each_device=False)
Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that this function can be used in the global
scope even if CUDA is not available. In such case, this function does nothing.

---

**Note:** This decorator acts as a dummy if CUDA is not available. It cannot be used for general purpose memoization even if `for_each_device` is set to False.

---

**chainer.cuda.clear_memo**

`chainer.cuda.clear_memo()`  
Clears the memoized results for all functions decorated by memoize.

This function works like `cupy.clear_memo()` as a counterpart for `chainer.cuda.memoize()`. It can be used even if CUDA is not available. In such a case, this function does nothing.

**chainer.cuda.elementwise**

`chainer.cuda.elementwise(in_params, out_params, operation, name, **kwargs)`  
Creates an elementwise kernel function.

This function uses `memoize()` to cache the kernel object, i.e. the resulting kernel object is cached for each argument combination and CUDA device.

The arguments are the same as those for `cupy.ElementwiseKernel`, except that the `name` argument is mandatory.

**chainer.cuda.reduce**

`chainer.cuda.reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr, identity, name, **kwargs)`  
Creates a global reduction kernel function.

This function uses `memoize()` to cache the resulting kernel object, i.e. the resulting kernel object is cached for each argument combination and CUDA device.

The arguments are the same as those for `cupy.ReductionKernel`, except that the `name` argument is mandatory.

**CPU/GPU generic code support**

---

**chainer.cuda.get_array_module**  
Gets an appropriate one from `numpy` or `cupy`.

**chainer.cuda.get_array_module(*args)**  
Gets an appropriate one from `numpy` or `cupy`.

This is almost equivalent to `cupy.get_array_module()`. The differences are that this function can be used even if CUDA is not available and that it will return their data arrays’ array module for `Variable` arguments.

**Parameters**  
`args` – Values to determine whether NumPy or CuPy should be used.

**Returns**  
`cupy` or `numpy` is returned based on the types of the arguments.
cuDNN support

```
chainer.cuda.set_max_workspace_size
```
Sets the workspace size for cuDNN.

```
chainer.cuda.get_max_workspace_size
```
Gets the workspace size for cuDNN.

chainer.cuda.set_max_workspace_size

```
chainer.cuda.set_max_workspace_size(size)
```
Sets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

**Parameters**

- **size** – The workspace size for cuDNN.

chainer.cuda.get_max_workspace_size

```
chainer.cuda.get_max_workspace_size()
```
Gets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

**Returns**

The workspace size for cuDNN.

**Return type**

int

2.2.3 Common algorithms

```
chainer.utils.WalkerAlias
```
Implementation of Walker’s alias method.

chainer.utils.WalkerAlias

```
class chainer.utils.WalkerAlias(probs)
```
Implementation of Walker’s alias method.

This method generates a random sample from given probabilities $p_1, \ldots, p_n$ in $O(1)$ time. It is more efficient than `choice()`. This class works on both CPU and GPU.

**Parameters**

- **probs** *(float list)* – Probabilities of entries. They are normalized with `sum(probs)`. See: [Wikipedia article](https://en.wikipedia.org/wiki/Walker%27s_alias_method)

**Methods**

```
sample(shape)
```
Generates a random sample based on given probabilities.

**Parameters**

- **shape** *(tuple of int)* – Shape of a return value.
**Returns** Returns a generated array with the given shape. If a sampler is in CPU mode the return value is a `numpy.ndarray` object, and if it is in GPU mode the return value is a `cupy.ndarray` object.

```python
def sample_cpu(shape):
 return ...
def sample_gpu(shape):
 return ...
```

```python
def to_cpu():
 ... # Make a sampler CPU mode.

def to_gpu():
 ... # Make a sampler GPU mode.
```

### 2.2.4 Reporter

**Reporter**

<table>
<thead>
<tr>
<th>chainer.Reporter</th>
<th>Object to which observed values are reported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.get_current_reporter</td>
<td>Returns the current reporter object.</td>
</tr>
<tr>
<td>chainer.report</td>
<td>Reports observed values with the current reporter object.</td>
</tr>
<tr>
<td>chainer.report_scope</td>
<td>Returns a report scope with the current reporter.</td>
</tr>
</tbody>
</table>

```python
class chainer.Reporter:
 Object to which observed values are reported.
```

Reporter is used to collect values that users want to watch. The reporter object holds a mapping from value names to the actually observed values. We call this mapping observations.

When a value is passed to the reporter, an object called observer can be optionally attached. In this case, the name of the observer is added as the prefix of the value name. The observer name should be registered beforehand.

See the following example:

```python
>>> from chainer import Reporter, report, report_scope

>>> reporter = Reporter()

>>> observer = object() # it can be an arbitrary (reference) object

>>> reporter.add_observer('my_observer:', observer)

>>> observation = {}

>>> with reporter.scope(observation):
... reporter.report({'x': 1}, observer)
... ...

{'my_observer:x': 1}
```

There are also a global API to add values:

```python
>>> observation = {}

>>> with report_scope(observation):
... report({'x': 1}, observer)
... ...
```
The most important application of Reporter is to report observed values from each link or chain in the training and validation procedures. Trainer and some extensions prepare their own Reporter object with the hierarchy of the target link registered as observers. We can use report() function inside any links and chains to report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

**Variables** observed – Dictionary of observed values.

### Methods

```python
>>> observation
{'my_observer:x': 1}
```

**__enter__**

Makes this reporter object current.

**__exit__** *(exc_type, exc_value, traceback)*

Recovers the previous reporter object to the current.

**add_observer** *(name, observer)*

Registers an observer of values.

Observer defines a scope of names for observed values. Values observed with the observer are registered with names prefixed by the observer name.

**Parameters**

- **name** *(str)* – Name of the observer.
- **observer** – The observer object. Note that the reporter distinguishes the observers by their object ids (i.e., id(owner)), rather than the object equality.

**add_observers** *(prefix, observers)*

Registers multiple observers at once.

This is a convenient method to register multiple objects at once.

**Parameters**

- **prefix** *(str)* – Prefix of each name of observers.
- **observers** – Iterator of name and observer pairs.

**report** *(values, observer=None)*

Reports observed values.

The values are written with the key, prefixed by the name of the observer object if given.

**Note:** As of v2.0.0, if a value is of type Variable, the variable is copied without preserving the computational graph and the new variable object purged from the graph is stored to the observer. This behavior can be changed by setting chainer.config.keep_graph_on_report to True.

**Parameters**

- **values** *(dict)* – Dictionary of observed values.
- **observer** – Observer object. Its object ID is used to retrieve the observer name, which is used as the prefix of the registration name of the observed value.
**scope** *(observation)*  
Creates a scope to report observed values to *observation*.

This is a context manager to be passed to `with` statements. In this scope, the observation dictionary is changed to the given one.

It also makes this reporter object current.

**Parameters**  
*observation* *(dict)* – Observation dictionary. All observations reported inside of the `with` statement are written to this dictionary.

### chainer.get_current_reporter

```python
chainer.get_current_reporter()
```

Returns the current reporter object.

### chainer.report

```python
chainer.report(values, observer=None)
```

Reports observed values with the current reporter object.

Any reporter object can be set current by the `with` statement. This function calls the `Report.report()` method of the current reporter. If no reporter object is current, this function does nothing.

**Example**

The most typical example is a use within links and chains. Suppose that a link is registered to the current reporter as an observer (for example, the target link of the optimizer is automatically registered to the reporter of the `Trainer`). We can report some values from the link as follows:

```python
class MyRegressor(chainer.Chain):
 def __init__(self, predictor):
 super(MyRegressor, self).__init__(predictor=predictor)

 def __call__(self, x, y):
 # This chain just computes the mean absolute and squared errors between the prediction and y.
 pred = self.predictor(x)
 abs_error = F.sum(F.abs(pred - y)) / len(x.data)
 loss = F.mean_squared_error(pred, y)

 # Report the mean absolute and squared errors.
 report({'abs_error': abs_error, 'squared_error': loss}, self)

 return loss
```

If the link is named 'main' in the hierarchy (which is the default name of the target link in the `StandardUpdater`), these reported values are named 'main/abs_error' and 'main/squared_error'. If these values are reported inside the `Evaluator` extension, 'validation/' is added at the head of the link name, thus the item names are changed to 'validation/main/abs_error' and 'validation/main/squared_error' ('validation' is the default name of the Evaluator extension).

**Parameters**
• **values** (dict) – Dictionary of observed values.

• **observer** – Observer object. Its object ID is used to retrieve the observer name, which is used as the prefix of the registration name of the observed value.

**chainer.report_scope**

```python
chainer.report_scope(\observation)
```

Returns a report scope with the current reporter.

This is equivalent to ```get_current_reporter().scope(\observation)``` except that it does not make the reporter current redundantly.

**Summary and DictSummary**

<table>
<thead>
<tr>
<th><strong>chainer.Summary</strong></th>
<th>Online summarization of a sequence of scalars.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>chainer.DictSummary</strong></td>
<td>Online summarization of a sequence of dictionaries.</td>
</tr>
</tbody>
</table>

**chainer.Summary**

```python
class chainer.Summary
```

Online summarization of a sequence of scalars. Summary computes the statistics of given scalars online.

**Methods**

- **add** (**value**)  
  Adds a scalar value.

  **Parameters**  
  value – Scalar value to accumulate. It is either a NumPy scalar or a zero-dimensional array (on CPU or GPU).

- **compute_mean** ()
  Computes the mean.

- **make_statistics** ()
  Computes and returns the mean and standard deviation values.

  **Returns**  
  Mean and standard deviation values.

  **Return type**  
  tuple

**chainer.DictSummary**

```python
class chainer.DictSummary
```

Online summarization of a sequence of dictionaries. DictSummary computes the statistics of a given set of scalars online. It only computes the statistics for scalar values and variables of scalar values in the dictionaries.
Methods

add(d)

Adds a dictionary of scalars.

Parameters d (dict) – Dictionary of scalars to accumulate. Only elements of scalars, zero-dimensional arrays, and variables of zero-dimensional arrays are accumulated.

compute_mean()

Creates a dictionary of mean values.

It returns a single dictionary that holds a mean value for each entry added to the summary.

Returns Dictionary of mean values.

Return type dict

make_statistics()

Creates a dictionary of statistics.

It returns a single dictionary that holds mean and standard deviation values for every entry added to the summary. For an entry of name 'key', these values are added to the dictionary by names 'key' and 'key.std', respectively.

Returns Dictionary of statistics of all entries.

Return type dict

2.2.5 Experimental feature annotation

chainer.utils.experimental

Declares that user is using an experimental feature.

chainer.utils.experimental

chainer.utils.experimental(api_name)

Declares that user is using an experimental feature.

The developer of an API can mark it as experimental by calling this function. When users call experimental APIs, FutureWarning is issued. The presentation of FutureWarning is disabled by setting chainer.disable_experimental_feature_warning to True, which is False by default.

The basic usage is to call it in the function or method we want to mark as experimental along with the API name.

```python
from chainer import utils

def f(x):
 utils.experimental('chainer.foo.bar.f')
 # concrete implementation of f follows
 f(x)
```

... FutureWarning: chainer.foo.bar.f is experimental. The interface can change in the future. ...

We can also make a whole class experimental. In that case, we should call this function in its __init__ method.
class C():
    def __init__(self):
        utils.experimental('chainer.foo.C')

C()

... FutureWarning: chainer.foo.C is experimental. The interface can change in the future. ...

If we want to mark __init__ method only, rather than class itself, it is recommended that we explicitly feed its API name.

class D():
    def __init__(self):
        utils.experimental('D.__init__')

D()

... FutureWarning: D.__init__ is experimental. The interface can change in the future. ...

Currently, we do not have any sophisticated way to mark some usage of non-experimental function as experimental. But we can support such usage by explicitly branching it.

def g(x, experimental_arg=None):
    if experimental_arg is not None:
        utils.experimental('experimental_arg of chainer.foo.g')

Parameters api_name (str) – The name of an API marked as experimental.

2.3 Assertion and Testing

Chainer provides some facilities to make debugging easy.

2.3.1 Type checking utilities

Function uses a systematic type checking of the chainer.utils.type_check module. It enables users to easily find bugs of forward and backward implementations. You can find examples of type checking in some function implementations.

<table>
<thead>
<tr>
<th>chainer.utils.type_check.Expr</th>
<th>Abstract syntax tree of an expression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.utils.type_check.expect</td>
<td>Evaluates and tests all given expressions.</td>
</tr>
<tr>
<td>chainer.utils.type_check.Typeinfo</td>
<td>Type information of an input/gradient array.</td>
</tr>
<tr>
<td>chainer.utils.type_check.TypeinfoTuple</td>
<td>Type information of input/gradient tuples.</td>
</tr>
</tbody>
</table>

chainer.utils.type_check.Expr

class chainer.utils.type_check.Expr (priority)
    Abstract syntax tree of an expression.
    
    It represents an abstract syntax tree, and isn’t a value. You can get its actual value with eval() function, and
get syntax representation with the \_\_str\_\_() method. Each comparison operator (e.g. ==) generates a new \texttt{Expr} object which represents the result of comparison between two expressions.

**Example**

Let \( x \) and \( y \) be instances of \texttt{Expr}, then

```python
>>> x = Variable(1, 'x')
>>> y = Variable(1, 'y')
>>> c = (x == y)
```

is also an instance of \texttt{Expr}. To evaluate and get its value, call \texttt{eval()} method:

```python
>>> c.eval()
True
```

Call \texttt{str} function to get a representation of the original equation:

```python
>>> str(c)
'x == y'
```

You can actually compare an expression with a value:

```python
>>> (x == 1).eval()
True
```

Note that you can’t use boolean operators such as \texttt{and}, as they try to cast expressions to boolean values:

```python
>>> z = Variable(1, 'z')
>>> x == y and y == z # raises an error
```

```
Traceback (most recent call last):
 File "", line 1, in <module>
RuntimeError: Don't convert \texttt{Expr} to bool. Please call \texttt{Expr.eval} method to evaluate expression.
```

**Methods**

\_\_call\_\_(\*\texttt{args})

\_\_getitem\_\_(\texttt{key})

\texttt{eval()}

Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the \_\_add\_\_ function with the two results of \texttt{eval()} function.

\_\_eq\_\_(\texttt{x, y})

\_\_ne\_\_(\texttt{x, y})

\_\_lt\_\_(\texttt{x, y})

\_\_le\_\_(\texttt{x, y})

\_\_gt\_\_(\texttt{x, y})

\_\_ge\_\_(\texttt{x, y})

\_\_nonzero\_\_(\)
__bool__()

chainer.utils.type_check.expect

chainer.utils.type_check.expect(*bool_exprs)
Evaluates and tests all given expressions.

This function evaluates given boolean expressions in order. When at least one expression is evaluated as False, that means the given condition is not satisfied. You can check conditions with this function.

Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to evaluate.

chainer.utils.type_check TypeInfo

class chainer.utils.type_check TypeInfo (shape, dtype)
Type information of an input/gradient array.

It contains type information of an array, such as the shape of array and the number of dimensions. This information is independent of CPU or GPU array.

Methods

chainer.utils.type_check TypeInfoTuple

class chainer.utils.type_check TypeInfoTuple
Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element of this object contains type information of the i-th input/gradient data. As each element is Expr, you can easily check its validity.

Methods

count (value) → integer – return number of occurrences of value

index (value[, start[, stop]]) → integer – return first index of value.
Raise ValueError if the value is not present.

size ()
Returns an expression representing its length.

Returns An expression object representing length of the tuple.

Return type Expr

2.3.2 Gradient checking utilities

Most function implementations are numerically tested by gradient checking. This method computes numerical gradients of forward routines and compares their results with the corresponding backward routines. It enables us to make the source of issues clear when we hit an error of gradient computations. The chainer.gradient_check module makes it easy to implement the gradient checking.

chainer.gradient_check.check_backward Test backward procedure of a given function.
**Table 2.28** – continued from previous page

| `chainer.gradient_check.numerical_grad` | Computes numerical gradient by finite differences. |

**chainer.gradient_check.check_backward**

The function `chainer.gradient_check.check_backward(func, x_data, y_grad, params=(), eps=0.001, atol=1e-05, rtol=0.0001, no_grads=None, dtype=None)` tests the backward procedure of a given function.

This function automatically checks the backward process of a given function. For example, when you have a `Function` class `MyFunc` that gets two arguments and returns one value, you can make its test like this:

```python
>>> def test_my_func(self):
... func = MyFunc()
... x1_data = xp.array(...) # x_data
... x2_data = xp.array(...) # x_data
... gy_data = xp.array(...) # y_grad
... check_backward(func, (x1_data, x2_data), gy_data)
```

This method creates `Variable` objects with `x_data` and calls `func` with the `Variable`s to get its result as `Variable`. Then, it sets `y_grad` array to `grad` attribute of the result and calls backward method to get gradients of the inputs. To check correctness of the gradients, the function calls `numerical_grad()` to calculate numerically the gradients and compares the types of gradients with `chainer.testing.assert_allclose()`.

To reduce computational time, it uses directional derivative along a random vector. A function $g : \mathbb{R} \to \mathbb{R}^n$ is defined as $g(\delta) = f(x + \delta r)$, where $\delta \in \mathbb{R}$, $r \in \mathbb{R}^n$ is a random vector and $f$ is a function which you want to test. Its gradient is

$$g'(\delta) = f'(x + \delta r) \cdot r.$$

Therefore, $g'(0) = f'(x) \cdot r$. So we can check the correctness of back propagation of $f$ indirectly by comparing this equation with the gradient of $g$ numerically calculated and that of $f$ computed by backprop. If $r$ is chosen from uniform distribution, we can conclude with high probability that the gradient of $f$ itself is correct.

If input objects (`x1_data` or `x2_data` in this example) represent integer variables, their gradients are ignored.

You can simplify a test when `MyFunc` gets only one argument:

```python
>>> check_backward(func, x1_data, gy_data)
```

If `MyFunc` is a loss function which returns a zero-dimensional array, pass `None` to `gy_data`. In this case, it sets `1` to `grad` attribute of the result:

```python
>>> check_backward(my_loss_func, (x1_data, x2_data), None)
```

If `MyFunc` returns multiple outputs, pass all gradients for outputs as a tuple:

```python
>>> gy1_data = xp.array(...) # gy1_data
>>> gy2_data = xp.array(...) # gy2_data
>>> check_backward(func, x1_data, (gy1_data, gy2_data))
```

You can also test a `Link`. To check gradients of parameters of the link, set a tuple of the parameters to `params` arguments:
Note that `params` are not `ndarray`s, but `Variables`s. Function objects are acceptable as `func` argument:

```python
>> check_backward(lambda x1, x2: f(x1, x2),
 (x1_data, x2_data), gy_data)
```

Note: `func` is called many times to get numerical gradients for all inputs. This function doesn’t work correctly when `func` behaves randomly as it gets different gradients.

**Parameters**

- `func` (*callable*) — A function which gets `Variables`s and returns `Variables`s. `func` must returns a tuple of `Variable`s or one `Variable`. You can use `Function` object, `Link` object or a function satisfying the condition.
- `x_data` (*ndarray or tuple of ndarrays*) — A set of `ndarray`s to be passed to `func`. If `x_data` is one `ndarray` object, it is treated as `(x_data,)`.
- `y_grad` (*ndarray or tuple of ndarrays or None*) — A set of `ndarray`s representing gradients of return-values of `func`. If `y_grad` is one `ndarray` object, it is treated as `(y_grad,)`. If `func` is a loss-function, `y_grad` should be set to `None`.
- `params` (*Variable or tuple of ~chainer.Variable*) — A set of `Variable`s whose gradients are checked. When `func` is a `Link` object, set its parameters as `params`. If `params` is one `Variable` object, it is treated as `(params,)`.
- `eps` (*float*) — Epsilon value to be passed to `numerical_grad()`.
- `atol` (*float*) — Absolute tolerance to be passed to `chainer.testing.assert_allclose()`.
- `rtol` (*float*) — Relative tolerance to be passed to `chainer.testing.assert_allclose()`.
- `no_grads` (*list of bool*) — Flag to skip variable for gradient assertion. It should be same length as `x_data`.
- `dtype` (*dtype*) — `x_data`, `y_grad` and `params` are casted to this `dtype` when calculating numerical gradients. Only float types and `None` are allowed.

**See also:**

- `numerical_grad()`

**chainer.gradient_check.numerical_grad**

`chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001)` Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of `chainer.functions`.

**Parameters**
• \texttt{f (function)} – Python function with no arguments that runs forward computation and returns the result.

• \texttt{inputs (tuple of arrays)} – Tuple of arrays that should be treated as inputs. Each element of them is slightly modified to realize numerical gradient by finite differences.

• \texttt{grad_outputs (tuple of arrays)} – Tuple of arrays that are treated as output gradients.

• \texttt{eps (float)} – Epsilon value of finite differences.

Returns Numerical gradient arrays corresponding to \texttt{inputs}.

Return type tuple

### 2.3.3 Standard Assertions

The assertions have same names as NumPy’s ones. The difference from NumPy is that they can accept both \texttt{numpy.ndarray} and \texttt{cupy.ndarray}.

\begin{Verbatim}
chainer.testing.assert_allclose
\end{Verbatim}

\texttt{chainer.testing.assert_allclose (x, y, atol=1e-05, rtol=0.0001, verbose=True)}

Asserts if some corresponding element of \texttt{x} and \texttt{y} differs too much.

This function can handle both CPU and GPU arrays simultaneously.

Parameters

• \texttt{x} – Left-hand-side array.

• \texttt{y} – Right-hand-side array.

• \texttt{atol (float)} – Absolute tolerance.

• \texttt{rtol (float)} – Relative tolerance.

• \texttt{verbose (bool)} – If True, it outputs verbose messages on error.

### 2.3.4 Function testing utilities

Chainer provides some utilities for testing its functions.

\begin{Verbatim}
chainer.testing.unary_math_function_unittest
\end{Verbatim}

\texttt{chainer.testing.unary_math_function_unittest (func, func_expected=None, label_expected=None, mak} \texttt{e_data=None, is_linear=False, backward_options=None, double_backward_options=None)}

Decorator for testing unary mathematical Chainer functions.
This decorator makes test classes test unary mathematical Chainer functions. Tested are forward and backward, including double backward, computations on CPU and GPU across parameterized shape and dtype.

**Parameters**

- `func(function or Function)` – Chainer function to be tested by the decorated test class. Taking `Function` is for backward compatibility.

- `func_expected` – Function used to provide expected values for testing forward computation. If not given, a corresponding numpy function for `func` is implicitly picked up by its name.

- `label_expected(string)` – String used to test labels of Chainer functions. If not given, the name of `func` is implicitly used.

- `make_data` – Function to customize input and gradient data used in the tests. It takes shape and dtype as its arguments, and returns a tuple of input, gradient and double gradient data. By default, uniform distribution ranged [-1, 1] is used for all of them.

- `is_linear(bool)` – Tells the decorator that `func` is a linear function so that it wraps `func` as a non-linear function to perform double backward test. The default value is `False`.

- `backward_options(dict)` – Options to be specified as an argument of `chainer.gradient_check.check_backward()` function. If not given, preset tolerance values are automatically selected depending on dtype.

- `double_backward_options(dict)` – Options to be specified as an argument of `chainer.gradient_check.check_double_backward()` function. If not given, preset tolerance values are automatically selected depending on dtype.

The decorated test class tests forward, backward and double backward computations on CPU and GPU across the following parameterized parameters:

- shape: rank of zero, and rank of more than zero
- dtype: numpy.float16, numpy.float32 and numpy.float64

Additionally, it tests the label of the Chainer function.

Chainer functions tested by the test class decorated with the decorator should have the following properties:

- Unary, taking one parameter and returning one value
- dtype of input and output are the same
- Elementwise operation for the supplied ndarray

**Example**

The following code defines a test class that tests `sin()` Chainer function, which takes a parameter with dtype of float and returns a value with the same dtype.

```python
>>> import unittest
>>> from chainer import testing
>>> from chainer import functions as F

>>> @testing.unary_math_function_unittest(F.sin)
... class TestSin(unittest.TestCase):
... pass
```

Because the test methods are implicitly injected to `TestSin` class by the decorator, it is enough to place `pass` in the class definition.
To customize test data, `make_data` optional parameter can be used. The following is an example of testing `sqrt` Chainer function, which is tested in positive value domain here instead of the default input.

```python
>>> import numpy

>>> def make_data(shape, dtype):
... x = numpy.random.uniform(0.1, 1, shape).astype(dtype)
... gy = numpy.random.uniform(-1, 1, shape).astype(dtype)
... ggx = numpy.random.uniform(-1, 1, shape).astype(dtype)
... return x, gy, ggx

>>> @testing.unary_math_function_unittest(F.sqrt, make_data=make_data)
... class TestSqrt(unittest.TestCase):
... pass
```

`make_data` function which returns input, gradient and double gradient data generated in proper value domains with given `shape` and `dtype` parameters is defined, then passed to the decorator’s `make_data` parameter.

# 2.4 Standard Function implementations

Chainer provides basic `Function` implementations in the `chainer.functions` package. Most of them are wrapped by plain Python functions, which users should use.

**Note:** As of v1.5, the concept of parameterized functions are gone, and they are replaced by corresponding `Link` implementations. They are still put in the `functions` namespace for backward compatibility, though it is strongly recommended to use them via the `chainer.links` package.

## 2.4.1 Activation functions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.clipped_relu</code></td>
<td>Clipped Rectifier Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.crelu</code></td>
<td>Concatenated Rectified Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.elu</code></td>
<td>Exponential Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.leaky_relu</code></td>
<td>Leaky Rectified Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.log_softmax</code></td>
<td>Channel-wise log-softmax function.</td>
</tr>
<tr>
<td><code>chainer.functions.lstm</code></td>
<td>Long Short-Term Memory units as an activation function.</td>
</tr>
<tr>
<td><code>chainer.functions.maxout</code></td>
<td>Maxout activation function.</td>
</tr>
<tr>
<td><code>chainer.functions.prelu</code></td>
<td>Parametric ReLU function.</td>
</tr>
<tr>
<td><code>chainer.functions.relu</code></td>
<td>Rectified Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.selu</code></td>
<td>Scaled Exponential Linear Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.sigmoid</code></td>
<td>Element-wise sigmoid logistic function.</td>
</tr>
<tr>
<td><code>chainer.functions.slstm</code></td>
<td>S-LSTM units as an activation function.</td>
</tr>
<tr>
<td><code>chainer.functions.softmax</code></td>
<td>Softmax function.</td>
</tr>
<tr>
<td><code>chainer.functions.softplus</code></td>
<td>Element-wise softplus function.</td>
</tr>
<tr>
<td><code>chainer.functions.tanh</code></td>
<td>Elementwise hyperbolic tangent function.</td>
</tr>
<tr>
<td><code>chainer.functions.tree_lstm</code></td>
<td>TreeLSTM unit as an activation function.</td>
</tr>
</tbody>
</table>
chainer.functions.clipped_relu

chainer.functions.clipped_relu(x, z=20.0)

Clipped Rectifier Unit function.

For a clipping value $z (> 0)$, it computes

$$\text{ClippedReLU}(x, z) = \min(\max(0, x), z).$$

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable. A $(s_1, s_2, ..., s_n)$-shaped float array.
- **z** *(float)* – Clipping value. (default = 20.0)

Returns

Output variable. A $(s_1, s_2, ..., s_n)$-shaped float array.

Return type

Variable

Example

```python
>>> x = np.random.uniform(-100, 100, (10, 20)).astype('f')
>>> z = 10.0
>>> np.any(x < 0)
True
>>> np.any(x > z)
True
>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.data < 0)
False
>>> np.any(y.data > z)
False
```

chainer.functions.crelu

chainer.functions.crelu(x, axis=1)

Concatenated Rectified Linear Unit function.

This function is expressed as follows

$$f(x) = (\max(0, x), \max(0, -x)).$$

Here, two output values are concatenated along an axis.


Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable. A $(s_1, s_2, ..., s_N)$-shaped float array.
- **axis** *(int)* – Axis that the output values are concatenated along. Default is 1.

Returns

Output variable of concatenated array. If the axis is 1, A $(s_1, s_2 \times 2, ..., s_N)$-shaped float array.
Return type \texttt{Variable}

Example

```python
>>> x = np.array([[-1, 0], [2, -3]], 'f')
>>> x
array([[-1., 0.],
 [2., -3.]], dtype=float32)
```

```python
>>> y = F.crelu(x, axis=1)
>>> y.data
array([[0., 0., 1., 0.],
 [2., 0., 0., 3.]], dtype=float32)
```

\texttt{chainer.functions.elu}

\texttt{chainer.functions.elu}(\texttt{x, alpha=1.0})

Exponential Linear Unit function.

For a parameter \(\alpha\), it is expressed as

\[ f(x) = \begin{cases} 
 x & \text{if } x \geq 0 \\
 \alpha(\exp(x) - 1) & \text{if } x < 0, 
\end{cases} \]

See: https://arxiv.org/abs/1511.07289

Parameters

- \texttt{x (Variable or numpy.ndarray or cupy.ndarray)} – Input variable. A \((s_1, s_2, ..., s_N)\) -shaped float array.
- \texttt{alpha (float)} – Parameter \(\alpha\). Default is 1.0.

Returns Output variable. A \((s_1, s_2, ..., s_N)\) -shaped float array.

Return type \texttt{Variable}

Example

```python
>>> x = np.array([[-1, 0], [2, -3]], 'f')
>>> x
array([[-1., 0.],
 [2., -3.]], dtype=float32)
```

```python
>>> y = F.elu(x, alpha=1.)
>>> y.data
array([[-0.63212055, 0.],
 [2. , -0.95021296]], dtype=float32)
```

\texttt{chainer.functions.hard_sigmoid}

\texttt{chainer.functions.hard_sigmoid}(\texttt{x})

Element-wise hard-sigmoid function.
This function is defined as

\[
   f(x) = \begin{cases} 
   0 & \text{if } x < -2.5 \\
   0.2x + 0.5 & \text{if } -2.5 < x < 2.5 \\
   1 & \text{if } 2.5 < x.
   \end{cases}
\]

**Parameters**
- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

**Returns**
- Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

**Return type** *Variable*

**Example**

It maps the input values into the range of \([0, 1]\).

```python
>>> x = np.array([-2.6, -1, 0, 1, 2.6])
>>> x
array([-2.6, -1. , 0. , 1. , 2.6])
>>> F.hard_sigmoid(x).data
array([0. , 0.3, 0.5, 0.7, 1.])
```

**chainer.functions.leaky_relu**

`chainer.functions.leaky_relu(x, slope=0.2)`

Leaky Rectified Linear Unit function.

This function is expressed as

\[
   f(x) = \begin{cases} 
   x & \text{if } x \geq 0 \\
   ax & \text{if } x < 0,
   \end{cases}
\]

where \(a\) is a configurable slope value.

**Parameters**
- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **slope** (*float*) – Slope value \(a\).

**Returns**
- Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

**Return type** *Variable*

**Example**

```python
>>> x = np.array([[[-1, 0], [2, -3], [-2, 1]], 'f'])
>>> x
array([[-1., 0.],
 [2., -3.],
 [-2., 1.]], dtype=float32)
>>> F.leaky_relu(x, slope=0.2).data
array([[-0.2 , 0.],
 [2. , -0.60000002],
 [-0.40000001, 1.]], dtype=float32)
```
### chainer.functions.log_softmax

**chainer.functions.log_softmax**(x)

Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let \( c = (c_1, c_2, \ldots, c_D) \) be the slice of \( x \) along with the second axis. For each slice \( c \), it computes the logarithm of the function \( f(c) \) defined as

\[
f(c) = \frac{\exp(c)}{\sum_d \exp(c_d)}.
\]

This method is theoretically equivalent to \( \log(\text{softmax}(x)) \) but is more stable.

**Parameters**

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A \( n \)-dimensional \((n \geq 2)\) float array.

**Returns**

Output variable. A \( n \)-dimensional \((n \geq 2)\) float array, which is the same shape with \( x \).

**Return type**

*Variable*

**See also:**

*softmax*()

**Example**

```python
>>> x = np.array([[0, 1, 2], [0, 2, 4]], 'f')
>>> x
array([[0., 1., 2.],
 [0., 2., 4.]], dtype=float32)
>>> F.log_softmax(x).data
array([[-2.40760589, -1.40760589, -0.40760589],
 [-4.14293146, -2.14293146, -0.14293146]], dtype=float32)
>>> np.allclose(F.log_softmax(x).data, F.log(F.softmax(x)).data)
True
```

### chainer.functions.lstm

**chainer.functions.lstm**(c_prev, x)

Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state \( c_{\text{prev}} \) and the input array \( x \).

First, the input array \( x \) is split into four arrays \( a, i, f, o \) of the same shapes along the second axis. It means that \( x \) ‘s second axis must have 4 times the \( c_{\text{prev}} \)’s second axis.

The split input arrays are corresponding to:

- \( a \) : sources of cell input
- \( i \) : sources of input gate
• \( f \): sources of forget gate
• \( o \): sources of output gate

Second, it computes the updated cell state \( c \) and the outgoing signal \( h \) as:

\[
c = \tanh(a)\sigma(i) + c_{\text{prev}}\sigma(f),
\]
\[
h = \tanh(c)\sigma(o),
\]

where \( \sigma \) is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or smaller than that of the previous one. When mini-batch size of \( x \) is smaller than that of \( c \), this function only updates \( c[0:\text{len}(x)] \) and doesn’t change the rest of \( c, c[\text{len}(x):] \). So, please sort input sequences in descending order of lengths before applying the function.

**Parameters**

- \( c_{\text{prev}} \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Variable that holds the previous cell state. The cell state should be a zero array or the output of the previous call of LSTM.
- \( x \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Variable that holds the sources of cell input, input gate, forget gate and output gate. It must have the second dimension whose size is four times of that of the cell state.

**Returns** Two **Variable** objects \( c \) and \( h \). \( c \) is the updated cell state. \( h \) indicates the outgoing signal.

**Return type** tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural Networks.

**See also:**

*LSTM*

**Example**

Assuming \( y \) is the current incoming signal, \( c \) is the previous cell state, and \( h \) is the previous outgoing signal from an \texttt{lstm} function. Each of \( y, c \) and \( h \) has \texttt{n_units} channels. Most typical preparation of \( x \) is:

```python
>>> n_units = 100
>>> y = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> h = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(n_units, 4 * n_units)
... model.v = L.Linear(n_units, 4 * n_units)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)
```

It corresponds to calculate the input array \( x \), or the input sources \( a, i, f, o \), from the current incoming signal \( y \) and the previous outgoing signal \( h \). Different parameters are used for different kind of input sources.

**Note:** We use the naming rule below.
• **incoming signal** The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of lower RNN layer). The input of chainer.links.LSTM is the incoming signal.

• **input array** The array which is linear transformed from incoming signal and the previous outgoing signal. The input array contains four sources, the sources of cell input, input gate, forget gate and output gate. The input of chainer.functions.LSTM is the input array.

chainer.functions.maxout

chainer.functions.maxout\(x, \text{pool}\_\text{size}, axis=1\)

Maxout activation function.

It accepts an input tensor \(x\), reshapes the axis dimension (say the size being \(M \times \text{pool}\_\text{size}\)) into two dimensions \((M, \text{pool}\_\text{size})\), and takes maximum along the axis dimension.

Parameters

- \(x\) (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A \(n\)-dimensional \((n \geq \text{axis})\) float array. In general, its first dimension is assumed to be the minibatch dimension. The other dimensions are treated as one concatenated dimension.

- \(\text{pool}\_\text{size}\) (int) – The size used for downsampling of pooling layer.

- \(\text{axis}\) (int) – The axis dimension to be reshaped. The size of axis dimension should be \(M \times \text{pool}\_\text{size}\).

Returns Output variable. The shape of the output is same as \(x\) except that axis dimension is transformed from \(M \times \text{pool}\_\text{size}\) to \(M\).

Return type Variable

See also: Maxout

Example

Typically, \(x\) is the output of a linear layer or a convolution layer. The following is the example where we use maxout() in combination with a Linear link.

```python
>>> in_size, out_size, pool_size = 10, 10, 10
>>> bias = np.arange(out_size * pool_size).astype('f')
>>> l = L.Linear(in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((1, in_size), 'f') # prepare data
>>> x = l(x)
>>> y = F.maxout(x, pool_size)
>>> x.shape
(1, 100)
>>> y.shape
(1, 10)
>>> x.reshape((out_size, pool_size)).data
```

array([[[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.],
       [40., 41., 42., 43., 44., 45., 46., 47., 48., 49.],
       [50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],
       [60., 61., 62., 63., 64., 65., 66., 67., 68., 69.],
       [ 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.]],
      [[ 10.,  11.,  12.,  13.,  14.,  15.,  16.,  17.,  18.,  19.],
       [ 40.,  41.,  42.,  43.,  44.,  45.,  46.,  47.,  48.,  49.],
       [ 50.,  51.,  52.,  53.,  54.,  55.,  56.,  57.,  58.,  59.],
       [ 60.,  61.,  62.,  63.,  64.,  65.,  66.,  67.,  68.,  69.],
       [ 70.,  71.,  72.,  73.,  74.,  75.,  76.,  77.,  78.,  79.]])
```
chainer.functions.prelu

chainer.functions.prelu(x, W)

Parametric ReLU function.

It accepts two arguments: an input x and a weight array W and computes the output as

\[PReLU(x) = \max(x, W \cdot x) \]

where \(\cdot \) is an elementwise multiplication for each sample in the batch.

When the PReLU function is combined with two-dimensional convolution, the elements of parameter W are typically shared across the same filter of different pixels. In order to support such usage, this function supports the shape of parameter array that indicates leading dimensions of input arrays except the batch dimension.

For example, if W has the shape of \((2, 3, 4) \), x must have the shape of \((B, 2, 3, 4, S_1, ..., S_N) \) where B is the batch size and the number of trailing S's N is an arbitrary non-negative integer.

Parameters

- x (Variable) – Input variable. Its first argument is assumed to be the minibatch dimension.
- W (Variable) – Weight variable.

Returns Output variable

Return type Variable

See also:

PReLU

chainer.functions.relu

chainer.functions.relu(x)

Rectified Linear Unit function.

\[f(x) = \max(0, x). \]

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N) \)-shaped float array.

Returns Output variable. A \((s_1, s_2, ..., s_N) \)-shaped float array.

Return type Variable

Example

```python
>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], 'f')
>>> np.any(x < 0)
True
>>> y = F.relu(x)
```
>>> np.any(y.data < 0)
False
>>> y.shape
(3, 2)

chainer.functions.selu

chainer.functions.selu(x, alpha=1.6732632423543772, scale=1.0507009873554805)

Scaled Exponential Linear Unit function.

For parameters α and λ, it is expressed as

$$f(x) = \lambda \begin{cases}
 x & \text{if } x \geq 0 \\
 \alpha (\exp(x) - 1) & \text{if } x < 0,
\end{cases}$$

See: https://arxiv.org/abs/1706.02515

Parameters

- x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A ($s_1, s_2, ..., s_N$)-shaped float array.
- alpha (float) – Parameter α.
- scale (float) – Parameter λ.

Returns Output variable. A ($s_1, s_2, ..., s_N$)-shaped float array.

Return type Variable

chainer.functions.sigmoid

chainer.functions.sigmoid(x)

Element-wise sigmoid logistic function.

$$f(x) = \frac{1}{1 + \exp(-x)}.$$

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A ($s_1, s_2, ..., s_N$)-shaped float array.

Returns Output variable. A ($s_1, s_2, ..., s_N$)-shaped float array.

Return type Variable

Example

It maps the input values into the range of $[0, 1]$.

```python
>>> x = np.arange(-2, 3, 2).astype('f')
>>> x
array([-2.,  0.,  2.], dtype=float32)
>>> F.sigmoid(x)
variable([ 0.11920291, 0.5       , 0.88079709])
```
chainer.functions.slstm

chainer.functions.slstm(c_prev1, c_prev2, x1, x2)

S-LSTM units as an activation function.

This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states `c_prev1` and `c_prev2`, and input arrays `x1` and `x2`.

First both input arrays `x1` and `x2` are split into eight arrays $a_1, i_1, f_1, o_1, a_2, i_2, f_2, o_2$. They have the same shape along the second axis. It means that `x1` and `x2`'s second axis must have 4 times the length of `c_prev1` and `c_prev2`.

The split input arrays are corresponding to:

- a_i: sources of cell input
- i_i: sources of input gate
- f_i: sources of forget gate
- o_i: sources of output gate

It computes the updated cell state c and the outgoing signal h as:

$$
 c = \tanh(a_1 + a_2)\sigma(i_1 + i_2) + c_{prev1}\sigma(f_1) + c_{prev2}\sigma(f_2),
$$

$$
 h = \tanh(c)\sigma(o_1 + o_2),
$$

where σ is the elementwise sigmoid function. The function returns c and h as a tuple.

Parameters

- `c_prev1` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Variable that holds the previous cell state of the first child node. The cell state should be a zero array or the output of the previous call of LSTM.
- `c_prev2` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Variable that holds the previous cell state of the second child node.
- `x1` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Variable that holds the sources of cell input, input gate, forget gate and output gate from the first child node. It must have the second dimension whose size is four times of that of the cell state.
- `x2` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Variable that holds the input sources from the second child node.

Returns Two *Variable* objects c and h. c is the cell state. h indicates the outgoing signal.

Return type tuple

See detail in paper: *Long Short-Term Memory Over Tree Structures*.

Example

Assuming c_1, c_2 is the previous cell state of children, and h_1, h_2 is the previous outgoing signal from children. Each of c_1, c_2, h_1 and h_2 has `n_units` channels. Most typical preparation of `x1, x2` is:

```python
>>> n_units = 100
>>> h1 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> h2 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c1 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c2 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> model1 = chainer.Chain()
```
>>> with model1.init_scope():
... model1.w = L.Linear(n_units, 4 * n_units)
... model1.v = L.Linear(n_units, 4 * n_units)

>>> model2 = chainer.Chain()
>>> with model2.init_scope():
... model2.w = L.Linear(n_units, 4 * n_units)
... model2.v = L.Linear(n_units, 4 * n_units)

>>> x1 = model1.w(c1) + model1.v(h1)

>>> x2 = model2.w(c2) + model2.v(h2)

>>> c, h = F.slstm(c1, c2, x1, x2)

It corresponds to calculate the input array x_1, or the input sources a_1, i_1, f_1, o_1 from the previous cell state of first child node c_1, and the previous outgoing signal from first child node h_1. Different parameters are used for different kind of input sources.

chainer.functions.softmax

chainer.functions.softmax(x, axis=1)

Softmax function.

This function computes its softmax along an axis. Let $c = (c_1, c_2, \ldots, c_D)$ be the slice of x along with the axis. For each slice c, it computes the function $f(c)$ defined as $f(c) = \frac{\exp(c)}{\sum_d \exp(c_d)}$.

Parameters

- x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A n-dimensional ($n \geq 2$) float array.

- axis (int) – The axis along which the softmax is to be computed.

Returns

Output variable. A n-dimensional ($n \geq 2$) float array, which is the same shape with x.

Return type

Variable

Example

```python
>>> x = np.array([[0, 1, 2], [0, 2, 4]], 'f')
>>> x
array([[ 0., 1., 2.],
       [ 0., 2., 4.]], dtype=float32)
>>> y = F.softmax(x, axis=1)
>>> y.data
array([[ 0.09003057, 0.24472848, 0.66524094],
       [ 0.01587624, 0.11731043, 0.86681336]], dtype=float32)
>>> F.sum(y, axis=1).data
array([[ 1., 1.], dtype=float32])
```

chainer.functions.softplus

chainer.functions.softplus(x, beta=1.0)

Element-wise softplus function.
The softplus function is the smooth approximation of ReLU.

\[f(x) = \frac{1}{\beta} \log(1 + \exp(\beta x)), \]

where \(\beta \) is a parameter. The function becomes curved and akin to ReLU as the \(\beta \) is increasing.

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **beta** (*float*) – Parameter \(\beta \).

Returns Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*

Example

```python
>>> x = np.arange(-2, 3, 2).astype('f')
>>> x
array([-2.,  0.,  2.], dtype=float32)
>>> F.softplus(x, beta=1.0).data
array([ 0.126928 , 0.69314718, 2.12692809], dtype=float32)
```

chainer.functions.tanh

chainer.functions.tanh

Elementwise hyperbolic tangent function.

\[f(x) = \tanh(x). \]

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Returns Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*

Example

```python
>>> x = np.arange(-1, 4, 2).astype('f')
>>> x
array([-1.,  1.,  3.], dtype=float32)
>>> F.tanh(x).data
array([-0.76159418, 0.76159418, 0.99505478], dtype=float32)
```

chainer.functions.tree_lstm

chainer.functions.tree_lstm

TreeLSTM unit as an activation function.
This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the children cell states c_1, c_2, \ldots, c_N, and the incoming signal x.

First, the incoming signal x is split into $(3 + N)$ arrays $a, i, o, f_1, f_2, \ldots, f_N$ of the same shapes along the second axis. It means that x's second axis must have $(3 + N)$ times of the length of each c_n.

The splitted input signals are corresponding to:

- a: sources of cell input
- i: sources of input gate
- o: sources of output gate
- f_n: sources of forget gate for n-th ary

Second, it computes outputs as:

$$

c = \tanh(a)\text{sigmoid}(i) + c_1\text{sigmoid}(f_1),
+ c_2\text{sigmoid}(f_2),
+ \ldots,
+ c_N\text{sigmoid}(f_N),
$$

$$
\begin{align*}
 h &= \text{tanh}(c)\text{sigmoid}(o).
\end{align*}
$$

These are returned as a tuple of $(N + 1)$ variables.

Parameters

- **inputs** (list of Variable) – Variable arguments which include all cell vectors from child-nodes, and an input vector. Each of the cell vectors and the input vector is Variable.
 The input vector must have the second dimension whose size is $(N + 3)$ times of that of each cell, where N denotes the total number of cells.

Returns

Two Variable objects c and h. c is the updated cell state. h indicates the outgoing signal.

Return type tuple

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. only has one W matrix to be applied to x, consistently for all children. On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each child’s cell individually.

Example

Assuming y is the current input signal, c is the previous cell state, and h is the previous output signal from a `tree_lstm()` function. Each of y, c and h has n_{units} channels. Using 2-ary (binary) TreeLSTM, most typical preparation of x is:

```python
>>> model = chainer.Chain()
>>> with model.init_scope():
...   model.w = L.Linear(10, 5 * 10)
...   model.v1 = L.Linear(10, 5 * 10)
...   model.v2 = L.Linear(10, 5 * 10)
>>> y = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> h1 = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> h2 = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> c1 = np.random.uniform(-1, 1, (4, 10)).astype('f')
```
It corresponds to calculate the input sources \(a, i, o, f_1, f_2\) from the current input \(y\) and the children’s outputs \(h_1\) and \(h_2\). Different parameters are used for different kind of input sources.

2.4.2 Array manipulations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>broadcast</code></td>
<td>Broadcast given variables.</td>
</tr>
<tr>
<td><code>broadcast_to</code></td>
<td>Broadcast a given variable to a given shape.</td>
</tr>
<tr>
<td><code>cast</code></td>
<td>Cast an input variable to a given type.</td>
</tr>
<tr>
<td><code>concat</code></td>
<td>Concatenates given variables along an axis.</td>
</tr>
<tr>
<td><code>copy</code></td>
<td>Copies the input variable onto the specified device.</td>
</tr>
<tr>
<td><code>depth2space</code></td>
<td>Computes the depth2space transformation for subpixel calculations.</td>
</tr>
<tr>
<td><code>dstack</code></td>
<td>Concatenate variables along third axis (depth wise).</td>
</tr>
<tr>
<td><code>expand_dims</code></td>
<td>Expands dimensions of an input variable without copy.</td>
</tr>
<tr>
<td><code>flatten</code></td>
<td>Flatten a given array into one dimension.</td>
</tr>
<tr>
<td><code>flip</code></td>
<td>Flips an input variable in reverse order along the given axis.</td>
</tr>
<tr>
<td><code>flip1r</code></td>
<td>Flip array in the left/right direction.</td>
</tr>
<tr>
<td><code>flipud</code></td>
<td>Flip array in the up/down direction.</td>
</tr>
<tr>
<td><code>get_item</code></td>
<td>Extract elements from array with specified shape, axes and offsets.</td>
</tr>
<tr>
<td><code>hstack</code></td>
<td>Concatenate variables horizontally (column wise).</td>
</tr>
<tr>
<td><code>im2col</code></td>
<td>Extract patches from an image based on the filter.</td>
</tr>
<tr>
<td><code>pad</code></td>
<td>Pad an input variable.</td>
</tr>
<tr>
<td><code>pad_sequence</code></td>
<td>Pad given arrays to make a matrix.</td>
</tr>
<tr>
<td><code>permutate</code></td>
<td>Permutates a given variable along an axis.</td>
</tr>
<tr>
<td><code>reshape</code></td>
<td>Reshapes an input variable without copy.</td>
</tr>
<tr>
<td><code>resize_images</code></td>
<td>Resize images to the given shape.</td>
</tr>
<tr>
<td><code>rollaxis</code></td>
<td>Roll the axis backwards to the given position.</td>
</tr>
<tr>
<td><code>select_item</code></td>
<td>Select elements stored in given indices.</td>
</tr>
<tr>
<td><code>sepate</code></td>
<td>Separates an array along a given axis.</td>
</tr>
<tr>
<td><code>space2depth</code></td>
<td>Computes the space2depth transformation for subpixel calculations.</td>
</tr>
<tr>
<td><code>spatial_transformer_grid</code></td>
<td>2D Spatial Transformer grid.</td>
</tr>
<tr>
<td><code>spatial_transformer_sampler</code></td>
<td>2D Spatial Transformer sampler.</td>
</tr>
<tr>
<td><code>split_axis</code></td>
<td>Splits given variables along an axis.</td>
</tr>
<tr>
<td><code>squeeze</code></td>
<td>Remove dimensions of size one from the shape of a ndarray.</td>
</tr>
<tr>
<td><code>stack</code></td>
<td>Concatenate variables along a new axis.</td>
</tr>
<tr>
<td><code>swapaxes</code></td>
<td>Swap two axes of a variable.</td>
</tr>
<tr>
<td><code>tile</code></td>
<td>Construct an array by tiling a given array.</td>
</tr>
<tr>
<td><code>transpose</code></td>
<td>Permute the dimensions of an input variable without copy.</td>
</tr>
<tr>
<td><code>transpose_sequence</code></td>
<td>Transpose a list of Variables.</td>
</tr>
<tr>
<td><code>vstack</code></td>
<td>Concatenate variables vertically (row wise).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2.32 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.where</code></td>
<td>Choose elements depending on condition.</td>
</tr>
</tbody>
</table>

chainer.functions.broadcast

`chainer.functions.broadcast(*args)`
Broadcast given variables.

- **Parameters** `args` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variables to be broadcasted. Each dimension of the shapes of the input variables must have the same size.

- **Returns** `Variable` or tuple of `Variable` objects which are broadcasted from given arguments.

- **Return type** `Variable`

Example

```python
>>> x = np.random.uniform(0, 1, (3, 2)).astype('f')
>>> y = F.broadcast(x)
>>> np.all(x == y.data)
True
>>> z = np.random.uniform(0, 1, (3, 2)).astype('f')
>>> y, w = F.broadcast(x, z)
>>> np.all(x == y.data) & np.all(z == w.data)
True
```

chainer.functions.broadcast_to

`chainer.functions.broadcast_to(x, shape)`
Broadcast a given variable to a given shape.

- **Parameters**
 - `x` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable be broadcasted. A \((s_1, s_2, ..., s_N)\)-shaped float array.
 - `shape` (*tuple*) – Tuple of *int* of the shape of the output variable.

- **Returns** Output variable broadcasted to the given shape.

- **Return type** `Variable`

Example

```python
>>> x = np.arange(0, 3)
>>> x
array([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.data
array([[0, 1, 2],
       [0, 1, 2],
       [0, 1, 2]])
```
chainer.functions.cast

chainer.functions.cast (x, typ)
Cast an input variable to a given type.

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)*
 Input variable to be casted. A \((s_1, s_2, ..., s_N)\)-shaped float array.

- **typ** *(str of dtype or numpy.dtype)*
 Typecode or data type to cast.

Returns
Variable holding a casted array.

Return type
Variable

Example

```python
>>> x = np.arange(0, 3, dtype=np.float64)
>>> x.dtype
dtype('float64')
>>> y = F.cast(x, np.float32)
>>> y.dtype
dtype('float32')
>>> y = F.cast(x, 'float16')
>>> y.dtype
dtype('float16')
```

chainer.functions.concat

chainer.functions.concat (xs, axis=1)
Concatenates given variables along an axis.

Parameters

- **xs** *(tuple of Variable or numpy.ndarray or cupy.ndarray)*
 Input variables to be concatenated. The variables must have the same shape, except in the dimension corresponding to axis.

- **axis** *(int)*
 The axis along which the arrays will be joined. Default is 1.

Returns
The concatenated variable.

Return type
Variable

Example

```python
>>> x = np.arange(0, 12).reshape(3, 4)
>>> x
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> y = np.arange(0, 3).reshape(3, 1)
>>> y
array([[0],
       [1],
       [2]])
```
```python
>>> z = F.concat((x, y), axis=1)
>>> z.data
array([[ 0, 1, 2, 3, 0],
        [ 4, 5, 6, 7, 1],
        [ 8, 9, 10, 11, 2]])
```

`chainer.functions.copy`

`chainer.functions.copy(x, dst)`

Copies the input variable onto the specified device.

This function copies the array of input variable onto the device specified by `dst`. When `dst == -1`, it copies the array onto the host memory. This function supports copies from host to host, from host to device, from device to device and from device to host.

Parameters

- `x` (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – Variable to be copied.
- `dst` (*int*) – Target device specifier.

Returns

Output variable.

Return type

`Variable`

Example

```python
>>> import chainer.cuda as cuda

>>> x = np.random.uniform(-1, 1, (5, 10))
>>> cuda.get_device_from_array(x).id
-1
>>> y = F.copy(x, 0)  # from host to device0
>>> cuda.get_device_from_array(y.data).id
0
>>> z = F.copy(y, -1)  # from device0 to host
>>> cuda.get_device_from_array(z.data).id
-1
```

`chainer.functions.depth2space`

`chainer.functions.depth2space(X, r)`

Computes the depth2space transformation for subpixel calculations.

Parameters

- `X` (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – Variable holding a 4d array of shape `(batch, channel * r * r, dim1, dim2)`.
- `r` (*int*) – the upscaling factor.

Returns

A variable holding the upscaled array from interspersed depth layers. The shape is `(batch, channel, dim1 * r, dim2 * r)`.

Return type

`Variable`
Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for details.

See also:

\textit{space2depth()}

Example

```python
>>> X = np.arange(24).reshape(1, 4, 2, 3).astype('f')
>>> X.shape
(1, 4, 2, 3)
>>> X
array([[[ 0., 1., 2.],
    [ 3., 4., 5.]],
    [[ 6., 7., 8.],
    [ 9., 10., 11.]],
    [[12., 13., 14.],
    [15., 16., 17.]],
    [[18., 19., 20.],
    [21., 22., 23.]]], dtype=float32)
>>> y = F.depth2space(X, 2)
>>> y.shape
(1, 1, 4, 6)
>>> y.data
array([[[ 0., 6., 1., 7., 2., 8.],
    [12., 18., 13., 19., 14., 20.],
    [ 3., 9., 4., 10., 5., 11.],
    [15., 21., 16., 22., 17., 23.]]], dtype=float32)
```

\texttt{chainer.functions.dstack}

\texttt{chainer.functions.dstack(xs)}

Concatenate variables along third axis (depth wise).

\textbf{Parameters} \texttt{xs} (list of \texttt{Variable} or \texttt{numpy.ndarray} or \texttt{cupy.ndarray}) – Input variables to be concatenated. The variables must have the same \texttt{ndim}. When the variables have the third axis (i.e. \texttt{ndim} \geq 3), the variables must have the same shape along all but the third axis. When the variables do not have the third axis (i.e. \texttt{ndim} < 3), the variables must have the same shape.

\textbf{Returns} Output variable. When the input variables have the third axis (i.e. \texttt{ndim} \geq 3), the shapes of inputs and output are the same along all but the third axis. The length of third axis is the sum of the lengths of inputs’ third axis. When the shape of variables are \((N1, N2)\) (i.e. \texttt{ndim} = 2), the shape of output is \((N1, N2, 2)\). When the shape of variables are \((N1,)\) (i.e. \texttt{ndim} = 1), the shape of output is \((1, N1, 2)\). When the shape of variables are \(()\) (i.e. \texttt{ndim} = 0), the shape of output is \((1, 1, 2)\).

\textbf{Return type} \texttt{Variable}

Example
```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.dstack((x1, x2))
>>> y.shape
(1, 3, 2)
>>> y.data
array([[1, 2],
        [2, 3],
        [3, 4]])
```
chainer.functions.expand_dims

chainer.functions.expand_dims(x, axis)

Expands dimensions of an input variable without copy.

Parameters

- `x` (Variable or numpy.ndarray or cupy.ndarray) – Input variable.
- `axis` (int) – Position where new axis is to be inserted. The axis parameter is acceptable when
 \(-ndim - 1 \leq \text{axis} \leq ndim\). (ndim is the dimension of input variables). When
 \text{axis} < 0, the result is the same with \text{ndim} + 1 - |\text{axis}|.

Returns

Variable that holds a expanded input. The ndim of output is one grater than that of x.

Return type

Variable

Example

```python
>>> x = np.array([1, 2, 3])
>>> x.shape
(3,)
>>> y = F.expand_dims(x, axis=0)
>>> y.shape
(1, 3)
>>> y.data
array([[1, 2, 3]])
```

chainer.functions.flatten

chainer.functions.flatten(x)

Flatten a given array into one dimension.

Parameters

- `x` (Variable or numpy.ndarray or cupy.ndarray) – Input variable.

Returns

Output variable flatten to one dimension.

Return type

Variable

Note:
When you input a scalar array (i.e. the shape is ()), you can also get the one dimension array whose shape is (1,).

Example
>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.flatten(x)
>>> y.shape
(4,)
>>> y.data
array([1, 2, 3, 4])

>>> x = np.arange(8).reshape(2, 2, 2)
>>> x.shape
(2, 2, 2)
>>> y = F.flatten(x)
>>> y.shape
(8,)
>>> y.data
array([0, 1, 2, 3, 4, 5, 6, 7])

chainer.functions.flip

chainer.functions.flip(x, axis)
Flips an input variable in reverse order along the given axis.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable.
• axis (int) – Axis along which the input variable is reversed.

Returns
Output variable.

Return type
Variable

chainer.functions.fliplr

chainer.functions.fliplr(a)
Flip array in the left/right direction.

Parameters
xs (Variable) – Input variable.

Returns
Output variable.

Return type
Variable

chainer.functions.flipud

chainer.functions.flipud(a)
Flip array in the up/down direction.

Parameters
xs (Variable) – Input variable.

Returns
Output variable.

Return type
Variable
chainer.functions.get_item

`chainer.functions.get_item(x, slices)`

Extract elements from array with specified shape, axes and offsets.

Parameters

- **x** (*Variable*) – A variable to be sliced.
- **slices** (*int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them*) – It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

Returns A *Variable* object which contains sliced array of *x*.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in *slices*. The supported types are `numpy.float32`, `numpy.int32`, `numpy.uint32`, `numpy.uint64` and `numpy.ulonglong`.

Note: It does not support *slices* that contains multiple boolean arrays.

Note: See NumPy document for details of indexing.

chainer.functions.hstack

`chainer.functions.hstack(xs)`

Concatenate variables horizontally (column wise).

Parameters

- **xs** (*list of Variable or numpy.ndarray or cupy.ndarray*) – Input variables to be concatenated. The variables must have the same `ndim`. When the variables have the second axis (i.e. `ndim ≥ 2`), the variables must have the same shape along all but the second axis. When the variables do not have the second axis (i.e. `ndim < 2`), the variables need not to have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. `ndim ≥ 2`), the shapes of inputs and output are the same along all but the second axis. The length of second axis is the sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e. `ndim < 2`), the shape of output is `(N,)` (N is the sum of the input variables’ size).

Return type *Variable*

Example

```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.hstack((x1, x2))
>>> y.shape
(6,)
```
chainer.functions.im2col

chainer.functions.im2col(x, ksize, stride=1, pad=0, cover_all=False, dilate=1)

Extract patches from an image based on the filter.

This function rearranges patches of an image and put them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of stride from the first position – pad for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.

- \(n \) is the batch size.
- \(c \) is the number of the input channels.
- \(h \) and \(w \) are the height and width of the input image, respectively.
- \(k_H \) and \(k_W \) are the height and width of the filters, respectively.
- \(s_Y \) and \(s_X \) are the strides of the filter.
- \(p_H \) and \(p_W \) are the spatial padding sizes.
- \(d_Y \) and \(d_X \) are the dilation factors of filter application.

The output size \((h_O, w_O)\) is determined by the following equations when \(\text{cover_all} = \text{False}\):

\[
 h_O = \frac{(h + 2p_H - k_H - (k_H - 1) \ast (d_Y - 1))/s_Y + 1}{1},
 w_O = \frac{(w + 2p_W - k_W - (k_W - 1) \ast (d_X - 1))/s_X + 1}{1}.
\]

When \(\text{cover_all} = \text{True}\), the output size is determined by the following equations:

\[
 h_O = \frac{(h + 2p_H - k_H - (k_H - 1) \ast (d_Y - 1) + s_Y - 1)/s_Y + 1}{1},
 w_O = \frac{(w + 2p_W - k_W - (k_W - 1) \ast (d_X - 1) + s_X - 1)/s_X + 1}{1}.
\]
Parameters

- **x** (*Variable*) – Input variable of shape \((n, c, h, w)\).
- **ksize** (*int or pair of ints*) – Size of filters (a.k.a. kernels). \(ksize=k\) and \(ksize=(k, k)\) are equivalent.
- **stride** (*int or pair of ints*) – Stride of filter applications. \(stride=s\) and \(stride=(s, s)\) are equivalent.
- **pad** (*int or pair of ints*) – Spatial padding width for input arrays. \(pad=p\) and \(pad=(p, p)\) are equivalent.
- **cover_all** (*bool*) – If True, all spatial locations are rearranged into some output pixels. It may make the output size larger.
- **dilate** (*int or pair of ints*) – Dilation factor of filter applications. \(dilate=d\) and \(dilate=(d, d)\) are equivalent.

Returns Output variable whose shape is \((n, c \cdot k_H \cdot k_W, h_O, w_O)\)

Return type **Variable**

chainer.functions.pad

`chainer.functions.pad(x, pad_width, mode, **keywords)`

Pad an input variable.

Parameters

- **x** (*chainer.Variable or :class:`numpy.ndarray` or :class:`cupy.ndarray*) – Input data.
- **pad_width** (*int or array-like*) – Number of values padded to the edges of each axis.
- **mode** (*str*) – Specifies how the function fills the periphery of the array. The mode is passed to `numpy.pad()` or `cupy.pad()`. If it is 'constant', the input is padded by a constant value specified by `constant_values`.
- **constant_values** (*int or array-like*) – Constant values to fill the periphery in the 'constant' mode.

Returns Output variable.

Return type **Variable**

chainer.functions.pad_sequence

`chainer.functions.pad_sequence(xs, length=None, padding=0)`

Pad given arrays to make a matrix.

Parameters

- **xs** (*list of ~chainer.Variable*) – Variables you want to concatenate.
- **length** (*None or int*) – Size of the first dimension of a padded array. If it is None, the longest size of the first dimension of `xs` is used.
- **padding** (*int or float*) – Value to fill.

Returns A padded matrix. Its shape is \((n, length, ...)\), where \(n = \text{len}(xs)\).

Return type **Variable**
chainer.functions.permutate

chainer.functions.permutate(x, indices, axis=0, inv=False)
Permutates a given variable along an axis.

This function permutate x with given indices. That means \(y[i] = x[\text{indices}[i]] \) for all \(i \). Note that this result is same as \(y = x.\text{take}(\text{indices}) \). indices must be a permutation of \([0, 1, \ldots, \text{len}(x) - 1]\).

When \(\text{inv} \) is True, indices is treated as its inverse. That means \(y[\text{indices}[i]] = x[i] \).

Parameters

- **x** (Variable or numpy.ndarray or cupy.ndarray) – Variable to permutate. A \((s_1, s_2, \ldots, s_N)\)-shaped float array.
- **indices** (Variable or numpy.ndarray or cupy.ndarray) – Indices to extract from the variable. A one-dimensional int array.
- **axis** (int) – Axis that the input array is permutate along.
- **inv** (bool) – If True, indices is treated as its inverse.

Returns

Output variable.

Return type

Variable

Example

```python
>>> x = np.arange(6).reshape((3, 2)).astype('f')
>>> x
array([[ 0.,  1.],
       [ 2.,  3.],
       [ 4.,  5.]], dtype=float32)
>>> indices = np.array([2, 0, 1], 'i')
>>> y = F.permutate(x, indices)
>>> y.data
array([[ 4.,  5.],
       [ 0.,  1.],
       [ 2.,  3.]], dtype=float32)
>>> y = F.permutate(x, indices, inv=True)
>>> y.data
array([[ 2.,  3.],
       [ 4.,  5.],
       [ 0.,  1.]], dtype=float32)
>>> indices = np.array([1, 0], 'i')
>>> y = F.permutate(x, indices, axis=1)
>>> y.data
array([[ 1.,  0.],
       [ 3.,  2.],
       [ 5.,  4.]], dtype=float32)
```

chainer.functions.reshape

chainer.functions.reshape(x, shape)
Reshapes an input variable without copy.

Parameters
• **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.

• **shape** (*tuple* of *ints*) – Expected shape of the output array. The number of elements which the array of shape contains must be equal to that of input array. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions.

Returns Variable that holds a reshaped version of the input variable.

Return type *Variable*

See also:

numpy.reshape(), *cupy.reshape()*

Example

```python
>>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> y = F.reshape(x, (8,))  
>>> y.shape
(8,)
>>> y.data
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> y = F.reshape(x, (4, -1))  # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.data
array([[1, 2],
       [3, 4],
       [5, 6],
       [7, 8]])
>>> y = F.reshape(x, (4, 3))  # the shape of input and output are not consistent
Traceback (most recent call last):
  ...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Reshape (Forward)
```

Expect: `prod(in_types[0].shape) == prod((4, 3))` Actual: `8 != 12`

chainer.functions.resize_images

chainer.functions.resize_images(x, output_shape)

Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the sampling method.

Notation: here is a notation for dimensionalities.

• **n** is the batch size.

• **c**_I_ is the number of the input channels.

• **h** and **w** are the height and width of the input image, respectively.

• **h**_O_ and **w**_O_ are the height and width of the output image.

Parameters

• **x** (*Variable*) – Input variable of shape (n, c, h, w).
• **output_shape** *(tuple)* – This is a tuple of length 2 whose values are *(h_O, w_O)*. Note that the order of height and width is opposite of the one in OpenCV.

Returns Resized image whose shape is *(n, c_I, h_O, w_O)*.

Return type *Variable*

chainer.functions.rollaxis

chainer.functions.rollaxis *(x, axis, start=0)*

Roll the axis backwards to the given position.

Parameters

- **x** *(Variable)* – Input variable.
- **axis** *(int)* – The axis to roll backwards.
- **start** *(int)* – The place to which the axis is moved.

Returns Variable whose axis is rolled.

Return type *Variable*

chainer.functions.select_item

chainer.functions.select_item *(x, t)*

Select elements stored in given indices.

This function returns *t* .choose(*x*.T), that means *y*[i] == *x*[i, *t*[i]] for all *i*.

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Variable storing arrays. A two-dimensional float array.
- **t** *(Variable or numpy.ndarray or cupy.ndarray)* – Variable storing index numbers. A one-dimensional int array. Length of the *t* should be equal to *x*.shape[0].

Returns Variable that holds *t*-th element of *x*.

Return type *Variable*

Example

```python
>>> x = np.array([[[0, 1, 2], [3, 4, 5]], 'f')
>>> t = np.array([0, 2], 'i')
>>> y = F.select_item(x, t)
>>> y.shape
(2,)
>>> y.data
array([ 0., 5.], dtype=float32)
```

chainer.functions.separate

chainer.functions.separate *(x, axis=0)*

Separates an array along a given axis.
This function separates an array along a given axis. For example, shape of an array is \((2, 3, 4)\). When it separates the array with \(axis=1\), it returns three \((2, 4)\) arrays.

This function is an inverse of \texttt{chainer.functions.stack()}.

Parameters

- \(x\) (\texttt{Variable} or \texttt{numpy.ndarray} or \texttt{cupy.ndarray}) – Variable to be separated. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- \(axis\) (\texttt{int}) – Axis along which variables are separated.

Returns Output variables.

See also: \texttt{chainer.functions.stack()}

Example

```python
>>> x = np.arange(6).reshape((2, 3)).astype('f')
>>> x
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.]], dtype=float32)
>>> x.shape
(2, 3)
>>> y = F.separate(x)  # split along axis=0
>>> isinstance(y, tuple)
True
>>> len(y)
2
>>> y[0].shape
(3,)
>>> y[0].data
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.]], dtype=float32)
>>> y = F.separate(x, axis=1)
>>> len(y)
3
>>> y[0].shape
(2,)
>>> y[0].data
array([[ 0.,  3.]], dtype=float32)
```

Chainer.Functions.space2depth

\texttt{chainer.functions.space2depth}(X, r)

Computes the space2depth transformation for subpixel calculations.

Parameters

- \(X\) (\texttt{Variable} or \texttt{numpy.ndarray} or \texttt{cupy.ndarray}) – Variable holding a 4d array of shape \((\text{batch}, \text{channel}, \text{dim1} \times r, \text{dim2} \times r)\).
- \(r\) (\texttt{int}) – the downscaling factor.

Returns A variable holding the downscaled layer array from subpixel array sampling. The shape is \((\text{batch}, \text{channel} \times r \times r, \text{dim1}, \text{dim2})\).
Return type **Variable**

Note: This can be used to compute inverse super-resolution transformations. See https://arxiv.org/abs/1609.05158 for details.

See also:

depth2space()

Example

```python
>>> X = np.arange(24).reshape(1, 1, 4, 6).astype('f')
>>> X.shape
(1, 1, 4, 6)
>>> X
array([[[ 0., 1., 2., 3., 4., 5.],
        [ 6., 7., 8., 9., 10., 11.],
        [ 12., 13., 14., 15., 16., 17.],
        [ 18., 19., 20., 21., 22., 23.]]], dtype=float32)
>>> y = F.space2depth(X, 2)
>>> y.shape
(1, 4, 2, 3)
>>> y.data
array([[[ 0., 2., 4.],
        [12., 14., 16.]],
        [[ 1., 3., 5.],
        [13., 15., 17.]],
        [[ 6., 8., 10.],
        [18., 20., 22.]],
        [[ 7., 9., 11.],
        [19., 21., 23.]]], dtype=float32)
```

Chainer Documentation, Release 3.1.0

chainer.functions.spatial_transformer_grid

chainer.functions.spatial_transformer_grid(theta, output_shape, **kwargs)

2D Spatial Transformer grid.

This function generates coordinates of the points sampled from an image to perform warping described in Spatial Transformer Networks.

Given a coordinate in the warped image \((x^t_i, y^t_i)\), the point sampled from the source image \((x^s_i, y^s_i)\) are calculated by the following equation.

\[
\begin{pmatrix}
 x^s_i \\
 y^s_i
\end{pmatrix}
= \begin{pmatrix}
 \theta_{11} & \theta_{12} & \theta_{13} \\
 \theta_{21} & \theta_{22} & \theta_{23}
\end{pmatrix}
\begin{pmatrix}
 x^t_i \\
 y^t_i \\
 1
\end{pmatrix}
\]

Note: cuDNN supports SpatialTransformerGrid from version 5.0.0.
Notation: here is a notation for dimensionalities.

- n is the batch size.
- h_O and w_O are the height and the width of the output image.

Parameters

- **theta (Variable)** – An array of shape $(n, 2, 3)$. This is a batch of 2×3 matrix used for the warping described above.
- **output_shape (tuple)** – A tuple of 2 elements: h_O, w_O.

Returns

A variable of shape $(n, 2, h_O, w_O)$. In the 2nd dimension, the first element is the coordinate along the x axis, and the second element is the coordinate along the y axis. All the coordinates in the image are scaled to fit range $[-1, 1]$. This means that the coordinate $(-1, -1)$ corresponds to the upper-left corner of the input image.

Return type **Variable**

chainer.functions.spatial_transformer_sampler

chainer.functions.spatial_transformer_sampler(x, grid, **kwargs)

2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points $grid$ and an input feature map x, this produces a sampled output feature map.

This function currently only supports bilinear interpolation as a sampling kernel.

When coordinates in $grid$ is outside range $[-1, 1]$, values are sampled from a zero padded input image.

Notation: here is a notation for dimensionalities.

- n is the batch size.
- c_I is the number of the input channels.
- h and w are the height and width of the input image, respectively.
- h_O and w_O are the height and width of the output image.

See detail in the following paper: Spatial Transformer Networks.

Note: cuDNN supports SpatialTransformerSampler from version 5.0.0.

Parameters

- **x (Variable)** – Input variable of shape (n, c_I, h, w).
- **grid (Variable)** – Coordinate variable of shape $(n, 2, h_O, w_O)$. Each coordinate defines the spatial location in the input where a sampling kernel is applied to get the value at a particular pixel in the output. $grid[idx, :, i, j]$ corresponds to the coordinate that is used to sample the values for an output pixel at location (i, j).

In the second dimension, the first coordinate corresponds to the location along the horizontal axis, and the second coordinate corresponds to the location along the vertical axis.

The coordinate $(-1, -1)$ corresponds to the upper-left corner of the input image.

Returns

Output feature map of shape (n, c_I, h_O, w_O).
Return type Variable

chainer.functions.split_axis

chainer.functions.split_axis(x, indices_or_sections, axis, force_tuple=True)
Splits given variables along an axis.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – A variable to be split.

• indices_or_sections (int or 1-D array) – If this argument is an integer, N, the array will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers, it indicates the positions where the array is split.

• axis (int) – Axis that the input array is split along.

• force_tuple (bool) – If True (the default) this method returns a tuple even when the number of outputs is one. Otherwise, if False a Variable will be returned when the number of outputs is one.

Returns Tuple of Variable objects if the number of outputs is more than 1 or Variable otherwise. When force_tuple is True, returned value is always a tuple regardless of the number of outputs.

Return type tuple or Variable

Note: This function raises ValueError if at least one of the outputs is split to zero-size (i.e. axis-th value of its shape is zero).

chainer.functions.squeeze

chainer.functions.squeeze(x, axis=None)
Remove dimensions of size one from the shape of a ndarray.

Parameters

• x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A (s_1, s_2, ..., s_N)-shaped float array.

• axis (None or int or tuple of ints) – A subset of the single-dimensional entries in the shape to remove. If None is supplied, all of them are removed. The dimension index starts at zero. If an axis with dimension greater than one is selected, an error is raised.

Returns Variable whose dimensions of size 1 are removed.

Return type Variable

Example

```python
>>> x = np.array([[[[0, 1, 2]]], [[[3, 4, 5]]]], 'f')
>>> x.shape
(2, 1, 1, 3)
>>> y = F.squeeze(x)
>>> y.shape
(2, 3)
>>> y.data
```

array([[0., 1., 2.],
 [3., 4., 5.]], dtype=float32)
>>> y = F.squeeze(x, axis=1)
>>> y.shape
(2, 1, 3)
>>> y.data
array([[0., 1., 2.],
 [3., 4., 5.]], dtype=float32)
>>> y = F.squeeze(x, axis=(1, 2))
>>> y.shape
(2, 3)
>>> y.data
array([[0., 1., 2.],
 [3., 4., 5.]], dtype=float32)

chainer.functions.stack

chainer.functions.stack(xs, axis=0)

Concatenate variables along a new axis.

Parameters

- **xs** (list of Variable or numpy.ndarray or cupy.ndarray) – Input variables to be concatenated. The variables must have the same shape.
- **axis** (int) – The axis along which the arrays will be stacked. The axis parameter is acceptable when $-\text{ndim} - 1 \leq \text{axis} \leq \text{ndim}$. (ndim is the dimension of input variables). When axis < 0, the result is the same with ndim + 1 - |axis|.

Returns Output variable. Let x_1, x_2, ..., x_n and y be the input variables and the output variable, y[:, ..., 0, ..., :] is x_1, y[:, ..., 1, ..., :] is x_2 and y[:, ..., n-1, ..., :] is x_n (The indexed axis indicates the axis).

Return type Variable

Example

>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
>>> x2 = np.arange(12, 24).reshape(3, 4)
>>> x2.shape
(3, 4)
>>> x2
array([[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
>>> y = F.stack([x1, x2], axis=0)
>>> y.shape
(2, 3, 4)
>>> y.data
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
>>> y = F.stack([x1, x2], axis=1)
>>> y.shape
(3, 2, 4)
>>> y.data
array([[0, 12],
 [1, 13],
 [2, 14],
 [3, 15]],
 [[4, 16],
 [5, 17],
 [6, 18],
 [7, 19]],
 [[8, 20],
 [9, 21],
 [10, 22],
 [11, 23]])
>>> y = F.stack([x1, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.data
array([[0, 12],
 [1, 13],
 [2, 14],
 [3, 15]],
 [[4, 16],
 [5, 17],
 [6, 18],
 [7, 19]],
 [[8, 20],
 [9, 21],
 [10, 22],
 [11, 23]])
>>> y = F.stack([x1, x2], axis=-1)
>>> y.shape
(3, 4, 2)

chainer.functions.swapaxes

chainer.functions.swapaxes(x, axis1, axis2)

Swap two axes of a variable.

Parameters

- x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A
 \((s_1, s_2, \ldots, s_N)\)-shaped float array.
- axis1 (int) – The first axis to swap.
- axis2 (int) – The second axis to swap.

Returns Variable whose axes are swapped.
Return type **Variable**

Example

```python
>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], 'f')
>>> x.shape
(1, 2, 3)
>>> y = F.swapaxes(x, axis1=0, axis2=1)
>>> y.shape
(2, 1, 3)
>>> y.data
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.]], dtype=float32)
```

chainer.functions.tile

chainer.functions.tile(x, reps)

Construct an array by tiling a given array.

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable. Let the length of reps be d. If x.ndim < d, x is treated as d-dimensional array by prepending new axes. For example, when the shape of x is (2,) and tiled with 2-dim repetitions, x is treated as the shape (1, 2). If x.ndim > d, reps is treated as x.ndim-dimensional by pre-pending 1’s. For example, when the shape of x is (2, 3, 2, 3), the 2-dim reps of (2, 2) is treated as (1, 1, 2, 2).

- **reps** *(int or tuple of int s)* – The number of times which x is replicated along each axis.

Returns The tiled output Variable. Let the length of reps be d, the output has the dimension of max(d, x.ndim).

Return type **Variable**

Example

```python
>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = np.tile(x, 2)
>>> y.shape
(6,)
>>> y
array([0, 1, 2, 0, 1, 2])
>>> y = np.tile(x, (2, 2))
>>> y.shape
(6,)
>>> y
array([[0, 1, 2, 0, 1, 2],
       [0, 1, 2, 0, 1, 2]])
>>> y = np.tile(x, (2, 1, 2))
>>> y.shape
(6,)
```
>>> y
array([[0, 1, 2, 0, 1, 2],
 [0, 1, 2, 0, 1, 2]])

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = np.tile(x, 2)
>>> y.shape
(2, 4)
>>> y
array([[1, 2, 1, 2],
 [3, 4, 3, 4]])

>>> y = np.tile(x, (2, 2))
>>> y.shape
(4, 4)
>>> y
array([[1, 2, 1, 2],
 [3, 4, 3, 4],
 [1, 2, 1, 2],
 [3, 4, 3, 4]])

>>> y = np.tile(x, (2, 1, 2))
>>> y.shape
(2, 2, 4)
>>> y
array([[[1, 2, 1, 2],
 [3, 4, 3, 4]],
 [[1, 2, 1, 2],
 [3, 4, 3, 4]]])

chainer.functions.transpose

chainer.functions.transpose(x, axes=None)

Permute the dimensions of an input variable without copy.

Parameters

- `x` (Variable or numpy.ndarray or cupy.ndarray) – Input variable to be transposed. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- `axes` (tuple of ints) – By default, reverse the dimensions, otherwise permute the axes according to the values given.

Returns

Variable whose axes are permuted.

Return type

Variable

Example

>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], 'f')
>>> x.shape
(1, 2, 3)
>>> y = F.transpose(x) # reverse the dimensions
>>> y.shape
(3, 2, 1)
```python
>>> y.data
array([[ 0.,
        [ 3.],
        [ 1.,
        [ 4.],
        [ 2.,
        [ 5.]], dtype=float32)
```
```python
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.vstack((x1, x2))
>>> y.shape
(2, 3)
>>> y.data
array([[1, 2, 3],
        [2, 3, 4]])
```

```python
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 20).reshape(2, 4)
>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],
        [16, 17, 18, 19]])
>>> y = F.vstack([x1, x2])
>>> y.shape
(5, 4)
>>> y.data
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15],
        [16, 17, 18, 19]])
```

chainer.functions.where

`chainer.functions.where(condition, x, y)`

Choose elements depending on condition.

This function choose values depending on a given condition. All `condition`, `x`, and `y` must have the same shape.

Parameters

- `condition` ([Variable or numpy.ndarray or cupy.ndarray]) – Input variable containing the condition. A \((s_1, s_2, ..., s_N) \)-shaped boolean array. Only boolean array is permitted.
- `x` ([Variable or numpy.ndarray or cupy.ndarray]) – Input variable chosen when condition is True. A \((s_1, s_2, ..., s_N) \)-shaped float array.
- `y` ([Variable or numpy.ndarray or cupy.ndarray]) – Input variable chosen when condition is False. A \((s_1, s_2, ..., s_N) \)-shaped float array.

Returns Variable containing chosen values.

Return type `Variable`
Example

```python
>>> cond = np.array([[1, 0], [0, 1]], dtype=np.bool)
>>> cond
array([[ True, False],
       [False,  True]], dtype=bool)
>>> x = np.array([[1, 2], [3, 4]], 'f')
>>> y = np.zeros((2, 2), 'f')
>>> F.where(cond, x, y).data
array([[ 1.,  0.],
       [ 0.,  4.]], dtype=float32)
```

2.4.3 Neural network connections

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bilinear</code></td>
<td>Applies a bilinear function based on given parameters.</td>
</tr>
<tr>
<td><code>convolution_2d</code></td>
<td>Two-dimensional convolution function.</td>
</tr>
<tr>
<td><code>convolution_nd</code></td>
<td>N-dimensional convolution function.</td>
</tr>
<tr>
<td><code>deconvolution_2d</code></td>
<td>Two dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>deconvolution_nd</code></td>
<td>N-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>depthwise_convolution_2d</code></td>
<td>Two-dimensional depthwise convolution function.</td>
</tr>
<tr>
<td><code>dilated_convolution_2d</code></td>
<td>Two-dimensional dilated convolution function.</td>
</tr>
<tr>
<td><code>embed_id</code></td>
<td>Efficient linear function for one-hot input.</td>
</tr>
<tr>
<td><code>linear</code></td>
<td>Linear function, or affine transformation.</td>
</tr>
<tr>
<td><code>n_step_bigru</code></td>
<td>Stacked Bi-directional Gated Recurrent Unit function.</td>
</tr>
<tr>
<td><code>n_step_bilstm</code></td>
<td>Stacked Bi-directional Long Short-Term Memory function.</td>
</tr>
<tr>
<td><code>n_step_birnn</code></td>
<td>Stacked Bi-directional RNN function for sequence inputs.</td>
</tr>
<tr>
<td><code>n_step_gru</code></td>
<td>Stacked Uni-directional Gated Recurrent Unit function.</td>
</tr>
<tr>
<td><code>n_step_lstm</code></td>
<td>Stacked Uni-directional Long Short-Term Memory function.</td>
</tr>
<tr>
<td><code>n_step_rnn</code></td>
<td>Stacked Uni-directional RNN function for sequence inputs.</td>
</tr>
</tbody>
</table>

chainer.functions.bilinear

```python
chainer.functions.bilinear(e1, e2, W, V1=None, V2=None, b=None)
```

Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by $e^1 \in \mathbb{R}^{I\times J}$, $e^2 \in \mathbb{R}^{I\times K}$, $W \in \mathbb{R}^{J\times K\times L}$, $V^1 \in \mathbb{R}^{J\times L}$, $V^2 \in \mathbb{R}^{K\times L}$, and $b \in \mathbb{R}^L$, where I is mini-batch size. In this document, we call V^1, V^2, and b linear parameters.

The output of forward propagation is calculated as

$$y_{il} = \sum_{jk} e^1_{ij} e^2_{ik} W_{jkl} + \sum_j e^1_{ij} V^1_{jl} + \sum_k e^2_{ik} V^2_{kl} + b_i.$$

Note that V^1, V^2, b are optional. If these are not given, then this function omits the last three terms in the above equation.
Note: This function accepts an input variable e_1 or e_2 of a non-matrix array. In this case, the leading dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

Note: In the original paper, J and K must be equal and the author denotes $[V^1V^2]$ (concatenation of matrices) by V.

Parameters

- e_1 (Variable) – Left input variable.
- e_2 (Variable) – Right input variable.
- W (Variable) – Quadratic weight variable.
- V_1 (Variable) – Left coefficient variable.
- V_2 (Variable) – Right coefficient variable.
- b (Variable) – Bias variable.

Returns Output variable.

Return type Variable

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

chainer.functions.convolution_2d

chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, cover_all=False)

Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

- n is the batch size.
- c_I and c_O are the number of the input and output channels, respectively.
- h_I and w_I are the height and width of the input image, respectively.
- h_K and w_K are the height and width of the filters, respectively.
- h_P and w_P are the height and width of the spatial padding size, respectively.

Then the Convolution2D function computes correlations between filters and patches of size (h_K, w_K) in x. Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at positions shifted by multiples of $stride$ from the first position $(-h_P, -w_P)$ for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Let (s_Y, s_X) be the stride of filter application. Then, the output size (h_O, w_O) is determined by the following equations:

\[
\begin{align*}
 h_O &= (h_I + 2h_P - h_K)/s_Y + 1, \\
 w_O &= (w_I + 2w_P - w_K)/s_X + 1.
\end{align*}
\]
If `cover_all` option is `True`, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In this case, the output size \((h_O, w_O)\) is determined by the following equations:

\[
\begin{align*}
h_O &= \frac{(h_I + 2h_P - h_K + s_Y - 1)/s_Y + 1,}{} \\
w_O &= \frac{(w_I + 2w_P - w_K + s_X - 1)/s_X + 1}{.}
\end{align*}
\]

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

The output of this function can be non-deterministic when it uses cuDNN. If `chainer.configuration.config.cudnn_deterministic` is `True` and cuDNN version is \(\geq v3\), it forces cuDNN to use a deterministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

| Warning: | deterministic argument is not supported anymore since v2. Instead, use `chainer.using_config('cudnn_deterministic', value)` (value is either `True` or `False`). See `chainer.using_config()` |

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable of shape \((n, c_I, h_I, w_I)\).
- **W** *(Variable or numpy.ndarray or cupy.ndarray)* – Weight variable of shape \((c_O, c_I, h_K, w_K)\).
- **b** *(Variable or numpy.ndarray or cupy.ndarray)* – Bias variable of length \(c_O\) (optional).
- **stride** *(int or pair of int s)* – Stride of filter applications. `stride=s` and `stride=(s, s)` are equivalent.
- **pad** *(int or pair of int s)* – Spatial padding width for input arrays. `pad=p` and `pad=(p, p)` are equivalent.
- **cover_all** *(bool)* – If `True`, all spatial locations are convoluted into some output pixels.

Returns Output variable of shape \((n, c_O, h_O, w_O)\).

Return type Variable

See also: `Convolution2D`

Example

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> h_i, w_i = 30, 40
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype('f')
>>> x.shape
(10, 3, 30, 40)
>>> W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype('f')
```
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o,)).astype('f')
>>> b.shape
(1,)
>>> s_y, s_x = 5, 7
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 1, 7, 6)
>>> h_o = int((h_i + 2 * h_p - h_k) / s_y + 1)
>>> w_o = int((w_i + 2 * w_p - w_k) / s_x + 1)
>>> y.shape == (n, c_o, h_o, w_o)
True
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p), cover_all=True)
>>> y.shape == (n, c_o, h_o, w_o + 1)
True

chainer.functions.convolution_nd

chainer.functions.convolution_nd(x, W, b=None, stride=1, pad=0, cover_all=False)

N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in ConvNets. It takes three variables: the input x, the filter weight W and the bias vector b.

Notation: here is a notation for dimensionalities.

- N is the number of spatial dimensions.
- n is the batch size.
- c_I and c_O are the number of the input and output channels, respectively.
- d_1, d_2, ..., d_N are the size of each axis of the input’s spatial dimensions, respectively.
- k_1, k_2, ..., k_N are the size of each axis of the filters, respectively.
- l_1, l_2, ..., l_N are the size of each axis of the output’s spatial dimensions, respectively.
- p_1, p_2, ..., p_N are the size of each axis of the spatial padding size, respectively.

Then the convolution_nd function computes correlations between filters and patches of size (k_1, k_2, ..., k_N) in x. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are extracted at positions shifted by multiples of stride from the first position (-p_1, -p_2, ..., -p_N) for each spatial axis.

Let (s_1, s_2, ..., s_N) be the stride of filter application. Then, the output size (l_1, l_2, ..., l_N) is determined by the following equations:

\[l_n = \frac{d_n + 2p_n - k_n}{s_n} + 1 \quad (n = 1, ..., N) \]

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size is determined by the following equations:

\[l_n = \frac{d_n + 2p_n - k_n + s_n - 1}{s_n} + 1 \quad (n = 1, ..., N) \]

The N-dimensional convolution function is defined as follows.
Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable of shape \((n, c_I, d_1, d_2, ..., d_N)\).
- **W** *(Variable or numpy.ndarray or cupy.ndarray)* – Weight variable of shape \((c_O, c_I, k_1, k_2, ..., k_N)\).
- **b** *(Variable or numpy.ndarray or cupy.ndarray)* – One-dimensional bias variable with length \(c_O\) (optional).
- **stride** *(int or tuple of int)* – Stride of filter applications \((s_1, s_2, ..., s_N)\). \(\text{stride}=s\) is equivalent to \((s, s, ..., s)\).
- **pad** *(int or tuple of int)* – Spatial padding width for input arrays \((p_1, p_2, ..., p_N)\). \(\text{pad}=p\) is equivalent to \((p, p, ..., p)\).
- **cover_all** *(bool)* – If True, all spatial locations are convoluted into some output pixels. It may make the output size larger. \(\text{cover_all}\) needs to be False if you want to use cuDNN.

Returns: Output variable of shape \((n, c_O, l_1, l_2, ..., l_N)\).

Return type: Variable

Note: This function uses cuDNN implementation for its forward and backward computation if ALL of the following conditions are satisfied:

- \(\text{cuda.cudnn_enabled}\) is True
- \(\text{chainer.config.use_cudnn}\) is 'always' or 'auto'
- The number of spatial dimensions is more than one.
- \(\text{cover_all}\) is False
- The input’s dtype is equal to the filter weight’s.
- The dtype is FP16, FP32 or FP64. (FP16 is only available when cuDNN version \(\geq v3\).)

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set \(\text{chainer.using_config('autotune', True)}\)

See also:

ConvolutionND, convolution_2d()

Example

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
>>> x.shape
(10, 3, 30, 40, 50)
>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype('f')
>>> W.shape
(1, 3, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype('f')
```

2.4. Standard Function implementations
```python
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, l1, l2, l3)
True
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_all=True)
>>> y.shape == (n, c_o, l1, l2, l3 + 1)
True
```

chainer.functions.deconvolution_2d

chainer.functions.deconvolution_2d(x, W, b=None, stride=1, pad=0, outsize=None)

Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep learning frameworks and papers, this function is called transposed convolution. But because of historical reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called deconvolution in Chainer.

It takes three variables: input image \(x\), the filter weight \(W\), and the bias vector \(b\).

Notation: here is a notation for dimensionalities.

- \(n\) is the batch size.
- \(c_I\) and \(c_O\) are the number of the input and output channels, respectively.
- \(h_I\) and \(w_I\) are the height and width of the input image, respectively.
- \(h_K\) and \(w_K\) are the height and width of the filters, respectively.
- \(h_P\) and \(w_P\) are the height and width of the spatial padding size, respectively.

Let \((s_Y, s_X)\) be the stride of filter application. Then, the output size \((h_O, w_O)\) is estimated by the following equations:

\[
 h_O = s_Y(h_I - 1) + h_K - 2h_P,
 w_O = s_X(w_I - 1) + w_K - 2w_P.
\]

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic algorithm.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config('autotune', True).

Warning: deterministic argument is not supported anymore since v2. Instead, use chainer.using_config('cudnn_deterministic', value) (value is either True or False). See chainer.using_config().
Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable of shape \((n, c_i, h_i, w_i)\).
- **W** *(Variable or numpy.ndarray or cupy.ndarray)* – Weight variable of shape \((c_i, c_O, h_K, w_K)\).
- **b** *(Variable or numpy.ndarray or cupy.ndarray)* – Bias variable of length \(c_O\) (optional).
- **stride** *(int or pair of int s)* – Stride of filter applications. \(stride=s\) and \(stride=(s, s)\) are equivalent.
- **pad** *(int or pair of int s)* – Spatial padding width for input arrays. \(pad=p\) and \(pad=(p, p)\) are equivalent.
- **outsize** *(tuple of int)* – Expected output size of deconvolutional operation. It should be pair of height and width \((h_O, w_O)\). Default value is \(None\) and the outsize is estimated by input size, stride and pad.

Returns Output variable of shape \((n, c_O, h_O, w_O)\).

Return type **Variable**

Example

```python
>>> n = 10
>>> c_i, c_o = 1, 3
>>> h_i, w_i = 5, 10
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype('f')
>>> x.shape
(10, 1, 5, 10)
>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype('f')
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, c_o).astype('f')
>>> b.shape
(3,)
>>> s_y, s_x = 5, 5
>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 3, 20, 45)
>>> h_o = s_y * (h_i - 1) + h_k - 2 * h_p
>>> w_o = s_x * (w_i - 1) + w_k - 2 * w_p
>>> y.shape == (n, c_o, h_o, w_o)
True
```

chainer.functions.deconvolution_nd

`chainer.functions.deconvolution_nd(x, W, b=None, stride=1, pad=0, outsize=None)`

N-dimensional deconvolution function.

This is an implementation of N-dimensional deconvolution which generalizes two-dimensional one. In most of deep learning frameworks and papers, this function is called **transposed convolution**. But because of historical
reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called *deconvolution* in Chainer.

It takes three variables: the input x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

- N is the number of spatial dimensions.
- n is the batch size.
- c_I and c_O are the number of the input and output channels, respectively.
- $d_1, d_2, ..., d_N$ are the size of each axis of the input’s spatial dimensions, respectively.
- $k_1, k_2, ..., k_N$ are the size of each axis of the filters, respectively.
- $p_1, p_2, ..., p_N$ are the size of each axis of the spatial padding size, respectively.
- $s_1, s_2, ..., s_N$ are the stride of each axis of filter application, respectively.

If `outsize` option is `None`, the output size $(l_1, l_2, ..., l_N)$ is determined by the following equations with the items in the above list:

$$l_n = s_n(d_n - 1) + k_n - 2p_n \quad (n = 1, ..., N)$$

If `outsize` option is given, the output size is determined by `outsize`. In this case, the `outsize` $(l_1, l_2, ..., l_N)$ must satisfy the following equations:

$$d_n = \lfloor (l_n + 2p_n - k_n)/s_n \rfloor + 1 \quad (n = 1, ..., N)$$

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

Parameters

- x (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – Input variable of shape $(n, c_I, d_1, d_2, ..., d_N)$.
- W (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – Weight variable of shape $(c_I, c_O, k_1, k_2, ..., k_N)$.
- b (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – One-dimensional bias variable with length c_O (optional).
- `stride` (*int* or *tuple* of *int s*) – Stride of filter applications $(s_1, s_2, ..., s_N)$. `stride=s` is equivalent to (s, s, \ldots, s).
- `pad` (*int* or *tuple* of *int s*) – Spatial padding width for input arrays $(p_1, p_2, ..., p_N)$. `pad=p` is equivalent to (p, p, \ldots, p).
- `outsize` (*tuple* of *int s*) – Expected output size of deconvolutional operation. It should be a tuple of ints $(l_1, l_2, ..., l_N)$. Default value is `None` and the `outsize` is estimated by input size, stride and pad.

Returns Output variable of shape $(n, c_O, l_1, l_2, ..., l_N)$.

Return type Variable

See also:

- `links.DeconvolutionND`, `deconvolution_2d()`
Example 1: the case when `outsize` is not given.

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype('f')
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype('f')
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3
>>> y.shape == (n, c_o, l1, l2, l3)
True
```

Example 2: the case when `outsize` is given.

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype('f')
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype('f')
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True
```
Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution. It takes two or three variables: the input image \(\mathbf{x} \), the filter weight \(\mathbf{W} \), and optionally, the bias vector \(\mathbf{b} \).

Notation: here is a notation for dimensionalities.

- \(n \) is the batch size.
- \(c_I \) is the number of the input.
- \(c_M \) is the channel multiplier.
- \(h \) and \(w \) are the height and width of the input image, respectively.
- \(h_O \) and \(w_O \) are the height and width of the output image, respectively.
- \(k_H \) and \(k_W \) are the height and width of the filters, respectively.

Parameters

- \(\mathbf{x} \) (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape \((n, c_I, h, w)\).
- \(\mathbf{W} \) (Variable) – Weight variable of shape \((c_M, c_I, k_H, k_W)\).
- \(\mathbf{b} \) (Variable) – Bias variable of length \(c_M \cdot c_I \) (optional).
- \(\text{stride} \) (int or pair of ints) – Stride of filter applications. \(\text{stride}=s \) and \(\text{stride}=(s, s) \) are equivalent.
- \(\text{pad} \) (int or pair of ints) – Spatial padding width for input arrays. \(\text{pad}=p \) and \(\text{pad}=(p, p) \) are equivalent.

Returns

Output variable. Its shape is \((n, c_I \cdot c_M, h_O, w_O)\).

Return type

Variable

Like \texttt{Convolution2D}, \texttt{DepthwiseConvolution2D} function computes correlations between filters and patches of size \((k_H, k_W)\) in \(\mathbf{x} \). But unlike \texttt{Convolution2D}, \texttt{DepthwiseConvolution2D} does not add up input channels of filters but concatenates them. For that reason, the shape of outputs of depthwise convolution are \((n, c_I \cdot c_M, h_O, w_O), c_M \) is called channel multiplier.

\((h_O, w_O)\) is determined by the equivalent equation of \texttt{Convolution2D}.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See: L. Sifre. Rigid-motion scattering for image classification

See also:

\texttt{DepthwiseConvolution2D}

Example

```python
>>> x = np.random.uniform(0, 1, (2, 3, 4, 7))
>>> W = np.random.uniform(0, 1, (2, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (6,))
>>> y = F.depthwise_convolution_2d(x, W, b)
>>> y.shape
(2, 6, 2, 5)
```
chainer.functions.dilated_convolution_2d

chainer.functions.dilated_convolution_2d(x, W, b=None, stride=1, pad=0, dilate=1, cover_all=False)

Two-dimensional dilated convolution function.

This is an implementation of two-dimensional dilated convolution in ConvNets. It takes three variables: the input image \(x \), the filter weight \(W \), and the bias vector \(b \).

Notation: here is a notation for dimensionalities.

- \(n \) is the batch size.
- \(c_I \) and \(c_O \) are the number of the input and output, respectively.
- \(h \) and \(w \) are the height and width of the input image, respectively.
- \(k_H \) and \(k_W \) are the height and width of the filters, respectively.

Parameters

- \(x \) (Variable) – Input variable of shape \((n, c_I, h, w)\).
- \(W \) (Variable) – Weight variable of shape \((c_O, c_I, k_H, k_W)\).
- \(b \) (Variable) – Bias variable of length \(c_O \) (optional).
- \(\text{stride} \) (int or pair of ints) – Stride of filter applications. \(\text{stride}=s \) and \(\text{stride}=(s, s) \) are equivalent.
- \(\text{pad} \) (int or pair of ints) – Spatial padding width for input arrays. \(\text{pad}=p \) and \(\text{pad}=(p, p) \) are equivalent.
- \(\text{dilate} \) (int or pair of ints) – Dilation factor of filter applications. \(\text{dilate}=d \) and \(\text{dilate}=(d, d) \) are equivalent.
- \(\text{cover_all} \) (bool) – If True, all spatial locations are convoluted into some output pixels. It may make the output size larger.

Returns Output variable.

Return type Variable

The two-dimensional dilated convolution function is defined as follows. Then the \texttt{DilatedConvolution2D} function computes correlations between filters and patches of size \((k_H, k_W)\) in \(x \). Patches here are extracted at intervals of the dilation factor. Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at intervals of the dilation factor and at positions shifted by multiples of \(\text{stride} \) from the first position \(-\text{pad}\) for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Let \((s_Y, s_X)\) be the stride of filter application, \((p_H, p_W)\) the spatial padding size, and \((d_Y, d_X)\) the dilation factor of filter application. Then, the output size \((h_O, w_O)\) is determined by the following equations:

\[
h_O = (h + 2p_H - k_H - (k_H - 1) * (d_Y - 1))/s_Y + 1,
\]

\[
w_O = (w + 2p_W - k_W - (k_W - 1) * (d_X - 1))/s_X + 1.
\]

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

\texttt{DilatedConvolution2D}
chainer.functions.embed_id

chainer.functions.embed_id(x, W, ignore_label=None)
Efficient linear function for one-hot input.

This function implements so called word embeddings. It takes two arguments: a set of IDs (words) \(x \) in \(B \) dimensional integer vector, and a set of all ID (word) embeddings \(W \) in \(V \times d \) float32 matrix. It outputs \(B \times d \) matrix whose \(i \)-th column is the \(x[i] \)-th column of \(W \).

This function is only differentiable on the input \(W \).

Parameters

- \(x \) (Variable or numpy.ndarray or cupy.ndarray) – Batch vectors of IDs. Each element must be signed integer.
- \(W \) (Variable or numpy.ndarray or cupy.ndarray) – Distributed representation of each ID (a.k.a. word embeddings).
- \(\text{ignore_label} \) (int or None) – If \(\text{ignore_label} \) is an int value, \(i \)-th column of return value is filled with 0.

Returns Output variable.

Return type Variable

See also: EmbedID

Example

```python
>>> x = np.array([[2, 1]]).astype('i')
>>> x
array([[2, 1]], dtype=int32)
>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype('f')
>>> W
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  1.],
       [ 2.,  2.,  2.]], dtype=float32)
>>> F.embed_id(x, W).data
array([[ 2.,  2.,  2.],
       [ 1.,  1.,  1.]], dtype=float32)
>>> F.embed_id(x, W, ignore_label=1).data
array([[ 2.,  2.,  2.],
       [ 0.,  0.,  0.]], dtype=float32)
```

chainer.functions.linear

chainer.functions.linear(x, W, b=None)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch \(x \), a weight matrix \(W \), and optionally a bias vector \(b \). It computes

\[
Y = xW^\top + b.
\]
Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable, which is a \((s_B, s_1, s_2, ... , s_n)\)-shaped float array. Its first dimension \((s_B)\) is assumed to be the *mini-batch dimension*. The other dimensions are treated as concatenated one dimension whose size must be \((s_1 \times ... \times s_n = N)\).

- **W** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Weight variable of shape \((M, N)\), where \((N = s_1 \times ... \times s_n)\).

- **b** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Bias variable (optional) of shape \((M,)\).

Returns

Output variable. A float array with shape of \((s_B, M)\).

Return type

Variable

See also:

Linear

Example

```python
>>> x = np.random.uniform(0, 1, (3, 4)).astype('f')
>>> W = np.random.uniform(0, 1, (5, 4)).astype('f')
>>> b = np.random.uniform(0, 1, (5,)).astype('f')
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)
```

chainer.functions.n_step_bigru

chainer.functions.`n_step_bigru`(n_layers, dropout_ratio, hx, ws, bs, xs)

Stacked Bi-directional Gated Recurrent Unit function.

This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state \(h_0\), an input sequence \(x\), weight matrices \(W\), and bias vectors \(b\). This function calculates hidden states \(h_t\) for each time \(t\) from input \(x_t\).

\[
\begin{align*}
r_f^t &= \sigma(W_f^f x_t + W_f^h h_{t-1} + b_f^f + b_f^b) \\
z_f^t &= \sigma(W_f^z x_t + W_f^h h_{t-1} + b_f^z + b_f^b) \\
h_f^{t'} &= \tanh(W_f^h x_t + b_f^b + r_f^t \cdot (W_f^h h_{t-1} + b_f^b)) \\
h_f^t &= (1 - z_f^t) \cdot h_f^{t'} + z_f^t \cdot h_{t-1} \\
r_b^t &= \sigma(W_b^b x_t + W_b^h h_{t-1} + b_b^b + b_b^b) \\
z_b^t &= \sigma(W_b^z x_t + W_b^h h_{t-1} + b_b^z + b_b^b) \\
h_b^{t'} &= \tanh(W_b^h x_t + b_b^b + r_b^t \cdot (W_b^h h_{t-1} + b_b^b)) \\
h_b^t &= (1 - z_b^t) \cdot h_b^{t'} + z_b^t \cdot h_{t-1} \\
h_t &= [h_f^t; h_b^t]
\end{align*}
\]

where \(W_f^f\) is weight matrices for forward-GRU, \(W_b^b\) is weight matrices for backward-GRU.

As the function accepts a sequence, it calculates \(h_t\) for all \(t\) with one call. Six weight matrices and six bias vectors are required for each layers. So, when \(S\) layers exists, you need to prepare \(6S\) weight matrices and \(6S\) bias vectors.
If the number of layers n_layers is greater than 1, input of k-th layer is hidden state $h__t$ of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

- **n_layers** *(int)* – Number of layers.
- **dropout_ratio** *(float)* – Dropout ratio.
- **hx** *(chainer.Variable)* – Variable holding stacked hidden states. Its shape is (S, B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension of hidden units.
- **ws** *(list of list of chainer.Variable)* – Weight matrices. $ws[i]$ represents weights for i-th layer. Each $ws[i]$ is a list containing six matrices. $ws[i][j]$ is corresponding with w_j in the equation. Only $ws[0][j]$ where $0 \leq j < 3$ is (I, N) shape as they are multiplied with input variables. All other matrices has (N, N) shape.
- **bs** *(list of list of chainer.Variable)* – Bias vectors. $bs[i]$ represents biases for i-th layer. Each $bs[i]$ is a list containing six vectors. $bs[i][j]$ is corresponding with b_j in the equation. Shape of each matrix is $(N,)$ where N is dimension of hidden units.
- **xs** *(list of chainer.Variable)* – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is $(B__t, I)$, where $B__t$ is mini-batch size for time t, and I is size of input units. Note that this functions supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. transpose_sequence() transpose a list of Variable() holding sequence. So xs needs to satisfy $xs[t].shape[0] \geq xs[t + 1].shape[0]$.
- **use_bi_direction** *(bool)* – If True, this function uses Bi-direction GRU.

Returns

This functions returns a tuple containing three elements, hy and ys.

- hy is an updated hidden states whose shape is same as hx.
- ys is a list of Variable. Each element $ys[t]$ holds hidden states of the last layer corresponding to an input $xs[t]$. Its shape is $(B__t, N)$ where $B__t$ is mini-batch size for time t, and N is size of hidden units. Note that $B__t$ is the same value as $xs[t]$.

Return type tuple

chainer.functions.n_step_bilstm

chainer.functions.n_step_bilstm(n_layers, $dropout_ratio$, hx, cx, ws, bs, xs)

Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state h_0, an initial cell state c_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates
hidden states h_t and c_t for each time t from input x_t.

\[
i_{f}^{t} = \sigma(W_{f}^{f}x_t + W_{f}^{f}h_{t-1} + b_{0}^{f} + b_{1}^{f}), \]
\[
f_{f}^{t} = \sigma(W_{f}^{f}x_t + W_{f}^{f}h_{t-1} + b_{1}^{f} + b_{5}^{f}), \]
\[
o_{f}^{t} = \sigma(W_{f}^{f}x_t + W_{f}^{f}h_{t-1} + b_{2}^{f} + b_{6}^{f}), \]
\[
a_{f}^{t} = \tanh(W_{f}^{f}x_t + W_{f}^{f}h_{t-1} + b_{3}^{f} + b_{7}^{f}), \]
\[
i_{b}^{t} = \sigma(W_{b}^{b}x_t + W_{b}^{b}h_{t-1} + b_{0}^{b} + b_{4}^{b}), \]
\[
f_{b}^{t} = \sigma(W_{b}^{b}x_t + W_{b}^{b}h_{t-1} + b_{1}^{b} + b_{5}^{b}), \]
\[
o_{b}^{t} = \sigma(W_{b}^{b}x_t + W_{b}^{b}h_{t-1} + b_{2}^{b} + b_{6}^{b}), \]
\[
a_{b}^{t} = \tanh(W_{b}^{b}x_t + W_{b}^{b}h_{t-1} + b_{3}^{b} + b_{7}^{b}), \]
\[
[h_{f}^{t}; h_{b}^{t}] = \]

where W_f is the weight matrices for forward-LSTM, W_b is weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates h_t for all t with one call. Eight weight matrices and eight bias vectors are required for each layer of each direction. So, when S layers exist, you need to prepare $16S$ weight matrices and $16S$ bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_{t-1} of the $k-1$-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

- **n_layers** (int) – The number of layers.
- **dropout_ratio** *(float)* – Dropout ratio.

- **hx** *(Variable)* – Variable holding stacked hidden states. Its shape is *(2S, B, N)* where S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the dimension of the hidden units. Because of bi-direction, the first dimension length is 2S.

- **cx** *(Variable)* – Variable holding stacked cell states. It has the same shape as hx.

- **ws** *(list of list of Variable)* – Weight matrices. *ws[2 * l + m]* represents the weights for the l-th layer of the m-th direction. (*m == 0* means the forward direction and *m == 1* means the backward direction.) Each *ws[i]* is a list containing eight matrices. *ws[i][j]* corresponds to *W_j* in the equation. *ws[0][j]* and *ws[1][j]* where *0 <= j < 4* are *(I, N)*-shaped because they are multiplied with input variables, where I is the size of the input. *ws[1][j]* where *2 <= i and 0 <= j < 4* are *(N, 2N)*-shaped because they are multiplied with two hidden layers *h_t = [h^f_t; h^b_t]*. All other matrices are *(N, N)*-shaped.

- **bs** *(list of list of Variable)* – Bias vectors. *bs[2 * l + m]* represents the weights for the l-th layer of m-th direction. (*m == 0* means the forward direction and *m == 1* means the backward direction.) Each *bs[i]* is a list containing eight vectors. *bs[i][j]* corresponds to *b_j* in the equation. The shape of each matrix is *(N,)*.

- **xs** *(list of Variable)* – A list of Variable holding input values. Each element *xs[t]* holds input value for time t. Its shape is *(B_t, I)*, where B_t is the mini-batch size for time t. The sequences must be transposed. *transpose_sequence()* can be used to transpose a list of Variables each representing a sequence. When sequences has different lengths, they must be sorted in descending order of their lengths before transposing. So xs needs to satisfy *xs[t].shape[0] >= xs[t + 1].shape[0].*

Returns

This function returns a tuple containing three elements, hy, cy and ys.

- **hy** is an updated hidden states whose shape is the same as hx.

- **cy** is an updated cell states whose shape is the same as cx.

- **ys** is a list of Variable. Each element *ys[t]* holds hidden states of the last layer corresponding to an input *xs[t]*. Its shape is *(B_t, 2N)* where B_t is the mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type *tuple*

Example

```python
>>> batches = [3, 2, 1]  # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype('f') for b in batches]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers * 2, batches[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> def w_in(i, j):
...     if i == 0 and j < 4:
...         return in_size
...     elif i > 0 and j < 4:
...         return out_size * 2
...     else:
...         return out_size
```
```python
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
...     for direction in (0, 1):
...         ws.append([np.ones((out_size, w_in(n, i))).astype('f') for i in range(8)])
...         bs.append([np.ones((out_size,)).astype('f') for _ in range(8)])
>>> ws[0][0].shape  # ws[0:2][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[2][0].shape  # ws[2:][4].shape are (out_size, 2 * out_size)
(2, 4)
>>> ws[0][4].shape  # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_bilstm(
...     n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(4, 3, 2)
>>> cy.shape
(4, 3, 2)
>>> [y.shape for y in ys]
[(3, 4), (2, 4), (1, 4)]
```

chainer.functions.n_step_birnn

The `chainer.functions.n_step_birnn` function is a stacked Bi-directional RNN function for sequence inputs. This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state h_0, an initial cell state c_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h_t and c_t for each time t from input x_t.

\[
h^f_t = f(W^f_0 x_t + W^f_1 h_{t-1} + b^f_0 + b^f_1),
\]

\[
h^b_t = f(W^b_0 x_t + W^b_1 h_{t-1} + b^b_0 + b^b_1),
\]

\[
h_t = [h^f_t; h^b_t],
\]

where f is an activation function.

Weight matrices W contains two matrices W^f and W^b. W^f is weight matrices for forward directional RNN. W^b is weight matrices for backward directional RNN.

W^f contains W^f_0 for an input sequence and W^f_1 for a hidden state. W^b contains W^b_0 for an input sequence and W^b_1 for a hidden state.

Bias matrices b contains two matrices b^f and b^b. b^f contains b^f_0 for an input sequence and b^f_1 for a hidden state. b^b contains b^b_0 for an input sequence and b^b_1 for a hidden state.
As the function accepts a sequence, it calculates h_t for all t with one call. Two weight matrices and two bias vectors are required for each layer. So, when S layers exist, you need to prepare $2S$ weight matrices and $2S$ bias vectors.

If the number of layers n_layers is greater than 1, input of k-th layer is hidden state h_t of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters

- n_layers (int) – Number of layers.
- dropout_ratio (float) – Dropout ratio.
- hx (chainer.Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension of hidden units.
- ws (list of list of chainer.Variable) – Weight matrices. $ws[i + di]$ represents weights for i-th layer. Note that $di = 0$ for forward-RNN and $di = 1$ for backward-RNN. Each $ws[i + di]$ is a list containing two matrices. $ws[i + di][j]$ is corresponding with W^f_j if $di = 0$ and corresponding with W^b_j if $di = 1$ in the equation. Only $ws[0][j]$ and $ws[1][j]$ where $0 \leq j < 1$ are (I, N) shape as they are multiplied with input variables. All other matrices has (N, N) shape.
- bs (list of list of chainer.Variable) – Bias vectors. $bs[i + di]$ represents biases for i-th layer. Note that $di = 0$ for forward-RNN and $di = 1$ for backward-RNN. Each $bs[i + di]$ is a list containing two vectors. $bs[i + di][j]$ is corresponding with b^f_j if $di = 0$ and corresponding with b^b_j if $di = 1$ in the equation. Shape of each matrix is $(N,)$ where N is dimension of hidden units.
- xs (list of chainer.Variable) – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for time t, and I is size of input units. Note that this functions supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. transpose_sequence() transpose a list of Variable() holding sequence. So xs needs to satisfy $xs[t].shape[0] >= xs[t + 1].shape[0]$.
- activation (str) – Activation function name. Please select tanh or relu.

Returns

This functions returns a tuple containing three elements, hy and ys.
- hy is an updated hidden states whose shape is same as hx.
- ys is a list of Variable. Each element $ys[t]$ holds hidden states of the last layer corresponding to an input $xs[t]$. Its shape is (B_t, N) where B_t is mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as $xs[t]$.

Return type tuple
chainer.functions.n_step_gru

This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state h_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h_t for each time t from input x_t.

$r_t = \sigma(W_0x_t + W_3h_{t-1} + b_0 + b_3)$

$z_t = \sigma(W_1x_t + W_4h_{t-1} + b_1 + b_4)$

$h'_t = \tanh(W_2x_t + b_2 + r_t \cdot (W_5h_{t-1} + b_5))$

$h_t = (1 - z_t) \cdot h'_t + z_t \cdot h_{t-1}$

As the function accepts a sequence, it calculates h_t for all t with one call. Six weight matrices and six bias vectors are required for each layers. So, when S layers exists, you need to prepare $6S$ weight matrices and $6S$ bias vectors.

If the number of layers n_layers is greater than 1, input of k-th layer is hidden state h_t of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

Parameters

- **n_layers (int)** – Number of layers.
- **dropout_ratio (float)** – Dropout ratio.
- **hx (chainer.Variable)** – Variable holding stacked hidden states. Its shape is (S, B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension of hidden units.
- **ws (list of list of chainer.Variable)** – Weight matrices. $ws[i]$ represents weights for i-th layer. Each $ws[i]$ is a list containing six matrices. $ws[i][j]$ is corresponding with W_j in the equation. Only $ws[0][j]$ where $0 <= j < 3$ is (I, N) shape as they are multiplied with input variables. All other matrices has (N, N) shape.
- **bs (list of list of chainer.Variable)** – Bias vectors. $bs[i]$ represents biases for i-th layer. Each $bs[i]$ is a list containing six vectors. $bs[i][j]$ is corresponding with b_j in the equation. Shape of each matrix is $(N,)$ where N is dimension of hidden units.
- **xs (list of chainer.Variable)** – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for time t, and I is size of input units. Note that this functions supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. transpose_sequence() transpose a list of Variable() holding sequence. So xs needs to satisfy $xs[t].shape[0] >= xs[t + 1].shape[0]$.

Returns

This functions returns a tuple containing three elements, hy and ys.

- hy is an updated hidden states whose shape is same as hx.

Warning: train and use_cudnn arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('use_cudnn', use_cudnn)` respectively. See `chainer.using_config()`.

2.4. Standard Function implementations
ys is a list of Variable. Each element ys[t] holds hidden states of the last layer corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.n_step_lstm

chainer.functions.n_step_lstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)

Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state ℎ₀, an initial cell state 𝑐₀, an input sequence 𝑥, weight matrices 𝑊, and bias vectors 𝑏. This function calculates hidden states ℎₜ and 𝑐ₜ for each time 𝑡 from input 𝑥ₜ.

\[
\begin{align*}
iₜ &= \sigma(W₀xₜ + W₄ℎₜ₋₁ + b₀ + b₄) \\
fₜ &= \sigma(W₁xₜ + W₅ℎₜ₋₁ + b₁ + b₅) \\
oₜ &= \sigma(W₂xₜ + W₆ℎₜ₋₁ + b₂ + b₆) \\
aₜ &= \tanh(W₃xₜ + W₇ℎₜ₋₁ + b₃ + b₇) \\
cₜ &= fₜ · cₜ₋₁ + iₜ · aₜ \\
hₜ &= oₜ · \tanh(cₜ)
\end{align*}
\]

As the function accepts a sequence, it calculates ℎₜ for all 𝑡 with one call. Eight weight matrices and eight bias vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 8𝑆 weight matrices and 8𝑆 bias vectors.

If the number of layers n_layers is greater than 1, the input of the 𝑘-th layer is the hidden state ℎₜ₋₁ of the 𝑘−1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

- **n_layers (int)** – The number of layers.
- **dropout_ratio (float)** – Dropout ratio.
- **hx (Variable)** – Variable holding stacked hidden states. Its shape is (𝑆, 𝐵, 𝑁) where 𝑆 is the number of layers and is equal to n_layers, 𝐵 is the mini-batch size, and 𝑁 is the dimension of the hidden units.
- **cx (Variable)** – Variable holding stacked cell states. It has the same shape as hx.
- **ws (list of list of Variable)** – Weight matrices. ws[i] represents the weights for the i-th layer. Each ws[i] is a list containing eight matrices. ws[i][j] corresponds to 𝑊_j in the equation. Only ws[0][j] where 0 ≤ j < 4 are (I, 𝑁) shaped as they are multiplied with input variables, where I is the size of the input and 𝑁 is the dimension of the hidden units. All other matrices are (𝑁, 𝑁) shaped.
- **bs (list of list of Variable)** – Bias vectors. bs[i] represents the biases for the i-th layer. Each bs[i] is a list containing eight vectors. bs[i][j] corresponds to 𝑏_j in the equation. The shape of each matrix is (𝑁,) where 𝑁 is the dimension of the hidden units.
• **xs** (list of *Variable*) – A list of *Variable* holding input values. Each element **xs**[t] holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for time t. The sequences must be transposed. **transpose_sequence()** can be used to transpose a list of *Variables* each representing a sequence. When sequences have different lengths, they must be sorted in descending order of their lengths before transposing. So xs needs to satisfy xs[t].shape[0] >= xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy, cy and ys.

- **hy** is an updated hidden states whose shape is the same as hx.
- **cy** is an updated cell states whose shape is the same as cx.
- **ys** is a list of *Variable*. Each element ys[t] holds hidden states of the last layer corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is the mini-batch size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

Note: The dimension of hidden units is limited to only one size N. If you want to use variable dimension of hidden units, please use **chainer.functions.lstm**.

See also:

chainer.functions.lstm()

Example

```python
>>> batchs = [3, 2, 1]  # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype('f') for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
...     ws.append([np.ones((out_size, w_in(n, i))).astype('f') for i in range(8)])
...     bs.append([np.ones((out_size,)).astype('f') for _ in range(8)])
... ws[0][0].shape # ws[0][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[1][0].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_lstm(  # n_layers, dropout_ratio, hx, cx, ws, bs, xs
...     n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(2, 3, 2)
>>> cy.shape
(2, 3, 2)
```
```python
>>> [y.shape for y in ys]
[(3, 2), (2, 2), (1, 2)]
```

chainer.functions.n_step.rnn

```
chainer.functions.n_step_rnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation='tanh')
```

Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state h_0, an initial cell state c_0, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h_t and c_t for each time t from input x_t.

$$h_t = f(W_0x_t + W_1h_{t-1} + b_0 + b_1)$$

where f is an activation function.

Weight matrices W contains two matrices W_0 and W_1. W_0 is a parameter for an input sequence. W_1 is a parameter for a hidden state. Bias matrices b contains two matrices b_0 and b_1. b_0 is a parameter for an input sequence. b_1 is a parameter for a hidden state.

As the function accepts a sequence, it calculates h_t for all t with one call. Two weight matrices and two bias vectors are required for each layer. So, when S layers exist, you need to prepare $2S$ weight matrices and $2S$ bias vectors.

If the number of layers n_layers is greater than 1, input of k-th layer is hidden state h_t of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

Warning: train and use_cudnn arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

Parameters
- `n_layers (int)` – Number of layers.
- `dropout_ratio (float)` – Dropout ratio.
- `hx (chainer.Variable)` – Variable holding stacked hidden states. Its shape is (S, B, N) where S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension of hidden units.
- `ws (list of list of chainer.Variable)` – Weight matrices. $ws[i]$ represents weights for i-th layer. Each $ws[i]$ is a list containing two matrices. $ws[i][j]$ is corresponding with W_j in the equation. Only $ws[0][j]$ where $0 <= j < 1$ is (I, N) shape as they are multiplied with input variables. All other matrices has (N, N) shape.
- `bs (list of list of chainer.Variable)` – Bias vectors. $bs[i]$ represents biases for i-th layer. Each $bs[i]$ is a list containing two vectors. $bs[i][j]$ is corresponding with b_j in the equation. Shape of each matrix is $(N,)$ where N is dimention of hidden units.
- `xs (list of chainer.Variable)` – A list of Variable holding input values. Each element $xs[t]$ holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for time t, and I is size of input units. Note that this functions supports variable length sequences. When sequences has different lengths, sort sequences in descending order.
by length, and transpose the sorted sequence. `transpose_sequence()` transpose a list of `Variable()` holding sequence. So `xs` needs to satisfy `xs[t].shape[0] >= xs[t + 1].shape[0].`

• **activation (str)** – Activation function name. Please select `tanh` or `relu`.

Returns

This functions returns a tuple containing three elements, `hy` and `ys`.

• `hy` is an updated hidden states whose shape is same as `hx`.

• `ys` is a list of `Variable`. Each element `ys[t]` holds hidden states of the last layer corresponding to an input `xs[t]`. Its shape is `(B_t, N)` where `B_t` is mini-batch size for time `t`, and `N` is size of hidden units. Note that `B_t` is the same value as `xs[t].`

Return type `tuple`

2.4.4 Evaluation functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.accuracy</code></td>
<td>Computes multiclass classification accuracy of the minibatch.</td>
</tr>
<tr>
<td><code>chainer.functions.binary_accuracy</code></td>
<td>Computes binary classification accuracy of the minibatch.</td>
</tr>
<tr>
<td><code>chainer.functions.classification_summary</code></td>
<td>Calculates Precision, Recall, F beta Score, and support.</td>
</tr>
<tr>
<td><code>chainer.functions.r2_score</code></td>
<td>Computes R^2(coefficient of determination) regression score function.</td>
</tr>
</tbody>
</table>

chainer.functions.accuracy

chainer.functions.accuracy *(y, t, ignore_label=None)*

Computes multiclass classification accuracy of the minibatch.

Parameters

• `y` *(Variable or numpy.ndarray or cupy.ndarray)* – Array whose (i, j, k, ...)th element indicates the score of the class j at the (i, k, ...)th sample. The prediction label \(\hat{t} \) is calculated by the formula \(\hat{t}(i, k, \ldots) = \text{argmax}_j y(i, j, k, \ldots) \).

• `t` *(Variable or numpy.ndarray or cupy.ndarray of signed integer)* – Array of ground truth labels.

• `ignore_label` *(int or None)* – Skip calculating accuracy if the true label is `ignore_label`.

Returns A variable holding a scalar array of the accuracy.

Return type `Variable`

Note: This function is non-differentiable.

Example

We show the most common case, when `y` is the two dimensional array.
```python
>>> y = np.array([[0.1, 0.7, 0.2], # prediction label is 1
... [8.0, 1.0, 2.0], # prediction label is 0
... [-8.0, 1.0, 2.0], # prediction label is 2
... [-8.0, -1.0, -2.0]]) # prediction label is 1
>>> t = np.array([1, 0, 2, 1], 'i')
>>> F.accuracy(y, t).data # 100% accuracy because all samples are correct
array(1.0)
>>> t = np.array([1, 0, 0, 0], 'i')
>>> F.accuracy(y, t).data # 50% accuracy because 1st and 2nd samples are correct.
array(0.5)
>>> F.accuracy(y, t, ignore_label=0).data # 100% accuracy because of ignoring the 2nd, 3rd and 4th samples.
array(1.0)
```

chainer.functions.binary_accuracy

chainer.functions.binary_accuracy(y, t)
Computes binary classification accuracy of the minibatch.

Parameters

• **y** (Variable or numpy.ndarray or cupy.ndarray) – Array whose i-th element indicates the score of positive at the i-th sample. The prediction label \(\hat{y}_i \) is 1 if \(y_i \geq 0 \), otherwise 0.

• **t** (Variable or numpy.ndarray or cupy.ndarray) – Array holding a signed integer vector of ground truth labels. If \(t_i = 1 \), it indicates that i-th sample is positive. If \(t_i = 0 \), it indicates that i-th sample is negative. If \(t_i = -1 \), corresponding \(y_i \) is ignored. Accuracy is zero if all ground truth labels are \(-1\).

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example
We show the most common case, when \(y \) is the two dimensional array.

```python
>>> y = np.array([[-2.0, 0.0], # prediction labels are [0, 1]
... [3.0, -5.0]]) # prediction labels are [1, 0]
>>> t = np.array([[0, 1],
... [1, 0]], 'i')
>>> F.binary_accuracy(y, t).data # 100% accuracy because all samples are correct.
array(1.0)
>>> t = np.array([[0, 0],
... [1, 1]], 'i')
>>> F.binary_accuracy(y, t).data # 50% accuracy because \( y[0][0] \) and \( y[1][0] \) are correct.
array(0.5)
>>> t = np.array([[0, -1],
... [1, -1]], 'i')
```
>>> F.binary_accuracy(y, t).data # 100% accuracy because of ignoring y[0][1] and y[1][1].
array(1.0)

chainer.functions.classification_summary

chainer.functions.classification_summary(y, t, label_num=None, beta=1.0, ignore_label=-1)

Calculates Precision, Recall, F beta Score, and support.

This function calculates the following quantities for each class.

- Precision: \(\frac{tp}{tp+fp} \)
- Recall: \(\frac{tp}{tp+tn} \)
- F beta Score: The weighted harmonic average of Precision and Recall.
- Support: The number of instances of each ground truth label.

Here, \(tp, fp, \) and \(tn \) stand for the number of true positives, false positives, and true negative, respectively.

Parameters

- **y (Variable)** – Variable holding a vector of scores.
- **t (Variable)** – Variable holding a vector of ground truth labels.
- **label_num (int)** – The number of classes.
- **beta (float)** – The parameter which determines the weight of precision in the F-beta score.
- **ignore_label (int)** – Instances with this label are ignored.

Returns 4-tuple of ~chainer.Variable of size \((\text{label_num},)\). Each element represents precision, recall, F beta score, and support of this minibatch.

chainer.functions.r2_score

chainer.functions.r2_score(pred, true, sample_weight=None, multioutput='uniform_average')

Computes R\(^2\)(coefficient of determination) regression score function.

Parameters

- **pred (Variable)** – Variable holding a vector, matrix or tensor of estimated target values.
- **true (Variable)** – Variable holding a vector, matrix or tensor of correct target values.
- **sample_weight** – This argument is for compatibility with scikit-learn’s implementation of r2_score. Current implementation admits None only.
• `multioutput (string)` – ['uniform_average', 'raw_values']. If 'uniform_average', this function returns an average of R^2 score of multiple output. If 'raw_average', this function return a set of R^2 score of multiple output.

Returns A Variable holding a scalar array of the R^2 score if 'multioutput' is 'uniform_average' or a vector of R^2 scores if 'multioutput' is 'raw_values'.

Return type Variable

2.4.5 Loss functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.bernoulli_nll</code></td>
<td>Computes the negative log-likelihood of a Bernoulli distribution.</td>
</tr>
<tr>
<td><code>chainer.functions.black_out</code></td>
<td>BlackOut loss function.</td>
</tr>
<tr>
<td><code>chainer.functions.connectionist_temporal_classification</code></td>
<td>Connectionist Temporal Classification loss function.</td>
</tr>
<tr>
<td><code>chainer.functions.contrastive</code></td>
<td>Computes contrastive loss.</td>
</tr>
<tr>
<td><code>chainer.functions.crf1d</code></td>
<td>Calculates negative log-likelihood of linear-chain CRF.</td>
</tr>
<tr>
<td><code>chainer.functions.argmax_crf1d</code></td>
<td>Computes a state that maximizes a joint probability of the given CRF.</td>
</tr>
<tr>
<td><code>chainer.functions.cross_covariance</code></td>
<td>Computes the sum-squared cross-covariance penalty between y and z.</td>
</tr>
<tr>
<td><code>chainer.functions.gaussian_kl_divergence</code></td>
<td>Computes the KL-divergence of Gaussian variables from the standard one.</td>
</tr>
<tr>
<td><code>chainer.functions.gaussian_nll</code></td>
<td>Computes the negative log-likelihood of a Gaussian distribution.</td>
</tr>
<tr>
<td><code>chainer.functions.hinge</code></td>
<td>Computes the hinge loss for a one-of-many classification task.</td>
</tr>
<tr>
<td><code>chainer.functions.huber_loss</code></td>
<td>Loss function which is less sensitive to outliers in data than MSE.</td>
</tr>
<tr>
<td><code>chainer.functions.mean_absolute_error</code></td>
<td>Mean absolute error function.</td>
</tr>
<tr>
<td><code>chainer.functions.mean_squared_error</code></td>
<td>Mean squared error function.</td>
</tr>
<tr>
<td><code>chainer.functions.negative_sampling</code></td>
<td>Negative sampling loss function.</td>
</tr>
<tr>
<td><code>chainer.functions.sigmoid_cross_entropy</code></td>
<td>Computes cross entropy loss for pre-sigmoid activations.</td>
</tr>
<tr>
<td><code>chainer.functions.softmax_cross_entropy</code></td>
<td>Computes cross entropy loss for pre-softmax activations.</td>
</tr>
<tr>
<td><code>chainer.functions.squared_error</code></td>
<td>Squared error function.</td>
</tr>
<tr>
<td><code>chainer.functions.triplet</code></td>
<td>Computes triplet loss.</td>
</tr>
</tbody>
</table>

chainer.functions.bernoulli_nll

`chainer.functions.bernoulli_nll(x, y, reduce='sum')`

Computes the negative log-likelihood of a Bernoulli distribution.

This function calculates the negative log-likelihood of a Bernoulli distribution.

\[- \log B(x; p) = - \sum_i (x_i \log(p_i) + (1 - x_i) \log(1 - p_i)),\]

where $p = \sigma(y)$, $\sigma(\cdot)$ is a sigmoid function, and $B(x; p)$ is a Bernoulli distribution.
The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the elementwise loss values. If it is 'sum', loss values are summed up.

Note: As this function uses a sigmoid function, you can pass a result of fully-connected layer (that means `Linear`) to this function directly.

Parameters
- `x` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.
- `y` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – A variable representing the parameter of Bernoulli distribution.
- `reduce` (*str*) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, `ValueError` is raised.

Returns A variable representing the negative log-likelihood. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type *Variable*

chainer.functions.black_out

`chainer.functions.black_out(x, t, W, samples, reduce='mean')`

BlackOut loss function.

BlackOut loss function is defined as

$$-\log(p(t)) - \sum_{s \in S} \log(1 - p(s)),$$

where `t` is the correct label, `S` is a set of negative examples and `p(\cdot)` is likelihood of a given label. And, `p` is defined as

$$p(y) = \frac{\exp(W_y^T x)}{\sum_{s \in \text{samples}} \exp(W_s^T x)}.$$

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the no loss values. If it is 'mean', this function takes a mean of loss values.

Parameters
- `x` (*Variable*) – Batch of input vectors. Its shape should be `(N, D)`.
- `t` (*Variable*) – Vector of ground truth labels. Its shape should be `(N,)`. Each elements `v` should satisfy $0 \leq v \leq V$ or -1 where `V` is the number of label types.
- `W` (*Variable*) – Weight matrix. Its shape should be `(V, D)`
- `samples` (*Variable*) – Negative samples. Its shape should be `(N, S)` where `S` is the number of negative samples.
- `reduce` (*str*) – Reduction option. Its value must be either 'no' or 'mean'. Otherwise, `ValueError` is raised.

Returns A variable object holding loss value(s). If `reduce` is 'no', the output variable holds an array whose shape is `(N,)`. If it is 'mean', it holds a scalar.

Return type *Variable*
See: BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies
See also: BlackOut.

chainer.functions.connectionist_temporal_classification

chainer.functions.connectionist_temporal_classification(x, t, blank_symbol,
input_length=None,
label_length=None, reduce='mean')

Connectionist Temporal Classification loss function.

Connectionist Temporal Classification (CTC) [Graves2006] is a loss function of sequence labeling where the alignment between the inputs and target is unknown. See also [Graves2012]
The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the samplewise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

- **x** *(sequence of Variable)* – RNN output at each time. x must be a list of Variables. Each element of x, x[i] is a Variable representing output of RNN at time i.
- **t** *(Variable)* – Expected label sequence.
- **blank_symbol** *(int)* – Index of blank_symbol. This value must be non-negative.
- **input_length** *(Variable)* – Length of valid sequence for each of mini batch x (optional). If input_length is skipped, it regards that all of x is valid input.
- **label_length** *(Variable)* – Length of valid sequence for each of mini batch t (optional). If label_length is skipped, it regards that all of t is valid input.
- **reduce** *(str)* – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar value of the CTC loss. If reduce is 'no', the output variable holds array whose shape is (B,) where B is the number of samples. If it is 'mean', it holds a scalar.

Return type Variable

Note: You need to input x without applying to activation functions (e.g. softmax function), because this function applies softmax functions to x before calculating CTC loss to avoid numerical limitations. You also need to apply softmax function to forwarded values before you decode it.

Note: This function is differentiable only by x.

Note: This function supports (batch, sequence, 1-dimensional input)-data.
chainer.functions.contrastive

chainer.functions.contrastive(x0, x1, y, margin=1, reduce='mean')

Computes contrastive loss.

It takes a pair of samples and a label as inputs. The label is 1 when those samples are similar, or 0 when they are dissimilar.

Let N and K denote mini-batch size and the dimension of input variables, respectively. The shape of both input variables \mathbf{x}_0 and \mathbf{x}_1 should be (N, K). The loss value of the n-th sample pair L_n is

$$L_n = \frac{1}{2} \left(y_n d_n^2 + (1 - y_n) \max(\text{margin} - d_n, 0)^2 \right)$$

where $d_n = \| \mathbf{x}_{0n} - \mathbf{x}_{1n} \|_2$, \mathbf{x}_{0n} and \mathbf{x}_{1n} are n-th K-dimensional vectors of \mathbf{x}_0 and \mathbf{x}_1.

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

- **x0** (Variable or numpy.ndarray or cupy.ndarray) – The first input variable. The shape should be (N, K), where N denotes the mini-batch size, and K denotes the dimension of \mathbf{x}_0.
- **x1** (Variable or numpy.ndarray or cupy.ndarray) – The second input variable. The shape should be the same as \mathbf{x}_0.
- **y** (Variable or numpy.ndarray or cupy.ndarray) – Labels. All values should be 0 or 1. The shape should be $(N,)$, where N denotes the mini-batch size.
- **margin** (float) – A parameter for contrastive loss. It should be positive value.
- **reduce** (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, ValueError is raised.

Returns

A variable holding the loss value(s) calculated by the above equation. If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type

Variable

Note: This cost can be used to train siamese networks. See Learning a Similarity Metric Discriminatively, with Application to Face Verification for details.

Example

```python
>>> x0 = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> x1 = np.array([[-1.0, 3.0, 1.0], [3.5, 0.5, -2.0]]).astype('f')
>>> y = np.array([1, 0]).astype('i')
>>> F.contrastive(x0, x1, y)
variable(0.3125)
>>> F.contrastive(x0, x1, y, margin=3.0)  # harder penalty
variable(0.3528856933116913)
>>> z = F.contrastive(x0, x1, y, reduce='no')
>>> z.shape
(2,
array([ 0.625, 0.], dtype=float32)
```
chainer.functions.crf1d

chainer.functions.crf1d(cost, xs, ys, reduce='mean')
Calculates negative log-likelihood of linear-chain CRF.

It takes a transition cost matrix, a sequence of costs, and a sequence of labels. Let \(c_{st} \) be a transition cost from a label \(s \) to a label \(t \), \(x_{it} \) be a cost of a label \(t \) at position \(i \), and \(y_i \) be an expected label at position \(i \). The negative log-likelihood of linear-chain CRF is defined as

\[
L = - \left(\sum_{i=1}^{l} x_{iy_i} + \sum_{i=1}^{l-1} c_{y_i y_{i+1}} - \log(Z) \right),
\]

where \(l \) is the length of the input sequence and \(Z \) is the normalizing constant called partition function.

Note: When you want to calculate the negative log-likelihood of sequences which have different lengths, sort the sequences in descending order of lengths and transpose the sequences. For example, you have three input sequences:

```python
>>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype('f')
>>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype('f')
>>> c1 = c2 = np.random.uniform(-1, 1, 3).astype('f')
```

```python
>>> a = [a1, a2, a3, a4]
>>> b = [b1, b2, b3]
>>> c = [c1, c2]
```

where \(a1 \) and all other variables are arrays with \((K,) \) shape. Make a transpose of the sequences:

```python
>>> x1 = np.stack([a1, b1, c1])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])
>>> x4 = np.stack([a4])
```

and make a list of the arrays:

```python
>>> xs = [x1, x2, x3, x4]
```

You need to make label sequences in the same fashion. And then, call the function:

```python
>>> cost = chainer.Variable(
...    np.random.uniform(-1, 1, (3, 3)).astype('f'))
>>> ys = [np.zeros(x.shape[0:1], dtype='i') for x in xs]
>>> loss = F.crf1d(cost, xs, ys)
```

It calculates mean of the negative log-likelihood of the three sequences.

The output is a variable whose value depends on the value of the option `reduce`. If it is `'no'`, it holds the elementwise loss values. If it is `'mean'`, it holds mean of the loss values.

Parameters

- **cost** (Variable): A \(K \times K \) matrix which holds transition cost between two labels, where \(K \) is the number of labels.
- **xs** (list of Variable): Input vector for each label. \(\text{len}(xs) \) denotes the length of the sequence, and each Variable holds a \(B \times K \) matrix, where \(B \) is mini-batch size, \(K \)
is the number of labels. Note that B s in all the variables are not necessary the same, i.e., it accepts the input sequences with different lengths.

- **ys** *(list of Variable)* – Expected output labels. It needs to have the same length as xs. Each $Variable$ holds a B integer vector. When x in xs has the different B, corresponding y has the same B. In other words, ys must satisfy $ys[i].shape == xs[i].shape[0:1]$ for all i.

- **reduce** *(str)* – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, $ValueError$ is raised.

Returns A variable holding the average negative log-likelihood of the input sequences.

Return type $Variable$

Note: See detail in the original paper: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.

chainer.functions.argmax_crf1d

chainer.functions.argmax_crf1d(cost, xs)

Computes a state that maximizes a joint probability of the given CRF.

Parameters

- **cost**(Variable) – A $K \times K$ matrix which holds transition cost between two labels, where K is the number of labels.

- **xs** *(list of Variable)* – Input vector for each label. $len(xs)$ denotes the length of the sequence, and each $Variable$ holds a $B \times K$ matrix, where B is mini-batch size, K is the number of labels. Note that B s in all the variables are not necessary the same, i.e., it accepts the input sequences with different lengths.

Returns A tuple of $Variable$ object s and a list ps. The shape of s is $(B,)$, where B is the mini-batch size. i-th element of s, $s[i]$, represents log-likelihood of i-th data. ps is a list of $numpy.ndarray$ or $cupy.ndarray$, and denotes the state that maximizes the point probability. $len(ps)$ is equal to $len(xs)$, and shape of each $ps[i]$ is the mini-batch size of the corresponding $xs[i]$. That means, $ps[i].shape == xs[i].shape[0:1]$.

Return type tuple

chainer.functions.cross_covariance

chainer.functions.cross_covariance(y, z, reduce='half_squared_sum')

Computes the sum-squared cross-covariance penalty between y and z.

The output is a variable whose value depends on the value of the option $reduce$. If it is 'no', it holds the covariant matrix that has as many rows (resp. columns) as the dimension of y (resp. z). If it is 'half_squared_sum', it holds the half of the Frobenius norm (i.e. L2 norm of a matrix flattened to a vector) of the covarainct matrix.

Parameters

- **y** *(Variable)* – Variable holding a matrix where the first dimension corresponds to the batches.
• **z (Variable)** – Variable holding a matrix where the first dimension corresponds to the batches.

• **reduce (str)** – Reduction option. Its value must be either 'half_squared_sum' or 'no'. Otherwise, `ValueError` is raised.

Returns A variable holding the cross covariance loss. If `reduce` is 'no', the output variable holds 2-dimensional array matrix of shape (M, N) where M (resp. N) is the number of columns of y (resp. z). If it is 'half_squared_sum', the output variable holds a scalar value.

Return type `Variable`

Note: This cost can be used to disentangle variables. See https://arxiv.org/abs/1412.6583v3 for details.

`chainer.functions.gaussian_kl_divergence`

chainer.functions.gaussian_kl_divergence(mean, ln_var, reduce='sum')

Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable `mean` representing μ and `ln_var` representing $\log(\sigma^2)$, this function calculates the KL-divergence in elementwise manner between the given multi-dimensional Gaussian $\mathcal{N}(\mu, S)$ and the standard Gaussian $\mathcal{N}(0, I)$

$$D_{KL}(\mathcal{N}(\mu, S) || \mathcal{N}(0, I)),$$

where S is a diagonal matrix such that $S_{ii} = \sigma_i^2$ and I is an identity matrix.

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the elementwise loss values. If it is 'sum', loss values are summed up.

Parameters

- **mean (Variable or numpy.ndarray or cupy.ndarray)** – A variable representing mean of given gaussian distribution, μ.

- **ln_var (Variable or numpy.ndarray or cupy.ndarray)** – A variable representing logarithm of variance of given gaussian distribution, $\log(\sigma^2)$.

- **reduce (str)** – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, `ValueError` is raised.

Returns A variable representing KL-divergence between given gaussian distribution and the standard gaussian. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type `Variable`

`chainer.functions.gaussian_nll`

chainer.functions.gaussian_nll(x, mean, ln_var, reduce='sum')

Computes the negative log-likelihood of a Gaussian distribution.

Given two variable `mean` representing μ and `ln_var` representing $\log(\sigma^2)$, this function computes in elementwise manner the negative log-likelihood of x on a Gaussian distribution $\mathcal{N}(\mu, S)$,

$$-\log N(x; \mu, \sigma^2) = \log \left(\sqrt{(2\pi)^D |S|} \right) + \frac{1}{2} (x - \mu)^\top S^{-1} (x - \mu),$$

218 Chapter 2. Reference Manual
where \(D \) is a dimension of \(x \) and \(S \) is a diagonal matrix where \(S_{ii} = \sigma_i^2 \).

The output is a variable whose value depends on the value of the option `reduce`. If it is `'no'`, it holds the elementwise loss values. If it is `'sum'`, loss values are summed up.

Parameters

- \(x \) (*Variable* or `numpy.ndarray` or `cupy.ndarray*) – Input variable.
- \(\text{mean} \) (*Variable* or `numpy.ndarray` or `cupy.ndarray*) – A variable representing mean of a Gaussian distribution, \(\mu \).
- \(\ln \text{var} \) (*Variable* or `numpy.ndarray` or `cupy.ndarray*) – A variable representing logarithm of variance of a Gaussian distribution, \(\log(\sigma^2) \).
- \(\text{reduce} \) (*str*) – Reduction option. Its value must be either `'sum'` or `'no'`. Otherwise, `ValueError` is raised.

Returns A variable representing the negative log-likelihood. If `reduce` is `'no'`, the output variable holds array whose shape is same as one of (hence both of) input variables. If it is `'sum'`, the output variable holds a scalar value.

Return type *Variable*

`chainer.functions.hinge`

`chainer.functions.hinge(x, t, norm='L1', reduce='mean')`

Computes the hinge loss for a one-of-many classification task.

\[
L = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \left[\max(0, 1 - \delta\{t_n = k\}x_{nk}) \right]^p
\]

where \(N \) denotes the batch size and \(K \) is the number of classes of interest,

\[
\delta\{\text{condition}\} = \begin{cases}
1 & \text{if condition is true} \\
-1 & \text{otherwise},
\end{cases}
\]

and

\[
p = \begin{cases}
1 & \text{if norm = L1} \\
2 & \text{if norm = L2}.
\end{cases}
\]

Let the hinge loss function \(l(x, \delta) \) be \(\max(0, 1 - \delta x) \)^p. When \(x \) and \(\delta \) have the same sign (meaning \(x \) predicts the proper score for classification) and \(|x| \geq 1 \), the hinge loss \(l(x, \delta) = 0 \), but when they have opposite sign, \(l(x, \delta) \) increases linearly with \(x \).

The output is a variable whose value depends on the value of the option `reduce`. If it is `'no'`, it holds the elementwise loss values. If it is `'mean'`, it takes the mean of loss values.

Parameters

- \(x \) (*Variable* or `numpy.ndarray` or `cupy.ndarray` of `numpy.float`) – Input variable. The shape of \(x \) should be \((N, K)\).
- \(t \) (*Variable* or `numpy.ndarray` or `cupy.ndarray` of signed integer) – The \(N \)-dimensional label vector with values \(t_n \in \{0, 1, 2, \ldots, K - 1\} \). The shape of \(t \) should be \((N,)\).
- \(\text{norm} \) (*string*) – Specifies norm type. Either `'L1'` or `'L2'` is acceptable.

2.4. Standard Function implementations
• **reduce**(str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable object holding a scalar array of the hinge loss L. If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it
is 'mean', the output variable holds a scalar value.

Return type **Variable**

Example

In this case, the batch size N is 2 and the number of classes K is 3.

```python
>>> x = np.array([[[-2.0, 3.0, 0.5],
                   [5.0, 2.0, -0.5]]]).astype('f')
>>> x
array([[-2., 3., 0.5],
       [ 5., 2., -0.5]], dtype=float32)
```

```python
>>> t = np.array([1, 0]).astype('i')
```

```python
>>> F.hinge(x, t)
variable(2.5)
```

```python
>>> F.hinge(x, t, reduce='no')
variable([[ 0. , 0. , 1.5],
          [ 0. , 3. , 0.5]])
```

```python
>>> F.hinge(x, t, norm='L2')
variable(5.75)
```

chainer.functions.huber_loss

chainer.functions.huber_loss**(x, t, delta, reduce='sum_along_second_axis')**

Loss function which is less sensitive to outliers in data than MSE.

\[
a = x - t
\]

and

\[
L_\delta(a) = \begin{cases}
\frac{1}{2}a^2 & \text{if } |a| \leq \delta \\
\delta(|a| - \frac{1}{2}\delta) & \text{otherwise}
\end{cases}
\]

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the elementwise loss values. If it is 'sum_along_second_axis', loss values are summed
up along the second axis (i.e. axis=1).

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable. The shape of
x should be (N, K).

- **t** *(Variable or numpy.ndarray or cupy.ndarray)* – Target variable for regression.
The shape of t should be (N, K).

- **delta** *(float)* – Constant variable for huber loss function as used in definition.
• **reduce** *(str)* – Reduction option. Its value must be either 'sum_along_second_axis' or 'no'. Otherwise, `ValueError` is raised.

Returns A variable object holding a scalar array of the huber loss L_δ. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum_along_second_axis', the shape of the array is same as the input variables, except the second axis is removed.

Return type *Variable*

See: [Huber loss - Wikipedia](https://en.wikipedia.org/wiki/Huber_loss).

Example

```python
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> x
array([[-2.,  3.,  0.5],
       [ 5.,  2., -0.5]], dtype=float32)
>>> t = np.array([[-2.0, 3.0, 0.0], [10.0, 2.0, -0.5]]).astype('f')
>>> t
array([[-2. ,  3. ,  0. ],
       [ 10. ,  2. , -0.5]], dtype=float32)
>>> y = F.huber_loss(x, t, 1.0)
>>> y.shape
(2,)
array([ 0.125, 4.5 ], dtype=float32)
>>> y = F.huber_loss(x, t, 1.0, reduce='no')
>>> y.shape
(2, 3)
array([[ 0. ,  0. ,  0.125],
       [ 4.5 ,  0. ,  0. ]], dtype=float32)
```

chainer.functions.mean_absolute_error

chainer.functions.mean_absolute_error *(x0, x1)*

Mean absolute error function.

This function computes mean absolute error between two variables. The mean is taken over the minibatch.

chainer.functions.mean_squared_error

chainer.functions.mean_squared_error *(x0, x1)*

Mean squared error function.

This function computes mean squared error between two variables. The mean is taken over the minibatch. Note that the error is not scaled by $1/2$.

Parameters

- **x0** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable.
- **x1** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable.

Returns A variable holding an array representing the mean squared error of two inputs.
Negative sampling loss function.

In natural language processing, especially language modeling, the number of words in a vocabulary can be very large. Therefore, you need to spend a lot of time calculating the gradient of the embedding matrix.

By using the negative sampling trick you only need to calculate the gradient for a few sampled negative examples.

The objective function is below:

\[f(x, p) = \log \sigma(x^\top w_p) + k E_{i \sim P(i)}[\log \sigma(-x^\top w_i)], \]

where \(\sigma(\cdot) \) is a sigmoid function, \(w_i \) is the weight vector for the word \(i \), and \(p \) is a positive example. It is approximated with \(k \) examples \(N \) sampled from probability \(P(i) \), like this:

\[f(x, p) \approx \log \sigma(x^\top w_p) + \sum_{n \in N} \log \sigma(-x^\top w_n). \]

Each sample of \(N \) is drawn from the word distribution \(P(w) \). This is calculated as \(P(w) = \frac{1}{Z} c(w)^\alpha \), where \(c(w) \) is the unigram count of the word \(w \), \(\alpha \) is a hyper-parameter, and \(Z \) is the normalization constant.

Parameters

- **x** (*Variable*) – Batch of input vectors.
- **t** (*Variable*) – Vector of ground truth labels.
- **W** (*Variable*) – Weight matrix.
- **sampler** (*FunctionType*) – Sampling function. It takes a shape and returns an integer array of the shape. Each element of this array is a sample from the word distribution. A WalkerAlias object built with the power distribution of word frequency is recommended.
- **sample_size** (*int*) – Number of samples.
- **reduce** (*str*) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, **ValueError** is raised.

Returns

A variable holding the loss value(s) calculated by the above equation. If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type **Variable**

See: Distributed Representations of Words and Phrases and their Compositionality

See also: **NegativeSampling**.

Computes cross entropy loss for pre-sigmoid activations.

Parameters
• **x** *(Variable or numpy.ndarray or cupy.ndarray)* – A variable object holding a matrix whose (i, j)-th element indicates the unnormalized log probability of the j-th unit at the i-th example.

• **t** *(Variable or numpy.ndarray or cupy.ndarray)* – Variable holding a signed integer vector of ground truth labels. If \(t[i] == -1 \), corresponding \(x[i] \) is ignored. Loss is zero if all ground truth labels are \(-1\).

• **normalize** *(bool)* – Variable holding a boolean value which determines the normalization constant. If true, this function normalizes the cross entropy loss across all instances. If else, it only normalizes along a batch size.

• **reduce** *(str)* – Variable holding a str which determines whether to reduce the shape of the input. If it is ‘mean’, it computes the sum of cross entropy and normalize it according to normalize option. If is ‘no’, this function computes cross entropy for each instance and does not normalize it (normalize option is ignored). In this case, the loss value of the ignored instance, which has \(-1\) as its target value, is set to 0.

Returns A variable object holding an array of the cross entropy. If **reduce** is ‘mean’, it is a scalar array. If **reduce** is ‘no’, the shape is same as **x**.

Return type *Variable*

Note: This function is differentiable only by **x**.

Example

```python
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> x
array([[-2. ,  3. ,  0.5],
       [ 5. ,  2. , -0.5]], dtype=float32)
>>> t = np.array([[0, 1, 0], [1, 1, -1]]).astype('i')
>>> t
array([[ 0,  1,  0],
       [ 1,  1, -1]], dtype=int32)
>>> F.sigmoid_cross_entropy(x, t)
variable(0.25664713978767395)
>>> F.sigmoid_cross_entropy(x, t, normalize=False)
variable(0.6416178345680237)
>>> y = F.sigmoid_cross_entropy(x, t, reduce='no')
>>> y.shape
(2, 3)
>>> y.data
array([[ 0.12692809,  0.04858735,  0.97407699],
        [ 0.00671535,  0.12692809,  0. ]], dtype=float32)
```

chainer.functions.softmax_cross_entropy

chainer.functions.softmax_cross_entropy(\(x\), \(t\), **normalize**=True, **cache_score**=True, **class_weight**=None, **ignore_label**=-1, **reduce**=‘mean’, **enable_double_backprop**=False)

Computes cross entropy loss for pre-softmax activations.

Parameters
• **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Variable holding a multidimensional array whose element indicates unnormalized log probability: the first axis of the variable represents the number of samples, and the second axis represents the number of classes. While this function computes a usual softmax cross entropy if the number of dimensions is equal to 2, it computes a cross entropy of the replicated softmax if the number of dimensions is greater than 2.

• **t** *(Variable or numpy.ndarray or cupy.ndarray)* – Variable holding a signed integer vector of ground truth labels. If \(t[i] == \text{ignore_label} \), corresponding \(x[i] \) is ignored.

• **normalize** *(bool)* – If True, this function normalizes the cross entropy loss across all instances. If False, it only normalizes along a batch size.

• **cache_score** *(bool)* – When it is True, the function stores result of forward computation to use it on backward computation. It reduces computational cost though consumes more memory. If **enable_double_backprop** option is True, this option is forcibly turned off and the function does not cache the intermediate value.

• **class_weight** *(Variable or numpy.ndarray or cupy.ndarray)* – An array that contains constant weights that will be multiplied with the loss values along with the second dimension. The shape of this array should be \((x.shape[1],)\). If this is not None, each class weight \(\text{class_weight}[i] \) is actually multiplied to \(y[:, i] \) that is the corresponding log-softmax output of \(x \) and has the same shape as \(x \) before calculating the actual loss value.

• **ignore_label** *(int)* – Label value you want to ignore. Its default value is -1. See description of the argument \(t \).

• **reduce** *(str)* – A string that determines whether to reduce the loss values. If it is 'mean', it computes the sum of the individual cross entropy and normalize it according to **normalize** option. If it is 'no', this function computes cross entropy for each instance and does not normalize it (normalize option is ignored). In this case, the loss value of the ignored instance, which has **ignore_label** as its target value, is set to 0.

• **enable_double_backprop** *(bool)* – If True, this function uses implementation that supports higher order differentiation. If False, it uses single-backprop implementation. This function use the single-backprop version because we expect it is faster. So, if you need second or higher derivatives, you need to turn it on explicitly.

Returns A variable holding a scalar array of the cross entropy loss. If **reduce** is 'mean', it is a scalar array. If **reduce** is 'no', the shape is same as that of \(x \).

Return type Variable

Note: This function is differentiable only by \(x \).

Example

```python
>>> x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]]).astype('f')
>>> x
array([[-1.,  0.,  1.,  2.],
       [ 2.,  0.,  1., -1.]], dtype=float32)
>>> t = np.array([3, 0]).astype('i')
>>> t
array([3, 0], dtype=int32)
>>> y = F.softmax_cross_entropy(x, t)
```
```python
>>> y
variable(0.4401897192001343)
>>> log_softmax = -F.log_softmax(x)
>>> expected_loss = np.mean([log_softmax[row, column].data for row, column in enumerate(t)])
>>> y.array == expected_loss
True
```

chainer.functions.squared_error

chainer.functions.squared_error(x0, x1)

Squared error function.

This function computes the squared error between two variables:

\[(x_0 - x_1)^2\]

where operation is done in elementwise manner. Note that the error is not scaled by 1/2:

Parameters

- `x0` ([Variable](https://docs.chainer.org/en/latest/reference/variable.html#variable) or `numpy.ndarray` or `cupy.ndarray`) – Input variable.
- `x1` ([Variable](https://docs.chainer.org/en/latest/reference/variable.html#variable) or `numpy.ndarray` or `cupy.ndarray`) – Input variable.

Returns

A variable holding an array representing the squared error of two inputs.

Return type

[Variable](https://docs.chainer.org/en/latest/reference/variable.html#variable)

chainer.functions.triplet

chainer.functions.triplet(anchor, positive, negative, margin=0.2, reduce='mean')

Computes triplet loss.

It takes a triplet of variables as inputs, \(a, p\) and \(n\): anchor, positive example and negative example respectively. The triplet defines a relative similarity between samples. Let \(N\) and \(K\) denote mini-batch size and the dimension of input variables, respectively. The shape of all input variables should be \((N, K)\).

\[
L(a, p, n) = \frac{1}{N} \left(\sum_{i=1}^{N} \max\{d(a_i, p_i) - d(a_i, n_i) + \text{margin}, 0\} \right)
\]

where \(d(x_i, y_i) = \|x_i - y_i\|^2\).

The output is a variable whose value depends on the value of the option `reduce`. If it is `'no'`, it holds the elementwise loss values. If it is `'mean'`, this function takes a mean of loss values.

Parameters

- `anchor` ([Variable](https://docs.chainer.org/en/latest/reference/variable.html#variable) or `numpy.ndarray` or `cupy.ndarray`) – The anchor example variable. The shape should be \((N, K)\), where \(N\) denotes the minibatch size, and \(K\) denotes the dimension of the anchor.
- `positive` ([Variable](https://docs.chainer.org/en/latest/reference/variable.html#variable) or `numpy.ndarray` or `cupy.ndarray`) – The positive example variable. The shape should be the same as anchor.
- `negative` ([Variable](https://docs.chainer.org/en/latest/reference/variable.html#variable) or `numpy.ndarray` or `cupy.ndarray`) – The negative example variable. The shape should be the same as anchor.
• **margin** (*float*) – A parameter for triplet loss. It should be a positive value.

• **reduce** (*str*) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, `ValueError` is raised.

Returns A variable holding a scalar that is the loss value calculated by the above equation. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type `Variable`

Note: This cost can be used to train triplet networks. See Learning Fine-grained Image Similarity with Deep Ranking for details.

Example

```python
>>> anchor = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> pos = np.array([[-2.1, 2.8, 0.5], [4.9, 2.0, -0.4]]).astype('f')
>>> neg = np.array([[-2.1, 2.7, 0.7], [4.9, 2.0, -0.7]]).astype('f')
>>> F.triplet(anchor, pos, neg)
variable(0.14000003039836884)
>>> y = F.triplet(anchor, pos, neg, reduce='no')
>>> y.shape
(2,)
>>> y.data
array([ 0.11000005, 0.17  ], dtype=float32)
>>> F.triplet(anchor, pos, neg, margin=0.5) # harder penalty
variable(0.4400000274181366)
```

2.4.6 Mathematical functions

- `chainer.functions.arccos` Elementwise arccosine function.
- `chainer.functions.arcsin` Elementwise arcsine function.
- `chainer.functions.arctan` Elementwise arctangent function.
- `chainer.functions.arctan2` Elementwise arctangent function with two arguments.
- `chainer.functions.argmax` Returns index which holds maximum of array elements over a given axis.
- `chainer.functions.argmin` Returns index which holds minimum of array elements over a given axis.
- `chainer.functions.average` Calculate weighted average of array elements over a given axis.
- `chainer.functions.batch_inv` Computes the inverse of a batch of square matrices.
- `chainer.functions.batch_l2_norm_squared` L2 norm (a.k.a. Euclidean norm) squared.
- `chainer.functions.batch_matmul` Computes the batch matrix multiplications of two sets of arrays.
- `chainer.functions.bias` Elementwise summation with broadcasting.
- `chainer.functions.ceil` Elementwise ceiling function.
- `chainer.functions.clip` Clips (limits) elements of input variable.
- `chainer.functions.cos` Elementwise cos function.
- `chainer.functions.cosh` Elementwise hyperbolic cosine function.
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.exp</code></td>
<td>Elementwise exponential function.</td>
</tr>
<tr>
<td><code>chainer.functions.fix</code></td>
<td>Elementwise fix function.</td>
</tr>
<tr>
<td><code>chainer.functions.fmod</code></td>
<td>Elementwise mod function.</td>
</tr>
<tr>
<td><code>chainer.functions.floor</code></td>
<td>Elementwise floor function.</td>
</tr>
<tr>
<td><code>chainer.functions.identity</code></td>
<td>Just returns input variables.</td>
</tr>
<tr>
<td><code>chainer.functions.inv</code></td>
<td>Computes the inverse of square matrix.</td>
</tr>
<tr>
<td><code>chainer.functions.linear_interpolate</code></td>
<td>Elementwise linear-interpolation function.</td>
</tr>
<tr>
<td><code>chainer.functions.log</code></td>
<td>Elementwise natural logarithm function.</td>
</tr>
<tr>
<td><code>chainer.functions.log10</code></td>
<td>Elementwise logarithm function to the base 10.</td>
</tr>
<tr>
<td><code>chainer.functions.log1p</code></td>
<td>Elementwise logarithm plus one function.</td>
</tr>
<tr>
<td><code>chainer.functions.log2</code></td>
<td>Elementwise logarithm to the base 2.</td>
</tr>
<tr>
<td><code>chainer.functions.logsumexp</code></td>
<td>Log-sum-exp of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.matmul</code></td>
<td>Computes the matrix multiplication of two arrays.</td>
</tr>
<tr>
<td><code>chainer.functions.max</code></td>
<td>Maximum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.minimum</code></td>
<td>Element-wise minimum of input variables.</td>
</tr>
<tr>
<td><code>chainer.functions.prod</code></td>
<td>Product of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.rsqrt</code></td>
<td>Computes elementwise reciprocal of square root of input x_i.</td>
</tr>
<tr>
<td><code>chainer.functions.scale</code></td>
<td>Elementwise product with broadcasting.</td>
</tr>
<tr>
<td><code>chainer.functions.sin</code></td>
<td>Elementwise sin function.</td>
</tr>
<tr>
<td><code>chainer.functions.sinh</code></td>
<td>Elementwise hyperbolic sine function.</td>
</tr>
<tr>
<td><code>chainer.functions.sqrt</code></td>
<td>Elementwise square root function.</td>
</tr>
<tr>
<td><code>chainer.functions.square</code></td>
<td>Elementwise square function.</td>
</tr>
<tr>
<td><code>chainer.functions.squared_difference</code></td>
<td>Squared difference of input variables.</td>
</tr>
<tr>
<td><code>chainer.functions.sum</code></td>
<td>Sum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.tanh</code></td>
<td>Elementwise hyperbolic tangent function.</td>
</tr>
<tr>
<td><code>chainer.functions.tan</code></td>
<td>Elementwise tan function.</td>
</tr>
</tbody>
</table>

chainer.functions.arccos

`chainer.functions.arccos(x)`
Elementwise arccosine function.

$$y_i = \arccos x_i.$$

Parameters
`x` *(Variable)* – Input variable.

Returns
Output variable.

Return type
`Variable`

chainer.functions.arcsin

`chainer.functions.arcsin(x)`
Elementwise arcsine function.

$$y_i = \arcsin x_i.$$

Parameters
`x` *(Variable)* – Input variable.
chainer.functions.arctan

chainer.functions.arctan(x)

Elementwise arctangent function.

\[y_i = \arctan x_i. \]

Parameters

- **x** (*Variable*) – Input variable.

Returns

Output variable.

Return type

Variable

chainer.functions.arctan2

chainer.functions.arctan2(x1, x2)

Elementwise arctangent function with two arguments.

Parameters

- **x1** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Y-coordinates.
- **x2** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – X-coordinates.

Returns

Angles in radians, in the range [-\(\pi\), \(\pi\)].

Return type

Variable

chainer.functions.argmax

chainer.functions.argmax(x, axis=None)

Returns index which holds maximum of array elements over a given axis.

Parameters

- **x** (*Variable*) – Array to find maximum elements.
- **axis** (*None* or *int*) – Axis over which a max is performed. The default (axis = None) is perform a max over all the dimensions of the input array.

Returns

Output variable.

Return type

Variable

chainer.functions.argmin

chainer.functions.argmin(x, axis=None)

Returns index which holds minimum of array elements over a given axis.

Parameters

- **x** (*Variable*) – Array to find minimum elements.
- **axis** (*None* or *int*) – Axis over which a min is performed. The default (axis = None) is perform a min over all the dimensions of the input array.
Returns Output variable.
Return type Variable

chainer.functions.average

chainer.functions.average(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters
• x (Variable) – Elements to sum.
• axis (None or int or tuple of int) – Axis which the method is performed. With the default (axis = None) it performs a mean over all the dimensions of the input array.
• weights (None or chainer.Variable) – An array holding weights to calculate weighted average. If it is None, all weights are assumed to be one. When axis is None, weights must have the same shape of x. And when axis is int, it must be 1-D array satisfying weights.shape == (x.shape[axis],).
• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.
Return type Variable

chainer.functions.batch_inv

chainer.functions.batch_inv(a)
Computes the inverse of a batch of square matrices.

Parameters a (Variable) – Input array to compute the inverse for. Shape of the array should be (m, n, n) where m is the number of matrices in the batch, and n is the dimensionality of a square matrix.

Returns Inverse of every matrix in the batch of matrices.
Return type Variable

chainer.functions.batch_l2_norm_squared

chainer.functions.batch_l2_norm_squared(x)
L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

Parameters x (Variable) – Input variable. The first dimension is assumed to be the minibatch dimension. If x has more than two dimensions all but the first dimension are flattened to one dimension.

Returns Two dimensional output variable.
Return type Variable
chainer.functions.batch_matmul

chainer.functions.batch_matmul \((a, b, transa=False, transb=False)\)

Computes the batch matrix multiplications of two sets of arrays.

Parameters

- **a** (Variable) – The left operand of the batch matrix multiplications. A 2-D array of shape \((B, N)\) is considered as \(B \times N\) matrices. A 3-D array of shape \((B, M, N)\) is considered as \(B \times M \times N\) matrices.

- **b** (Variable) – The right operand of the batch matrix multiplications. Its array is treated as matrices in the same way as \(a\)’s array.

- **transa** (bool) – If True, transpose each matrix in \(a\).

- **transb** (bool) – If True, transpose each matrix in \(b\).

Returns The result of the batch matrix multiplications as a 3-D array.

Return type Variable

Deprecated since version v3.0.0: batch_matmul is deprecated. Use matmul instead.

chainer.functions.bias

chainer.functions.bias \((x, y, axis=1)\)

Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of the latter variable broadcasted to match the shape of the former. \(axis\) is the first axis of the first variable along which the second variable is applied.

The term “broadcasting” here comes from Caffe’s bias layer so the “broadcasting” with the following arguments:

```
  x : 100 x 3 x 40 x 60
  y : 3 x 40
  axis : 1
```

is equivalent to the following numpy broadcasting:

```
  x : 100 x 3 x 40 x 60
  y : 1 x 3 x 40 x 1
```

Note that how the \(axis\) indicates to which axis of \(x\) we apply \(y\).

Parameters

- **x** (Variable) – Input variable to be summed.

- **y** (Variable) – Input variable to sum, broadcasted.

- **axis** (int) – The first axis of \(x\) along which \(y\) is applied.

Returns Output variable.

Return type Variable
chainer.functions.ceil

chainer.functions.ceil(x)
Elementwise ceil function.

\[
\hat{y}_i = \lceil x_i \rceil
\]

Parameters
- \(x\) (*Variable*) – Input variable.

Returns
Output variable.

Return type *Variable*

chainer.functions.clip

chainer.functions.clip(x, x_min, x_max)
Clips (limits) elements of input variable.

Given an interval \([x_{\text{min}}, x_{\text{max}}]\), elements outside the interval are clipped to the interval edges.

Parameters
- \(x\) (*Variable*) – Input variable to be clipped.
- \(x_{\text{min}}\) (*float*) – Minimum value.
- \(x_{\text{max}}\) (*float*) – Maximum value.

Returns
Output variable.

Return type *Variable*

chainer.functions.cos

chainer.functions.cos(x)
Elementwise cos function.

chainer.functions.cosh

chainer.functions.cosh(x)
Elementwise hyperbolic cosine function.

\[
\hat{y}_i = \cosh x_i.
\]

Parameters
- \(x\) (*Variable*) – Input variable.

Returns
Output variable.

Return type *Variable*

chainer.functions.exp

chainer.functions.exp(x)
Elementwise exponential function.
chainer.functions.fix

chainer.functions.fix(x)
Elementwise fix function.

\[y_i = x_i \]

Parameters
- x (**Variable**) – Input variable.

Returns
Output variable.

Return type **Variable**

chainer.functions.fmod

chainer.functions.fmod(x, divisor)
Elementwise mod function.

\[y_i = x_i \mod \text{divisor} \]

Parameters
- x (**Variable**) – Input variable.
- divisor (**Variable**) – Input divisor.

Returns
Output variable.

Return type **Variable**

chainer.functions.floor

chainer.functions.floor(x)
Elementwise floor function.

\[y_i = \lfloor x_i \rfloor \]

Parameters
- x (**Variable**) – Input variable.

Returns
Output variable.

Return type **Variable**

chainer.functions.identity

chainer.functions.identity(*inputs)
Just returns input variables.

chainer.functions.inv

chainer.functions.inv(a)
Computes the inverse of square matrix.

Parameters
- a (**Variable**) – Input array to compute the inverse for. Shape of the array should be \((n, n)\) where \(n\) is the dimensionality of a square matrix.

Returns
Matrix inverse of \(a\).

Return type **Variable**
chainer.functions.linear_interpolate

chainer.functions.linear_interpolate \((p, x, y)\)

Elementwise linear-interpolation function.

This function is defined as

\[
f(p, x, y) = px + (1 - p)y.
\]

Parameters

- \(p\) (Variable) – Input variable.
- \(x\) (Variable) – Input variable.
- \(y\) (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log

chainer.functions.log \((x)\)

Elementwise natural logarithm function.

chainer.functions.log10

chainer.functions.log10 \((x)\)

Elementwise logarithm function to the base 10.

\[
y_i = \log_{10} x_i.
\]

Parameters \(x\) (Variable) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log1p

chainer.functions.log1p \((x)\)

Elementwise natural logarithm plus one function.

chainer.functions.log2

chainer.functions.log2 \((x)\)

Elementwise logarithm function to the base 2.

\[
y_i = \log_2 x_i.
\]

Parameters \(x\) (Variable) – Input variable.

Returns Output variable.

Return type Variable
chainer.functions.logsumexp

chainer.functions.logsumexp(x, axis=None)

Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.

\[y_i = \log \left(\sum_j \exp(x_{ij}) \right) \]

Parameters

- x (Variable) – Elements to log-sum-exp.
- axis (None, int, or tuple of int) – Axis which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array.

Returns Output variable.
Return type Variable

chainer.functions.matmul

chainer.functions.matmul(a, b, transa=False, transb=False)

Computes the matrix multiplication of two arrays.

Parameters

- a (Variable) – The left operand of the matrix multiplication. If a and b are both 1-D arrays, matmul returns a dot product of vector a and vector b. If 2-D arrays, matmul returns matrix product of a and b. If arrays’ dimension is larger than 2, they are treated as a stack of matrices residing in the last two indexes. matmul returns a stack of each two arrays. a and b must have the same dimension.
- b (Variable) – The right operand of the matrix multiplication. Its array is treated as a matrix in the same way as a’s array.
- transa (bool) – If True, each matrices in a will be transposed. If a.ndim == 1, do nothing.
- transb (bool) – If True, each matrices in b will be transposed. If b.ndim == 1, do nothing.

Returns The result of the matrix multiplication.
Return type Variable

Example

```python
>>> a = np.array([[1, 0], [0, 1]], 'f')
>>> b = np.array([[4, 1], [2, 2]], 'f')
>>> F.matmul(a, b).data
array([[ 4.,  1.],
       [ 2.,  2.]], dtype=float32)
```
chainer.functions.max

chainer.functions.max(x, axis=None, keepdims=False)
Maximum of array elements over a given axis.

Parameters
• **x** (*Variable*) – Array to be maximized.
• **axis** (*None, int, or tuple of int*) – Axis over which a max is performed. The default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.
Return type *Variable*

chainer.functions.maximum

chainer.functions.maximum(x1, x2)
Element-wise maximum of input variables.

Parameters
• **x1** (*Variable*) – Input variables to be compared.
• **x2** (*Variable*) – Input variables to be compared.

Returns Output variable.
Return type *Variable*

chainer.functions.mean

chainer.functions.mean(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters
• **x** (*Variable*) – Elements to sum.
• **axis** (*None or int or tuple of int*) – Axis which the method is performed. With the default (axis = None) it performs a mean over all the dimensions of the input array.
• **weights** (*None or chainer.Variable*) – An array holding weights to calculate weighted average. If it is None, all weights are assumed to be one. When axis is None, weights must have the same shape of x. And when axis is int, it must be 1-D array satisfying weights.shape == (x.shape[axis],).
• **keepdims** (*bool*) – If True, the specified axes are remained as axes of length one.

Returns Output variable.
Return type *Variable*

chainer.functions.min

chainer.functions.min(x, axis=None, keepdims=False)
Minimum of array elements over a given axis.

Parameters
• \texttt{x (Variable)} – Array to be minimized.

• \texttt{axis (None, int, or tuple of int)} – Axis over which a min is performed. The default (axis = None) is perform a min over all the dimensions of the input array.

Returns \hspace{1em} \text{Output variable.}

Return type \hspace{1em} \text{Variable}

\texttt{chainer.functions.minimum}

\texttt{chainer.functions.minimum(x1, x2)}

Element-wise minimum of input variables.

Parameters

• \texttt{x1 (Variable)} – Input variables to be compared.

• \texttt{x2 (Variable)} – Input variables to be compared.

Returns \hspace{1em} \text{Output variable.}

Return type \hspace{1em} \text{Variable}

\texttt{chainer.functions.prod}

\texttt{chainer.functions.prod(x, axis=None, keepdims=False)}

Product of array elements over a given axis.

Parameters

• \texttt{x (Variable or numpy.ndarray or cupy.ndarray)} \hspace{1em} \text{Elements to calculate the product.}

• \texttt{axis (None, int, or tuple of int)} \hspace{1em} \text{Axis which a product is performed. The default (axis = None) is perform a product over all the dimensions of the input array.}

• \texttt{keepdims (bool)} \hspace{1em} \text{If True, the specified axes are remained as axes of length one.}

Returns \hspace{1em} \text{Output variable.}

Return type \hspace{1em} \text{Variable}

\texttt{chainer.functions.rsqrt}

\texttt{chainer.functions.rsqrt(x)}

Computes elementwise reciprocal of square root of input \(x_i\).

\[y_i = \frac{1}{\sqrt{x_i}}. \]

Parameters \hspace{1em} \texttt{x (Variable)} \hspace{1em} \text{Input variable.}

Returns \hspace{1em} \text{Output variable.}

Return type \hspace{1em} \text{Variable}

See also:

\texttt{sqrt()}
chainer.functions.scale

chainer.functions.scale(x, y, axis=1)
Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of the latter variable broadcasted to match the shape of the former. \texttt{axis} is the first axis of the first variable along which the second variable is applied.

The term “broadcasting” here comes from Caffe’s scale layer so the “broadcasting” with the following arguments:

\[
\begin{align*}
x &: 100 \times 3 \times 40 \times 60 \\
y &: 3 \times 40 \\
axis &: 1
\end{align*}
\]

is equivalent to the following numpy broadcasting:

\[
\begin{align*}
x &: 100 \times 3 \times 40 \times 60 \\
y &: 1 \times 3 \times 40 \times 1
\end{align*}
\]

Note that how the \texttt{axis} indicates to which axis of \texttt{x} we apply \texttt{y}.

\textbf{Parameters}

- \texttt{x (Variable)} – Input variable to be scaled.
- \texttt{y (Variable)} – Input variable to scale, broadcasted.
- \texttt{axis (int)} – The first axis of \texttt{x} along which \texttt{y} is applied.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

chainer.functions.sin

chainer.functions.sin(x)
Elementwise sin function.

\textbf{Parameters} \texttt{x (Variable)} – Input variable.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

chainer.functions.sinh

chainer.functions.sinh(x)
Elementwise hyperbolic sine function.

\[
y_i = \sinh x_i.
\]

\textbf{Parameters} \texttt{x (Variable)} – Input variable.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

chainer.functions.sqrt

chainer.functions.sqrt(x)
Elementwise square root function.

\[
y_i = \sqrt{x_i}.
\]
If the value of x_i is negative, it returns `Nan` for y_i respect to underlying numpy and cupy specification.

Parameters
- `x` (*Variable*) – Input variable.

Returns
- Output variable.

Return type
- `Variable`

chainer.functions.square

chainer.functions.square(x)

Elementwise square function.

$$y_i = x_i^2.$$

Parameters
- `x` (*chainer.Variable or numpy.ndarray or cupy.ndarray*) – Input variable.

Returns
- Output variable.

Return type
- `Variable`

chainer.functions.squared_difference

chainer.functions.squared_difference(x1, x2)

Squared difference of input variables.

Parameters
- `x1` (*Variable*) – Input variables to be compared.
- `x2` (*Variable*) – Input variables to be compared.

Returns
- `(x1 - x2) ** 2` element-wise.

Return type
- `Variable`

chainer.functions.sum

chainer.functions.sum(x, axis=None, keepdims=False)

Sum of array elements over a given axis.

Parameters
- `x` (*Variable or numpy.ndarray or cupy.ndarray*) – Elements to sum. A $(s_1, s_2, ..., s_N)$-shaped float array.
- `axis` (*None, int, or tuple of int*) – Axis along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array.
- `keepdims` (*bool*) – If True, the specified axes are remained as axes of length one.

Returns
- Output variable.

Return type
- `Variable`

Example
```python
>>> x = np.arange(6).reshape(2,3).astype('f')
>>> x
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.]], dtype=float32)
>>> y = F.sum(x)
>>> y.shape
()  # scalar output
>>> y.data
array(15.0, dtype=float32)
>>> y = F.sum(x, axis=1)
>>> y.shape
(2,)
>>> y.data
array([ 3., 12.], dtype=float32)
>>> y = F.sum(x, keepdims=True)
>>> y.shape
(1, 1)
>>> y.data
array([[ 15.]], dtype=float32)
```

chainer.functions.tan

chainer.functions.tan(x)

Elementwise tan function.

2.4.7 Noise injections

chainer.functions.dropout

Drops elements of input variable randomly.

chainer.functions.gaussian

Gaussian sampling function.

chainer.functions.simplified_dropconnect

Linear unit regularized by simplified dropconnect.

chainer.functions.dropout

chainer.functions.dropout(x, ratio=.5)

Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and scales the remaining elements by factor \(1 / (1 - \text{ratio})\). In testing mode, it does nothing and just returns \(x\).

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', boolean). See chainer.using_config().

Parameters
- \(x\) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- \(\text{ratio}\) (**float**): Dropout ratio. The ratio must be \(0.0 \leq \text{ratio} < 1.0\).

Returns Output variable.

2.4. Standard Function implementations
Return type **Variable**

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

Example

```python
>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], 'f')
>>> with chainer.using_config('train', True):
...    y = F.dropout(x)
>>> y.data
array([[-2., 0.],
       [ 4., -6.],
       [-0., 2.]], dtype=float32)
>>> with chainer.using_config('train', True):
...    y = F.dropout(x, ratio=0.0) # dropout returns original input if ratio=0.0
>>> (x == y.data).all()  
True
>>> with chainer.using_config('train', False):
...    y = F.dropout(x) # dropout in test mode returns original input
>>> (x == y.data).all()  
True
```

chainer.functions.gaussian

chainer.functions.gaussian(*mean, ln_var*)

Gaussian sampling function.

It takes mean μ and logarithm of variance $\log(\sigma^2)$ as input and output a sample drawn from gaussian $N(\mu, \sigma)$.

- **Parameters**
 - *mean (Variable)* – Input variable representing mean μ.
 - *ln_var (Variable)* – Input variable representing logarithm of variance $\log(\sigma^2)$.

- **Returns** Output variable.

- **Return type** **Variable**

chainer.functions.simplified_dropconnect

chainer.functions.simplified_dropconnect(*x, W, b=None, ratio=0.5, train=True, mask=None, use_batchwise_mask=True*)

Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with probability ratio and scales the remaining elements by factor $1 / (1 - \text{ratio})$. It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It computes $Y = xW^T + b$.

In testing mode, zero will be used as simplified dropconnect ratio instead of ratio.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the current implementation and the original one. The original version uses sampling with gaussian distribution before passing activation function, whereas the current implementation averages before activation.

- **Parameters**
• \(x\) (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable. Its first dimension \(n\) is assumed to be the *minibatch dimension*. The other dimensions are treated as concatenated one dimension whose size must be \(N\).

• \(W\) (Variable) – Weight variable of shape \((M, N)\).

• \(b\) (Variable) – Bias variable (optional) of shape \((M,)\).

• \(\text{ratio}\) (float) – Dropconnect ratio.

• \(\text{train}\) (bool) – If True, executes simplified dropconnect. Otherwise, simplified dropconnect function works as a linear function.

• \(\text{mask}\) (None or chainer.Variable or numpy.ndarray or cupy.ndarray) – If None, randomized dropconnect mask is generated. Otherwise, The mask must be \((n, M, N)\) or \((M, N)\) shaped array, and use_batchwise_mask is ignored. Main purpose of this option is debugging. \(\text{mask}\) array will be used as a dropconnect mask.

• \(\text{use_batchwise_mask}\) (bool) – If True, dropped connections depend on each sample in mini-batch.

Returns Output variable.

Return type Variable

See also:

Dropconnect

See also:

2.4.8 Normalization functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.batch_normalization</td>
<td>Batch normalization function.</td>
</tr>
<tr>
<td>chainer.functions.fixed_batch_normalization</td>
<td>Batch normalization function with fixed statistics.</td>
</tr>
<tr>
<td>chainer.functions.layer_normalization</td>
<td>Layer normalization.</td>
</tr>
<tr>
<td>chainer.functions.local_response_normalization</td>
<td>Local response normalization across neighboring channels.</td>
</tr>
<tr>
<td>chainer.functions.normalize</td>
<td>L2 norm squared (a.k.a. Euclidean norm).</td>
</tr>
</tbody>
</table>

chainer.functions.batch_normalization

chainer.functions.batch_normalization\(x, \gamma, \beta, \epsilon=2e-5, \text{running_mean}=\text{None}, \text{running_var}=\text{None}, \text{decay}=0.9\)

Batch normalization function.

It takes the input variable \(x\) and two parameter variables \(\gamma\) and \(\beta\). The parameter variables must both have the same dimensionality, which is referred to as the channel shape. This channel shape corresponds to the dimensions in the input which are not averaged over. Since the first dimension of the input corresponds to the batch size, the second dimension of \(x\) will correspond to the first dimension of the channel shape, the third dimension of \(x\) will correspond to the second channel dimension (if it exists) and so on. Therefore, the dimensionality of the input must be at least one plus the number of channel dimensions. The total effective “batch size” will then be considered to be the product of all dimensions in \(x\) except for the channel dimensions.

As an example, if the input is four dimensional and the parameter variables are one dimensional, then it is
assumed that the first dimension of the input is the batch size, the second dimension is the channel size, and
the remaining two dimensions are considered to be spatial dimensions that will be averaged over along with the
batch size in the batch normalization computations. That is, the total batch size will be considered to be the
product of all input dimensions except the second dimension.

Note: If this function is called, it will not be possible to access the updated running mean and variance statistics,
because they are members of the function object, which cannot be accessed by the caller. If it is desired to access
the updated running statistics, it is necessary to get a new instance of the function object, call the object, and
then access the running_mean and/or running_var attributes. See the corresponding Link class for an example
of how to do this.

| Warning: train argument is not supported anymore since v2. Instead, use\n| chainer.| using_config('train', train). See chainer.| using_config(). |

Parameters
- \(x \) (Variable) – Input variable.
- \(\gamma \) (Variable) – Scaling parameter of normalized data.
- \(\beta \) (Variable) – Shifting parameter of scaled normalized data.
- \(\epsilon \) (float) – Epsilon value for numerical stability.
- \(\text{running_mean} \) (numpy.ndarray or cupy.ndarray) – Running average of the mean. This is a running average of the mean over several mini-batches using the decay parameter. If None, the running average is not computed. If this is None, then \(\text{running_var} \) must also be None.
- \(\text{running_var} \) (numpy.ndarray or cupy.ndarray) – Running average of the variance. This is a running average of the variance over several mini-batches using the decay parameter. If None, the running average is not computed. If this is None, then \(\text{running_mean} \) must also be None.
- \(\text{decay} \) (float) – Decay rate of moving average. It is used during training.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
See also:
links.BatchNormalization

chainer.functions.fixed_batch_normalization

\[
\text{chainer.functions-fixed_batch_normalization}(x, \gamma, \beta, mean, var, \epsilon=2e-05)
\]

Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as fixed
variables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used
for prediction consistency.

Parameters
- \(x \) (Variable) – Input variable.
- \(\gamma \) (Variable) – Scaling parameter of normalized data.
- \(\beta \) (Variable) – Shifting parameter of scaled normalized data.
- \(\text{mean} \) (Variable) – Shifting parameter of input.
- **var** *(Variable)* – Square of scaling parameter of input.
- **eps** *(float)* – Epsilon value for numerical stability.

See also:
functions.batch_normalization(), links.BatchNormalization

`chainer.functions.layer_normalization`

`chainer.functions.layer_normalization(x, gamma, beta, eps=1e-05)`

Layer normalization.

This function implements a “layer normalization” which normalizes the input units by statistics that are computed along the second axis, scales and shifts them.

Parameters
- **x** *(Variable)* – Batch vectors. Shape of this value must be *(batch_size, unit_size)*, e.g., the output of `linear()`.
- **gamma** *(Variable)* – Scaling vectors.
- **beta** *(Variable)* – Shifting vectors.

Returns
The output variable which has the same shape as `x`.

Return type *Variable*

See: Layer Normalization

`chainer.functions.local_response_normalization`

`chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)`

Local response normalization across neighboring channels.

This function implements normalization across channels. Let `x` an input image with `N` channels. Then, this function computes an output image `y` by following formula:

\[y_i = \frac{x_i}{\left(k + \alpha \sum_{j=\max(1,i-n/2)}^{\min(N,i+n/2)} x_j^2 \right)^{\beta}}, \]

Parameters
- **x** *(Variable)* – Input variable.
- **n** *(int)* – Normalization window width.
- **k** *(float)* – Smoothing parameter.
- **alpha** *(float)* – Normalizer scaling parameter.
- **beta** *(float)* – Normalizer power parameter.

Returns
Output variable.

Return type *Variable*

See: Section 3.3 of ImageNet Classification with Deep Convolutional Neural Networks
chainer.functions.normalize

chainer.functions.normalize \((x, \texttt{eps}=1e-05, \texttt{axis}=1)\)

L2 norm squared (a.k.a. Euclidean norm).

This function implements L2 normalization on a vector along the given axis. No reduction is done along the normalization axis.

In the case when \(\texttt{axis}=1\) and \(x\) is a vector of dimension \((N, K)\), where \(N\) and \(K\) denote mini-batch size and the dimension of the input variable, this function computes an output vector \(y\) by the following equation:

\[
y_{i} = \frac{x_{i}}{\|x_{i}\|_{2} + \epsilon}
\]

\(\epsilon\) is used to avoid division by zero when norm of \(x\) along the given axis is zero.

The default value of \(\texttt{axis}\) is determined for backward compatibility.

Parameters

- \(x\) (**Variable**) – Two dimensional output variable. The first dimension is assumed to be the mini-batch dimension.
- \(\texttt{eps}\) (**float**) – Epsilon value for numerical stability.
- \(\texttt{axis}\) (**int**) – Axis along which to normalize.

Returns The output variable which has the same shape as \(x\).

Return type **Variable**

2.4.9 Spatial pooling

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.average_pooling_2d</td>
<td>Spatial average pooling function.</td>
</tr>
<tr>
<td>chainer.functions.average_pooling_nd</td>
<td>N-dimensionally spatial average pooling function.</td>
</tr>
<tr>
<td>chainer.functions.max_pooling_2d</td>
<td>Spatial max pooling function.</td>
</tr>
<tr>
<td>chainer.functions.max_pooling_nd</td>
<td>N-dimensionally spatial max pooling function.</td>
</tr>
<tr>
<td>chainer.functions.roi_pooling_2d</td>
<td>Spatial Region of Interest (ROD) pooling function.</td>
</tr>
<tr>
<td>chainer.functions.spatial_pyramid_pooling_2d</td>
<td>Spatial pyramid pooling function.</td>
</tr>
<tr>
<td>chainer.functions.unpooling_2d</td>
<td>Inverse operation of pooling for 2d array.</td>
</tr>
<tr>
<td>chainer.functions.upsampling_2d</td>
<td>Upsampling using pooling indices.</td>
</tr>
</tbody>
</table>

chainer.functions.average_pooling_2d

chainer.functions.average_pooling_2d \((x, \texttt{ksize}, \texttt{stride}=\texttt{None}, \texttt{pad}=0)\)

Spatial average pooling function.

This function acts similarly to **Convolution2D**, but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products.

Parameters

- \(x\) (**Variable**) – Input variable.
- \(\texttt{ksize}\) (**int or pair of ints**) – Size of pooling window. \(\texttt{ksize}=k\) and \(\texttt{ksize}=(k, k)\) are equivalent.
- \(\texttt{stride}\) (**int or pair of ints or \texttt{None}**) – Stride of pooling applications.
\texttt{stride=s} and \texttt{stride=(s, s)} are equivalent. If \texttt{None} is specified, then it uses same stride as the pooling window size.

- \texttt{pad (int or pair of ints)} – Spatial padding width for the input array. \texttt{pad=p} and \texttt{pad=(p, p)} are equivalent.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

\textbf{Note:} This function currently does not support \texttt{cover_all} mode as \texttt{max_pooling_2d()}. Average pooling runs in non-cover-all mode.

\texttt{chainer.functions.average_pooling_nd}

\texttt{chainer.functions_average_pooling_nd (x, ksize, stride=\texttt{None}, pad=0)}

N-dimensionally spatial average pooling function.

\textbf{Warning:} This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of \texttt{average_pooling_2d()}. This acts similarly to \texttt{Convolution_ND}, but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products.

\textbf{Parameters}

- \texttt{x (Variable)} – Input variable.

- \texttt{ksize (int or tuple of ints)} – Size of pooling window. \texttt{ksize=k} and \texttt{ksize=(k, k, ..., k)} are equivalent.

- \texttt{stride (int or tuple of ints or None)} – Stride of pooling applications. \texttt{stride=s} and \texttt{stride=(s, s, ..., s)} are equivalent. If \texttt{None} is specified, then it uses same stride as the pooling window size.

- \texttt{pad (int or tuple of ints)} – Spatial padding width for the input array. \texttt{pad=p} and \texttt{pad=(p, p, ..., p)} are equivalent.

\textbf{Returns} Output variable.

\textbf{Return type} \texttt{Variable}

\textbf{Note:} This function currently does not support \texttt{cover_all} mode as \texttt{max_pooling_nd()}. Average pooling runs in non-cover-all mode.

\texttt{chainer.functions.max_pooling_2d}

\texttt{chainer.functions_max_pooling_2d (x, ksize, stride=\texttt{None}, pad=0, cover_all=True)}

Spatial max pooling function.

This function acts similarly to \texttt{Convolution2D}, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.

\textbf{Parameters}
• \texttt{x (Variable)} – Input variable.
• \texttt{ksize (int or pair of ints)} – Size of pooling window. \texttt{ksize=k} and \texttt{ksize=(k, k, \ldots, k)} are equivalent.
• \texttt{stride (int or pair of ints or None)} – Stride of pooling applications. \texttt{stride=s} and \texttt{stride=(s, s, \ldots, s)} are equivalent. If \texttt{None} is specified, then it uses same stride as the pooling window size.
• \texttt{pad (int or pair of ints)} – Spatial padding width for the input array. \texttt{pad=p} and \texttt{pad=(p, p, \ldots, p)} are equivalent.
• \texttt{cover_all (bool)} – If True, all spatial locations are pooled into some output pixels. It may make the output size larger.

Returns Output variable.
Return type \texttt{Variable}

\texttt{chainer.functions.max_pooling_nd}

\texttt{chainer.functions.max_pooling_nd(x, ksize, stride=None, pad=0, cover_all=True)}

N-dimensionally spatial max pooling function.

\textbf{Warning:} This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of \texttt{max_pooling_2d()}. This acts similarly to \texttt{ConvolutionND}, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.

Parameters
• \texttt{x (Variable)} – Input variable.
• \texttt{ksize (int or tuple of ints)} – Size of pooling window. \texttt{ksize=k} and \texttt{ksize=(k, k, \ldots, k)} are equivalent.
• \texttt{stride (int or tuple of ints or None)} – Stride of pooling applications. \texttt{stride=s} and \texttt{stride=(s, s, \ldots, s)} are equivalent. If \texttt{None} is specified, then it uses same stride as the pooling window size.
• \texttt{pad (int or tuple of ints)} – Spatial padding width for the input array. \texttt{pad=p} and \texttt{pad=(p, p, \ldots, p)} are equivalent.
• \texttt{cover_all (bool)} – If True, all spatial locations are pooled into some output pixels. It may make the output size larger.

Returns Output variable.
Return type \texttt{Variable}

\texttt{chainer.functions.roi_pooling_2d}

\texttt{chainer.functions.roi_pooling_2d(x, roi, outh, outw, spatial_scale)}

Spatial Region of Interest (ROI) pooling function.

This function acts similarly to \texttt{MaxPooling2D}, but it computes the maximum of input spatial patch for each channel with the region of interest.
Parameters

- **x** *(Variable)* – Input variable. The shape is expected to be 4 dimensional: (n: batch, c: channel, h: height, w: width).
- **rois** *(Variable)* – Input roi variable. The shape is expected to be (n: data size, 5), and each datum is set as below: (batch_index, x_min, y_min, x_max, y_max).
- **outh** *(int)* – Height of output image after pooled.
- **outw** *(int)* – Width of output image after pooled.
- **spatial_scale** *(float)* – Scale of the roi is resized.

Returns Output variable.

Return type **Variable**

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.spatial_pyramid_pooling_2d

chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling_class)

Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array \(x \) with different kernel sizes and padding sizes, and then flattens all dimensions except first dimension of all pooling results, and finally concatenates them along second dimension.

At \(i \)-th pyramid level, the kernel size \((k_h^{(i)}, k_w^{(i)}) \) and padding size \((p_h^{(i)}, p_w^{(i)}) \) of pooling operation are calculated as below:

\[
\begin{align*}
 k_h^{(i)} &= \left\lceil \frac{b_h}{2^i} \right\rceil, \\
 k_w^{(i)} &= \left\lceil \frac{b_w}{2^i} \right\rceil, \\
 p_h^{(i)} &= \frac{2^i (k_h^{(i)} - b_h)}{2}, \\
 p_w^{(i)} &= \frac{2^i (k_w^{(i)} - b_w)}{2},
\end{align*}
\]

where \(\left\lceil \cdot \right\rceil \) denotes the ceiling function, and \(b_h, b_w \) are height and width of input variable \(x \), respectively. Note that index of pyramid level \(i \) is zero-based.

Parameters

- **x** *(Variable)* – Input variable. The shape of \(x \) should be \(\text{batchsize, \# of channels, height, width} \).
- **pyramid_height** *(int)* – Number of pyramid levels
- **pooling_class** *(MaxPooling2D or AveragePooling2D)* – Only MaxPooling2D class can be available for now.

Returns Output variable. The shape of the output variable will be \(\text{batchsize, c} \sum_{h=0}^{H-1} 2^h, 1, 1 \), where \(c \) is the number of channels of input variable \(x \) and \(H \) is the number of pyramid levels.

Return type **Variable**

Note: This function uses some pooling classes as components to perform spatial pyramid pooling. Now it supports only MaxPooling2D as elemental pooling operator so far.
chainer.functions.unpooling_2d

chainer.functions.unpooling_2d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)

Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2D, but it spreads input 2d array’s value without any parameter instead of computing the inner products.

Parameters

- **x** (Variable) – Input variable.
- **ksize** (int or pair of ints) – Size of pooling window. ksize=k and ksize=(k, k) are equivalent.
- **stride** (int, pair of ints or None) – Stride of pooling applications. stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same stride as the pooling window size.
- **pad** (int or pair of ints) – Spatial padding width for the input array. pad=p and pad=(p, p) are equivalent.
- **outsize** (None or pair of ints) – Expected output size (height, width) of array after the operation. If None, the size (height or width) is estimated from the size of input array in first batch with get_deconv_outsize(). If outsize is not None, the result of outsize applied to get_conv_outsize() must be equal to the shape of the 2d array in the input batch x.
- **cover_all** (bool) – If True, the output size may be smaller than the size if cover_all is False. This flag serves to align behavior to the pooling functions which can cover all input locations, see max_pooling_2d() and convolution_2d().

Returns

Output variable.

Return type **Variable**

chainer.functions.upsampling_2d

chainer.functions.upsampling_2d(x, indexes, ksize, stride=None, pad=0, outsize=None, cover_all=True)

Upsampling using pooling indices.

This function produces an upsampled image using pooling indices.

Example

It should be noted that you need to turn off chainer.config.use_cudnn flag when you perform max_pooling_2d() function which will make a pooling indices for this upsampling_2d(). It is because indexes is never created and stored in the MaxPooling2D object when cuDNN is used for it.

```python
>>> x = np.arange(1, 37).reshape(1, 1, 6, 6).astype('f')
>>> x = chainer.Variable(x)
>>> x.data
array([[[[ 1.,  2.,  3.,  4.,  5.,  6.],
         [ 7.,  8.,  9., 10., 11., 12.],
        [13., 14., 15., 16., 17., 18.],
       [19., 20., 21., 22., 23., 24.],
      [25., 26., 27., 28., 29., 30.],
     [31., 32., 33., 34., 35., 36.]]], dtype=float32)
```
This is the original x before max pooling.

```python
>>> p = F.MaxPooling2D(2, 2)
>>> with chainer.using_config('use_cudnn', 'never'):
...     pooled_x = p.apply((x,))[0]
>>> pooled_x.data
array([[[ 8., 10., 12.],
        [20., 22., 24.],
        [32., 34., 36.]]], dtype=float32)
```

This is the output of the max pooling operation. `upsampling_2d()` needs `indexes` array stored in the max pooling object p.

```python
>>> upsampled_x = F.upsampling_2d(    ...     pooled_x, p.indexes, p.kh, p.sy, p.ph, x.shape[2:])
>>> upsampled_x.shape
(1, 1, 6, 6)
>>> upsampled_x.data
array([[[ 0., 0., 0., 0., 0., 0.],
        [ 0., 8., 0., 10., 0., 12.],
        [ 0., 0., 0., 0., 0., 0.],
        [ 0., 20., 0., 22., 0., 24.],
        [ 0., 0., 0., 0., 0., 0.],
        [ 0., 32., 0., 34., 0., 36.]]], dtype=float32)
```

Parameters

- **x** (*Variable*) – Input variable.
- **indexes** (*ndarray or ndarray*) – Index array that was used to calculate x with `MaxPooling2D`.
- **$ksize$** (*int or (int, int]*) – $ksize$ attribute of MaxPooling2D object that is used to calculate x.
- **$stride$** (*int or (int, int]*) – $stride$ attribute of MaxPooling2D object that is used to calculate x.
- **pad** (*int or (int, int]*) – pad attribute of MaxPooling2D object that is used to calculate x.
- **$outsize$** (*tuple*) – Expected output size (height, width).
- **$cover_all$** (*bool*) – Whether cover_all is used in the MaxPooling2D object or not.

Returns Output variable.

Return type *Variable*

2.4.10 Utility functions

chainer.functions.forget

Calls a function without storing intermediate results.

chainer.functions.forget

`chainer.functions.forget(func, *xs)`

Calls a function without storing intermediate results.
On a forward propagation, Chainer normally stores all intermediate results of VariableNodes on a computational graph as they are required on backward propagation. Sometimes these results consume too much memory. F.forget forgets such intermediate results on forward propagation, and still supports backpropagation with recalculation.

On a forward propagation, F.forget calls a given function with given variables without creating a computational graph. That means, no intermediate results are stored. On a backward propagation, F.forget calls the given function again to create a computational graph for backpropagation. F.forget reduces internal memory usage, whereas it requires more calculation time as it calls the function twice.

Example

Let \(f \) be a function defined as:

```python
>>> def f(a, b):
...    return a + b + a
```

and, \(x \) and \(y \) be Variables:

```python
>>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f'))
>>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f'))
```

When \(z \) is calculated as \(z = f(x, y) \), its intermediate result \(x + y \) is stored in memory. Instead, if you call \(f \) with F.forget:

```python
>>> z = F.forget(f, x, y)
```

intermediate \(x + y \) is forgotten.

Note: F.forget does not support functions which behave differently in multiple calls with the same inputs, such as F.dropout() and F.negative_sampling().

Parameters

- **func (callable)** – A function to call. It needs to be called with Variable object(s) and to return a Variable object or a tuple of Variable objects.
- **xs (Variable)** – Argument variables of the function.

Returns A variable func returns. If it returns a tuple, the method returns a tuple too.

Return type Variable

2.5 Standard Link implementations

Chainer provides many Link implementations in the chainer.links package.

Note: Some of the links are originally defined in the chainer.functions namespace. They are still left in the namespace for backward compatibility, though it is strongly recommended to use them via the chainer.links package.
2.5.1 Learnable connections

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.Bias</code></td>
<td>Broadcasted elementwise summation with learnable parameters.</td>
</tr>
<tr>
<td><code>chainer.links.Bilinear</code></td>
<td>Bilinear layer that performs tensor multiplication.</td>
</tr>
<tr>
<td><code>chainer.links.ChildSumTreeLSTM</code></td>
<td>Child-Sum TreeLSTM unit.</td>
</tr>
<tr>
<td><code>chainer.links.Convolution2D</code></td>
<td>Two-dimensional convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.ConvolutionND</code></td>
<td>N-dimensional convolution layer.</td>
</tr>
<tr>
<td><code>chainer.links.Deconvolution2D</code></td>
<td>Two-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.links.DeconvolutionND</code></td>
<td>N-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.links.DepthwiseConvolution2D</code></td>
<td>Two-dimensional depthwise convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.DilatedConvolution2D</code></td>
<td>Two-dimensional dilated convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.EmbedID</code></td>
<td>Efficient linear layer for one-hot input.</td>
</tr>
<tr>
<td><code>chainer.links.GRU</code></td>
<td>Stateful Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.Highway</code></td>
<td>Highway module.</td>
</tr>
<tr>
<td><code>chainer.links.Inception</code></td>
<td>Inception module of GoogLeNet.</td>
</tr>
<tr>
<td><code>chainer.links.InceptionBN</code></td>
<td>Inception module of the new GoogLeNet with BatchNormalization.</td>
</tr>
<tr>
<td><code>chainer.links.Linear</code></td>
<td>Linear layer (a.k.a. fully-connected layer).</td>
</tr>
<tr>
<td><code>chainer.links.LSTM</code></td>
<td>Fully-connected LSTM layer.</td>
</tr>
<tr>
<td><code>chainer.links.MLPConvolution2D</code></td>
<td>Two-dimensional MLP convolution layer of Network in Network.</td>
</tr>
<tr>
<td><code>chainer.links.NaryTreeLSTM</code></td>
<td>N-ary TreeLSTM unit.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiGRU</code></td>
<td>Stacked Bi-directional GRU for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiLSTM</code></td>
<td>Stacked Bi-directional LSTM for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiRNNReLU</code></td>
<td>Stacked Bi-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepRNNReLU</code></td>
<td>Stacked Uni-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepRNNReLU</code></td>
<td>Stacked Uni-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepRNNReLU</code></td>
<td>Stacked Uni-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.Scale</code></td>
<td>Broadcasted elementwise product with learnable parameters.</td>
</tr>
<tr>
<td><code>chainer.links.StatefulGRU</code></td>
<td>Stateful Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.StatelessGRU</code></td>
<td>Stateless Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.StatefulPeepholeLSTM</code></td>
<td>Fully-connected LSTM layer with peephole connections.</td>
</tr>
<tr>
<td><code>chainer.links.StatelessLSTM</code></td>
<td>Stateless LSTM layer.</td>
</tr>
</tbody>
</table>

class chainer.links.Bias

Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as `bias()` function does except that its second input is a learnable bias parameter \(b \) the link has.

Parameters

- `axis (int)` – The first axis of the first input of `bias()` function along which its second input is applied.
- `shape (tuple of ints)` – Shape of the learnable bias parameter. If `None`, this link does not have learnable parameters so an explicit bias needs to be given to its `__call__` method’s second input.
See also:

See `bias()` for details.

Variables `b` *(Variable)* – Bias parameter if `shape` is given. Otherwise, no attributes.

Methods

```python
__call__(*xs)
```
Applies broadcasted elementwise summation.

Parameters
 `xs` *(list of Variables)* – Input variables whose length should be one if the link has a learnable bias parameter, otherwise should be two.

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

```python
add_persistent(name, value)
```
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

```python
addgrads(link)
```
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** *(Link)* – Source link object.
children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link
copyparams(link)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

2.5. Standard Link implementations
links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: device

toberads ()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Bilinear

```python
class chainer.links.Bilinear(left_size, right_size, out_size, nobias=False, initialW=None, initial_bias=None):
```

Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the bilinear() functions. It holds parameters \(W, V_1, V_2, \) and \(b \) corresponding to the arguments of bilinear().

Parameters

- **left_size** (int) – Dimension of input vector \(e_1 (J) \)
- **right_size** (int) – Dimension of input vector \(e_2 (K) \)
- **out_size** (int) – Dimension of output vector \(y (L) \)
- **nobias** (bool) – If True, parameters \(V_1, V_2, \) and \(b \) are omitted.
- **initialW** (3-D array) – Initial value of \(W \). Shape of this argument must be \((\text{left_size, right_size, out_size}) \). If None, the default initializer is used.
 May also be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.
- **initial_bias** (tuple) – Initial values of \(V_1, V_2, \) and \(b \). The length of this argument must be 3. Each element of this tuple must have the shapes of \((\text{left_size, out_size}) \), \((\text{right_size, out_size}) \), and \((\text{out_size,}) \), respectively. If None, \(V_1 \) and \(V_2 \) are initialized by the default initializer and \(b \) is set to 0. May also be a tuple of callables that take numpy.ndarray or cupy.ndarray and edit its value.

See also:

See chainer.functions.bilinear() for details.

Variables

- **W** (Variable) – Bilinear weight parameter.
- **V1** (Variable) – Linear weight parameter for the first argument.
- **V2** (Variable) – Linear weight parameter for the second argument.
- **b** (Variable) – Bias parameter.
Methods

__call__(e1, e2)
Applies the bilinear function to inputs and the internal parameters.

Parameters

• e1 (Variable) – Left input.
• e2 (Variable) – Right input.

Returns
Output variable.

Return type
Variable

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

addpersistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• link (Link) – Source link object.

children()
Returns a generator of all child links.
Returns A generator object that generates all child links.

cleargrads()
Cleans all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).
Returns Copied link object.
Return type Link

copyparams(link)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.
Parameters link (Link) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
Returns a generator of all links under the hierarchy.
Parameters `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name (str)` – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters `serializer (AbstractSerializer)` – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters `device` – Target device specifier. If omitted, the current device is used.

Returns: self

zero_grads ()
zerograds ()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads` instead.

Attributes

- **update_enabled**
 True if at least one parameter has an update rule enabled.

- **within_init_scope**
 True if the current code is inside of an initialization scope.

 See `init_scope()` for the details of the initialization scope.

- **xp**
 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.ChildSumTreeLSTM

class chainer.links.ChildSumTreeLSTM(in_size, out_size)

Child-Sum TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a Child-Sum TreeLSTM unit as a chain. This link is a variable arguments function, which compounds the states of all children nodes into the new states of a current (parent) node. `states` denotes the cell state, c, and the output, h, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as $\text{func}(c_1, c_2, h_1, h_2, x)$ if the number of children nodes is 2, while $\text{func}(c_1, c_2, c_3, h_1, h_2, h_3, x)$ if that is 3. This function is independent from an order of children nodes. Thus, the returns of $\text{func}(c_1, c_2, h_1, h_2, x)$ equal to those of $\text{func}(c_2, c_1, h_2, h_1, x)$.

Parameters

- **in_size (int)** – Dimension of input vectors.
- **out_size (int)** – Dimensionality of cell and output vectors.

Variables

- **W_x (chainer.links.Linear)** – Linear layer of connections from input vectors.
- **W_h_aio (chainer.links.Linear)** – Linear layer of connections between (a, i, o) and summation of children’s output vectors. a, i and o denotes input compound, input gate and output gate, respectively. a, input compound, equals to u in the paper by Tai et al.
- **W_h_f (chainer.links.Linear)** – Linear layer of connections between forget gate f and the output of each child.

See the paper for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.
Methods

__call__(cshsx)
Returns new cell state and output of Child-Sum TreeLSTM.

Parameters cshsx (list of Variable) – Variable arguments which include all cell vectors
and all output vectors of variable children, and an input vector.

Returns Returns \((c_{new}, h_{new})\), where \(c_{new}\) represents new cell state vector, and \(h_{new}\) is new
output vector.

ReturnType tuple of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope()
instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```
can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope()
instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.
• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

```
add_persistent(name, value)
```

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (`str`) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

```
addgrads(link)
```

```
children()
```

```
cleargrads()
```

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```
copy()
```

```
copyparams(link)
```

```
disable_update()
```

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

```
enable_update()
```

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

```
init_scope()
```

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

```
links(skipself=False)
```

```
namedlinks(skipself=False)
```

```
namedparams(include_uninit=True)
```

2.5. Standard Link implementations
params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu ()

to_gpu (device=None)

zerograds ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads () instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Convolution2D

class chainer.links.Convolution2D (self, in_channels, out_channels, ksize=None, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None)

Two-dimensional convolutional layer.

This link wraps the convolution_2d () function and holds the filter weight and bias vector as parameters.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration. config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config ('autotune', True)

Warning: deterministic argument is not supported anymore since v2. Instead, use chainer. using_config ('cudnn_deterministic', value (value is either True or False). See chainer.using_config ()
Parameters

- **in_channels** *(int or None)* – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_channels** *(int)* – Number of channels of output arrays.

- **ksize** *(int or pair of ints)* – Size of filters (a.k.a. kernels). \(ksize=k \) and \(ksize=(k, k) \) are equivalent.

- **stride** *(int or pair of ints)* – Stride of filter applications. \(stride=s \) and \(stride=(s, s) \) are equivalent.

- **pad** *(int or pair of ints)* – Spatial padding width for input arrays. \(pad=p \) and \(pad=(p, p) \) are equivalent.

- **nobias** *(bool)* – If True, then this link does not use the bias term.

- **initialW** *(4-D array)* – Initial weight value. If None, the default initializer is used. May also be a callable that takes \(\text{numpy.ndarray or cupy.ndarray} \) and edits its value.

- **initial_bias** *(1-D array)* – Initial bias value. If None, the bias is set to 0. May also be a callable that takes \(\text{numpy.ndarray or cupy.ndarray} \) and edits its value.

See also:

See *chainer.functions.convolution_2d()* for the definition of two-dimensional convolution.

Variables

- **W** *(Variable)* – Weight parameter.

- **b** *(Variable)* – Bias parameter.

Example

There are several ways to make a Convolution2D link.

Let an input vector \(x \) be:

\[
>>> x = \text{np.arange}(1 \times 3 \times 10 \times 10, \text{dtype='f'}).\text{reshape}(1, 3, 10, 10)
\]

1. Give the first three arguments explicitly:

\[
>>> 1 = \text{L.Convolution2D}(3, 7, 5) \\
>>> y = 1(x) \\
>>> y.\text{shape} \\
(1, 7, 6, 6)
\]

2. Omit *in_channels* or fill it with None:

The below two cases are the same.

\[
>>> 1 = \text{L.Convolution2D}(7, 5) \\
>>> y = 1(x) \\
>>> y.\text{shape} \\
(1, 7, 6, 6)
\]
```python
>>> l = L.Convolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Convolution2D(7, 5, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

```python
>>> l = L.Convolution2D(None, 7, 5, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

Methods

`__call__`(x)
Applies the convolution layer.

Parameters
- `x` ([Variable](#)) – Input image.

Returns
Output of the convolution.

Return type
[Variable](#)

`add_param`(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a [Parameter](#) object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
  link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- `name` (str) – Name of the parameter. This name is also used as the attribute name.
- `shape` (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
- `initializer` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.
add_persistent (name, value)
 Registers a persistent value to the link.

 The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

 Parameters
 * name (str) – Name of the persistent value. This name is also used for the attribute name.
 * value – Value to be registered.

addgrads (link)
 Accumulates gradient values from given link.

 This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

 Parameters link (Link) – Source link object.

class
 Returns a generator of all child links.

 Returns A generator object that generates all child links.

cleargrads ()
 Clears all gradient arrays.

 This method should be called before the backward computation at every iteration of the optimization.

copy ()
 Copies the link hierarchy to new one.

 The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

 The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

 Returns Copied link object.

 Return type Link

copyparams (link)
 Copies all parameters from given link.

 This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

 Parameters link (Link) – Source link object.

disable_update ()
 Disables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
 Enables update rules of all parameters under the link hierarchy.

 This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()
 Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.
to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.
Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters
device – Target device specifier. If omitted, the current device is used.
Returns: self

zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.
Depreciated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.ConvolutionND

class chainer.links.ConvolutionND(ndim, in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, cover_all=False)

N-dimensional convolution layer.
This link wraps the convolution_nd() function and holds the filter weight and bias vector as parameters.
Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config('autotune', True)

Parameters

• ndim (int) – Number of spatial dimensions.
• in_channels (int) – Number of channels of input arrays.
• out_channels (int) – Number of channels of output arrays.
• **ksize** *(int or tuple of ints)* – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k, ..., k) are equivalent.

• **stride** *(int or tuple of ints)* – Stride of filter application. stride=s and stride=(s, s, ..., s) are equivalent.

• **pad** *(int or tuple of ints)* – Spatial padding width for input arrays. pad=p and pad=(p, p, ..., p) are equivalent.

• **nobias** *(bool)* – If True, then this function does not use the bias.

• **initialW** *(numpy.ndarray or cupy.ndarray)* – Initial weight array. If None, the default initializer is used. May be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.

• **initial_bias** *(numpy.ndarray or cupy.ndarray)* – Initial bias vector. If None, the bias is set to zero. May be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.

• **cover_all** *(bool)* – If True, all spatial locations are convoluted into some output pixels. It may make the output size larger. cover_all needs to be False if you want to use cuDNN.

See also:

See *convolution_nd()* for the definition of N-dimensional convolution. See *convolution_2d()* for the definition of two-dimensional convolution.

Variables

• **W** *(Variable)* – Weight parameter.

• **b** *(Variable)* – Bias parameter. If initial_bias is None, set to None.

Methods

__call__(x)

Applies N-dimensional convolution layer.

Parameters

x *(Variable)* – Input image.

Returns

Output of convolution.

Return type *Variable*

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.
• **name** (*str*) – Name of the parameter. This name is also used as the attribute name.

• **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent`(*name*, *value*)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

`addgrads`(*link*)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

• **link** (*Link*) – Source link object.

`children`()
Returns a generator of all child links.

Returns A generator object that generates all child links.

`cleargrads`()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy`()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type *Link*

`copyparams`(*link*)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

• **link** (*Link*) – Source link object.

`disable_update`()
Disables update rules of all parameters under the link hierarchy.

2.5. Standard Link implementations
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`init_scope()`

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links()`

Returns a generator of all links under the hierarchy.

- **Parameters** `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all links.

`namedlinks()`

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.
- **Returns** A generator object that generates all (path, link) pairs.

`namedparams()`

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters** `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.
- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params()`

Returns a generator of all parameters under the link hierarchy.

- **Parameters** `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.
- **Returns** A generator object that generates all parameters.

`register_persistent()`

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

`name (str)` – Name of the attribute to be registered.

`serialize (serializer)`

Serializes the link object.

Parameters

`serializer (AbstractSerializer)` – Serializer object.

`to_cpu ()`

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

`to_gpu (device=\text{\textit{None}})`

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

`device` – Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds ()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads ()` instead.

Attributes

`update_enabled`

True if at least one parameter has an update rule enabled.

`within_init_scope`

True if the current code is inside of an initialization scope.

See `init_scope ()` for the details of the initialization scope.

`xp`

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.Deconvolution2D

class `chainer.links.Deconvolution2D (self, in_channels, out_channels, ksize=\text{\textit{None}}, stride=1, pad=0, nobias=False, outsize=\text{\textit{None}}, initialW=\text{\textit{None}}, initial_bias=\text{\textit{None}})`

Two dimensional deconvolution function.

This link wraps the `deconvolution_2d ()` function and holds the filter weight and bias vector as parameters.
Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

Warning: deterministic argument is not supported anymore since v2. Instead, use `chainer.using_config('cudnn_deterministic', value)` (value is either `True` or `False`). See `chainer.using_config()`.

Parameters

- `in_channels (int or None)` – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- `out_channels (int)` – Number of channels of output arrays.

- `ksize (int or pair of ints)` – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- `stride (int or pair of ints)` – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

- `pad (int or pair of ints)` – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

- `nobias (bool)` – If True, then this function does not use the bias term.

- `outsize (tuple)` – Expected output size of deconvolutional operation. It should be pair of height and width $(\text{out}_H, \text{out}_W)$. Default value is None and the outsize is estimated by input size, stride and pad.

- `initialW (4-D array)` – Initial weight value. If None, the default initializer is used. May also be a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value.

- `initial_bias (1-D array)` – Initial bias value. If None, the bias vector is set to zero. May also be a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value.

The filter weight has four dimensions (c_I, c_O, k_H, k_W) which indicate the number of input channels, output channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d. Gaussian random samples, each of which has zero mean and deviation $\sqrt{1/(c_I k_H k_W)}$ by default.

The bias vector is of size c_O. Its elements are initialized by `bias` argument. If `nobias` argument is set to True, then this function does not hold the bias parameter.

The output of this function can be non-deterministic when it uses cuDNN. If `chainer.configuration.config.cudnn_deterministic` is True and cuDNN version is \geq v3, it forces cuDNN to use a deterministic algorithm.

See also:

See `chainer.functions.deconvolution_2d()` for the definition of two-dimensional convolution.

See also:

See `chainer.links.Convolution2D()` for the examples of ways to give arguments to this link.

Example

There are several ways to make a Deconvolution2D link.
Let an input vector x be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype='f').reshape(1, 3, 10, 10)
```

1. Give the first three arguments explicitly:
 In this case, all the other arguments are set to the default values.

```python
>>> l = L.Deconvolution2D(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)
```

2. Omit `in_channels` or fill it with `None`:
 The below two cases are the same.

```python
>>> l = L.Deconvolution2D(7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)
```

```python
>>> l = L.Deconvolution2D(None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)
```

When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Deconvolution2D(None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)
```

```python
>>> l = L.Deconvolution2D(7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)
```

Methods

`__call__`(x)

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters **link** *(Link)* – Source link object.

children *

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads *

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type *Link*

copyparams *(link)*

Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- `link` *(Link)* – Source link object.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters**
 - `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

- **Returns**
 - A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters**
 - `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

- **Returns**
 - A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters**
 - `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.

- **Returns**
 - A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters**
 - `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.
Returns: self

zerograds ()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.
Deprecated since version v1.15: Use cleargrads () instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope () for the details of the initialization scope.

xp
Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.
chainer.links.DeconvolutionND

class chainer.links.DeconvolutionND(ndim, in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, outsize=None, initialW=None, initial_bias=None)

N-dimensional deconvolution function.

This link wraps deconvolution_nd() function and holds the filter weight and bias vector as its parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set chainer.using_config('autotune', True)

Parameters

- **ndim (int)** – Number of spatial dimensions.
- **in_channels (int)** – Number of channels of input arrays.
- **out_channels (int)** – Number of channels of output arrays.
- **ksize (int or tuple of ints)** – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k, ..., k) are equivalent.
- **stride (int or tuple of ints)** – Stride of filter application. stride=s and stride=(s, s, ..., s) are equivalent.
- **pad (int or tuple of ints)** – Spatial padding width for input arrays. pad=p and pad=(p, p, ..., p) are equivalent.
- **nobias (bool)** – If True, then this function does not use the bias.
- **outsize (tuple of ints)** – Expected output size of deconvolutional operation. It should be a tuple of ints that represents the output size of each dimension. Default value is None and the outsize is estimated with input size, stride and pad.
- **initialW (numpy.ndarray or cupy.ndarray)** – Initial weight array. If None, the default initializer is used. May be an initializer instance of another value that init_weight() function can take.
- **initial_bias (numpy.ndarray or cupy.ndarray)** – Initial bias array. If None, the bias vector is set to zero. May be an initializer instance of another value the same with that init_weight() function can take.

See also:

decovolution_nd()

Variables

- **W (Variable)** – Weight parameter.
- **b (Variable)** – Bias parameter. If initial_bias is None, set to None.

Methods

__call__(x)

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code
link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link (Link)** – Source link object.

children ()

Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns
Copied link object.

Return type Link
copyparams (*link*)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters
- **link** (*Link*) – Source link object.

disable_update
Disables update rules of all parameters under the link hierarchy.
This method sets the **enabled** flag of the update rule of each parameter variable to **False**.

enable_update
Enables update rules of all parameters under the link hierarchy.
This method sets the **enabled** flag of the update rule of each parameter variable to **True**.

init_scope
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for **Chain**) by an assignment. A **Parameter** object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the **init_scope** method, we can simply assign a **Parameter** object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (*skipself=False*)
Returns a generator of all links under the hierarchy.

Parameters
- **skipself** (*bool*) – If **True**, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all links.

namedlinks (*skipself=False*)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters
- **skipself** (*bool*) – If **True**, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all (path, link) pairs.

namedparams (*include_uninit=True*)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
- **include_uninit** (*bool*) – If **True**, it also generates uninitialized parameters.

Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*
Serializes the link object.

Parameters **serializer** *(AbstractSerializer)* – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu *(device=None)*
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds ()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use **cleargrads()** instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See **init_scope()** for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns **numpy** or **cupy**.
Two-dimensional depthwise convolutional layer.

This link wraps the `depthwise_convolution_2d()` function and holds the filter weight and bias vector as parameters.

Parameters

- **in_channels** *(int)* - Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **channel_multiplier** *(int)* - Channel multiplier number. Number of output arrays equal `in_channels * channel_multiplier`.
- **ksize** *(int or pair of ints)* - Size of filters (a.k.a. kernels). `ksize=k` and `ksize=(k, k)` are equivalent.
- **stride** *(int or pair of ints)* - Stride of filter applications. `stride=s` and `stride=(s, s)` are equivalent.
- **pad** *(int or pair of ints)* - Spatial padding width for input arrays. `pad=p` and `pad=(p, p)` are equivalent.
- **nobias** *(bool)* - If True, then this link does not use the bias term.
- **initialW** *(4-D array)* - Initial weight value. If None, the default initializer is used. May also be a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value.
- **initial_bias** *(1-D array)* - Initial bias value. If None, the bias is set to 0. May also be a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value.

Variables

- **W** *(Variable)* - Weight parameter.
- **b** *(Variable)* - Bias parameter.

Methods

- **__call__(x)** - Applies the depthwise convolution layer.

 Parameters
 - `x` *(chainer.Variable or numpy.ndarray or cupy.ndarray)* - Input image.

 Returns
 - Output of the depthwise convolution.

 Return type
 - Variable

- **add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)** - Registers a parameter to the link.

 Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code
link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

- **dtype** – Data type of the parameter array.

- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** *(Link)* – Source link object.

children *

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads *

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type *Link*
copyparams *(link)*
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters
- **link** (*Link*) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=True)*
Returns a generator of all links under the hierarchy.

Parameters
- **skipself** (*bool*) – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all links.

namedlinks *(skipself=True)*
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters
- **skipself** (*bool*) – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
- **include_uninit** (*bool*) – If `True`, it also generates uninitialized parameters.

Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params (*include_uninit=True*)

Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit** (*bool*) – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all parameters.

register_persistent (*name*)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (*str*) – Name of the attribute to be registered.

serialize (*serializer*)

Serializes the link object.

Parameters

- **serializer** (*AbstractSerializer*) – Serializer object.

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns

self

to_gpu (*device=None*)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns

self

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Depreciated since version v1.15: Use **cleargrads()** instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See **init_scope()** for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns *numpy* or *cupy*.

Two-dimensional dilated convolutional layer.

This link wraps the `dilated_convolution_2d()` function and holds the filter weight and bias vector as parameters.

Parameters

- **in_channels** *(int or None)* – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_channels** *(int)* – Number of channels of output arrays.

- **ksize** *(int or pair of ints)* – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- **stride** *(int or pair of ints)* – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

- **pad** *(int or pair of ints)* – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

- **dilate** *(int or pair of ints)* – Dilation factor of filter applications. dilate=d and dilate=(d, d) are equivalent.

- **nobias** *(bool)* – If True, then this link does not use the bias term.

- **initialW** *(4-D array)* – Initial weight value. If None, the default initializer is used. May also be a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value.

- **initial_bias** *(1-D array)* – Initial bias value. If None, the default initializer is used. May also be a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value.

Variables

- **W** *(Variable)* – Weight parameter.

- **b** *(Variable)* – Bias parameter.

Example

There are several ways to make a DilatedConvolution2D link.

Let an input vector \(x\) be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype='f').reshape(1, 3, 10, 10)
```

1. Give the first three arguments explicitly:
>>> l = L.DilatedConvolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:
The below two cases are the same.

>>> l = L.DilatedConvolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.DilatedConvolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from stride as keyword arguments. So the below two cases are the same.

>>> l = L.DilatedConvolution2D(None, 7, 5, 1, 0, 2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

>>> l = L.DilatedConvolution2D(7, 5, stride=1, pad=0, dilate=2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

Methods

__call__(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

add_param (name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

add_persistent *(name, value)*
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** (*Link*) – Source link object.

children *
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads *
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns
Copied link object.

Return type
Link

copyparams *(link)*
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters
- **link** (*Link*) – Source link object.
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If \texttt{name} has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (str) – Name of the attribute to be registered.

serialize (serializer)

Serializes the link object.

Parameters

- **serializer** (AbstractSerializer) – Serializer object.

to_cpu

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use \texttt{cleargrads()} instead.

Attributes

- **update_enabled**

 True if at least one parameter has an update rule enabled.

- **within_init_scope**

 True if the current code is inside of an initialization scope.

 See \texttt{init_scope()} for the details of the initialization scope.

- **xp**

 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns \texttt{numpy} or \texttt{cupy}.

chainer.links.EmbedID

class chainer.links.EmbedID(in_size, out_size, initialW=None, ignore_label=None)

Efficient linear layer for one-hot input.

This is a link that wraps the \texttt{embed_id()} function. This link holds the ID (word) embedding matrix \(W \) as a parameter.

Parameters
• **in_size**(int) – Number of different identifiers (a.k.a. vocabulary size).
• **out_size**(int) – Size of embedding vector.
• **initialW**(2-D array) – Initial weight value. If None, then the matrix is initialized from the standard normal distribution. May also be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.
• **ignore_label**(int or None) – If ignore_label is an int value, i-th column of return value is filled with 0.

See also:

`embed_id()`

Variables **W**(Variable) – Embedding parameter matrix.

Example

```python
>>> W = np.array([[0, 0, 0],
                 [1, 1, 1],
                 [2, 2, 2]]).astype('f')
```

```python
>>> W
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  1.],
       [ 2.,  2.,  2.]], dtype=float32)
```

```python
>>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
```

```python
>>> x = np.array([2, 1]).astype('i')
```

```python
>>> x
array([2, 1], dtype=int32)
```

```python
>>> y = l(x)
>>> y.data
array([[ 2.,  2.,  2.],
       [ 1.,  1.,  1.]], dtype=float32)
```

Methods

- **`__call__`(x)**
 Extracts the word embedding of given IDs.

 Parameters **x**(Variable) – Batch vectors of IDs.

 Returns Batch of corresponding embeddings.

 Return type Variable

- **add_param**(name=None, shape=None, dtype=None, initializer=None)
 Registers a parameter to the link.

 Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
  link.add_param('W', shape=(5, 3))
  ```

 can be replaced by the following assignment.
\begin{verbatim}
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** *(Link)* – Source link object.

children *

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns

Copied link object.

Return type *Link*

copyparams *(link)*

Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters `link` *(Link)* – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(`skipself=False`)
Returns a generator of all links under the hierarchy.

Parameters `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(`skipself=False`)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(`include_uninit=True`)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params(`include_uninit=True`)
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds ()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads () instead.

Attributes

ignore_label = None

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.
chainer.links.GRU

class chainer.links.GRU(in_size, out_size, init=None, inner_init=None, bias_init=0)

Stateful Gated Recurrent Unit function (GRU)

This is an alias of StatefulGRU.

Warning: In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with
LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points
the stateful links. You can use StatelessGRU for stateless version, whose implementation is identical to
GRU in v1.
See issue #2537 for details.

Methods

__call__(self, x)

Does forward propagation.

__getitem__(name)

Equivalent to getattr.

add_link(name, link)

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the child link. This name is also used as the attribute name.
- link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.
Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(link)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__(),
        with self.init_scope():
```

2.5. Standard Link implementations
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.
reset_state ()
serialize (serializer)
set_state (h)
to_cpu ()
to_gpu (device=None)
zerograds ()

Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.
within_init_scope

True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp

Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Highway

class chainer.links.Highway (in_out_size, nobias=False, activate=<function relu>, init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1)

Highway module.
In highway network, two gates are added to the ordinal non-linear transformation \(H(x) = activate(W_h x + b_h) \). One gate is the transform gate \(T(x) = \sigma(W_t x + b_t) \), and the other is the carry gate \(C(x) \). For simplicity, the author defined \(C = 1 - T \). Highway module returns \(y \) defined as

\[
y = activate(W_h x + b_h) \odot \sigma(W_t x + b_t) + x \odot (1 - \sigma(W_t x + b_t))
\]

The output array has the same spatial size as the input. In order to satisfy this, \(W_h \) and \(W_t \) must be square matrices.

Parameters

- **in_out_size (int)** – Dimension of input and output vectors.
- **nobias (bool)** – If True, then this function does not use the bias.
- **activate** – Activation function of plain array. \(\tanh \) is also available.
- **init_Wh (2-D array)** – Initial weight value of plain array. If None, the default initializer is used. May also be a callable that takes \(\text{numpy.ndarray} \) or \(\text{cupy.ndarray} \) and edits its value.
- **init_bh (1-D array)** – Initial bias value of plain array. If None, then \(b_h \) is initialized to zero. May also be a callable that takes \(\text{numpy.ndarray} \) or \(\text{cupy.ndarray} \) and edits its value.
- **init_Wt (2-D array)** – Initial weight value of transform array. If None, the default initializer is used. May also be a callable that takes \(\text{numpy.ndarray} \) or \(\text{cupy.ndarray} \) and edits its value.
- **init_bt (1-D array)** – Initial bias value of transform array. Default value is -1 vector. May also be a callable that takes \(\text{numpy.ndarray} \) or \(\text{cupy.ndarray} \) and edits its value. Negative value is recommended by the author of the paper. (e.g. -1, -3, ...).

See: Highway Networks.

Methods

- **__call__ (x)**
 Computes the output of the Highway module.

 Parameters
 - \(x \) (Variable) – Input variable.

 Returns
 Output variable. Its array has the same spatial size and the same minibatch size as the input array.

 Return type Variable

- **__getitem__ (name)**
 Equivalent to getattr.

- **add_link (name, link)**
 Registers a child link to this chain.

 Deprecated since version v2.0.0: Assign the child link directly to an attribute within \(\text{init_scope()} \) instead. For example, the following code

 \[
 \text{chain.add_link('ll', L.Linear(3, 5))}
 \]

 can be replaced by the following line.
with chain.init_scope():
 chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name** (str) – Name of the child link. This name is also used as the attribute name.
- **link** (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)
children()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

esable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
to_cpu()
to_gpu (device=None)
zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.
Depreciated since version v1.15: Use cleargrads() instead.
Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Inception

class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool, conv_init=None, bias_init=None)

Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension. Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1 convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and 3x3 max pooling.

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

• in_channels (int or None) – Number of channels of input arrays.
• out1 (int) – Output size of 1x1 convolution path.
• proj3 (int) – Projection size of 3x3 convolution path.
• out3 (int) – Output size of 3x3 convolution path.
• proj5 (int) – Projection size of 5x5 convolution path.
• out5 (int) – Output size of 5x5 convolution path.
• proj_pool (int) – Projection size of max pooling path.
• conv_init – A callable that takes numpy.ndarray or cupy.ndarray and edits its value. It is used for initialization of the convolution matrix weights. Maybe be None to use default initialization.
• bias_init – A callable that takes numpy.ndarray or cupy.ndarray and edits its value. It is used for initialization of the convolution bias weights. Maybe be None to use default initialization.

Methods

__call__(x)
Computes the output of the Inception module.

Parameters x (Variable) – Input variable.
Returns Output variable. Its array has the same spatial size and the same minibatch size as the input array. The channel dimension has size \(\text{out1} + \text{out3} + \text{out5} + \text{proj pool}\).

Return type Variable

__getitem__ (name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within \texttt{init_scope()} instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- • name (str) – Name of the child link. This name is also used as the attribute name.
- • link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a \texttt{Parameter} object directly to an attribute within \texttt{init_scope()} instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- • name (str) – Name of the parameter. This name is also used as the attribute name.
- • shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- • dtype – Data type of the parameter array.
- • initializer – If it is not \texttt{None}, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \texttt{dtype} argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads (*link*)

children()

cleargrads()

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams (*link*)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (*skipself=False*)

namedlinks (*skipself=False*)

namedparams (*include_uninit=True*)

params (*include_uninit=True*)

register_persistent (*name*)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (*str*) – Name of the attribute to be registered.

serialize (*serializer*)
to_cpu()

to_gpu(device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

 True if at least one parameter has an update rule enabled.

within_init_scope

 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.InceptionBN

class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype,
proj_pool=None, stride=1, conv_init=None, dtype=<class 'numpy.float32'>)

Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the BatchNormalization on top of each convolution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling method is configurable.

Parameters

- **in_channels**(int or None) – Number of channels of input arrays.
- **out1**(int) – Output size of the 1x1 convolution path.
- **proj3**(int) – Projection size of the single 3x3 convolution path.
- **out3**(int) – Output size of the single 3x3 convolution path.
- **proj33**(int) – Projection size of the double 3x3 convolutions path.
- **out33**(int) – Output size of the double 3x3 convolutions path.
- **pooltype**(str) – Pooling type. It must be either 'max' or 'avg'.
- **proj_pool**(int or None) – Projection size in the pooling path. If None, no projection is done.
- **stride**(int) – Stride parameter of the last convolution of each path.
• **conv_init** – A callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. It is used for initialization of the convolution matrix weights. Maybe be `None` to use default initialization.

• **dtype** (`numpy.dtype`) – Type to use in ~batch_normalization. BatchNormalization.

See also:

Inception

Methods

```python
__call__(x)
```

```python
__getitem__(name)
```

Equivalent to `getattr`.

```python
add_link(name, link)
```

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (`str`) – Name of the child link. This name is also used as the attribute name.
- **link** (`Link`) – The link object to be registered.

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (`str`) – Name of the parameter. This name is also used as the attribute name.
- **shape** (`int or tuple of ints`) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

children *()*

cleargrads *()*

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *()*

copyparams *(link)*

disable_update *()*

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to False.

enable_update *()*

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to True.

init_scope *()*

 Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

2.5. Standard Link implementations 305
params (*include_uninit=True*)

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (*str*) – Name of the attribute to be registered.

serialize(serializer)

to_cpu()

to_gpu(device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.Linear

class chainer.links.Linear (*in_size*, *out_size=None*, *nobias=False*, *initialW=None*, *initial_bias=None*)

Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the `linear()` function, and holds a weight matrix \(\mathbf{W} \) and optionally a bias vector \(\mathbf{b} \) as parameters.

The weight matrix \(\mathbf{W} \) is initialized with i.i.d. Gaussian samples, each of which has zero mean and deviation \(\sqrt{1/\text{in_size}} \).

Parameters

- **in_size** (*int or None*) – Dimension of input vectors. If `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **out_size** (*int*) – Dimension of output vectors.
- **nobias** (*bool*) – If True, then this function does not use the bias.
- **initialW** (*initializer*) – Initializer to initialize the weight.
- **initial_bias** (*initializer*) – Initializer to initialize the bias. If `None`, the bias will be initialized to zero.

See also:

`linear()`
Variables

- \(W\) (Variable) – Weight parameter.
- \(b\) (Variable) – Bias parameter.

Example

There are several ways to make a Linear link.

Define an input vector \(x\) as:

```plaintext
>>> x = np.array([[0, 1, 2, 3, 4]], 'f')
```

1. Give the first two arguments explicitly:

 Those numbers are considered as the input size and the output size.
   ```plaintext
   >>> l = L.Linear(5, 10)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```

2. Omit `in_size` (give the output size only as the first argument) or fill it with `None`:

 In this case, the size of second axis of \(x\) is used as the input size. So the below two cases are the same.
   ```plaintext
   >>> l = L.Linear(10)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```

   ```plaintext
   >>> l = L.Linear(None, 10)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```

 When you omit the first argument, you need to specify the other subsequent arguments from `nobias` as keyword arguments. So the below two cases are the same.
   ```plaintext
   >>> l = L.Linear(None, 10, False, None, 0)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```

   ```plaintext
   >>> l = L.Linear(10, nobias=False, initialW=None, initial_bias=0)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```

Methods

```python
__call__(x)
```

Applies the linear layer.

Parameters \(x\) (Variable) – Batch of input vectors.
Returns: Output of the linear layer.

Return type: Variable

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters:
- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

addPersistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters:
- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters:
- link (Link) – Source link object.

children()

Returns a generator of all child links.

Returns: A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams (link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink (chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

include_uninit *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters

include_uninit *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

name *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

Serializes the link object.

Parameters

serializer *(AbstractSerializer)* – Serializer object.

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu *(device=None)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

device – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecation Since version v1.15: Use **cleargrads**() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.LSTM

class chainer.links.LSTM(in_size, out_size=None, lateral_init=None, upward_init=None, bias_init=None, forget_bias_init=None)

Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, which is defined as a stateless activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be used as a stateful LSTM.

This link supports variable length inputs. The mini-batch size of the current input must be equal to or smaller than that of the previous one. The mini-batch size of c and h is determined as that of the first input x. When mini-batch size of i-th input is smaller than that of the previous input, this link only updates c[0:len(x)] and h[0:len(x)] and doesn’t change the rest of c and h. So, please sort input sequences in descending order of lengths before applying the function.

Parameters

• **in_size** (int) – Dimension of input vectors. If it is None or omitted, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

• **out_size** (int) – Dimensionality of output vectors.

• **lateral_init** – A callable that takes numpy.ndarray or cupy.ndarray and edits its value. It is used for initialization of the lateral connections. May be None to use default initialization.

• **upward_init** – A callable that takes numpy.ndarray or cupy.ndarray and edits its value. It is used for initialization of the upward connections. May be None to use default initialization.

• **bias_init** – A callable that takes numpy.ndarray or cupy.ndarray and edits its value. It is used for initialization of the biases of cell input, input gate and output gate and gates of the upward connection. May be a scalar, in that case, the bias is initialized by this value. If it is None, the cell-input bias is initialized to zero.

• **forget_bias_init** – A callable that takes numpy.ndarray or cupy.ndarray and edits its value. It is used for initialization of the biases of the forget gate of the upward connection. May be a scalar, in that case, the bias is initialized by this value. If it is None, the forget bias is initialized to one.

Variables

• **upward** (Linear) – Linear layer of upward connections.

• **lateral** (Linear) – Linear layer of lateral connections.

• **c** (Variable) – Cell states of LSTM units.
• \textbf{h (Variable)} – Output at the previous time step.

Example

There are several ways to make a LSTM link.
Let a two-dimensional input array \(x \) be:

```python
>>> x = np.zeros((1, 10), dtype='f')
```

1. Give both \texttt{in_size} and \texttt{out_size} arguments:

```python
>>> l = L.LSTM(10, 20)
>>> h\_new = l(x)
>>> h\_new.shape
(1, 20)
```

2. Omit \texttt{in_size} argument or fill it with \texttt{None}:

The below two cases are the same.

```python
>>> l = L.LSTM(20)
>>> h\_new = l(x)
>>> h\_new.shape
(1, 20)
```
```python
>>> l = L.LSTM(\texttt{None}, 20)
>>> h\_new = l(x)
>>> h\_new.shape
(1, 20)
```

Methods

\texttt{_call__ (x)}

Updates the internal state and returns the LSTM outputs.

\textbf{Parameters} \texttt{x (Variable)} – A new batch from the input sequence.

\textbf{Returns} Outputs of updated LSTM units.

\textbf{Return type} \texttt{Variable}

\texttt{_getitem_ (name)}

Equivalent to getattr.

\texttt{add_link (name, link)}

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within \texttt{init_scope()} instead. For example, the following code

```python
chain.add\_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.
```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)`: Name of the child link. This name is also used as the attribute name.
- `link (Link)`: The link object to be registered.

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)`: Name of the parameter. This name is also used as the attribute name.
- `shape (int or tuple of ints)`: Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype`: Data type of the parameter array.
- `initializer`: If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

```python
add_persistent(name, value)
```

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)`: Name of the persistent value. This name is also used for the attribute name.
- `value`: Value to be registered.

```python
addgrads(link)
children()
cleargrads()
```

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```python
copy()
copyparams(link)
```
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

reset_state ()
Resets the internal state.
It sets None to the c and h attributes.

serialize (serializer)

set_state (c, h)
Sets the internal state.
It sets the c and h attributes.

Parameters
• c (Variable) – A new cell states of LSTM units.
• h (Variable) – A new output at the previous time step.
to_cpu()
to_gpu(device=None)
zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.MLPConvolution2D

class chainer.links.MLPConvolution2D(self, in_channels, out_channels, ksize=None, stride=1, pad=0, activation=relu.relu, conv_init=None, bias_init=None)

Two-dimensional MLP convolution layer of Network in Network.

This is an “mlpconv” layer from the Network in Network paper. This layer is a two-dimensional convolution layer followed by 1x1 convolution layers and interleaved activation functions.

Note that it does not apply the activation function to the output of the last 1x1 convolution layer.

Parameters

- **in_channels** (int or None) – Number of channels of input arrays. If it is None or omitted, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_channels** (tuple of ints) – Tuple of number of channels. The i-th integer indicates the number of filters of the i-th convolution.

- **ksize** (int or pair of ints) – Size of filters (a.k.a. kernels) of the first convolution layer. ksize=k and ksize=(k, k) are equivalent.

- **stride** (int or pair of ints) – Stride of filter applications at the first convolution layer. stride=s and stride=(s, s) are equivalent.

- **pad** (int or pair of ints) – Spatial padding width for input arrays at the first convolution layer. pad=p and pad=(p, p) are equivalent.

- **activation** (function) – Activation function for internal hidden units. Note that this function is not applied to the output of this link.
• **conv_init** – An initializer of weight matrices passed to the convolution layers. This option must be specified as a keyword argument.

• **bias_init** – An initializer of bias vectors passed to the convolution layers. This option must be specified as a keyword argument.

See: Network in Network.

Variables **activation** *(function)* – Activation function.

Methods

__call__ *(x)*

Computes the output of the mlpconv layer.

- **Parameters** `x` *(Variable)* – Input image.
- **Returns** Output of the mlpconv layer.
- **Return type** `Variable`

__getitem__ *(index)*

Returns the child at given index.

- **Parameters** `index` *(int)* – Index of the child in the list.
- **Returns** The `index`-th child link.
- **Return type** `Link`

__len__ *

Returns the number of children.

__iter__ *

add_link *(link)*

Registers a child link and adds it to the tail of the list.

- **Parameters** `link` *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.
• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

addPersistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name**(str) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads(link)

append(link)

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the `list` interface.

Parameters

• **link**(Link) – The link object to be registered.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(link)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```
register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- name (str) – Name of the attribute to be registered.

serialize(serializer)

to_cpu()

to_gpu**(device=None)**

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

Warning: This feature is experimental. The interface can change in the future.

This is a N-ary TreeLSTM unit as a chain. This link is a fixed-length arguments function, which compounds the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, c, and the output, h, which are produced by this link. This link doesn’t keep cell and hidden states internally.
For example, this link is called such as \(\text{func}(c_1, c_2, h_1, h_2, x) \) if the number of children nodes was set 2 (\(n_{\text{ary}} = 2 \)), while \(\text{func}(c_1, c_2, c_3, h_1, h_2, h_3, x) \) if that was 3 (\(n_{\text{ary}} = 3 \)). This function is dependent from an order of children nodes unlike Child-Sum TreeLSTM. Thus, the returns of \(\text{func}(c_1, c_2, h_1, h_2, x) \) are different from those of \(\text{func}(c_2, c_1, h_2, h_1, x) \).

Parameters

- \(\text{in_size}(\text{int}) \) – Dimension of input vectors.
- \(\text{out_size}(\text{int}) \) – Dimensionality of cell and output vectors.
- \(n_{\text{ary}}(\text{int}) \) – The number of children nodes in a tree structure.

Variables

- \(\text{W_x} \) (\text{chainer.links.Linear}) – Linear layer of connections from input vectors.
- \(\text{W_h} \) (\text{chainer.links.Linear}) – Linear layer of connections between \((a, i, o, \text{all } f)\) and the output of each child. \(a, i, o \) and \(f \) denotes input compound, input gate, output gate and forget gate, respectively. \(a \), input compound, equals to \(u \) in the paper by Tai et al.

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. has only one \(W \) matrix to be applied to \(x \) consistently for all children. On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each child’s cell individually.

Methods

`__call__(*cshsx)`

Returns new cell state and output of N-ary TreeLSTM.

Parameters

\(\text{cshsx} \) (list of \text{Variable}) – Arguments which include all cell vectors and all output vectors of fixed-length children, and an input vector. The number of arguments must be same as \(n_{\text{ary}} \times 2 + 1 \).

Returns

Returns \((c_{\text{new}}, h_{\text{new}})\), where \(c_{\text{new}} \) represents new cell state vector, and \(h_{\text{new}} \) is new output vector.

Return type

tuple of \(-\text{chainer.Variable}\)

`__getitem__(name)`

Equivalent to getattr.

`add_link(name, link)`

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within \text{init_scope()}\) instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

2.5. Standard Link implementations
• **name** *(str)* – Name of the child link. This name is also used as the attribute name.

• **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a *Parameter* object directly to an attribute within *init_scope()* instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not *None*, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, *dtype* argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

children *

cleargrads *

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

copyparams *(link)*

disable_update *

Disables update rules of all parameters under the link hierarchy.

This method sets the **enabled** flag of the update rule of each parameter variable to **False**.

enable_update *

Enables update rules of all parameters under the link hierarchy.

This method sets the **enabled** flag of the update rule of each parameter variable to **True**.
init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (*skipself=False*)

namedlinks (*skipself=False*)

namedparams (*include_uninit=True*)

params (*include_uninit=True*)

register_persistent (*name*)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (*str*) – Name of the attribute to be registered.

serialize (*serializer*)

to_cpu()

to_gpu (*device=None*)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns \texttt{numpy} or \texttt{cupy}.

\texttt{chainer.links.NStepBiGRU}

def \texttt{chainer.links.NStepBiGRU}(self, n_layers, in_size, out_size, dropout)

Stacked Bi-directional GRU for sequences.

This link is stacked version of Bi-directional GRU for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike \texttt{chainer.functions.n_step_bigru()}, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of \texttt{chainer.Variable} holding sequences.

\begin{verbatim}
Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().
\end{verbatim}

Parameters
- \texttt{n_layers} (int) – Number of layers.
- \texttt{in_size} (int) – Dimensionality of input vectors.
- \texttt{out_size} (int) – Dimensionality of hidden states and output vectors.
- \texttt{dropout} (float) – Dropout ratio.

See also:
- \texttt{chainer.functions.n_step_bigru()}

Methods

\begin{verbatim}
def _call__(self, hx, xs)

Calculate all hidden states and cell states.
\end{verbatim}

\begin{verbatim}
Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().
\end{verbatim}

Parameters
- \texttt{hx} (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
- \texttt{xs} (list of ~chainer.Variable) – List of input sequences. Each element \texttt{x[i]} is a \texttt{chainer.Variable} holding a sequence.

\begin{verbatim}
def _getitem__(index)

Returns the child at given index.
\end{verbatim}

Parameters \texttt{index} (int) – Index of the child in the list.
Returns The index-th child link.

Return type Link

__len__() Returns the number of children.

__iter__()

add_link(link) Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None) Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

* name (str) – Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

* dtype – Data type of the parameter array.

* initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value) Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

* name (str) – Name of the persistent value. This name is also used for the attribute name.

* value – Value to be registered.

addgrads(link) append(link) Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be registered.

children()
cleargrads()
Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

copyparams()

disable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Cleans an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)

params(include_uninit=True)

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name (str)** – Name of the attribute to be registered.

serialize(serializer)
to_cpu()
to_gpu(device=None)
zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.
Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
 True if at least one parameter has an update rule enabled.
within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.
xp
 Array module for this link.
 Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepBiLSTM

class chainer.links.NStepBiLSTM(self, n_layers, in_size, out_size, dropout)
 Stacked Bi-directional LSTM for sequences.
 This link is stacked version of Bi-directional LSTM for sequences. It calculates hidden and cell states of all
 layer at end-of-string, and all hidden states of the last layer for each time.
 Unlike chainer.functions.n_step_bilstm(), this function automatically sort inputs in descending
 order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
 holding sequences.

 Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
 using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

 • n_layers (int) – Number of layers.
 • in_size (int) – Dimensionality of input vectors.
 • out_size (int) – Dimensionality of hidden states and output vectors.
 • dropout (float) – Dropout ratio.
 • initialW (2-D array) – Initial weight value. If None, then the default initializer is
 used. May also be a callable that takes numpy.ndarray or cupy.ndarray and edits
 its value.
 • initial_bias (1-D array) – Initial bias value. If None, the bias vector is initialized
 to zero. May also be a callable that takes numpy.ndarray or cupy.ndarray and edits
 its value.
Methods

__call__(self, hx, cx, xs)
Calculate all hidden states and cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
• cx (Variable or None) – Initial cell states. If None is specified zero-vector is used.
• xs (list of ~chainer.Variable) – List of input sequences. Each element xs[i] is a chainer.Variable holding a sequence.

__getitem__(index)
Returns the child at given index.

Parameters

index (int) – Index of the child in the list.

Returns

The index-th child link.

Return type

Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters

link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

`add_persistent(name, value)`
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

`addgrads(link)`
`append(link)`
Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the list interface.

Parameters

• **link** *(Link)* – The link object to be registered.

`children()`
`cleargrads()`
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy()`
`copyparams(link)`

`disable_update()`
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

`enable_update()`
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

`init_hx(xs)`
`init_scope()`
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)
 Registers an attribute of a given name as a persistent value.

 This is a convenient method to register an existing attribute as a persistent value. If name has been already
 registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
 persistent value.

 Parameters
 name (str) -- Name of the attribute to be registered.

serialize (serializer)
to_cpu()
to_gpu (device=None)
zerograds ()
 Initializes all gradient arrays by zero.

 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
 backward compatibility.

 Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepBiRNNReLU

class chainer.links.NStepBiRNNReLU (self, n_layers, in_size, out_size, dropout)
 Stacked Bi-directional RNN for sequences.

 This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is relu. It
 calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

328 Chapter 2. Reference Manual
Unlike `chainer.functions.n_step_birnn()`, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of `chainer.Variable` holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use `chainer.using_config('use_cudnn', use_cudnn)`. See `chainer.using_config()`.

Parameters

- **n_layers** (`int`) – Number of layers.
- **in_size** (`int`) – Dimensionality of input vectors.
- **out_size** (`int`) – Dimensionality of hidden states and output vectors.
- **dropout** (`float`) – Dropout ratio.

See also:

`chainer.functions.n_step_birnn()`

Methods

```
__call__ (self, hx, xs)
```

Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use `chainer.using_config('train', train)`. See `chainer.using_config()`.

Parameters

- **hx** (`Variable` or `None`) – Initial hidden states. If `None` is specified zero-vector is used.
- **xs** (`list of ~chianer.Variable`) – List of input sequences. Each element `xs[i]` is a `chainer.Variable` holding a sequence.

```
__getitem__ (index)
```

Returns the child at given index.

Parameters

- **index** (`int`) – Index of the child in the list.

Returns The `index`-th child link.

Return type `Link`

```
__len__()
```

Returns the number of children.

```
__iter__()
```

```
add_link (link)
```

Registers a child link and adds it to the tail of the list.

Parameters

- **link** (`Link`) – The link object to be registered.
add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (`str`) – Name of the parameter. This name is also used as the attribute name.
- **shape** (`int or tuple of ints`) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (`str`) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the `list` interface.

Parameters

- **link** (`Link`) – The link object to be registered.

children ()

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()

copyparams (link)

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`. 330 Chapter 2. Reference Manual
enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_hx(xs)

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

namedlinks(skipself=False)

namedparams(include_uninit=True)

params(include_uninit=True)

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name` *(str)* – Name of the attribute to be registered.

serialize(serializer)

to_cpu()

to_gpu(device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

update_enabled

`True` if at least one parameter has an update rule enabled.
within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepBiRNNTanh

class chainer.links.NStepBiRNNTanh (self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is tanh. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters
• n_layers (int) – Number of layers.
• in_size (int) – Dimensionality of input vectors.
• out_size (int) – Dimensionality of hidden states and output vectors.
• dropout (float) – Dropout ratio.
• use_cudnn (bool) – Use cuDNN.

See also:
chainer.functions.n_step_birnn()

Methods

__call__ (self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().

Parameters
• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
• xs (list of ~chianer.Variable) – List of input sequences. Each element xs[i] is a chainer.Variable holding a sequence.
__getitem__(index)
Returns the child at given index.

Parameters
index (int) – Index of the child in the list.

Returns
The index-th child link.

Return type
Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters
link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.
Parameters **link** *(Link)* – The link object to be registered.

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(link)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_hx(xs)

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

namedlinks(skipself=False)

namedparams(include_uninit=True)

params(include_uninit=True)

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters **name**(str) – Name of the attribute to be registered.

serialize(name)

to_cpu()
to_gpu (device=None)

zerograd()
 Initializes all gradient arrays by zero.
 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
 backward compatibility.
 Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope() for the details of the initialization scope.

xp
 Array module for this link.
 Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepGRU

class chainer.links.NStepGRU (self, n_layers, in_size, out_size, dropout)
 Stacked Uni-directional GRU for sequences.
 This link is stacked version of Uni-directional GRU for sequences. It calculates hidden and cell states of all
 layer at end-of-string, and all hidden states of the last layer for each time.
 Unlike chainer.functions.n_step_gru(), this function automatically sort inputs in descending order
 by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
 holding sequences.

 Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.
 using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

 • n_layers (int) – Number of layers.
 • in_size (int) – Dimensionality of input vectors.
 • out_size (int) – Dimensionality of hidden states and output vectors.
 • dropout (float) – Dropout ratio.

See also:
 chainer.functions.n_step_gru()
Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: `train` argument is not supported anymore since v2. Instead, use `chainer.using_config('train', train)`. See `chainer.using_config()`.

Parameters

- **hx** *(Variable or None)* – Initial hidden states. If `None` is specified zero-vector is used.
- **xs** *(list of ~chainer.Variable)* – List of input sequences. Each element `xs[i]` is a `chainer.Variable` holding a sequence.

__getitem__(index)
Returns the child at given index.

Parameters **index** *(int)* – Index of the child in the list.

Returns The `index`-th child link.

Return type **Link**

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters **link** *(Link)* – The link object to be registered.

add_param(name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)
Registers a parameter to the link.

Depreciated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)
append (link)
Registers a child link and adds it to the tail of the list.

This is equivalent to *add_link()* . This method has been added to emulate the *list* interface.

Parameters
- **link** (Link) – The link object to be registered.

children ()
cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()
copyparams (link)

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx (xs)
init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the *init_scope* method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        super().__init__()
        with self.init_scope():
```

2.5. Standard Link implementations
- \(\text{self.W} = \text{chainer.Parameter}(0, (10, 5)) \)
- \(\text{self.b} = \text{chainer.Parameter}(0, (5,)) \)

- `links (skipself=False)`
- `namedlinks (skipself=False)`
- `namedparams (include_uninit=True)`
- `params (include_uninit=True)`
- `register_persistent (name)`

 Registers an attribute of a given name as a persistent value.

 This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

 Parameters `name (str)` – Name of the attribute to be registered.

- `serialize (serializer)`
- `to_cpu()`
- `to_gpu (device=None)`
- `zerograds ()`

 Initializes all gradient arrays by zero.

 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use `cleargrads ()` instead.

Attributes

- `update_enabled`

 True if at least one parameter has an update rule enabled.

- `within_init_scope`

 True if the current code is inside of an initialization scope.

 See `init_scope()` for the details of the initialization scope.

- `xp`

 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.NStepLSTM

class chainer.links.NStepLSTM (self, n_layers, in_size, out_size, dropout)

Stacked Uni-directional LSTM for sequences.

This link is stacked version of Uni-directional LSTM for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike `chainer.functions.n_step_lstm()`, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of `chainer.Variable` holding sequences.
Warning:

use_cudnn argument is not supported anymore since v2. Instead, use chainer.
using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

- `n_layers (int)` – Number of layers.
- `in_size (int)` – Dimensionality of input vectors.
- `out_size (int)` – Dimensionality of hidden states and output vectors.
- `dropout (float)` – Dropout ratio.
- `initialW (2-D array)` – Initial weight value. If None, then the default initializer is used. May also be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.
- `initial_bias (1-D array)` – Initial bias value. If None, the bias vector is initialized to zero. May also be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.

See also:

chainer.functions.n_step_lstm()

Methods

__call__ (self, hx, cx, xs)

Calculate all hidden states and cell states.

Warning:

train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

- `hx (Variable or None)` – Initial hidden states. If None is specified zero-vector is used.
- `cx (Variable or None)` – Initial cell states. If None is specified zero-vector is used.
- `xs (list of ~chainer.Variable)` – List of input sequences. Each element `xs[i]` is a chainer.Variable holding a sequence.

__getitem__ (index)

Returns the child at given index.

Parameters

- `index (int)` – Index of the child in the list.

Returns

The index-th child link.

Return type

Link

__len__()

Returns the number of children.

__iter__()
add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters
- link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code can be replaced by the following assignment.

```python
link.add_param('W', shape=(5, 3))
```

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads(link)
append(link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters
- link (Link) – The link object to be registered.

children()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx(xs)

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
  def __init__(self):
    super().__init__()
    with self.init_scope():
      self.W = chainer.Parameter(0, (10, 5))
      self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
to_cpu()
to_gpu (device=None)
zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.
Deprecated since version v1.15: Use cleargrads() instead.

2.5. Standard Link implementations
Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.NStepRNNReLU

class chainer.links.NStepRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.
This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is relu. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.
Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

• n_layers (int) – Number of layers.
• in_size (int) – Dimensionality of input vectors.
• out_size (int) – Dimensionality of hidden states and output vectors.
• dropout (float) – Dropout ratio.

See also:
chainer.functions.n_step_rnn()

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().

Parameters
• `hx (Variable or None)` – Initial hidden states. If `None` is specified zero-vector is used.

• `xs (list of ~chainer.Variable)` – List of input sequences. Each element `xs[i]` is a `chainer.Variable` holding a sequence.

___getitem__(index)___

Returns the child at given index.

Parameters

`index (int)` – Index of the child in the list.

Returns

The `index`-th child link.

Return type

`Link`

___len__()___

Returns the number of children.

___iter__()___

___add_link(link)___

Registers a child link and adds it to the tail of the list.

Parameters

`link (Link)` – The link object to be registered.

___add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)___

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• `name (str)` – Name of the parameter. This name is also used as the attribute name.

• `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• `dtype` – Data type of the parameter array.

• `initializer` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

___add_persistent(name, value)___

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• `name (str)` – Name of the persistent value. This name is also used for the attribute name.

• `value` – Value to be registered.
addgrads \(\text{link} \)

append \(\text{link} \)

Registers a child link and adds it to the tail of the list.

This is equivalent to \texttt{add_link()}. This method has been added to emulate the list interface.

Parameters

link \((\text{Link})\) – The link object to be registered.

children()

cleargrads()

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams \(\text{link} \)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_hx \((xs)\)

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for \texttt{Chain}) by an assignment. A \texttt{Parameter} object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the \texttt{init_scope} method, we can simply assign a \texttt{Parameter} object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links \((\text{skipself}=\text{False})\)

namedlinks \((\text{skipself}=\text{False})\)

namedparams \((\text{include_uninit}=\text{True})\)

params \((\text{include_uninit}=\text{True})\)

register_persistent \((name)\)

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name (str)` – Name of the attribute to be registered.

serialize (serializer)

to_cpu ()

to_gpu (device=None)

zerograds ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads ()` instead.

Attributes

- `update_enabled`

 True if at least one parameter has an update rule enabled.

- `within_init_scope`

 True if the current code is inside of an initialization scope.

 See `init_scope ()` for the details of the initialization scope.

- `xp`

 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.NStepRNNTanh

class chainer.links.NStepRNNTanh (self, n_layers, in_size, out_size, dropout)

Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is `tanh`. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike `chainer.functions.n_step_rnn ()`, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of `chainer.Variable` holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use `chainer.using_config('use_cudnn', use_cudnn)`. See `chainer.using_config ()`.

Parameters

- `n_layers (int)` – Number of layers.
- `in_size (int)` – Dimensionality of input vectors.
- `out_size (int)` – Dimensionality of hidden states and output vectors.
- `dropout (float)` – Dropout ratio.
See also:

`chainer.functions.n_step_rnn()`

Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: `train` argument is not supported anymore since v2. Instead, use `chainer.using_config('train', train)`. See `chainer.using_config()`.

Parameters

• **hx** ([`Variable` or `None`]) – Initial hidden states. If `None` is specified zero-vector is used.

• **xs** ([`list` of `~chainer.Variable`]) – List of input sequences. Each element `xs[i]` is a `chainer.Variable` holding a sequence.

__getitem__(index)
Returns the child at given index.

Parameters

• **index** (`int`) – Index of the child in the list.

Returns

The `index`-th child link.

Return type

`Link`

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters

• **link** (`Link`) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** (`str`) – Name of the parameter. This name is also used as the attribute name.

• **shape** (`int` or `tuple of ints`) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• **dtype** – Data type of the parameter array.

• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

append *(link)*

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the list interface.

Parameters

• **link** *(Link)* – The link object to be registered.

children()

cleargrads()

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams *(link)*

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_hx *(xs)*

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
```

2.5. Standard Link implementations
with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)
 Registers an attribute of a given name as a persistent value.
 This is a convenient method to register an existing attribute as a persistent value. If name has been already
 registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
 persistent value.

 Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu ()

to_gpu (device=None)

zerograds ()
 Initializes all gradient arrays by zero.
 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
 backward compatibility.
 Deprecated since version v1.15: Use cleargrads () instead.

Attributes

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.
 See init_scope () for the details of the initialization scope.

xp
 Array module for this link.
 Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.Scale

class chainer.links.Scale (axis=1, W_shape=None, bias_term=False, bias_shape=None)
 Broadcasted elementwise product with learnable parameters.
 Computes a elementwise product as scale () function does except that its second input is a learnable weight
 parameter W the link has.

 Parameters
• **axis** (*int*) – The first axis of the first input of `scale()` function along which its second input is applied.

• **W_shape** (*tuple of ints*) – Shape of learnable weight parameter. If `None`, this link does not have learnable weight parameter so an explicit weight needs to be given to its `__call__` method’s second input.

• **bias_term** (*bool*) – Whether to also learn a bias (equivalent to Scale link + Bias link).

• **bias_shape** (*tuple of ints*) – Shape of learnable bias. If `W_shape` is `None`, this should be given to determine the shape. Otherwise, the bias has the same shape `W_shape` with the weight parameter and `bias_shape` is ignored.

See also:
See `scale()` for details.

Variables

• **W** (*Parameter*) – Weight parameter if `W_shape` is given. Otherwise, no `W` attribute.

• **bias** (*Bias*) – Bias term if `bias_term` is `True`. Otherwise, no bias attribute.

Methods

`__call__(*)`
Applies broadcasted elementwise product.

Parameters

`xs` (*list of Variables*) – Input variables whose length should be one if the link has a learnable weight parameter, otherwise should be two.

`__getitem__(name)`
Equivalent to `getattr`.

`add_link(name, link)`
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** (*str*) – Name of the child link. This name is also used as the attribute name.

• **link** (*Link*) – The link object to be registered.

`add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code
link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)

children()

cleargrads()

Cuts all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(link)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.
Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links` (skipself=False)
`namedlinks` (skipself=False)
`namedparams` (include_uninit=True)
`params` (include_uninit=True)

`register_persistent` (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name` (str) – Name of the attribute to be registered.

`serialize` (serializer)

`to_cpu`

`to_gpu` (device=None)

`zerograds`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Depreciated since version v1.15: Use `cleargrads()` instead.

Attributes

- `update_enabled`
 True if at least one parameter has an update rule enabled.

- `within_init_scope`
 True if the current code is inside of an initialization scope.

 See `init_scope()` for the details of the initialization scope.

- `xp`
 Array module for this link.
 Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.
chainer.links.StatefulGRU

class chainer.links.StatefulGRU (in_size, out_size, init=None, inner_init=None, bias_init=0)
Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters \(W_r, W_z, W, U_r, U_z,\) and \(U\). All these parameters are \(n \times n\) matrices, where \(n\) is the dimension of hidden vectors.

Given input vector \(x\), Stateful GRU returns the next hidden vector \(h'\) defined as

\[
\begin{align*}
 r &= \sigma(W_r x + U_r h), \\
 z &= \sigma(W_z x + U_z h), \\
 \bar{h} &= \tanh(W x + U(r \odot h)), \\
 h' &= (1 - z) \odot h + z \odot \bar{h},
\end{align*}
\]

where \(h\) is current hidden vector.

As the name indicates, StatefulGRU is stateful, meaning that it also holds the next hidden vector \(h'\) as a state. For a stateless GRU, use StatelessGRU.

Parameters

- **in_size** (int) – Dimension of input vector \(x\).
- **out_size** (int) – Dimension of hidden vector \(h\).
- **init** – Initializer for GRU’s input units \((W)\). It is a callable that takes numpy.ndarray or cupy.ndarray and edits its value. If it is None, the default initializer is used.
- **inner_init** – Initializer for the GRU’s inner recurrent units \((U)\). It is a callable that takes numpy.ndarray or cupy.ndarray and edits its value. If it is None, the default initializer is used.
- **bias_init** – Bias initializer. It is a callable that takes numpy.ndarray or cupy.ndarray and edits its value. If None, the bias is set to zero.

Variables **h** (Variable) – Hidden vector that indicates the state of StatefulGRU.

See also:

- StatelessGRU
- GRU: an alias of StatefulGRU

Methods

- **__call__(x)**
- **__getitem__(name)**
 Equivalent to getattr.
- **add_link(name, link)**
 Registers a child link to this chain.
Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)` – Name of the child link. This name is also used as the attribute name.
- `link (Link)` – The link object to be registered.

add_param *(name, shape=None, dtype=np.float32, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)` – Name of the parameter. This name is also used as the attribute name.
- `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
- `initializer` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)` – Name of the persistent value. This name is also used for the attribute name.
- `value` – Value to be registered.

addgrads *(link)*

children ()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name(str) – Name of the attribute to be registered.

reset_state()
serialize(serializer)
set_state(h)
to_cpu()
to_gpu(device=None)
zerograds()
 Initializes all gradient arrays by zero.

 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
 backward compatibility.

 Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatelessGRU

class chainer.links.StatelessGRU (in_size, out_size, init=None, inner_init=None, bias_init=None)
Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters \(W_r, W_z, W, U_r, U_z, \) and \(U \). All these parameters are \(n \times n \) matrices, where \(n \) is the dimension of hidden vectors.

Given two inputs a previous hidden vector \(h \) and an input vector \(x \), GRU returns the next hidden vector \(h' \) defined as

\[
 r = \sigma(W_r x + U_r h), \\
 z = \sigma(W_z x + U_z h), \\
 \bar{h} = \text{tanh}(W x + U (r \odot h)), \\
 h' = (1 - z) \odot h + z \odot \bar{h},
\]

where \(\sigma \) is the sigmoid function, and \(\odot \) is the element-wise product.

As the name indicates, StatelessGRU is stateless, meaning that it does not hold the value of hidden vector \(h \). For a stateful GRU, use StatefulGRU.

Parameters

- \textbf{in_size} (int) – Dimension of input vector \(x \). If None, parameter initialization will be
defered until the first forward data pass at which time the size will be determined.

- \textbf{out_size} (int) – Dimension of hidden vector \(h, \bar{h} \) and \(h' \).

See:

2.5. Standard Link implementations
• Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Chung+NIPS2014 DLWorkshop].

See also:

StatefulGRU

Methods

__call__(h, x)

__getitem__(name)

Equivalent to getattr.

add_link(name, link)

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```
with chain.init_scope():
  chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
  link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.
• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

```python
add_persistent(name, value)
```
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)` – Name of the persistent value. This name is also used for the attribute name.
- `value` – Value to be registered.

```python
addgrads(link)
```

```python
children()
```

```python
cleargrads()
```
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```python
copy()
```

```python
copyparams(link)
```

```python
disable_update()
```
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

```python
enable_update()
```
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

```python
init_scope()
```
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

```python
links(skipself=False)
```

```python
namedlinks(skipself=False)
```

```python
namedparams(include_uninit=True)
```

2.5. Standard Link implementations
params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu()

to_gpu (device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.StatefulPeepholeLSTM

class chainer.links.StatefulPeepholeLSTM (in_size, out_size)

Fully-connected LSTM layer with peephole connections.

This is a fully-connected LSTM layer with peephole connections as a chain. Unlike the LSTM link, this chain holds peep_i, peep_f and peep_o as child links besides upward and lateral.
Given a input vector x, Peephole returns the next hidden vector h' defined as

$$
a = \tanh(upward \cdot x + lateral \cdot h),
$$

$$
i = \sigma(upward \cdot x + lateral \cdot h + peep_i \cdot c),
$$

$$
f = \sigma(upward \cdot x + lateral \cdot h + peep_f \cdot c),
$$

$$
c' = a \odot i + f \odot c,
$$

$$
o = \sigma(upward \cdot x + lateral \cdot h + peep_o \cdot c'),
$$

$$
h' = o \tanh(c'),
$$

where σ is the sigmoid function, \odot is the element-wise product, c is the current cell state, c' is the next cell state and h is the current hidden vector.

Parameters

- `in_size` (`int`) – Dimension of the input vector x.
- `out_size` (`int`) – Dimension of the hidden vector h.

Variables

- `upward` (`Linear`) – Linear layer of upward connections.
- `lateral` (`Linear`) – Linear layer of lateral connections.
- `peep_i` (`Linear`) – Linear layer of peephole connections to the input gate.
- `peep_f` (`Linear`) – Linear layer of peephole connections to the forget gate.
- `peep_o` (`Linear`) – Linear layer of peephole connections to the output gate.
- `c` (`Variable`) – Cell states of LSTM units.
- `h` (`Variable`) – Output at the current time step.

Methods

`__call__(x)`

Updates the internal state and returns the LSTM outputs.

Parameters
`x` (`Variable`) – A new batch from the input sequence.

Returns
Outputs of updated LSTM units.

Return type
`Variable`

`__getitem__(name)`

Equivalent to `getattr`.

`add_link(name, link)`

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code
chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

add_param(name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)

Registers a parameter to the link.

Depreciated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy()
copyparams(link)

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.
init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)

register_persistent(name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name (str)** – Name of the attribute to be registered.

reset_state()
Resets the internal states.
It sets None to the c and h attributes.

serialize(serializer)
to_cpu()
to_gpu(device=None)
zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

- `update_enabled`
 - True if at least one parameter has an update rule enabled.

- `within_init_scope`
 - True if the current code is inside of an initialization scope.

 See `init_scope()` for the details of the initialization scope.

- `xp`
 - Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.StatelessLSTM

```python
class StatelessLSTM(in_size, out_size=None, lateral_init=None, upward_init=None, bias_init=None, forget_bias_init=None)
```

Stateless LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the `lstm()` function, this chain holds upward and lateral connections as child links. This link doesn’t keep cell and hidden states.

Parameters

- `in_size` *(int or None)* – Dimension of input vectors. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- `out_size` *(int)* – Dimensionality of output vectors.

Variables

- `upward` *(chainer.links.Linear)* – Linear layer of upward connections.

- `lateral` *(chainer.links.Linear)* – Linear layer of lateral connections.

Example

There are several ways to make a StatelessLSTM link.

Let a two-dimensional input array `x`, a cell state array `h`, and the output array of the previous step `h` be:

```python
>>> x = np.zeros((1, 10), dtype='f')
>>> c = np.zeros((1, 20), dtype='f')
>>> h = np.zeros((1, 20), dtype='f')
```

1. Give both `in_size` and `out_size` arguments:

```python
>>> l = L.StatelessLSTM(10, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
```
>>> h_new.shape
(1, 20)

2. Omit `in_size` argument or fill it with `None`:

The below two cases are the same.

```python
>>> l = L.StatelessLSTM(20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)
```

```python
>>> l = L.StatelessLSTM(None, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)
```

Methods

__call__(c, h, x)

Returns new cell state and updated output of LSTM.

Parameters

- `c` ([Variable](#)) – Cell states of LSTM units.
- `h` ([Variable](#)) – Output at the previous time step.
- `x` ([Variable](#)) – A new batch from the input sequence.

Returns Returns `(c_new, h_new)`, where `c_new` represents new cell state, and `h_new` is updated output of LSTM units.

Return type tuple of [~chainer.Variable](#)

__getitem__(name)

Equivalent to getattr.

add_link(name, link)

Registers a child link to this chain.

Depreciated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
• **name** *(str)* – Name of the child link. This name is also used as the attribute name.

• **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

children *

cleargrads *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

copyparams *(link)*

disable_update *

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update *

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu()

to_gpu (device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.
xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

2.5.2 Activation/loss/normalization functions with parameters

<table>
<thead>
<tr>
<th>Class/Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.BatchNormalization</code></td>
<td>Batch normalization layer on outputs of linear or convolution functions.</td>
</tr>
<tr>
<td><code>chainer.links.LayerNormalization</code></td>
<td>Layer normalization layer on outputs of linear functions.</td>
</tr>
<tr>
<td><code>chainer.links.BinaryHierarchicalSoftmax</code></td>
<td>Hierarchical softmax layer over binary tree.</td>
</tr>
<tr>
<td><code>chainer.links.BlackOut</code></td>
<td>BlackOut loss layer.</td>
</tr>
<tr>
<td><code>chainer.links.CRF1d</code></td>
<td>Linear-chain conditional random field loss layer.</td>
</tr>
<tr>
<td><code>chainer.links.SimplifiedDropconnect</code></td>
<td>Fully-connected layer with simplified dropconnect regularization.</td>
</tr>
<tr>
<td><code>chainer.links.PReLU</code></td>
<td>Parametric ReLU function as a link.</td>
</tr>
<tr>
<td><code>chainer.links.Maxout</code></td>
<td>Fully-connected maxout layer.</td>
</tr>
<tr>
<td><code>chainer.links.NegativeSampling</code></td>
<td>Negative sampling loss layer.</td>
</tr>
</tbody>
</table>

`chainer.links.BatchNormalization`

```python
class chainer.links.BatchNormalization(size, decay=0.9, eps=2e-05, dtype=<class 'numpy.float32'>, use_gamma=True, use_beta=True, initial_gamma=None, initial_beta=None)
```

Batch normalization layer on outputs of linear or convolution functions.

This link wraps the `batch_normalization()` and `fixed_batch_normalization()` functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statistics by moving averages, which can be used for instant evaluation in testing mode.

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute the population statistics, a user must use this mode to feed mini-batches running through whole training dataset.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-tuning mode.

Parameters

- `size (int or tuple of ints)` - Size (or shape) of channel dimensions.
- `decay (float)` - Decay rate of moving average. It is used on training.
- `eps (float)` - Epsilon value for numerical stability.
- `dtype (numpy.dtype)` - Type to use in computing.
- `use_gamma (bool)` - If True, use scaling parameter. Otherwise, use unit(1) which makes no effect.
- `use_beta (bool)` - If True, use shifting parameter. Otherwise, use unit(0) which makes no effect.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:
batch_normalization(), fixed_batch_normalization()

Variables

- gamma (Variable) – Scaling parameter.
- beta (Variable) – Shifting parameter.
- avg_mean (numpy.ndarray or cupy.ndarray) – Population mean.
- avg_var (numpy.ndarray or cupy.ndarray) – Population variance.
- N (int) – Count of batches given for fine-tuning.
- decay (float) – Decay rate of moving average. It is used on training.
- eps (float) – Epsilon value for numerical stability. This value is added to the batch variances.

Methods

__call__ (self, x, finetune=False)

Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation during training, and normalizes the input using batch statistics.

Warning: test argument is not supported anymore since v2. Instead, use chainer.using_config('train', False). See chainer.using_config().

Parameters

- x (Variable) – Input variable.
- finetune (bool) – If it is in the training mode and finetune is True, BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute population statistics for normalization, and normalizes the input using batch statistics.

add_param (name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.

- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

```python
add_persistent(name, value)
```
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.

- **value** – Value to be registered.

```python
addgrads(link)
```
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link (Link)** – Source link object.

```python
children()
```
Returns a generator of all child links.

Returns

A generator object that generates all child links.

```python
cleargrads()
```
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```python
copy()
```
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns

Copied link object.

Return type

`Link`

```python
copyparams(link)
```
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- **link (Link)** – Source link object.

```python
disable_update()
```
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

```python
enable_update()
```
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

Parameters *

skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters *

skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters *

include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters *

include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters *

name (str) – Name of the attribute to be registered.

2.5. Standard Link implementations
serialize(*serializer*)

Serializes the link object.

Parameters

- **serializer** *(AbstractSerializer)* – Serializer object.

start_finetuning()

Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method should be called before starting the fine-tuning mode again.

to_cpu()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns

- self

to_gpu(device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns

- self

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use *cleargrads()* instead.

Attributes

- **update_enabled**

 True if at least one parameter has an update rule enabled.

- **within_init_scope**

 True if the current code is inside of an initialization scope.

 See *init_scope()* for the details of the initialization scope.

- **xp**

 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns **numpy** or **cupy**.

chainer.links.LayerNormalization

[Source code](https://github.com/chainer/chainer/blob/master/chainer/links/layers.py)

```python
class chainer.links.LayerNormalization(size=None, eps=1e-06, initial_gamma=None, initial_beta=None)

Layer normalization layer on outputs of linear functions.
```

Warning: This feature is experimental. The interface can change in the future.
This link implements a “layer normalization” layer which normalizes the input units by statistics that are computed along the second axis, scales and shifts them. Parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

Parameters

- **size (int)** – Size of input units. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **eps (float)** – Epsilon value for numerical stability of normalization.
- **initial_gamma (Initializer)** – Initializer for scaling vector. If None, then the vector is filled by 1. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is set by it.
- **initial_beta (Initializer)** – Initializer for shifting vector. If None, then the vector is filled by 0. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is set by it.

Variables

- **gamma (Parameter)** – Scaling parameter.
- **beta (Parameter)** – Shifting parameter.
- **eps (float)** – Epsilon value for numerical stability.

See: Layer Normalization

Methods

- **call (x)**

 Apply layer normalization to given input.

 Parameters

 - **x (Variable)** – Batch vectors. Shape of this value must be \((batch_size, unit_size)\), e.g., the output of `linear()`.

 Returns

 Output of the layer normalization.

 Return type

 Variable

- **add_param (name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)**

 Registers a parameter to the link.

 Deprecated since version 2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
  link.add_param('W', shape=(5, 3))
  ```

 can be replaced by the following assignment.

  ```python
  with link.init_scope():
      link.W = chainer.Parameter(None, (5, 3))
  ```

 The latter is easier for IDEs to keep track of the attribute’s type.

 Parameters

 - **name (str)** – Name of the parameter. This name is also used as the attribute name.
 - **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• **dtype** – Data type of the parameter array.

• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

link *(Link)* – Source link object.

children *(link)*

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads *(link)*

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *(link)*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns

Copied link object.

Return type *Link*

copyparams *(link)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

link *(Link)* – Source link object.

disable_update *(link)*

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `False`.

enable_update *(link)*

Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

Returns a generator of all links under the hierarchy.

- Parameters `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.
- Returns A generator object that generates all links.

namedlinks(skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

- Parameters `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.
- Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

- Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.
- Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params(include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

- Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.
- Returns A generator object that generates all parameters.

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- Parameters `name (str)` – Name of the attribute to be registered.
serialize(serializer)
 Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
 Copies parameter variables and persistent values to CPU.
 This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
 Copies parameter variables and persistent values to GPU.
 This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds()
 Initializes all gradient arrays by zero.
 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
 True if at least one parameter has an update rule enabled.

within_init_scope
 True if the current code is inside of an initialization scope.

 See init_scope() for the details of the initialization scope.

xp
 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.BinaryHierarchicalSoftmax

class chainer.links.BinaryHierarchicalSoftmax (in_size, tree)
 Hierarchical softmax layer over binary tree.

 In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical softmax uses product of sigmoid functions. It costs only \(O(\log(n))\) time where \(n\) is the vocabulary size in average.

 At first a user need to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When a word \(x\) is given, exactly one path from the root of the tree to the leaf of the word exists. Let \(\text{path}(x) = ((e_1, b_1), \ldots, (e_m, b_m))\) be the path of \(x\), where \(e_i\) is an index of \(i\)-th internal node, and \(b_i \in \{-1, 1\}\) indicates
direction to move at \(i\)-th internal node (-1 is left, and 1 is right). Then, the probability of \(x\) is given as below:

\[
P(x) = \prod_{(e_i, b_i) \in \text{path}(x)} P(b_i | e_i) \\
= \prod_{(e_i, b_i) \in \text{path}(x)} \sigma(b_i x^T w_{e_i}),
\]

where \(\sigma(\cdot)\) is a sigmoid function, and \(w\) is a weight matrix.

This function costs \(O(\log(n))\) time as an average length of paths is \(O(\log(n))\), and \(O(n)\) memory as the number of internal nodes equals \(n - 1\).

Parameters

- **in_size (int)** – Dimension of input vectors.
- **tree** – A binary tree made with tuples like \(((1, 2), 3)\).

Variables

- \(W\) (Variable) – Weight parameter matrix.

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

Methods

\[\text{__call__}(x, t)\]

Computes the loss value for given input and ground truth labels.

Parameters

- **x** (Variable) – Input to the classifier at each node.
- **t** (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type Variable

\[\text{add_param}(name, \text{shape=}\text{None}, \text{dtype=\text{class} \text{'numpy.float32'}}, \text{initializer=}\text{None})\]

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within \text{init_scope()} instead. For example, the following code

```python
link.add_param('\text{W}', \text{shape=}(5, 3))
```

can be replaced by the following assignment.

```python
with link.init\_scope():
    link.W = chainer.Parameter(\text{None}, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** (`str`) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (**Link**) – Source link object.

children()

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type **Link**

copyparams(link)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (**Link**) – Source link object.

static create_huffman_tree(word_counts)

Makes a Huffman tree from a dictionary containing word counts.

This method creates a binary Huffman tree, that is required for **BinaryHierarchicalSoftmax**. For example, `{0: 8, 1: 5, 2: 6, 3: 4}` is converted to `(3, 1), (2, 0)`.

Parameters word_counts (**dict of int key and int or float values**) – Dictionary representing counts of words.

Returns Binary Huffman tree with tuples and keys of `word_counts`.

376 Chapter 2. Reference Manual
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links `(skipself=False)`
Returns a generator of all links under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks `(skipself=False)`
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams `(include_uninit=True)`
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit` (bool) – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params `(include_uninit=True)`
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` (bool) – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent `(name)`
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- `name (str)` – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters
- `serializer (AbstractSerializer)` – Serializer object.

to_cpu ()

to_gpu (device=None)

zerograds ()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads ()` instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope ()` for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.BlackOut

class chainer.links.BlackOut (in_size, counts, sample_size)
BlackOut loss layer.

See also:
`black_out ()` for more detail.

Parameters
- `in_size (int)` – Dimension of input vectors.
- `counts (int list)` – Number of each identifiers.
- `sample_size (int)` – Number of negative samples.

Variables
- `W (Parameter)` – Weight parameter matrix.
Methods

__call__(x, t)
Computes the loss value for given input and ground truth labels.

Parameters

- x (Variable) – Input of the weight matrix multiplication.
- t (Variable) – Batch of ground truth labels.

Returns
Loss value.
Return type
Variable

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- link (Link) – Source link object.

children()
Returns a generator of all child links.
Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

link (Link) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.
Parameters **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

Serializes the link object.

Parameters **serializer** *(AbstractSerializer)* – Serializer object.

to_cpu *

to_gpu *(device=None)*

zerograds *

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.
XP
Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.CRF1d

class chainer.links.CRF1d(n_label)
Linear-chain conditional random field loss layer.
This link wraps the crf1d() function. It holds a transition cost matrix as a parameter.

Parameters
n_label (int) – Number of labels.

See also:
crf1d() for more detail.

Variables
cost (Variable) – Transition cost parameter.

Methods

__call__(xs, ys, reduce='mean')

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.
Deprecation since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (*Link*) – Source link object.

argmax (*xs*)

Computes a state that maximizes a joint probability.

Parameters

- **xs** (*list of Variable*) – Input vector for each label.

Returns

A tuple of *Variable* representing each log-likelihood and a list representing the argmax path.

Return type

-tuple-

See also:

See `crf1d_argmax()` for more detail.

children

Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns

Copied link object.

Return type

-Link-

copyparams (*link*)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- **link** (*Link*) – Source link object.

disable_update

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

2.5. **Standard Link implementations**
init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters *skipself* *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters *skipself* *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters *include_uninit* *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*
Returns a generator of all parameters under the link hierarchy.

Parameters *include_uninit* *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters *name* *(str)* – Name of the attribute to be registered.

serialize *(serializer)*
Serializes the link object.
Parameters **serializer** (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters **device** – Target device specifier. If omitted, the current device is used.

Returns: self

zerograd()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use **cleargrads()** instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See **init_scope()** for the details of the initialization scope.

xp
Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns **numpy** or **cupy**.

chainer.links.SimplifiedDropconnect

class chainer.links.SimplifiedDropconnect(in_size, out_size, ratio=0.5, nobias=False, initialW=None, initial_bias=None)

Fully-connected layer with simplified dropconnect regularization.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the current implementation and the original one. The original version uses sampling with gaussian distribution before passing activation function, whereas the current implementation averages before activation.

Parameters

- **in_size**(int) – Dimension of input vectors. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **out_size**(int) – Dimension of output vectors.
- **nobias**(bool) – If True, then this link does not use the bias term.
• **initialW** *(3-D array or None)* – Initial weight value. If None, the default initializer is used. May also be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.

• **initial_bias** *(2-D array, float or None)* – Initial bias value. If None, the bias is set to 0. May also be a callable that takes numpy.ndarray or cupy.ndarray and edits its value.

Variables

• **W** *(Variable)* – Weight parameter.

• **b** *(Variable)* – Bias parameter.

See also:

`simplified_dropconnect()`

See also:

Methods

___call___ *(x, train=True, mask=None, use_batchwise_mask=True)*

Applies the simplified dropconnect layer.

Parameters

• **x** *(chainer.Variable or numpy.ndarray or cupy.ndarray)* – Batch of input vectors. Its first dimension is assumed to be the minibatch dimension.

• **train** *(bool)* – If True, executes simplified dropconnect. Otherwise, simplified dropconnect link works as a linear unit.

• **mask** *(None or chainer.Variable or numpy.ndarray or cupy.ndarray)* – If None, randomized simplified dropconnect mask is generated. Otherwise, The mask must be *(n, M, N)* or *(M, N)* shaped array, and use_batchwise_mask is ignored. Main purpose of this option is debugging. mask array will be used as a dropconnect mask.

• **use_batchwise_mask** *(bool)* – If True, dropped connections depend on each sample in mini-batch.

Returns Output of the simplified dropconnect layer.

Return type *Variable*

add_param *(name, shape=None, dtype=\(<\text{class}\ ‘\text{numpy.float32}\’\), initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not *None*, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

add_persistent (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (*Link*) – Source link object.

children()

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type *Link*

copyparams (*link*)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- **link** (*Link*) – Source link object.
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (`skipself=False`)
Returns a generator of all links under the hierarchy.

- **Parameters** `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all links.

titled Links (`skipself=False`)
Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all (path, link) pairs.

titled params (`include_uninit=True`)
Returns a generator of all parameters under the link hierarchy.

- **Parameters** `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

- **Returns** A generator object that generates all parameters. The paths are relative from this link.

params (`include_uninit=True`)
Returns a generator of all parameters under the link hierarchy.

- **Parameters** `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

- **Returns** A generator object that generates all parameters.

titled register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name (str)` – Name of the attribute to be registered.

serialize (serializer)

Serializes the link object.

- `serializer (AbstractSerializer)` – Serializer object.

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

- `device` – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

- `update_enabled` – True if at least one parameter has an update rule enabled.

- `within_init_scope` – True if the current code is inside of an initialization scope.

 See `init_scope()` for the details of the initialization scope.

- `xp` – Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.PReLU

class chainer.links.PReLU (shape=(), init=0.25)

Parametric ReLU function as a link.

Parameters

- `shape (tuple of ints)` – Shape of the parameter array.

- `init (float)` – Initial parameter value.
See the paper for details: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

See also:

\texttt{chainer.functions.prelu()}

\textbf{Variables} \(W \) (\texttt{Parameter}) – Coefficient of parametric ReLU.

\textbf{Methods}

\texttt{__call__}(x)

Applies the parametric ReLU activation function.

\textbf{Parameters} \(x \) (\texttt{Variable}) – Input variable.

\textbf{Returns} Output of the parametric ReLU function.

\textbf{Return type} \texttt{Variable}

\texttt{add_param}(name, shape=None, dtype=\texttt{<class ‘numpy.float32’>}, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a \texttt{Parameter} object directly to an attribute within \texttt{init_scope()} instead. For example, the following code

\begin{verbatim}
link.add_param('W', shape=(5, 3))
\end{verbatim}

can be replaced by the following assignment.

\begin{verbatim}
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

\textbf{Parameters}

- \texttt{name (str)} – Name of the parameter. This name is also used as the attribute name.

- \texttt{shape (int or tuple of ints)} – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

- \texttt{dtype} – Data type of the parameter array.

- \texttt{initializer} – If it is not \texttt{None}, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \texttt{dtype} argument is ignored.

\texttt{add_persistent}(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

\textbf{Parameters}

- \texttt{name (str)} – Name of the persistent value. This name is also used for the attribute name.

- \texttt{value} – Value to be registered.
addgrads \((link)\)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** (*Link*) – Source link object.

children()
Returns a generator of all child links.

Returns

A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns

Copied link object.

Return type

Link

copyparams \((link)\)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- **link** (*Link*) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

2.5. Standard Link implementations
```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

Parameters

- **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

- **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters

- **include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

Serializes the link object.

Parameters

- **serializer** *(AbstractSerializer)* – Serializer object.

to_cpu

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns

self

to_gpu *(device=None)*

Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

 Returns: self

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

- **update_enabled**

 True if at least one parameter has an update rule enabled.

- **within_init_scope**

 True if the current code is inside of an initialization scope.

 See `init_scope()` for the details of the initialization scope.

- **xp**

 Array module for this link.

 Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.Maxout

```python
class chainer.links.Maxout(in_size, out_size, pool_size, initialW=None, initial_bias=0)
```

Fully-connected maxout layer.

Let \(M, P \) and \(N \) be an input dimension, a pool size, and an output dimension, respectively. For an input vector \(x \) of size \(M \), it computes

\[
Y_i = \max_j(W_{ij} x + b_{ij}).
\]

Here \(W \) is a weight tensor of shape \((M, P, N) \), \(b \) an optional bias vector of shape \((M, P) \) and \(W_{ij} \) is a sub-vector extracted from \(W \) by fixing first and second dimensions to \(i \) and \(j \), respectively. Minibatch dimension is omitted in the above equation.

As for the actual implementation, this chain has a Linear link with a \((M \times P, N) \) weight matrix and an optional \(M \times P \) dimensional bias vector.

Parameters

- **in_size** *(int)* – Dimension of input vectors.
- **out_size** *(int)* – Dimension of output vectors.
- **pool_size** *(int)* – Number of channels.
- **initialW** *(3-D array or None)* – Initial weight value. If None, the default initializer is used to initialize the weight matrix.
- **initial_bias** *(2-D array, float or None)* – Initial bias value. If it is float, initial bias is filled with this value. If None, bias is omitted.
Variables \texttt{linear} (Link) – The Linear link that performs affine transformation.

See also:
\texttt{maxout()}

See also:

Methods

\texttt{__call__}(x)
Applies the maxout layer.

\textbf{Parameters} \hspace{1em} x (Variable) – Batch of input vectors.

\textbf{Returns} \hspace{1em} Output of the maxout layer.

\textbf{Return type} \hspace{1em} Variable

\texttt{__getitem__}(name)
Equivalent to getattr.

\texttt{add_link}(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within \texttt{init_scope()} instead. For example, the following code

\begin{verbatim}
chain.add_link('l1', L.Linear(3, 5))
\end{verbatim}

can be replaced by the following line.

\begin{verbatim}
with chain.init_scope():
 chain.l1 = L.Linear(3, 5)
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{name} (str) – Name of the child link. This name is also used as the attribute name.
 \item \texttt{link} (Link) – The link object to be registered.
\end{itemize}

\texttt{add_param}(name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a \texttt{Parameter} object directly to an attribute within \texttt{init_scope()} instead. For example, the following code

\begin{verbatim}
link.add_param('W', shape=(5, 3))
\end{verbatim}

can be replaced by the following assignment.

\begin{verbatim}
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

\textbf{Parameters}
• **name** (*str*) – Name of the parameter. This name is also used as the attribute name.

• **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not *None*, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

add_persistent(*name*, *value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads(*link*)

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(*link*)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to *False*.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to *True*.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for *Chain*) by an assignment. A *Parameter* object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the **init_scope** method, we can simply assign a *Parameter* object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

2.5. Standard Link implementations 395
links \(\text{skipself=False}\)

namedlinks \(\text{skipself=False}\)

namedparams \(\text{include_uninit=True}\)

params \(\text{include_uninit=True}\)

register_persistent \(\text{name}\)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If \text{name} has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- \text{name} \(\text{str}\) – Name of the attribute to be registered.

serialize \(\text{serializer}\)

to_cpu()

to_gpu \(\text{device=None}\)

zero_grads()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Depreciated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See \text{init_scope()} for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns \text{numpy} or \text{cupy}.

chainer.links.NegativeSampling

class chainer.links.NegativeSampling \(\text{in}_\text{size}, \text{counts}, \text{sample}_\text{size}, \text{power=0.75}\)

Negative sampling loss layer.

This link wraps the negative_sampling() function. It holds the weight matrix as a parameter. It also builds a sampler internally given a list of word counts.

Parameters

- \text{in}_\text{size} \(\text{int}\) – Dimension of input vectors.
- \text{counts} \(\text{int\ list}\) – Number of each identifiers.
- \text{sample}_\text{size} \(\text{int}\) – Number of negative samples.
• **power** *(float)* – Power factor α.

See also:

`negative_sampling()` for more detail.

Variables \mathbf{W} *(Variable)* – Weight parameter matrix.

Methods

`__call__(x, t, reduce='sum')`

Computes the loss value for given input and ground truth labels.

Parameters

- **x** *(Variable)* – Input of the weight matrix multiplication.
- **t** *(Variable)* – Batch of ground truth labels.
- **reduce** *(str)* – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, `ValueError` is raised.

Returns Loss value.

Return type Variable

`add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent(name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** *(Link)* – Source link object.

children *

Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type *Link*

copyparams *(link)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters
- **link** *(Link)* – Source link object.

disable_update *

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update *

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope *

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

 links (skipself=False)
 Returns a generator of all links under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with
 the first child link.

 Returns A generator object that generates all links.

 namedlinks (skipself=False)
 Returns a generator of all (path, link) pairs under the hierarchy.

 Parameters skipself (bool) – If True, then the generator skips this link and starts with
 the first child link.

 Returns A generator object that generates all (path, link) pairs.

 namedparams (include_uninit=True)
 Returns a generator of all (path, param) pairs under the hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
 this link.

 params (include_uninit=True)
 Returns a generator of all parameters under the link hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all parameters.

 register_persistent (name)
 Registers an attribute of a given name as a persistent value.

 This is a convenient method to register an existing attribute as a persistent value. If name has been already
 registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
 persistent value.

 Parameters name (str) – Name of the attribute to be registered.

 serialize (serializer)
 Serializes the link object.

 Parameters serializer (AbstractSerializer) – Serializer object.

 to_cpu()

 to_gpu (device=None)

 zerograds()
 Initializes all gradient arrays by zero.

 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
 backward compatibility.

 Deprecated since version v1.15: Use cleargrads() instead.
Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.
See init_scope() for the details of the initialization scope.

xp
Array module for this link.
Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

2.5.3 Machine learning models

chainer.links.Classifier
A simple classifier model.

class chainer.links.Classifier(predictor, lossfun=softmax_cross_entropy, accfun=accuracy, label_key=-1)
A simple classifier model.
This is an example of chain that wraps another chain. It computes the loss and accuracy based on a given input/label pair.

Parameters

• predictor (Link) – Predictor network.
• lossfun (function) – Loss function.
• accfun (function) – Function that computes accuracy.
• label_key (int or str) – Key to specify label variable from arguments. When it is int, a variable in positional arguments is used. And when it is str, a variable in keyword arguments is used.

Variables

• predictor (Link) – Predictor network.
• lossfun (function) – Loss function.
• accfun (function) – Function that computes accuracy.
• y (Variable) – Prediction for the last minibatch.
• loss (Variable) – Loss value for the last minibatch.
• accuracy (Variable) – Accuracy for the last minibatch.
• compute_accuracy (bool) – If True, compute accuracy on the forward computation. The default value is True.

Note: This link uses chainer.softmax_cross_entropy() with default arguments as a loss function (specified by lossfun), if users do not explicitly change it. In particular, the loss function does not sup-
port double backpropagation. If you need second or higher order differentiation, you need to turn it on with `enable_double_backprop=True`:

```python
>>> import chainer.functions as F
>>> import chainer.links as L
>>> def lossfun(x, t):
...     return F.softmax_cross_entropy(x, t, enable_double_backprop=True)
>>> predictor = L.Linear(10)
>>> model = L.Classifier(predictor, lossfun=lossfun)
```

Methods

- **`__call__`** (*args, **kwargs*)
 Computes the loss value for an input and label pair. It also computes accuracy and stores it to the attribute.

 Parameters
 - `args` (*list of ~chainer.Variable*) – Input minibatch.

 When `label_key` is int, the corresponding element in `args` is treated as ground truth labels. And when it is str, the element in `kwargs` is used. The all elements of `args` and `kwargs` except the ground truth labels are features. It feeds features to the predictor and compare the result with ground truth labels.

 Returns Loss value.

 Return type `Variable`

- **`__getitem__`** *(name)*
 Equivalent to `getattr`.

- **`add_link`** *(name, link)*
 Registers a child link to this chain.

 Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
  chain.add_link('l1', L.Linear(3, 5))
  ```

 can be replaced by the following line.

  ```python
  with chain.init_scope():
      chain.l1 = L.Linear(3, 5)
  ```

 The latter is easier for IDEs to keep track of the attribute’s type.

 Parameters
 - `name` (*str*) – Name of the child link. This name is also used as the attribute name.
 - `link` (*Link*) – The link object to be registered.
add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)
children ()
cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()
copyparams (link)
disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

namedlinks(skipself=False)

namedparams(include_uninit=True)

params(include_uninit=True)

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name *(str)* – Name of the attribute to be registered.

serialize(serializer)

to_cpu()

to_gpu(device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

compute_accuracy = True

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

2.5.4 Pre-trained models

Pre-trained models are mainly used to achieve a good performance with a small dataset, or extract a semantic feature
vector. Although `CaffeFunction` automatically loads a pre-trained model released as a caffemodel, the following
link models provide an interface for automatically converting caffemodels, and easily extracting semantic feature
vectors.

For example, to extract the feature vectors with `VGG16Layers`, which is a common pre-trained model in the field of
image recognition, users need to write the following few lines:

```python
from chainer.links import VGG16Layers
from PIL import Image

model = VGG16Layers()
img = Image.open("path/to/image.jpg")
feature = model.extract([], layers=["fc7"])["fc7"]
```

where `fc7` denotes a layer before the last fully-connected layer. Unlike the usual links, these classes automatically
load all the parameters from the pre-trained models during initialization.

VGG16Layers

| **chainer.links.VGG16Layers** | A pre-trained CNN model with 16 layers provided by VGG
| **chainer.links.model.vision.vgg.prepare** | Converts the given image to the numpy array for VGG

chainer.links.VGG16Layers

class chainer.links.VGG16Layers (*pretrained_model=’auto’*)

A pre-trained CNN model with 16 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another
chain model, stores it on your local directory, and initializes all the parameters with it. This model would
be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a
different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use `convert_caffemodel_to_npz` classmethod instead.

See: K. Simonyan and A. Zisserman, *Very Deep Convolutional Networks for Large-Scale Image Recognition*

Parameters

- **pretrained_model** (**str**) – the destination of the pre-trained chainer model se-
 rialized as a .npz file. If this argument is specified as auto, it automatically down-
 loads the caffemodel from the internet. Note that in this case the converted chainer model
 is stored on `SCHAINER_DATASET_ROOT/pfnet/chainer/models` directory, where
 `SCHAINER_DATASET_ROOT` is set as `$HOME/.chainer/dataset` unless you specify an-
 other value as an environment variable. The converted chainer model is automatically used from
 the second time. If the argument is specified as `None`, all the parameters are not initialized.
by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.
initializers.Normal(scale=0.01).

Variables **available_layers** (list of str) – The list of available layer names used by
__call__ and extract methods.

Methods

__call__(self, x, layers=['prob'])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• **x** (Variable) – Input variable.
• **layers** (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** (str) – Name of the child link. This name is also used as the attribute name.
• **link** (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

2.5. Standard Link implementations 405
```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)` – Name of the parameter. This name is also used as the attribute name.
- `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
- `initializer` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)` – Name of the persistent value. This name is also used for the attribute name.
- `value` – Value to be registered.

addgrads (link)

children ()

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz (path_caffemodel, path_npz)

Converts a pre-trained caffemodel to a chainer model.

Parameters

- `path_caffemodel (str)` – Path of the pre-trained caffemodel.
- `path_npz (str)` – Path of the converted chainer model.

copy ()

copyparams (link)

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

extract (self, images, layers=['fc7'], size=(224, 224))

Extracts all the feature maps of given images.
The difference of directly executing __call__ is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('enable_backprop', not volatile) respectively. See chainer.using_config().

Parameters

- **images** (iterable of PIL.Image or numpy.ndarray) – Input images.
- **layers** (list of str) – The list of layer names you want to extract.
- **size** (pair of ints) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is None, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of __chainer.Variable_

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

predict (images, oversample=True)

Computes all the probabilities of given images.

Parameters

- **images** (iterable of PIL.Image or numpy.ndarray) – Input images.
• `oversample (bool)` – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

 Returns Output that contains the class probabilities of given images.

 Return type `Variable`

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name (str)` – Name of the attribute to be registered.

`serialize (serializer)`

to_cpu ()

to_gpu (device=None)

`zerograds ()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads ()` instead.

Attributes

`available_layers`

`functions`

`update_enabled`

 True if at least one parameter has an update rule enabled.

`within_init_scope`

 True if the current code is inside of an initialization scope.

 See `init_scope ()` for the details of the initialization scope.

`xp`

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

```
chainer.links.model.vision.vgg.prepare
```

`chainer.links.model.vision.vgg.prepare (image, size=(224, 224))`

Converts the given image to the numpy array for VGG models.

Note that you have to call this method before `__call__` because the pre-trained vgg model requires to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters

- `image (PIL.Image or numpy.ndarray)` – Input image. If an input is numpy. ndarray, its shape must be `(height, width), (height, width, channels), or (channels, height, width), and the order of the channels must be RGB.
• **size** (*pair of ints*) – Size of converted images. If `None`, the given image is not resized.

Returns
The converted output array.

Return type
`numpy.ndarray`

GoogLeNet

<table>
<thead>
<tr>
<th><code>chainer.links.GoogLeNet</code></th>
<th>A pre-trained GoogLeNet model provided by BVLC.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.model.vision.googlenet.prepare</code></td>
<td>Converts the given image to the numpy array for GoogLeNet.</td>
</tr>
</tbody>
</table>

chainer.links.GoogLeNet

```python
class chainer.links.GoogLeNet (pretrained_model='auto')
```

A pre-trained GoogLeNet model provided by BVLC.

When you specify the path of the pre-trained chainer model serialized as a `.npz` file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use `convert_caffemodel_to_npz` classmethod instead.

GoogLeNet, which is also called Inception-v1, is an architecture of convolutional neural network proposed in 2014. This model is relatively lightweight and requires small memory footprint during training compared with modern architectures such as ResNet. Therefore, if you fine-tune your network based on a model pre-trained by ImageNet and need to train it with large batch size, GoogLeNet may be useful. On the other hand, if you just want an off-the-shelf classifier, we recommend you to use ResNet50 or other models since they are more accurate than GoogLeNet.

The original model is provided here: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

Parameters

- **pretrained_model** (*str*) – the destination of the pre-trained chainer model serialized as a `.npz` file. If this argument is specified as `auto`, it automatically downloads the caffemodel from the internet. Note that in this case the converted chainer model is stored on `$CHAINER_DATASET_ROOT/pfnet/chainer/models` directory, where `$CHAINER_DATASET_ROOT` is set as `$HOME/.chainer/dataset` unless you specify another value as a environment variable. The converted chainer model is automatically used from the second time. If the argument is specified as `None`, all the parameters are not initialized by the pre-trained model, but the default initializer used in BVLC, i.e., `chainer.initializers.LeCunUniform(scale=1.0)`. Note that, in Caffe, when `weight_filler` is specified as “xavier” type without `variance_norm` parameter, the weights are initialized by Uniform(-s, s), where $s = \sqrt{\frac{3}{\text{fan}_{in}}}$ and `fan_in` is the number of input units. This corresponds to LeCunUniform in Chainer but not GlorotUniform.

Variables

- **available_layers** (*list of str*) – The list of available layer names used by `__call__` and `extract` methods.

Methods

```python
__call__(self, x, layers=['prob'])
```

Computes all the feature maps specified by `layers`.

2.5. Standard Link implementations 409
Parameters
- **x (Variable)** – Input variable. It should be prepared by `prepare` function.
- **layers (list of str)** – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `-chainer.Variable`

```python
__getitem__(name)
```
Equivalent to `getattr`.

```python
add_link(name, link)
```
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name (str)** – Name of the child link. This name is also used as the attribute name.
- **link (Link)** – The link object to be registered.

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent `(name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)` – Name of the persistent value. This name is also used for the attribute name.
- `value` – Value to be registered.

addgrads `(link)`

- `children()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz `(path_caffemodel, path_npz)`

Converts a pre-trained caffemodel to a chainer model.

Parameters

- `path_caffemodel (str)` – Path of the pre-trained caffemodel.
- `path_npz (str)` – Path of the converted chainer model.

copy()

- `copyparams (link)`

disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

extract `(self, images, layers=['pool5'], size=(224, 224))`

Extracts all the feature maps of given images.

The difference of directly executing `__call__` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls `prepare` and `__call__` functions.

Warning: `train` and `volatile` arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('enable_backprop', not volatile)` respectively. See `chainer.using_config()`.

Parameters

- `images (iterable of PIL.Image or numpy.ndarray)` – Input images.

2.5. Standard Link implementations
• **layers** (*list of str*) – The list of layer names you want to extract.

• **size** (*pair of ints*) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `<chainer.Variable`

init_scope() (skipself=False)

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

predict (images, oversample=True)

Computes all the probabilities of given images.

Parameters

• **images** (*iterable of PIL.Image or numpy.ndarray*) – Input images.

• **oversample** (*bool*) – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `<Variable`

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name` (*str*) – Name of the attribute to be registered.

serialize (serializer)
to_cpu()

to_gpu(device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

available_layers

functions

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.model.vision.googlenet.prepare

chainer.links.model.vision.googlenet.prepare(image, size=(224, 224))

Converts the given image to the numpy array for GoogLeNet.

Note that you have to call this method before `__call__` because the pre-trained GoogLeNet model requires to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters

- **image** *(PIL.Image or numpy.ndarray)* – Input image. If an input is numpy. ndarray, its shape must be (height, width), (height, width, channels), or (channels, height, width), and the order of the channels must be RGB.

- **size** *(pair of ints)* – Size of converted images. If None, the given image is not resized.

Returns

The converted output array.

Return type

`numpy.ndarray`

Residual Networks

chainer.links.model.vision.resnet.

ResNetLayers

A pre-trained CNN model provided by MSRA.
Table 2.46 – continued from previous page

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.ResNet50Layers</code></td>
<td>A pre-trained CNN model with 50 layers provided by MSRA.</td>
</tr>
<tr>
<td><code>chainer.links.ResNet101Layers</code></td>
<td>A pre-trained CNN model with 101 layers provided by MSRA.</td>
</tr>
<tr>
<td><code>chainer.links.ResNet152Layers</code></td>
<td>A pre-trained CNN model with 152 layers provided by MSRA.</td>
</tr>
<tr>
<td><code>chainer.links.model.vision.resnet.prepare</code></td>
<td>Converts the given image to the numpy array for ResNets.</td>
</tr>
</tbody>
</table>

`chainer.links.model.vision.resnet.ResNetLayers`

class `chainer.links.model.vision.resnet.ResNetLayers(pretrained_model, n_layers)`

A pre-trained CNN model provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a `.npz` file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use `convert_caffemodel_to_npz` classmethod instead.

See: K. He et al., Deep Residual Learning for Image Recognition

Parameters

- **pretrained_model** (str) – the destination of the pre-trained chainer model serialized as a `.npz` file. If this argument is specified as auto, it automatically loads and converts the caffemodel from `$CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-{n-layers}-model.caffemodel`, where `$CHAINER_DATASET_ROOT` is set as `$HOME/.chainer/dataset` unless you specify another value by modifying the environment variable and `{n_layers}` is replaced with the specified number of layers given as the first argument to this constructor. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., `chainer.initializers.HeNormal(scale=1.0)`.

- **n_layers** (int) – The number of layers of this model. It should be either 50, 101, or 152.

Variables

available_layers (list of str) – The list of available layer names used by `__call__` and `extract` methods.

Methods

- **`__call__`(self, x, layers=['prob'])**

 Computes all the feature maps specified by layers.

 Warning: test argument is not supported anymore since v2. Instead, use `chainer.using_config('train', train)`. See `chainer.using_config()`.

Parameters
• **x** (*Variable*) – Input variable.
• **layers** (*list of str*) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

```
__getitem__(name)
```
Equivalent to getattr.

```
add_link(name, link)
```
Registers a child link to this chain.

Depreciated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** (*str*) – Name of the child link. This name is also used as the attribute name.
• **link** (*Link*) – The link object to be registered.

```
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```
Registers a parameter to the link.

Depreciated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
• **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• **dtype** – Data type of the parameter array.
• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

2.5. Standard Link implementations

415
add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

children ()
cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz (path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters
- **path_caffemodel** *(str)* – Path of the pre-trained caffemodel.
- **path_npz** *(str)* – Path of the converted chainer model.

copy ()
copyparams (link)
copyparams (link)
disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract (self, images, layers=['pool5'], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing **call** is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls **prepare** and **call** functions.

Warning: test and volatile arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('enable_backprop', not volatile) respectively. See chainer.using_config().

Parameters
- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
- **layers** *(list of str)* – The list of layer names you want to extract.
• **size** *(pair of ints)* – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `chainer.Variable`

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

params *(include_uninit=True)*

predict *(images, oversample=True)*

Computes all the probabilities of given images.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
- **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `Variable`

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

to_cpu()
to_gpu (device=None)

zerograds ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads () instead.

Attributes

available_layers

functions

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.ResNet50Layers

class chainer.links.ResNet50Layers (pretrained_model='auto')

A pre-trained CNN model with 50 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet50 has 25,557,096 trainable parameters, and it’s 58% and 43% fewer than ResNet101 and ResNet152, respectively. On the other hand, the top-5 classification accuracy on ImageNet dataset drops only 0.7% and 1.1% from ResNet101 and ResNet152, respectively. Therefore, ResNet50 may have the best balance between the accuracy and the model size. It would be basically just enough for many cases, but some advanced models for object detection or semantic segmentation use deeper ones as their building blocks, so these deeper ResNets are here for making reproduction work easier.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

pretrained_model (str) – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-50-model.caffemodel, where $CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory
and automatically used from the next time. If this argument is specified as `None`, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., `chainer.initializers.HeNormal(scale=1.0)

Variables

available_layers *(list of str)* – The list of available layer names used by `__call__` and `extract` methods.

Methods

__call__ *(self, x, layers=['prob'])*

Computes all the feature maps specified by `layers`.

```
Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().
```

Parameters

- **x** *(Variable)* – Input variable.
- **layers** *(list of str)* – The list of layer names you want to extract.

Returns A dictionary in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__ *(name)*

Equivalent to `getattr`.

add_link *(name, link)*

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int* or *tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

children ()

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

convert_caffemodel_to_npz (*path_caffemodel, path_npz, n_layers=50*)

Converts a pre-trained caffemodel to a chainer model.

Parameters

- **path_caffemodel** (*str*) – Path of the pre-trained caffemodel.
- **path_npz** (*str*) – Path of the converted chainer model.

copy ()

copyparams (*link*)

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `False`.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `True`.

extract (*self, images, layers=['pool5'], size=(224, 224))

Extracts all the feature maps of given images.
The difference of directly executing `__call__` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls `prepare` and `__call__` functions.

Warning: test and volatile arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('enable_backprop', not volatile)` respectively. See `chainer.using_config()`.

Parameters
- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
- **layers** *(list of str)* – The list of layer names you want to extract.
- **size** *(pair of ints)* – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `~chainer.Variable`

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

Links *(skipself=False)*

NamedLinks *(skipself=False)*

NamedParams *(include_uninit=True)*

Params *(include_uninit=True)*

Predict *(images, oversample=True)*

Computes all the probabilities of given images.

Parameters
- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
• **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type **Variable**

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

to_cpu *

to_gpu *(device=None)*

zerograds *

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

available_layers

functions

update_enabled

within_init_scope

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.ResNet101Layers

class **chainer.links.ResNet101Layers**(pretrained_model='auto')

A pre-trained CNN model with 101 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a `.npz` file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike `VGG16Layers`, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.
If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet101 has 44,549,224 trainable parameters, and it’s 43% fewer than ResNet152 model, while the top-5 classification accuracy on ImageNet dataset drops 1.1% from ResNet152. For many cases, ResNet50 may have the best balance between the accuracy and the model size.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

pretrained_model (str) – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-101-model.caffemodel, where $CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

Variables

available_layers (list of str) – The list of available layer names used by __call__ and extract methods.

Methods

__call__(self, x, layers=['prob'])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().

Parameters

* x (Variable) – Input variable.
* layers (list of str) – The list of layer names you want to extract.

Returns
A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type
Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```

Registers a parameter to the link.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

```python
add_persistent(name, value)
```

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

```python
addgrads(link)
```

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```python
convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
```

Converts a pre-trained caffemodel to a chainer model.

Parameters

- **path_caffemodel** *(str)* – Path of the pre-trained caffemodel.
- **path_npz** *(str)* – Path of the converted chainer model.
copyparams (*link*)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

extract (*self, images, layers=['pool5'], size=(224, 224))

Extracts all the feature maps of given images.

The difference of directly executing `__call__` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls `prepare` and `__call__` functions.

Warning: `test` and `volatile` arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('enable_backprop', not volatile)` respectively. See `chainer.using_config()`.

Parameters

- **images** (*iterable of PIL.Image or numpy.ndarray*) – Input images.
- **layers** (*list of str*) – The list of layer names you want to extract.
- **size** (*pair of ints*) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `~chainer.Variable`

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()

        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

2.5. Standard Link implementations
links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

predict (images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• oversample (bool) – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu ()

to_gpu (device=None)

zerograds ()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

available_layers

functions

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.
chainer.links.ResNet152Layers

class chainer.links.ResNet152Layers(pretrained_model='auto')
A pre-trained CNN model with 152 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet152 has 60,192,872 trainable parameters, and it’s the deepest ResNet model and it achieves the best result on ImageNet classification task in ILSVRC 2015.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

pretrained_model (str) – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-152-model.caffemodel, where $CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

Variables

available_layers (list of str) – The list of available layer names used by __call__ and extract methods.

Methods

__call__ (self, x, layers=['prob'])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable.
• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__ (name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.
Deprecated since version v2.0.0: Assign the child link directly to an attribute within \texttt{init_scope()} instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- \texttt{name (str)} – Name of the child link. This name is also used as the attribute name.
- \texttt{link (Link)} – The link object to be registered.

\texttt{add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)}

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a \texttt{Parameter} object directly to an attribute within \texttt{init_scope()} instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- \texttt{name (str)} – Name of the parameter. This name is also used as the attribute name.
- \texttt{shape (int or tuple of ints)} – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- \texttt{dtype} – Data type of the parameter array.
- \texttt{initializer} – If it is not \texttt{None}, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \texttt{dtype} argument is ignored.

\texttt{add_persistent (name, value)}

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- \texttt{name (str)} – Name of the persistent value. This name is also used for the attribute name.
- \texttt{value} – Value to be registered.

\texttt{add_grads (link)}

\texttt{children ()}
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.
• path_npz (str) – Path of the converted chainer model.

copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[‘pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since v2. Instead, use chainer.using_config(‘train’, train) and chainer.using_config(‘enable_backprop’, not volatile) respectively. See chainer.using_config().

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
• layers (list of str) – The list of layer names you want to extract.
• size (pair of ints) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is None, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.
Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links` (`skipself=False`)
`namedlinks` (`skipself=False`)
`namedparams` (`include_uninit=True`)
`params` (`include_uninit=True`)
`predict` (`images, oversample=True`)
Computes all the probabilities of given images.

Parameters

- **images** (`iterable of PIL.Image or numpy.ndarray`) – Input images.
- **oversample** (`bool`) – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns
Output that contains the class probabilities of given images.

Return type
`Variable`

`register_persistent` (**name**)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
`name` (**str**) – Name of the attribute to be registered.

`serialize` (**serializer**)

`to_cpu()`

`to_gpu` (**device=None**)

`zerograds` ()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

Attributes

`available_layers`

`functions`
update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See `init_scope()` for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns `numpy` or `cupy`.

chainer.links.model.vision.resnet.prepare

chainer.links.model.vision.resnet.prepare(image, size=(224, 224))

Converts the given image to the numpy array for ResNets.

Note that you have to call this method before `__call__` because the pre-trained resnet model requires to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters

- **image** (`PIL.Image` or `numpy.ndarray`) – Input image. If an input is `numpy.ndarray`, its shape must be `(height, width), (height, width, channels), or (channels, height, width)`, and the order of the channels must be RGB.

- **size** (`pair of ints`) – Size of converted images. If `None`, the given image is not resized.

Returns
The converted output array.

Return type
`numpy.ndarray`

Compatibility with other frameworks

<table>
<thead>
<tr>
<th>chainer.links.TheanoFunction</th>
<th>Theano function wrapper.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.links.caffe.CaffeFunction</td>
<td>Caffe emulator based on the model file of Caffe.</td>
</tr>
</tbody>
</table>

chainer.links.TheanoFunction

class chainer.links.TheanoFunction(inputs, outputs)

Theano function wrapper.

Warning: This feature is experimental. The interface can change in the future.

This function wraps Theano function as a `chainer.Link`. A user needs to make input Theano variables and output Theano variables. This function automatically creates Theano function for forward calculation and backward calculation from inputs and outputs. And then, it sends data in `chainer.Variable` to the function and gets results from Theano.

Example
```python
>>> import theano
>>> x = theano.tensor.fvector()
>>> y = theano.tensor.fvector()
>>> z = x + y
>>> w = x - y
>>> f = L.TheanoFunction(inputs=[x, y], outputs=[z, w])
>>> a = chainer.Variable(np.array([1, 2], dtype='f'))
>>> b = chainer.Variable(np.array([2, 3], dtype='f'))
>>> c, d = f(a, b)
>>> c.data
array([ 3.,  5.], dtype=float32)
>>> d.data
array([-1., -1.], dtype=float32)
```

Note: The current implementation always copies `cupy.ndarray` to CPU.

Parameters

- **inputs** (tuple of `theano.tensor.TensorVariable`) – Input variables of Theano. This function accepts the same number of `Variables` in forward computation.

- **outputs** (tuple of `theano.tensor.TensorVariable`) – Output variables of Theano. The function returns the same number of `Variables` as `outputs`.

Methods

- **__call__** (*args*)

 - **add_param** (*name*, shape=None, dtype=`<class 'numpy.float32'>`, initializer=None)

 Registers a parameter to the link.

 Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

    ```python
    link.add_param('W', shape=(5, 3))
    ```

 can be replaced by the following assignment.

    ```python
    with link.init_scope():
        link.W = chainer.Parameter(None, (5, 3))
    ```

 The latter is easier for IDEs to keep track of the attribute’s type.

 Parameters

 - **name** (str) – Name of the parameter. This name is also used as the attribute name.

 - **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

 - **dtype** – Data type of the parameter array.

 - **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.
add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name (str)** – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads (link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters **link** (Link) – Source link object.

children ()

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type **Link**

copyparams (link)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters **link** (Link) – Source link object.

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()

Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links (skipself=False)`

Returns a generator of all links under the hierarchy.

- **Parameters**
 - `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.

- **Returns**
 - A generator object that generates all links.

`namedlinks (skipself=False)`

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters**
 - `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.

- **Returns**
 - A generator object that generates all (path, link) pairs.

`namedparams (include_uninit=True)`

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters**
 - `include_uninit (bool)` – If True, it also generates uninitialized parameters.

- **Returns**
 - A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

- **Parameters**
 - `include_uninit (bool)` – If True, it also generates uninitialized parameters.

- **Returns**
 - A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters**
 - `name (str)` – Name of the attribute to be registered.

`serialize (serializer)`

Serializes the link object.

- **Parameters**
 - `serializer (AbstractSerializer)` – Serializer object.
to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

chainer.links.caffe.CaffeFunction
class chainer.links.caffe.CaffeFunction(model_path)
Caffe emulator based on the model file of Caffe.

Given a protocol buffers file of a Caffe model, this class loads and emulates it on Variable objects. It supports the official reference models provided by BVLC.

Note: CaffeFunction ignores the following layers:

• Layers that CaffeFunction does not support (including data layers)
• Layers that have no top blobs
• Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)
Warning: It does not support full compatibility against Caffe. Some layers and configurations are not implemented in Chainer yet, though the reference models provided by the BVLC team are supported except data layers.

Example

Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply written as follows:

```python
# Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

# Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
...  # (Fill the minibatch here)

# Forward the pre-trained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])
```

The result y contains the Variable corresponding to the fc8 blob. The computational graph is memorized as a usual forward computation in Chainer, so we can run backprop through this pre-trained net.

Parameters

- **model_path** *(str)* – Path to the binary-proto model file of Caffe.

Variables

- **forwards** *(dict)* – A mapping from layer names to corresponding functions.

Methods

- **__call__(self, inputs, outputs, disable=())**

 Executes a sub-network of the network.

 This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output blobs as *Variable* objects.

 Warning: train argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().

Parameters

- **inputs** *(dict)* – A dictionary whose key-value pairs indicate initial correspondences between blob names and *Variable* objects.

- **outputs** *(Iterable)* – A list of blob names whose corresponding *Variable* objects are returned.

- **disable** *(Iterable)* – A list of layer names that will be ignored during the forward computation.
Returns A tuple of output Variable objects corresponding to elements of the outputs argument.

Return type tuple

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```
chain.add_link('ll', L.Linear(3, 5))
```
can be replaced by the following line.

```
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the child link. This name is also used as the attribute name.
- link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.
Parameters

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

Methods

- **addgrads** *(link)*
- **children** *(link)*
- **cleargrads** *(link)*

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

- **copy** *(link)*

- **copyparams** *(link)*

- **disable_update** *(link)*

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

- **enable_update** *(link)*

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

- **init_scope** *(link)*

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

- **links** *(skipself=False)*
- **namedlinks** *(skipself=False)*
- **namedparams** *(include_uninit=True)*
- **params** *(include_uninit=True)*

Methods

- **register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (str) – Name of the attribute to be registered.
serialize(serializer)

to_cpu()

to_gpu(device=None)

zerograds()

 Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

Attributes

update_enabled

True if at least one parameter has an update rule enabled.

within_init_scope

True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp

Array module for this link.

Depending on which of CPU/GPU this link is on, this property returns numpy or cupy.

2.6 Optimizers

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.optimizers.AdaDelta</td>
<td>Zeiler’s ADADELTA.</td>
</tr>
<tr>
<td>chainer.optimizers.Adam</td>
<td>Adam optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.MomentumSGD</td>
<td>Momentum SGD optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.NesterovAG</td>
<td>Nesterov’s Accelerated Gradient.</td>
</tr>
<tr>
<td>chainer.optimizers.RMSprop</td>
<td>RMSprop optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.RMSpropGraves</td>
<td>Alex Graves’s RMSprop.</td>
</tr>
<tr>
<td>chainer.optimizers.SGD</td>
<td>Vanilla Stochastic Gradient Descent.</td>
</tr>
<tr>
<td>chainer.optimizers.SMORMS3</td>
<td>Simon Funk’s SMORMS3.</td>
</tr>
</tbody>
</table>

2.6.1 chainer.optimizers.AdaDelta

class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)

Zeiler’s ADADELTA.

Parameters

- **rho (float)** – Exponential decay rate of the first and second order moments.
- **eps (float)** – Small value for the numerical stability.
Methods

add_hook *(hook, name=None)*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

- **hook** *(function)* – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

- **name** *(str)* – Name of the registration. If omitted, `hook.name` is used by default.

call_hooks *

Invokes hook functions in registration order.

create_update_rule *

new_epoch *

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads *

Reallocation of gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook *(name)*

Removes a hook function.

Parameters *name* *(str)* – Registered name of the hook function to remove.

serialize *(serializer)*

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters *serializer* *(AbstractSerializer)* – Serializer or deserializer object.

setup *(link)*

update *(lossfun=None, *args, **kwds)*

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.
use_cleargrads \((use=True)\)

Enables or disables use of cleargrads() in update.

Parameters

- **use** \((bool)\) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

Attributes

- **eps**
 - Alias to self.hyperparam.eps

- **rho**
 - Alias to self.hyperparam.rho

2.6.2 chainer.optimizers.AdaGrad

class chainer.optimizers.AdaGrad \((lr=0.001, eps=1e-08)\)

AdaGrad optimizer.

See: http://jmlr.org/papers/v12/duchi11a.html

Parameters

- **lr** \((float)\) – Learning rate.
- **eps** \((float)\) – Small value for the numerical stability.

Methods

- **add_hook** \((hook, name=None)\)
 - Registers a hook function.

 Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

 Parameters

 - **hook** \((function)\) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
 - **name** \((str)\) – Name of the registration. If omitted, hook.name is used by default.

- **call_hooks** ()
 - Invokes hook functions in registration order.

- **create_update_rule** ()

- **new_epoch** ()
 - Starts a new epoch.

 This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.
reallocate_cleared_grads()

Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook(name)

Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states
• Global states (t and epoch)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads(use=True)

Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograd is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograd(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

Attributes

eps

Alias to self.hyperparam.eps

lr

Alias to self.hyperparam.lr

2.6.3 chainer.optimizers.Adam

class chainer.optimizers.Adam (alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08)

Adam optimizer.
See: http://arxiv.org/abs/1412.6980v8

Parameters

- **alpha** *(float)* – Step size.
- **beta1** *(float)* – Exponential decay rate of the first order moment.
- **beta2** *(float)* – Exponential decay rate of the second order moment.
- **eps** *(float)* – Small value for the numerical stability.

Methods

add_hook *(hook, name=None)*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

- **hook** *(function)* – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name** *(str)* – Name of the registration. If omitted, `hook.name` is used by default.

call_hooks *

Invokes hook functions in registration order.

create_update_rule()

new_epoch()

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()

Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook(name)

Removes a hook function.

Parameters **name** *(str)* – Registered name of the hook function to remove.

serialize(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters **serializer** *(AbstractSerializer)* – Serializer or deserializer object.

setup(link)
update *(lossfun=None, *args, **kwds)*

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads *(use=True)*

Enables or disables use of `cleargrads()` in `update`.

Parameters

- **use** *(bool)* – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

Attributes

- **alpha**

 Alias to `self.hyperparam.alpha`

- **beta1**

 Alias to `self.hyperparam.beta1`

- **beta2**

 Alias to `self.hyperparam.beta2`

- **eps**

 Alias to `self.hyperparam.eps`

- **lr**

2.6.4 chainer.optimizers.MomentumSGD

class chainer.optimizers.MomentumSGD *(lr=0.01, momentum=0.9)*

Momentum SGD optimizer.

Parameters

- **lr** *(float)* – Learning rate.
- **momentum** *(float)* – Exponential decay rate of the first order moment.

Methods

add_hook *(hook, name=None)*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters
• **hook** *(function)* – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

• **name** *(str)* – Name of the registration. If omitted, `hook.name` is used by default.

call_hooks()
Invokes hook functions in registration order.

create_update_rule()

new_epoch()
Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters

- **name** *(str)* – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters

- **serializer** *(AbstractSerializer)* – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)**
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of `cleargrads()` in `update`.

Parameters

- **use** *(bool)* – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (`zerograd` is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograd()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.
Attributes

lr
 Alias to self.hyperparam.lr
momentum
 Alias to self.hyperparam.momentum

2.6.5 chainer.optimizers.NesterovAG

class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)
 Nesterov’s Accelerated Gradient.

Parameters

• lr (float) – Learning rate.
• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook (hook, name=None)
 Registers a hook function.
 Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

 Parameters

 • hook (function) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
 • name (str) – Name of the registration. If omitted, hook.name is used by default.

call_hooks ()
 Invokes hook functions in registration order.

call_hooks ()
 Start a new epoch.

 This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads ()
 Reallocate gradients cleared by cleargrad().

 This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook (name)
 Removes a hook function.

 Parameters name (str) – Registered name of the hook function to remove.
serialize (serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:
• Optimizer states
• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) — Serializer or deserializer object.

setup (link)

update (lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.
• If lossfun is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads (use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) — If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

Attributes

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

2.6.6 chainer.optimizers.RMSprop

class chainer.optimizers.RMSprop (lr=0.01, alpha=0.99, eps=1e-08)
RMSprop optimizer.

Parameters
• lr (float) — Learning rate.
• alpha (float) — Exponential decay rate of the second order moment.
• eps (float) — Small value for the numerical stability.
Methods

add_hook (hook, name=None)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

- **hook** (function) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

- **name** (str) – Name of the registration. If omitted, hook.name is used by default.

call_hooks ()
Invokes hook functions in registration order.

create_update_rule ()

new_epoch ()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads ()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook (name)
Removes a hook function.

Parameters **name** (str) – Registered name of the hook function to remove.

serialize (serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (t and epoch)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters **serializer** (AbstractSerializer) – Serializer or deserializer object.

setup (link)

update (lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If lossfun is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.
use_cleargrads *(use=True)*

Enables or disables use of `cleargrads()` in `update`.

Parameters

- **use** *(bool)*: If True, this function enables use of `cleargrads`. If False, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`.

Attributes

- **alpha**: Alias to `self.hyperparam.alpha`
- **eps**: Alias to `self.hyperparam.eps`
- **lr**: Alias to `self.hyperparam.lr`

2.6.7 chainer.optimizers.RMSpropGraves

class `chainer.optimizers.RMSpropGraves` *(lr=0.0001, alpha=0.95, momentum=0.9, eps=0.0001)*

Alex Graves's RMSprop.

Parameters

- **lr** *(float)*: Learning rate.
- **alpha** *(float)*: Exponential decay rate of the first and second order moments of the raw gradient.
- **momentum** *(float)*: Exponential decay rate of the first order moment of the adjusted gradient.
- **eps** *(float)*: Small value for the numerical stability.

Methods

- **add_hook** *(hook, name=None)*

 Registers a hook function.

 Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

 Parameters

 - **hook** *(function)*: Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

 - **name** *(str)*: Name of the registration. If omitted, `hook.name` is used by default.

- **call_hooks** *

 Invokes hook functions in registration order.*
create_update_rule()

new_epoch()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:
• Optimizer states
• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.
• If lossfun is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

Attributes

alpha
Alias to self.hyperparam.alpha

eps
Alias to self.hyperparam.eps
lr

Alias to `self.hyperparam.lr`

momentum

Alias to `self.hyperparam.momentum`

2.6.8 `chainer.optimizers.SGD`

class `chainer.optimizers.SGD(lr=0.01)`

Vanilla Stochastic Gradient Descent.

Parameters

- **lr** (*float*) – Learning rate.

Methods

- **add_hook** *(hook, name=None)*
 Registers a hook function.

 Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

 Parameters

 - **hook** (*function*) – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

 - **name** (*str*) – Name of the registration. If omitted, `hook.name` is used by default.

- **call_hooks** *
 Invokes hook functions in registration order.

- **create_update_rule** *

- **new_epoch** *
 Starts a new epoch.

 This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

- **reallocate_cleared_grads** *
 Reallocate gradients cleared by `cleargrad()`.

 This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

- **remove_hook** *(name)*
 Removes a hook function.

 Parameters

 - **name** (*str*) – Registered name of the hook function to remove.

- **serialize** *(serializer)*
 Serializes or deserializes the optimizer.

 It only saves or loads the following things:

 - Optimizer states

 - Global states (`t` and `epoch`)

 It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.
Parameters **serializer** (*AbstractSerializer*) – Serializer or deserializer object.

setup *(link)*

update *(lossfun=None, *args, **kwds)*

Updates parameters based on a loss function or computed gradients.

This method runs in two ways:

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads *(use=True)*

Enables or disables use of `cleargrads()` in `update`.

Attributes

lr

Alias to `self.hyperparam.lr`

2.6.9 chainer.optimizers.SMORMS3

class chainer.optimizers.SMORMS3 *(lr=0.001, eps=1e-16)*

Simon Funk’s SMORMS3.

Parameters

- **lr** (*float*) – Learning rate.
- **eps** (*float*) – Small value for the numerical stability.

Methods

add_hook *(hook, name=None)*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

- **hook** (*function*) – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name** (*str*) – Name of the registration. If omitted, `hook.name` is used by default.
call_hooks()
Invokes hook functions in registration order.

create_update_rule()

new_epoch()
Starts a new epoch.
This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()
Reallocate gradients cleared by `cleargrad()`.
This method allocates arrays for all gradients which have `None`. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.
It only saves or loads the following things:
• Optimizer states
• Global states (`t` and `epoch`)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.
This method runs in two ways.
• If `lossfun` is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.
In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)
Enables or disables use of `cleargrads()` in `update`.

Parameters use (bool) – If True, this function enables use of `cleargrads`. If False, disables
use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default.
`cleargrads()` is more efficient than `zerograds()`, so one does not have to call
`use_cleargrads()`. This method remains for backward compatibility.

Attributes

eps
Alias to `self.hyperparam.eps`
2.7 Serializers

2.7.1 Serialization in NumPy NPZ format

NumPy serializers can be used in arbitrary environments that Chainer runs with. It consists of asymmetric serializer/deserializer due to the fact that `numpy.savez()` does not support online serialization. Therefore, serialization requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.serializers.NpzDeserializer</code></td>
<td>Deserializer for NPZ format.</td>
</tr>
<tr>
<td><code>chainer.serializers.save_npz</code></td>
<td>Saves an object to the file in NPZ format.</td>
</tr>
<tr>
<td><code>chainer.serializers.load_npz</code></td>
<td>Loads an object from the file in NPZ format.</td>
</tr>
</tbody>
</table>

chainer.serializers.DictionarySerializer

class `chainer.serializers.DictionarySerializer (target=None, path='')`

Serializer for dictionary.

This is the standard serializer in Chainer. The hierarchy of objects are simply mapped to a flat dictionary with keys representing the paths to objects in the hierarchy.

Note: Despite of its name, this serializer DOES NOT serialize the object into external files. It just build a flat dictionary of arrays that can be fed into `numpy.savez()` and `numpy.savez_compressed()`. If you want to use this serializer directly, you have to manually send a resulting dictionary to one of these functions.

Parameters

- `target (dict)` – The dictionary that this serializer saves the objects to. If target is None, then a new dictionary is created.
- `path (str)` – The base path in the hierarchy that this serializer indicates.

Variables

- `target (dict)` – The target dictionary. Once the serialization completes, this dictionary can be fed into `numpy.savez()` or `numpy.savez_compressed()` to serialize it in the NPZ format.

Methods

- `__call__(key, value)`
- `__getitem__(key)`
- `save(obj)`

 Saves an object by this serializer.

 This is equivalent to `obj.serialize(self)`.

 Parameters

 - `obj` – Target object to be serialized.
chainer.serializers.NpzDeserializer

class chainer.serializers.NpzDeserializer(npz, path='', strict=True)
Deserializer for NPZ format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by save_npz().

Parameters

• npz – npz file object.
• path – The base path that the deserialization starts from.
• strict (bool) – If True, the deserializer raises an error when an expected value is not found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

Methods

__call__(key, value)
__getitem__(key)
load(obj)

Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

chainer.serializers.save_npz

chainer.serializers.save_npz(file, obj, compression=True)

Saves an object to the file in NPZ format.

This is a short-cut function to save only one object into an NPZ file.

Parameters

• file (str or file-like) – Target file to write to.
• obj – Object to be serialized. It must support serialization protocol.
• compression (bool) – If True, compression in the resulting zip file is enabled.

See also:

chainer.serializers.load_npz()

chainer.serializers.load_npz

chainer.serializers.load_npz(file, obj, path='', strict=True)

Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only one object.

Parameters

• file (str or file-like) – File to be loaded.
• obj – Object to be deserialized. It must support serialization protocol.
• **path** (str) – The path in the hierarchy of the serialized data under which the data is to be loaded. The default behavior (blank) will load all data under the root path.

• **strict** (bool) – If True, the deserializer raises an error when an expected value is not found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

See also:

`chainer.serializers.save_npz()`

2.7.2 Serialization in HDF5 format

<table>
<thead>
<tr>
<th>Serializer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.serializers.HDF5Serializer</code></td>
<td>Serializer for HDF5 format.</td>
</tr>
<tr>
<td><code>chainer.serializers.HDF5Deserializer</code></td>
<td>Deserializer for HDF5 format.</td>
</tr>
<tr>
<td><code>chainer.serializers.save_hdf5</code></td>
<td>Saves an object to the file in HDF5 format.</td>
</tr>
<tr>
<td><code>chainer.serializers.load_hdf5</code></td>
<td>Loads an object from the file in HDF5 format.</td>
</tr>
</tbody>
</table>

chainer.serializers.HDF5Serializer

class `chainer.serializers.HDF5Serializer` (group, compression=4)

Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply mapped to HDF5 hierarchical groups.

Parameters

• **group** (h5py.Group) – The group that this serializer represents.

• **compression** (int) – Gzip compression level.

Methods

• **call** (key, value)

• **getitem** (key)

save (obj)

Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters **obj** – Target object to be serialized.

chainer.serializers.HDF5Deserializer

class `chainer.serializers.HDF5Deserializer` (group, strict=True)

Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by HDF5Serializer.

Parameters

• **group** (h5py.Group) – The group that the deserialization starts from.

• **strict** (bool) – If True, the deserializer raises an error when an expected value is not found in the given HDF5 file. Otherwise, it ignores the value and skip deserialization.
Methods

__call__(key, value)
__getitem__(key)
load(obj)

This is equivalent to obj.serialize(self).

Parameters

obj – Target object to be serialized.

chainer.serializers.save_hdf5

chainer.serializers.save_hdf5(filename, obj, compression=4)

Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If you want to save multiple objects to one HDF5 file, use HDF5Serializer directly by passing appropriate h5py.Group objects.

Parameters

- filename (str) – Target file name.
- obj – Object to be serialized. It must support serialization protocol.
- compression (int) – Gzip compression level.

Note: Currently save_hdf5() only supports writing to an actual file on file system due to a limitation of HD5F library. See h5py/h5py#687 for details.

See also:

chainer.serializers.load_hdf5()

chainer.serializers.load_hdf5

chainer.serializers.load_hdf5(filename, obj)

Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only one object. If you want to load multiple objects from one HDF5 file, use HDF5Deserializer directly by passing appropriate h5py.Group objects.

Parameters

- filename (str) – Name of the file to be loaded.
- obj – Object to be deserialized. It must support serialization protocol.

Note: Currently load_hdf5() only supports loading an actual file on file system due to a limitation of HD5F library. See h5py/h5py#687 for details.

See also:

chainer.serializers.save_hdf5()
2.8 Function hooks

Chainer provides a function-hook mechanism that enriches the behavior of forward and backward propagation of `Function`.

2.8.1 Base class

`chainer.FunctionHook`

Base class of hooks for Functions.

```python
class chainer.FunctionHook
    Base class of hooks for Functions.

FunctionHook is an callback object that is registered to Function. Registered function hooks are invoked before and after forward and backward operations of each function.

Function hooks that derive `FunctionHook` are required to implement four methods: `forward_preprocess()`, `forward_postprocess()`, `backward_preprocess()`, and `backward_postprocess()`. By default, these methods do nothing.

Specifically, when `__call__()` method of some function is invoked, `forward_preprocess()` (resp. `forward_postprocess()`) of all function hooks registered to this function are called before (resp. after) forward propagation.

Likewise, when `backward()` of some Variable is invoked, `backward_preprocess()` (resp. `backward_postprocess()`) of all function hooks registered to the function which holds this variable as a gradient are called before (resp. after) backward propagation.

There are two ways to register `FunctionHook` objects to `Function` objects.

First one is to use `with` statement. Function hooks hooked in this way are registered to all functions within `with` statement and are unregistered at the end of `with` statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation procedure with TimerHook, which is a subclass of FunctionHook.

```python
>>> from chainer import function_hooks
>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l = L.Linear(10, 10)
... def __call__(self, x1):
... return F.exp(self.l(x1))
>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), 'f'))
>>> with chainer.function_hooks.TimerHook() as m:
... _ = model1(x)
... y = model2(x)
... print("Total time : " + str(m.total_time()))
... model3 = Model()
```
In this example, we measure the elapsed times for each forward propagation of all functions in model1 and model2 (specifically, LinearFunction and Exp of model1 and model2). Note that model3 is not a target of measurement as TimerHook is unregistered before forward propagation of model3.

Note: Chainer stores the dictionary of registered function hooks as a thread local object. So, function hooks registered are different depending on threads.

The other one is to register directly to Function object with add_hook() method. Function hooks registered in this way can be removed by delete_hook() method. Contrary to former registration method, function hooks are registered only to the function which add_hook() is called.

Parameters

name (str) – Name of this function hook.

Methods

__enter__ ()
__exit__ (*_)
added (function=None)
Callback function invoked when a function hook is added

Parameters

function (Function) – Function object to which the function hook is added.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

function (Function) – Function object to which the function hook is registered.
in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input of forward propagation.
out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) – Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

function (Function) – Function object to which the function hook is registered.
in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input data of forward propagation.
out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) – Gradient data of backward propagation.

deleted (function=None)
Callback function invoked when a function hook is deleted

Parameters

function (Function) – Function object to which the function hook is deleted.
forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

- function (Function) – Function object to which the function hook is registered.
- in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input data of forward propagation.

forward_preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters

- function (Function) – Function object to which the function hook is registered.
- in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input data of forward propagation.

Attributes

name = ‘FunctionHook’

2.8.2 Concrete function hooks

<table>
<thead>
<tr>
<th>Function hooks</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.function_hooks.CUDAProfileHook</td>
<td>Function hook for measuring memory usage of functions in cupy memory pool.</td>
</tr>
<tr>
<td>CupyMemoryProfileHook</td>
<td></td>
</tr>
<tr>
<td>chainer.function_hooks.PrintHook</td>
<td>Function hook that prints debug information.</td>
</tr>
<tr>
<td>chainer.function_hooks.TimerHook</td>
<td>Function hook for measuring elapsed time of functions.</td>
</tr>
</tbody>
</table>

class chainer.function_hooks.CUDAProfileHook

Methods

__enter__()  
__exit__(*_)  

added (function=None)
Callback function invoked when a function hook is added

Parameters function (Function) – Function object to which the function hook is added.

backward_postprocess (function, in_data, out_grad)

backward_preprocess (function, in_data, out_grad)

deleted (function=None)
Callback function invoked when a function hook is deleted

Parameters function (Function) – Function object to which the function hook is deleted.

forward_postprocess (function, in_data)
forward_preprocess (function, in_data)

Attributes

name = ‘CUDAProfileHook’

chainer.function_hooks.CupyMemoryProfileHook

class chainer.function_hooks.CupyMemoryProfileHook
    Function hook for measuring memory usage of functions in cupy memory pool.

Example

Code example:

```python
from chainer.function_hooks import CupyMemoryProfileHook
hook = CupyMemoryProfileHook()
with hook:
 trainer.run()
hook.print_report()
```

Output example:

<table>
<thead>
<tr>
<th>FunctionName</th>
<th>UsedBytes</th>
<th>AcquiredBytes</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinearFunction</td>
<td>5.16GB</td>
<td>179.98MB</td>
<td>3900</td>
</tr>
<tr>
<td>ReLU</td>
<td>991.82MB</td>
<td>458.97MB</td>
<td>2600</td>
</tr>
<tr>
<td>SoftmaxCrossEntropy</td>
<td>7.71MB</td>
<td>5.08MB</td>
<td>1300</td>
</tr>
<tr>
<td>Accuracy</td>
<td>617.97KB</td>
<td>351.00KB</td>
<td>700</td>
</tr>
</tbody>
</table>

where FunctionName is the name of function that calls the hook, and UsedBytes is the memory bytes the function used from cupy memory pool, and AcquiredBytes is the actual memory bytes the cupy memory pool acquired from GPU device on the function call, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of the function that calls this hook, the memory bytes the function used from cupy memory pool, and the memory bytes the cupy memory pool acquired from GPU device on the function call.

Methods

_\_enter\_(\_)_

_\_exit\_(\_*\_)_

added (function=None)

backward_postprocess (function, in_data, out_grad)

backward_preprocess (function, in_data, out_grad)

deleted (function=None)

forward_postprocess (function, in_data)

forward_preprocess (function, in_data)
**print_report** *(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)*
Prints a summary report of memory profiling in functions.

**summary** ()
Returns a summary of memory profiling in functions.

**Returns** A summarized dictionary whose keys are function names and values are dictionaries of *used_bytes, acquired_bytes, and occurrence*.

**total_acquired_bytes** ()
Returns total bytes that cupy memory pool acquired from GPU.

**total_used_bytes** ()
Returns total bytes that functions used from cupy memory pool.

**Attributes**

**name** = ‘CupyMemoryProfileHook’

**chainer.function_hooks.PrintHook**

class chainer.function_hooks.PrintHook *(sep='', end='n', file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, flush=True)*

Function hook that prints debug information.

This function hook outputs the debug information of input arguments of forward and backward methods involved in the hooked functions at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions at every function to be inspected, we can show the information of all functions involved with single with statement.

Further, this hook enables us to show the information of backward methods without inserting print functions into Chainer’s library code.

**Variables**

- **sep** – Separator of print function.
- **end** – Character to be added at the end of print function.
- **file** – Output file_like object that that redirect to.
- **flush** – If True, this hook forcibly flushes the text stream at the end of preprocessing.

**Example**
The basic usage is to use it with with statement.

```python
>>> from chainer import function_hooks
>>> l = L.Linear(10, 10)
>>> x = chainer.Variable(np.zeros((1, 10), 'f'))
>>> with chainer.function_hooks.PrintHook():
... y = l(x)
... z = F.sum(y)
... z.backward()
```
In this example, PrintHook shows the debug information of forward propagation of `LinearFunction` (which is implicitly called by `l`) and `Sum` (called by `F.sum`) and backward propagation of `z` and `y`.

**Methods**

```python
__enter__()
__exit__(*_)
added(function=None)
 Callback function invoked when a function hook is added

 Parameters
 function (Function) – Function object to which the function hook is added.

backward_postprocess(function, in_data, out_grad)
 Callback function invoked after backward propagation.

 Parameters
 • function (Function) – Function object to which the function hook is registered.
 • in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input of forward propagation.
 • out_grad (tuple of numpy.ndarray or tuple of cupy.ndarray) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
 deleted(function=None)
 Callback function invoked when a function hook is deleted

 Parameters
 function (Function) – Function object to which the function hook is deleted.

forward_postprocess(function, in_data)
 Callback function invoked after forward propagation.

 Parameters
 • function (Function) – Function object to which the function hook is registered.
 • in_data (tuple of numpy.ndarray or tuple of cupy.ndarray) – Input data of forward propagation.

forward_preprocess(function, in_data)
```

**Attributes**

`name = ‘PrintHook’`

**chainer.function_hooks.TimerHook**

```python
class chainer.function_hooks.TimerHook
 Function hook for measuring elapsed time of functions.
```
Example

Code example:

```python
from chainer.function_hooks import TimerHook
hook = TimerHook()
with hook:
 trainer.run()
hook.print_report()
```

Output example:

<table>
<thead>
<tr>
<th>FunctionName</th>
<th>ElapsedTime</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinearFunction</td>
<td>1.24sec</td>
<td>3900</td>
</tr>
<tr>
<td>ReLU</td>
<td>593.05ms</td>
<td>2600</td>
</tr>
<tr>
<td>SoftmaxCrossEntropy</td>
<td>824.11ms</td>
<td>1300</td>
</tr>
<tr>
<td>Accuracy</td>
<td>176.54ms</td>
<td>700</td>
</tr>
</tbody>
</table>

where `FunctionName` is the name of function that calls the hook, and `ElapsedTime` is the elapsed time the function consumed, and `Occurrence` is the number of calls.

Variables

- **call_history** – List of measurement results. It consists of pairs of the function that calls this hook and the elapsed time the function consumes.

Methods

- `__enter__()`
- `__exit__(*)`
- `add(function=None)`
  Callback function invoked when a function hook is added
  Parameters
  - **function** *(Function)* – Function object to which the function hook is added.

- `backward_postprocess(function, in_data, out_grad)`
- `backward_preprocess(function, in_data, out_grad)`

- `delete(function=None)`
  Callback function invoked when a function hook is deleted
  Parameters
  - **function** *(Function)* – Function object to which the function hook is deleted.

- `forward_postprocess(function, in_data)`
- `forward_preprocess(function, in_data)`

- `print_report(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)`
  Prints a summary report of time profiling in functions.

- `summary()`
  Returns a summary of time profiling in functions.
  Returns
  - A summarized dictionary whose keys are function names and values are dictionaries of `elapsed_time` and `occurrence`.

- `total_time()`
  Returns total elapsed time in seconds.
Attributes

name = ‘TimerHook’

2.9 Weight Initializers

Weight initializers are used to initialize arrays. They destructively modify the content of numpy.ndarray or cupy.ndarray. Typically, weight initializers are passed to Links to initialize their weights and biases.

A weight initializer can be any of the following objects.

- chainer.Initializer class instance.
- Python or NumPy scalar.
- A callable that takes an array (numpy.ndarray or cupy.ndarray) and feeds the initial data into it.
- None, in which case the default initializer is used. Unless explicitly specified, it is LeCunNormal with scale value 1.

2.9.1 Base class

chainer.Initializer

Initializes array.

chainer.Initializer
class chainer.Initializer(dtype=None)

Initializes array.

It initializes the given array.

Variables
dtype – Data type specifier. It is for type check in __call__ function.

Methods

__call__(array)

Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters

array (numpy.ndarray or cupy.ndarray) – An array to be initialized by this initializer.

2.9.2 Concrete initializers

<table>
<thead>
<tr>
<th>chainer.initializers.Identity</th>
<th>Initializes array with the identity matrix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.initializers.Constant</td>
<td>Initializes array with constant value.</td>
</tr>
<tr>
<td>chainer.initializers.Zero</td>
<td>Returns initializer that initializes array with the all-zero array.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2.54 – continued from previous page

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.initializers.One</code></td>
<td>Returns initializer that initializes array with the all-one array.</td>
</tr>
<tr>
<td><code>chainer.initializers.NaN</code></td>
<td>Returns initializer that initializes array with the all-NaN array.</td>
</tr>
<tr>
<td><code>chainer.initializers.Normal</code></td>
<td>Initializes array with a normal distribution.</td>
</tr>
<tr>
<td><code>chainer.initializers.LeCunNormal</code></td>
<td>Initializes array with scaled Gaussian distribution.</td>
</tr>
<tr>
<td><code>chainer.initializers.GlorotNormal</code></td>
<td>Initializes array with scaled Gaussian distribution.</td>
</tr>
<tr>
<td><code>chainer.initializers.HeNormal</code></td>
<td>Initializes array with scaled Gaussian distribution.</td>
</tr>
<tr>
<td><code>chainer.initializers.Orthogonal</code></td>
<td>Initializes array with an orthogonal system.</td>
</tr>
<tr>
<td><code>chainer.initializers.Uniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
<tr>
<td><code>chainer.initializers.LeCunUniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
<tr>
<td><code>chainer.initializers.GlorotUniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
<tr>
<td><code>chainer.initializers.HeUniform</code></td>
<td>Initializes array with a scaled uniform distribution.</td>
</tr>
</tbody>
</table>

`chainer.initializers.Identity`

**class** `chainer.initializers.Identity(scale=1.0, dtype=None)`  
Initializes array with the identity matrix.

It initializes the given array with the constant multiple of the identity matrix. Note that arrays to be passed must be 2D squared matrices.

**Variables**

- `scale (scalar)` – A constant to be multiplied to identity
- `matrices` –

**Methods**

`__call__(array)`

`chainer.initializers.Constant`

**class** `chainer.initializers.Constant(fill_value, dtype=None)`  
Initializes array with constant value.

**Variables**

- `fill_value (scalar or numpy.ndarray or cupy.ndarray)` – A constant to be assigned to the initialized array. Broadcast is allowed on this assignment.
- `dtype` – Data type specifier.

**Methods**

`__call__(array)`

`chainer.initializers.Zero`  
`chainer.initializers.Zero(dtype=None)`  
Returns initializer that initializes array with the all-zero array.
Parameters **dtype** – Data type specifier.

**Returns** An initialized array.

**Return type** `numpy.ndarray` or `cupy.ndarray`

**chainer.initializers.One**

```python
class chainer.initializers.One(dtype=None):
 Returns initializer that initializes array with the all-one array.
 Parameters **dtype** – Data type specifier.
 Returns An initialized array.
 Return type `numpy.ndarray` or `cupy.ndarray`
```

**chainer.initializers.NaN**

```python
class chainer.initializers.NaN(dtype=None):
 Returns initializer that initializes array with the all-NaN array.
 Parameters **dtype** – Data type specifier.
 Returns An initializer that initializes an array by NaN.
```

**chainer.initializers.Normal**

```python
class chainer.initializers.Normal(scale=0.05, dtype=None):
 Initializes array with a normal distribution.
 Each element of the array is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and standard deviation is \(\text{scale} \).
 Parameters
 - **scale** `(float)` – Standard deviation of Gaussian distribution.
 - **dtype** – Data type specifier.

 Methods

 `__call__(array)`
```

**chainer.initializers.LeCunNormal**

```python
class chainer.initializers.LeCunNormal(scale=1.0, dtype=None):
 Initializes array with scaled Gaussian distribution.
 Each element of the array is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and standard deviation is \(\text{scale} \times \sqrt{\frac{1}{\text{fan}_{\text{in}}}} \), where \(\text{fan}_{\text{in}} \) is the number of input units.
 Parameters
 - **scale** `(float)` – A constant that determines the scale of the standard deviation.
```

2.9. Weight Initializers
Methods

__call__ (array)

chainer.initializers.GlorotNormal

class chainer.initializers.GlorotNormal (scale=1.0, dtype=None)
    Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is scale × √ \frac{2}{fan_{in} + fan_{out}}, where fan_{in} and fan_{out} are the number of input
and output units, respectively.

Reference: Glorot & Bengio, AISTATS 2010

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

Methods

__call__ (array)

chainer.initializers.HeNormal

class chainer.initializers.HeNormal (scale=1.0, dtype=None)
    Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is scale × √ \frac{2}{fan_{in}}, where fan_{in} is the number of input units.


Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

Methods

__call__ (array)

chainer.initializers.Orthogonal

class chainer.initializers.Orthogonal (scale=1.1, dtype=None)
    Initializes array with an orthogonal system.

This initializer first makes a matrix of the same shape as the array to be initialized whose elements are drawn
independently from standard Gaussian distribution. Next, it applies Singular Value Decomposition (SVD) to the
matrix. Then, it initializes the array with either side of resultant orthogonal matrices, depending on the shape of
the input array. Finally, the array is multiplied by the constant \texttt{scale}.

If the \texttt{ndim} of the input array is more than 2, we consider the array to be a matrix by concatenating all axes
except the first one.

The number of vectors consisting of the orthogonal system (i.e. first element of the shape of the array) must be
equal to or smaller than the dimension of each vector (i.e. second element of the shape of the array).

\textbf{Variables}

- \texttt{scale} (float) – A constant to be multiplied by.
- \texttt{dtype} – Data type specifier.


\textbf{Methods}

\texttt{__call__}(array)

\textbf{chainer.initializers.Uniform}

\texttt{class chainer.initializers.Uniform(scale=0.05, dtype=None)}

Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution
\([-scale, scale]\).

\textbf{Variables}

- \texttt{scale} (float) – A constant that determines the scale of the uniform distribution.
- \texttt{dtype} – Data type specifier.

\textbf{Methods}

\texttt{__call__}(array)

\textbf{chainer.initializers.LeCunUniform}

\texttt{class chainer.initializers.LeCunUniform(scale=1.0, dtype=None)}

Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution
\([-s, s]\) where \(s = scale \times \sqrt{\frac{3}{fan_{in}}}\). Here \(fan_{in}\) is the number of input units.


\textbf{Variables}

- \texttt{scale} (float) – A constant that determines the scale of the uniform distribution.
- \texttt{dtype} – Data type specifier.
Methods

__call__(array)

chainer.initializers.GlorotUniform

class chainer.initializers.GlorotUniform(scale=1.0, dtype=None)
Initializes array with a scaled uniform distribution.
Each element of the array is initialized by the value drawn independently from uniform distribution $[-s, s]$ where $s = scale \times \sqrt{\frac{6}{fan_{in} + fan_{out}}}$. Here, $fan_{in}$ and $fan_{out}$ are the number of input and output units, respectively.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.
• dtype – Data type specifier.

Methods

__call__(array)

chainer.initializers.HeUniform

class chainer.initializers.HeUniform(scale=1.0, dtype=None)
Initializes array with scaled uniform distribution.
Each element of the array is initialized by the value drawn independently from uniform distribution $[-s, s]$ where $s = scale \times \sqrt{\frac{6}{fan_{in}}}$. Here, $fan_{in}$ is the number of input units.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.
• dtype – Data type specifier.

Methods

__call__(array)

2.9.3 Helper function

chainer.initializers.generate_array

Return initialized array.

chainer.initializers.generate_array(initializer, shape, xp)

Return initialized array.

The algorithms used to make the new values depend on the concrete derived classes. The dtype of a generated array depends on initializer.dtype.
Parameters

- **initializer** – A callable object that takes `numpy.ndarray` or `cupy.ndarray` and edits its value.
- **shape** *(tuple)* – Shape of a return array.
- **xp** *(module)* – `cupy` or `numpy`.

Returns

An initialized array.

Return type

`numpy.ndarray` or `cupy.ndarray`

## 2.10 Dataset examples

The most basic dataset implementation is an array. Both NumPy and CuPy arrays can be used directly as datasets. In many cases, though, the simple arrays are not enough to write the training procedure. In order to cover most of such cases, Chainer provides many built-in implementations of datasets.

These built-in datasets are divided into two groups. One is a group of general datasets. Most of them are wrapper of other datasets to introduce some structures (e.g., tuple or dict) to each data point. The other one is a group of concrete, popular datasets. These concrete examples use the downloading utilities in the `chainer.dataset` module to cache downloaded and converted datasets.

### 2.10.1 General datasets

General datasets are further divided into four types.

The first one is `DictDataset` and `TupleDataset`, both of which combine other datasets and introduce some structures on them.

The second one is `ConcatenatedDataset` and `SubDataset`. `ConcatenatedDataset` represents a concatenation of existing datasets. It can be used to merge datasets and make a larger dataset. `SubDataset` represents a subset of an existing dataset. It can be used to separate a dataset for hold-out validation or cross validation. Convenient functions to make random splits are also provided.

The third one is `TransformDataset`, which wraps around a dataset by applying a function to data indexed from the underlying dataset. It can be used to modify behavior of a dataset that is already prepared.

The last one is a group of domain-specific datasets. Currently, `ImageDataset` and `LabeledImageDataset` are provided for datasets of images.

### DictDataset

`chainer.datasets.DictDataset`

Dataset of a dictionary of datasets.

#### `chainer.datasets.DictDataset`

**class** `chainer.datasets.DictDataset(**datasets)`

Dataset of a dictionary of datasets.

It combines multiple datasets into one dataset. Each example is represented by a dictionary mapping a key to an example of the corresponding dataset.
Parameters **datasets** – Underlying datasets. The keys are used as the keys of each example. All datasets must have the same length.

Methods

```python
__getitem__(index)
__len__()
```

**TupleDataset**

```python
chainer.datasets.TupleDataset
Dataset of tuples from multiple equal-length datasets.
```

```python
class chainer.datasets.TupleDataset(*datasets)
Dataset of tuples from multiple equal-length datasets.
```

A TupleDataset combines multiple equal-length datasets into a single dataset of tuples. The i-th tuple contains the i-th example from each of the argument datasets, in the same order that they were supplied.

Recall that in Chainer, a dataset is defined as an iterable that supports both `__getitem__` and `__len__`. The `__getitem__` method should support indexing by both an integer and a slice.

As an example, consider creating a TupleDataset from two argument datasets `d1 = [8, 0, 5, 1]` and `d2 = [3, 1, 7, 4]` as `tuple_dataset = TupleDataset(d1, d2)`. The `tuple_dataset` will then contain the examples `(8, 3), (0, 1), (5, 7), (1, 4)`. Note that this behavior is similar to that of the built-in `zip()` function.

Parameters **datasets** – Underlying datasets that will be aggregated. Each dataset must be an iterable that implements `__getitem__` and `__len__`. The j-th dataset will be used for the j-th item of each example tuple. All datasets must have the same length.

Methods

```python
__getitem__(index)
__len__()
```

**ConcatenatedDataset**

```python
class chainer.datasets.ConcatenatedDataset(*datasets)
Dataset which concatenates some base datasets.
```

This dataset wraps some base datasets and works as a concatenated dataset. For example, if a base dataset with 10 samples and another base dataset with 20 samples are given, this dataset works as a dataset which has 30 samples.

Parameters **datasets** – The underlying datasets. Each dataset has to support `__len__()` and `__getitem__()`.
SubDataset
chainer.datasets.SubDataset

class chainer.datasets.SubDataset(dataset, start, finish, order=None)
Subset of a base dataset.

SubDataset defines a subset of a given base dataset. The subset is defined as an interval of indexes, optionally
with a given permutation.

If order is given, then the i-th example of this dataset is the order[start + i]-th example of the base
dataset, where i is a non-negative integer. If order is not given, then the i-th example of this dataset is the
start + i-th example of the base dataset. Negative indexing is also allowed: in this case, the term start + i
is replaced by finish + i.

SubDataset is often used to split a dataset into training and validation subsets. The training set is used for
training, while the validation set is used to track the generalization performance, i.e. how the learned model
works well on unseen data. We can tune hyperparameters (e.g. number of hidden units, weight initializers,
learning rate, etc.) by comparing the validation performance. Note that we often use another set called test set
to measure the quality of the tuned hyperparameter, which can be made by nesting multiple SubDatasets.

There are two ways to make training-validation splits. One is a single split, where the dataset is split just
into two subsets. It can be done by split_dataset() or split_dataset_random(). The other
one is a k-fold cross validation, in which the dataset is divided into k subsets, and k different splits are
generated using each of the k subsets as a validation set and the rest as a training set. It can be done by
get_cross_validation_datasets().

Parameters

- dataset – Base dataset.
- start (int) – The first index in the interval.
- finish (int) – The next-to-the-last index in the interval.
- order (sequence of ints) – Permutation of indexes in the base dataset. If this is
  None, then the ascending order of indexes is used.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.
Example

```python
>>> import numpy
>>> from chainer import dataset

class SimpleDataset(dataset.DatasetMixin):
 def __init__(self, values):
 self.values = values

 def __len__(self):
 return len(self.values)

 def get_example(self, i):
 return self.values[i]

>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()

get_example(i)

**chainer.datasets.split_dataset**

chainer.datasets.split_dataset(dataset, split_at, order=None)

Splits a dataset into two subsets.

This function creates two instances of `SubDataset`. These instances do not share any examples, and they together cover all examples of the original dataset.

**Parameters**

- **dataset** – Dataset to split.
- **split_at** (`int`) – Position at which the base dataset is split.
- **order** (`sequence of ints`) – Permutation of indexes in the base dataset. See the document of `SubDataset` for details.

**Returns** Two `SubDataset` objects. The first subset represents the examples of indexes `order[:split_at]` while the second subset represents the examples of indexes `order[split_at:]`.

**Return type** `tuple`

**chainer.datasets.split_dataset_random**

chainer.datasets.split_dataset_random(dataset, first_size, seed=None)

Splits a dataset into two subsets randomly.
This function creates two instances of \texttt{SubDataset}. These instances do not share any examples, and they together cover all examples of the original dataset. The split is automatically done randomly.

\textbf{Parameters}

\begin{itemize}
\item \texttt{dataset} – Dataset to split.
\item \texttt{first\_size} (\texttt{int}) – Size of the first subset.
\item \texttt{seed} (\texttt{int}) – Seed the generator used for the permutation of indexes. If an integer being convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the given dataset always belongs to a specific subset. If \texttt{None}, the permutation is changed randomly.
\end{itemize}

\textbf{Returns} Two \texttt{SubDataset} objects. The first subset contains \texttt{first\_size} examples randomly chosen from the dataset without replacement, and the second subset contains the rest of the dataset.

\textbf{Return type} \texttt{tuple}

\begin{code}
chainer.datasets.get_cross_validation_datasets

\texttt{chainer.datasets.get\_cross\_validation\_datasets} \texttt{(dataset, n\_fold, order=None)}

Creates a set of training/test splits for cross validation.

This function generates \texttt{n\_fold} splits of the given dataset. The first part of each split corresponds to the training dataset, while the second part to the test dataset. No pairs of test datasets share any examples, and all test datasets together cover the whole base dataset. Each test dataset contains almost same number of examples (the numbers may differ up to 1).

\textbf{Parameters}

\begin{itemize}
\item \texttt{dataset} – Dataset to split.
\item \texttt{n\_fold} (\texttt{int}) – Number of splits for cross validation.
\item \texttt{order} (\texttt{sequence of ints}) – Order of indexes with which each split is determined. If it is \texttt{None}, then no permutation is used.
\end{itemize}

\textbf{Returns} List of dataset splits.

\textbf{Return type} \texttt{list of tuples}

\end{code}

\begin{code}
chainer.datasets.get_cross_validation_datasets_random

\texttt{chainer.datasets.get\_cross\_validation\_datasets\_random} \texttt{(dataset, n\_fold, seed=None)}

Creates a set of training/test splits for cross validation randomly.

This function acts almost same as \texttt{get\_cross\_validation\_dataset()}, except automatically generating random permutation.

\textbf{Parameters}

\begin{itemize}
\item \texttt{dataset} – Dataset to split.
\item \texttt{n\_fold} (\texttt{int}) – Number of splits for cross validation.
\item \texttt{seed} (\texttt{int}) – Seed the generator used for the permutation of indexes. If an integer being convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the given dataset always belongs to a specific subset. If \texttt{None}, the permutation is changed randomly.
\end{itemize}

\end{code}
Returns List of dataset splits.
Return type list of tuples

TransformDataset

chainer.datasets.TransformDataset

Dataset that indexes the base dataset and transforms the data.

chainer.datasets.TransformDataset
class chainer.datasets.TransformDataset(dataset, transform)

Dataset that indexes the base dataset and transforms the data.

This dataset wraps the base dataset by modifying the behavior of the base dataset’s __getitem__(). Arrays returned by __getitem__() of the base dataset with integer as an argument are transformed by the given function transform. Also, __len__() returns the integer returned by the base dataset’s __len__().

The function transform takes, as an argument, in_data, which is the output of the base dataset’s __getitem__(), and returns the transformed arrays as output. Please see the following example.

```python
>>> from chainer.datasets import get_mnist
>>> from chainer.datasets import TransformDataset
... def transform(in_data):
... img, label = in_data
... img -= 0.5 # scale to [-0.5, -0.5]
... return img, label
... dataset = TransformDataset(dataset, transform)
```

Parameters

- **dataset** – The underlying dataset. The index of this dataset corresponds to the index of the base dataset. This object needs to support functions __getitem__() and __len__() as described above.

- **transform (callable)** – A function that is called to transform values returned by the underlying dataset’s __getitem__().

Methods

__getitem__(index)

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.
Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__

get_example

ImageDataset

`chainer.datasets.ImageDataset` Dataset of images built from a list of paths to image files.

`chainer.datasets.ImageDataset`

class chainer.datasets.ImageDataset(paths, root='.', dtype=<class 'numpy.float32'>) Dataset of images built from a list of paths to image files.

This dataset reads an external image file on every call of the `__getitem__()` operator. The paths to the image to retrieve is given as either a list of strings or a text file that contains paths in distinct lines.

Each image is automatically converted to arrays of shape channels, height, width, where channels represents the number of channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color images).

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow (e.g. by using the command `pip install Pillow`). Be careful to prepare appropriate libraries for image formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale images.
Parameters

- **paths** *(str or list of strs)* – If it is a string, it is a path to a text file that contains paths to images in distinct lines. If it is a list of paths, the i-th element represents the path to the i-th image. In both cases, each path is a relative one from the root path given by another argument.

- **root** *(str)* – Root directory to retrieve images from.

- **dtype** – Data type of resulting image arrays.

Methods

**__getitem__(index)**

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

**Parameters**

- **index** *(int, slice, list or numpy.ndarray)* – An index of an example or indexes of examples.

**Returns**

If `index` is int, returns an example created by `get_example`. If `index` is either slice or one-dimensional list or `numpy.ndarray`, returns a list of examples created by `get_example`.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

**__len__()**

**get_example**(i)

**LabeledImageDataset**

2.10. Dataset examples
**chainer.datasets.LabeledImageDataset**

Dataset of image and label pairs built from a list of paths and labels.

This dataset reads an external image file like `ImageDataset`. The difference from `ImageDataset` is that this dataset also returns a label integer. The paths and labels are given as either a list of pairs or a text file contains paths/labels pairs in distinct lines. In the latter case, each path and corresponding label are separated by white spaces. This format is same as one used in Caffe.

**Note:** This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow (e.g. by using the command `pip install Pillow`). Be careful to prepare appropriate libraries for image formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

**Warning:** You are responsible for preprocessing the images before feeding them to a model. For example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale images.

**Parameters**

- **pairs** *(str or list of tuples)* — If it is a string, it is a path to a text file that contains paths to images in distinct lines. If it is a list of pairs, the i-th element represents a pair of the path to the i-th image and the corresponding label. In both cases, each path is a relative one from the root path given by another argument.

- **root** *(str)* — Root directory to retrieve images from.

- **dtype** — Data type of resulting image arrays.

- **label_dtype** — Data type of the labels.

**Methods**

**__getitem__(index)**

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

**Parameters**

- **index** *(int, slice, list or numpy.ndarray)* — An index of an example or indexes of examples.

**Returns** If index is int, returns an example created by `get_example`. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by `get_example`.

**Example**
```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...

>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

---

### 2.10.2 Concrete datasets

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.datasets.get_mnist</td>
<td>Gets the MNIST dataset.</td>
</tr>
<tr>
<td>chainer.datasets.get_cifar10</td>
<td>Gets the CIFAR-10 dataset.</td>
</tr>
<tr>
<td>chainer.datasets.get_cifar100</td>
<td>Gets the CIFAR-100 dataset.</td>
</tr>
<tr>
<td>chainer.datasets.get_ptb_words</td>
<td>Gets the Penn Tree Bank dataset as long word sequences.</td>
</tr>
<tr>
<td>chainer.datasets.get_ptb_words_vocabulary</td>
<td>Gets the Penn Tree Bank word vocabulary.</td>
</tr>
<tr>
<td>chainer.datasets.get_svhn</td>
<td>Gets the SVHN dataset.</td>
</tr>
</tbody>
</table>

**chainer.datasets.get_mnist**

chainer.datasets.get_mnist(withlabel=True, ndim=1, scale=1.0, dtype=<class 'numpy.float32'>, label_dtype=<class 'numpy.int32'>, rgb_format=False)

Gets the MNIST dataset.

**MNIST** is a set of hand-written digits represented by grey-scale 28x28 images. In the original images, each pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the interval $[0, \text{scale}]$.

This function returns the training set and the test set of the official MNIST dataset. If `withlabel` is `True`, each dataset consists of tuples of images and labels, otherwise it only consists of images.

**Parameters**

- `withlabel` (`bool`) – If `True`, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
- `ndim` (`int`) – Number of dimensions of each image. The shape of each image is determined depending on `ndim` as follows:

---

**2.10. Dataset examples**
- ndim == 1: the shape is (784,)
- ndim == 2: the shape is (28, 28)
- ndim == 3: the shape is (1, 28, 28)

- **scale** (*float*) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval $[0, 1]$.

- **dtype** – Data type of resulting image arrays.

- **label_dtype** – Data type of the labels.

- **rgb_format** (*bool*) – if ndim == 3 and rgb_format is True, the image will be converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default is False.

Returns A tuple of two datasets. If *withlabel* is True, both datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

**chainer.datasets.get_cifar10**

`chainer.datasets.get_cifar10(withlabel=True, ndim=3, scale=1.0)`

Gets the CIFAR-10 dataset.

CIFAR-10 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into 10 groups. In the original images, each component of pixels is represented by one-byte unsigned integer. This function scales the components to floating point values in the interval $[0, \text{scale}]$.

This function returns the training set and the test set of the official CIFAR-10 dataset. If *withlabel* is True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

**Parameters**

- **withlabel** (*bool*) – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.

- **ndim** (*int*) – Number of dimensions of each image. The shape of each image is determined depending on ndim as follows:
  
  - ndim == 1: the shape is (3072,)
  - ndim == 3: the shape is (3, 32, 32)

- **scale** (*float*) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval $[0, 1]$.

Returns A tuple of two datasets. If *withlabel* is True, both datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

**chainer.datasets.get_cifar100**

`chainer.datasets.get_cifar100(withlabel=True, ndim=3, scale=1.0)`

Gets the CIFAR-100 dataset.

CIFAR-100 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into 100 groups. In the original images, each component pixels is represented by one-byte unsigned integer. This function scales the components to floating point values in the interval $[0, \text{scale}]$.

This function returns the training set and the test set of the official CIFAR-100 dataset. If *withlabel* is True, each dataset consists of tuples of images and labels, otherwise it only consists of images.
Parameters

- **withlabel** (bool) – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.

- **ndim** (int) – Number of dimensions of each image. The shape of each image is determined depending on ndim as follows:
  - ndim == 1: the shape is (3072,)
  - ndim == 3: the shape is (3, 32, 32)

- **scale** (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0, 1].

Returns A tuple of two datasets. If withlabel is True, both are TupleDataset instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_ptb_words

chainer.datasets.get_ptb_words()

Gets the Penn Tree Bank dataset as long word sequences.

Penn Tree Bank is originally a corpus of English sentences with linguistic structure annotations. This function uses a variant distributed at https://github.com/wojzaremba/lstm, which omits the annotation and splits the dataset into three parts: training, validation, and test.

This function returns the training, validation, and test sets, each of which is represented as a long array of word IDs. All sentences in the dataset are concatenated by End-of-Sentence mark '<eos>', which is treated as one of the vocabulary.

Returns Int32 vectors of word IDs.

Return type tuple of numpy.ndarray

See also:

Use get_ptb_words_vocabulary() to get the mapping between the words and word IDs.

chainer.datasets.get_ptb_words_vocabulary

chainer.datasets.get_ptb_words_vocabulary()

Gets the Penn Tree Bank word vocabulary.

Returns Dictionary that maps words to corresponding word IDs. The IDs are used in the Penn Tree Bank long sequence datasets.

Return type dict

See also:

See get_ptb_words() for the actual datasets.

chainer.datasets.get_svhn

chainer.datasets.get_svhn(withlabel=True, scale=1.0, dtype=<class 'numpy.float32'>, label_dtype=<class 'numpy.int32'>)

Gets the SVHN dataset.
The Street View House Numbers (SVHN) dataset is a dataset similar to MNIST but composed of cropped images of house numbers. The functionality of this function is identical to the counterpart for the MNIST dataset (get_mnist()), with the exception that there is no ndim argument.

**Note:** SciPy is required to use this feature.

**Parameters**

- **withlabel** *(bool)* – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
- **scale** *(float)* – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0, 1].
- **dtype** – Data type of resulting image arrays.
- **label_dtype** – Data type of the labels.

**Returns** A tuple of two datasets. If withlabel is True, both datasets are TupleDataset instances. Otherwise, both datasets are arrays of images.

### 2.11 Iterator examples

Chainer provides some iterators that implement typical strategies to create mini-batches by iterating over datasets. SerialIterator is the simplest one, which extract mini batches in the main thread. MultiprocessIterator is a parallelized version of SerialIterator. It maintains worker subprocesses to load the next mini-batch in parallel.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.iterators.SerialIterator</td>
<td>Dataset iterator that serially reads the examples.</td>
</tr>
<tr>
<td>chainer.iterators.MultiprocessIterator</td>
<td>Dataset iterator that loads examples in parallel.</td>
</tr>
</tbody>
</table>

#### 2.11.1 chainer.iterators.SerialIterator

**class** chainer.iterators.SerialIterator *(dataset, batch_size, repeat=True, shuffle=True)*

Dataset iterator that serially reads the examples.

This is a simple implementation of Iterator that just visits each example in either the order of indexes or a shuffled order.

To avoid unintentional performance degradation, the shuffle option is set to True by default. For validation, it is better to set it to False when the underlying dataset supports fast slicing. If the order of examples has an important meaning and the updater depends on the original order, this option should be set to False.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

**Parameters**

- **dataset** – Dataset to iterate.
- **batch_size** *(int)* – Number of examples within each batch.
- **repeat** *(bool)* – If True, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.
• **shuffle** *(bool)* – If True, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes.

**Methods**

```python
__next__()
__iter__()
 Returns self.
finalize()
 Finalizes the iterator and possibly releases the resources.
 This method does nothing by default. Implementation may override it to better handle the internal resources.
next()
reset()
serialize(serializer)
```

**Attributes**

- `epoch_detail`
- `previous_epoch_detail`

### 2.11.2 `chainer.iterators.MultiprocessIterator`

```python
class chainer.iterators.MultiprocessIterator(dataset, batch_size, repeat=True, shuffle=True, n_processes=None, n_prefetch=1, shared_mem=None)
```

Dataset iterator that loads examples in parallel.

This is an implementation of `Iterator` that loads examples with worker processes. It uses the standard `multiprocessing` module to parallelize the loading. The dataset is sent to the worker processes in the standard way using pickle.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current batch is returned.

This iterator saves `-1` instead of `None` in snapshots since some serializers do not support `None`.

**Parameters**

- **dataset** *(Dataset)* – Dataset to iterate.
- **batch_size** *(int)* – Number of examples within each batch.
- **repeat** *(bool)* – If True, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.
- **shuffle** *(bool)* – If True, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes.
- **n_processes** *(int)* – Number of worker processes. The number of CPUs is used by default.
- **n_prefetch** *(int)* – Number of prefetch batches.
• **shared_mem** (*int*) – The size of using shared memory per data. If None, size is adjusted automatically.

**Methods**

__next__()
__iter__()
Returns self.
__copy__()
finalize()
next()
reset()
serialize(*serializer*)

**Attributes**

epoch_detail
previous_epoch_detail

## 2.12 Trainer extensions

<table>
<thead>
<tr>
<th>chainer.training.extensions.dump_graph</th>
<th>Returns a trainer extension to dump a computational graph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.training.extensions.Evaluator</td>
<td>Trainer extension to evaluate models on a validation set.</td>
</tr>
<tr>
<td>chainer.training.extensions.ExponentialShift</td>
<td>Trainer extension to exponentially shift an optimizer attribute.</td>
</tr>
<tr>
<td>chainer.training.extensions.LinearShift</td>
<td>Trainer extension to change an optimizer attribute linearly.</td>
</tr>
<tr>
<td>chainer.training.extensions.LogReport</td>
<td>Trainer extension to output the accumulated results to a log file.</td>
</tr>
<tr>
<td>chainer.training.extensions.observe_lr</td>
<td>Returns a trainer extension to record the learning rate.</td>
</tr>
<tr>
<td>chainer.training.extensions.observe_value</td>
<td>Returns a trainer extension to continuously record a value.</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot</td>
<td>Returns a trainer extension to take snapshots of the trainer.</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_object</td>
<td>Returns a trainer extension to take snapshots of a given object.</td>
</tr>
<tr>
<td>chainer.training.extensions.PlotReport</td>
<td>Trainer extension to output plots.</td>
</tr>
<tr>
<td>chainer.training.extensions.PrintReport</td>
<td>Trainer extension to print the accumulated results.</td>
</tr>
<tr>
<td>chainer.training.extensions.ProgressBar</td>
<td>Trainer extension to print a progress bar and recent training status.</td>
</tr>
</tbody>
</table>
2.12.1 chainer.training.extensions.dump_graph

chainer.training.extensions.dump_graph(root_name, out_name='cg.dot', variable_style=None, function_style=None)

Returns a trainer extension to dump a computational graph.

This extension dumps a computational graph. The graph is output in DOT language.

It only dumps a graph at the first invocation.

**Note:** As of v2.0.0, the computational graph is not kept by default. This extension changes this behavior until the first invocation. **It is strongly recommended to use it with the default trigger setting.**

The detailed behavior of this extension since v2.0.0 is as follows.

1. In its initializer, it turns on the chainer.config.keep_graph_on_report flag.
2. At the first iteration, it dumps the graph using the graph held by the reported variable.
3. After dumping the graph, it turns off the flag (if it was originally turned off) so that any variable reported afterward does not hold a computational graph.

When the keep_graph_on_report flag is turned on, the computational graph created by the updater is kept during the invocation of extensions. It will cause an unnecessarily large memory consumption when an extension also uses a large amount of memory, e.g. Evaluator.

With the default setting, the dump_graph extension is called at the first iteration. Since Evaluator is not called at the first iteration in most cases, it does not cause any memory problem.

**Parameters**

- **root_name (str)** – Name of the root of the computational graph. The root variable is retrieved by this name from the observation dictionary of the trainer.
- **out_name (str)** – Output file name.
- **variable_style (dict)** – Dot node style for variables. Each variable is rendered by an octagon by default.
- **function_style (dict)** – Dot node style for functions. Each function is rendered by a rectangular by default.

See also:

See build_computational_graph() for the variable_style and function_style arguments.

2.12.2 chainer.training.extensions.Evaluator

class chainer.training.extensions.Evaluator(iterator, target, converter=<function concat_examples>, device=None, eval_hook=None, eval_func=None)

Trainer extension to evaluate models on a validation set.

This extension evaluates the current models by a given evaluation function. It creates a Reporter object to store values observed in the evaluation function on each iteration. The report for all iterations are aggregated to DictSummary. The collected mean values are further reported to the reporter object of the trainer, where the name of each observation is prefixed by the evaluator name. See Reporter for details in naming rules of the reports.

2.12. Trainer extensions 487
Evaluator has a structure to customize similar to that of `StandardUpdater`. The main differences are:

- There are no optimizers in an evaluator. Instead, it holds links to evaluate.
- An evaluation loop function is used instead of an update function.
- Preparation routine can be customized, which is called before each evaluation. It can be used, e.g., to initialize the state of stateful recurrent networks.

There are two ways to modify the evaluation behavior besides setting a custom evaluation function. One is by setting a custom evaluation loop via the `eval_func` argument. The other is by inheriting this class and overriding the `evaluate()` method. In latter case, users have to create and handle a reporter object manually. Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation. In both cases, the functions are called in testing mode (i.e., `chainer.config.train` is set to `False`).

This extension is called at the end of each epoch by default.

**Parameters**

- `iterator` – Dataset iterator for the validation dataset. It can also be a dictionary of iterators. If this is just an iterator, the iterator is registered by the name 'main'.
- `target` – Link object or a dictionary of links to evaluate. If this is just a link object, the link is registered by the name 'main'.
- `converter` – Converter function to build input arrays. `concat_examples()` is used by default.
- `device` – Device to which the training data is sent. Negative value indicates the host memory (CPU).
- `eval_hook` – Function to prepare for each evaluation process. It is called at the beginning of the evaluation. The evaluator extension object is passed at each call.
- `eval_func` – Evaluation function called at each iteration. The target link to evaluate as a callable is used by default.

**Variables**

- `converter` – Converter function.
- `device` – Device to which the training data is sent.
- `eval_hook` – Function to prepare for each evaluation process.
- `eval_func` – Evaluation function called at each iteration.

**Methods**

__call__(trainer=None)

Executes the evaluator extension.

Unlike usual extensions, this extension can be executed without passing a trainer object. This extension reports the performance on validation dataset using the `report()` function. Thus, users can use this extension independently from any trainer by manually configuring a `Reporter` object.

**Parameters**

- `trainer` (Trainer) – Trainer object that invokes this extension. It can be omitted in case of calling this extension manually.

**Returns**

Result dictionary that contains mean statistics of values reported by the evaluation function.

**Return type**

dict
evaluate()

Evaluates the model and returns a result dictionary.

This method runs the evaluation loop over the validation dataset. It accumulates the reported values to `DictSummary` and returns a dictionary whose values are means computed by the summary.

Users can override this method to customize the evaluation routine.

**Note:** This method encloses `eval_func` calls with `function.no_backprop_mode()` context, so all calculations using `Functions` inside `eval_func` don’t make computational graphs. It is for reducing the memory consumption.

**Returns** Result dictionary. This dictionary is further reported via `report()` without specifying any observer.

**Return type** dict

finalize()

Finalizes the extension.

This method is called at the end of the training loop.

get_all_iterators()

Returns a dictionary of all iterators.

get_all_targets()

Returns a dictionary of all target links.

get_iterator(name)

Returns the iterator of the given name.

get_target(name)

Returns the target link of the given name.

initialize(trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

**Parameters**

- `trainer` (`Trainer`) – Trainer object that runs the training loop.

serialize(serializer)

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

**Attributes**

- `default_name` = ‘validation’
2.12.3 chainer.training.extensions.ExponentialShift

class chainer.training.extensions.ExponentialShift(attr, rate, init=None, target=None, optimizer=None)

Trainer extension to exponentially shift an optimizer attribute.

This extension exponentially increases or decreases the specified attribute of the optimizer. The typical use case is an exponential decay of the learning rate.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.
• rate (float) – Rate of the exponential shift. This value is multiplied to the attribute at each call.
• init (float) – Initial value of the attribute. If it is None, the extension extracts the attribute at the first call and uses it as the initial value.
• target (float) – Target value of the attribute. If the attribute reaches this value, the shift stops.
• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the main optimizer of the updater is used.

Methods

__call__(trainer)

finalize()

Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)

serialize(serializer)

Attributes

default_name

Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

priority = 100

trigger = (1, ‘iteration’)
2.12.4 chainer.training.extensions.LinearShift

class chainer.training.extensions.LinearShift(attr, value_range, time_range, optimizer=None)

Trainer extension to change an optimizer attribute linearly.

This extension changes an optimizer attribute from the first value to the last value linearly within a specified duration. The typical use case is warming up of the momentum coefficient.

For example, suppose that this extension is called at every iteration, and value_range == (x, y) and time_range == (i, j). Then, this extension keeps the attribute to be x up to the i-th iteration, linearly shifts the value to y by the j-th iteration, and then keeps the value to be y after the j-th iteration.

This extension is also called before the training loop starts by default.

Parameters

- attr (str) – Name of the optimizer attribute to adjust.
- value_range (tuple of float) – The first and the last values of the attribute.
- time_range (tuple of ints) – The first and last counts of calls in which the attribute is adjusted.
- optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of the trainer is used.

Methods

__call__(trainer)

finalize()

Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)

serialize(serializer)

Attributes

default_name

Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

priority = 100

trigger = (1, ‘iteration’)

2.12.5 chainer.training.extensions.LogReport

class chainer.training.extensions.LogReport(keys=None, trigger=(1, ‘epoch’), postprocess=None, log_name='log')

Trainer extension to output the accumulated results to a log file.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by a supplied trigger, and writes them into a log file in JSON format.
There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes a new fresh summary object which is used until the next time that the trigger fires.

It also adds some entries to each result dictionary.

- 'epoch' and 'iteration' are the epoch and iteration counts at the output, respectively.
- 'elapsed_time' is the elapsed time in seconds since the training begins. The value is taken from Trainer.elapsed_time.

**Parameters**

- **keys** *(iterable of strs)* – Keys of values to accumulate. If this is None, all the values are accumulated and output to the log file.
- **trigger** – Trigger that decides when to aggregate the result and output the values. This is distinct from the trigger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.
- **postprocess** – Callback to postprocess the result dictionaries. Each result dictionary is passed to this callback on the output. This callback can modify the result dictionaries, which are used to output to the log file.
- **log_name** *(str)* – Name of the log file under the output directory. It can be a format string: the last result dictionary is passed for the formatting. For example, users can use '{iteration}' to separate the log files for different iterations. If the log name is None, it does not output the log to any file.

**Methods**

- **__call__(trainer)**
- **finalize()**
  Finalizes the extension.
- **initialize(trainer)**
  Initializes up the trainer state.

This method is called at the end of the training loop.

This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

**Parameters**

- **trainer** *(Trainer)* – Trainer object that runs the training loop.
- **serialize(serializer)**
Attributes

**default_name**
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

**log**
The current list of observation dictionaries.

**priority = 100**

**trigger = (1, ‘iteration’)**

### 2.12.6 chainer.training.extensions.observe_lr

chainer.training.extensions.observe_lr(optimizer_name='main', observation_key='lr')

Returns a trainer extension to record the learning rate.

**Parameters**

- **optimizer_name** (*str*) – Name of optimizer whose learning rate is recorded.
- **observation_key** (*str*) – Key of observation to record.

**Returns** The extension function.

### 2.12.7 chainer.training.extensions.observe_value

chainer.training.extensions.observe_value(observation_key, target_func)

Returns a trainer extension to continuously record a value.

**Parameters**

- **observation_key** (*str*) – Key of observation to record.
- **target_func** (*function*) – Function that returns the value to record. It must take one argument: :class:~chainer.training.Trainer object.

**Returns** The extension function.

### 2.12.8 chainer.training.extensions.snapshot

chainer.training.extensions.snapshot(savefun=<function save_npz>, filename='snapshot_iter_{.updater.iteration}')

Returns a trainer extension to take snapshots of the trainer.

This extension serializes the trainer object and saves it to the output directory. It is used to support resuming the training loop from the saved state.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object specifying the required interval can be passed along with this extension to the *extend()* method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.
Note: This extension first writes the serialized object to a temporary file and then rename it to the target file name. Thus, if the program stops right before the renaming, the temporary file might be left in the output directory.

Parameters
- `savefun` – Function to save the trainer. It takes two arguments: the output file path and the trainer object.
- `filename (str)` – Name of the file into which the trainer is serialized. It can be a format string, where the trainer object is passed to the `str.format()` method.

2.12.9 chainer.training.extensions.snapshot_object

chainer.training.extensions.snapshot_object(target, filename, savefun=<function save_npz>)

Returns a trainer extension to take snapshots of a given object.

This extension serializes the given object and saves it to the output directory.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object specifying the required interval can be passed along with this extension to the `extend()` method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

Parameters
- `target` – Object to serialize.
- `filename (str)` – Name of the file into which the object is serialized. It can be a format string, where the trainer object is passed to the `str.format()` method. For example, `'snapshot_{.updater.iteration}'` is converted to `'snapshot_10000'` at the 10,000th iteration.
- `savefun` – Function to save the object. It takes two arguments: the output file path and the object to serialize.

Returns An extension function.

2.12.10 chainer.training.extensions.ParameterStatistics

class chainer.training.extensions.ParameterStatistics(links, statistics={'max': <function amax>, 'min': <function amin>, 'std': <function std>, 'zeros': <function ParameterStatistics.<lambda>>, 'mean': <function mean>, 'percentile': <function ParameterStatistics.<lambda>>, report_params=True, report_grads=True, prefix=None, trigger=(1, 'epoch'))

Trainer extension to report parameter statistics.

Statistics are collected and reported for a given `Link` or an iterable of `Links`. If a link contains child links, the statistics are reported separately for each child.
Any function that takes a one-dimensional `numpy.ndarray` or a `cupy.ndarray` and outputs a single or multiple real numbers can be registered to handle the collection of statistics, e.g. `numpy.ndarray.mean()`.

The keys of reported statistics follow the convention of link name followed by parameter name, attribute name and function name, e.g. `VGG16Layers/conv1_1/W/data/mean`. They are prepended with an optional prefix and appended with integer indices if the statistics generating function return multiple values.

**Parameters**

- `links` ([`Link` or iterable of `~chainer.Link`]) – Link(s) containing the parameters to observe. The link is expected to have a `name` attribute which is used as a part of the report key.
- `statistics` (`dict`) – Dictionary with function name to function mappings. The name is a string and is used as a part of the report key. The function is responsible for generating the statistics.
- `report_params` (`bool`) – If `True`, report statistics for parameter values such as weights and biases.
- `report_grads` (`bool`) – If `True`, report statistics for parameter gradients.
- `prefix` (`str`) – Optional prefix to prepend to the report keys.
- `trigger` – Trigger that decides when to aggregate the results and report the values.

**Methods**

- `__call__`(trainer)
  
  Execute the statistics extension.

  Collect statistics for the current state of parameters.

  Note that this method will merely update its statistic summary, unless the internal trigger is fired. If the trigger is fired, the summary will also be reported and then reset for the next accumulation.

  **Parameters**
  
  `trainer` (Trainer) – Associated trainer that invoked this extension.

- `finalize()`
  
  Finalizes the extension.

  This method is called at the end of the training loop.

- `initialize`(trainer)
  
  Initializes up the trainer state.

  This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

  When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

  For example, `ExponentialShift` extension changes the optimizer's hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

  **Parameters**
  
  `trainer` (Trainer) – Trainer object that runs the training loop.

- `register_statistics`(name, function)
  
  Register a function to compute a certain statistic.
The registered function will be called each time the extension runs and the results will be included in the report.

**Parameters**

- **name** *(str)* – Name of the statistic.
- **function** – Function to generate the statistic. Any function that takes a one-dimensional `numpy.ndarray` or a `cupy.ndarray` and outputs a single or multiple real numbers is allowed.

**serialize** *(serializer)*

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

**Attributes**

- **default_name** = ‘parameter_statistics’
- **default_statistics** = {'max': <function amax>, 'min': <function amin>, 'std': <function std>, 'zeros': <function ParameterStatistics.<lambda>>, 'mean': <function mean>, 'percentile': <function ParameterStatistics.<lambda>>}
- **priority** = 300
- **report_key_template** = '{prefix}{link_name}{param_name}/{attr_name}/{function_name}'
- **trigger** = (1, 'iteration')

### 2.12.11 chainer.training.extensions.PlotReport

**class** `chainer.training.extensions.PlotReport` *(y_keys, x_key='iteration', trigger=(1, 'epoch'), postprocess=None, file_name='plot.png', marker='x', grid=True)*

Trainer extension to output plots.

This extension accumulates the observations of the trainer to `DictSummary` at a regular interval specified by a supplied trigger, and plot a graph with using them.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes a new fresh summary object which is used until the next time that the trigger fires.

It also adds 'epoch' and 'iteration' entries to each result dictionary, which are the epoch and iteration counts at the output.

**Warning:** If your environment needs to specify a backend of matplotlib explicitly, please call `matplotlib.use` before calling `trainer.run`. For example:

```python
import matplotlib
matplotlib.use('Agg')

trainer.extend(
 extensions.PlotReport([('main/loss', 'validation/main/loss'),
 'epoch', file_name='loss.png'))
)
trainer.run()
```
Then, once one of instances of this extension is called, `matplotlib.use` will have no effect.

For the details, please see here: [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend](http://matplotlib.org/faq/usage_faq.html#what-is-a-backend)

**Parameters**

- `y_keys (iterable of strs)` – Keys of values regarded as y. If this is None, nothing is output to the graph.
- `x_key (str)` – Keys of values regarded as x. The default value is ‘iteration’.
- `trigger` – Trigger that decides when to aggregate the result and output the values. This is distinct from the trigger of this extension itself. If it is a tuple in the form `<int>, 'epoch'` or `<int>, 'iteration'`, it is passed to `IntervalTrigger`.
- `postprocess` – Callback to postprocess the result dictionaries. Figure object, Axes object, and all plot data are passed to this callback in this order. This callback can modify the figure.
- `file_name (str)` – Name of the figure file under the output directory. It can be a format string.
- `marker (str)` – The marker used to plot the graph. Default is ‘x’. If `None` is given, it draws with no markers.
- `grid (bool)` – Set the axis grid on if True. Default is True.

**Methods**

- `__call__(trainer)`
- `initialize(trainer)`
- `finalize()`

`initialize` method initializes the trainer state.

This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

**Parameters**

- `trainer` (Trainer) – Trainer object that runs the training loop.
- `serialize (serializer)`
Attributes

**default_name**

Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

**priority = 100**

**trigger = (1, ‘iteration’)**

### 2.12.12 chainer.training.extensions.PrintReport

class chainer.training.extensions.PrintReport(entries, log_report='LogReport', out=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

Trainer extension to print the accumulated results.

This extension uses the log accumulated by a LogReport extension to print specified entries of the log in a human-readable format.

**Parameters**

- **entries (list of str)** – List of keys of observations to print.
- **log_report (str or LogReport)** – Log report to accumulate the observations. This is either the name of a LogReport extensions registered to the trainer, or a LogReport instance to use internally.
- **out** – Stream to print the bar. Standard output is used by default.

**Methods**

__call__ (trainer)

finalize ()

Finalizes the extension.

This method is called at the end of the training loop.

initialize (trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

**Parameters**

- **trainer (Trainer)** – Trainer object that runs the training loop.
- **serializer**
Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

priority = 100
trigger = (1, 'iteration')

2.12.13 chainer.training.extensions.ProgressBar

class chainer.training.extensions.ProgressBar (training_length=None, update_interval=100,
bar_length=50, out=<_io.TextIOWrapper
name='<stdout>' mode='w'
encoding='UTF-8'>)

Trainer extension to print a progress bar and recent training status.

This extension prints a progress bar at every call. It watches the current iteration and epoch to print the bar.

Parameters

• training_length (tuple) – Length of whole training. It consists of an integer and either 'epoch' or 'iteration'. If this value is omitted and the stop trigger of the trainer is IntervalTrigger, this extension uses its attributes to determine the length of the training.

• update_interval (int) – Number of iterations to skip printing the progress bar.

• bar_length (int) – Length of the progress bar in characters.

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__ (trainer)

finalize ()

initialize (trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

trainer (Trainer) – Trainer object that runs the training loop.

serialize (serializer)

Serializes the extension state.
It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

Attributes

**default_name**
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute to hide it.

**priority** = 100

**trigger** = (1, ‘iteration’)

### 2.13 Trainer triggers

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.training.triggers.BestValueTrigger</code></td>
<td>Trigger invoked when specific value becomes best.</td>
</tr>
<tr>
<td><code>chainer.training.triggers.IntervalTrigger</code></td>
<td>Trigger based on a fixed interval.</td>
</tr>
<tr>
<td><code>chainer.training.triggers.ManualScheduleTrigger</code></td>
<td>Trigger invoked at specified point(s) of iterations or epochs.</td>
</tr>
<tr>
<td><code>chainer.training.triggers.MaxValueTrigger</code></td>
<td>Trigger invoked when specific value becomes maximum.</td>
</tr>
<tr>
<td><code>chainer.training.triggers.MinValueTrigger</code></td>
<td>Trigger invoked when specific value becomes minimum.</td>
</tr>
</tbody>
</table>

### 2.13.1 `chainer.training.triggers.BestValueTrigger`

**class** `chainer.training.triggers.BestValueTrigger` *(key, compare, trigger=(1, ‘epoch’))*

Trigger invoked when specific value becomes best.

**Parameters**

- **key** *(str)* – Key of value.
- **compare** *(function)* – Compare function which takes current best value and new value and returns whether new value is better than current best.
- **trigger** – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of `<int>, 'epoch' or `<int>, 'iteration' which is passed to `IntervalTrigger`.

**Methods**

**`__call__`**(trainer)

Decides whether the extension should be called on this iteration.

**Parameters**

trainer *(Trainer)* – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

**Returns** *True* if the corresponding extension should be invoked in this iteration.

**Return type** *bool*
2.13.2 chainer.training.triggers.IntervalTrigger

class chainer.training.triggers.IntervalTrigger(period, unit)
    Trigger based on a fixed interval.

    This trigger accepts iterations divided by a given interval. There are two ways to specify the interval: per
iterations and epochs. *Iteration* means the number of updates, while *epoch* means the number of sweeps over
the training dataset. Fractional values are allowed if the interval is a number of epochs; the trigger uses the
*iteration* and *epoch_detail* attributes defined by the updater.

    For the description of triggers, see `get_trigger()`.

    Parameters

    • **period** (*int or float*) – Length of the interval. Must be an integer if unit is
      'iteration'.

    • **unit** (*str*) – Unit of the length specified by period. It must be either 'iteration'
      or 'epoch'.

    Methods

    __call__(trainer)
    Decides whether the extension should be called on this iteration.

        Parameters

        trainer (*Trainer*) – Trainer object that this trigger is associated with. The
        updater associated with this trainer is used to determine if the trigger should fire.

        Returns

        True if the corresponding extension should be invoked in this iteration.

        Return type

        bool

    serialize(serializer)

2.13.3 chainer.training.triggers.ManualScheduleTrigger

class chainer.training.triggers.ManualScheduleTrigger(points, unit)
    Trigger invoked at specified point(s) of iterations or epochs.

    This trigger accepts iterations or epochs indicated by given point(s). There are two ways to specify the point(s):
iteration and epoch. *Iteration* means the number of updates, while *epoch* means the number of sweeps over
the training dataset. Fractional values are allowed if the point is a number of epochs; the trigger uses the
*iteration* and *epoch_detail* attributes defined by the updater.

    Parameters

    • **points** (*int, float, or list of int or float*) – time of the trigger. Must
      be an integer or list of integer if unit is 'iteration'.

    • **unit** (*str*) – Unit of the time specified by points. It must be either 'iteration'
      or 'epoch'.

    Methods

    __call__(trainer)
    Decides whether the extension should be called on this iteration.
Parameters **trainer** (*Trainer*) – Trainer object that this trigger is associated with. The updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type `bool`

**serialize** (*serializer*)

### 2.13.4 chainer.training.triggers.MaxValueTrigger

class chainer.training.triggers.MaxValueTrigger(*key*, *trigger=(1, 'epoch'))

Trigger invoked when specific value becomes maximum.

For example you can use this trigger to take snapshot on the epoch the validation accuracy is maximum.

Parameters

- **key** (*str*) – Key of value. The trigger fires when the value associated with this key becomes maximum.

- **trigger** – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of `<int>, 'epoch'` or `<int>, 'iteration'` which is passed to `IntervalTrigger`.

Methods

__call__(*trainer*)

Decides whether the extension should be called on this iteration.

Parameters **trainer** (*Trainer*) – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type `bool`

### 2.13.5 chainer.training.triggers.MinValueTrigger

class chainer.training.triggers.MinValueTrigger(*key*, *trigger=(1, 'epoch'))

Trigger invoked when specific value becomes minimum.

For example you can use this trigger to take snapshot on the epoch the validation loss is minimum.

Parameters

- **key** (*str*) – Key of value. The trigger fires when the value associated with this key becomes minimum.

- **trigger** – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of `<int>, 'epoch'` or `<int>, 'iteration'` which is passed to `IntervalTrigger`.

Methods

__call__(*trainer*)

Decides whether the extension should be called on this iteration.
**Parameters**

`trainer (Trainer)` – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

**Returns**

`True` if the corresponding extension should be invoked in this iteration.

**Return type**

`bool`

### 2.14 Caffe Reference Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities, and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference models in their Model Zoo, one of the reason why this framework gets popular.

Chainer can import the reference models and emulate the network by `Link` implementations. This functionality is provided by the `chainer.links.caffe.CaffeFunction` class.

**chainer.links.caffe.CaffeFunction**

Caffe emulator based on the model file of Caffe.

### 2.15 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by invoking `build_computational_graph()`. Generated computational graphs are dumped to specified format (Currently Dot Language is supported).

Basic usage is as follows:

```python
import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:
 o.write(g.dump())
```

where `vs` is list of `Variable` instances and `g` is an instance of `ComputationalGraph`. This code generates the computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of `vs`.

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from `example/imagenet`.

**chainer.computational_graph.**

Builds a graph of functions and variables backward-reachable from outputs.

**chainer.computational_graph.**

Class that represents computational graph.

![Graph Example](attachment:inception3a.png)
2.15.1 chainer.computational_graph.build_computational_graph

chainer.computational_graph.build_computational_graph(outputs, remove_split=True, variable_style={'shape': 'octagon', 'fillcolor': '#E0E0E0'}, function_style={'shape': 'record', 'fillcolor': '#6495ED'}, rankdir='TB', remove_variable=False, show_name=True)

Builds a graph of functions and variables backward-reachable from outputs.

Parameters

- **outputs (list)** – nodes from which the graph is constructed. Each element of outputs must be either Variable object, VariableNode object, or :class:`Function object.

- **remove_split (bool)** – It must be True. This argument is left for backward compatibility.

- **variable_style (dict)** – Dot node style for variable. Possible keys are ‘shape’, ‘color’, ‘fillcolor’, ‘style’, and etc.

- **function_style (dict)** – Dot node style for function.

- **rankdir (str)** – Direction of the graph that must be TB (top to bottom), BT (bottom to top), LR (left to right) or RL (right to left).

- **remove_variable (bool)** – If True, Variables are removed from the resulting computational graph. Only Functions are shown in the output.

- **show_name (bool)** – If True, the name attribute of each node is added to the label of the node. Default is True.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of outputs.
If `unchain_backward` was called in some variable in the computational graph before this function, backward step is stopped at this variable.

For example, suppose that computational graph is as follows:

```
 x --+ |--- f ---+ y
 |--- g ---+ z
```

Let outputs = \([y, z]\). Then the full graph is emitted.

Next, let outputs = \([y]\). Note that \(z\) and \(g\) are not backward-reachable from \(y\). The resulting graph would be following:

```
 x ---+ f ---+ y
```

See `TestGraphBuilder` for details.

**Return type** `ComputationalGraph`

---

**Note:** The default behavior of `ComputationalGraph` has been changed from v1.23.0, so that it outputs the richest representation of a graph as default, namely, styles are set and names of functions and variables are shown. To reproduce the same result as previous versions (<= v1.22.0), please specify `variable_style=None`, `function_style=None`, and `show_name=False` explicitly.

## 2.15.2 chainer.computational_graph.ComputationalGraph

```python
class chainer.computational_graph.ComputationalGraph(nodes, edges, variable_style={'shape': 'octagon', 'fillcolor': '#E0E0E0', 'style': 'filled'}, function_style={'shape': 'record', 'fillcolor': '#6495ED', 'style': 'filled'}, rankdir='TB', remove_variable=False, show_name=True)
```

Class that represents computational graph.

**Note:** We assume that the computational graph is directed and acyclic.

**Parameters**

- **nodes (list)** – List of nodes. Each node is either `VariableNode` object or `Function` object.
- **edges (list)** – List of edges. Each edge consists of pair of nodes.
- **variable_style (dict)** – Dot node style for variable.
- **function_style (dict)** – Dot node style for function.
- **rankdir (str)** – Direction of the graph that must be TB (top to bottom), BT (bottom to top), LR (left to right) or RL (right to left).
- **remove_variable (bool)** – If True, `Variable`s are removed from the resulting computational graph. Only `Function`s are shown in the output.
• **show_name** *(bool)* – If True, the name attribute of each node is added to the label of the node. Default is True.

**Note:** The default behavior of `ComputationalGraph` has been changed from v1.23.0, so that it outputs the richest representation of a graph as default, namely, styles are set and names of functions and variables are shown. To reproduce the same result as previous versions (<= v1.22.0), please specify `variable_style=None`, `function_style=None`, and `show_name=False` explicitly.

### Methods

**dump** *(format='dot')*

Dumps graph as a text.

**Parameters**

- **format** *(str)* – The graph language name of the output.

**Returns** The graph in specified format.

**Return type** *str*

## 2.16 Environment variables

Here are the environment variables Chainer uses.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAINER_CUDNN</td>
<td>Set 0 to disable cuDNN in Chainer. Otherwise cuDNN is enabled automatically.</td>
</tr>
<tr>
<td>CHAINER_SEED</td>
<td>Default seed value of random number generators for CUDA. If it is not set, the seed value is generated from Python random module. Set an integer value in decimal format.</td>
</tr>
<tr>
<td>CHAINER_TYPECHECK</td>
<td>Set 0 to disable type checking. Otherwise type checking is enabled automatically. See Type checking utilities for details.</td>
</tr>
</tbody>
</table>
CHAPTER 3

API Compatibility Policy

This document explains the design policy on compatibilities of Chainer APIs. Development team should follow this policy on deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers. Users can decide the level of dependencies on Chainer’s implementations in their codes based on this document. Developers should read through this document before creating pull requests that contain changes on the interface. Note that this document may contain ambiguities on the level of supported compatibilities.

3.1 Targeted Versions

This policy is applied to Chainer v2.0.0 and higher. Note that this policy is not applied to Chainer of lower versions. For older versions of Chainer, see the old version of API Compatibility Policy.

3.2 Versioning and Backward Compatibility

The versioning of Chainer follows the PEP 440 and a part of Semantic versioning. See Contribution Guide for details of versioning.

The backward compatibility is kept for revision updates and minor updates, which are applied to the stable version. A major update from the latest release candidate basically keeps the backward compatibility, although it is not guaranteed. Any pre-releases may break the backward compatibility.

3.3 Breaking the Compatibility

We sometimes need to break the backward compatibility to improve the framework design and to support new kinds of machine learning methods. Such a change is only made into pre-releases (alpha, beta, and release candidate) and sometimes into the major update.
A change that breaks the compatibility affects user codes. We try to lower the cost of adapting your code to the newer version. The following list shows an example of what we can do to reduce the cost (Note: this is not a promise; what kind of actions we can take depends on the situation).

- When an argument is removed from an existing API, passing the argument to the updated API will emit an error with a special error message. The error message tells you how to fix your code.
- When a function or a class is removed, we make the current stable version emit a deprecation warning. **Note that the deprecation warning is not printed by default in Python.** You have to manually turn on the deprecation warning by `warnings.simplefilter('always', DeprecationWarning)`.
- When a definition of a link is changed, we try to enable it to deserialize a model dumped with an older version of Chainer. In most cases, we cannot guarantee that a model serialized with a newer version of Chainer is loadable by an older version of Chainer.

**Note:** Since Chainer v2, we have stopped adopting any solid processes to break backward compatibilities (e.g. a solid schedule for deprecating and removing a feature) in order to keep the development fast enough to support the cutting-edge research. **It does not mean we stop taking care of maintainability of user codes.** We are still paying much attention to not breaking user codes.

### 3.4 Experimental APIs

Thanks to many contributors, we have introduced many new features to Chainer. However, we have sometimes released new features only to later notice that their APIs are not appropriate. In particular, we sometimes know that the API is likely to be modified in the near future because we do not have enough knowledge about how well the current design fits to the real usages. **The objective of experimental APIs is to declare that the APIs are likely to be updated in the near future so that users can decide if they can(not) use them.**

Any newly added API can be marked as experimental. Any API that is not experimental is called stable in this document.

**Note:** Undocumented behaviors are not considered as APIs, so they can be changed at any time (even in a revision update). The treatment of undocumented behaviors are described in *Undocumented behaviors* section.

When users use experimental APIs for the first time, warnings are raised once for each experimental API, unless users explicitly disable the emission of the warnings in advance.

See the document of `chainer.utils.experimental()` to know how developers mark APIs as experimental and how users enable or disable the warnings practically.

**Note:** It is up to developers if APIs should be annotated as experimental or not. We recommend to make the APIs experimental if they implement large modules or make a decision from several design choices.

### 3.5 Supported Backward Compatibility

This section defines backward compatibilities that revision updates must maintain.
3.5.1 Documented Interface

Chainer has the official API documentation. Many applications can be written based on the documented features. We support backward compatibilities of documented features. In other words, codes only based on the documented features run correctly with revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes outside of the documented APIs should have one or more underscores at the prefix of their names.

**Note:** Although it is not stated as a rule, we also try to keep the compatibility for any interface that looks like a stable feature. For example, if the name of a symbol (function, class, method, attribute, etc.) is not prefixed by an underscore and the API is not experimental, the API should be kept over revision updates even if it is not documented.

3.5.2 Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined. Undocumented behaviors are not guaranteed to be stable between different revision versions.

Even revision updates may contain changes to undefined behaviors. One of the typical examples is a bug fix. Another example is an improvement on implementation, which may change the internal object structures not shown in the documentation. As a consequence, **even revision updates do not support compatibility of pickling, unless the full layout of pickled objects is clearly documented.**

3.5.3 Documentation Error

Compatibility is basically determined based on the documentation, although it sometimes contains errors. It may make the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the documentation errors in any updates that may break the compatibility in regard to the documentation.

**Note:** Developers should not fix the documentation and implementation of the same functionality at the same time in revision updates as a “bug fix” unless the bug is so critical that no users are expected to be using the old version correctly.

3.5.4 Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other. It does not break the user codes, except the codes depend on how the attributes and properties are implemented.

3.5.5 Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values. It does not break the user codes, except the codes depend on how the methods and callable attributes are implemented.

3.5.6 Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception is raised in the future revision versions with correct usages that the documentation allows.
On the other hand, warnings may be added at any revision updates for any APIs. It means revision updates do not keep backward compatibility of warnings.

### 3.6 Model Format Compatibility

Links and chains serialized by official serializers that Chainer provides are correctly loaded with the future versions. They might not be correctly loaded with Chainer of the lower versions.

**Note:** Current serialization APIs do not support versioning. It prevents us from introducing changes in the layout of objects that support serialization. We are discussing versioning in serialization APIs.

### 3.7 Installation Compatibility

The installation process is another concern of compatibilities.

Any changes on the set of dependent libraries that force modifications on the existing environments should be done in pre-releases and major updates. Such changes include following cases:

- dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)
- adding new mandatory dependencies (e.g. adding h5py to setup_requires)

**Note:** We sometimes have to narrow the supported versions due to bugs in the specific versions of libraries. In such a case, we may drop the support of those versions even in revision updates unless a workaround is found for the issue.
This is a guide for all contributions to Chainer. The development of Chainer is running on the official repository at GitHub. Anyone that wants to register an issue or to send a pull request should read through this document.

**Note:** Many points of this document are updated at v2. We strongly recommend all contributors of v1 to read through the document again.

### 4.1 Classification of Contributions

There are several ways to contribute to Chainer community:

1. Registering an issue
2. Sending a pull request (PR)
3. Sending a question/reply to StackOverflow (with chainer tag) or Chainer User Group
4. Open-sourcing an external example
5. Writing a post about Chainer

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

### 4.2 Development Cycle

This section explains the development process of Chainer. Before contributing to Chainer, it is strongly recommended to understand the development cycle.
4.2.1 Versioning

The versioning of Chainer follows PEP 440 and a part of Semantic versioning. The version number consists of three or four parts: \( X.Y.Zw \) where \( X \) denotes the major version, \( Y \) denotes the minor version, \( Z \) denotes the revision number, and the optional \( w \) denotes the pre-release suffix. While the major, minor, and revision numbers follow the rule of semantic versioning, the pre-release suffix follows PEP 440 so that the version string is much friendly with Python eco-system.

Note that a major update basically does not contain compatibility-breaking changes from the last release candidate (RC). This is not a strict rule, though; if there is a critical API bug that we have to fix for the major version, we may add breaking changes to the major version up.

As for the backward compatibility, see API Compatibility Policy.

4.2.2 Release Cycle

Starting from v2.0.0, we are developing two tracks of versions at the same time. The first one is the track of stable versions, which is a series of revision updates for the latest major version. The second one is the track of development versions, which is a series of pre-releases for the upcoming major version.

Consider that \( X.0.0 \) is the latest major version and \( Y.0.0, Z.0.0 \) are the succeeding major versions. Then, the timeline of the updates is depicted by the following table.

<table>
<thead>
<tr>
<th>Date</th>
<th>ver X</th>
<th>ver Y</th>
<th>ver Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 weeks</td>
<td>X.0.0rc1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4 weeks</td>
<td>X.0.0</td>
<td>Y.0.0a1</td>
<td>–</td>
</tr>
<tr>
<td>8 weeks</td>
<td>X.1.0*</td>
<td>Y.0.0b1</td>
<td>–</td>
</tr>
<tr>
<td>12 weeks</td>
<td>X.2.0*</td>
<td>Y.0.0rc1</td>
<td>–</td>
</tr>
<tr>
<td>16 weeks</td>
<td>–</td>
<td>Y.0.0</td>
<td>Z.0.0a1</td>
</tr>
</tbody>
</table>

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of \( X.0.0rc1 \). In particular, each revision/minor release is made four weeks after the previous one of the same major version, and the pre-release of the upcoming major version is made at the same time. Whether these releases are revision or minor is determined based on the contents of each update.

Note that there are only three stable releases for the versions \( X.x.x \). During the parallel development of \( Y.0.0 \) and \( Z.0.0a1 \), the version \( Y \) is treated as an almost-stable version and \( Z \) is treated as a development version.

If there is a critical bug found in \( X.x.x \) after stopping the development of version \( X \), we may release a hot-fix for this version at any time.

We create a milestone for each upcoming release at GitHub. The GitHub milestone is basically used for collecting the issues and PRs resolved in the release.

4.2.3 Git Branches

The master branch is used to develop pre-release versions. It means that alpha, beta, and RC updates are developed at the master branch. This branch contains the most up-to-date source tree that includes features newly added after the latest major version.

The stable version is developed at the individual branch named as \( vN \) where “N” reflects the version number (we call it a versioned branch). For example, \( v3.0.0, v3.0.1, \) and \( v3.0.2 \) will be developed at the \( v3 \) branch.

Notes for contributors: When you send a pull request, you basically have to send it to the master branch. If the change can also be applied to the stable version, a core team member will apply the same change to the stable version so that the change is also included in the next revision update.
If the change is only applicable to the stable version and not to the master branch, please send it to the versioned branch. We basically only accept changes to the latest versioned branch (where the stable version is developed) unless the fix is critical.

If you want to make a new feature of the master branch available in the current stable version, please send a backport PR to the stable version (the latest vN branch). See the next section for details.

Note: a change that can be applied to both branches should be sent to the master branch. Each release of the stable version is also merged to the development version so that the change is also reflected to the next major version.

### 4.2.4 Feature Backport PRs

We basically do not backport any new features of the development version to the stable versions. If you desire to include the feature to the current stable version and you can work on the backport work, we welcome such a contribution. In such a case, you have to send a backport PR to the latest vN branch. **Note that we do not accept any feature backport PRs to older versions because we are not running quality assurance workflows (e.g. CI) for older versions so that we cannot ensure that the PR is correctly ported.**

There are some rules on sending a backport PR.

- Start the PR title from the prefix [backport].
- Clarify the original PR number in the PR description (something like “This is a backport of #XXXX”).
- (optional) Write to the PR description the motivation of backporting the feature to the stable version.

Please follow these rules when you create a feature backport PR.

Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are usually backported by core dev members. It is also appreciated to make such a backport PR by any contributors, though, so that the overall development proceeds more smoothly!

### 4.3 Issues and Pull Requests

In this section, we explain how to file issues and send pull requests (PRs).

#### 4.3.1 Issue/PR Labels

Issues and PRs are labeled by the following tags:

- **Bug**: bug reports (issues) and bug fixes (PRs)
- **Enhancement**: implementation improvements without breaking the interface
- **Feature**: feature requests (issues) and their implementations (PRs)
- **NoCompat**: disrupts backward compatibility
- **Test**: test fixes and updates
- **Document**: document fixes and improvements
- **Example**: fixes and improvements on the examples
- **Install**: fixes installation script
- **Contribution-Welcome**: issues that we request for contribution (only issues are categorized to this)
- **Other**: other issues and PRs
Multiple tags might be labeled to one issue/PR. **Note that revision releases cannot include PRs in Feature and NoCompat categories.**

### 4.3.2 How to File an Issue

On registering an issue, write precise explanations on how you want Chainer to be. Bug reports must include necessary and sufficient conditions to reproduce the bugs. Feature requests must include **what** you want to do (and **why** you want to do, if needed) with Chainer. You can contain your thoughts on **how** to realize it into the feature requests, though what part is most important for discussions.

**Warning:** If you have a question on usages of Chainer, it is highly recommended to send a post to StackOverflow or Chainer User Group instead of the issue tracker. The issue tracker is not a place to share knowledge on practices. We may suggest these places and immediately close how-to question issues.

### 4.3.3 How to Send a Pull Request

If you can write code to fix an issue, we encourage to send a PR.

First of all, before starting to write any code, do not forget to confirm the following points.

- Read through the **Coding Guidelines** and **Unit Testing**.
- Check the appropriate branch that you should send the PR following **Git Branches**. If you do not have any idea about selecting a branch, please choose the **master** branch.

In particular, **check the branch before writing any code**. The current source tree of the chosen branch is the starting point of your change.

After writing your code (**including unit tests and hopefully documentations**)!, send a PR on GitHub. You have to write a precise explanation of **what** and **how** you fix; it is the first documentation of your code that developers read, which is a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI for Linux and Mac OS X, and on AppVeyor for Windows. Your PR needs to pass at least the test for Linux on Travis CI. After the automatic test passes, some of the core developers will start reviewing your code. Note that this automatic PR test only includes CPU tests.

**Note:** We are also running continuous integration with GPU tests for the **master** branch and the versioned branch of the latest major version. Since this service is currently running on our internal server, we do not use it for automatic PR tests to keep the server secure.

If you are planning to add a new feature or modify existing APIs, **it is recommended to open an issue and discuss the design first**. The design discussion needs lower cost for the core developers than code review. Following the consequences of the discussions, you can send a PR that is smoothly reviewed in a shorter time.

Even if your code is not complete, you can send a pull request as a **work-in-progress PR** by putting the `[WIP]` prefix to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join the discussion about how to proceed the PR. WIP PR is also useful to have discussions based on a concrete code.

### 4.4 Coding Guidelines
Note: Coding guidelines are updated at v3.0. Those who have contributed to older versions should read the guidelines again.

We use PEP 8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

To check your code, use `autopep8` and `flake8` command installed by `hacking` package:

```
$ pip install autopep8 hacking
$ autopep8 --global-config .pep8 path/to/your/code.py
$ flake8 path/to/your/code.py
```

The `autopep8` supports automatically correct Python code to conform to the PEP 8 style guide:

```
$ autopep8 --in-place --global-config .pep8 path/to/your/code.py
```

The `flake8` command lets you know the part of your code not obeying our style guidelines. Before sending a pull request, be sure to check that your code passes the `flake8` checking.

Note that `flake8` command is not perfect. It does not check some of the style guidelines. Here is a (not-complete) list of the rules that `flake8` cannot check.

- Relative imports are prohibited. [H304]
- Importing non-module symbols is prohibited.
- Import statements must be organized into three parts: standard libraries, third-party libraries, and internal imports. [H306]

In addition, we restrict the usage of shortcut aliases in any global-scope code. In particular, you cannot use shortcut aliases to designate a parent class in global-scope class definitions. When you want to make a class inheriting another class defined in another module, you have to spell out the full module name instead of importing a module that provides an alias.

For example, the following code is not allowed.

```python
import chainer

class MyLink(chainer.Link): ...
```

Instead, import `chainer.link` and use that.

```python
import chainer.link

class MyLink(chainer.link.Link): ...
```

If you feel the code too verbose, you can also use `from import` or `import as`.

```python
from chainer import link

class MyLink(link.Link): ...
```

Note: From v3.0, we allow shortcut aliases used inside of functions and methods that are not called from any global scope code. For example, you can write `chainer.Variable` instead of `chainer variable.Variable` inside of functions and methods. Use of such aliases is prohibited in the past for avoiding confusing errors related to cyclic dependencies; we relaxed the rule so that the library code looks similar to user code.

When you use such shortcut aliases, please be careful with cyclic imports. One of the typical pitfalls is a way to import `chainer.functions`. An import like `import chainer.functions as F` within modules under

4.4. Coding Guidelines
chainer.functions does not work. An import like from chainer import functions works well with Python 3, but does not with Python 2. We recommend you to use import chainer.functions and spell out like chainer.functions.foo in your methods.

Once you send a pull request, your coding style is automatically checked by Travis-CI. The reviewing process starts after the check passes.

4.5 Unit Testing

Testing is one of the most important part of your code. You must write test cases and verify your implementation by following our testing guide.

Note that we are using pytest and mock package for testing, so install them before writing your code:

$ pip install pytest mock

4.5.1 How to Run Tests

You can run unit tests simply by running python -m pytest command at the repository root:

$ python -m pytest

or specify the test script that you want to run:

$ python -m pytest path/to/your/test.py

You can also run all unit tests under a specified directory:

$ python -m pytest tests/chainer_tests/<directory name>

It requires CUDA and cuDNN by default. In order to run unit tests that do not require CUDA and cuDNN, use CHAINER_TEST_GPU_LIMIT=0 environment variable and -m='not cudnn' option:

$ export CHAINER_TEST_GPU_LIMIT=0
$ python -m pytest path/to/your/test.py -m='not cudnn'

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify the number of available GPUs to CHAINER_TEST_GPU_LIMIT. For example, if you have only one GPU, launch pytest by the following command to skip multi-GPU tests:

$ export CHAINER_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py

Some tests spend too much time. If you want to skip such tests, pass -m='not slow' option to the command:

$ python -m pytest path/to/your/test.py -m='not slow'

If you modify the code related to existing unit tests, you must run appropriate commands and confirm that the tests pass.
4.5.2 Test File and Directory Naming Conventions

Tests are put into the tests/chainer_tests directory. In order to enable test runner to find test scripts correctly, we are using special naming convention for the test subdirectories and the test scripts.

- The name of each subdirectory of tests must end with the _tests suffix.
- The name of each test script must start with the test_ prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence to the tested module is clear. For example, if you want to write a test for a module chainer.x.y.z, the test script must be located at tests/chainer_tests/x_tests/y_tests/test_z.py.

4.5.3 How to Write Tests

There are many examples of unit tests under the tests directory, so reading some of them is a good and recommended way to learn how to write tests for Chainer. They simply use the unittest package of the standard library, while some tests are using utilities from chainer.testing.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability. Test functions that require CUDA must be tagged by chainer.testing.attr.gpu decorator:

```python
import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
 ...

 @attr.gpu
def test_my_gpu_func(self):
 ...
```

The functions tagged by the gpu decorator are skipped if CHAINER_TEST_GPU_LIMIT=0 environment variable is set. We also have the chainer.testing.attr.cudnn decorator to let pytest know that the test depends on cuDNN. The test functions decorated by cudnn are skipped if -m='not cudnn' is given.

The test functions decorated by gpu must not depend on multiple GPUs. In order to write tests for multiple GPUs, use chainer.testing.attr.multi_gpu() decorator instead:

```python
import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
 ...

 @attr.multi_gpu(2) # specify the number of required GPUs here
def test_my_two_gpu_func(self):
 ...
```

If your test requires too much time, add chainer.testing.attr.slow decorator. The test functions decorated by slow are skipped if -m='not slow' is given:

```python
import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
 ...
```
@attr.slow
def test_my_slow_func(self):
...

**Note:** If you want to specify more than two attributes, use `and` operator like `-m='not cudnn and not slow'`. See detail in the document of pytest.

Once you send a pull request, your code is automatically tested by Travis-CI **except for tests annotated with ``gpu``, ``multi_gpu`` and ``slow``**. Since Travis-CI does not support CUDA, we cannot check your CUDA-related code automatically. The reviewing process starts after the test passes. Note that reviewers will test your code without the option to check CUDA-related code.

**Note:** Some of numerically unstable tests might cause errors irrelevant to your changes. In such a case, we ignore the failures and go on to the review process, so do not worry about it!
5.1 Recommended Environments

We recommend these Linux distributions.

- Ubuntu 14.04/16.04 LTS 64bit
- CentOS 7 64bit

The following versions of Python can be used: 2.7.6+, 3.4.3+, 3.5.1+, and 3.6.0+.

Note: We are testing Chainer automatically with Jenkins, where all the above recommended environments are tested. We cannot guarantee that Chainer works on other environments including Windows and macOS (especially with CUDA support), even if Chainer looks running correctly.

5.2 Dependencies

Before installing Chainer, we recommend to upgrade setuptools if you are using an old one:

```
$ pip install -U setuptools
```

The following Python packages are required to install Chainer. The latest version of each package will automatically be installed if missing.

- NumPy 1.9, 1.10, 1.11, 1.12, 1.13
- Six 1.9+

The following packages are optional dependencies. Chainer can be installed without them, in which case the corresponding features are not available.

- CUDA/cuDNN support
5.3 Install Chainer

5.3.1 Install Chainer via pip

We recommend to install Chainer via pip:

$ pip install chainer

Note: Any optional dependencies (including CuPy) can be added after installing Chainer. Chainer automatically detects the available packages and enables/disables the optional features appropriately.

5.3.2 Install Chainer from source

The tarball of the source tree is available via `pip download chainer` or from the release notes page. You can use `setup.py` to install Chainer from the tarball:

$ tar zxf chainer-x.x.x.tar.gz  
$ cd chainer-x.x.x  
$ python setup.py install

You can also install the development version of Chainer from a cloned Git repository:

$ git clone https://github.com/chainer/chainer.git  
$ cd chainer  
$ python setup.py install

5.3.3 When an error occurs...

Use `-vvvv` option with `pip` command. That shows all logs of installation. It may help you:

$ pip install chainer -vvvv

5.3.4 Enable CUDA/cuDNN support

In order to enable CUDA support, you have to install CuPy manually. If you also want to use cuDNN, you have to install CuPy with cuDNN support. See CuPy’s installation guide to install CuPy. Once CuPy is correctly set up, Chainer will automatically enable CUDA support.
You can refer to the following flags to confirm if CUDA/cuDNN support is actually available.

\texttt{chainer.cuda.available} True if Chainer successfully imports \texttt{cupy}.
\texttt{chainer.cuda.cudnn_enabled} True if cuDNN support is available.

### 5.3.5 Support image dataset

Install Pillow manually to activate image dataset feature:

```
$ pip install pillow
```

Note that this feature is optional.

### 5.3.6 Support HDF5 serialization

Install h5py manually to activate HDF5 serialization:

```
$ pip install h5py
```

Before installing h5py, you need to install libhdf5. The way to install it depends on your environment:

```
Ubuntu 14.04/16.04
$ apt-get install libhdf5-dev

CentOS 7
$ yum -y install epel-release
$ yum install hdf5-devel
```

Note that this feature is optional.

### 5.4 Uninstall Chainer

Use pip to uninstall Chainer:

```
$ pip uninstall chainer
```

**Note:** When you upgrade Chainer, pip sometimes install the new version without removing the old one in \texttt{site-packages}. In this case, \texttt{pip uninstall} only removes the latest one. To ensure that Chainer is completely removed, run the above command repeatedly until \texttt{pip} returns an error.

### 5.5 Upgrade Chainer

Just use pip with \texttt{--upgrade} option:

```
$ pip install -U chainer
```
5.6 Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it. We recommend to use `--no-cache-dir` option as `pip` sometimes uses cache:

```bash
$ pip uninstall chainer
$ pip install chainer --no-cache-dir
```

5.7 Run Chainer with Docker

We are providing the official Docker image. Use `nvidia-docker` command to run Chainer image with GPU. You can login to the environment with bash, and run the Python interpreter:

```bash
$ nvidia-docker run -it chainer/chainer /bin/bash
```

Or run the interpreter directly:

```bash
$ nvidia-docker run -it chainer/chainer /usr/bin/python
```

5.8 FAQ

5.8.1 The installer says “hdf5.h is not found”

You don’t have libhdf5. Please install it first. See Support HDF5 serialization.

5.8.2 Examples say “cuDNN is not enabled”

You failed to build CuPy with cuDNN. If you don’t need cuDNN, ignore this message. Otherwise, retry to install CuPy with cuDNN. `--vvvv` option helps you. There is no need of re-installing Chainer itself. See CuPy’s installation guide for more details.
6.1 It takes too long time to compile a computational graph. Can I skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels. CuPy compiles kernels on demand to make kernels optimized to the number of dimensions and element types of input arguments. Pre-compilation is not available, because we have to compile an exponential number of kernels to support all CuPy functionalities. This restriction is unavoidable because Python cannot call CUDA/C++ template functions in generic way. Note that every framework using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as cupytorch) and Chainer is whether a kernel is compiled at installation or at the first use.

These compilations should run only at the first use of the kernels. The compiled binaries are cached to the `$(HOME)/.cupy/kernel_cache` directory by default. If you see that compilations run every time you run the same script, then the caching is failed. Please check that the directory is kept as is between multiple executions of the script. If your home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel caching directory by setting the `CUPY_CACHE_DIR` environment variable to an appropriate path. See CuPy Overview for more details.

6.2 MNIST example does not converge in CPU mode on Mac OS X

**Note:** Mac OS X is not officially supported. Please use it at your own risk.

Many users have reported that MNIST example does not work correctly when using vecLib as NumPy backend on Mac OS X. vecLib is the default BLAS library installed on Mac OS X.

We recommend using other BLAS libraries such as OpenBLAS.

To use an alternative BLAS library, it is necessary to reinstall NumPy. Here is an instruction to install NumPy with OpenBLAS using Homebrew.
$ brew tap homebrew/science
$ brew install openblas
$ brew install numpy --with-openblas

If you want to install NumPy with pip, use site.cfg file.

For details of this problem, see issue #704.
This document provides detailed information of differences between Chainer v1 and v2. You will know by reading it which part of your code is required (or recommended) to be fixed when you upgrade Chainer from v1 to v2.

- **CuPy**
  - CuPy has been separated from Chainer into a separate package

- **Global configurations**
  - Training mode is configured by a thread-local flag
  - Configurations are added and replace some of existing global flags

- **Variable**
  - Volatile flag is removed
  - Variable is not a part of a computational graph anymore
  - Parameter has to be an instance of Parameter class
  - Small changes to Variable

- **Function**
  - The `force_tuple` option of `split_axis` is True by default
  - Type check APIs are updated to enable lazy building of the error messages
  - Methods to release unneeded arrays are added

- **Link/Chain/ChainList**
  - `wscale` option is removed from links
  - `bias` option is removed from links
  - The bias vector is enabled by default in N-dimensional convolution links
– init_weight function is removed
– The order of arguments of GRU is changed
– The default value of the forget bias for LSTM and StatelessLSTM is changed to 1
– The interfaces of GRU and LSTM are aligned
– Aliases of links in chainer.functions are removed
– Parameter link is removed
– New-style parameter registration APIs are added to Link
– New-style child link registration APIs are added to Chain
– The input-size placeholder of links are made optional

• Optimizer
  – Deprecated methods of Optimizer are removed
  – GradientMethod uses Link.cleargrads instead of Link.zerograd by default
  – GradientMethod is redesigned to allow parameter-specific update rules

• Serializer
  – None is serializable

• Trainer and Extension
  – Updater and Evaluator pass raw data arrays to the loss function
  – trigger option is removed from snapshot and snapshot_object
  – Extension.invoke_before_training is removed
  – The dump_graph extension dumps the valid graph only at its first invocation

• Reporter
  – When a variable is reported, the variable is copied with the graph purged

• Other utilities
  – Some obsolete classes and functions are removed

7.1 CuPy

7.1.1 CuPy has been separated from Chainer into a separate package

CuPy, which was originally a part of Chainer, has been separated into a different Python package since Chainer v2. It changes the way to set up Chainer with CUDA support. In particular, you have to separately install cupy package to enable CUDA support. See Installation Guide for the recommended installation steps.

Fortunately, there is no need of updating your source code to catch up with this change.
7.2 Global configurations

7.2.1 Training mode is configured by a thread-local flag

In Chainer v2, the concept of training mode is added. It is represented by a thread-local flag `chainer.config.train`, which is a part of the unified configuration. When `chainer.config.train` is True, functions of Chainer run in the training mode, and otherwise they run in the test mode. For example, `BatchNormalization` and `dropout()` behave differently in each mode.

In Chainer v1, such a behavior was configured by the `train` or `test` argument of each function. *This train/test argument has been removed in Chainer v2.* If your code is using the `train` or `test` argument, you have to update it. In most cases, what you have to do is just removing the `train/test` argument from any function calls.

**Example**

Consider the following model definition and the code to call it in test mode written for Chainer v1.

```python
Chainer v1
import chainer.functions as F

class MyModel(chainer.Link):
 ...

 def __call__(self, x, train=True):
 return f(F.dropout(x, train=train))

m = MyModel(...)
y = m(x, train=False)
```

In Chainer v2, it should be updated into the following code:

```python
Chainer v2
import chainer.functions as F

class MyModel(chainer.Link):
 ...

 def __call__(self, x):
 return f(F.dropout(x))

m = MyModel(...)
with chainer.using_config('train', False):
 y = m(x)
```

7.2.2 Configurations are added and replace some of existing global flags

There are many global settings moved to the unified configuration other than the training mode. Following is the complete list of the configuration entries that have corresponding features in Chainer v1.

`chainer.config.cudnn_deterministic` It is corresponding to the deterministic argument of some convolution functions in Chainer v1. *This argument has been removed since Chainer v2.* If you are using this argument, you have to use the `chainer.config.cudnn_deterministic` flag to change the behavior of the convolution functions.
chainer.config.debug It is corresponding to the debug mode in Chainer v1, which was configured by 
set_debug() and extracted by is_debug(). These functions are also available in Chainer v2, so you
basically do not need to update the code related to the debug mode.

chainer.config.enable_backprop It is corresponding to the backprop mode in Chainer v1. The functions
no_backprop_mode() and force_backprop_mode() are still available in Chainer v2, which auto-
matically turns on/off the enable_backprop flag. One important difference from Chainer v1 is that the
volatile flag is removed from Variable. Therefore, there are more situations that you need to modify
the enable_backprop flag.

chainer.config.keep_graph_on_report This flag configures whether or not to keep the computational
graph alive for a reported variable. In Chainer v2, when a Variable object is reported by report(), a copy
of the variable isolated from the computational graph is created and stored by default. Setting True to this flag,
you can change this behavior and then the original Variable object is stored as is. See When a variable is
reported, the variable is copied with the graph purged for the details.

chainer.config.train It is corresponding to the train or test argument of some functions in Chainer v1.
This argument has been removed since Chainer v2. If you are using this argument, you have to use the
chainer.config.train flag instead. See Training mode is configured by a thread-local flag for more
details.

chainer.config.type_check It is corresponding to the Function.type_check_enable flag. If your
code touches this flag, you have to use chainer.config.type_check instead. Note that the environment
variable CHAINER_TYPE_CHECK is still available in Chainer v2, so if you are only using the environment
variable, there is no need of updating your code.

chainer.config.use_cudnn It is corresponding to the use_cudnn argument of many functions that have
cuDNN implementations. This argument has been removed since Chainer v2. If you are using this argument,
you have to use the chainer.config.use_cudnn flag instead. Note that this flag is ternary, not binary.
See Configuring Chainer for more details.

These configurations can be modified in two ways.

- Simply substituting a new value to an entry, like chainer.config.train = False.
- Using the chainer.using_config context manager. It can be used with the with statement of Python as follows:

```python
with chainer.using_config('train', False):
 do something # this code runs with chainer.config.train == False
```

It recovers the original configuration after quitting the with block.

The chainer.config manages the thread-local configuration. You can also set the global configuration by mod-
ifying chainer.global_config. Note that the global configuration is used only if the entry of the thread-local
configuration is not explicitly set up.

### 7.3 Variable

#### 7.3.1 Volatile flag is removed

The Variable.volatile flag has been removed since Chainer v2.

Instead, the configuration chainer.config.enable_backprop can be used to enable/disable the automatic
differentiation feature. If it is True, Chainer always creates a computational graph on the forward propagation,
which corresponds to passing non-volatile variables in Chainer v1. Otherwise, Chainer does not create a graph, which
corresponds to passing volatile variables in Chainer v1. The biggest difference is that enable_backprop is a
thread-local flag, whereas volatile was a flag local to each Variable object. Note that enable_backprop flag has already existed in Chainer v1, which took effect only if all the inputs to the function have volatile == 'auto'.

The chainer.config.enable_backprop flag can be modified directly or by using using_config(). See Configuring Chainer for details. There is also a convenience function, no_backprop_mode(), to turn off the flag.

If you are using the Variable.volatile flag, you have to stop setting this flag (it will not take effect), and set the enable_backprop flag instead.

Example

Let model be your model, and consider the following code that calls it in volatile mode.

```python
Chainer v1
x_data = ... # ndarray
x = chainer.Variable(x_data, volatile=True)
y = model(x)
```

In Chainer v2, it should be updated as follows.

```python
Chainer v2
x_data = ... # ndarray
x = chainer.Variable(x_data)
with chainer.no_backprop_mode():
 y = model(x)
```

7.3.2 Variable is not a part of a computational graph anymore

The Variable class has been separated into two distinct classes, the Variable class and the VariableNode class, since Chainer v2. Every class:Variable object owns its own VariableNode object. A computational graph consists of Function objects and VariableNode objects. When one applies a Function to a Variable, the VariableNode object of the variable is extracted and set to one of the inputs of the function.

Note that the underlying data array of the variable is till held by the Variable object. It allows each Function implementation to release unneeded arrays from the computational graph, resulting in greatly reduced memory consumption.

This change does not affect most users’ code. If you are directly traversing the computational graph by yourself or modifying the graph ad-hoc, you may have to update your code. In most cases, it is enough to just change Variable into VariableNode in the code traversing the computational graph.

7.3.3 Parameter has to be an instance of Parameter class

Chainer v2 has a subclass of Variable called Parameter. This class has an interface convenient on setting up a parameter variable registered to Link.

You basically do not need to update your code because Link.add_param() creates a Parameter object in Chainer v2. There is a new recommended way of registering parameters to a link in Chainer v2, though. See here for the recommended way of parameter registration.

7.3.4 Small changes to Variable

There are some changes on the interface and specification of methods.
• `len(variable)` returns the length of the first axis of the underlying array in Chainer v2. This is equivalent to `len(variable.data)`. It is different from the behavior of Chainer v1, in which `len` returned the total number of elements in the underlying array.

• `repr(variable)` returns a NumPy-like text representation of the underlying array in Chainer v2. In Chainer v1, it just returns a string that shows the name of the variable.

### 7.4 Function

#### 7.4.1 The `force_tuple` option of `split_axis` is True by default

In Chainer v2, the `force_tuple` argument of `functions.split_axis()` is set to `True` by default. Therefore, it always returns a tuple regardless of the number of sections made after the split. It was `False` by default in Chainer v1.

#### 7.4.2 Type check APIs are updated to enable lazy building of the error messages

In Chainer v2, the type check APIs are updated so that the overhead of checking types is greatly reduced. In order to achieve the overhead reduction, some APIs are changed.

If you have custom Function implementations that do type checking, you have to update your code. The following list shows which part has to be updated.

- Use `utils.type_check.eval()` instead of `Expr.eval`.
- Use `utils.type_check.make_variable()` to create a `utils.type_check.Variable` object instead of directly constructing it by yourself.
- Stop using `.name` attribute of any expression.

Background of this change: In Chainer v1, the type checking APIs build an abstract syntax tree (AST) based on each expression that tests some condition. The AST is used to emit a kind error message. However, building an AST requires constructions of many Python objects, which adds large Python overheads. In Chainer v2, the `Function.type_check_forward()` method is called once or twice. At the first call, the type checking APIs run in lightweight mode, where it does not build an AST and just checks the condition. The second call is made only if there is a test that fails, where it builds an AST. This change makes the ordinary path of running the type checking much faster, while keeping the kindful error messages.

#### 7.4.3 Methods to release unneeded arrays are added

As is written above, Chainer v2 introduced a new mechanism to reduce the memory consumption of each Function implementation. In many cases, a Function implementation does not need some input arrays in its backward computation. A new method called `Function.retain_inputs()` can be used to specify which input arrays are actually needed. This method must not be called from the outside of `Function.forward()`.

### Example

For example, consider the following simple addition function.

```python
class AddFunction(chainer.Function):
 def forward(self, inputs):
 return inputs[0] + inputs[1],
```

530 Chapter 7. Upgrade Guide from v1 to v2
def backward(self, inputs, grad_outputs):
    return grad_outputs[0], grad_outputs[0]

It can be seen that the backward computation of this function does not use any of the inputs. Then, specifying an empty tuple of indexes to retain_inputs() will reduce the memory overhead.

class AddFunction(chainer.Function):
    def forward(self, inputs):
        self.retain_inputs(()),  # does not retain both inputs
        return inputs[0] + inputs[1],
    
    def backward(self, inputs, grad_outputs):
        return grad_outputs[0], grad_outputs[0]

In some cases, the function can (or have to) use the output arrays instead of the inputs in its backward computation. In Chainer v1, we have written code that store the output arrays to attributes of the Function object and reuse them in the backward() method. In Chainer v2, it is recommended to use Function.retain_outputs() to declare which outputs are required in the backward computation. The retained output arrays can be accessed via Function.output_data.

Note: The existing Function implementations that store the output arrays to its attributes will run correctly in Chainer v2. There is no any memory overhead right now. It is recommended to use retain_outputs(), though, so that we can incorporate more memory optimization in the future.

Example

For example, consider the following simple implementation of the tanh function.

class TanhFunction(chainer.Function):
    def forward(self, inputs):
        xp = chainer.cuda.get_array_module(inputs[0])
        self.y = xp.tanh(inputs[0])
        return self.y,
    
    def backward(self, inputs, grad_outputs):
        one = self.y.dtype.type(1)  # avoid type promotion
        return grad_outputs[0] * (one - self.y * self.y),

We can use retain_outputs() instead of preserving the output array by ourselves as follows.

class TanhFunction(chainer.Function):
    def forward(self, inputs):
        self.retain_outputs((0,))
        xp = chainer.cuda.get_array_module(inputs[0])
        return xp.tanh(inputs[0]),
    
    def backward(self, inputs, grad_outputs):
        y = self.output_data[0]
        one = y.dtype.type(1)  # avoid type promotion
        return grad_outputs[0] * (one - y * y)
7.5 Link/Chain/ChainList

7.5.1 wscale option is removed from links

The `wscale` option has been removed from links since Chainer v2. **If you are using wscale option, you have to update your code.** The recommended way is to explicitly set the initializer.

**Example**

Consider the case of adding a `Linear` link with the weight initialized by 0.5x of the default initialization.

```python
Chainer v1
linear = chainer.links.Linear(10, 5, wscale=0.5)
```

Note that the default initializer of the weight matrix of `Linear` is a normal distribution of the standard deviation $1/\sqrt{fanin}$. Therefore, it can be fixed as follows.

```python
Chainer v2
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.Normal(0.5 / math.sqrt(10)))
```

Or, by using the fact that `initializers.HeNormal` provides the initialization with a normal distribution of the standard deviation $scale \times \sqrt{2/fanin}$, the following code is also equivalent to the original.

```python
Chainer v2, using HeNormal
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.HeNormal(0.5 / math.sqrt(2)))
```

7.5.2 bias option is removed from links

In Chainer v2, the `bias` option is removed from the following links: `Linear`, `Convolution2D`, `Deconvolution2D`, and `DilatedConvolution2D`. The effect of this argument was duplicated with the `initial_bias` option. Use `initial_bias` instead.

7.5.3 The bias vector is enabled by default in N-dimensional convolution links

In Chainer v2, the bias parameter is enabled by default in `ConvolutionND` and `DeconvolutionND`. It was unintentionally disabled by default in Chainer v1.

**If you are using ConvolutionND or DeconvolutionND without specifying the initial_bias argument, you have to fix your code.** If you want to keep the old behavior (i.e., no bias vector is created by the link), pass `nobias=True` to the link at the construction. Otherwise it will automatically create a bias vector.

7.5.4 init_weight function is removed

The `chainer.initializers.init_weight` function that was used on weight initialization has been removed since Chainer v2.

**You have to update your code if you are using init_weight.** In most cases, the update is simple: pass an initializer to `Parameter`.  

---

532 Chapter 7. Upgrade Guide from v1 to v2
Example

Consider the following code that initializes a weight matrix randomly and a bias vector by zero.

```python
Chainer v1
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__(
 W=(10, 5),
 b=(5,),
)
 chainer.initializers.init_weight(self.W, chainer.initializers.Normal(0.05))
 self.b.data.fill(0)

...
```

This code should be fixed as follows (see the next topic for the use of `Parameter`).

```python
Chainer v2
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__()
 self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
 self.b = chainer.Parameter(0, (5,))

...
```

7.5.5 The order of arguments of GRU is changed

In Chainer v2, the first two arguments of `GRU` is the input size and the output size. It was reversed in Chainer v1, causing an inconsistent interface compared to other links including `LSTM`. If you are using `GRU`, you have to update your code. The update is done by simply flipping the first two arguments.

Example

Consider the following code that creates a `GRU` link.

```python
Chainer v1
gru = chainer.links.GRU(20, 10)
```

It should be fixed into the following code.

```python
Chainer v2
gru = chainer.links.GRU(10, 20)
```

Note that if you were omitting the output size, the code works as is because `GRU` supports the omitted input size.

```python
Chainer v1/v2
gru = chainer.links.GRU(20)
```
7.5.6 The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

In Chainer v2, the default forget bias value of LSTM and StatelessLSTM links is changed to 1. This change is based on the paper reporting that using a large forget bias improves the training performance. The new behavior is also consistent with the implementation of BasicLSTMCell in TensorFlow.

It will improve the most use cases of LSTMs, although this change would break the reproducibility of the existing experiments. If you want to keep the same initialization procedure, you have to update your code. The change is simple: pass `forget_bias_init=0` to LSTM and StatelessLSTM.

7.5.7 The interfaces of GRU and LSTM are aligned

In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with the naming convention of LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points the stateful links. If you are using StatelessGRU for stateless version, whose implementation is identical to chainer.linksGRU in v1.

7.5.8 Aliases of links in chainer.functions are removed

For the compatibility reason, there were some links that have aliases in the chainer.functions module. These aliases are removed in Chainer v2. Use `chainer.links` instead.

7.5.9 Parameter link is removed

The chainer.links.Parameter link is removed in Chainer v2. This link existed in Chainer v1 only for the backward compatibility. Use `chainer.Parameter` instead (for the new Parameter class, see Parameter has to be an instance of Parameter class).

7.5.10 New-style parameter registration APIs are added to Link

In Chainer v2, `Link.init_scope()` method returns a context manager that automatically registers a Parameter object to the link at setting it to an attribute. If you are using IDE like PyCharm, it is recommended to use this new-style parameter registration so that IDEs can easily detect the existence of the parameter as an attribute. It is also a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering parameters are still valid.

Example

For example, the following link initialization code

```python
Chainer v1
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__([
 W=(10, 5),
 b=(5,)
]
 chainer.initializers.Normal(0.05)(self.W.data)
```

```python
Chainer v2
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__([
 W=(10, 5),
 b=(5,)
]
 chainer.initializers.Parameter(chainer.initializers.Normal(0.05))(self.W.data)
```
is recommended to be updated as follows.

```python
Chainer v2
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__()
 with self.init_scope():
 self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
 self.b = chainer.Parameter(0, (5,)) # initialize by zero

...
```

**Note:** To keep a `Parameter` object as an attribute without registration, you can set the attribute without using the `with self.init_scope():` block.

### 7.5.11 New-style child link registration APIs are added to Chain

Like `Parameter`, a `Link` object is also automatically registered to a `Chain` object by substitution to an attribute within a `init_scope()` scope. If you are using IDE like PyCharm, it is recommended to use the new-style child link registration so that IDEs can easily detect the existence of the child link as an attribute. It is also a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

**Note:** The existing code that uses the conventional way of registering child links are still valid.

**Example**

For example, the following chain initialization code

```python
Chainer v1
class MyMLP(chainer.Chain):
 def __init__(self):
 super(MyMLP, self).__init__()
 layer1=L.Linear(None, 20),
 layer2=L.Linear(None, 30),

...
```

is recommended to be updated as follows.

```python
Chainer v2
class MyMLP(chainer.Chain):
 def __init__(self):
 super(MyMLP, self).__init__()
 with self.init_scope():
 self.layer1 = L.Linear(20)
 self.layer2 = L.Linear(30)
```

Note that this example also demonstrates the use of new APIs with the omitted input size, explained below.
7.5.12 The input-size placeholder of links are made optional

In Chainer v2, the input size of many links, including Linear and Convolution2D, is made optional. In Chainer v1, we had to use None as the placeholder to specify that the input size should be determined at the first iteration. The placeholder can also be used in Chainer v2, although it is easier to just omit the input size.

See the previous item for the example of omitting the input size of Linear. The following links currently support the omitted input size.

- Convolution2D
- Deconvolution2D
- DilatedConvolution2D
- Linear
- LSTM
- MLPConvolution2D
- StatelessLSTM

7.6 Optimizer

7.6.1 Deprecated methods of Optimizer are removed

The following methods are removed from Optimizer. These methods have been already deprecated in the past versions. **If you are using these methods, you have to update your code.**

- `zero_grads`: use `Link.zerograds()` instead.
- `compute_grads_norm`: you can compute the gradient norm by iterating the list of parameters by `Link.params()`.
- `clip_grads`: use `GradientClipping` instead.
- `weight_decay`: use `WeightDecay` instead.
- `accumulate_grads`: use `Link.addgrads()` instead.

7.6.2 GradientMethod uses Link.cleargrads instead of Link.zerograds by default

In Chainer v2, GradientMethod clears the gradient before running backprop by `Link.cleargrads()`. It means that the gradient of each parameter is initialized by None instead of a zero array. Note that all the optimizer implementations provided by Chainer are subclasses of GradientMethod, and therefore this change affects all of them.

**In most cases, you do not need to update your code.** If your code relies on the zeroing initialization, you have to fix your code to explicitly initialize the gradient by zero, or to pass False to GradientMethod. `use_cleargrads()`.
7.6.3 GradientMethod is redesigned to allow parameter-specific update rules

In Chainer v2, the new class UpdateRule is used to define an update rule specific to each Parameter object. The UpdateRule is set to each Parameter object, and is used at each update step. This object implements an update formula using the data and gradient arrays.

Each UpdateRule object has enabled flag, which configures if the update rule should be applied to that parameter on update. By setting the flag to False, you can freeze the parameter. There is also a convenient method Link-enable-update() and Link-disable-update(), which configure the flag of each parameter under the link hierarchy. In other frameworks, a similar feature is called layer freezing. In Chainer v2, this is officially supported by these methods.

Each UpdateRule object can also hold its own hook functions similar to Optimizer. The built-in hook functions except for GradientClipping can also be used as a hook function of UpdateRule.

In most cases, you do not have to update your code because each optimizer automatically sets up an appropriate UpdaterRule object to each parameter.

If you are using a custom gradient-based optimizer implementation, you need to update the implementation. The following list shows what you have to do.

- Write a subclass of UpdateRule that implements the update rule.
- Rewrite your GradientMethod implementation. The new implementation only has to set up the update rule for each parameter in the target link.

You can see live examples in the optimizer implementations provided by Chainer.

7.7 Serializer

7.7.1 None is serializable

In Chainer v2, all serializers start supporting None value to be serialized and deserialized. Users’ code can rely on this feature, i.e., it can serialize and deserialize None value with any given serializer. This change only affects your code if it provides its own serializer implementations.

7.8 Trainer and Extension

7.8.1 Updater and Evaluator pass raw data arrays to the loss function

In Chainer v2, Updater and Evaluator pass raw data arrays to the loss function without wrapping them with Variable. You might need to update your code so that the loss function (in most cases, the model’s __call__ ) accepts raw arrays.

Note that raw arrays can be directly passed to any Function; they are automatically wrapped by Variable. For example, if the input is directly passed to a Function object (or any function under chainer.functions), you do not need to update the code.

Example

Consider the following code that obtains the shape of the input via Variable.data.
It should be updated so that the link also accepts a raw array as the input. In this case, we have `Variable.shape` which is equivalent to `data.shape`, so you can simply write as follows.

```python
Chainer v2
class MyLink(chainer.Link):
 def __call__(self, x):
 shape = x.shape # valid regardless of x being Variable or ndarray
 ...
```

### 7.8.2 trigger option is removed from snapshot and snapshot_object

In Chainer v2, the `trigger` option is removed from the `snapshot()` and `snapshot_object()` extensions. The effect of the option was duplicated with the `trigger` option of `Trainer.extend`. **If you are passing the trigger argument to these extensions, you have to update your code.** The update can be done by passing the value to the corresponding `Trainer.extend`.

**Example**

Assume that `trainer` is an instance of `Trainer`, and consider that you were adding a `snapshot()` extension as follows.

```python
Chainer v1
trainer.extend(chainer.training.extensions.snapshot(trigger=(1000, 'iteration')))
```

It should be updated as follows (note that this code also works with Chainer v1).

```python
Chainer v1/v2
trainer.extend(chainer.training.extensions.snapshot(), trigger=(1000, 'iteration'))
```

### 7.8.3 Extension.invoke_before_training is removed

In Chainer v2, The attribute `invoke_before_training` of `Extension` is removed. Instead, the `Extension.initialize` method is added. This method is called by `Trainer.run` before entering the training loop.

In Chainer v1, the extension is just called before entering the training loop when `invoke_before_training` is True. **If you have a custom extension that has invoke_before_training=True`**`, you have to update the code.** What you have to do is to remove the ```invoke_before_training` flag and override `initialize()` method. If you are using the `make_extension()` decorator, you can set the `initialize` function by passing the `initializer` argument to `make_extension()`.
7.8.4 The dump_graph extension dumps the valid graph only at its first invocation

In Chainer v2, the `dump_graph()` extension dumps the valid computational graph only at its first invocation. If you want to dump the graph more than once, you have to fix the code. The easiest fix is setting the `chainer.config.keep_graph_on_report` flag to True. Note that this fix will cancel the improvement on the memory consumption made in Chainer v2. More memory-efficient fix is to dump the graph without using an extension, e.g. by customizing the loss function or the updater.

Here is the background of this change. In Chainer v2, the Reporter copies reported variables with purging the computational graph by default. On the other hand, the `dump_graph()` extension requires the computational graph reachable from the reported variable. In order to make the graph available, the `dump_graph()` extension turns on the `chainer.config.keep_graph_on_report` flag at its initializer (i.e., it turns on the graph before entering the training loop). Since we also wanted to achieve the memory efficiency, the `dump_graph()` extension turns off the flag after dumping the graph at its first invocation (strictly speaking, it recovers the original value). As a result, the computational graph is not available from the second invocation.

Since the `dump_graph()` recovers the original flag value at its invocation, you can keep the graph dumped more than once by changing the original flag value.

7.9 Reporter

7.9.1 When a variable is reported, the variable is copied with the graph purged

In Chainer v2, when a `Variable` object is reported using `report()` function (or directly using `Reporter`), a copy of the variable is made without preserving the computational graph. If your code depends on the reachability of the computational graph from the reported variable, you have to update your code. The easiest way to update your code is setting `chainer.config.keep_graph_on_report` to True, then Chainer will keep the computational graph reachable from the reported variable.

The possible examples that are affected by this change are as follows (not exhaustive).

- A custom extension that runs backprop from a reported variable. It is definitely an example of assuming the reachability of the computational graph from the reported variable.

- An extension that visualizes the computational graph from a reported variable. If you are writing such an extension by yourself, you have to turn on the `keep_graph_on_report` flag. The `dump_graph()` extension is another example, for which see the above item for the details.

This change is made for the memory performance reason; with this change, the memory used by the computational graph for training is immediately released before invoking extensions. Therefore, changing the behavior by overwriting `chainer.config.keep_graph_on_report` may increase the memory consumption. It may cause an out-of-memory error if the computational graph of the loss function consumes almost all the memory available in your environment and there is an extension that uses a certain amount of memory (e.g. `Evaluator`).

7.10 Other utilities

7.10.1 Some obsolete classes and functions are removed

The following classes and functions are removed in Chainer v2.

- `chainer.Flag`
- `chainer.FunctionSet` (Use `Chain` or `ChainList` instead)
- `chainer.cuda.init` (It did nothing except for calling `check_cuda_available()`)  
- `chainer.cuda.empty` (Use `cupy.empty()`)  
- `chainer.cuda.empty_like` (Use `cupy.empty_like()`)  
- `chainer.cuda.full` (Use `cupy.full()`)  
- `chainer.cuda.full_like` (Use `cupy.full_like()`)  
- `chainer.cuda.ones` (Use `cupy.ones()`)  
- `chainer.cuda.ones_like` (Use `cupy.ones_like()`)  
- `chainer.cuda.zeros` (Use `cupy.zeros()`)  
- `chainer.cuda.zeros_like` (Use `cupy.zeros_like()`)
CHAPTER 8

Comparison with Other Frameworks

8.1 A table for quick comparison

This table compares Chainer with other actively developed deep learning frameworks. Content is current as of July 2017.
## Chapter 8. Comparison with Other Frameworks

Basics	Language	Approach	CPU backend package	GPU backend package	Primary sponsor	NNs	CNNs	RNNs	Reverse mode autograd	Forward mode autograd	Higher order grads	Variable length loops	Different architectures per batch	Performance						
	Python	define-by-run	NumPy	TH	Eigen	NumPy	TH	mshadow	Eigen	ND4J	NumPy	TH	Eigen	NumPy	TH	Eigen	ND4J	neon	Knet Arrays	CuPy
	PyTorch	define-by-run	CuPy	THC	Eigen	lib그래프	THC	mshadow	Eigen	ND4J	CuPy	THC	Eigen	TH	Caffe2	TFLite	neon	CuPy Arrays	CuPy	
	TensorFlow Flow	preferred	Facebook	GoMIL	Facebook	Amazon/Apache	CMU	Baidu	uSky	mind	Microsoft	Nervana	Koç	University	Redmon	Explosion AI	none			
	Theano	symbolic autograd	full	full	full	full	full	partial	full	full	partial	partial	partial	partial	partial	with closures	none			
	DyNet-JL	symbolic autograd	full	full	full	full	full	partial	full	full	partial	partial	partial	native						
	MXNet	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	PyTorch	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	Theano+JIT	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	NumPy	define-by-run	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	PyTorch	define-by-run	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	Theano	symbolic autograd	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	DyNet-JL	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	MXNet	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	PyTorch	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	Theano+JIT	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	NumPy	define-by-run	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	PyTorch	define-by-run	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	Theano	symbolic autograd	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	DyNet-JL	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	MXNet	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	PyTorch	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				
	Theano+JIT	static manual grad	full	full	full	full	full	partial	full	full	partial	partial	native	native	native	native				

1. Define-by-run is in development as of June 2017 and tracked in dmlc/mxnet#5705. It is also possible using the much slower MinPy extension.
8.2 Benchmarks

Benchmarks for convolutional networks can be found at `convnet-benchmarks` while some NLP benchmarks are at `dynet-benchmark`. Chainer wraps the latest available cuDNN kernels for CNNs and RNNs, so performance of most common networks that use these kernels is typically similar to that of other modern frameworks. As Chainer’s define-by-run approach means the user’s Python code is executed directly at runtime, particularly complex networks or those with very small tensor sizes may be slower than in static-graph frameworks.

---

2 Symbolic autograd is in development as of June 2017 and tracked in `deeplearning4j/nd4j#1750`.
3 Symbolic autograd is available only with ngraph backend (experimental).
4 Nervana provides kernels that are meant to compete with cuDNN.
5 Multiprocessing provides a significant performance improvement only for frameworks that use Python at runtime.
Copyright (c) 2015 Preferred Infrastructure, Inc.
Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
CHAPTER 10

Indices and tables

- genindex
- modindex
- search


[Graves2006] Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber, Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

[Graves2012] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks
C
chainer, 63
chainer.computational_graph, 503
chainer.cuda, 133
chainer.dataset, 111
chainer.datasets, 471
chainer.function_hooks, 460
chainer.functions, 150
chainer.initializers, 465
chainer.iterators, 484
chainer.links, 250
chainer.links.caffe, 503
chainer.serializers, 454
chainer.training, 116
chainer.training.extensions, 486
chainer.utils, 508
<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong>() (chainer.links.StatelessGRU method)</td>
<td>356</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.links.StatelessLSTM method)</td>
<td>363</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.links.TheanoFunction method)</td>
<td>432</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.links.VGG16Layers method)</td>
<td>405</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.links.caffe.CaffeFunction method)</td>
<td>436</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.models.vision.resnet.ResNetLayers method)</td>
<td>414</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.optimizer.GradientClipping method)</td>
<td>107</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.optimizer.GradientNoise method)</td>
<td>108</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.optimizer.Lasso method)</td>
<td>107</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.optimizer.WeightDecay method)</td>
<td>107</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.serializers.DictionarySerializer method)</td>
<td>454</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.serializers.HDF5Deserializer method)</td>
<td>457</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.serializers.HDF5Serializer method)</td>
<td>456</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.serializers.NpzDeserializer method)</td>
<td>455</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.Extension method)</td>
<td>125</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.Evaluator method)</td>
<td>488</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.ExponentialShift method)</td>
<td>490</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.LinearShift method)</td>
<td>491</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.LogReport method)</td>
<td>492</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.ParameterStatistics method)</td>
<td>495</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.PlotReport method)</td>
<td>497</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.PrintReport method)</td>
<td>498</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.extensions.ProgressBar method)</td>
<td>499</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.triggers.BestValueTrigger method)</td>
<td>500</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.triggers.IntervalTrigger method)</td>
<td>501</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.triggers.ManualScheduleTrigger method)</td>
<td>501</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.triggers.MaxValueTrigger method)</td>
<td>502</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.training.triggers.MinValueTrigger method)</td>
<td>502</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.variables.CpuMemoryProfileHook method)</td>
<td>460</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.variables.CUDAProfileHook method)</td>
<td>460</td>
</tr>
<tr>
<td><strong>call</strong>() (chainer.variables.TimerHook method)</td>
<td>463</td>
</tr>
<tr>
<td><strong>eq</strong>() (chainer.Parameter method)</td>
<td>71</td>
</tr>
<tr>
<td><strong>eq</strong>() (chainer.Variable method)</td>
<td>66</td>
</tr>
<tr>
<td><strong>eq</strong>() (chainer.utils.type_check.Expr method)</td>
<td>144</td>
</tr>
<tr>
<td><strong>exit</strong>() (chainer.DebugMode method)</td>
<td>128</td>
</tr>
<tr>
<td><strong>exit</strong>() (chainer.FunctionHook method)</td>
<td>459</td>
</tr>
<tr>
<td><strong>exit</strong>() (chainer.Reporter method)</td>
<td>139</td>
</tr>
<tr>
<td><strong>exit</strong>() (chainer.functions.CudaProfileHook method)</td>
<td>460</td>
</tr>
<tr>
<td><strong>exit</strong>() (chainer.functions.CupyMemoryProfileHook method)</td>
<td>461</td>
</tr>
<tr>
<td><strong>exit</strong>() (chainer.functions.PrintHook method)</td>
<td>463</td>
</tr>
<tr>
<td><strong>ge</strong>() (chainer.Parameter method)</td>
<td>71</td>
</tr>
<tr>
<td><strong>ge</strong>() (chainer.Variable method)</td>
<td>66</td>
</tr>
<tr>
<td><strong>ge</strong>() (chainer.utils.type_check.Expr method)</td>
<td>144</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.AbstractSerializer method)</td>
<td>109</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.Chain method)</td>
<td>95</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.ChainList method)</td>
<td>98</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.Deserializer method)</td>
<td>110</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.Parameter method)</td>
<td>69</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.Serializer method)</td>
<td>110</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.Variable method)</td>
<td>64</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.DatasetMixin method)</td>
<td>112</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.DictDataset method)</td>
<td>472</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.Dataset method)</td>
<td>472</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.ImageDataset method)</td>
<td>479</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.LabeledImageDataset method)</td>
<td>480</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.SubDataset method)</td>
<td>474</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.TransformDataset method)</td>
<td>477</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.datasets.TupleDataset method)</td>
<td>472</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.links.ChildSumTreeLSTM method)</td>
<td>260</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.links.Classifier method)</td>
<td>401</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.links.GOOGLENET method)</td>
<td>410</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.links.Highway method)</td>
<td>297</td>
</tr>
<tr>
<td><strong>getitem</strong>() (chainer.links.Inception method)</td>
<td>301</td>
</tr>
</tbody>
</table>

554 Index
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>AbstractSerializer (class in chainer)</td>
</tr>
<tr>
<td>209</td>
<td>accuracy() (in module chainer.functions)</td>
</tr>
<tr>
<td>439</td>
<td>AdaDelta (class in chainer.optimizers)</td>
</tr>
<tr>
<td>441</td>
<td>AdaGrad (class in chainer.optimizers)</td>
</tr>
<tr>
<td>442</td>
<td>Adam (class in chainer.optimizers)</td>
</tr>
<tr>
<td>142</td>
<td>add() (chainer.DictSummary method)</td>
</tr>
<tr>
<td>141</td>
<td>add() (chainer.Summary method)</td>
</tr>
<tr>
<td>76</td>
<td>add_hook() (chainer.Function method)</td>
</tr>
<tr>
<td>79</td>
<td>add_hook() (chainer.FunctionAdapter method)</td>
</tr>
<tr>
<td>84</td>
<td>add_hook() (chainer.FunctionNode method)</td>
</tr>
<tr>
<td>105</td>
<td>add_hook() (chainer.GradientMethod method)</td>
</tr>
<tr>
<td>103</td>
<td>add_hook() (chainer.Optimizer method)</td>
</tr>
<tr>
<td>440</td>
<td>add_hook() (chainer.optimizers.AdaDelta method)</td>
</tr>
<tr>
<td>441</td>
<td>add_hook() (chainer.optimizers.AdaGrad method)</td>
</tr>
<tr>
<td>443</td>
<td>add_hook() (chainer.optimizers.Adam method)</td>
</tr>
<tr>
<td>444</td>
<td>add_hook() (chainer.optimizers.MomentumSGD method)</td>
</tr>
<tr>
<td>446</td>
<td>add_hook() (chainer.optimizers.NesterovAG method)</td>
</tr>
<tr>
<td>448</td>
<td>add_hook() (chainer.optimizers.RMSprop method)</td>
</tr>
<tr>
<td>449</td>
<td>add_hook() (chainer.optimizers.RMSpropGraves method)</td>
</tr>
<tr>
<td>451</td>
<td>add_hook() (chainer.optimizers.SGD method)</td>
</tr>
<tr>
<td>452</td>
<td>add_hook() (chainer.optimizers.SMORMS3 method)</td>
</tr>
<tr>
<td>102</td>
<td>add_hook() (chainer.UpdateRule method)</td>
</tr>
<tr>
<td>95</td>
<td>add_link() (chainer.Chain method)</td>
</tr>
<tr>
<td>96</td>
<td>add_link() (chainer.ChainList method)</td>
</tr>
<tr>
<td>91</td>
<td>add_link() (chainer.Link method)</td>
</tr>
<tr>
<td>343</td>
<td>add_link() (chainer.links.NStepRNReLULU method)</td>
</tr>
<tr>
<td>346</td>
<td>add_link() (chainer.links.NStepRNNtanh method)</td>
</tr>
<tr>
<td>423</td>
<td>add_link() (chainer.links.ResNet101Layers method)</td>
</tr>
<tr>
<td>427</td>
<td>add_link() (chainer.links.ResNet152Layers method)</td>
</tr>
<tr>
<td>419</td>
<td>add_link() (chainer.links.ResNet50Layers method)</td>
</tr>
<tr>
<td>349</td>
<td>add_link() (chainer.links.Scale method)</td>
</tr>
<tr>
<td>352</td>
<td>add_link() (chainer.links.StatefulGRU method)</td>
</tr>
<tr>
<td>359</td>
<td>add_link() (chainer.links.StatefulPeepholeLSTM method)</td>
</tr>
<tr>
<td>367</td>
<td>add_link() (chainer.links.StatelessGRU method)</td>
</tr>
<tr>
<td>363</td>
<td>add_link() (chainer.links.StatelessLSTM method)</td>
</tr>
<tr>
<td>405</td>
<td>add_link() (chainer.links.VGG16Layers method)</td>
</tr>
<tr>
<td>139</td>
<td>add_observer() (chainer.Reporter method)</td>
</tr>
<tr>
<td>139</td>
<td>add_observers() (chainer.Reporter method)</td>
</tr>
<tr>
<td>96</td>
<td>add_param() (chainer.Chain method)</td>
</tr>
<tr>
<td>98</td>
<td>add_param() (chainer.ChainList method)</td>
</tr>
<tr>
<td>91</td>
<td>add_param() (chainer.Link method)</td>
</tr>
<tr>
<td>367</td>
<td>add_param() (chainer.links.Bias method)</td>
</tr>
<tr>
<td>252</td>
<td>add_param() (chainer.links.Bilinear method)</td>
</tr>
<tr>
<td>375</td>
<td>add_param() (chainer.links.BinaryHierarchicalSoftmax method)</td>
</tr>
<tr>
<td>379</td>
<td>add_param() (chainer.links.caffe.CaffeFunction method)</td>
</tr>
<tr>
<td>437</td>
<td>add_param() (chainer.links.ChildSumTreeLSTM method)</td>
</tr>
<tr>
<td>260</td>
<td>add_param() (chainer.links.Classifier method)</td>
</tr>
<tr>
<td>410</td>
<td>add_param() (chainer.links.GoogLeNet method)</td>
</tr>
<tr>
<td>294</td>
<td>add_param() (chainer.links.GRU method)</td>
</tr>
<tr>
<td>297</td>
<td>add_param() (chainer.links.Highway method)</td>
</tr>
<tr>
<td>301</td>
<td>add_param() (chainer.links.Inception method)</td>
</tr>
<tr>
<td>304</td>
<td>add_param() (chainer.links.InceptionBN method)</td>
</tr>
<tr>
<td>312</td>
<td>add_param() (chainer.links.LSTM method)</td>
</tr>
<tr>
<td>294</td>
<td>add_param() (chainer.links.DilatedConvolution2D method)</td>
</tr>
<tr>
<td>382</td>
<td>add_param() (chainer.links.CRF1d method)</td>
</tr>
<tr>
<td>273</td>
<td>add_param() (chainer.links.Deconvolution2D method)</td>
</tr>
<tr>
<td>277</td>
<td>add_param() (chainer.links.DepthwiseConvolution2D method)</td>
</tr>
<tr>
<td>281</td>
<td>add_param() (chainer.links.DilatedConvolution2D method)</td>
</tr>
<tr>
<td>286</td>
<td>add_param() (chainer.links.EmbedID method)</td>
</tr>
<tr>
<td>410</td>
<td>add_param() (chainer.links.GoogLeNet method)</td>
</tr>
<tr>
<td>294</td>
<td>add_param() (chainer.links.Highway method)</td>
</tr>
<tr>
<td>301</td>
<td>add_param() (chainer.links.Inception method)</td>
</tr>
<tr>
<td>304</td>
<td>add_param() (chainer.links.InceptionBN method)</td>
</tr>
<tr>
<td>371</td>
<td>add_param() (chainer.links.LayerNormalization method)</td>
</tr>
<tr>
<td>379</td>
<td>add_param() (chainer.links.Linear method)</td>
</tr>
<tr>
<td>313</td>
<td>add_param() (chainer.links.LSTM method)</td>
</tr>
<tr>
<td>394</td>
<td>add_param() (chainer.links.Maxout method)</td>
</tr>
<tr>
<td>316</td>
<td>add_param() (chainer.links.MLPConvolution2D method)</td>
</tr>
<tr>
<td>319</td>
<td>add_link() (chainer.links.NaryTreeLSTM method)</td>
</tr>
<tr>
<td>323</td>
<td>add_link() (chainer.links.NStepBiGRU method)</td>
</tr>
<tr>
<td>326</td>
<td>add_link() (chainer.links.NStepBiLSTM method)</td>
</tr>
<tr>
<td>329</td>
<td>add_link() (chainer.links.NStepBiRNNReLU method)</td>
</tr>
<tr>
<td>333</td>
<td>add_link() (chainer.links.NStepBiRNNtanh method)</td>
</tr>
<tr>
<td>336</td>
<td>add_link() (chainer.links.NStepGRU method)</td>
</tr>
<tr>
<td>339</td>
<td>add_link() (chainer.links.NStepLSTM method)</td>
</tr>
</tbody>
</table>
argmin() (in module chainer.functions), 228
array (chainer.Parameter attribute), 71
array (chainer.Variable attribute), 66
as_variable() (in module chainer), 68
assert_allclose() (in module chainer.testing), 148
available() (chainer.training.extensions.PlotReport static method), 497
available() (chainer.training.updaters.MultiprocessParallelUpdater static method), 124
available_layers (chainer.links.GoogLeNet attribute), 413
available_layers (chainer.links.model.vision.resnet.ResNetLayers attribute), 418
available_layers (chainer.links.ResNet101Layers attribute), 426
available_layers (chainer.links.ResNet152Layers attribute), 430
available_layers (chainer.links.ResNet50Layers attribute), 422
available_layers (chainer.links.VGG16Layers attribute), 408
average() (in module chainer.functions), 229
average_pooling_2d() (in module chainer.functions), 244
average_pooling_nd() (in module chainer.functions), 245
backward() (chainer.Function method), 76
backward() (chainer.FunctionAdapter method), 80
backward() (chainer.Parameter method), 69
backward() (chainer.Variable method), 64
backward_accumulate() (chainer.FunctionAdapter method), 80
backward_accumulate() (chainer.FunctionNode method), 85
backward_cpu() (chainer.Function method), 76
backward_gpu() (chainer.Function method), 76
backward_postprocess() (chainer.function_hooks.CUDAPreprocess method), 460
backward_postprocess() (chainer.function_hooks.CupyMemoryProfileHook method), 461
backward_postprocess() (chainer.function_hooks.PrintHook method), 463
backward_postprocess() (chainer.function_hooks.TimerHook method), 464
backward_preprocess() (chainer.function_hooks.CUDAPreprocess method), 460
backward_preprocess() (chainer.function_hooks.CupyMemoryProfileHook method), 461
backward_preprocess() (chainer.function_hooks.PrintHook method), 463
backward_preprocess() (chainer.function_hooks.TimerHook method), 464
backward_preprocess() (chainer.FunctionHook method), 459
batch_inv() (in module chainer.functions), 229
batch_l2_norm_squared() (in module chainer.functions), 229
batch_matmul() (in module chainer.functions), 230
batch_normalization() (in module chainer.functions), 241
BatchNormalization (class in chainer.links), 366
BernoulliNLL (class in chainer.functions), 212
BestValueTrigger (class in chainer.training.triggers), 500
bias() (in module chainer.functions), 251
bias() (in module chainer.functions), 230
Bilinear (class in chainer.functions), 255
binary_accuracy() (in module chainer.functions), 187
BinaryHierarchicalSoftmax (class in chainer.functions), 374
black_out() (in module chainer.functions), 213
BlackOut (class in chainer.functions), 378
broadcast() (in module chainer.functions), 164
broadcast_to() (in module chainer.functions), 164
build_computational_graph() (in module chainer.computational_graph), 504
CACHE_PATH (in module chainer.functions), 150
CaffeFunction (class in chainer.links.caffe), 435
call_for_each_param (chainer.optimizer.GradientNoise attribute), 108
call_for_each_param (chainer.optimizer.Lasso attribute), 107
call_for_each_param (chainer.optimizer.WeightDecay attribute), 107
call_backprop() (chainer.GradientMethod method), 105
call_backprop() (chainer.Optimizer method), 103
call_backprop() (chainer.optimizers.AdaDelta method), 440
call_backprop() (chainer.optimizers.AdaGrad method), 441
call_backprop() (chainer.optimizers.Adam method), 442
call_backprop() (chainer.optimizers.Adam method), 443
call_backprop() (chainer.optimizers.MomentumSGD method), 445
call_backprop() (chainer.optimizers.NesterovAG method), 446
call_backprop() (chainer.optimizers.RMSprop method), 448
call_backprop() (chainer.optimizers.RMSpropGraves method), 449
call_backprop() (chainer.optimizers.SGD method), 451
call_backprop() (chainer.optimizers.SMORMS3 method), 452
cast() (in module chainer.functions), 165
cell() (in module chainer.functions), 231
Chainer (class in chainer), 94
Chainer (module), 63
Index 561
crelu() (in module chainer.functions), 151
CRF1d (class in chainer.links), 382
crf1d() (in module chainer.functions), 216
cross_covariance() (in module chainer.functions), 217
CUDAProfileHook (class in chainer.function_hooks), 460
CupyMemoryProfileHook (class in chainer.function_hooks), 461

D
data (chainer.Parameter attribute), 72
data (chainer.Variable attribute), 67
data (chainer.variable.VariableNode attribute), 74
DatasetMixin (class in chainer.dataset), 111
debug_print() (chainer.Parameter method), 70
debug_print() (chainer.Variable method), 65
DebugMode (class in chainer), 128
deconvolution2d() (in module chainer.functions), 271
deconvolution_2d() (in module chainer.functions), 192
deconvolution_nd() (in module chainer.functions), 193
DeconvolutionND (class in chainer.links), 277
default_name (chainer.training.Extension attribute), 126
default_name (chainer.training.extensions.Evaluator attribute), 489
default_name (chainer.training.extensions.ExponentialShift attribute), 490
default_name (chainer.training.extensions.LinearShift attribute), 491
default_name (chainer.training.extensions.LogReport attribute), 493
default_name (chainer.training.extensions.ParameterStatistics attribute), 496
default_name (chainer.training.extensions.PlotReport attribute), 498
default_name (chainer.training.extensions.PrintReport attribute), 499
default_name (chainer.training.extensions.ProgressBar attribute), 500
default_statistics (chainer.training.extensions.ParameterStatistics attribute), 496
delete_hook() (chainer.Function method), 77
delete_hook() (chainer.FunctionAdapter method), 80
delete_hook() (chainer.FunctionNode method), 86
deleted() (chainer.function_hooks.CUDAProfileHook method), 460
deleted() (chainer.function_hooks.CupyMemoryProfileHook method), 461
deleted() (chainer.function_hooks.PrintHook method), 463
deleted() (chainer.function_hooks.TimerHook method), 464
deleted() (chainer.FunctionHook method), 459
depth2space() (in module chainer.functions), 166
depthwise_convolution_2d() (in module chainer.functions), 196
enable_update() (chainer.Chain method), 96
enable_update() (chainer.ChainList method), 99
enable_update() (chainer.Link method), 92
enable_update() (chainer.links.BatchNormalization method), 368
enable_update() (chainer.links.Bias method), 253
enable_update() (chainer.links.Bilinear method), 257
enable_update() (chainer.links.BinaryHierarchicalSoftmax method), 377
enable_update() (chainer.links.BlackOut method), 380
enable_update() (chainer.links.caffe.CaffeFunction method), 438
enable_update() (chainer.links.ChildSumTreeLSTM method), 261
enable_update() (chainer.links.Classifier method), 402
enable_update() (chainer.links.Convolution2D method), 265
enable_update() (chainer.links.ConvolutionND method), 270
enable_update() (chainer.links.CRF1d method), 383
enable_update() (chainer.links.Deconvolution2D method), 275
enable_update() (chainer.links.DeconvolutionND method), 279
enable_update() (chainer.links.DepthwiseConvolution2D method), 283
enable_update() (chainer.links.DilatedConvolution2D method), 288
enable_update() (chainer.links.EmbedID method), 292
enable_update() (chainer.links.GoogLeNet method), 411
enable_update() (chainer.links.GRU method), 295
enable_update() (chainer.links.Highway method), 299
enable_update() (chainer.links.Inception method), 302
enable_update() (chainer.links.InceptionBN method), 305
enable_update() (chainer.links.LayerNormalization method), 372
enable_update() (chainer.links.Linear method), 309
enable_update() (chainer.links.LSTM method), 314
enable_update() (chainer.links.Maxout method), 395
enable_update() (chainer.links.MLPConvolution2D method), 317
enable_update() (chainer.links.model.vision.resnet.ResNetLayers method), 416
enable_update() (chainer.links.NaryTreeLSTM method), 320
enable_update() (chainer.links.NegativeSampling method), 398
enable_update() (chainer.links.NStepBiGRU method), 324
enable_update() (chainer.links.NStepBiLSTM method), 327
enable_update() (chainer.links.NStepBiRNNReLU method), 330
enable_update() (chainer.links.NStepBiRNN Tanh method), 334
enable_update() (chainer.links.NStepGRU method), 337
enable_update() (chainer.links.NStepLSTM method), 341
enable_update() (chainer.links.NStepRNNReLU method), 344
enable_update() (chainer.links.NStepRNNTanh method), 347
enable_update() (chainer.links.PReLU method), 391
enable_update() (chainer.links.ResNet101Layers method), 425
enable_update() (chainer.links.ResNet50Layers method), 429
enable_update() (chainer.links.Scale method), 350
enable_update() (chainer.links.SimplifiedDropconnect method), 388
enable_update() (chainer.links.StatefulGRU method), 354
enable_update() (chainer.links.StatefulPeepholeLSTM method), 361
enable_update() (chainer.links.StatelessGRU method), 357
enable_update() (chainer.links.StatelessLSTM method), 364
enable_update() (chainer.links.TheanoFunction method), 433
enable_update() (chainer.links.VGG16Layers method), 406
epoch (chainer.training.ParallelUpdater attribute), 123
epoch (chainer.training.StandardUpdater attribute), 121
epoch (chainer.training.updaters.MultiprocessParallelUpdater attribute), 124
eknow() (chainer.iterators.BatchIterator attribute), 486
eknow() (chainer.iterators.SerialIterator attribute), 485
eknow() (chainer.iterators.MultiprocessIterator attribute), 486
eknow() (chainer.iterators.ParallelIterator attribute), 121
epoch_detail (chainer.iterators.ParallelIterator attribute), 121
epoch_detail (chainer.iterators.MultiprocessIterator attribute), 124
epoch_detail (chainer.iterators.SerialIterator attribute), 144
epoch_detail (chainer.training.extensions.Evaluator method), 488
epoch_detail (chainer.training.extensions.Evaluator method), 487
exp() (in module chainer.functions), 231
expand_dims() (in module chainer.functions), 169
init_hx() (chainer.links.NStepBiRNNTanh method), 334
init_hx() (chainer.links.NStepBiGRU method), 337
init_hx() (chainer.links.NStepBiLSTM method), 341
init_hx() (chainer.links.NStepBiRNNReLU method), 344
init_hx() (chainer.links.NStepBiRNNTanh method), 347
init_sc() (chainer.Chaining method), 96
init_sc() (chainer.ChainingList method), 99
init_sc() (chainer.Link method), 92
init_sc() (chainer.links.BatchNormalization method), 369
init_sc() (chainer.links.Bias method), 253
init_sc() (chainer.links.Bilinear method), 257
init_sc() (chainer.links.BinaryHierarchicalSoftmax method), 377
init_sc() (chainer.links.BlackOut method), 380
init_sc() (chainer.links.caffe.CaffeFunction method), 438
init_sc() (chainer.links.ChildSumTreeLSTM method), 261
init_sc() (chainer.links.Classifier method), 402
init_sc() (chainer.links.Convolution2D method), 265
init_sc() (chainer.links.ConvolutionND method), 270
init_sc() (chainer.links.CRF1d method), 383
init_sc() (chainer.links.Deconvolution2D method), 275
init_sc() (chainer.links.DeconvolutionND method), 279
init_sc() (chainer.links.DepthwiseConvolution2D method), 283
init_sc() (chainer.links.DilatedConvolution2D method), 288
init_sc() (chainer.links.EmbedID method), 292
init_sc() (chainer.links.GoogLeNet method), 412
init_sc() (chainer.links.GRU method), 295
init_sc() (chainer.links.Highway method), 299
init_sc() (chainer.links.Inception method), 302
init_sc() (chainer.links.InceptionBN method), 305
init_sc() (chainer.links.LayerNormalization method), 373
init_sc() (chainer.links.Linear method), 309
init_sc() (chainer.links.LSTM method), 314
init_sc() (chainer.links.Maxout method), 395
init_sc() (chainer.links.MLPConvolution2D method), 317
init_sc() (chainer.links.model.vision.resnet.ResNetLayers method), 417
init_sc() (chainer.links.NaryTreeLSTM method), 320
init_sc() (chainer.links.NegativeSampling method), 398
init_sc() (chainer.links.NStepBiGRU method), 324
init_sc() (chainer.links.NStepBiLSTM method), 327
init_sc() (chainer.links.NStepBiRNNReLU method), 331
init_scope() (chainer.Chaining method), 96
init_scope() (chainer.ChainingList method), 99
init_scope() (chainer.Link method), 92
init_scope() (chainer.links.BatchNormalization method), 369
init_scope() (chainer.links.Bias method), 253
init_scope() (chainer.links.Bilinear method), 257
init_scope() (chainer.links.BinaryHierarchicalSoftmax method), 377
init_scope() (chainer.links.BlackOut method), 380
init_scope() (chainer.links.caffe.CaffeFunction method), 438
init_scope() (chainer.links.ChildSumTreeLSTM method), 261
init_scope() (chainer.links.Classifier method), 402
init_scope() (chainer.links.Convolution2D method), 265
init_scope() (chainer.links.ConvolutionND method), 270
init_scope() (chainer.links.CRF1d method), 383
init_scope() (chainer.links.Deconvolution2D method), 275
init_scope() (chainer.links.DeconvolutionND method), 279
init_scope() (chainer.links.DepthwiseConvolution2D method), 283
init_scope() (chainer.links.DilatedConvolution2D method), 288
init_scope() (chainer.links.EmbedID method), 292
init_scope() (chainer.links.GoogLeNet method), 412
init_scope() (chainer.links.GRU method), 295
init_scope() (chainer.links.Highway method), 299
init_scope() (chainer.links.Inception method), 302
init_scope() (chainer.links.InceptionBN method), 305
init_scope() (chainer.links.LayerNormalization method), 373
init_scope() (chainer.links.Linear method), 309
init_scope() (chainer.links.LSTM method), 314
init_scope() (chainer.links.Maxout method), 395
init_scope() (chainer.links.MLPConvolution2D method), 317
init_scope() (chainer.links.model.vision.resnet.ResNetLayers method), 417
init_scope() (chainer.links.NaryTreeLSTM method), 320
init_scope() (chainer.links.NegativeSampling method), 398
init_scope() (chainer.links.NStepBiGRU method), 324
init_scope() (chainer.links.NStepBiLSTM method), 327
init_scope() (chainer.links.NStepBiRNNReLU method), 331
is_new_epoch (chainer.training.updaters.MultiprocessParallelUpdater attribute), 124
Iterator (class in chainer.dataset), 113

L
label (chainer.Function attribute), 78
label (chainer.FunctionAdapter attribute), 82
label (chainer.FunctionNode attribute), 87
label (chainer.Parameter attribute), 72
label (chainer.Variable attribute), 67
label (chainer.variable.VariableNode attribute), 74
LabeledImageDataset (class in chainer.datasets), 480
Lasso (class in chainer.optimizer), 107
layer_normalization() (in module chainer.functions), 243
LayerNormalization (class in chainer.links), 370
leaky_relu() (in module chainer.functions), 153
LeCunNormal (class in chainer.initializers), 467
LeCunUniform (class in chainer.initializers), 469
Linear (class in chainer.links), 306
linear() (in module chainer.functions), 198
linear_interpolate() (in module chainer.functions), 233
LinearShift (class in chainer.training.extensions), 491
Link (class in chainer), 90
links() (chainer.Chain method), 97
links() (chainer.ChainList method), 100
links() (chainer.Link method), 93
links() (chainer.links.BatchNormalization method), 369
links() (chainer.links.Bias method), 253
links() (chainer.links.Bilinear method), 257
links() (chainer.links.BinaryHierarchicalSoftmax method), 377
links() (chainer.links.BlackOut method), 380
links() (chainer.links.caffe.CaffeFunction method), 438
links() (chainer.links.ChildSumTreeLSTM method), 261
links() (chainer.links.Classifier method), 403
links() (chainer.links.Convolution2D method), 266
links() (chainer.links.ConvolutionND method), 270
links() (chainer.links.CRF1d method), 384
links() (chainer.links.Deconvolution2D method), 275
links() (chainer.links.DeconvolutionND method), 279
links() (chainer.links.DepthwiseConvolution2D method), 283
links() (chainer.links.DilatedConvolution2D method), 288
links() (chainer.links.EmbedID method), 292
links() (chainer.links.GoogLeNet method), 412
links() (chainer.links.GRU method), 296
links() (chainer.links.Highway method), 299
links() (chainer.links.Inception method), 302
links() (chainer.links.InceptionBN method), 305
links() (chainer.links.LayerNormalization method), 373
links() (chainer.links.Linear method), 309
links() (chainer.links.LSTM method), 314
links() (chainer.links.Maxout method), 396
links() (chainer.links.MLPConvolution2D method), 318
links() (chainer.links.model.vision.resnet.ResNetLayers method), 417
links() (chainer.links.NaryTreeLSTM method), 321
links() (chainer.links.NegativeSampling method), 399
links() (chainer.links.NStepBiGRU method), 324
links() (chainer.links.NStepBiLSTM method), 328
links() (chainer.links.NStepBiRNNeLU method), 331
links() (chainer.links.NStepBiRNNNTanh method), 334
links() (chainer.links.NStepGRU method), 338
links() (chainer.links.NStepLSTM method), 341
links() (chainer.links.NStepRNNeLU method), 344
links() (chainer.links.NStepRNNTanh method), 348
links() (chainer.links.PReLU method), 392
links() (chainer.links.ResNet101Layers method), 425
links() (chainer.links.ResNet152Layers method), 430
links() (chainer.links.ResNet50Layers method), 421
links() (chainer.links.Scale method), 351
links() (chainer.links.SimplifiedDropconnect method), 388
links() (chainer.links.StatefulGRU method), 354
links() (chainer.links.StatefulPeepholeLSTM method), 361
links() (chainer.links.StatelessGRU method), 357
links() (chainer.links.StatelessLSTM method), 365
links() (chainer.links.TheanoFunction method), 434
links() (chainer.links.VGG16Layers method), 407
load() (chainer.Deserializer method), 111
load() (chainer.serializers.HDF5Deserializer method), 457
load() (chainer.serializers.NpzDeserializer method), 455
load_hdf5() (in module chainer.serializers), 457
load_npz() (in module chainer.serializers), 455
local_function_hooks (chainer.Function attribute), 78
local_function_hooks (chainer.FunctionAdapter attribute), 82
local_response_normalization() (in module chainer.functions), 243
LogConfig (class in chainer.configuration), 131
log (chainer.training.extensions.LogReport attribute), 493
log() (in module chainer.functions), 233
log10() (in module chainer.functions), 233
log1p() (in module chainer.functions), 233
log2() (in module chainer.functions), 233
log_softmax() (in module chainer.functions), 154
LogReport (class in chainer.training.extensions), 491
logsumexp() (in module chainer.functions), 234
lr (chainer.optimizers.Adam attribute), 442
lr (chainer.optimizers.Adam attribute), 444
lr (chainer.optimizers.MomentumSGD attribute), 446
lr (chainer.optimizers.RMSprop attribute), 449
<table>
<thead>
<tr>
<th>Function Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>namedlinks() (chainer.links.NStepBiRNNReLU method)</td>
<td>331</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.NStepBiRNNTanh method)</td>
<td>334</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.NStepBiGRU method)</td>
<td>338</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.NStepLSTM method)</td>
<td>341</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.NStepRNNReLU method)</td>
<td>344</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.NStepRNNTanh method)</td>
<td>348</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.PReLU method)</td>
<td>392</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.ResNet101Layers method)</td>
<td>426</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.ResNet152Layers method)</td>
<td>430</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.Scale method)</td>
<td>421</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.SimplifiedDropconnect method)</td>
<td>388</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.StatefulGRU method)</td>
<td>354</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.StatefulPeepholeLSTM method)</td>
<td>361</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.StatelessGRU method)</td>
<td>357</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.StatelessLSTM method)</td>
<td>365</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.TheanoFunction method)</td>
<td>434</td>
</tr>
<tr>
<td>namedlinks() (chainer.links.VGG16Layers method)</td>
<td>407</td>
</tr>
<tr>
<td>namedparams() (chainer.Chain method)</td>
<td>97</td>
</tr>
<tr>
<td>namedparams() (chainer.ChainList method)</td>
<td>100</td>
</tr>
<tr>
<td>namedparams() (chainer.Link method)</td>
<td>93</td>
</tr>
<tr>
<td>namedparams() (chainer.links.BatchNormalization method)</td>
<td>369</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Bias method)</td>
<td>254</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Bilinear method)</td>
<td>258</td>
</tr>
<tr>
<td>namedparams() (chainer.links.BinaryHierarchicalSoftmax method)</td>
<td>377</td>
</tr>
<tr>
<td>namedparams() (chainer.links.BlackOut method)</td>
<td>381</td>
</tr>
<tr>
<td>namedparams() (chainer.links.caffe.CaffeFunction method)</td>
<td>438</td>
</tr>
<tr>
<td>namedparams() (chainer.links.ChildSumTreeLSTM method)</td>
<td>261</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Classifier method)</td>
<td>403</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Convolution2D method)</td>
<td>266</td>
</tr>
<tr>
<td>namedparams() (chainer.links.ConvolutionND method)</td>
<td>270</td>
</tr>
<tr>
<td>namedparams() (chainer.links.CRF1d method)</td>
<td>384</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Deconvolution2D method)</td>
<td>275</td>
</tr>
<tr>
<td>namedparams() (chainer.links.DeconvolutionND method)</td>
<td>279</td>
</tr>
<tr>
<td>namedparams() (chainer.links.DepthwiseConvolution2D method)</td>
<td>283</td>
</tr>
<tr>
<td>namedparams() (chainer.links.DilatedConvolution2D method)</td>
<td>288</td>
</tr>
<tr>
<td>namedparams() (chainer.links.EmbedID method)</td>
<td>292</td>
</tr>
<tr>
<td>namedparams() (chainer.links.GoogLeNet method)</td>
<td>412</td>
</tr>
<tr>
<td>namedparams() (chainer.links.GRU method)</td>
<td>296</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Highway method)</td>
<td>299</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Inception method)</td>
<td>302</td>
</tr>
<tr>
<td>namedparams() (chainer.links.InceptionBN method)</td>
<td>305</td>
</tr>
<tr>
<td>namedparams() (chainer.links.LayerNormalization method)</td>
<td>373</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Linear method)</td>
<td>310</td>
</tr>
<tr>
<td>namedparams() (chainer.links.LSTM method)</td>
<td>314</td>
</tr>
<tr>
<td>namedparams() (chainer.links.Maxout method)</td>
<td>396</td>
</tr>
<tr>
<td>namedparams() (chainer.links.MLPConvolution2D method)</td>
<td>318</td>
</tr>
<tr>
<td>namedparams() (chainer.links.model.vision.resnet.ResNetLayers method)</td>
<td>417</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NaryTreeLSTM method)</td>
<td>321</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NegativeSampling method)</td>
<td>399</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiGRU method)</td>
<td>324</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiLSTM method)</td>
<td>328</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNReLU method)</td>
<td>331</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNTanh method)</td>
<td>334</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiGRU method)</td>
<td>324</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiLSTM method)</td>
<td>328</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNReLU method)</td>
<td>331</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNTanh method)</td>
<td>334</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiGRU method)</td>
<td>324</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiLSTM method)</td>
<td>328</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNReLU method)</td>
<td>331</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNTanh method)</td>
<td>334</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiGRU method)</td>
<td>324</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiLSTM method)</td>
<td>328</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNReLU method)</td>
<td>331</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiRNNTanh method)</td>
<td>334</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiGRU method)</td>
<td>324</td>
</tr>
<tr>
<td>namedparams() (chainer.links.NStepBiLSTM method)</td>
<td>328</td>
</tr>
</tbody>
</table>
namedparams() (chainer.links.VGG16Layers method), 407
NaN() (in module chainer.initializers), 467
NaryTreeLSTM (class in chainer.links), 318
ndim (chainer.Parameter attribute), 72
ndim (chainer.Variable attribute), 67
negative_sampling() (in module chainer.functions), 222
NegativeSampling (class in chainer.links), 396
NesterovAG (class in chainer.optimizers), 446
new_epoch() (chainer.GradientMethod method), 105
new_epoch() (chainer.Optimizer method), 104
new_epoch() (chainer.optimizers.AdaDelta method), 440
new_epoch() (chainer.optimizers.AdaGrad method), 441
new_epoch() (chainer.optimizers.Adam method), 443
new_epoch() (chainer.optimizers.MomentumSGD method), 445
new_epoch() (chainer.optimizers.NesterovAG method), 446
new_epoch() (chainer.optimizers.RMSprop method), 448
new_epoch() (chainer.optimizers.RMSpropGraves method), 450
new_epoch() (chainer.optimizers.SGD method), 451
new_epoch() (chainer.optimizers.SMORMS3 method), 453
next() (chainer.dataset.Iterator method), 113
next() (chainer. iterators. MultiprocessIterator method), 486
next() (chainer. iterators. SerialIterator method), 485
no_backprop_mode() (in module chainer), 88
node (chainer. Function attribute), 79
node (chainer. Parameter attribute), 72
node (chainer. Variable attribute), 67
Normal (class in chainer. initializers), 467
normalize() (in module chainer.functions), 244
NpzDeserializer (class in chainer.serializers), 455
NStepBiGRU (class in chainer. links), 322
NStepBiLSTM (class in chainer. links), 325
NStepBiRNNReLU (class in chainer. links), 328
NStepBiRNNTanh (class in chainer. links), 332
NStepGRU (class in chainer. links), 335
NStepLSTM (class in chainer. links), 338
NStepRNNReLU (class in chainer. links), 342
NStepRNNTanh (class in chainer. links), 345
numerical_grad() (in module chainer.gradient_check), 147
output_data (chainer. FunctionAdapter attribute), 82
output_data (chainer. FunctionNode attribute), 87
outputs (chainer. Function attribute), 79
outputs (chainer. FunctionAdapter attribute), 82
outputs (chainer. FunctionNode attribute), 88
P
pad() (in module chainer.functions), 173
pad_sequence() (in module chainer.functions), 173
ParallelUpdater (class in chainer. training), 122
Parameter (class in chainer), 68
ParameterStatistics (class in chainer. training.extensions), 494
params() (chainer. Chain method), 97
params() (chainer. ChainList method), 100
params() (chainer. Link method), 93
params() (chainer. links. BatchNormalization method), 369
dargs() (chainer. LinkList method), 294
dparams() (chainer. Link method), 295
params() (chainer. links. Bias method), 254
params() (chainer. links. Bilinear method), 258
params() (chainer. links. BinaryHierarchicalSoftmax method), 377
params() (chainer. links. BlackOut method), 381
params() (chainer. links. CaffeFunction method), 438
params() (chainer. links. ChildSumTreeLSTM method), 261
params() (chainer. links. Classifier method), 403
params() (chainer. links. Convolution2D method), 266
params() (chainer. links. ConvolutionND method), 270
params() (chainer. links. CRF1d method), 384
params() (chainer. links. Deconvolution2D method), 275
params() (chainer. links. DeconvolutionND method), 279
params() (chainer. links. DepthwiseConvolution2D method), 283
params() (chainer. links. DilatedConvolution2D method), 288
params() (chainer. links. EmbedID method), 292
params() (chainer. links. GoogLeNet method), 412
params() (chainer. links. GRU method), 296
params() (chainer. links. Highway method), 299
params() (chainer. links. Inception method), 302
params() (chainer. links. InceptionBN method), 305
params() (chainer. links. LayerNormalization method), 373
params() (chainer. links. Linear method), 310
params() (chainer. links. LSTM method), 314
params() (chainer. links. Maxout method), 396
params() (chainer. links. MLPConvolution2D method), 318
params() (chainer. links. model. vision. resnet. ResNetLayers method), 417
params() (chainer. links. NaryTreeLSTM method), 321
params() (chainer. links. NegativeSampling method), 399
params() (chainer. links. NStepBiGRU method), 324

O
observe_lr() (in module chainer. training.extensions), 493
observe_value() (in module chainer. training.extensions), 493
One() (in module chainer. initializers), 467
Optimizer (class in chainer), 103
Orthogonal (class in chainer. initializers), 468
output_data (chainer. Function attribute), 79

572 Index
Index 573

params() (chainer.links.NStepBiLSTM method), 328
params() (chainer.links.NStepBiRNNReLU method), 331
params() (chainer.links.NStepBiRNNTanh method), 334
params() (chainer.links.NStepGRU method), 338
params() (chainer.links.NStepLSTM method), 341
params() (chainer.links.NStepRNNReLU method), 344
params() (chainer.links.NStepRNNTanh method), 348
params() (chainer.links.PReLU method), 392
params() (chainer.links.ResNet101Layers method), 426
params() (chainer.links.ResNet152Layers method), 430
params() (chainer.links.ResNet50Layers method), 421
params() (chainer.links.Scale method), 351
params() (chainer.links.SimplifiedDropconnect method), 388
params() (chainer.links.StatefulGRU method), 354
params() (chainer.links.StatefulPeepholeLSTM method), 361
params() (chainer.links.StatelessGRU method), 357
params() (chainer.links.StatelessLSTM method), 365
params() (chainer.links.TheanoFunction method), 434
params() (chainer.links.VGG16Layers method), 407
parent (chainer.optimizer.Hyperparameter attribute), 101
permutate() (in module chainer.functions), 174
PlotReport (class in chainer.training.extensions), 496
predict() (chainer.links.GoogLeNet method), 412
predict() (chainer.links.model.vision.resnet.ResNetLayers method), 417
predict() (chainer.links.ResNet101Layers method), 426
predict() (chainer.links.ResNet152Layers method), 430
predict() (chainer.links.ResNet50Layers method), 421
predict() (chainer.links.VGG16Layers method), 407
PReLU (class in chainer.links), 389
prerelu() (in module chainer.functions), 157
prepare() (in module chainer.links.model.vision.googlenet), 413
prepare() (in module chainer.links.model.vision.resnet), 431
prepare() (in module chainer.links.model.vision.vgg), 408
previous_epoch_detail (chainer.iteratorsMultiplicityIterator attribute), 486
previous_epoch_detail (chainer.iterators.SerialIterator attribute), 485
previous_epoch_detail (chainer.training.ParallelUpdater attribute), 123
previous_epoch_detail (chainer.training.StandardUpdater attribute), 121
previous_epoch_detail (chainer.training.updatersMultiplicityUpdater attribute), 125
print_report() (chainer.function_hooks.CupyMemoryProfileHook method), 461
print_report() (chainer.function_hooks.TimerHook method), 464
PrintHook (class in chainer.function_hooks), 462
PrintReport (class in chainer.training.extensions), 498
priority (chainer.training.Extension attribute), 126
priority (chainer.training.extensions.Evaluator attribute), 489
priority (chainer.training.extensions.ExponentialShift attribute), 490
priority (chainer.training.extensions.LinearShift attribute), 491
priority (chainer.training.extensions.LogReport attribute), 493
priority (chainer.training.extensions.ParameterStatistics attribute), 496
priority (chainer.training.extensions.PlotReport attribute), 498
priority (chainer.training.extensions.PrintReport attribute), 499
priority (chainer.training.extensions.ProgressBar attribute), 500
prod() (in module chainer.functions), 236
ProgressBar (class in chainer.training.extensions), 499
R
r2_score() (in module chainer.functions), 211
rank (chainer.Function attribute), 79
rank (chainer.FunctionAdapter attribute), 82
rank (chainer.FunctionNode attribute), 85
rank (chainer.Parameter attribute), 72
rank (chainer.Variable attribute), 67
rank (chainer.variable.VariableNode attribute), 75
reallocating_cleared_grads() (chainer.GradientMethod method), 105
reallocating_cleared_grads() (chainer.optimizers.AdaDelta method), 440
reallocating_cleared_grads() (chainer.optimizers.AdaGrad method), 441
reallocating_cleared_grads() (chainer.optimizers.Adam method), 443
reallocating_cleared_grads() (chainer.optimizers.MomentumSGD method), 445
reallocating_cleared_grads() (chainer.optimizers.NesterovAG method), 446
reallocating_cleared_grads() (chainer.optimizers.RMSprop method), 448
reallocating_cleared_grads() (chainer.optimizers.RMSpropGraves method), 450
reallocating_cleared_grads() (chainer.optimizers.SGD method), 451
reallocating_cleared_grads() (chainer.optimizers.SMORMS3 method), 453
reduce() (in module chainer.cuda), 136
register_persistent() (chainer.Chain method), 97
remove_hook() (chainer.optimizers.SGD method), 451
remove_hook() (chainer.optimizers.SMORMS3 method), 453
remove_hook() (chainer.UpdateRule method), 102
report() (chainer.Reporter method), 139
report() (in module chainer), 140
report_key_template (chainer.training.extensions.ParameterStatistics attribute), 496
report_scope() (in module chainer), 141
Reporter (class in chainer), 138
requires_grad (chainer.Parameter attribute), 72
requires_grad (chainer.Variable attribute), 67
requires_grad (chainer.variable.VariableNode attribute), 75
reset() (chainer.iterators.MultiprocessIterator method), 486
reset() (chainer.iterators.SerialIterator method), 485
reset_state() (chainer.links.GRU method), 296
reset_state() (chainer.links.LSTM method), 314
reset_state() (chainer.links.StatefulGRU method), 354
reset_state() (chainer.links.StatefulPeepholeLSTM method), 361
reshape() (chainer.Parameter method), 70
reshape() (chainer.Variable method), 65
reshape() (in module chainer.functions), 174
resize_images() (in module chainer.functions), 175
ResNet101Layers (class in chainer.links), 422
ResNet152Layers (class in chainer.links), 427
ResNet50Layers (class in chainer.links), 418
ResNetLayers (class in chainer.links.model.vision.resnet), 414
retain_data() (chainer.Parameter method), 70
retain_data() (chainer.Variable method), 65
retain_data() (chainer.variable.VariableNode method), 73
retain_inputs() (chainer.Function method), 78
retain_inputs() (chainer.FunctionAdapter method), 81
retain_inputs() (chainer.FunctionNode method), 87
retain_outputs() (chainer.Function method), 78
retain_outputs() (chainer.FunctionAdapter method), 81
retain_outputs() (chainer.FunctionNode method), 87
rro (chainer.optimizers.Adadelta attribute), 441
RMSprop (class in chainer.optimizers), 447
RMSpropGraves (class in chainer.optimizers), 449
roi_pooling_2d() (in module chainer.functions), 246
rollaxis() (in module chainer.functions), 236
rsqrt() (in module chainer.functions), 176
run() (chainer.training.Trainer method), 118
save() (chainer.serializers.DictionarySerializer method), 454
save() (chainer.serializers.HDF5Serializer method), 456
save_hdf5() (in module chainer.serializers), 457
save_npz() (in module chainer.serializers), 455
Scale (class in chainer.links), 348
scale() (in module chainer.functions), 237
score() (chainer.Reporter method), 139
select_item() (in module chainer.functions), 176
selu() (in module chainer.functions), 158
separate() (in module chainer.functions), 176
SerialIterator (class in chainer.iterators), 484
serialize() (chainer.Chain method), 97
serialize() (chainer.ChainList method), 100
serialize() (chainer.dataset.Iterator method), 113
serialize() (chainer.GradientMethod method), 105
serialize() (chainer.iterators.MultiprocessIterator method), 486
serialize() (chainer.iterators.SerialIterator method), 485
serialize() (chainer.Link method), 93
serialize() (chainer.links.BatchNormalization method), 369
serialize() (chainer.links.Bias method), 254
serialize() (chainer.links.Bilinear method), 258
serialize() (chainer.links.BinaryHierarchicalSoftmax method), 378
serialize() (chainer.links.BlackOut method), 381
serialize() (chainer.links.caffe.CaffeFunction method), 439
serialize() (chainer.links.ChildSumTreeLSTM method), 262
serialize() (chainer.links.Classifier method), 403
serialize() (chainer.links.Convolution2D method), 266
serialize() (chainer.links.ConvolutionND method), 271
serialize() (chainer.links.CRF1d method), 384
serialize() (chainer.links.Deconvolution2D method), 276
serialize() (chainer.links.DeconvolutionND method), 280
serialize() (chainer.links.DepthwiseConvolution2D method), 284
serialize() (chainer.links.DilatedConvolution2D method), 289
serialize() (chainer.links.EmbedID method), 293
serialize() (chainer.links.GoogLeNet method), 412
serialize() (chainer.links.GRU method), 296
serialize() (chainer.links.Highway method), 299
serialize() (chainer.links.Inception method), 302
serialize() (chainer.links.InceptionBN method), 306
serialize() (chainer.links.LayerNormalization method), 373
serialize() (chainer.links.Linear method), 310
serialize() (chainer.links.LSTM method), 314
serialize() (chainer.links.Maxout method), 396
serialize() (chainer.links.MLPConvolution2D method), 318

S
sample() (chainer.utils.WalkerAlias method), 137
sample_cpu() (chainer.utils.WalkerAlias method), 138
sample_gpu() (chainer.utils.WalkerAlias method), 138
save() (chainer.Serializer method), 110
sin() (in module chainer.functions), 237
sinh() (in module chainer.functions), 237
size (chainer.Parameter attribute), 72
size (chainer.Variable attribute), 67
size() (chainer.utils.type_checkTypeInfoTuple method), 145
slstm() (in module chainer.functions), 159
SMORMS3 (class in chainer.optimizers), 452
snapshot() (in module chainer.training.extensions), 493
snapshot_object() (in module chainer.training.extensions), 494
softmax() (in module chainer.functions), 160
softmax_cross_entropy() (in module chainer.functions), 223
softplus() (in module chainer.functions), 160
space2depth() (in module chainer.functions), 177
spatial_pyramid_pooling_2d() (in module chainer.functions), 247
spatial_transformer_grid() (in module chainer.functions), 178
spatial_transformer_sampler() (in module chainer.functions), 179
split_axis() (in module chainer.functions), 180
split_dataset() (in module chainer.datasets), 475
split_dataset_random() (in module chainer.datasets), 475
sqrt() (in module chainer.functions), 237
square() (in module chainer.functions), 238
squared_difference() (in module chainer.functions), 238
summary() (chainer.Parameter method), 70
summary() (chainer.Variable method), 65
swapaxes() (in module chainer.functions), 182
T
T (chainer.Parameter attribute), 71
tanh() (in module chainer.functions), 161
TileHook (in module chainer.function_hooks), 463
to_cpu() (chainer.Chain method), 97
to_cpu() (chainer.ChainList method), 100
to_cpu() (chainer.Link method), 93
to_cpu() (chainer.links.BatchNormalization method), 370
to_cpu() (chainer.links.Bias method), 254
to_cpu() (chainer.links.Bilinear method), 258
to_cpu() (chainer.links.BinaryHierarchicalSoftmax method), 378
to_cpu() (chainer.links.BlackOut method), 381
to_cpu() (chainer.links.caffe.CaffeFunction method), 439
to_cpu() (chainer.links.ChildSumTreeLSTM method), 262
to_cpu() (chainer.links.Classifier method), 403
to_cpu() (chainer.links.Convolution2D method), 266
to_cpu() (chainer.links.ConvolutionND method), 271
to_cpu() (chainer.links.CRF1d method), 385
to_cpu() (chainer.links.Deconvolution2D method), 276
to_cpu() (chainer.links.DeconvolutionND method), 280
to_cpu() (chainer.links.DepthwiseConvolution2D method), 284
to_cpu() (chainer.links.DilatedConvolution2D method), 289
to_cpu() (chainer.links.EmbedID method), 293
to_cpu() (chainer.links.GoogLeNet method), 412
to_cpu() (chainer.links.GRU method), 296
to_cpu() (chainer.links.Highway method), 299
to_cpu() (chainer.links.Inception method), 303
to_cpu() (chainer.links.InceptionBN method), 306
to_cpu() (chainer.links.LayerNormalization method), 310
to_cpu() (chainer.links.LSTM method), 314
to_cpu() (chainer.links.Maxout method), 396
to_cpu() (chainer.links.MLPConvol2d method), 318
to_cpu() (chainer.links.model.vision.resnet.ResNetLayers method), 417
to_cpu() (chainer.links.NaryTreeLSTM method), 321
to_cpu() (chainer.links.NegativeSampling method), 399
to_cpu() (chainer.links.NStepBiGRU method), 324
to_cpu() (chainer.links.NStepBiLSTM method), 328
to_cpu() (chainer.links.NStepBiRNNReLU method), 331
to_cpu() (chainer.links.NStepBiRNNtanh method), 334
to_cpu() (chainer.links.NStepGRU method), 338
to_cpu() (chainer.links.NStepLSTM method), 341
to_cpu() (chainer.links.NStepRNNReLU method), 345
to_cpu() (chainer.links.NStepRNNtanh method), 348
to_cpu() (chainer.links.PReLU method), 392

Index 577
trigger (chainer.training.extensions.PrintReport attribute), 499
trigger (chainer.training.extensions.ProgressBar attribute), 500
triplet() (in module chainer.functions), 225
TupleDataset (class in chainer.datasets), 472
TypeInfo (class in chainer.utils.type_check), 145
TypeInfoTuple (class in chainer.utils.type_check), 145
unary_math_function_unittest() (in module chainer.testing), 148
unchain() (chainer.Function method), 78
unchain() (chainer.FunctionAdapter method), 82
unchain() (chainer.Parameter method), 71
unchain() (chainer.Variable method), 66
unchain() (chainer.variable.VariableNode method), 74
unchain_backward() (chainer.Parameter method), 71
unchain_backward() (chainer.Variable method), 66
Uniform (class in chainer.initializers), 469
unpooling_2d() (in module chainer.functions), 248
update() (chainer.GradientMethod method), 106
update() (chainer.Optimizer method), 104
update() (chainer.optimizers.AdaDelta method), 440
update() (chainer.optimizers.Adam method), 442
update() (chainer.optimizers.Adam method), 443
update() (chainer.optimizers.MomentumSGD method), 445
update() (chainer.optimizers.NesterovAG method), 447
update() (chainer.optimizers.RMSprop method), 448
update() (chainer.optimizers.RMSpropGraves method), 450
update() (chainer.optimizers.SGD method), 452
update() (chainer.optimizers.SMORMS3 method), 453
update() (chainer.Parameter method), 71
update() (chainer.training.ParallelUpdater method), 123
update() (chainer.training.StandardUpdater method), 121
update() (chainer.training.Updater method), 120
update() (chainer.training.updaters.MultiprocessParallelUpdater method), 124
update() (chainer.UpdateRule method), 102
update_core() (chainer.training.ParallelUpdater method), 123
update_core() (chainer.training.StandardUpdater method), 121
update_core() (chainer.training.updaters.MultiprocessParallelUpdater method), 124
update_core() (chainer.UpdateRule method), 102
update_core_cpu() (chainer.UpdateRule method), 102
update_core_gpu() (chainer.UpdateRule method), 103
update_enabled (chainer.Chain attribute), 97
update_enabled (chainer.ChainList attribute), 100
update_enabled (chainer.Link attribute), 94
update_enabled (chainer.links.BatchNormalization attribute), 370
update_enabled (chainer.links.Bias attribute), 255
update_enabled (chainer.links.Bilinear attribute), 259
update_enabled (chainer.links.BinaryHierarchicalSoftmax attribute), 378
update_enabled (chainer.links.BlackOut attribute), 381
update_enabled (chainer.links.caffe.CaffeFunction attribute), 439
update_enabled (chainer.links.ChildSumTreeLSTM attribute), 262
update_enabled (chainer.links.Classifier attribute), 403
update_enabled (chainer.links.Convolution2D attribute), 267
update_enabled (chainer.links.ConvolutionND attribute), 271
update_enabled (chainer.links.CRF1d attribute), 385
update_enabled (chainer.links.Deconvolution2D attribute), 276
update_enabled (chainer.links.DeconvolutionND attribute), 280
update_enabled (chainer.links.DepthwiseConvolution2D attribute), 284
update_enabled (chainer.links.DilatedConvolution2D attribute), 289
update_enabled (chainer.links.EmbedID attribute), 293
update_enabled (chainer.links.GoogLeNet attribute), 413
update_enabled (chainer.links.GRU attribute), 296
update_enabled (chainer.links.Highway attribute), 300
update_enabled (chainer.links.Inception attribute), 303
update_enabled (chainer.links.InceptionBN attribute), 306
update_enabled (chainer.links.LayerNormalization attribute), 374
update_enabled (chainer.links.Linear attribute), 310
update_enabled (chainer.links.LSTM attribute), 315
update_enabled (chainer.links.Maxout attribute), 396
update_enabled (chainer.links.MLPConvolution2D attribute), 318
update_enabled (chainer.links.model.vision.resnet.ResNetLayers attribute), 418
update_enabled (chainer.links.NaryTreeLSTM attribute), 321
update_enabled (chainer.links.NegativeLSTM attribute), 400
update_enabled (chainer.links.NStepBiGRU attribute), 325
update_enabled (chainer.links.NStepBiLSTM attribute), 328
update_enabled (chainer.links.NStepBiRNNReLU attribute), 331
update_enabled (chainer.links.NStepBiRNNtanh attribute), 335
update_enabled (chainer.links.NStepGRU attribute), 338

Index 579
update_enabled (chainer.links.NStepLSTM attribute), 342
update_enabled (chainer.links.NStepRNReLUAtribute), 345
update_enabled (chainer.links.NStepRNNTanh attribute), 348
update_enabled (chainer.links.PReLU attribute), 351
update_enabled (chainer.links.Scale attribute), 355
update_enabled (chainer.links.StatefulGRU attribute), 358
update_enabled (chainer.links.StatelessGRU attribute), 362
update_enabled (chainer.links.StatelessLSTM attribute), 366
update_enabled (chainer.links.VGG16Layers attribute), 370
Updater (class in chainer.training), 119
UpdateRule (class in chainer), 101
upsampling_2d() (in module chainer.functions), 248
use_cleargrads() (chainer.optimizer.AdaDelta method), 440
use_cleargrads() (chainer.optimizers.Adam method), 442
use_cleargrads() (chainer.optimizers.MomentumSGD method), 444
use_cleargrads() (chainer.optimizers.NesterovAG method), 446
use_cleargrads() (chainer.optimizers.RMSprop method), 448
use_cleargrads() (chainer.optimizers.RMSpropGraves method), 450
use_cleargrads() (chainer.optimizers.SGD method), 452
use_cleargrads() (chainer.links.Linear attribute), 454
using_config() (in module chainer), 130

V
Variable (class in chainer), 63
VariableNode (class in chainer.variable), 72
VGG16Layers (class in chainer.links), 404
vstack() (in module chainer.functions), 185
W
WalkerAlias (class in chainer.utils), 137
WeightDecay (class in chainer.optimizer), 106
where() (in module chainer.functions), 186
within_init_scope (chainer.Chain attribute), 97
within_init_scope (chainer.ChainList attribute), 100
within_init_scope (chainer.Link attribute), 94
within_init_scope (chainer.links.BatchNormalization attribute), 370
within_init_scope (chainer.links.Bias attribute), 255
within_init_scope (chainer.links.Bilinear attribute), 259
within_init_scope (chainer.links.BinaryHierarchicalSoftmax attribute), 378
within_init_scope (chainer.links.BlackOut attribute), 381
within_init_scope (chainer.links.caffe.CaffeFunction attribute), 439
within_init_scope (chainer.links.ChildSumTreeLSTM attribute), 262
within_init_scope (chainer.layers.Classifier attribute), 403
within_init_scope (chainer.layers.Convolution2D attribute), 266
within_init_scope (chainer.layers.ConvolutionND attribute), 270
within_init_scope (chainer.links.CRF1d attribute), 385
within_init_scope (chainer.links.Deconvolution2D attribute), 276
within_init_scope (chainer.links.DeconvolutionND attribute), 280
within_init_scope (chainer.links.DepthwiseConvolution2D attribute), 284
within_init_scope (chainer.links.DilatedConvolution2D attribute), 288
within_init_scope (chainer.links.EmbedID attribute), 292
within_init_scope (chainer.links.GoogLeNet attribute), 413
within_init_scope (chainer.links.GRU attribute), 296
within_init_scope (chainer.links.Highway attribute), 300
within_init_scope (chainer.links.Inception attribute), 303
within_init_scope (chainer.links.InceptionBN attribute), 306
within_init_scope (chainer.links.LayerNormalization attribute), 374
within_init_scope (chainer.links.Linear attribute), 310
within_init_scope (chainer.links.LSTM attribute), 314
within_init_scope (chainer.links.Maxout attribute), 396
within_init_scope (chainer.links.MLPConvolution2D attribute), 318
within_init_scope (chainer.links.model.vision.resnet.ResNetLayers attribute), 418
within_init_scope (chainer.links.NaryTreeLSTM attribute), 321
within_init_scope (chainer.links.NegativeSampling attribute), 400
within_init_scope (chainer.links.NStepBiGRU attribute), 325
within_init_scope (chainer.links.NStepBiLSTM attribute), 328
within_init_scope (chainer.links.NStepBiRNNReLU attribute), 332
within_init_scope (chainer.links.NStepBiRNNRelu attribute), 335
within_init_scope (chainer.links.NStepBiRNNRelu attribute), 338
within_init_scope (chainer.links.NStepGRU attribute), 342
within_init_scope (chainer.links.NStepLSTM attribute), 345
within_init_scope (chainer.links.NStepRNN attribute), 348
within_init_scope (chainer.links.NStepRNNReLU attribute), 351
within_init_scope (chainer.links.NStepRNNRelu attribute), 355
within_init_scope (chainer.links.PReLU attribute), 358
within_init_scope (chainer.links.ResNet101Layers attribute), 362
within_init_scope (chainer.links.ResNet152Layers attribute), 365
within_init_scope (chainer.links.StatefulGRU attribute), 368
within_init_scope (chainer.links.StatefulPeepholeLSTM attribute), 371
within_init_scope (chainer.links.StatelessGRU attribute), 374
within_init_scope (chainer.links.StatelessLSTM attribute), 377
within_init_scope (chainer.links.TheanoFunction attribute), 380
within_init_scope (chainer.links.VGG16Layers attribute), 383

X
xp (chainer.Chain attribute), 97
xp (chainer.ChainList attribute), 100
xp (chainer.Link attribute), 94
xp (chainer.links.BatchNormalization attribute), 370
xp (chainer.links.Bias attribute), 373
xp (chainer.links.Bilinear attribute), 376
xp (chainer.links.BinaryHierarchicalSoftmax attribute), 379
xp (chainer.links.BlackOut attribute), 381
xp (chainer.links.caffe.CaffeFunction attribute), 384
xp (chainer.links.ChildSumTreeLSTM attribute), 387
xp (chainer.links.Classifier attribute), 390
xp (chainer.links.Convolution2D attribute), 267
xp (chainer.links.ConvolutionND attribute), 271
xp (chainer.links.CRF1d attribute), 385
xp (chainer.links.Deconvolution2D attribute), 276
xp (chainer.links.DeconvolutionND attribute), 280
xp (chainer.links.DepthwiseConvolution2D attribute), 284
xp (chainer.links.DilatedConvolution2D attribute), 288
xp (chainer.links.EmbedID attribute), 292
xp (chainer.links.GoogLeNet attribute), 413
xp (chainer.links.GRU attribute), 296
xp (chainer.links.Highway attribute), 300
xp (chainer.links.Inception attribute), 303
xp (chainer.links.InceptionBN attribute), 306
xp (chainer.links.LayerNormalization attribute), 374
xp (chainer.links.Linear attribute), 377
xp (chainer.links.Maxout attribute), 380
xp (chainer.links.MLPConvolution2D attribute), 383
xp (chainer.links.model.vision.resnet.ResNetLayers attribute), 418
xp (chainer.links.NaryTreeLSTM attribute), 321
xp (chainer.links.NegativeSampling attribute), 400
xp (chainer.links.NStepBiGRU attribute), 325
xp (chainer.links.NStepBiLSTM attribute), 328
xp (chainer.links.NStepBiRNNReLU attribute), 332
xp (chainer.links.NStepBiRNNRelu attribute), 335
xp (chainer.links.NStepGRU attribute), 338
xp (chainer.links.NStepLSTM attribute), 342
xp (chainer.links.NStepRNN attribute), 345
xp (chainer.links.NStepRNNReLU attribute), 348
xp (chainer.links.NStepRNNRelu attribute), 351
xp (chainer.links.PReLU attribute), 354
xp (chainer.links.ResNet101Layers attribute), 426
xp (chainer.links.ResNet152Layers attribute), 431
xp (chainer.links.ResNet50Layers attribute), 436
xp (chainer.links.Scale attribute), 370
xp (chainer.links.SimplifiedDropconnect attribute), 373
xp (chainer.links.StatefulGRU attribute), 376
xp (chainer.links.StatefulPeepholeLSTM attribute), 380
xp (chainer.links.StatelessGRU attribute), 384
xp (chainer.links.StatelessLSTM attribute), 387
xp (chainer.links.TheanoFunction attribute), 390
xp (chainer.links.VGG16Layers attribute), 393

Z
Zero() (in module chainer.initializers), 466
zero_grads() (chainer.links.Bilinear method), 258
zerograd() (chainer.Parameter method), 71
zerograd() (chainer.Variable method), 66
zerograd() (chainer.Chain method), 97
zerograd() (chainer.ChainList method), 100
zerograd() (chainer.Link method), 94
zerograd() (chainer.links.BatchNormalization method), 370
zerograds() (chainer.links.Bias method), 254
zerograds() (chainer.links.Bilinear method), 258
zerograds() (chainer.links.BinaryHierarchicalSoftmax method), 378
zerograds() (chainer.links.BlackOut method), 381
zerograds() (chainer.links.caffe.CaffeFunction method), 439
zerograds() (chainer.links.ChildSumTreeLSTM method), 262
zerograds() (chainer.links.Classifier method), 403
zerograds() (chainer.links.Convolution2D method), 267
zerograds() (chainer.links.ConvolutionND method), 271
zerograds() (chainer.links.CRF1d method), 385
zerograds() (chainer.links.Deconvolution2D method), 276
zerograds() (chainer.links.DeconvolutionND method), 280
zerograds() (chainer.links.DepthwiseConvolution2D method), 284
zerograds() (chainer.links.DilatedConvolution2D method), 289
zerograds() (chainer.links.EmbedID method), 293
zerograds() (chainer.links.GoogLeNet method), 413
zerograds() (chainer.links.GRU method), 296
zerograds() (chainer.links.Highway method), 299
zerograds() (chainer.links.Inception method), 303
zerograds() (chainer.links.InceptionBN method), 306
zerograds() (chainer.links.LayerNormalization method), 374
zerograds() (chainer.links.Linear method), 310
zerograds() (chainer.links.LSTM method), 315
zerograds() (chainer.links.Maxout method), 396
zerograds() (chainer.links.MLPConvolution2D method), 318
zerograds() (chainer.links.model.vision.resnet.ResNetLayers method), 418
zerograds() (chainer.links.NaryTreeLSTM method), 321
zerograds() (chainer.links.NegativeSampling method), 399
zerograds() (chainer.links.NStepBiGRU method), 324
zerograds() (chainer.links.NStepBiLSTM method), 328
zerograds() (chainer.links.NStepBiRNNReLU method), 331
zerograds() (chainer.links.NStepBiRNNTanh method), 335
zerograds() (chainer.links.NStepGRU method), 338
zerograds() (chainer.links.NStepLSTM method), 341
zerograds() (chainer.links.NStepRNNReLU method), 345
zerograds() (chainer.links.NStepRNNTanh method), 348
zerograds() (chainer.links.PReLU method), 393
zerograds() (chainer.links.ResNet101Layers method), 426
zerograds() (chainer.links.ResNet152Layers method), 430
zerograds() (chainer.links.ResNet50Layers method), 422
zerograds() (chainer.links.Scale method), 351
zerograds() (chainer.links.SimplifiedDropconnect method), 389
zerograds() (chainer.links.StatefulGRU method), 355
zerograds() (chainer.links.StatefulPeepholeLSTM method), 361
zerograds() (chainer.links.StatelessGRU method), 358
zerograds() (chainer.links.StatelessLSTM method), 365
zerograds() (chainer.links.TheanoFunction method), 435
zerograds() (chainer.links.VGG16Layers method), 408