Contents

1 Tutorial
2 Reference Manual
3 API Compatibility Policy
4 Contribution Guide
5 Installation Guide
6 Tips and FAQs
7 Upgrade Guide
8 Comparison with Other Frameworks
9 License
10 Indices and tables
Bibliography
Python Module Index
This is the Chainer documentation.
1.1 Introduction to Chainer

This is the first section of the Chainer Tutorial. In this section, you will learn about the following things:

• Pros and cons of existing frameworks and why we are developing Chainer
• Simple example of forward and backward computation
• Usage of links and their gradient computation
• Construction of chains (a.k.a. “model” in most frameworks)
• Parameter optimization
• Serialization of links and optimizers

After reading this section, you will be able to:

• Compute gradients of some arithmetics
• Write a multi-layer perceptron with Chainer

1.1.1 Core Concept

As mentioned on the front page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined and fixed, and then the user periodically feeds it with mini-batches. Since the network is statically defined before any forward/backward computation, all the logic must be embedded into the network architecture as data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based frameworks, and TensorFlow).
Define-by-Run

In contrast, Chainer adopts a "Define-by-Run" scheme, i.e., the network is defined on-the-fly via the actual forward computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation. We will review such amenities in later sections of this tutorial.

Chainer represents a network as an execution path on a computational graph. A computational graph is a series of function applications, so that it can be described with multiple Function objects. When such function is a layer of neural network, the parameters of the function will be updated through training. Therefore, the function needs to keep trainable parameters inside, so that Chainer has Link class that can keep trainable parameters in the object of the class. The parameters of the function performed inside the Link object are represented as Variable objects. In short, the difference between these two objects, Link and Function, is whether it contains trainable parameters or not. A neural network model is typically described as a series of Function and Link.

You can build a computational graph by dynamically ‘chaining’ various kinds of Links and Functions to define a Chain. In the framework, the network is defined by running the chained graph, hence the name is Chainer.

Note: In the example code of this tutorial, we assume for simplicity that the following symbols are already imported:

```python
import numpy as np
import chainer
from chainer import cuda, Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
```

These imports appear widely in Chainer code and examples. For simplicity, we omit these imports in this tutorial.

1.1.2 Forward/Backward Computation

As described above, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network. In order to start forward computation, we have to set the input array to a Variable object. Here we start with a simple ndarray with only one element:

```python
>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)
```

A Variable object has basic arithmetic operators. In order to compute \(y = x^2 - 2x + 1 \), just write:

```python
>>> y = x**2 - 2 * x + 1
```

The resulting \(y \) is also a Variable object, whose value can be extracted by accessing the data attribute:

```python
>>> y.data
array([16.], dtype=float32)
```

What \(y \) holds is not only the result value. It also holds the history of computation (i.e., computational graph), which enables to compute its differentiation. This is done by calling its backward() method:
This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is computed and stored in the `grad` attribute of the input variable `x`:

```python
>>> x.grad
array([8.], dtype=float32)
```

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays of intermediate variables for memory efficiency. In order to preserve gradient information, pass the `retain_grad` argument to the backward method:

```python
>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward,retain_grad=True
>>> z.grad
array([-1.], dtype=float32)
```

Otherwise, `z.grad` will be `None` as follows:

```python
>>> y.backward()  # The default value of retain_grad is False
>>> z.grad
is None
True
```

All these computations are easily generalized to multi-element array input. Note that if we want to start backward computation from a variable holding a multi-element array, we must set the `initial error` manually. Because when the size of a variable (it means the number of elements in the array) is 1, it’s considered as a variable object that represents a loss value, so that the `grad` attribute of the variable is automatically filled with 1. On the other hand, when the size of a variable is larger than 1, the `grad` attribute remains `None`, and it is necessary to set the `initial error` explicitly before running `backward()`. This is simply done by setting the `grad` attribute of the output variable as follows:

```python
>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([[ 0., 2., 4.],
       [ 6., 8., 10.]], dtype=float32)
```

Note: Many functions taking `Variable` object(s) are defined in the `functions` module. You can combine them to realize complicated functions with automatic backward computation.

1.1.3 Links

In order to write neural networks, we have to combine functions with `parameters` and optimize the parameters. You can use `links` to do this. A `Link` is an object that holds parameters (i.e., optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the `Linear` link (a.k.a. fully-connected layer or affine transformation). It represents a mathematical function \(f(x) = xW^T + b \), where the matrix \(W \) and the vector \(b \) are parameters. This
link corresponds to its pure counterpart \texttt{linear()}, which accepts \(x, W, b\) as arguments. A linear link from three-dimensional space to two-dimensional space is defined by the following line:

\begin{verbatim}
>>> f = L.Linear(3, 2)
\end{verbatim}

\textbf{Note:} Most functions and links only accept mini-batch input, where the first dimension of the input array is considered as the \textit{batch dimension}. In the above Linear link case, input must have shape of \((N, 3)\), where \(N\) is the mini-batch size.

The parameters of a link are stored as attributes. Each parameter is an instance of \texttt{Variable}. In the case of the Linear link, two parameters, \(W\) and \(b\), are stored. By default, the matrix \(W\) is initialized randomly, while the vector \(b\) is initialized with zeros.

\begin{verbatim}
>>> f.W.data
array([[1.0184761 , 0.23103087, 0.5650746],
 [1.2937803 , 1.0782351 , -0.56423163]], dtype=float32)
>>> f.b.data
array([0., 0.], dtype=float32)
\end{verbatim}

An instance of the Linear link acts like a usual function:

\begin{verbatim}
>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.data
array([[3.1757617, 1.7575557],
 [8.619507 , 7.1809077]], dtype=float32)
\end{verbatim}

\textbf{Note:} Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of (de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch. For example, the following line creates a linear link whose output dimension is two:

\begin{verbatim}
f = L.Linear(2)
\end{verbatim}

If we feed a mini-batch of shape \((N, M)\), the input dimension will be inferred as \(M\), which means \(f.W\) will be a \(2 \times M\) matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, \(f\) does not have \(W\) attribute if no data is put to the link.

Gradients of parameters are computed by the \texttt{backward()} method. Note that gradients are \texttt{accumulated} by the method rather than overwritten. So first you must clear gradients to renew the computation. It can be done by calling the \texttt{cleargrads()} method.

\begin{verbatim}
>>> f.cleargrads()
\end{verbatim}

\textbf{Note:} \texttt{cleargrads()} is introduced in v1.15 to replace \texttt{zerograds()} for efficiency. \texttt{zerograds()} is left only for backward compatibility.

Now we can compute the gradients of parameters by simply calling the backward method.

\begin{verbatim}
>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[5. , 7. , 9.],
 [6. , 8. , 10.]], dtype=float32)
\end{verbatim}
1.1.4 Write a model as a chain

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple linear layers. We can write complex procedures with trainable parameters by combining multiple links like this:

```python
>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)
>>> def my_forward(x):
...    h = l1(x)
...    return l2(h)
```

Here the `L` indicates the `links` module. A procedure with parameters defined in this way is hard to reuse. More Pythonic way is combining the links and procedures into a class:

```python
>>> class MyProc(object):
...    def __init__(self):
...        self.l1 = L.Linear(4, 3)
...        self.l2 = L.Linear(3, 2)
...    def forward(self, x):
...        h = self.l1(x)
...        return self.l2(h)
```

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible save/load features, etc. These features are all supported by the `Chain` class in Chainer. Then, what we have to do here is just define the above class as a subclass of `Chain`:

```python
>>> class MyChain(Chain):
...    def __init__(self):
...        super(MyChain, self).__init__()
...        with self.init_scope():
...            self.l1 = L.Linear(4, 3)
...            self.l2 = L.Linear(3, 2)
...    def __call__(self, x):
...        h = self.l1(x)
...        return self.l2(h)
```

It shows how a complex chain is constructed by simpler links. Links like `l1` and `l2` are called child links of `MyChain`. **Note that Chain itself inherits Link.** It means we can define more complex chains that hold `MyChain` objects as their child links.

Note: We often define a single forward method of a link by the `__call__` operator. Such links and chains are callable and behave like regular functions of Variables.

Note: In Chainer v1, we could also register the trainable layers (i.e., `Link` s) to the model by putting them to the `__init__()` of `Chain` or registering them via `add_link()`. But as these ways are deprecated in Chainer v2, users are recommended to use the way explained above.
Another way to define a chain is using the `ChainList` class, which behaves like a list of links:

```python
>>> class MyChain2(ChainList):
...     def __init__(self):
...         super(MyChain2, self).__init__(
...             L.Linear(4, 3),
...             L.Linear(3, 2),
...         )
...     def __call__(self, x):
...         h = self[0](x)
...         return self[1](h)
```

ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above case, the Chain class is recommended as a base class.

1.1.5 Optimizer

In order to get good values for parameters, we have to optimize them by the `Optimizer` class. It runs a numerical optimization algorithm on a given link. Many algorithms are implemented in the `optimizers` module. Here we use the simplest one, called Stochastic Gradient Descent (SGD):

```python
>>> model = MyChain()
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)
```

The method `setup()` prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook functions to the optimizer. Hook functions are called after the gradient computation and right before the actual update of parameters. For example, we can set weight decay regularization by running the next line beforehand:

```python
>>> optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))
```

Of course, you can write your own hook functions. It should be a function or a callable object, taking the optimizer as the argument.

There are two ways to use the optimizer. One is using it via `Trainer`, which we will see in the following sections. The other way is using it directly. We here review the latter case. *If you are interested in getting able to use the optimizer in a simple way, skip this section and go to the next one.*

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the `update()` method with no arguments. Do not forget to clear the gradients beforehand!

```python
>>> x = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> model.cleargrads()
>>> # compute gradient here...
>>> loss = F.sum(model(chainer.Variable(x)))
>>> loss.backward()
>>> optimizer.update()
```

The other way is just passing a loss function to the `update()` method. In this case, `cleargrads()` is automatically called by the update method, so the user does not have to call it manually.

```python
>>> def lossfun(arg1, arg2):
...     # calculate loss
...     loss = F.sum(model(arg1 - arg2))
```
>>> arg1 = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype('f')
>>> optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))

See `Optimizer.update()` for the full specification.

1.1.6 Trainer

When we want to train neural networks, we have to run *training loops* that update the parameters many times. A typical training loop consists of the following procedures:

1. Iterations over training datasets
2. Preprocessing of extracted mini-batches
3. Forward/backward computations of the neural networks
4. Parameter updates
5. Evaluations of the current parameters on validation datasets
6. Logging and printing of the intermediate results

Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop abstraction mainly consists of two components:

- **Dataset abstraction.** It implements 1 and 2 in the above list. The core components are defined in the `dataset` module. There are also many implementations of datasets and iterators in `datasets` and `iterators` modules, respectively.

- **Trainer.** It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by `Trainer`. The way to update parameters (3 and 4) is defined by `Updater`, which can be freely customized. 5 and 6 are implemented by instances of `Extension`, which appends an extra procedure to the training loop. Users can freely customize the training procedure by adding extensions. Users can also implement their own extensions.

We will see how to use Trainer in the example section below.

1.1.7 Serializer

Before proceeding to the first example, we introduce Serializer, which is the last core feature described in this page. Serializer is a simple interface to serialize or deserialize an object. `Link`, `Optimizer`, and `Trainer` supports serialization.

Concrete serializers are defined in the `serializers` module. It supports NumPy NPZ and HDF5 formats.

For example, we can serialize a link object into NPZ file by the `serializers.save_npz()` function:

```python
>>> serializers.save_npz('my.model', model)
```

It saves the parameters of `model` into the file `my.model` in NPZ format. The saved model can be read by the `serializers.load_npz()` function:

```python
>>> serializers.load_npz('my.model', model)
```

Note: Note that only the parameters and the `persistent values` are serialized by this serialization code. Other attributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values by the
Link.add_persistent() method. The registered values can be accessed by attributes of the name passed to the add_persistent method.

The state of an optimizer can also be saved by the same functions:

```python
>>> serializers.save_npz('my.state', optimizer)
```

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to explicitly save the target link with the optimizer to resume the optimization from saved states.

Support of the HDF5 format is enabled if the h5py package is installed. Serialization and deserialization with the HDF5 format are almost identical to those with the NPZ format; just replace save_npz() and load_npz() by save_hdf5() and load_hdf5(), respectively.

1.1.8 Example: Multi-layer Perceptron on MNIST

Now you can solve a multiclass classification task using a multi-layer perceptron (MLP). We use a hand-written digits dataset called MNIST, which is one of the long-standing de facto “hello world” examples used in machine learning. This MNIST example is also found in the examples/mnist directory of the official repository. We show how to use Trainer to construct and run the training loop in this section.

We first have to prepare the MNIST dataset. The MNIST dataset consists of 70,000 greyscale images of size 28x28 (i.e. 784 pixels) and corresponding digit labels. The dataset is divided into 60,000 training images and 10,000 test images by default. We can obtain the vectorized version (i.e., a set of 784 dimensional vectors) by datasets.get_mnist().

```python
>>> train, test = datasets.get_mnist()
... 
```

This code automatically downloads the MNIST dataset and saves the NumPy arrays to the `$(HOME)/.chainer` directory. The returned train and test can be seen as lists of image-label pairs (strictly speaking, they are instances of TupleDataset).

We also have to define how to iterate over these datasets. We want to shuffle the training dataset for every epoch, i.e. at the beginning of every sweep over the dataset. In this case, we can use iterators.SerialIterator.

```python
>>> train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)
```

On the other hand, we do not have to shuffle the test dataset. In this case, we can pass shuffle=False argument to disable the shuffling. It makes the iteration faster when the underlying dataset supports fast slicing.

```python
>>> test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False, _shuffle=False)
```

We also pass repeat=False, which means we stop iteration when all examples are visited. This option is usually required for the test/validation datasets; without this option, the iteration enters an infinite loop.

Next, we define the architecture. We use a simple three-layer rectifier network with 100 units per layer as an example.

```python
>>> class MLP(Chain):
...     def __init__(self, n_units, n_out):
...         super(MLP, self).__init__()
```
This link uses `relu()` as an activation function. Note that the 'l3' link is the final linear layer whose output corresponds to scores for the ten digits.

In order to compute loss values or evaluate the accuracy of the predictions, we define a classifier chain on top of the above MLP chain:

```python
>>> class Classifier(Chain):
...     def __init__(self, predictor):
...         super(Classifier, self).__init__()
...         with self.init_scope():
...             self.predictor = predictor
...     def __call__(self, x, t):
...         y = self.predictor(x)
...         loss = F.softmax_cross_entropy(y, t)
...         accuracy = F.accuracy(y, t)
...         report({'loss': loss, 'accuracy': accuracy}, self)
...         return loss
```

This Classifier class computes accuracy and loss, and returns the loss value. The pair of arguments `x` and `t` corresponds to each example in the datasets (a tuple of an image and a label). `softmax_cross_entropy()` computes the loss value given prediction and ground truth labels. `accuracy()` computes the prediction accuracy. We can set an arbitrary predictor link to an instance of the classifier.

The `report()` function reports the loss and accuracy values to the trainer. For the detailed mechanism of collecting training statistics, see `Reporter`. You can also collect other types of observations like activation statistics in a similar ways.

Note that a class similar to the Classifier above is defined as `chainer.links.Classifier`. So instead of using the above example, we will use this predefined Classifier chain.

```python
>>> model = L.Classifier(MLP(100, 10))  # the input size, 784, is inferred
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)
```

Now we can build a trainer object.

```python
>>> updater = training.StandardUpdater(train_iter, optimizer)
>>> trainer = training.Trainer(updater, (20, 'epoch'), out='result')
```

The second argument `(20, 'epoch')` represents the duration of training. We can use either `epoch` or `iteration` as the unit. In this case, we train the multi-layer perceptron by iterating over the training set 20 times.

In order to invoke the training loop, we just call the `run()` method.
This method executes the whole training sequence.
The above code just optimizes the parameters. In most cases, we want to see how the training proceeds, where we can use extensions inserted before calling the run method.

These extensions perform the following tasks:

Evaluator Evaluates the current model on the test dataset at the end of every epoch. It automatically switches to the test mode (see Configuring Chainer for details), and so we do not have to take any special function for functions that behave differently in training/test modes (e.g. dropout(), BatchNormalization).

LogReport Accumulates the reported values and emits them to the log file in the output directory.

PrintReport Prints the selected items in the LogReport.

ProgressBar Shows the progress bar.

There are many extensions implemented in the chainer.training.extensions module. The most important one that is not included above is snapshot(), which saves the snapshot of the training procedure (i.e., the Trainer object) to a file in the output directory.

The example code in the examples/mnist directory additionally contains GPU support, though the essential part is the same as the code in this tutorial. We will review in later sections how to use GPU(s).

1.2 How to Write a New Network

1.2.1 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

- A small convolutional network with a model class that is inherited from Chain,
- A large convolutional network that has several building block networks with ChainList.

After reading this section, you will be able to:

- Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmentation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is \((N, C, H, W)\), where

- \(N\) denotes the number of images in a mini-batch,
- \(C\) denotes the number of channels of those images,
- \(H\) and \(W\) denote the height and width of those images,
respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes. It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task, etc.

Note: The below example code assumes that some packages are already imported. Please see the details here: Introduction to Chainer.

LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer. This is a ConvNet model that has 5 layers comprised of 3 convolutional layers and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In Chainer, the model can be written as follows:

```python
class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_channels=1, out_channels=6, ksize=5, stride=1)
            self.conv2 = L.Convolution2D(
                in_channels=6, out_channels=16, ksize=5, stride=1)
            self.conv3 = L.Convolution2D(
                in_channels=16, out_channels=120, ksize=4, stride=1)
            self.fc4 = L.Linear(None, 84)
            self.fc5 = L.Linear(84, 10)

    def __call__(self, x):
        h = F.sigmoid(self.conv1(x))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv2(h))
        h = F.max_pooling_2d(h, 2, 2)
        h = F.sigmoid(self.conv3(h))
        h = F.sigmoid(self.fc4(h))
        if chainer.config.train:
            return self.fc5(h)
        return F.softmax(self.fc5(h))
```

A typical way to write your network is creating a new class inherited from `Chain` class. When defining your model in this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects of `Link` as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors simply by calling the model object like a function, `__call__()` is usually defined in the model class. This method performs the forward computation of the model. Chainer uses the powerful autograd system for any computational graphs written with `FunctionNode` and `Link` (actually a `Link` calls a corresponding `FunctionNode` inside of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the data, then give it to the model. The way this works is the resulting output `Variable` from the forward computation has a `backward()` method to perform autograd. In the above model, `__call__()` has a `if` statement at the end to switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as a global variable `chainer.config.train`. When it’s in training mode, `__call__()` returns the output value of the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating `softmax()`.

Note: In Chainer v1, if a function or link behaved differently in training and other modes, it was common that it held an attribute that represented its running mode or was provided with the mode from outside as an argument. In Chainer
v2, it is recommended to use the global configuration `chainer.config.train` to switch the running mode.

If you don’t want to write `conv1` and the other layers more than once, you can also write the model like in this way:

```python
class LeNet5(Chain):
    def __init__(self):
        super(LeNet5, self).__init__()
        net = [('conv1', L.Convolution2D(1, 6, 5, 1))]
        net += [('sigm1', F.Sigmoid())]
        net += [('mpool1', F.MaxPooling2D(2, 2))]
        net += [('conv2', L.Convolution2D(6, 16, 5, 1))]
        net += [('sigm2', F.Sigmoid())]
        net += [('mpool2', F.MaxPooling2D(2, 2))]
        net += [('conv3', L.Convolution2D(16, 120, 4, 1))]
        net += [('sigm3', F.Sigmoid())]
        net += [('mpool3', F.MaxPooling2D(2, 2))]
        net += [('fc4', L.Linear(None, 84))]
        net += [('sigm4', F.Sigmoid())]
        net += [('fc5', L.Linear(84, 10))]
        net += [('sigm5', F.Sigmoid())]
        with self.init_scope():
            for n in net:
                if not n[0].startswith('_'):
                    setattr(self, n[0], n[1])
        self.forward = net

    def __call__(self, x):
        for n, f in self.forward:
            if not n.startswith('_'):
                x = getattr(self, n)(x)
            else:
                x = f(x)
        if chainer.config.train:
            return x
        return F.softmax(x)
```

This code creates a list of all `Link`s and `FunctionNode`s after calling its superclass’s constructor. Then the elements of the list are registered to this model as trainable layers when the name of an element doesn’t start with `_` character. This operation can be freely replaced with many other ways because those names are just designed to select `Link`s only from the list `net` easily. `FunctionNode` doesn’t have any trainable parameters, so that we can’t register it to the model, but we want to use `FunctionNode`s for constructing a forward path. The list `net` is stored as an attribute `forward` to refer it in `__call__()`.

Ways to calculate loss

When you train the model with label vector `t`, the loss should be calculated using the output from the model. There also are several ways to calculate the loss:

```python
model = LeNet5()

# Input data and label
x = np.random.rand(32, 1, 28, 28).astype(np.float32)
t = np.random.randint(0, 10, size=(32,)).astype(np.int32)
```
Forward computation

```python
y = model(x)
```

Loss calculation

```python
loss = F.softmax_cross_entropy(y, t)
```

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation can be included in the model itself by wrapping the model object (Chain or ChainList object) with a class inherited from Chain. The outer Chain should take the model defined above and register it with init_scope(). Chain is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain. Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually, there is already a Classifier class that can be used to wrap the model and include the loss computation as well. It can be used like this:

```python
model = L.Classifier(LeNet5())

# Forward & Loss calculation
loss = model(x, t)
```

This class takes a model object as an input argument and registers it to a predictor property as a trained parameter. As shown above, the returned object can then be called like a function in which we pass x and t as the input arguments and the resulting loss value (which we recall is a Variable) is returned.

See the detailed implementation of Classifier from here: chainer.links.Classifier and check the implementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block networks, ChainList is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

```python
class VGG16(chainer.ChainList):
    def __init__(self):
        super(VGG16, self).__init__(
            VGGBlock(64),
            VGGBlock(128),
            VGGBlock(256, 3),
            VGGBlock(512, 3),
            VGGBlock(512, 3, True))

    def __call__(self, x):
        for f in self.children():
            x = f(x)
        if chainer.config.train:
            return x
        return F.softmax(x)

class VGGBlock(chainer.Chain):
    def __init__(self, n_channels, n_convs=2, fc=False):
        w = chainer.initializers.HeNormal()
        super(VGGBlock, self).__init__()
        with self.init_scope():
```

1.2. How to Write a New Network 15
self.conv1 = L.Convolution2D(None, n_channels, 3, 1, 1, initialW=w)
self.conv2 = L.Convolution2D(n_channels, n_channels, 3, 1, 1, initialW=w)
if n_convs == 3:
 self.conv3 = L.Convolution2D(n_channels, n_channels, 3, 1, 1, initialW=w)
if fc:
 self.fc4 = L.Linear(None, 4096, initialW=w)
self.fc5 = L.Linear(4096, 4096, initialW=w)
self.fc6 = L.Linear(4096, 1000, initialW=w)

self.n_convs = n_convs
self.fc = fc

def __call__(self, x):
 h = F.relu(self.conv1(x))
 h = F.relu(self.conv2(h))
 if self.n_convs == 3:
 h = F.relu(self.conv3(h))
 h = F.max_pooling_2d(h, 2, 2)
 if self.fc:
 h = F.dropout(F.relu(self.fc4(h)))
 h = F.dropout(F.relu(self.fc5(h)))
 h = self.fc6(h)
 return h

That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists of several building blocks that have the same architecture, we can build the whole network by re-using the building block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu()) following them, and max_pooling_2d() operations. This block is written as VGGBlock in the above example code. And the whole network just calls this block one by one in sequential manner.

ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16, having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNet152(chainer.Chain):
 def __init__(self, n_blocks=[3, 8, 36, 3]):
 w = chainer.initializers.HeNormal()
 super(ResNet152, self).__init__(
 conv1=L.Convolution2D(None, 64, 7, 2, 3, initialW=w, nobias=True),
 bnl=L.BatchNormalization(64),
 res2=ResBlock(n_blocks[0], 64, 64, 256, 1),
 res3=ResBlock(n_blocks[1], 256, 128, 512),
 res4=ResBlock(n_blocks[2], 512, 256, 1024),
 res5=ResBlock(n_blocks[3], 1024, 512, 2048),
 fc6=L.Linear(2048, 1000))

 def __call__(self, x):
 h = self.bnl(self.conv1(x))
 h = F.max_pooling_2d(F.relu(h), 2, 2)
In the `BottleNeck` class, depending on the value of the proj argument supplied to the initializer, it will conditionally compute a convolutional layer `conv1x1r` which will extend the number of channels of the input `x` to be equal to the number of channels of the output of `conv1x1c`, and followed by a batch normalization layer before the final ReLU layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in `__class__()` by flags but also the parameter registration. In this case, when `proj` is `False`, the `BottleNeck`
doesn’t have `conv1x1r` and `bn_r` layers, so the memory usage would be efficient compared to the case when it registers both anyway and just ignore them if `proj` is `False`.

Using nested `Chains` and `ChainList` for sequential part enables us to write complex and very deep models easily.

Use Pre-trained Models

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these models as follows:

```python
from chainer.links import VGG16Layers
model = VGG16Layers()
```

When `VGG16Layers` is instantiated, the pre-trained parameters are automatically downloaded from the author’s server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the details of this model here: `chainer.links.VGG16Layers`.

In the case of ResNet models, there are three variations differing in the number of layers. We have `chainer.links.ResNet50`, `chainer.links.ResNet101`, and `chainer.links.ResNet152` models with easy parameter loading feature. ResNet's pre-trained parameters are not available for direct downloading, so you need to download the weight from the author’s web page first, and then place it into the dir `$CHAINER_DATSET_ROOT/pfnet/chainer/models` or your favorite place. Once the preparation is finished, the usage is the same as VGG16:

```python
from chainer.links import ResNet152Layers
model = ResNet152Layers()
```

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: `chainer.links.ResNet50`.

References

1.2.2 Recurrent Nets and their Computational Graph

In this section, you will learn how to write

- recurrent nets with full backprop,
- recurrent nets with truncated backprop,
- evaluation of networks with few memory.

After reading this section, you will be able to:

- Handle input sequences of variable length
- Truncate upper stream of the network during forward computation
- Use no-backprop mode to prevent network construction

Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an input stream \(x_1, x_2, \ldots, x_t, \ldots\) and the initial state \(h_0\), a recurrent net iteratively updates its state by \(h_t = f(x_t, h_{t-1})\),
and at some or every point in time \(t \), it outputs \(y_t = g(h_t) \). If we expand the procedure along the time axis, it looks like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence of words, we want to predict the next word at each position without peeking the successive words. Suppose there are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the `chainer.links.LSTM` link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-connected layer. On construction, you pass the input and output size to the constructor:

```python
>>> l = L.LSTM(100, 50)
```

Then, call on this instance \(l(x) \) executes one step of LSTM layer:

```python
>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)
```

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the internal state. Then, the next input can be directly fed to the LSTM instance:

```python
>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)
```

Based on this LSTM link, let’s write our recurrent network as a new chain:

```python
class RNN(Chain):
    def __init__(self):
        super(RNN, self).__init__()
        with self.init_scope():
            self.embed = L.EmbedID(1000, 100)  # word embedding
            self.mid = L.LSTM(100, 50)  # the first LSTM layer
            self.out = L.Linear(50, 1000)  # the feed-forward output layer

    def reset_state(self):
        self.mid.reset_state()

    def __call__(self, cur_word):
        # Given the current word ID, predict the next word.
        x = self.embed(cur_word)
        h = self.mid(x)
        y = self.out(h)
        return y
```

```python
rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)
```

Here `EmbedID` is a link for word embedding. It converts input integers into corresponding fixed-dimensional embedding vectors. The last linear link `out` represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it to process sequences by just feeding items in a sequence straight to the chain.
Suppose we have a list of word variables \(x_{\text{list}} \). Then, we can compute loss values for the word sequence by simple for loop.

```python
def compute_loss(x_list):
    loss = 0
    for cur_word, next_word in zip(x_list, x_list[1:]):
        loss += model(cur_word, next_word)
    return loss
```

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its `backward()` method to compute gradients of the total loss according to the model parameters:

```python
# Suppose we have a list of word variables x_list.
rnn.reset_state()
model.cleargrads()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()
```

Or equivalently we can use the `compute_loss` as a loss function:

```python
rnn.reset_state()
optimizer.update(compute_loss, x_list)
```

Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This technique is called **truncated backprop**. It is heuristic, and it makes the gradients biased. However, this technique works well in practice if the time range is long enough.

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called **backward unchaining**. It is implemented in the `Variable.unchain_backward()` method. Backward unchaining starts from the Variable object, and it chops the computation history backwards from the variable. The chopped variables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsection. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We can write truncated backprop using the model defined above:

```python
loss = 0
count = 0
seqlen = len(x_list[1:])
rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):
    loss += model(cur_word, next_word)
    count += 1
    if count % 30 == 0 or count == seqlen:
        model.cleargrads()
        loss.backward()
        loss.unchain_backward()
        optimizer.update()
```

State is updated at `model()`, and the losses are accumulated to `loss` variable. At each 30 steps, backprop takes place at the accumulated loss. Then, the `unchain_backward()` method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize this method to different situations. For example, we can easily extend the above code to use different schedules between backprop timing and truncation length.

Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation history. This is enabled by just calling `no_backprop_mode()` context:

```python
with chainer.no_backprop_mode():
    x_list = [Variable(...) for _ in range(100)]  # list of 100 words
    loss = compute_loss(x_list)
```

Note that we cannot call `loss.backward()` to compute the gradient here, since the variable created in the no-backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.

We can combine a fixed feature extractor network and a trainable predictor network using `no_backprop_mode()`. For example, suppose we want to train a feed-forward network `predictor_func`, which is located on top of another fixed pre-trained network `fixed_func`. We want to train `predictor_func` without storing the computation history for `fixed_func`. This is simply done by following code snippets (suppose `x_data` and `y_data` indicate input data and label, respectively):

```python
with chainer.no_backprop_mode():
    x = Variable(x_data)
    feat = fixed_func(x)
    y = predictor_func(feat)
    y.backward()
```

At first, the input variable `x` is in no-backprop mode, so `fixed_func` does not memorize the computation history. Then `predictor_func` is executed in backprop mode, i.e., with memorizing the history of computation. Since the history of computation is only memorized between variables `feat` and `y`, the backward computation stops at the `feat` variable.

Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word sequence, in which each sentence is separated by a special word `<eos>`, which stands for “End of Sequence”. This dataset is easily obtained by `chainer.datasets.get_ptb_words()`. This function returns train, validation, and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different locations to form mini-batches. It means we maintain \(B \) indices pointing to different locations in the sequence, read from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the end of the whole sequence, we turn the index back to 0.
In order to implement this training procedure, we have to customize the following components of Trainer:

- **Iterator.** Built-in iterators do not support reading from different locations and aggregating them into a mini-batch.
- **Update function.** The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface is not fixed. On the other hand, the iterator must support the `Iterator` interface. The important methods and attributes to implement are `batch_size`, `epoch`, `epoch_detail`, `is_new_epoch`, `iteration`, `__next__`, and `serialize`. Following is a code from the official example in the `examples/ptb` directory.

```python
from __future__ import division

class ParallelSequentialIterator(chainer.dataset.Iterator):
    def __init__(self, dataset, batch_size, repeat=True):
        self.dataset = dataset
        self.batch_size = batch_size
        self.epoch = 0
        self.is_new_epoch = False
        self.repeat = repeat
        self.offsets = [i * len(dataset) // batch_size
                        for i in range(batch_size)]
        self.iteration = 0

    def __next__(self):
        length = len(self.dataset)
        if not self.repeat and self.iteration * self.batch_size >= length:
            raise StopIteration
        cur_words = self.get_words()
        self.iteration += 1
        next_words = self.get_words()
        epoch = self.iteration * self.batch_size // length
        self.is_new_epoch = self.epoch < epoch
        if self.is_new_epoch:
            self.epoch = epoch

        return list(zip(cur_words, next_words))

    @property
    def epoch_detail(self):
        return self.iteration * self.batch_size / len(self.dataset)

    def get_words(self):
        return [self.dataset[(offset + self.iteration) % len(self.dataset)]
                for offset in self.offsets]

    def serialize(self, serializer):
        self.iteration = serializer('iteration', self.iteration)
        self.epoch = serializer('epoch', self.epoch)

train_iter = ParallelSequentialIterator(train, 20)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)
```

Although the code is slightly long, the idea is simple. First, this iterator creates `offsets` pointing to positions equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset. The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of integer arrays by the `concat_examples` function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.
class BPTTUpdater(training.StandardUpdater):

 def __init__(self, train_iter, optimizer, bprop_len):
 super(BPTTUpdater, self).__init__(train_iter, optimizer)
 self.bprop_len = bprop_len

 # The core part of the update routine can be customized by overriding.
 def update_core(self):
 loss = 0
 # When we pass one iterator and optimizer to StandardUpdater.__init__,
 # they are automatically named 'main'.
 train_iter = self.get_iterator('main')
 optimizer = self.get_optimizer('main')

 # Progress the dataset iterator for bprop_len words at each iteration.
 for i in range(self.bprop_len):
 # Get the next batch (a list of tuples of two word IDs)
 batch = train_iter.__next__()

 # Concatenate the word IDs to matrices and send them to the device
 # self.converter does this job
 # (it is chainer.dataset.concat_examples by default)
 x, t = self.converter(batch)

 # Compute the loss at this time step and accumulate it
 loss += optimizer.target(chainer.Variable(x), chainer.Variable(t))

 optimizer.target.cleargrads() # Clear the parameter gradients
 loss.backward() # Backprop
 loss.unchain_backward() # Truncate the graph
 optimizer.update() # Update the parameters

 updater = BPTTUpdater(train_iter, optimizer, bprop_len) # instantiation

In this case, we update the parameters on every bprop_len consecutive words. The call of unchain_backward cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to manage the history of computation (a.k.a. computational graph). The example in the examples/ptb directory implements truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will review how to use GPU(s) in Chainer.

1.3 How to Train a Network

1.3.1 How to write a training loop in Chainer

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are 10 classes for the labels.

Chainer provides a feature called Trainer that can simplify the training procedure of your model. However, it is also good to know how the training works in Chainer before starting to use the useful Trainer class that hides the
actual processes. Writing your own training loop can be useful for learning how `Trainer` works or for implementing features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. **Prepare a dataset**
2. **Create a dataset iterator**
3. **Define a network**
4. **Select an optimization algorithm**
5. **Write a training loop**
 (a) Retrieve a set of examples (mini-batch) from the training dataset.
 (b) Feed the mini-batch to your network.
 (c) Run a forward pass of the network and compute the loss.
 (d) Just call the `backward()` method from the loss `Variable` to compute the gradients for all trainable parameters.
 (e) Run the optimizer to update those parameters.
6. **Save the trained model**
7. **Perform classification by the saved model** and check the network performance on validation/test sets.

1. Prepare a dataset

Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to make sure the images are correctly obtained.

```python
from __future__ import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

# Download the MNIST data if you haven't downloaded it yet
train, test = mnist.get_mnist(withlabel=True, ndim=1)

# Display an example from the MNIST dataset.
# `x` contains the input image array and `t` contains that target class label as an integer.
x, t = train[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('5.png')
print('label:', t)
```

```
label: 5
```

The saved image `5.png` will look like:
2. Create a dataset iterator

Although this is an optional step, we'd like to introduce the `Iterator` class that retrieves a set of data and labels from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use `SerialIterator`, which is also a subclass of `Iterator` in the example code below. The `SerialIterator` can provide mini-batches with or without shuffling the order of data in the given dataset.

All `Iterator`s produce a new mini-batch by calling its `next()` method. All `Iterator`s also have properties to know how many times we have taken all the data from the given dataset (epoch) and whether the next mini-batch will be the start of a new epoch (is_new_epoch), and so on.

The code below shows how to create a `SerialIterator` object from a dataset object.

```python
from chainer import iterators

# Choose the minibatch size.
batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,
                                 repeat=False, shuffle=False)
```

Note: `iterators` can take a built-in Python list as a given dataset. It means that the example code below is able to work,

```python
train = [(x1, t1), (x2, t2), ...]  # A list of tuples
train_iter = iterators.SerialIterator(train, batchsize)
```

where `x1, x2, ...` denote the input data and `t1, t2, ...` denote the corresponding labels.

1.3. How to Train a Network
Details of SerialIterator

- **SerialIterator** is a built-in subclass of **Iterator** that can retrieve a mini-batch from a given dataset in either sequential or shuffled order.
- The **Iterator**’s constructor takes two arguments: a dataset object and a mini-batch size.
- If you want to use the same dataset repeatedly during the training process, set the `repeat` argument to `True` (default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.
- If you want to shuffle the training dataset every epoch, set the `shuffle` argument to `True`. Otherwise, the order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set `batchsize = 128` in both `train_iter` and `test_iter`. So, these iterators will provide 128 images and corresponding labels at a time.

3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of **Chain**. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be instantiated and assigned to a property in the scope specified by `init_scope()`:

   ```python
   class MyNetwork(Chain):
       def __init__(self, n_mid_units=100, n_out=10):
           super(MyNetwork, self).__init__()
           with self.init_scope():
               self.l1 = L.Linear(None, n_mid_units)
               self.l2 = L.Linear(n_mid_units, n_mid_units)
               self.l3 = L.Linear(n_mid_units, n_out)

       def __call__(self, x):
           h = F.relu(self.l1(x))
           h = F.relu(self.l2(h))
           return self.l3(h)
   
   model = MyNetwork()
   ```

 Link*, **Chain**, **ChainList**, and those subclass objects which contain trainable parameters should be registered to the model by assigning it as a property inside the `init_scope()`. For example, a **FunctionNode** does not contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want to use `relu()` in your network, using it as a function in `__call__()` works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words, we can conceptually think of the computation graph for our network being constructed dynamically as this forward computation is executed.
computation code executes. This allows Chainer to describe networks in which different computations can be performed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key feature of Chainer that we call Define-by-Run.

4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during training. They are located in optimizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by MomentumSGD. To use the optimizer, we give the network object (typically it's a Chain or ChainList) to the setup() method of the optimizer object to register it. In this way, the Optimizer can automatically find the model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example, you could try to change MomentumSGD to Adam, RMSprop, etc.

```python
from chainer import optimizers

# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)

# Give the optimizer a reference to the model so that it
# can locate the model's parameters.
optimizer.setup(model)
```

Note: In the above example, we set \(lr\) to 0.01 in the constructor. This value is known as the “learning rate”, one of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various optimizers may each have different hyperparameters and so be sure to check the documentation for the details.

5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use softmax_cross_entropy() as the loss function for the optimizer to minimize. For other types of problems, such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed information on the various loss functions for more details.

Our training loop will be structured as follows.

1. We will first get a mini-batch of examples from the training dataset.
2. We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute the forward-pass code that are written in the __call__() method.
3. This will return the network output that represents class label predictions. We supply it to the loss function along with the true (that is, target) values. The loss function will output the loss as a Variable object.
4. We then clear any previous gradients in the network and perform the backward pass by calling the backward() method on the loss variable which computes the parameter gradients. We need to clear the gradients first because the backward() method accumulates gradients instead of overwriting the previous values.
5. Since the optimizer already has a reference to the network, it has access to the parameters and the computed gradients so that we can now call the update() method of the optimizer which will update the model parameters.
In addition to the above steps, you might want to check the performance of the network with a validation dataset. This allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to the training data. The code below checks the performance on the test set at the end of each epoch. The code has the same structure as the training code except that no backpropagation is performed and we also compute the accuracy on the test data using the `accuracy()` function.

The training loop code is as follows:

```python
import numpy as np
from chainer.dataset import concat_examples
from chainer.cuda import to_cpu

max_epoch = 10

while train_iter.epoch < max_epoch:

    # ---------- One iteration of the training loop ----------
    train_batch = train_iter.next()
    image_train, target_train = concat_examples(train_batch, gpu_id)

    # Calculate the prediction of the network
    prediction_train = model(image_train)

    # Calculate the loss with softmax_cross_entropy
    loss = F.softmax_cross_entropy(prediction_train, target_train)

    # Calculate the gradients in the network
    model.cleargrads()
    loss.backward()

    # Update all the trainable parameters
    optimizer.update()

    # --------------------- until here ---------------------

    # Check the validation accuracy of prediction after every epoch
    if train_iter.is_new_epoch:  # If this iteration is the final iteration of the
        # current epoch

        # Display the training loss
        print('epoch:{:02d} train_loss:{:.04f} '.format(
            train_iter.epoch, float(to_cpu(loss.data))), end=''
        )

        test_losses = []
        test_accuracies = []
        while True:
            test_batch = test_iter.next()
            image_test, target_test = concat_examples(test_batch, gpu_id)

            # Forward the test data
            prediction_test = model(image_test)

            # Calculate the loss
            loss_test = F.softmax_cross_entropy(prediction_test, target_test)
            test_losses.append(to_cpu(loss_test.data))

            # Calculate the accuracy
            accuracy = F.accuracy(prediction_test, target_test)
            accuracy.to_cpu()
            test_accuracies.append(accuracy.data)
```
if test_iter.is_new_epoch:
 test_iter.epoch = 0
 test_iter.current_position = 0
 test_iter.is_new_epoch = False
 test_iter._pushed_position = None
 break

print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
 np.mean(test_losses), np.mean(test_accuracies)))

Output

epoch:01 train_loss:0.8072 val_loss:0.7592 val_accuracy:0.8289
epoch:02 train_loss:0.5021 val_loss:0.4467 val_accuracy:0.8841
epoch:03 train_loss:0.3539 val_loss:0.3673 val_accuracy:0.9007
epoch:04 train_loss:0.2524 val_loss:0.3307 val_accuracy:0.9067
epoch:05 train_loss:0.4232 val_loss:0.3076 val_accuracy:0.9136
epoch:06 train_loss:0.3033 val_loss:0.2910 val_accuracy:0.9167
epoch:07 train_loss:0.2004 val_loss:0.2773 val_accuracy:0.9222
epoch:08 train_loss:0.2885 val_loss:0.2679 val_accuracy:0.9239
epoch:09 train_loss:0.2818 val_loss:0.2579 val_accuracy:0.9266
epoch:10 train_loss:0.2403 val_loss:0.2484 val_accuracy:0.9307

6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the HDF5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

serializers.save_npz('my_mnist.model', model)

7. Perform classification by the saved model

Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform the following two steps:

1. Instantiate the same network as what you trained.
2. Overwrite all parameters in the model instance with the saved weights using the load_npz() function.

Once the model is restored, it can be used to predict image labels on new input data.

from chainer import serializers

Create an instance of the network you trained
model = MyNetwork()

Load the saved parameters into the instance
serializers.load_npz('my_mnist.model', model)

Get a test image and label
x, t = test[0]
The saved test image looks like:

![Image of a handwritten digit 7]

The prediction result looks correct. Yay!
1.3.2 Let’s try using the Trainer feature

By using Trainer, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides many useful extensions that can be used with Trainer to visualize your results, evaluate your model, store and manage log files more easily.

This example will show how to use the Trainer to train a fully-connected feed-forward neural network on the MNIST dataset.

Note: If you would like to know how to write a training loop without using the Trainer, please check How to write a training loop in Chainer instead of this tutorial.

1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

```python
from chainer.datasets import mnist
train, test = mnist.get_mnist()
```

Note: You can use a Python list as a dataset. That’s because Iterator can take any object as a dataset whose elements can be accessed via [] accessor and whose length can be obtained with len() function. For example,

```python
train = [(x1, t1), (x2, t2), ...]
```

a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in datasets. It’s recommended to utilize them in the actual applications.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those data into a list like above. In that case, you can use ImageDataset, which just keeps the paths to image files. The actual image data will be loaded from the disk when the corresponding element is requested via [] accessor. Until then, no images are loaded to the memory to reduce memory use.

2. Prepare the dataset iterations

`Iterator` creates a mini-batch from the given dataset.

```python
batchsize = 128
train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize, False, False)
```

3. Prepare the model

Here, we are going to use the same model as the one defined in How to write a training loop in Chainer.

```python
class MLP(Chain):
    def __init__(self, n_mid_units=100, n_out=10):
```

1.3. How to Train a Network
super(MLP, self).__init__()

with self.init_scope():
 self.l1 = L.Linear(None, n_mid_units)
 self.l2 = L.Linear(None, n_mid_units)
 self.l3 = L.Linear(None, n_out)

def __call__(self, x):
 h1 = F.relu(self.l1(x))
 h2 = F.relu(self.l2(h1))
 return self.l3(h2)

gpu_id = 0 # Set to -1 if you use CPU

model = MLP()
if gpu_id >= 0:
 model.to_gpu(gpu_id)

4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown below.

Basically, all you need to pass to Trainer is an Updater. However, Updater contains an Iterator and
Chainer Documentation, Release 3.3.0

Optimizer. Since Iterator can access the dataset and Optimizer has references to the model, Updater can access to the model to update its parameters.

So, Updater can perform the training procedure as shown below:

1. Retrieve the data from dataset and construct a mini-batch (Iterator)
2. Pass the mini-batch to the model and calculate the loss
3. Update the parameters of the model (Optimizer)

Now let’s create the Updater object!

```
max_epoch = 10

# Wrap your model by Classifier and include the process of loss calculation within your model.
# Since we do not specify a loss function here, the default 'softmax_cross_entropy' is used.
model = L.Classifier(model)

# selection of your optimizing method
optimizer = optimizers.MomentumSGD()

# Give the optimizer a reference to the model
optimizer.setup(model)

# Get an updater that uses the Iterator and Optimizer
updater = training.StandardUpdater(train_iter, optimizer, device=gpu_id)
```

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier, which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you give the input data and the corresponding class labels to the model by the () operator,

1. __call__() of the model is invoked. The data is then given to predictor to obtain the output y.
2. Next, together with the given labels, the output y is passed to the loss function which is determined by lossfun argument in the constructor of Classifier.
3. The loss is returned as a Variable.

In Classifier, the lossfun is set to softmax_cross_entropy() as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like (length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will never be stopped.

```
# Setup a Trainer
trainer = training.Trainer(updater, (max_epoch, 'epoch'), out='mnist_result')
```
The `out` argument specifies an output directory used to save the log files, the image files of plots to show the time progress of loss, accuracy, etc. when you use `PlotReport` extension. Next, we will explain how to display or save those information by using trainer `Extension`.

6. Add Extensions to the Trainer object

The `Trainer` extensions provide the following capabilities:

- Save log files automatically (`LogReport`)
- Display the training information to the terminal periodically (`PrintReport`)
- Visualize the loss progress by plotting a graph periodically and save it as an image file (`PlotReport`)
- Automatically serialize the state periodically (`snapshot() / snapshot_object()`)
- Display a progress bar to the terminal to show the progress of training (`ProgressBar`)
- Save the model architecture as a Graphviz's dot file (`dump_graph()`)

To use these wide variety of tools for your training task, pass `Extension` objects to the `extend()` method of your `Trainer` object.

```python
trainer.extend(extensions.LogReport())
trainer.extend(extensions.snapshot(filename='snapshot_epoch-{.updater.epoch}'))
trainer.extend(extensions.snapshot_object(model.predictor, filename='model_epoch-{.updater.epoch}'))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], x_key='epoch', file_name='loss.png'))
trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], x_key='epoch', file_name='accuracy.png'))
trainer.extend(extensions.dump_graph('main/loss'))
```

LogReport

Collect loss and accuracy automatically every epoch or iteration and store the information under the log file in the directory specified by the `out` argument when you create a `Trainer` object.

snapshot()

The `snapshot()` method saves the `Trainer` object at the designated timing (default: every epoch) in the directory specified by `out`. The `Trainer` object, as mentioned before, has an `Updater` which contains an `Optimizer` and a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make inferences using the previously trained model later.

snapshot_object()

However, when you keep the whole `Trainer` object, in some cases, it is very tedious to retrieve only the inside of the model. By using `snapshot_object()`, you can save the particular object (in this case, the model wrapped by `Classifier`) as a separate snapshot. `Classifier` is a `Chain` object which keeps the model that is also a `Chain` object as its `predictor` property, and all the parameters are under the `predictor`, so taking the snapshot of `predictor` is enough to keep all the trained parameters.
dump_graph()

This method saves the structure of the computational graph of the model. The graph is saved in the Graphviz <http://www.graphviz.org>_’s dot format. The output location (directory) to save the graph is set by the :attr:`~chainer.training.Trainer.out` argument of Trainer.

Evaluator

The Iterator that uses the evaluation dataset and the model object are required to use Evaluator. It evaluates the model using the given dataset (typically it’s a validation dataset) at the specified timing interval.

PrintReport

It outputs the specified values to the standard output.

PlotReport

PlotReport plots the values specified by its arguments saves it as a image file which has the same name as the file_name argument.

Each Extension class has different options and some extensions are not mentioned here. And one of other important feature is, for instance, by using the trigger option, you can set individual timings to fire the Extension. To know more details of all extensions, please take a look at the official document: Trainer extensions <reference/extensions.html>_.

7. Start Training

Just call run() method from Trainer object to start training.

```
trainer.run()
```

<table>
<thead>
<tr>
<th>epoch</th>
<th>main/loss</th>
<th>main/accuracy</th>
<th>validation/main/loss</th>
<th>validation/main/accuracy</th>
<th>elapsed_time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.53241</td>
<td>0.638409</td>
<td>0.74935</td>
<td>0.835839</td>
<td>4.93409</td>
</tr>
<tr>
<td>2</td>
<td>0.578334</td>
<td>0.858059</td>
<td>0.444722</td>
<td>0.882812</td>
<td>7.72883</td>
</tr>
<tr>
<td>3</td>
<td>0.418569</td>
<td>0.886844</td>
<td>0.364943</td>
<td>0.899229</td>
<td>10.4229</td>
</tr>
<tr>
<td>4</td>
<td>0.362342</td>
<td>0.899089</td>
<td>0.327569</td>
<td>0.905558</td>
<td>13.148</td>
</tr>
<tr>
<td>5</td>
<td>0.331067</td>
<td>0.906517</td>
<td>0.304399</td>
<td>0.911788</td>
<td>15.846</td>
</tr>
<tr>
<td>6</td>
<td>0.309019</td>
<td>0.911964</td>
<td>0.288295</td>
<td>0.917722</td>
<td>18.5395</td>
</tr>
<tr>
<td>7</td>
<td>0.292312</td>
<td>0.916128</td>
<td>0.272073</td>
<td>0.921776</td>
<td>21.2173</td>
</tr>
<tr>
<td>8</td>
<td>0.278291</td>
<td>0.92059</td>
<td>0.261351</td>
<td>0.923457</td>
<td>23.9211</td>
</tr>
</tbody>
</table>
Let’s see the plot of loss progress saved in the `mnist_result` directory.

![Loss Progress](image)

How about the accuracy?

![Accuracy Progress](image)

Furthermore, let’s visualize the computational graph saved with `dump_graph()` using Graphviz.

```bash
% dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png
```
1.3. How to Train a Network
From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and parameters are passed to the \textit{Functions}.

\section*{8. Evaluate a pre-trained model}

Evaluation using the snapshot of a model is as easy as what explained in the \textit{How to write a training loop in Chainer}.

\begin{verbatim}
import matplotlib.pyplot as plt

model = MLP()
serializers.load_npz('mnist_result/model_epoch-10', model)

Show the output
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.show()
print('label:', t)

y = model(x[None, ...])
print('predicted_label:', y.data.argmax(axis=1)[0])
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{mnist}
\caption{The prediction looks correct. Success!}
\end{figure}

\subsection*{1.4 Using GPU(s) in Chainer}

In this section, you will learn about the following things:

- Relationship between Chainer and CuPy
• Basics of CuPy
• Single-GPU usage of Chainer
• Multi-GPU usage of model-parallel computing
• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:
• Use Chainer on a CUDA-enabled GPU
• Write model-parallel computing in Chainer
• Write data-parallel computing in Chainer

1.4.1 Relationship between Chainer and CuPy

Note: From v2.0.0, CuPy is turned into a separate package and repository. Even if you have CUDA installed in your environment, you have to install CuPy separately to use GPUs. See Enable CUDA/cuDNN support for the way to set up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy.ndarray class is the GPU array implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which enables us to write fast implementations dedicated to GPU.

Note: The chainer.cuda module imports many important symbols from CuPy. For example, the cupy namespace is referred as cuda.cupy in the Chainer code. Note that the chainer.cuda module can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since memory allocation and release in CUDA (i.e. cudaMalloc and cudaFree functions) synchronize CPU and GPU computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation, Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

1.4.2 Basics of cupy.ndarray

See the document of CuPy for the basic usage of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy.ndarray class is in its core, which is a compatible GPU alternative of numpy.ndarray. CuPy implements many functions on cupy.ndarray objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy.ndarray from numpy.ndarray is that the content is allocated on the device memory. The allocation takes place on the current device by default. The current device can be changed by cupy.cuda.Device object as follows:

with cupy.cuda.Device(1):
 x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])
Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the `chainer.cuda.to_gpu()` function copies a numpy.ndarray object to a specified device:

```python
x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)
```

It is equivalent to the following code using CuPy:

```python
x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):
    x_gpu = cupy.array(x_cpu)
```

Moving a device array to the host can be done by `chainer.cuda.to_cpu()` as follows:

```python
x_cpu = cuda.to_cpu(x_gpu)
```

It is equivalent to the following code using CuPy:

```python
with x_gpu.device:
    x_cpu = x_gpu.get()
```

Note: The `with` statements in these codes are required to select the appropriate CUDA device. If user uses only one device, these device switching is not needed. `chainer.cuda.to_cpu()` and `chainer.cuda.to_gpu()` functions automatically switch the current device correctly.

Chainer also provides a convenient function `chainer.cuda.get_device_from_id()` and `chainer.cuda.get_device_from_array()` to select a device. The former function accepts an integer or `None`. When `None` is given, it returns a dummy device object. Otherwise, it returns a corresponding device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device object also supports `with` statements like the above example but does nothing. Here are some other examples:

```python
cuda.get_device_from_id(1).use()
x_gpu1 = cupy.empty((4, 3), dtype='f')  # 'f' indicates float32
with cuda.get_device_from_id(1):
    x_gpu1 = cupy.empty((4, 3), dtype='f')
with cuda.get_device_from_array(x_gpu1):
    y_gpu1 = x_gpu1 + 1
```

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device switching:

```python
def add1(x):
    with cuda.get_device_from_array(x):
        return x + 1
```

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the `chainer.cuda.get_array_module()` function. This function returns the `numpy` or `cupy` module based on arguments. A CPU/GPU generic function is defined using it like follows:
1.4.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand. In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_gpu() method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu() method also accepts a device ID like model.to_gpu(0). In this case, the link object is transferred to the appropriate GPU device. The current device is used by default.

If we use chainer.training.Trainer, what we have to do is just let the updater know the device ID to send each mini-batch.

```python
updater = training.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')
trainer.extend(extensions.Evaluator(test_iter, model, device=0))
```

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

```python
model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):
    print('epoch %d' % epoch)
    indexes = np.random.permutation(datasize)
    for i in range(0, datasize, batchsize):
        x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]]))
        t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))
        optimizer.update(model, x, t)
```

1.4.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”. Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means parallelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

```
| (GPU0) input => 11 => 12 => 13 => 14 => 15 => 16 => output
| |
| (GPU1) => 11 => 12 => 13 => 14 => 15 => 16 => |
```

We can use the above MLP chain as following diagram:
Let's write a link for the whole network.

class ParallelMLP(Chain):
 def __init__(self):
 super(ParallelMLP, self).__init__(
 # the input size, 784, is inferred
 mlp1_gpu0=MLP(1000, 2000).to_gpu(0),
 mlp1_gpu1=MLP(1000, 2000).to_gpu(1),
 # the input size, 2000, is inferred
 mlp2_gpu0=MLP(1000, 10).to_gpu(0),
 mlp2_gpu1=MLP(1000, 10).to_gpu(1),
)

 def __call__(self, x):
 # assume x is on GPU 0
 z0 = self.mlp1_gpu0(x)
 z1 = self.mlp1_gpu1(F.copy(x, 1))

 # sync
 h0 = F.relu(z0 + F.copy(z1, 0))
 h1 = F.relu(z1 + F.copy(z0, 1))

 y0 = self.mlp2_gpu0(h0)
 y1 = self.mlp2_gpu1(h1)

 # sync
 y = y0 + F.copy(y1, 0)
 return y # output is on GPU0

Recall that the Link.to_gpu() method returns the link itself. The copy() function copies an input variable to specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely transfers an output gradient to the input device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the above code run asynchronously to the host CPU.

An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py.

1.4.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it means that a different device does computation on a different subset of the input data. In this subsection, we review the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define a model and optimizer instances:
model = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred
optimizer = optimizers.SGD()
optimizer.setup(model)

Recall that the MLP link implements the multi-layer perceptron, and the Classifier link wraps it to provide a classifier interface. We used StandardUpdater in the previous example. In order to enable data-parallel computation with multiple GPUs, we only have to replace it with ParallelUpdater.

```
updater = training.ParallelUpdater(train_iter, optimizer,
   devices={'main': 0, 'second': 1})
```

The devices option specifies which devices to use in data-parallel learning. The device with name 'main' is used as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the updated parameters are sent to GPU 1 again.

See also the example code in examples/mnist/train_mnist_data_parallel.py.

1.4.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer. Most users can skip this section. If you are interested in how to write a data-parallel computation by yourself, this section should be informative. It is also helpful to, e.g., customize the ParallelUpdater class.

We again start from the MNIST example. At this time, we use a suffix like _0 and _1 to distinguish objects on each device. First, we define a model.

```
model_0 = L.Classifier(MLP(1000, 10))  # the input size, 784, is inferred
```

We want to make two copies of this instance on different GPUs. The Link.to_gpu() method runs in place, so we cannot use it to make a copy. In order to make a copy, we can use Link.copy() method.

```
import copy
model_1 = copy.deepcopy(model_0)
model_0.to_gpu(0)
model_1.to_gpu(1)
```

The Link.copy() method copies the link into another instance. It just copies the link hierarchy, and does not copy the arrays it holds.

Then, set up an optimizer:

```
optimizer = optimizers.SGD()
optimizer.setup(model_0)
```

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be aggregated to those of model_0.

Then, we can write a data-parallel learning loop as follows:

```
batchsize = 100
datasize = len(x_train)
for epoch in range(20):
   print('epoch %d' % epoch)
   indexes = np.random.permutation(datasize)
   for i in range(0, datasize, batchsize):
```
x_batch = x_train[indexes[i : i + batchsize]]
y_batch = y_train[indexes[i : i + batchsize]]

x0 = Variable(cuda.to_gpu(x_batch[:batchsize//2], 0))
t0 = Variable(cuda.to_gpu(y_batch[:batchsize//2], 0))
x1 = Variable(cuda.to_gpu(x_batch[batchsize//2:], 1))
t1 = Variable(cuda.to_gpu(y_batch[batchsize//2:], 1))

loss_0 = model_0(x0, t0)
loss_1 = model_1(x1, t1)

model_0.cleargrads()
model_1.cleargrads()

loss_0.backward()
loss_1.backward()

model_0.addgrads(model_1)
optimizer.update()
model_1.copyparams(model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU 0, the other half to GPU 1. Then the gradients are accumulated by the `Link.addgrads()` method. This method adds the gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual way. Note that the update only modifies the parameters of `model_0`. So we must manually copy them to `model_1` using `Link.copyparams()` method.

Note: If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the number of models, when we aggregate gradients from all models by `chainer.Link.addgrads()`. So you need to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the `examples` directory support GPU computation, so please refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple (elementwise) CUDA kernel using Chainer’s CUDA utilities.

1.5 Customizing Chainer

1.5.1 Define your own function

In this section, you will learn about the following things:

- How to define a function on variables
- Useful tools to write a function using a GPU
- How to test the function definition

After reading this section, you will be able to:

- Write your own functions
- Define simple kernels in the function definition
Differentiable Functions

Chainer provides a collection of functions in the `functions` module. It covers typical use cases in deep learning, so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly and we cannot cover all possible functions to define unseen architectures. So it is important to learn how to define your own functions.

First, suppose we want to define an elementwise function \(f(x, y, z) = x \times y + z \). While it is possible to implement this equation using a combination of the \(\times \) and \(+ \) functions, defining it as a single function may reduce memory consumption, so it is not only a toy example. Here we call this function `MulAdd`.

Let’s start with defining `MulAdd` working on the CPU. Any function must inherit the `Function` class. The skeleton of a function looks like:

```python
class MulAdd(Function):
    def forward_cpu(self, inputs):
        # do forward computation on CPU
        return some_tuple

    def backward_cpu(self, inputs, grad_outputs):
        # do backward computation on CPU
        return some_tuple
```

We must implement `forward_cpu()` and `backward_cpu()` methods. The non-self arguments of these functions are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

`MulAdd` is simple and implemented as follows:

```python
class MulAdd(Function):
    def forward_cpu(self, inputs):
        x, y, z = inputs
        w = x * y + z
        return w,

    def backward_cpu(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs
        gx = y * gw
        gy = x * gw
        gz = gw
        return gx, gy, gz
```

As per the warning above, the `forward_cpu` method returns a tuple of single element. Note that all arrays appearing in CPU functions are `numpy.ndarray`. The forward function is straightforward: It unpacks the input tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just packs the gradient of each input in same order and returns them.

By just defining the core computation of forward and backward, `Function` class provides a chaining logic on it (i.e. storing the history of computation, etc.).

Note: Assuming we implement a (forward) function \(y = f(x) \) which takes as input the vector \(x \in \mathbb{R}^n \) and produces...
as output a vector $y \in \mathbb{R}^m$. Then the backward method has to compute

$$
\lambda_i = \sum_{j=1}^{m} \frac{\partial y_i}{\partial x_j} \gamma_j \text{ for } i = 1 \ldots n
$$

where γ is the grad_outputs. Note, that the resulting vector λ must have the same shape as the arguments of the forward method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named forward_gpu() and backward_gpu():

```python
class MulAdd(Function):
    def forward_cpu(self, inputs):
        ...
    
def backward_cpu(self, inputs, grad_outputs):
        ...
    
def forward_gpu(self, inputs):
        x, y, z = inputs
        w = x * y + z
        return w,
    
def backward_gpu(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs
        gx = y * gw
        gy = x * gw
        gz = gw
        return gx, gy, gz
```

In GPU methods, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class. These operators implement the basic elementwise arithmetics.

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can reduce them to forward() and backward() methods.

```python
class MulAdd(Function):
    def forward(self, inputs):
        x, y, z = inputs
        w = x * y + z
        return w,
    
def backward(self, inputs, grad_outputs):
        x, y, z = inputs
        gw, = grad_outputs
        gx = y * gw
        gy = x * gw
        gz = gw
        return gx, gy, gz
```

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified methods in most cases.

The MulAdd function is used as follows:
x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
 return MulAdd()(x, y, z)
w = muladd(x, y, z)

Unified forward/backward methods with NumPy/CuPy functions

CuPy also implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function \(f(x, y) = \exp(x) + \exp(y) \). We name
it \(\text{ExpAdd} \) here. It can be written straight-forward as follows

class ExpAdd(Function):
 def forward_cpu(self, inputs):
 x, y = inputs
 z = np.exp(x) + np.exp(y)
 return z,

 def backward_cpu(self, inputs, grad_outputs):
 x, y = inputs
 gz, = grad_outputs
 gx = gz * np.exp(x)
 gy = gz * np.exp(y)
 return gx, gy

def expadd(x, y):
 return ExpAdd()(x, y)

Note: Here we used \texttt{cuda.cupy} instead of directly accessing \texttt{cupy}. This is because the \texttt{cupy} module cannot be
imported if the CUDA is not installed. In order to keep the implementation valid in non-CUDA environment, we have
to defer the access to the \texttt{cupy} module. Note that the \texttt{chainer.cuda} module can be imported even if the CUDA is

1.5. Customizing Chainer

47
not installed. Of course, the module in such environment is almost useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in GPU methods. We can unify these functions using the \texttt{cuda.get_array_module()} function. This function accepts arbitrary number of arrays, and returns an appropriate module for them. See the following code

```python
class ExpAdd(Function):
    def forward(self, inputs):
        xp = cuda.get_array_module(*inputs)
        x, y = inputs
        z = xp.exp(x) + xp.exp(y)
        return z,

    def backward(self, inputs, grad_outputs):
        xp = cuda.get_array_module(*inputs)
        x, y = inputs
        gz, = grad_outputs
        gx = gz * xp.exp(x)
        gy = gz * xp.exp(y)
        return gx, gy

def expadd(x, y):
    return ExpAdd()(x, y)
```

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found, get_array_module function always returns \texttt{numpy}. We often use the name \texttt{xp} for the variadic module name, which is analogous to the abbreviation \texttt{np} for NumPy and \texttt{cp} for CuPy.

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it invokes two kernels during each of forward and backward computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define elementwise kernels, the \texttt{cupy.elementwise.ElementwiseKernel} class, and Chainer wraps it by \texttt{cuda.elementwise()} function. Our MulAdd implementation can be improved as follows:

```python
class MulAdd(Function):
    def forward_cpu(self, inputs):
        ...

    def backward_cpu(self, inputs, grad_outputs):
        ...

    def forward_gpu(self, inputs):
        cupy = cuda.cupy
        x, y, z = inputs
        w = cuda.elementwise(
            'float32 x, float32 y, float32 z',
            'float32 w',
            'w = x * y + z',
        )(x, y, z)

        gx = w * x
        gy = w * y
        gz = w
```

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found, get_array_module function always returns \texttt{numpy}. We often use the name \texttt{xp} for the variadic module name, which is analogous to the abbreviation \texttt{np} for NumPy and \texttt{cp} for CuPy.
def forward_cpu(self, inputs):
...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(
 'T x, T y, T z',
 'T w',
 'muladd_fwd')
x, y, z = inputs
return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs
gx, gy = cuda.elementwise(
 'float32 x, float32 y, float32 gw',
 'float32 gx, float32 gy',
 'gx = y * gw;
 gy = x * gw;
 muladd_bwd')(x, y, gw)
gz = gw
return gx, gy, gz

cuda.elementwise() function accepts the essential implementation of the kernel function, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable). In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and an argument name.
2. Output argument list in the same format as the input argument list.
3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.
4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by cuda.elementwise().

The first one is binary caching: cuda.elementwise() function caches the compiled binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order to execute it. cuda.elementwise() function memoizes the arguments and the current device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single character as type specifier.

class MulAdd(Function):
 def forward_cpu(self, inputs):

 def backward_cpu(self, inputs, grad_outputs):

 def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(
 'T x, T y, T z',
 'T w',
 'muladd_fwd')
x, y, z = inputs
return w,
'w = x * y + z',
'muladd_fwd')(x, y, z)
return w,

\[\text{def backward_gpu(self, inputs, grad_outputs):}\]
\[\begin{align*}
&x, y, z = \text{inputs} \\
gw, = \text{grad_outputs} \\
&gx, gy = \text{cuda.elementwise(} \\
&T x, T y, T gw', \\
&T gx, T gy', \\
&''gx = y * gw; \\
&''gy = x * gw; \\
&''gw = \text{muladd_bwd')(x, y, gw) \\
gz = gw \\
\end{align*}\]
return gx, gy, gz

The type placeholder \(T\) indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels for more details.

Write a function with training/test mode

We sometimes want to make a function behave differently in training and test modes. The training/test mode in Chainer is configured by \texttt{chainer.config}. This is a thread-local configuration object, and users can substitute True or False to its \texttt{train} attribute. You can refer to \texttt{Configuring Chainer} to see how to configure this flag as well as other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the value of the boolean flag \texttt{chainer.config.train} and branch appropriately.

For example, consider the following simple dropout function:

\[\text{def dropout(x):}\]
\[\begin{align*}
&\text{xp = cuda.get_array_module(x.data)} \\
&\text{mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)} \\
&\text{return x * mask} \\
\end{align*}\]

This function applies dropout to each element and doubles survived elements to preserve the scale. The above implementation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

\[\text{def dropout(x):}\]
\[\begin{align*}
&\text{if not chainer.config.train:} \\
&\text{return x} \\
&\text{xp = cuda.get_array_module(x.data)} \\
&\text{mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)} \\
&\text{return x * mask} \\
\end{align*}\]

The function now supports test mode. Note that you usually do not have to implement your own dropout function because \texttt{dropout()} is officially provided.
Links that wrap functions

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps
the function. We have already seen how to define a chain that wraps other links (by inheriting Chain class). Here we
study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and
the parameter array. It can be defined as follows:

```python
class EltwiseParamProduct(Link):
    def __init__(self, shape):
        super(EltwiseParamProduct, self).__init__()
        with self.init_scope():
            self.W = chainer.Parameter(initializers.Normal(scale=1.), shape)

    def __call__(self, x):
        return self.W * x
```

For another example, assume we want to define a simple linear layer. It is already defined as Linear, so this is an
educational example. The linear layer is divided into two parts: a function and its wrapper link. First, we have to
define a function on variables:

```python
class LinearFunction(Function):
    def forward(self, inputs):
        x, W, b = inputs
        return x.dot(W.T) + b,

    def backward(self, inputs, grad_outputs):
        x, W, b = inputs
        gy, = grad_outputs
        gx = gy.dot(W)
        gW = gy.T.dot(x)
        gb = gy.sum(axis=0)
        return gx, gW, gb

def linear(x, W, b):
    return LinearFunction()(x, W, b)
```

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is
inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient
module, let’s wrap it into a link:

```python
class Linear(Link):
    def __init__(self, in_size, out_size):
        super(Linear, self).__init__()
        with self.init_scope():
            self.W = chainer.Parameter(  
                initializers.Normal(1. / math.sqrt(in_size)),  
                (out_size, in_size))
            self.b = chainer.Parameter(0, (out_size,))

    def __call__(self, x):
        return linear(x, self.W, self.b)
```

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase the memory consumption during the whole forward-backward computation. If you want to train very large networks on a GPU with limited memory, it is not recommended to cache arrays between forward and backward. There is one exception for this: caching the output arrays does not change the memory consumption, because they are also held by the output Variable objects.

```
Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call backward more than once after one forward call.
```

Testing Function

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implementations. Chainer provides simple utilities to help writing unit tests. They are defined in the `gradient_check` module.

The most important test utility is the `numerical_grad()` function. This function computes the numerical gradient of given function using finite differences. It can be used as follows

```
x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))
```

Here is a typical usage of gradient checking utilities. This is a test example of `functions.relu()` function

```
import unittest
from chainer import testing

class TestReLU(unittest.TestCase):
    def test_backward_cpu(self):
        x = Variable(np.random.randn(3, 2).astype(np.float32))
y = F.relu(x)
y.grad = np.random.randn(3, 2).astype(np.float32)
y.backward()

    def f():
        return F.relu(x).data,
```
The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines compute numerical gradient using the same forward function without backward routine. And at last, we compare these two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function `chainer.gradient_check.check_backward()` that follows this procedure.

```python
import unittest
from chainer import gradient_check

class TestReLU(unittest.TestCase):
    def test_backward_cpu(self):
        def f(x):
            return F.relu(x)

        x = np.random.randn(3, 2).astype(np.float32)
        y_grad = np.random.randn(3, 2).astype(np.float32)
        gradient_check.check_backward(f, x, y_grad, atol=1e-4, rtol=1e-4)
```

You can find many examples of function tests under `tests/chainer_tests/function_tests` directory.

1.5.2 Create your own trainer extension

In this section, you will learn about the following things:

- What is trainer Extension?
- How to create your own trainer extension
 - by defining a simple function
 - by defining a function decorated with `@make_extension`
 - by defining a class inherited from `Extension` class

What is trainer Extension?

`Extension` is a callable object that takes a `Trainer` object as an argument. Adding an `Extension` to a `Trainer` using `extend()` method, the `Extension` will be called at the given timing you specified by using `trigger` object (See the details in `1. trigger`)

A `Trainer` object has all information used in a training loop, e.g., models, optimizers, updaters, iterators, and datasets, etc. So you can change the settings of optimizers

Write a simple function

You can make a new `Extension` by writing a simple function which takes `Trainer` object as its argument. For example, when you want to reduce the learning rate at specified timing during training, `lr_drop` extension can be
written as follows:

```python
def lr_drop(trainer):
    trainer.updater.get_optimizer('main').lr *= 0.1
```

Then you can add this function to a `Trainer` object via `extend()` method.

```python
trainer.extend(lr_drop, trigger=(10, 'epoch'))
```

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

Write a function decorated with `@make_extension`

`make_extension()` is a decorator that adds some attributes to a given function. For example, the simple extension we created above can be written in this form:

```python
@training.make_extension(trigger=(10, 'epoch'))
def lr_drop(trainer):
    trainer.updater.get_optimizer('main').lr *= 0.1
```

The difference between the above one and this is whether it has a default `trigger` or not. In this latter case, `lr_drop()` has its default `trigger` so that unless another `trigger` is specified via `extend()` method, the `trigger` specified in `make_extension()` is used as default. So the code below acts the same as the former example, i.e., it reduces the learning rate every 10 epochs.

```python
trainer.extend(lr_drop)
```

There are several attributes you can add using the `make_extension()` decorator.

1. **trigger**

`trigger` is an object that takes a `Trainer` object as an argument and returns a boolean value. If a tuple in a form `(period, unit)` is given as a trigger, it will be considered as an `IntervalTrigger` that invokes the extension at every `period unit`. For example, when the given tuple is `(10, 'epoch')`, the extension will be fired at every 10 epochs.

`trigger` can also be given to the `extend()` method that adds an extension to a `Trainer` object. The priority of triggers is as follows:

- When both `extend()` and a given `Extension` have triggers, the `trigger` given to `extend()` is used.
- When `None` is given to `extend()` as the `trigger` argument and a given `Extension` has `trigger`, the `trigger` given to the `Extension` is used.
- When both `trigger` attributes in `extend()` and `Extension` are `None`, the `Extension` will be fired every iteration.

See the details in the documentation of `get_trigger()`.

2. **default_name**

An `Extension` is kept in a dictionary which is a property in a `Trainer`. This argument gives the name of the `Extension`. Users will see this name in keys of the snapshot which is a dictionary generated by serialization.
3. priority

The priority that is used to determine the order of execution of extensions in a Trainer object. There are three standard values for the priorities:

- **PRIORITY_WRITER**: The priority for extensions that write some records to the observation dictionary. It includes cases that the extension directly adds values to the observation dictionary, or the extension uses the chainer.report() function to report values to the observation dictionary. Extensions which write something to reporter should go first because the other Extensions which read those values could be added.

- **PRIORITY_EDITOR**: The priority for extensions that edit the observation dictionary based on already reported values. Extensions which edit some values of reported ones should go after the extensions which write values to reporter but before extensions which read the final values.

- **PRIORITY_READER**: The priority for extensions that only read records from the observation dictionary. This is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the reported values should be fired after all the extensions which have other priorities, e.g., PRIORITY_WRITER and PRIORITY_EDITOR because it should read the final values.

See the details in the documentation of Trainer.

4. finalizer

You can specify a function which takes Trainer object to finalize the extension. It is called once at the end of the whole training loops, namely, the run() finished.

5. initializer

You can specify a function which takes Trainer object to initialize the extension. It is called once at the beginning of the training loop, namely, before starting the actual loop.

Write a class inherited from Extension class

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this equation:

$$\eta = \eta_{init} \left(1 - \frac{t}{t_{\text{max}}}\right)^{\text{power}}$$

The learning rate will be dropped like the curve below with power = 0.5:
class PolynomialShift(training.Extension):

 def __init__(self, attr, power, stop_trigger, batchsize=None, len_dataset=None):
 self._attr = attr
 self._power = power
 self._init = None
 self._t = 0
 self._last_value = 0

 if stop_trigger[1] == 'iteration':
 self._maxiter = stop_trigger[0]
 elif stop_trigger[1] == 'epoch':
 if batchsize is None or len_dataset is None:
 raise ValueError('When the unit of \'stop_trigger\' is \'epoch\', '
 \'batchsize\' and \'len_dataset\' should be '
 \'specified to calculate the maximum iteration.\')
 n_iter_per_epoch = len_dataset / float(batchsize)
 self._maxiter = float(stop_trigger[0] * n_iter_per_epoch)

 def initialize(self, trainer):
 optimizer = trainer.updater.get_optimizer('main')
 # ensure that _init is set
 if self._init is None:
 self._init = getattr(optimizer, self._attr)

 def __call__(self, trainer):

56 Chapter 1. Tutorial
self._t += 1

optimizer = trainer.updater.get_optimizer('main')
value = self._init * ((1 - (self._t / self._maxiter)) ** self._power)
setattr(optimizer, self._attr, value)
self._last_value = value

def serialize(self, serializer):
 self._t = serializer('_t', self._t)
 self._last_value = serializer('_last_value', self._last_value)
 if isinstance(self._last_value, np.ndarray):
 self._last_value = np.asscalar(self._last_value)

stop_trigger = (10000, 'iteration')
trainer.extend(PolynomialShift('lr', 0.5, stop_trigger)

This extension PolynomialShift takes five arguments.

- attr: The name of optimizer property you want to update by this extension.
- power: The power of the above equation to calculate the learning rate.
- stop_trigger: The trigger given to the Trainer object to specify when to stop the training loop.
- batchsize: The training mini-batchsize.
- len_dataset: The length of dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed in training by using stop_trigger, batchsize, and len_dataset, then store it as a property _maxiter. This property will be used in __call__() method to update the learning rate. initialize() method obtains the initial learning rate from the optimizer set to give Trainer object. serialize() method stores or recovers the properties, _t (number of iterations) and _last_value (the latest learning rate), which this extension has.

1.6 Type check

In this section, you will learn about the following things:

- Basic usage of type check
- Detail of type information
- Internal mechanism of type check
- More complicated cases
- Call functions
- Typical type check example

After reading this section, you will be able to:

- Write a code to check types of input arguments of your own functions

1.6.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is called just before the forward() method of the Function class. You can override this method to check the condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

```python
def check_type_forward(self, in_types):
    ...
```
in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the first argument, use in_types[0]. If the function gets multiple arguments, we recommend to use new variables for readability:

```python
x_type, y_type = in_types
```

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type equals to 2, write this code:

```python
utils.type_check.expect(x_type.ndim == 2)
```

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message like this:

```
Traceback (most recent call last):
... 
chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2
```

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

1.6.2 Detail of type information

You can access three information of x_type.

- .shape is a tuple of ints. Each value is size of each dimension.
- .ndim is int value representing the number of dimensions. Note that ndim == len(shape)
- .dtype is numpy.dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

```python
utils.type_check.expect(x_type.shape[0] > 0)
```

You can also check data types with .dtype:

```python
utils.type_check.expect(x_type.dtype == np.float64)
```

And an error is like this:

```
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].dtype == <class 'numpy.float64'>
Actual: float32 != <class 'numpy.float64'>

You can also check kind of dtype. This code checks if the type is floating point

```python
util.type_check.expect(x_type.dtype.kind == 'f')
```

You can compare between variables. For example, the following code checks if the first argument and the second argument have the same length:

```python
util.type_check.expect(x_type.shape[1] == y_type.shape[1])
```

### 1.6.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If x_type is an object containing ndim member variable, we cannot show such an error message because this equation is evaluated as a boolean value by Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself. Expr represents a syntax tree. x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim').x_type.ndim == 2 makes an object like (eq, (getattr, x_type, 'ndim'), 2).type_check.expect() gets a Expr object and evaluates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable error message.

If you want to evaluate a Expr object, call eval() method:

```python
actual_type = x_type.eval()
```

actual_type is an instance of TypeInfo, while x_type is an instance of Expr. In the same way, x_type.shape[0].eval() returns an int value.

### 1.6.4 More powerful methods

Expr class is more powerful. It supports all mathematical operators such as + and *. You can write a condition that the first dimension of x_type is the first dimension of y_type times four:

```python
util.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)
```

When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

```
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1].shape[0] * 4
Actual: 3 != 4
```

To compare a member variable of your function, wrap a value with Variable to show readable error message:

```python
x_type.shape[0] == util.type_check.Variable(self.in_size, "in_size")
```

This code can check the equivalent condition below:
x_type.shape[0] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter code shows unreadable error message:

```
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4 # what does '4' mean?
Actual: 3 != 4
```

Note that the second argument of `utils.type_check.Variable` is only for readability. The former shows this message:

```
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size # OK, 'in_size' is a value that is given to the constructor
Actual: 3 != 4 # You can also check actual value here
```

### 1.6.5 Call functions

How to check summation of all values of shape? `Expr` also supports function call:

```
sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)
```

Why do we need to wrap the function `numpy.sum` with `utils.type_check.Variable`? `x_type.shape` is not a tuple but an object of `Expr` as we have seen before. Therefore, `numpy.sum(x_type.shape)` fails. We need to evaluate this function lazily.

The above example produces an error message like this:

```
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10
```

### 1.6.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate `Expr` and get its result value with `eval()` method. Then check the condition and show warning message by hand:

```
x_shape = x_type.shape.eval() # get actual shape (int tuple)
if not more_complicated_condition(x_shape):
 expect_msg = 'Shape is expected to be ...'
 actual_msg = 'Shape is ...'
 raise utils.type_check.InvalidType(expect_msg, actual_msg)
```

Please write a readable error message. This code generates the following error message:

```
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: Shape is expected to be ...
Actual: Shape is ...
```
1.6.7 Typical type check example

We show a typical type check for a function.
First check the number of arguments:

```python
utils.type_check.expect(in_types.size() == 2)
```

`in_types.size()` returns a `Expr` object representing the number of arguments. You can check it in the same way.

And then, get each type:

```python
x_type, y_type = in_types
```

Don’t get each value before checking `in_types.size()`. When the number of argument is illegal, `type_check.expect` might output unuseful error messages. For example, this code doesn’t work when the size of `in_types` is 0:

```python
utils.type_check.expect(
 in_types.size() == 2,
 in_types[0].ndim == 3,
)
```

After that, check each type:

```python
utils.type_check.expect(
 x_type.dtype == np.float32,
 x_type.ndim == 3,
 x_type.shape[1] == 2,
)
```

The above example works correctly even when `x_type.ndim == 0` as all conditions are evaluated lazily.
2.1 Core functionalities

2.1.1 Variable and Parameter

<table>
<thead>
<tr>
<th><strong>chainer.Variable</strong></th>
<th>Array with a structure to keep track of computation.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>chainer.as_variable</strong></td>
<td>Converts an array or a variable into Variable.</td>
</tr>
<tr>
<td><strong>chainer.Parameter</strong></td>
<td>Parameter variable that can be registered to a link.</td>
</tr>
<tr>
<td><strong>chainer.variable.VariableNode</strong></td>
<td>Node in the backward computational graph representing a variable.</td>
</tr>
</tbody>
</table>

**chainer.Variable**

```python
class chainer.Variable(data=None, *, name=None, grad=None, requires_grad=True)
```

Array with a structure to keep track of computation.

Every variable holds a data array of type either `numpy.ndarray` or `cupy.ndarray`.

A variable object holds a data array and a `VariableNode` object of a computational graph. If the variable is constructed by the user, the node is `root` and does not hold any parent. If the variable is constructed by a `FunctionNode` object, the node holds a reference to its parent called `creator_node`. This reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling `no_backprop_mode()` (resp. `force_backprop_mode()`). In the former context, a variable never creates a computational graph, whereas in the latter context, it is forced to create.

**Warning:** `volatile` argument is not supported anymore since v2. Instead, use `chainer.no_backprop_mode()`.

**Parameters**
• **data** (*numpy.ndarray or cupy.ndarray*) – Initial data array.

• **name** (*str*) – Name of the variable.

• **grad** (*numpy.ndarray or cupy.ndarray*) – Initial gradient array.

• **requires_grad** (*bool*) – Boolean indicating whether grad will be set in backward calculation.

### Methods

**`__getitem__()`**

Extract elements from array with specified shape, axes and offsets.

**Parameters**

- **x** (*Variable*) – A variable to be sliced.

- **slices** (*int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them*) – It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

**Returns** A *Variable* object which contains sliced array of `x`.

**Note:** It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in `slices`. The supported types are *numpy.float32*, *numpy.int32*, *numpy.uint32*, *numpy.uint64* and *numpy.ulonglong*.

**Note:** It does not support `slices` that contains multiple boolean arrays.

**Note:** See NumPy document for details of indexing.

**`__len__()`**

Returns the first dimension of the data array.

**Returns** Number of the first dimension of the data array.

**Return type** int

**`addgrad()`**

Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even done across the host and different devices. If this variable has uninitialized data/grad arrays, this method initializes it with the shape of the given variable and then accumulates the gradient.

**Parameters** **var** (*Variable*) – Source variable.

**backward** (*retain_grad=False, enable_double_backprop=False*)

Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, *FunctionNode.backward()* is called on each *FunctionNode* object appearing in the backward graph starting from this variable. The backward graph is represented by backward references from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this method. If data contains only one element (i.e., it is scalar) and grad is None, then this method automatically complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

Note that this method does not support differentiable backprop. Use chainer.grad() to compute the gradient of gradients.

**Parameters**

- **retain_grad (bool)** – If True, the gradient arrays of all intermediate variables are kept. Otherwise, grad of the intermediate variables are set to None on appropriate timing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients of parameters, not of all variables, and therefore it is recommended to set this flag False.

- **enable_double_backprop (bool)** – (Added in v3.0) If True, computational trace of the whole backpropagation procedure is recorded to the computational graph so that one can further do backpropagation from the resulting gradients. Note that enabling it results in larger memory consumption needed to store the gradients w.r.t intermediate variables that are required for the second gradient computation.

cleargrad()

Clears the gradient array.

copydata (var)

Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays reside on different devices, including across the host and a GPU device. If this variable has an uninitialized data array, this method initializes it by the data array of the given variable. Similarly, if the given variable has an uninitialized data array, this method initializes it by the data array of this variable (self). If both are uninitialized, this method does nothing.

**Parameters** var (Variable) – Source variable.

display_print()

Display a summary of the stored data and location of the Variable.

reshape (*shape)

Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

retain_data()

Lets the corresponding variable node keep the underlying array.

set_creator (gen_func)

Notifies the variable that the given function is its creator.

**Parameters** gen_func (Function) – Function object that creates this variable as one of its outputs.

set_creator_node (fnode)

Notifies the variable that the given node is its creator.

**Parameters** fnode (FunctionNode) – Function node that has this variable as an output.
**summary()**

**to_cpu()**
Copies the data and gradient arrays to CPU.

**to_gpu**(device=None)
Copies the data and gradient arrays to specified GPU.

**Parameters**
- **device** – Target device specifier. If omitted, the current device is used.

**transpose(*axes)**
Permute the dimensions of an input variable without copy.

See also:
- `chainer.functions.transpose()` for full documentation.

**unchain()**
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike `unchain_backward()`, it does not backtrack the graph.

This method is equivalent to `self.creator_node = None`.

**unchain_backward()**
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from anywhere are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

**zerograd()**
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method because this operation breaks the backprop validity.

Deprecated since version v1.15: Use `cleargrad()` instead.

**__eq__(other)**

**__ne__(other)**

**__lt__(other)**

**__le__(other)**

**__gt__(other)**

**__ge__(other)**

**__nonzero__()**

**__bool__()**

**chainer.as_variable**

**chainer.as_variable**(obj)
Converts an array or a variable into `Variable`.

This is a convenient function to get a `Variable` object transparently from a raw array or a variable.
Note that this function should only be used for type consistency (i.e., to enforce the return value of an API having type `Variable`). The `requires_grad` flag is kept as is; if `obj` is a raw array, the newly created variable has `requires_grad = False`. In order to make a variable w.r.t. which you want to compute the gradient, you should use `Variable` directly.

**Parameters**

- `obj` (`numpy.ndarray` or `cupy.ndarray` or `Variable`) – An array or a variable that you want to convert to `Variable`.

**Returns**

A variable converted from `obj`. If `obj` is a raw array, this is a new `Variable` object that wraps the array. If `obj` is already a `Variable` object, this function returns `obj` as is.

**Return type** `Variable`

### chainer.Parameter

**class chainer.Parameter** (`initializer=None, shape=None, name=None`)

Parameter variable that can be registered to a link.

Parameter is a subclass of `Variable`. It almost behaves as same as a usual variable except that a parameter can be registered to a `Link` object just by assigning it to an attribute of the link within an `init_scope()` context.

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to an `GradientMethod`, an update rule is set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient array.

**Parameters**

- `initializer` (`Initializer` or `numpy.ndarray` or `cupy.ndarray`) – Initializer of the data array. If `shape` is given, this initializer is immediately used to initialize the data array. Otherwise, if it is an array, it is immediately used as the data array, and otherwise the data array is left uninitialized and will be initialized by this initializer in `initialize()`. It can also be a scalar, in which case the data array will be filled by this scalar. Note that float32 is used in this case.

- `shape` (`int` or `tuple of int` or `None`) – Shape of the parameter. If it is `None`, the initialization is deferred to the call of `initialize()`.

- `name` (`str`) – Name of the parameter.

**Variables**

- `initializer` – Initializer of the data array. It is used for initializing the data array of an uninitialized variable.

- `update_rule` – `UpdateRule` instance that updates this variable as a parameter. This argument is set to `update_rule`.

**Methods**

- `__getitem__` (`x, slices`) 
  Extract elements from array with specified shape, axes and offsets.

  **Parameters**

  - `x` (`Variable`) – A variable to be sliced.

2.1. Core functionalities
• `slices` ([int, slice, Ellipsis, None, integer array-like, boolean array-like or tuple of them]) – It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

**Returns** A `Variable` object which contains sliced array of `x`.

**Note:** It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in slices. The supported types are `numpy.float32`, `numpy.int32`, `numpy.uint32`, `numpy.uint64` and `numpy.ulonglong`.

**Note:** It does not support `slices` that contains multiple boolean arrays.

**Note:** See NumPy document for details of indexing.

__`len()`__

Returns the first dimension of the data array.

**Returns** Number of the first dimension of the data array.

**Return type** int

__`copy()`__

__`addgrad()`__ (`var`)

Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even done across the host and different devices. If this variable has uninitialized data/grad arrays, this method initializes it with the shape of the given variable and then accumulates the gradient.

**Parameters**

- `var` ([Variable]) – Source variable.

__`backward()`__ (`retain_grad=False`, `enable_double_backprop=False`)

Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, `FunctionNode.backward()` is called on each `FunctionNode` object appearing in the backward graph starting from this variable. The backward graph is represented by backward references from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop stops at all root nodes. Some function nodes set `None` as gradients of some inputs, where further backprop does not take place at such inputs.

This method uses `grad` as the initial error array. User can manually set a gradient array before calling this method. If `data` contains only one element (i.e., it is scalar) and `grad` is `None`, then this method automatically complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

Note that this method does not support differentiable backprop. Use `chainer.grad()` to compute the gradient of gradients.

**Parameters**

- `retain_grad` (bool) – If True, the gradient arrays of all intermediate variables are kept. Otherwise, `grad` of the intermediate variables are set to `None` on appropriate timing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients of parameters, not of all variables, and therefore it is recommended to set this flag `False`. 
• **enable_double_backprop** *(bool)* – *(Added in v3.0)* If True, computational trace of the whole backpropagation procedure is recorded to the computational graph so that one can further do backpropagation from the resulting gradients. Note that enabling it results in larger memory consumption needed to store the gradients w.r.t intermediate variables that are required for the second gradient computation.

`cleargrad()`

`copydata`(var)

Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays reside on different devices, including across the host and a GPU device. If this variable has an uninitialized data array, this method initializes it by the data array of the given variable. Similarly, if the given variable has an uninitialized data array, this method initializes it by the data array of this variable *(self)*. If both are uninitialized, this method does nothing.

**Parameters**

`var` *(Variable)* – Source variable.

`debug_print()`

Display a summary of the stored data and location of the Variable

`initialize`(shape)

Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and initializes the data array. The shape of the variable can be left unknown until this method is called.

**Parameters**

`shape` *(tuple of int)* – Shape of the data array.

`reshape` *(shape)*

Returns a variable of a different shape and the same content.

See also:

`chainer.functions.reshape()` for full documentation,

`retain_data()`

Lets the corresponding variable node keep the underlying array.

`set_creator`(gen_func)

Notifies the variable that the given function is its creator.

**Parameters**

`gen_func` *(Function)* – Function object that creates this variable as one of its outputs.

`set_creator_node`(fnode)

Notifies the variable that the given node is its creator.

**Parameters**

`fnode` *(FunctionNode)* – Function node that has this variable as an output.

`summary()`

`to_cpu()`

`to_gpu`(device=None)

`transpose` *(axes)*

Permutes the dimensions of an input variable without copy.

See also:

`chainer.functions.transpose()` for full documentation.
unchain()

Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike `unchain_backward()`, it does not backtrack the graph.

This method is equivalent to `self.creator_node = None`.

unchain_backward()

Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from anywhere are deallocated by reference count GC. Also this variable itself deletes the reference to its creator function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

update()

Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

zerograd()

__eq__(other)

__ne__(other)

__lt__(other)

__le__(other)

__gt__(other)

__ge__(other)

__nonzero__()

__bool__()

chainer.variable.VariableNode

class chainer.variable.VariableNode(variablename, name, **kwargs)

Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation (a.k.a. backprop) to determine which gradient to be passed to each function.

A variable node is held by the corresponding Variable object, which is managed by users. FunctionNode objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a weak reference to the variable object, and thus the data array is accessible via the weak reference.

2. If retain_data() is called, the node holds a reference to the data array. It is mainly called by a function that needs the input or output data array in its backprop procedure. See FunctionNode.retain_inputs() and FunctionNode.retain_outputs() for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed by Chainer, and any interface that is beneficial for users is also provided by Variable.

Parameters
• **variable** *(Variable)* – The corresponding variable object.

• **name** *(str)* – Name of the variable node.

**Variables**

• **dtype** – Data type of the data array.

• **shape** – Shape of the data array.

• **name** *(str)* – Name of the variable node.

**Methods**

`get_variable()` Returns the corresponding `Variable` object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by this property. Otherwise, this property creates a new `Variable` object from this node object and returns it.

**Returns** The variable object that refers this node.

**Return type** `Variable`

`get_variable_or_none()` Returns the holding `Variable` object or `None`.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by this property. Otherwise, returns `None`.

**Returns** The variable object that refers this node.

**Return type** `Variable`

`retain_data()` Lets the node hold a reference to the underlying data array.

This method gets the data array of the corresponding variable and keeps it. If the weak reference to the corresponding variable is dead, it raises an error.

`set_creator(creator)`

Sets a `Function` object that created this node.

This method is equivalent to `self.creator = creator`. A `FunctionNode` object can also be passed.

**Parameters** `creator` *(Function or FunctionNode)* – Function that has created this variable.

`set_creator_node(creator_node)`

Sets a `FunctionNode` object that created this node.

This method is equivalent to `self.creator_node = creator_node`. A `Function` object can also be passed, in which case the `Function.node` attribute is used.

**Parameters** `creator_node` *(FunctionNode or Function)* – Function node that has this variable as an output.

`unchain()` Deletes the reference to the creator of this variable node.

This method is equivalent to `self.creator_node = None`. 

2.1. Core functionalities
2.1.2 Function

<table>
<thead>
<tr>
<th>Method/Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>chainer.Function</strong></td>
<td>Old-style interface of a differentiable function.</td>
</tr>
<tr>
<td><strong>chainer.FunctionAdapter</strong></td>
<td>Adapter class to wrap Function with FunctionNode.</td>
</tr>
<tr>
<td><strong>chainer.FunctionNode</strong></td>
<td>Function node of the computational graph.</td>
</tr>
<tr>
<td><strong>chainer.force_backprop_mode</strong></td>
<td>Make a context manager which enables back-propagation.</td>
</tr>
<tr>
<td><strong>chainer.no_backprop_mode</strong></td>
<td>Make a context manager which disables back-propagation.</td>
</tr>
<tr>
<td><strong>chainer.grad</strong></td>
<td>Computes the gradient of output variables w.r.t. the input variables.</td>
</tr>
</tbody>
</table>

**chainer.Function**

**class chainer.Function**

Old-style interface of a differentiable function.

This class provides an interface to implement an old-style differentiable function (i.e., the function application is recorded to the computational graph). The subclass of `Function` that implement `forward()` and `backward()` can be used to run the forward computation and automatically induce the backpropagation procedure.

There is another way to implement such a function: subclassing `FunctionNode`. There are mainly two differences between them.

1. The **differentiable backprop** is available for `FunctionNode`, while it is not for `Function` because the `backward()` of the latter directly operates on the arrays instead of `Variable` objects so that it cannot record the history of the computation.

2. The information passed to `backward()` is different. In `FunctionNode`, which inputs the function node has to compute the gradients w.r.t. passed so that it can omit unnecessary computations, while `Function` always has to compute gradients w.r.t. all the input nodes. The `FunctionNode` also accepts the current gradient values of the input nodes so that the accumulation work can be merged with the gradient computation if an efficient kernel is available.

This class uses `FunctionAdapter` to convert the interface to that of `FunctionNode` and adds the `FunctionNode` object to the computational graph.

See `FunctionNode` for the details of building the computational graph in Chainer.

**Methods**

**__call__(inputs)**

Applies forward propagation with chaining backward references.

This method creates a new `FunctionAdapter` object and runs the forward propagation using it.

See `FunctionNode` for the detailed behavior of building the computational graph.

**Parameters inputs** – Tuple of input `Variable`, `numpy.ndarray` or `cupy.ndarray` objects. If the input is an `numpy.ndarray` or a `cupy.ndarray`, it is automatically wrapped with `Variable`.

**Returns** One `Variable` object or a tuple of multiple `Variable` objects.

**add_hook** *(hook, name=None)*

Registers a function hook.

See `FunctionNode.add_hook()` for the detail.
Parameters

- hook (FunctionHook) – Function hook to be registered.
- name (str) – Name of the function hook. name must be unique among function hooks registered to the function. If None, default name of the function hook is used.

backward (inputs, grad_outputs)
Applies backprop to output gradient arrays.

It delegates the procedure to backward_cpu() or backward_gpu() by default. Which it selects is determined by the type of input arrays and output gradient arrays. Implementations of Function must implement either CPU/GPU methods or this method, if the function is intended to be backprop-ed.

Parameters

- inputs – Tuple of input arrays.
- grad_outputs – Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be None, if the function is not differentiable on inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even if it returns only one array.

backward_cpu (inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters

- inputs – Tuple of input numpy.ndarray object(s).
- grad_outputs – Tuple of output gradient numpy.ndarray object(s).

Returns Tuple of input gradient numpy.ndarray object(s). Some or all of them can be None, if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even if it returns only one array.

backward_gpu (inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters

- inputs – Tuple of input cupy.ndarray object(s).
- grad_outputs – Tuple of output gradient cupy.ndarray object(s).

Returns Tuple of input gradient cupy.ndarray object(s). Some or all of them can be None, if the function is not differentiable on corresponding inputs.

Return type tuple
Warning: Implementations of *Function* must take care that the return value must be a tuple even if it returns only one array.

**check_type_forward** (*in_types*)
Checks types of input data before forward propagation.

Before *forward()* is called, this function is called. You need to validate types of input data in this function using *the type checking utilities*.

**Parameters**
- *in_types* (*TypeInfoTuple*) – The type information of input data for *forward()*.

**delete_hook** (*name*)
Unregisters the specified function hook.

**Parameters**
- *name* (*str*) – the name of the function hook to be unregistered.

**forward** (*inputs*)
Applies forward propagation to input arrays.

It delegates the procedure to *forward_cpu()* or *forward_gpu()* by default. Which it selects is determined by the type of input arrays. Implementations of *Function* must implement either CPU/GPU methods or this method.

**Parameters**
- *inputs* – Tuple of input array(s).

**Returns**
- Tuple of output array(s).

Warning: Implementations of *Function* must take care that the return value must be a tuple even if it returns only one array.

**forward_cpu** (*inputs*)
Applies forward propagation to input arrays on CPU.

**Parameters**
- *inputs* – Tuple of *numpy.ndarray* object(s).

**Returns**
- Tuple of *numpy.ndarray* object(s).

**Return type**
- *tuple*

Warning: Implementations of *Function* must take care that the return value must be a tuple even if it returns only one array.

**forward_gpu** (*inputs*)
Applies forward propagation to input arrays on GPU.

**Parameters**
- *inputs* – Tuple of *cupy.ndarray* object(s).

**Returns**
- Tuple of *cupy.ndarray* object(s).

**Return type**
- *tuple*

Warning: Implementations of *Function* must take care that the return value must be a tuple even if it returns only one array.
retain_inputs(indices)
Let specified input variable nodes keep data arrays.

By calling this method from forward(), the function can specify which inputs are required for backprop.

If this method is not called, the function keeps all input arrays. If you want to release all input arrays, call this method by passing an empty sequence. Note that this behavior is different from that of FunctionNode.retain_inputs().

Note that this method must not be called from the outside of forward().

Parameters

- **indices** (iterable of int) – Indexes of input variables that the function will require for backprop.

retain_outputs(indices, retain_after_backward=False)
Let specified output variable nodes keep data arrays.

By calling this method from forward(), the function can specify which outputs are required for backprop. If this method is not called, any output variables are not marked to keep the data array at the point of returning from __call__(). The retained arrays are stored to output_data.

Note: It is STRONGLY RECOMMENDED to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, whereas it might influence on the performance of later function applications to the output variables.

Note that this method must not be called from the outside of forward().

Parameters

- **indices** (iterable of int) – Indexes of input variables that the function will require for backprop.
- **retain_after_backward** (bool) – This option has no effect. It is left only for the backward compatibility.

unchain()
Purges in/out nodes and this function itself from the graph.

See FunctionNode.unchain() for the detail.

chainer.FunctionAdapter

class chainer.FunctionAdapter(function)
Adapter class to wrap Function with FunctionNode.

While FunctionNode provides the interface of new-style differentiable functions, the old-style Function can still be used for the backward compatibility. This class provides an adapter of there interface; it adds FunctionNode interface to any Function object by delegation.

Note: The ownership of FunctionAdapter and Function is a bit tricky. At the initialization, FunctionAdapter is owned by the Function object. Once the function is applied to variables, the ownership is reversed; the adapter becomes the owner of the Function object and the Function object changes the reference to a weak one.

Parameters

- **function** (Function) – The function object to wrap.

New in version 3.0.0.
Methods

__call__(*args, **kwargs)

add_hook (hook, name=None)
    Registers a function hook.
    Parameters
    • hook (FunctionHook) – Function hook to be registered.
    • name (str) – Name of the function hook. The name must be unique among function
      hooks registered to this function. If None, the default name of the function hook is used.

apply (inputs)
    Computes output variables and grows the computational graph.
    Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attribute of input variables exist on a GPU device, that device is made current before
    calling forward(), so implementors do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable,
    numpy.ndarray, or cupy.ndarray. If the element is an ndarray, it is automatically
    wrapped with Variable.

Returns A tuple of output Variable objects.

backward (target_input_indexes, grad_outputs)
backward_accumulate (target_input_indexes, grad_outputs, grad_inputs)
    Computes gradients w.r.t. specified inputs and accumulates them.
    This method provides a way to fuse the backward computation and the gradient accumulations in the case
    that the multiple functions are applied to the same variable.
    Users have to override either of this method or backward(). It is often simpler to implement
    backward() and is recommended if you do not need to provide efficient gradient accumulation.
    Parameters
    • target_input_indexes (tuple of int) – Indices of the input variables w.r.t.
      which the gradients are required. It is guaranteed that this tuple contains at least one
      element.
    • grad_outputs (tuple of Variable) – Gradients w.r.t. the output variables. If
      the gradient w.r.t. an output variable is not given, the corresponding element is None.
    • grad_inputs (tuple of Variable) – Gradients w.r.t. the input variables speci-
      fied by target_input_indexes. These values are computed by other computation
      paths. If there is no gradient value existing for the variable, the corresponding element is
      None. See also the note below.
    Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
    ables. Unlike backward(), the length of the tuple must be same as that of
    target_input_indices.

Note: When the same variable is passed to the multiple input arguments of a function, only the first
    position of grad_inputs corresponding to these input arguments may contain the gradient variable
corresponding to that input variable, and other entries are set to None. This is an implementation-detail convention to avoid the complication of correctly accumulating gradients in such a case. This behavior might be changed in a future version.

```python
check_type_forward(in_types)
delete_hook(name)
 Unregisters the function hook.
 Parameters name (str) – The name of the function hook to be unregistered.
forward(inputs)
forward_cpu(inputs)
 Computes the output arrays from the input NumPy arrays.
 Parameters inputs – Tuple of input numpy.ndarray objects.
 Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

forward_gpu(inputs)
 Computes the output arrays from the input CuPy arrays.
 Parameters inputs – Tuple of input cupy.ndarray objects.
 Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

get_retained_inputs()
 Returns a tuple of retained input variables.
 This method is used to retrieve the input variables retained in forward().
 Returns A tuple of retained input variables.

get_retained_outputs()
 Returns a tuple of retained output variables.
 This method is used to retrieve the output variables retained in forward().
 Returns A tuple of retained output variables.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this method is called; in this case, this method creates a fresh variable node that acts as an output node of the function node.

retain_inputs(indexes)
 Lets specified input variable nodes keep data arrays.
 By calling this method from forward(), the function node can specify which inputs are required for backprop. The input variables with retained arrays can then be obtained by calling get_retained_inputs() from inside backward().
```
Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters
indexes (iterable of int) – Indexes of input variables that the function will require for backprop.

retain_outputs (indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for backprop. If this method is not called, no output variables will be marked to keep their data array at the point of returning from apply(). The output variables with retained arrays can then be obtained by calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, although it might affect the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters
indexes (iterable of int) – Indexes of output variables that the function will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

chainer.FunctionNode

class chainer.FunctionNode
Function node of the computational graph.

FunctionNode is a class representing a node in a computational graph. The node corresponds to an application of a differentiable function to input variables.

When a differentiable function is applied to Variable objects, it creates an instance of FunctionNode implementation and calls its apply() method. The apply() method basically does the following three things.

1. Adding an edge from the function node to the variable node corresponding to each input. The node of each input is extracted by Variable.node.
2. Computing the output arrays of the function.
3. Creating a Variable object for each output array and adding an edge from the node of the variable to the function node.

The output variables are then returned.

Example
Let x be an instance of Variable and f be an instance of FunctionNode taking only one argument. Then the following code

```python
>>> import numpy, chainer, chainer.functions as F
>>> x = chainer.Variable(numpy.zeros(10))
>>> f = F.Identity()
>>> y = f.apply((x,))[0]
```
computes a new variable \( y \) and creates backward references. The backward references are actually set as per the following diagram:

\[ x.\text{node} \leftarrow\cdots f \leftarrow\cdots y.\text{node} \]

If an application of another function \( g \) occurs as

```python
>>> g = F.Identity()
>>> z = g.apply((x,))[0]
```

then the graph grows with a branch:

\[ x.\text{node} \leftarrow \]
\[ |\cdots f \leftarrow \cdots y.\text{node} \]
\[ |\cdots g \leftarrow \cdots z.\text{node} \]

Note that the branching is correctly managed on backward computation, i.e. the gradients from \( f \) and \( g \) are accumulated to the gradient of \( x \).

Every function-node implementation should provide \texttt{forward()} and \texttt{backward()}. Instead of overriding \texttt{forward()}, one can also implement \texttt{forward_cpu()} and \texttt{forward_gpu()} when the implementations for CPU and GPU arrays are totally different.

Note that the input and output variables are inaccessible from \texttt{backward()} by default. If it needs accesses to these variables, the \texttt{forward()} method (or its CPU/GPU variants) has to call \texttt{retain_inputs()} and \texttt{retain_outputs()} appropriately. The retained input/output variables can be accessed from \texttt{backward()} by calling \texttt{get_retained_inputs()} and \texttt{get_retained_outputs()}.

\textbf{Note:} There are two types of differentiable functions in Chainer (since v3). The first type is of a function using a subclass of \texttt{Function}, which is called \textit{old-style differentiable function}. The second type is of a function using a subclass of \texttt{FunctionNode}, which is called \textbf{new-style differentiable function}. There are several advantages on using the new-style differentiable function.

- The new-style differentiable function supports \textit{differentiable backpropagation}. The backpropagated gradients computed through the new-style differentiable functions themselves support further backpropagations so that the automatic higher-order differentiation is available.
- The backpropagation of the new-style differentiable function can be more computationally efficient because the interface allows an implementation to omit the computation of unneeded input gradients.

Note that the new-style differentiable function is the standard way of defining a function node of the computational graph in Chainer; old- style differentiable functions are implemented as wrappers of the new- style differentiable functions.

\begin{itemize}
  \item \textbf{Inputs} – A tuple of the input \texttt{VariableNode} objects.
  \item \textbf{Outputs} – A tuple of weak references to the output \texttt{VariableNode} objects.
  \item \textbf{rank (int)} – An ordinal following the topological order of the computational graph.
  \item \textbf{stack} – Stack trace retrieved at the forward computation. The stack trace is available only in the debug mode.
\end{itemize}

New in version 3.0.0.
Methods

__call__(*args, **kwargs)

add_hook (hook, name=None)
Registers a function hook.

Parameters

  • hook (FunctionHook) – Function hook to be registered.
  • name (str) – Name of the function hook. The name must be unique among function
    hooks registered to this function. If None, the default name of the function hook is used.

apply (inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attribute of input variables exist on a GPU device, that device is made current before
    calling forward(), so implementors do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable,
    numpy.ndarray, or cupy.ndarray. If the element is an ndarray, it is automatically
    wrapped with Variable.

Returns A tuple of output Variable objects.

backward (target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

  • target_input_indexes (tuple of int) – Indices of the input variables w.r.t.
    which the gradients are required. It is guaranteed that this tuple contains at least one
    element.
  • grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the
    gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
    length of the tuple can be same as either len(target_input_indexes) or the number
    of inputs. In the latter case, the elements not specified by target_input_indexes will
    be discarded.

See also:
**backward_accumulate** provides an alternative interface that allows you to implement the backward computation fused with the gradient accumulation.

**backward_accumulate**(target_input_indexes, grad_outputs, grad_inputs)

Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case that the multiple functions are applied to the same variable.

Users have to override either of this method or **backward()**. It is often simpler to implement **backward()** and is recommended if you do not need to provide efficient gradient accumulation.

**Parameters**

- **target_input_indexes**(tuple of int) – Indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

- **grad_outputs**(tuple of Variable) – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is None.

- **grad_inputs**(tuple of Variable) – Gradients w.r.t. the input variables specified by target_input_indexes. These values are computed by other computation paths. If there is no gradient value existing for the variable, the corresponding element is None. See also the note below.

**Returns** Tuple of variables that represent the gradients w.r.t. specified input variables. Unlike **backward()**, the length of the tuple must be same as that of target_input_indices.

**Note:** When the same variable is passed to the multiple input arguments of a function, only the first position of grad_inputs corresponding to these input arguments may contain the gradient variable corresponding to that input variable, and other entries are set to None. This is an implementation-detail convention to avoid the complication of correctly accumulating gradients in such a case. This behavior might be changed in a future version.

**check_type_forward**(in_types)

Checks types of input data before forward propagation.

This method is called before **forward()** and validates the types of input variables using the type checking utilities.

**Parameters**
in_types (TypeInfoTuple) – The type information of input variables for **forward()**.

**delete_hook**(name)

Unregisters the function hook.

**Parameters**
name (str) – The name of the function hook to be unregistered.

**forward**(inputs)

Computes the output arrays from the input arrays.

It delegates the procedure to **forward_cpu()** or **forward_gpu()** by default. Which of them this method selects is determined by the type of input arrays. Implementations of **FunctionNode** must implement either CPU/GPU methods or this method.

**Parameters**
inputs – Tuple of input array(s).

**Returns** Tuple of output array(s).
Warning: Implementations of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables.

get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this method is called; in this case, this method creates a fresh variable node that acts as an output node of the function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are required for backprop. The input variables with retained arrays can then be obtained by calling get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function will require for backprop.
**retain_outputs** *(indexes)*

Lets specified output variable nodes keep data arrays.

By calling this method from *forward()* , the function node can specify which outputs are required for backprop. If this method is not called, no output variables will be marked to keep their data array at the point of returning from *apply()* . The output variables with retained arrays can then be obtained by calling *get_retained_outputs()* from inside *backward()* .

**Note:** It is recommended to use this method if the function requires some or all output arrays in backprop. The function can also use output arrays just by keeping references to them directly, although it might affect the performance of later function applications on the output variables.

Note that **this method must not be called from the outside of forward().**

**Parameters**

* indexes *(iterable of int)* – Indexes of output variables that the function will require for backprop.

**unchain()**

Purges in/out nodes and this function node itself from the graph.

---

### chainer.force_backprop_mode

**chainer.force_backprop_mode()**

Make a context manager which enables back-propagation.

When you want to enable back-propagation in *no_backprop_mode()*, call this method. A *Variable* created in this context always has a computational graph unless overridden by deeper contexts. If you call this method outside of *no_backprop_mode()* context, it changes nothing.

In the following example, *y* has a computational graph and calling *backward()* on *y* will compute and accumulate the gradients of the variables in the graph, in this case only *x*.

```python
>>> x = chainer.Variable(np.array([1,], 'f'))
>>> with chainer.no_backprop_mode():
... with chainer.force_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad
array([1.], dtype=float32)
```

**See also:**

See *no_backprop_mode()* for details on disabled back-propagation mode.

---

### chainer.no_backprop_mode

**chainer.no_backprop_mode()**

Make a context manager which disables back-propagation.

In this context, Chainer does not make a computational graph. It has the benefit of reducing memory consumption. However, a *Variable* created in this context does not hold a reference to the *FunctionNode* that created itself so no gradients are accumulated by *backward()* .

In the following example, *y* is created in this context, which means that calling *backward()* on *y* has no effect on the gradients of *x*.
```python
>>> x = chainer.Variable(np.array([1,], 'f'))
>>> with chainer.no_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad is None
True
```

See also:

See `force_backprop_mode()` for details on how to override this context.

**chainer.grad**

`chainer.grad(outputs, inputs, grad_outputs=None, grad_inputs=None, set_grad=False, retain_grad=False, enable_double_backprop=False)`

Computes the gradient of output variables w.r.t. the input variables.

This function implements the backpropagation algorithm. While `Variable.backward()` also implements backprop, this function selects the smallest paths in the computational graph needed to compute the gradients w.r.t. inputs. The error is backpropagated only through these selected paths, which may reduce the overall computational cost.

This function also differs from `Variable.backward()` in the way to return the gradients; it directly returns the gradient variables as a list instead of setting gradients to the `Variable.grad_var` attribute of the original variable. It means users do not need to clear the gradient w.r.t. each variable before computing the gradient using this function. If `set_grad` option is set to `True`, the computed gradient is also stored in the `Variable.grad_var` attribute of each variable, in which case any original value of `Variable.grad_var` will be updated even if it had already been set.

**Parameters**

- **outputs** (tuple or list of `Variable`) – A sequence of output variables from which backprop starts.
- **inputs** (tuple or list of `Variable`) – A sequence of input variables each of which this function computes the gradient w.r.t.
- **grad_outputs** (tuple or list of `Variable` or `None`) – A sequence of variables that gives the initial value of each output gradient. If an element is set to `None`, an array filled with 1 is used. If this argument itself is `None`, it is treated as a sequence of `None`s.
- **grad_inputs** (tuple or list of `Variable` or `None`) – A sequence of variables that gives the initial value of each input gradient. The gradients computed by the backprop algorithm are accumulated to them (not in-place). If an element is set to `None`, the gradient is not accumulated to this value. If this argument itself is `None`, it is treated as a sequence of `None`s.
- **set_grad** (`bool`) – If it is `True`, the `Variable.grad_var` attribute of each input variable is set to the corresponding computed gradient variable.
- **retain_grad** (`bool`) – If it is `True`, the gradients w.r.t. all the intermediate variables are stored in the `Variable.grad_var` attribute. In this case, the `set_grad` option is ignored.
- **enable_double_backprop** (`bool`) – If it is `True`, the computed gradients can be further backpropagated. Enabling it may increase the memory consumption (and possibly the computational time) to remember the intermediate gradient values for the second backpropagation.
2.1.3 Link and Chain

- **chainer.Link**: Building block of model definitions.

- **chainer.Chain**: Composable link with object-like interface.

- **chainer.ChainList**: Composable link with list-like interface.

**chainer.Link**

```python
class chainer.Link(**params):
 Building block of model definitions.
```

Link is a building block of neural network models that support various features like handling parameters, defining network fragments, serialization, etc.

Link is the primitive structure for the model definitions. It supports management of parameter variables and persistent values that should be incorporated to serialization.

Parameter is an instance of `Parameter` registered to a link. A `Parameter` object can be registered as a parameter of the link by assigning it to an attribute within an initialization scope, which is a code surrounded by a `init_scope()` context manager using the `with` statement.

Persistent values are arrays, scalars, or any other serializable values registered via `register_persistent()` or `add_persistent()`.

**Note:** Whereas arbitrary serializable objects can be registered as persistent values, it is strongly recommended to just register values that should be treated as results of learning. A typical example of persistent values is ones computed during training and required for testing, e.g. running statistics for batch normalization.

Parameters and persistent values are referred by their names. They can be accessed as attributes of the links. Link class itself manages the lists of names of parameters and persistent values to distinguish parameters and persistent values from other attributes.

Link can be composed into more complex models. This composition feature is supported by child classes like `Chain` and `ChainList`. One can create a chain by combining one or more links. See the documents for these classes for details.

As noted above, Link supports the serialization protocol of the `Serializer` class. **Note that only parameters and persistent values are saved and loaded.** Other attributes are considered as a part of user program (i.e. a part of network definition). In order to construct a link from saved file, other attributes must be identically reconstructed by user codes.

**Example**

This is a simple example of custom link definition. Chainer itself also provides many links defined under the `links` module. They might serve as examples, too.

Consider we want to define a simple primitive link that implements a fully-connected layer based on the `linear()` function. Note that this function takes input units, a weight variable, and a bias variable as arguments. Then, the fully-connected layer can be defined as follows:

```python
import chainer
import chainer.functions as F
from chainer import initializers
```
import numpy as np

class LinearLayer(chainer.Link):
    def __init__(self, n_in, n_out):
        super(LinearLayer, self).__init__()
        with self.init_scope():
            self.W = chainer.Parameter(
                initializers.Normal(), (n_out, n_in))
            self.b = chainer.Parameter(
                initializers.Zero(), (n_out,))

    def __call__(self, x):
        return F.linear(x, self.W, self.b)

This example shows that a user can define arbitrary parameters and use them in any methods. Links typically implement the `__call__` operator, although they can also provide other methods to implement the forward propagation.

**Parameters**

- **params** – *(deprecated since v2.0.0)* Names, shapes, and optional dtypes of initial parameters. The keywords are used as the parameter names and the corresponding values consist either of the shape or a tuple of shape and a dtype `(shape, dtype)`. If only the shape is supplied, the default dtype will be used.

- **Variables**

  - **name**(str) – Name of this link, given by the parent chain (if exists).

**Methods**

- **add_param** *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

  Registers a parameter to the link.

  Deprecate since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
 link.add_param('W', shape=(5, 3))
  ```

  can be replaced by the following assignment.

  ```python
 with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
  ```

  The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

- **name**(str) – Name of the parameter. This name is also used as the attribute name.

- **shape**(int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

- **dtype** – Data type of the parameter array.

- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.
add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns
Copied link object.

Return type
Link

copyparams (link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters
- link (Link) – Source link object.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.
**to_cpu**
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

**to_gpu** *(device=None)*
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

**zerograds**
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

---

**chainer.Chain**

### class chainer.Chain(**links**)

Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural net models consist of many reusable fragments, and each model itself might be embedded into a larger learnable system. Chain enables us to write a neural net based on composition, without bothering about routine works like collecting parameters, serialization, copying the structure with parameters shared, etc.

This class actually provides a way to compose one or more links into one structure. A chain can contain one or more child links. Child link is a link registered to the chain with its own name. The child link is stored to an attribute of the chain with the name. User can write a whole model or a fragment of neural nets as a child class of Chain.

Each chain itself is also a link. Therefore, one can combine chains into higher-level chains. In this way, links and chains construct a link hierarchy. Link hierarchy forms a tree structure, where each node is identified by the path from the root. The path is represented by a string like a file path in UNIX, consisting of names of nodes on the path, joined by slashes `/`.

A child link can be added just by assigning it to an attribute of the chain within `init_scope()`.

The registered child link is saved and loaded on serialization and deserialization, and involved in the optimization. The registered link is called a child. The child link is accessible via `children()` generator, which returns a generator running through the children in registered order.

On registration of a child link, its `name` attribute is also set (or overwritten if the link has already been registered to another chain).

#### Example

This is a simple example of custom chain definition. Chainer itself also provides some chains defined under the `links` module. They might serve as examples, too.
Consider we want to define a multi-layer perceptron consisting of two hidden layers with rectifiers as activation functions. We can use the `Linear` link as a building block:

```python
import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):
 def __init__(self, n_in, n_hidden, n_out):
 super(MultiLayerPerceptron, self).__init__()
 with self.init_scope():
 self.layer1 = L.Linear(n_in, n_hidden)
 self.layer2 = L.Linear(n_hidden, n_hidden)
 self.layer3 = L.Linear(n_hidden, n_out)

 def __call__(self, x):
 # Forward propagation
 h1 = F.relu(self.layer1(x))
 h2 = F.relu(self.layer2(h1))
 return self.layer3(h2)
```

Child links are registered via the assignment within a `with self.init_scope():` block. The forward propagation is often implemented as the `__call__` operator as the above example, though it is not mandatory.

**Parameters**

- **links** – Child links. The keywords are used as their names. The names are also set to the links.

  Deprecated since version v2.0.0: Assign child links directly to attributes instead.

**Methods**

- **__getitem__(name)**
  Equivalent to `getattr`.

- **add_link(name, link)**
  Registers a child link to this chain.

  Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
 chain.add_link('l1', L.Linear(3, 5))
  ```

  can be replaced by the following line.

  ```python
 with chain.init_scope():
 chain.l1 = L.Linear(3, 5)
  ```

  The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.

- **link** *(Link)* – The link object to be registered.

- **add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)**
  Registers a parameter to the link.
Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

**add_persistent**(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

**addgrads**(link)

**children**()

**cleargrads**()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy**()

**copyparams**(link)

**disable_update**()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

**enable_update**()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

**init_scope**()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.
Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

- `links` *(skip_self=False)*
- `namedlinks` *(skip_self=False)*
- `namedparams` *(include_uninit=True)*
- `params` *(include_uninit=True)*
- `register_persistent` *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters**

- `name` *(str)* – Name of the attribute to be registered.
- `serialize` *(serializer)*
- `to_cpu` ()
- `to_gpu` *(device=None)*
- `zerograds` ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

**chainer.ChainList**

```python
class chainer.ChainList(*links)
Composable link with list-like interface.
```

This is another example of compositional link. Unlike `Chain`, this class can be used like a list of child links. Each child link is indexed by a non-negative integer, and it maintains the current number of registered child links. The `add_link()` method inserts a new link at the end of the list. It is useful to write a chain with arbitrary number of child links, e.g. an arbitrarily deep multi-layer perceptron.

Note that this class does not implement all methods of `list`.

**Parameters**

- `links` – Initial child links.
Methods

__getitem__(index)
Returns the child at given index.

Parameters
index (int) – Index of the child in the list.

Returns
The index-th child link.

Return type
Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters
link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)
append(link)
    Registers a child link and adds it to the tail of the list.
    This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters  link (Link) – The link object to be registerd.

children()
cleargrads()
    Clears all gradient arrays.
    This method should be called before the backward computation at every iteration of the optimization.

copy()
copyparams(link)
disable_update()
    Disables update rules of all parameters under the link hierarchy.
    This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()
    Enables update rules of all parameters under the link hierarchy.
    This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
    Creates an initialization scope.
    This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
    In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)

register_persistent(name)
    Registers an attribute of a given name as a persistent value.
    This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters  name (str) – Name of the attribute to be registered.
serialize\( (\text{serializer}) \)

to_cpu()

to_gpu\( (\text{device=None}) \)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use cleargrads() instead.

## 2.1.4 Optimizer

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.optimizer.Hyperparameter</code></td>
<td>Set of hyperparameter entries of an optimizer.</td>
</tr>
<tr>
<td><code>chainer.UpdateRule</code></td>
<td>Base class of all update rules.</td>
</tr>
<tr>
<td><code>chainer.Optimizer</code></td>
<td>Base class of all numerical optimizers.</td>
</tr>
<tr>
<td><code>chainer.GradientMethod</code></td>
<td>Base class of all single gradient-based optimizers.</td>
</tr>
</tbody>
</table>

### chainer.optimizer.Hyperparameter

#### class `chainer.optimizer.Hyperparameter`\( (\text{parent=\text{None}}) \)

Set of hyperparameter entries of an optimizer.

This is a utility class to provide a set of hyperparameter entries for update rules and an optimizer. Each entry can be set as an attribute of a hyperparameter object.

A hyperparameter object can hold a reference to its parent hyperparameter object. When an attribute does not exist in the child hyperparameter, it automatically refers to the parent. We typically set the hyperparameter of the gradient method as the parent of the hyperparameter of each update rule. It enables us to centralize the management of hyperparameters (e.g. we can change the learning rate of all update rules just by modifying the hyperparameter of the central optimizer object), while users can freely customize the hyperparameter of each update rule if needed.

**Parameters**

- `parent` (Hyperparameter) – Parent hyperparameter.

#### Methods

- `get_dict()`

  Converts the hyperparameter into a dictionary.

  **Returns** Dictionary containing all entries that can be referred by this hyperparameter object.

### chainer.UpdateRule

#### class `chainer.UpdateRule`\( (\text{parent\_hyperparam=\text{None}}) \)

Base class of all update rules.

Update rule is an object that implements how to update one parameter variable using the gradient of a loss function. This class provides the interface and the common features of any update rules.

An update rule can be set to a `Variable` object that represents a parameter array of a model. An `Optimizer` instance defines which parameters to update, and the update rule instance of each parameter defines how to update it.
Hook functions can be set to any update rule instance. The hook function is called just before any updates in the order of registrations.

An implementation of update rule should override update_core() or its device-dependent variants (i.e., update_core_cpu() and update_core_gpu()).

The state (e.g. a moving average of the gradient) of the update rule is stored into the state dictionary. An implementation of update rule using state should also override init_state() to initialize the state at the first update. The values of the state dictionary are automatically copied to the appropriate device before the update based on the data and grad arrays.

Parameters

- **parent_hyperparam** (Hyperparameter) – Hyperparameter that provides the default values.

Variables

- **enabled** (bool) – Flag to configure if this update rule is active. If the update rule is not active (i.e., enabled = False), the update() method does not update the parameter.
- **hyperparam** (Hyperparameter) – Hyperparameter of the update rule.
- **t** (int) – Number of updates made by this update rule.

Methods

- **add_hook** (hook, name=None)

  Adds a hook function.

  The hook function is called before any updates.

  Parameters

  - **hook** (callable) – Hook function to be added. It takes two arguments: the update rule object and the parameter variable.
  - **name** (str) – Name of the hook function. The name attribute of the hook function is used by default.

- **init_state** (param)

  Initializes the state.

  Any implementations that use the state should override this method. This method is called at the first update.

  Parameters

  - **param** (Variable) – Parameter variable. It can be used to extract the shape and the data type of the parameter.

- **remove_hook** (name)

  Removes the specified hook function.

  Parameters

  - **name** (str) – Name of the hook function to be removed. The hook function registered with this name will be removed.

- **serialize** (serializer)

  Serializes the update rule state.

  Be careful that this method only saves/loads the state of the update rule. The parameters of the target link is not saved/loaded by this method, and so you need to serialize the target link separately if you want to fully recover the training state including parameters.

  Parameters

  - **serializer** (AbstractSerializer) – Serializer object.
**update**(param)
Invokes hook functions and updates the parameter.

**Parameters**

- **param (Variable)** – Variable to be updated.

**update_core**(param)
Updates the parameter.

Implementation of UpdateRule should override this method or both of `_update_core_cpu()` and `_update_core_gpu()`.

**Parameters**

- **param (Variable)** – Variable to be updated.

**update_core_cpu**(param)
Updates the parameter on CPU.

See `update_core()` for details.

**Parameters**

- **param (Variable)** – Variable to be updated.

**update_core_gpu**(param)
Updates the parameter on GPU.

See `update_core()` for details.

**Parameters**

- **param (Variable)** – Variable to be updated.

---

**chainer.Optimizer**

**class** chainer.Optimizer

Base class of all numerical optimizers.

This class provides basic features for all optimization methods. It optimizes parameters of a target link. The target link is registered via the `setup()` method, and then the `update()` method updates its parameters based on a given loss function.

Each optimizer implementation must be defined as a child class of Optimizer. It must override `update()` method.

If the optimizer is based on single gradient computation (like most first-order methods), then it should inherit `GradientMethod`, which adds some features dedicated for the first order methods, including the support of UpdateRule.

Optimizer instance also supports hook functions. Hook function is registered by the `add_hook()` method. Each hook function is called in registration order in advance of the actual parameter update. If the hook function has an attribute `call_for_each_param` and its value is True, the hook function is used as a hook function of all update rules (i.e., it is invoked for every parameter by passing the corresponding update rule and the parameter).

**Variables**

- **target** – Target link object. It is set by the `setup()` method.
- **t** – Number of update steps. It must be incremented by the `update()` method.
- **epoch** – Current epoch. It is incremented by the `new_epoch()` method.

**Methods**

**add_hook**(hook, name=None)
Registers a hook function.
Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

**Parameters**

- **hook** *(function)* – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

- **name** *(str)* – Name of the registration. If omitted, `hook.name` is used by default.

**call_hooks** ()
Invokes hook functions in registration order.

**new_epoch** ()
Starts a new epoch.
This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**remove_hook** *(name)*
Removes a hook function.

**Parameters**

- **name** *(str)* – Registered name of the hook function to remove.

**serialize** *(serializer)*
Serializes or deserializes the optimizer.
It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

**It does not save nor loads the parameters of the target link.** They should be separately saved or loaded.

**Parameters**

- **serializer** *(AbstractSerializer)* – Serializer or deserializer object.

**setup** *(link)*
Sets a target link and initializes the optimizer states.

Given link is set to the `target` attribute. It also prepares the optimizer state dictionaries corresponding to all parameters in the link hierarchy. The existing states are discarded.

**Parameters**

- **link** *(Link)* – Target link object.

**update** *(lossfun=*, *args, **kwds)*
Updates the parameters.
This method updates the parameters of the target link. The behavior of this method is different for the cases either `lossfun` is given or not.

If `lossfun` is given, this method typically clears the gradients, calls the loss function with given extra arguments, and calls the `backward()` method of its output to compute the gradients. The actual implementation might call `lossfun` more than once.

If `lossfun` is not given, then this method assumes that the gradients of all parameters are already computed. An implementation that requires multiple gradient computations might raise an error on this case.

In both cases, this method invokes the update procedure for all parameters.

**Parameters**

- **lossfun** *(function)* – Loss function. It accepts arbitrary arguments and returns one `Variable` object that represents the loss (or objective) value. This argument can be
omitted for single gradient-based methods. In this case, this method assumes gradient
arrays computed.

- **kwds** *(args,)* – Arguments for the loss function.

### chainer.GradientMethod

#### class **chainer.GradientMethod**

Base class of all single gradient-based optimizers.

This is an extension of the **Optimizer** class. Typical gradient methods that just require the gradient at the
current parameter vector on an update can be implemented as its child class.

This class uses **UpdateRule** to manage the update rule of each parameter. A child class of GradientMethod
should override **create_update_rule**() to create the default update rule of each parameter.

This class also provides **hyperparam**, which is the hyperparameter used as the default configuration of each
update rule. All built-in gradient method implementations also provide proxy properties that act as aliases to
the attributes of **hyperparam**. It is recommended to provide such an alias to each attribute. It can be done by
only adding one line for each attribute using **HyperparameterProxy**.

**Variables** **hyperparam** *(Hyperparameter)* – The hyperparameter of the gradient method. It
is used as the default configuration of each update rule (i.e., the hyperparameter of each update
rule refers this hyperparameter as its parent).

#### Methods

**add_hook** *(hook, name=None)*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method.

**Parameters**

- **hook** *(function)* – Hook function. If **hook.call_for_each_param** is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

- **name** *(str)* – Name of the registration. If omitted, **hook.name** is used by default.

**call_hooks** *

Invokes hook functions in registration order.

**create_update_rule** *

Creates a new update rule object.

This method creates an update rule object. It is called by **setup()** to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

**Returns** Update rule object.

**Return type** **UpdateRule**

**new_epoch** *

Starts a new epoch.

This method increments the **epoch** count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.
reallocate_cleared_grads()

Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook(name)

Removes a hook function.

Parameters

name (str) – Registered name of the hook function to remove.

serialize(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states ($t$ and `epoch`)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters

serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads(use=True)

Enables or disables use of `cleargrads()` in `update`.

Parameters

use (bool) – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (`zerograd` is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograd`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

Hook functions

<table>
<thead>
<tr>
<th>chainer.optimizer.WeightDecay</th>
<th>Optimizer/UpdateRule hook function for weight decay regularization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.optimizer.Lasso</td>
<td>Optimizer/UpdateRule hook function for Lasso regularization.</td>
</tr>
<tr>
<td>chainer.optimizer.GradientClipping</td>
<td>Optimizer hook function for gradient clipping.</td>
</tr>
<tr>
<td>chainer.optimizer.GradientNoise</td>
<td>Optimizer/UpdateRule hook function for adding gradient noise.</td>
</tr>
</tbody>
</table>
chainer.optimizer.WeightDecay

```python
class chainer.optimizer.WeightDecay(rate)
 Optimizer/UpdateRule hook function for weight decay regularization.
 This hook function adds a scaled parameter to the corresponding gradient. It can be used as a regularization.
 Parameters rate (float) – Coefficient for the weight decay.
 Variables rate (float) – Coefficient for the weight decay.

 Methods
 __call__(rule, param)
```

chainer.optimizer.Lasso

```python
class chainer.optimizer.Lasso(rate)
 Optimizer/UpdateRule hook function for Lasso regularization.
 This hook function adds a scaled parameter to the sign of each weight. It can be used as a regularization.
 Parameters rate (float) – Coefficient for the weight decay.
 Variables rate (float) – Coefficient for the weight decay.

 Methods
 __call__(rule, param)
```

chainer.optimizer.GradientClipping

```python
class chainer.optimizer.GradientClipping(threshold)
 Optimizer hook function for gradient clipping.
 This hook function scales all gradient arrays to fit to the defined L2 norm threshold.
 Parameters threshold (float) – L2 norm threshold.
 Variables threshold (float) – L2 norm threshold of gradient norm.

 Methods
 __call__(opt)
```

chainer.optimizer.GradientNoise

```python
class chainer.optimizer.GradientNoise(eta, noise_func=<function exponential_decay_noise>)
 Optimizer/UpdateRule hook function for adding gradient noise.
```

2.1. Core functionalities
This hook function simply adds noise generated by the `noise_func` to the gradient. By default it adds time-dependent annealed Gaussian noise to the gradient at every training step:

\[ g_t \leftarrow g_t + \mathcal{N}(0, \sigma_t^2) \]

where

\[ \sigma_t^2 = \frac{\eta}{(1 + t)^\gamma} \]

with \( \eta \) selected from \{0.01, 0.3, 1.0\} and \( \gamma = 0.55 \).

**Parameters**

- `eta (float)` – Parameter that defines the scale of the noise, which for the default noise function is recommended to be either 0.01, 0.3 or 1.0.
- `noise_func (function)` – Noise generating function which by default is given by Adding Gradient Noise Improves Learning for Very Deep Networks.

**Methods**

`__call__ (rule, param)`

### 2.1.5 Serializer

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.AbstractSerializer</code></td>
<td>Abstract base class of all serializers and deserializers.</td>
</tr>
<tr>
<td><code>chainer.Serializer</code></td>
<td>Base class of all serializers.</td>
</tr>
<tr>
<td><code>chainer.Deserializer</code></td>
<td>Base class of all deserializers.</td>
</tr>
</tbody>
</table>

**Method**

`__call__ (key, value)`

Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the `value` argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the `value` argument. String values are treated like scalars.

**Note:** As of v2.0.0, serializers and deserializers are required to correctly handle the `None` value. When `value` is `None`, serializers save it in format-dependent ways, and deserializers just return the loaded
value. When the saved None value is loaded by a deserializer, it should quietly return the None value without modifying the value object.

Parameters

- **key** *(str)* – Name of the serialization entry.
- **value** *(scalar, numpy.ndarray, cupy.ndarray, None, or str)* – Object to be (de)serialized. None is only supported by deserializers.

Returns  Serialized or deserialized value.

__getitem__(key)

Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters **key** *(str)* – Name of the child serializer.

chainer.Serializer

class chainer.Serializer

Base class of all serializers.

Methods

__call__(key, value)

Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the value argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the value argument. String values are treated like scalars.

Note: As of v2.0.0, serializers and deserializers are required to correctly handle the None value. When value is None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved None value is loaded by a deserializer, it should quietly return the None value without modifying the value object.

Parameters

- **key** *(str)* – Name of the serialization entry.
- **value** *(scalar, numpy.ndarray, cupy.ndarray, None, or str)* – Object to be (de)serialized. None is only supported by deserializers.

Returns  Serialized or deserialized value.
__getitem__(key)

Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

**Parameters**

- **key (str)** – Name of the child serializer.

save(obj)

Saves an object by this serializer.

This is equivalent to `obj.serialize(self)`.

**Parameters**

- **obj** – Target object to be serialized.

caller.Deserializer

class chainer.Deserializer

Base class of all deserializers.

**Methods**

__call__(key, value)

Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars and arrays. For scalars, the `value` argument is used just for determining the type of restored value to be converted, and the converted value is returned. For arrays, the restored elements are directly copied into the `value` argument. String values are treated like scalars.

**Note:** As of v2.0.0, serializers and deserializers are required to correctly handle the `None` value. When `value` is `None`, serializers save it in format-dependent ways, and deserializers just return the loaded value. When the saved `None` value is loaded by a deserializer, it should quietly return the `None` value without modifying the `value` object.

**Parameters**

- **key (str)** – Name of the serialization entry.

- **value (scalar, numpy.ndarray, cupy.ndarray, None, or str)** – Object to be (de)serialized. `None` is only supported by deserializers.

**Returns**

Serialized or deserialized value.

__getitem__(key)

Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

**Parameters**

- **key (str)** – Name of the child serializer.
load(obj)
Loads an object from this deserializer.
This is equivalent to obj.serialize(self).

Parameters
obj – Target object to be serialized.

2.1.6 Dataset abstraction

Chainer has a support of common interface of training and validation datasets. The dataset support consists of three components: datasets, iterators, and batch conversion functions.

Dataset represents a set of examples. The interface is only determined by combination with iterators you want to use on it. The built-in iterators of Chainer requires the dataset to support __getitem__ and __len__ method. In particular, the __getitem__ method should support indexing by both an integer and a slice. We can easily support slice indexing by inheriting DatasetMixin, in which case users only have to implement get_example() method for indexing. Some iterators also restrict the type of each example. Basically, datasets are considered as stateless objects, so that we do not need to save the dataset as a checkpoint of the training procedure.

Iterator iterates over the dataset, and at each iteration, it yields a mini batch of examples as a list. Iterators should support the Iterator interface, which includes the standard iterator protocol of Python. Iterators manage where to read next, which means they are stateful.

Batch conversion function converts the mini batch into arrays to feed to the neural nets. They are also responsible to send each array to an appropriate device. Chainer currently provides concat_examples() as the only example of batch conversion functions.

These components are all customizable, and designed to have a minimum interface to restrict the types of datasets and ways to handle them. In most cases, though, implementations provided by Chainer itself are enough to cover the usages.

Chainer also has a light system to download, manage, and cache concrete examples of datasets. All datasets managed through the system are saved under the dataset root directory, which is determined by the CHAINER_DATASET_ROOT environment variable, and can also be set by the set_dataset_root() function.

Dataset representation

See Dataset examples for dataset implementations.

chainer.dataset.DatasetMixin
Default implementation of dataset indexing.

chainer.dataset.DatasetMixin

class chainer.dataset.DatasetMixin
Default implementation of dataset indexing.

DatasetMixin provides the __getitem__() operator. The default implementation uses get_example() to extract each example, and combines the results into a list. This mixin makes it easy to implement a new dataset that does not support efficient slicing.

Dataset implementation using DatasetMixin still has to provide the __len__() operator explicitly.
Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
 improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
 ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
 one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

Iterator interface

See Iterator examples for dataset iterator implementations.

chainer.dataset.Iterator Base class of all dataset iterators.
class chainer.dataset.Iterator

Base class of all dataset iterators.

Iterator iterates over the dataset, yielding a minibatch at each iteration. Minibatch is a list of examples. Each implementation should implement an iterator protocol (e.g., the __next__() method).

Note that, even if the iterator supports setting the batch size, it does not guarantee that each batch always contains the same number of examples. For example, if you let the iterator to stop at the end of the sweep, the last batch may contain a fewer number of examples.

The interface between the iterator and the underlying dataset is not fixed, and up to the implementation.

Each implementation should provide the following attributes (not needed to be writable).

- **batch_size**: Number of examples within each minibatch.
- **epoch**: Number of completed sweeps over the dataset.
- **epoch_detail**: Floating point number version of the epoch. For example, if the iterator is at the middle of the dataset at the third epoch, then this value is 2.5.
- **previous_epoch_detail**: The value of epoch_detail at the previous iteration. This value is None before the first iteration.
- **is_new_epoch**: True if the epoch count was incremented at the last update.

Each implementation should also support serialization to resume/suspend the iteration.

**Methods**

__next__()

Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it stops the iteration.

__iter__()

Returns self.

finalize()

Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal resources.

next()

Python2 alternative of __next__.

It calls __next__() by default.

serialize(serializer)

Serializes the internal state of the iterator.

This is a method to support serializer protocol of Chainer.

**Note**: It should only serialize the internal state that changes over the iteration. It should not serializes what is set manually by users such as the batch size.
Batch conversion function

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.dataset.concat_examples</code></td>
<td>Concatenates a list of examples into array(s).</td>
</tr>
<tr>
<td><code>chainer.dataset.to_device</code></td>
<td>Send an array to a given device.</td>
</tr>
</tbody>
</table>

**chainer.dataset.concat_examples**

`chainer.dataset.concat_examples(batch, device=None, padding=None)`

Concatenates a list of examples into array(s).

Dataset iterator yields a list of examples. If each example is an array, this function concatenates them along the newly-inserted first axis (called *batch dimension*) into one array. The basic behavior is same for examples consisting of multiple arrays, i.e., corresponding arrays of all examples are concatenated.

For instance, consider each example consists of two arrays \((x, y)\). Then, this function concatenates \(x\)'s into one array, and \(y\)'s into another array, and returns a tuple of these two arrays. Another example: consider each example is a dictionary of two entries whose keys are 'x' and 'y', respectively, and values are arrays. Then, this function concatenates \(x\)'s into one array, and \(y\)'s into another array, and returns a dictionary with two entries \(x\) and \(y\) whose values are the concatenated arrays.

When the arrays to concatenate have different shapes, the behavior depends on the *padding* value. If *padding* is `None` (default), it raises an error. Otherwise, it builds an array of the minimum shape that the contents of all arrays can be substituted to. The padding value is then used to the extra elements of the resulting arrays.

TODO(beam2d): Add an example.

**Parameters**

- **batch** *(list)* – A list of examples. This is typically given by a dataset iterator.
- **device** *(int)* – Device ID to which each array is sent. Negative value indicates the host memory (CPU). If it is omitted, all arrays are left in the original device.
- **padding** – Scalar value for extra elements. If this is `None` (default), an error is raised on shape mismatch. Otherwise, an array of minimum dimensionalities that can accommodate all arrays is created, and elements outside of the examples are padded by this value.

**Returns** Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each example in the batch.

**chainer.dataset.to_device**

`chainer.dataset.to_device(device, x)`

Send an array to a given device.

This method sends a given array to a given device. This method is used in `concat_examples()`.

You can also use this method in a custom converter method used in `Updater` and `Extension` such as `StandardUpdater` and `Evaluator`.

See also `chainer.dataset.concat_examples()`.

**Parameters**

- **device** *(int or None)* – Device ID to which an array is sent. If it is negative value, an array is sent to CPU. If it is positive, an array is sent to GPU with the given ID. If it is `None`, an array is left in the original device.
• \( x (\text{numpy.ndarray or cupy.ndarray}) \) – An array to send.

Returns Converted array.

Dataset management

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.dataset.get_dataset_root</code></td>
<td>Gets the path to the root directory to download and cache datasets.</td>
</tr>
<tr>
<td><code>chainer.dataset.set_dataset_root</code></td>
<td>Sets the root directory to download and cache datasets.</td>
</tr>
<tr>
<td><code>chainer.dataset.cached_download</code></td>
<td>Downloads a file and caches it.</td>
</tr>
<tr>
<td><code>chainer.dataset.cache_or_load_file</code></td>
<td>Caches a file if it does not exist, or loads it otherwise.</td>
</tr>
</tbody>
</table>

`chainer.dataset.get_dataset_root`

```python
chainer.dataset.get_dataset_root()
```

Gets the path to the root directory to download and cache datasets.

Returns The path to the dataset root directory.

Return type `str`

`chainer.dataset.set_dataset_root`

```python
chainer.dataset.set_dataset_root(path)
```

Sets the root directory to download and cache datasets.

Parameters `path (str)` – Path to the new dataset root directory.

`chainer.dataset.cached_download`

```python
chainer.dataset.cached_download(url)
```

Downloads a file and caches it.

It downloads a file from the URL if there is no corresponding cache. After the download, this function stores a cache to the directory under the dataset root (see `set_dataset_root()`). If there is already a cache for the given URL, it just returns the path to the cache without downloading the same file.

Note: This function raises `OSError` when it fails to create the cache directory. In older version, it raised `RuntimeError`.

Parameters `url (str)` – URL to download from.

Returns Path to the downloaded file.

Return type `str`

2.1. Core functionalities
chainer.dataset.cache_or_load_file

chainer.dataset.cache_or_load_file(path, creator, loader)
Caches a file if it does not exist, or loads it otherwise.
This is a utility function used in dataset loading routines. The creator creates the file to given path, and returns the content. If the file already exists, the loader is called instead, and it loads the file and returns the content.

Note that the path passed to the creator is temporary one, and not same as the path given to this function. This function safely renames the file created by the creator to a given path, even if this function is called simultaneously by multiple threads or processes.

Parameters
- path (str) – Path to save the cached file.
- creator – Function to create the file and returns the content. It takes a path to temporary place as the argument. Before calling the creator, there is no file at the temporary path.
- loader – Function to load the cached file and returns the content.

Returns It returns the returned values by the creator or the loader.

2.1.7 Training loop abstraction

Chainer provides a standard implementation of the training loops under the chainer.training module. It is built on top of many other core features of Chainer, including Variable and Function, Link/Chain/ChainList, Optimizer, Dataset, and Reporter/Summary. Compared to the training loop abstraction of other machine learning tool kits, Chainer’s training framework aims at maximal flexibility, while keeps the simplicity for the typical usages. Most components are pluggable, and users can overwrite the definition.

The core of the training loop abstraction is Trainer, which implements the training loop itself. The training loop consists of two parts: one is Updater, which actually updates the parameters to train, and the other is Extension for arbitrary functionalities other than the parameter update.

Updater and some extensions use chainer.dataset and Iterator to scan the datasets and load mini batches. The trainer also uses Reporter to collect the observed values, and some extensions use DictSummary to accumulate them and computes the statistics.

You can find many examples for the usage of this training utilities from the official examples. You can also search the extension implementations from Trainer extensions.

Trainer

class chainer.training.Trainer(updater, stop_trigger=None, out='result')
The standard training loop in Chainer.

Trainer is an implementation of a training loop. Users can invoke the training by calling the run() method.
Each iteration of the training loop proceeds as follows.
- Update of the parameters. It includes the mini-batch loading, forward and backward computations, and an
execution of the update formula. These are all done by the update object held by the trainer.

- Invocation of trainer extensions in the descending order of their priorities. A trigger object is attached to each extension, and it decides at each iteration whether the extension should be executed. Trigger objects are callable objects that take the trainer object as the argument and return a boolean value indicating whether the extension should be called or not.

Extensions are callable objects that take the trainer object as the argument. There are three ways to define custom extensions: inheriting the `Extension` class, decorating functions by `make_extension()`, and defining any callable including lambda functions. See `Extension` for more details on custom extensions and how to configure them.

Users can register extensions to the trainer by calling the `extend()` method, where some configurations can be added.

- Trigger object, which is also explained above. In most cases, `IntervalTrigger` is used, in which case users can simply specify a tuple of the interval length and its unit, like `(1000, 'iteration')` or `(1, 'epoch')`.

- The order of execution of extensions is determined by their priorities. Extensions of higher priorities are invoked earlier. There are three standard values for the priorities:
  - `PRIORITY_WRITER`. This is the priority for extensions that write some records to the observation dictionary. It includes cases that the extension directly adds values to the observation dictionary, or the extension uses the `chainer.report()` function to report values to the observation dictionary.
  - `PRIORITY_EDITOR`. This is the priority for extensions that edit the observation dictionary based on already reported values.
  - `PRIORITY_READER`. This is the priority for extensions that only read records from the observation dictionary. This is also suitable for extensions that do not use the observation dictionary at all.

The current state of the trainer object and objects handled by the trainer can be serialized through the standard serialization protocol of Chainer. It enables us to easily suspend and resume the training loop.

Note: The serialization does not recover everything of the training loop. It only recovers the states which change over the training (e.g. parameters, optimizer states, the batch iterator state, extension states, etc.). You must initialize the objects correctly before deserializing the states.

On the other hand, it means that users can change the settings on deserialization. For example, the exit condition can be changed on the deserialization, so users can train the model for some iterations, suspend it, and then resume it with larger number of total iterations.

During the training, it also creates a `Reporter` object to store observed values on each update. For each iteration, it creates a fresh observation dictionary and stores it in the `observation` attribute.

Links of the target model of each optimizer are registered to the reporter object as observers, where the name of each observer is constructed as the format `<optimizer name><link name>`. The link name is given by the `chainer.Link.namedlink()` method, which represents the path to each link in the hierarchy. Other observers can be registered by accessing the reporter object via the `reporter` attribute.

The default trainer is `plain`, i.e., it does not contain any extensions.

Parameters

- `updater (Updater)` – Updater object. It defines how to update the models.
• **stop_trigger** – Trigger that determines when to stop the training loop. If it is not callable, it is passed to `IntervalTrigger`.

**Variables**

• **updater** – The updater object for this trainer.

• **stop_trigger** – Trigger that determines when to stop the training loop. The training loop stops at the iteration on which this trigger returns `True`.

• **observation** – Observation of values made at the last update. See the `Reporter` class for details.

• **out** – Output directory.

• **reporter** – Reporter object to report observed values.

**Methods**

`extend(extension, name=None, trigger=None, priority=None, **kwargs)`

Registers an extension to the trainer. `Extension` is a callable object which is called after each update unless the corresponding trigger object decides to skip the iteration. The order of execution is determined by priorities: extensions with higher priorities are called earlier in each iteration. Extensions with the same priority are invoked in the order of registrations.

If two or more extensions with the same name are registered, suffixes are added to the names of the second to last extensions. The suffix is `_N` where `N` is the ordinal of the extensions.

See `Extension` for the interface of extensions.

**Parameters**

• **extension** – Extension to register.

• **name (str)** – Name of the extension. If it is omitted, the `default_name` attribute of the extension is used instead. Note that the name would be suffixed by an ordinal in case of duplicated names as explained above.

• **trigger (tuple or Trigger)** – Trigger object that determines when to invoke the extension. If it is `None`, `extension.trigger` is used instead. If it is `None` and the extension does not have the trigger attribute, the extension is triggered at every iteration by default. If the trigger is not callable, it is passed to `IntervalTrigger` to build an interval trigger.

• **priority (int)** – Invocation priority of the extension. Extensions are invoked in the descending order of priorities in each iteration. If this is `None`, `extension.priority` is used instead.

`get_extension(name)`

Returns the extension of a given name.

**Parameters** name (str) – Name of the extension.

**Returns** Extension.

`run(show_loop_exception_msg=True)`

Executes the training loop.

This method is the core of `Trainer`. It executes the whole loop of training the models.

Note that this method cannot run multiple times for one trainer object.
Chainer Documentation, Release 3.3.0

serialize (serializer)

Updater

<table>
<thead>
<tr>
<th>chainer.training.Updater</th>
<th>Interface of updater objects for trainers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.training.StandardUpdater</td>
<td>Standard implementation of Updater.</td>
</tr>
<tr>
<td>chainer.training.ParallelUpdater</td>
<td>Implementation of a parallel GPU Updater.</td>
</tr>
</tbody>
</table>

chainer.training.Updater

**class** chainer.training.Updater

Interface of updater objects for trainers.

Updater implements a training iteration as **update()**. Typically, the updating iteration proceeds as follows.

- Fetch a minibatch from *dataset* via *Iterator*.
- Run forward and backward process of *Chain*.
- Update parameters according to their **UpdateRule**.

The first line is processed by *Iterator.__next__*. The second and third are processed by *Optimizer.update*. Users can also implement their original updating iteration by overriding *Updater.update*.

**Methods**

**connect_trainer**(trainer)

Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of *Trainer*. The default implementation does nothing.

**Parameters**

trainer *(Trainer)* – Trainer object to which the updater is registered.

**finaliz**e()

Finalizes the updater object.

This method is called at the end of training loops. It should finalize each dataset iterator used in this updater.

**get_all_optimizers**()

Gets a dictionary of all optimizers for this updater.

**Returns**

Dictionary that maps names to optimizers.

**Return type**

dict

**get_optimizer**(name)

Gets the optimizer of given name.

Updater holds one or more optimizers with names. They can be retrieved by this method.

**Parameters**

name *(str)* – Name of the optimizer.

**Returns**

Optimizer of the name.

**Return type**

Optimizer

2.1. Core functionalities
serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

chainer.training.StandardUpdater

class chainer.training.StandardUpdater(iterator, optimizer, converter=<function concat_examples>, device=None, loss_func=None)

Standard implementation of Updater.

This is the standard implementation of Updater. It accepts one or more training datasets and one or more optimizers. The default update routine assumes that there is only one training dataset and one optimizer. Users can override this update routine by inheriting this class and overriding the update_core() method. Each batch is converted to input arrays by concat_examples() by default, which can also be manually set by converter argument.

Parameters

- **iterator** – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.
- **optimizer** – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.
- **converter** – Converter function to build input arrays. Each batch extracted by the main iterator and the device option are passed to this function. concat_examples() is used by default.
- **device** – Device to which the training data is sent. Negative value indicates the host memory (CPU).
- **loss_func** – Loss function. The target link of the main optimizer is used by default.

Variables

- **converter** – Converter function.
- **loss_func** – Loss function. If it is None, the target link of the main optimizer is used instead.
- **device** – Device to which the training data is sent.
- **iteration** – Current number of completed updates.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of Trainer. The default implementation does nothing.
Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.
This method calls the finalize method of each iterator that this updater has. It is called at the end of training loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.
Returns Dictionary that maps names to optimizers.
Return type dict

get_iterator(name)
Gets the dataset iterator of given name.
Parameters name (str) – Name of the dataset iterator.
Returns Corresponding dataset iterator.
Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.
Parameters name (str) – Name of the optimizer.
Returns Corresponding optimizer.
Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.
This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.
This method is called once at each iteration of the training loop.

update_core()

chainer.training.ParallelUpdater

class chainer.training.ParallelUpdater(iterator, optimizer, converter=<function concat_examples>, models=None, devices=None, loss_func=None)

Implementation of a parallel GPU Updater.
This is an implementation of Updater that uses multiple GPUs. It behaves similarly to StandardUpdater.
The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device.

Parameters
• iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

2.1. Core functionalities
• **optimizer** – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

• **converter** – Converter function to build input arrays. Each batch extracted by the main iterator is split equally between the devices and then passed with corresponding device option to this function. `concat_examples()` is used by default.

• **models** – Dictionary of models. The main model should be the same model attached to the 'main' optimizer.

• **devices** – Dictionary of devices to which the training data is sent. The devices should be arranged in a dictionary with the same structure as `models`.

• **loss_func** – Loss function. The model is used as a loss function by default.

**Methods**

```python
class updater:
 def __init__(self, **kwargs):
 self.kwargs = kwargs

 def init(self):
 # Initialize

 def update(self):
 # Update

 def finalize(self):
 # Finalize

 def serialize(self, serializer):
 # Serialize

 def connect_trainer(self, trainer):
 # Connect trainer

 def get_all_optimizers(self):
 # Get all optimizers

 def get_iterator(self, name):
 # Get iterator

 def get_optimizer(self, name):
 # Get optimizer

 def finalize(self):
 # Finalize
```

`connect_trainer(trainer)`

Finalizes the updater object.

This method calls the `finalize` method of each iterator that this updater has. It is called at the end of training loops.

`get_all_optimizers()`

Gets a dictionary of all optimizers for this updater.

Returns: Dictionary that maps names to optimizers.

Return type: dict

`get_iterator(name)`

Gets the dataset iterator of given name.

Parameters:
- **name** (*str*) – Name of the dataset iterator.

Returns: Corresponding dataset iterator.

Return type: Iterator

`get_optimizer(name)`

Gets the optimizer of given name.

Parameters:
- **name** (*str*) – Name of the optimizer.

Returns: Corresponding optimizer.

Return type: Optimizer

`serialize(serializer)`

Serializes the current state of the updater object.

`update()`

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

`update_core()`
Implementation of a multiprocess parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs with multi-process data parallelism. It uses Nvidia NCCL for communication between multiple GPUs.

It behaves similarly to StandardUpdater. The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device.

It does not transfer the values collected by Reporter in the sub devices to the main device. So you can only see the reported values in the main device.

**Parameters**

- `iterators` – List of dataset iterator for the training dataset. The number of the iterators must be same to the number of GPUs you use.
- `optimizer` – Optimizer to update parameters. The model should be attached to the optimizer.
- `converter` – Converter function to build input arrays. Each batch extracted by the iterator is split equally between the devices and then passed with corresponding device option to this function. `concat_examples()` is used by default.
- `devices` – Dictionary or list of devices to which the training data is sent. The master device will be the first one in the list or the value attached to the key ‘main’.

**Methods**

- `connect_trainer(trainer)`
  Connects the updater to the trainer that will call it.
  The typical usage of this method is to register additional links to the reporter of the trainer. This method is called at the end of the initialization of Trainer. The default implementation does nothing.

  **Parameters**
  
  - `trainer` (Trainer) – Trainer object to which the updater is registered.

- `finalize()`

- `get_all_optimizers()`
  Gets a dictionary of all optimizers for this updater.

  **Returns** Dictionary that maps names to optimizers.
  **Return type** dict

- `get_iterator(name)`
  Gets the dataset iterator of given name.

  **Parameters** `name` (str) – Name of the dataset iterator.
  **Returns** Corresponding dataset iterator.
  **Return type** Iterator
get_optimizer(name)

Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)

Serializes the current state of the updater object.

setup_workers()

update()

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

Extension

chainer.training.Extension

Base class of trainer extensions.

chainer.training.make_extension

Decorator to make given functions into trainer extensions.

chainer.training.Extension

class chainer.training.Extension

Base class of trainer extensions.

Extension of Trainer is a callable object that takes the trainer object as the argument. It also provides some default configurations as its attributes, e.g. the default trigger and the default priority. This class provides a set of typical default values for these attributes.

There are three ways to define users’ own extensions: inheriting this class, decorating closures by make_extension(), or using any callable including lambda functions as extensions. Decorator can slightly reduce the overhead and is much easier to use, while this class provides more flexibility (for example, it can have methods to configure the behavior). Using a lambda function allows one-line coding for simple purposes, but users have to specify the configurations as arguments to Trainer.extend(). For a callable not inheriting this class, the default configurations of this class are used unless the user explicitly specifies them in Trainer.extend() method.

Variables

• trigger – Default value of trigger for this extension. It is set to (1, 'iteration') by default.

• priority – Default priority of the extension. It is set to PRIORITY_READER by default.

Methods

__call__(trainer)

Invokes the extension.
Implementations should override this operator. This method is called at iterations which the corresponding trigger accepts.

**Parameters**

trainer (**Trainer**) – Trainer object that calls this operator.

---

**finalize()**

Finalizes the extension.

This method is called at the end of the training loop.

---

**initialize**(trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, *ExponentialShift* extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The *ExponentialShift* extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

**Parameters**

trainer (**Trainer**) – Trainer object that runs the training loop.

---

**serialize**(serializer)

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

---

`chainer.training.make_extension`

`chainer.training.make_extension(trigger=None, default_name=None, priority=None, finalizer=None, initializer=None, **kwargs)`

Decorator to make given functions into trainer extensions.

This decorator just adds some attributes to a given function. The value of the attributes are given by the arguments of this decorator.

See *Extension* for details of trainer extensions. Most of the default values of arguments also follow those for this class.

**Parameters**

- **trigger** – Default trigger of the extension.
- **default_name** – Default name of the extension. The name of a given function is used by default.
- **priority** (*int*) – Default priority of the extension.
- **finalizer** – Finalizer function of this extension. It is called at the end of the training loop.
- **initializer** – Initializer function of this extension. It is called at the beginning of the training loop.
**Trigger**

Trigger is a callable object to decide when to process some specific event within the training loop. It takes a Trainer object as the argument, and returns True if some event should be fired.

It is mainly used to determine when to call an extension. It is also used to determine when to quit the training loop.

```
chainer.training.get_trigger
```

Gets a trigger object.

**chainer.training.get_trigger**

```
chainer.training.get_trigger(trigger)
```

Gets a trigger object.

Trigger object is a callable that accepts a Trainer object as an argument and returns a boolean value. When it returns True, various kinds of events can occur depending on the context in which the trigger is used. For example, if the trigger is passed to the Trainer as the stop trigger, the training loop breaks when the trigger returns True. If the trigger is passed to the extend() method of a trainer, then the registered extension is invoked only when the trigger returns True.

This function returns a trigger object based on the argument. If trigger is already a callable, it just returns the trigger. If trigger is None, it returns a trigger that never fires. Otherwise, it passes the value to IntervalTrigger.

**Parameters**

- **trigger** -- Trigger object. It can be either an already built trigger object (i.e., a callable object that accepts a trainer object and returns a bool value), or a tuple. In latter case, the tuple is passed to IntervalTrigger.

**Returns**

- trigger if it is a callable, otherwise a IntervalTrigger object made from trigger.

### 2.1.8 Debug mode

In debug mode, Chainer checks values of variables on runtime and shows more detailed error messages. It helps you to debug your programs. However, it requires some additional overhead time.

You can enable debug mode with `chainer.using_config()`:

```
with chainer.using_config('debug', True):
...
```

See Configuring Chainer for Chainer’s configuration mechanism.

You can also set CHAINER_DEBUG environment variable to 1 to enable this mode.

In debug mode, Chainer checks all results of forward and backward computation, and if it finds a NaN value, it raises RuntimeError. Some functions and links also check validity of input values.

You can check if debug mode is enabled with `chainer.is_debug()` function.

```
chainer.is_debug
```

Get the debug mode.

```
chainer.set_debug
```

Set the debug mode.
chainer.is_debug

chainer.is_debug()  
Get the debug mode.

   Returns: Return True if Chainer is in debug mode.
   Return type: bool

chainer.set_debug

chainer.set_debug(debug)  
Set the debug mode.

   Note: This method changes the global state. When you use this method on multi-threading environment, it may affect other threads.

   Parameters: debug (bool) – New debug mode.

Deprecated interface

As of v2.0.0, it is recommended to turn on the debug mode using chainer.config.debug. See Configuring Chainer for the way to use the config object. We leave the reference of the conventional way (which has been available since Chainer v1) as follows.

chainer.DebugMode  
Debug mode context.

chainer.DebugMode

class chainer.DebugMode(debug)  
Debug mode context.

   This class provides a context manager for debug mode. When entering the context, it sets the debug mode to the value of debug parameter with memorizing its original value. When exiting the context, it sets the debug mode back to the original value.

   Deprecated since version v2.0.0: Use chainer.using_config() instead. See Debug mode for details.

   Parameters: debug (bool) – Debug mode used in the context.

   Methods

   __enter__()  
   __exit__(*args)

2.1.9 Configuring Chainer

Chainer provides some global settings that affect the behavior of some functionalities. Such settings can be configured using the unified configuration system. The system provides a transparent way to manage the configuration for each process and for each thread.
The configuration is managed by two global objects: `chainer.global_config` and `chainer.config`.

- The `global_config` object maintains the configuration shared in the Python process. This is an instance of the `GlobalConfig` class. It can be used just as a plain object, and users can freely set any attributes on it.

- The `config` object, on the other hand, maintains the configuration for the current thread. This is an instance of the `LocalConfig` class. It behaves like a thread-local object, and any attribute modifications are only visible to the current thread.

If no value is set to `config` for a given key, `global_config` is transparently referred. Thanks to this transparent lookup, users can always use `config` to read any configuration so that the thread-local configuration is used if available and otherwise the default global setting is used.

The following entries of the configuration are currently provided by Chainer. Some entries support environment variables to set the default values. Note that the default values are set in the global config.

- `chainer.config.cudnn_deterministic` Flag to configure deterministic computations in cuDNN APIs. If it is `True`, convolution functions that use cuDNN use the deterministic mode (i.e., the computation is reproducible). Otherwise, the results of convolution functions using cuDNN may be non-deterministic in exchange for the performance. The default value is `False`.

- `chainer.config.debug` Debug mode flag. If it is `True`, Chainer runs in the debug mode. See Debug mode for more information of the debug mode. The default value is given by `CHAINER_DEBUG` environment variable (set to 0 or 1) if available, otherwise uses `False`.

- `chainer.config.enable_backprop` Flag to enable backpropagation support. If it is `True`, computational graphs are created during forward passes by `FunctionNode`s, allowing backpropagation to start from any `Variable` in the graph. Otherwise, computational graphs are not created but memory consumptions are reduced. So calling `backward()` on the results of a function will not compute any gradients of any input. The default value is `True`.

- `chainer.config.keep_graph_on_report` Flag to configure whether or not to let `report()` keep the computational graph. If it is `False`, `report()` does not keep the computational graph when a `Variable` object is reported. It means that `report()` stores a copy of the `Variable` object which is purged from the computational graph. If it is `True`, `report()` just stores the `Variable` object as is with the computational graph left attached. The default value is `False`.

- `chainer.config.train` Training mode flag. If it is `True`, Chainer runs in training mode. Otherwise, it runs in the testing (evaluation) mode. This configuration alters the behavior of e.g. `chainer.functions.dropout()` and `chainer.functions.batch_normalization()`. It does not reduce memory consumption or affect the creation of computational graphs required in order to compute gradients. The default value is `True`.

- `chainer.config.type_check` Type checking mode flag. If it is `True`, Chainer checks the types (data types and shapes) of inputs on `Function` applications. Otherwise, it skips type checking. The default value is given by `CHAINER_TYPE_CHECK` environment variable (set to 0 or 1) if available, otherwise uses `True`.

- `chainer.config.use_cudnn` Flag to configure whether or not to use cuDNN. This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of each flag is as follows.
  - If it is 'always', Chainer will try to use cuDNN everywhere if possible.
  - If it is 'auto', Chainer will use cuDNN only if it is known that the usage does not degrade the performance.
  - If it is 'never', Chainer will never use cuDNN anywhere.

The default value is 'auto'.

- `chainer.config.autotune` Autotune for convolutional networks flag. If it is `True`, Chainer uses the cuDNN autotune feature to find the fastest calculation process for `chainer.links.Convolution2D`, `ConvolutionND`, `Deconvolution2D`, or `DeconvolutionND` links. The default value is `False`. 
Users can also define their own configurations. There are two ways:

1. Use Chainer's configuration objects. In this case, it is strongly recommended to prefix the name by “user_” to avoid name conflicts with configurations introduced to Chainer in the future.

2. Use your own configuration objects. Users can define their own configuration objects using `chainer.configuration.GlobalConfig` and `chainer.configuration.LocalConfig`. In this case, there is no need to take care of the name conflicts.

Example

If you want to share a setting within the process, set an attribute to the global configuration.

```python
>>> chainer.global_config.user_my_setting = 123
```

This value is automatically extracted by referring to the local config.

```python
>>> chainer.config.user_my_setting
123
```

If you set an attribute to the local configuration, the value is only visible to the current thread.

```python
>>> chainer.config.user_my_setting = 123
```

We often want to temporarily modify the configuration for the current thread. It can be done by using `using_config()`. For example, if you only want to enable debug mode in a fragment of code, write as follows.

```python
>>> with chainer.using_config('debug', True):
... pass # code running in the debug mode
```

We often want to switch to the test mode for an evaluation. This is also done in the same way.

```python
>>> with chainer.using_config('train', False):
... pass # code running in the test mode
```

Note that `Evaluator` automatically switches to the test mode, and thus you do not need to manually switch in the loss function for the evaluation.

You can also make your own code behave differently in training and test modes as follows.

```python
if chainer.config.train:
 pass # code only running in the training mode
else:
 pass # code only running in the test mode
```

`chainer.global_config`	Global configuration of Chainer.
`chainer.config`	Thread-local configuration of Chainer.
`chainer.using_config`	Context manager to temporarily change the thread-local configuration.
`chainer.configuration.GlobalConfig`	The plain object that represents the global configuration of Chainer.
`chainer.configuration.LocalConfig`	Thread-local configuration of Chainer.
chainer.global_config

chainer.global_config = <chainer.configuration.GlobalConfig object>
Global configuration of Chainer.
It is an instance of chainer.configuration.GlobalConfig. See Configuring Chainer for details.

chainer.config

chainer.config = <chainer.configuration.LocalConfig object>
Thread-local configuration of Chainer.
It is an instance of chainer.configuration.LocalConfig, and is referring to global_config as its default configuration. See Configuring Chainer for details.

chainer.using_config

chainer.using_config(name, value, config=chainer.config)
Context manager to temporarily change the thread-local configuration.
Parameters
• name (str) – Name of the configuration to change.
• value – Temporary value of the configuration entry.
• config (LocalConfig) – Configuration object. Chainer’s thread-local configuration is used by default.

chainer.configuration.GlobalConfig

class chainer.configuration.GlobalConfig
The plain object that represents the global configuration of Chainer.

Methods

show (file=sys.stdout)
Prints the global config entries.
The entries are sorted in the lexicographical order of the entry name.
Parameters file – Output file-like object.

chainer.configuration.LocalConfig

class chainer.configuration.LocalConfig (global_config)
Thread-local configuration of Chainer.
This class implements the local configuration. When a value is set to this object, the configuration is only updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically retrieves a value from the global configuration.
Methods

**show** *(file=sys.stdout)*  
Prints the config entries.  
The entries are sorted in the lexicographical order of the entry names.  

**Parameters**  
*file* – Output file-like object.

---

**Example**  
You can easily print the list of configurations used in the current thread.

```python  
>>> chainer.config.show()
debug False
enable_backprop True
train True
type_check True
```

---

2.2 Utilities

2.2.1 Convolution/Deconvolution utilities

---

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>chainer.utils.get_conv_outsize</strong></td>
<td>Calculates output size of convolution.</td>
</tr>
<tr>
<td><strong>chainer.utils.get_deconv_outsize</strong></td>
<td>Calculates output size of deconvolution.</td>
</tr>
</tbody>
</table>

---

**chainer.utils.get_conv_outsize**  

**chainer.utils.get_conv_outsize** *(size, k, s, p, cover_all=False, d=1)*  
Calculates output size of convolution.  
This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then calculates the output feature map size of that dimension.  

**See also:**  
*get_deconv_outsize()*

---

**Parameters**

- **size** *(int)* – The size of input feature map. It usually is the length of a side of feature map.  
- **k** *(int)* – The size of convolution kernel.  
- **s** *(int)* – The size of stride.  
- **p** *(int)* – The size of padding.  
- **cover_all** *(bool)* – Use cover_all option or not.  
- **d** *(int)* – The size of dilation.  

**Returns**  
The expected output size of the convolution operation.  
**Return type**  
int
chainer.utils.get_deconv_outsize

chainer.utils.get_deconv_outsize(size, k, s, p, cover_all=False)
Calculates output size of deconvolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then calculates the output feature map size of that dimension.

See also:
get_conv_outsize()

Parameters

- **size** (int) – The size of input feature map. It usually is the length of a side of feature map.
- **k** (int) – The size of deconvolution kernel.
- **s** (int) – The size of stride.
- **p** (int) – The size of padding.
- **cover_all** (bool) – Use cover_all option or not.

Returns The expected output size of the deconvolution operation.

Return type int

2.2.2 CUDA utilities

Device, context and memory management on CuPy.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU computation. Following modules and classes defined in CuPy are imported to chainer.cuda module for convenience (refer to this table when reading chainer’s source codes).

<table>
<thead>
<tr>
<th>imported name</th>
<th>original name</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.cuda.cupy</td>
<td>cupy</td>
</tr>
<tr>
<td>chainer.cuda.ndarray</td>
<td>cupy.ndarray</td>
</tr>
<tr>
<td>chainer.cuda.cupy.cuda</td>
<td>cupy.cuda</td>
</tr>
<tr>
<td>chainer.cuda.Device</td>
<td>cupy.cuDevice</td>
</tr>
<tr>
<td>chainer.cuda.Event</td>
<td>cupy.cuEvent</td>
</tr>
<tr>
<td>chainer.cuda.Stream</td>
<td>cupy.cuStream</td>
</tr>
</tbody>
</table>

Chainer replaces the default allocator of CuPy by its memory pool implementation. It enables us to reuse the device memory over multiple forward/backward computations, and temporary arrays for consecutive elementwise operations.

Devices

<table>
<thead>
<tr>
<th>chainer.cuda.get_device</th>
<th>Gets the device from a device object, an ID integer or an array object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.cuda.get_device_from_id</td>
<td>Gets the device from an ID integer.</td>
</tr>
<tr>
<td>chainer.cuda.get_device_from_array</td>
<td>Gets the device from a list of CuPy array or a single CuPy array.</td>
</tr>
</tbody>
</table>
**chainer.cuda.get_device**

chainer.cuda.get_device(*args)*

Gets the device from a device object, an ID integer or an array object.

**Note:** This API is deprecated. Please use `get_device_from_id()` or `get_device_from_array()` instead.

This is a convenient utility to select a correct device if the type of arg is unknown (i.e., one can use this function on arrays that may be on CPU or GPU). The returned device object supports the context management protocol of Python for the `with` statement.

- **Parameters**
  - `args` – Values to specify a GPU device. The first device object, integer or `cupy.ndarray` object is used to select a device. If it is a device object, it is returned. If it is an integer, the corresponding device is returned. If it is a CuPy array, the device on which this array reside is returned. If any arguments are neither integers nor CuPy arrays, a dummy device object representing CPU is returned.

- **Returns**
  - Device object specified by given `args`.

**See also:**

See `cupy.cuda.Device` for the device selection not by arrays.

**chainer.cuda.get_device_from_id**

chainer.cuda.get_device_from_id(device_id)*

Gets the device from an ID integer.

- **Parameters**
  - `device_id` (`int` or `None`) – The ID of the device which this function returns.

**chainer.cuda.get_device_from_array**

chainer.cuda.get_device_from_array(*arrays)*

Gets the device from a list of CuPy array or a single CuPy array.

The device on which the given CuPy array reside is returned.

- **Parameters**
  - `array` (`cupy.ndarray` or list of `cupy.ndarray`) – A CuPy array which this function returns the device corresponding to. If a list of `cupy.ndarrays` are given, it returns the first device object of an array in the list.

**CuPy array allocation and copy**

- **chainer.cuda.copy**
  - Copies a `cupy.ndarray` object using the default stream.

- **chainer.cuda.to_cpu**
  - Copies the given GPU array to host CPU.

- **chainer.cuda.to_gpu**
  - Copies the given CPU array to the specified device.

**chainer.cuda.copy**

chainer.cuda.copy(array, out=None, out_device=None, stream=None)*

Copies a `cupy.ndarray` object using the default stream.
This function can copy the device array to the destination array on another device.

Parameters

• `array (cupy.ndarray)` – Array to be copied.

• `out (cupy.ndarray)` – Destination array. If it is not `None`, then `out_device` argument is ignored.

• `out_device` – Destination device specifier. Actual device object is obtained by passing this value to `get_device()`.

• `stream (cupy.cuda.Stream)` – CUDA stream.

Returns

Copied array.

If `out` is not specified, then the array is allocated on the device specified by `out_device` argument.

Return type `cupy.ndarray`

chainer.cuda.to_cpu

chainer.cuda.to_cpu (array, stream=\texttt{None})

Copies the given GPU array to host CPU.

Parameters

• `array (numpy.ndarray, cupy.ndarray, None, list or tuple)` – Array or arrays to be sent to CPU.

• `stream (cupy.cuda.Stream)` – CUDA stream.

Returns

Array on CPU.

If some of the arrays are already on CPU, then this function just returns those arrays without performing any copy.

If input arrays include `None`, it is returned as `None` as is.

Return type `numpy.ndarray, list or tuple`

chainer.cuda.to_gpu

chainer.cuda.to_gpu (array, device=\texttt{None}, stream=\texttt{None})

Copies the given CPU array to the specified device.

Parameters

• `array (numpy.ndarray, cupy.ndarray, None, list or tuple)` – Array or arrays to be sent to GPU.

• `device` – Device specifier.

• `stream (Stream)` – (deprecated since v3.0.0) CUDA stream. If not `None`, the copy runs asynchronously.
Returns

Array or arrays on GPU.

If some of the arrays are already on GPU, then this function just returns those arrays without performing any copy.

If input arrays include None, it is returned as None as is.

Return type  cupy.ndarray, list or tuple

Kernel definition utilities

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.cuda.memoize</td>
<td>Makes a function memoizing the result for each argument and device.</td>
</tr>
<tr>
<td>chainer.cuda.clear_memo</td>
<td>Clears the memoized results for all functions decorated by memoize.</td>
</tr>
<tr>
<td>chainer.cuda.elementwise</td>
<td>Creates an elementwise kernel function.</td>
</tr>
<tr>
<td>chainer.cuda.reduce</td>
<td>Creates a global reduction kernel function.</td>
</tr>
</tbody>
</table>

chainer.cuda.memoize

chainer.cuda.memoize(for_each_device=False)

Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that this function can be used in the global scope even if CUDA is not available. In such case, this function does nothing.

Note: This decorator acts as a dummy if CUDA is not available. It cannot be used for general purpose memoization even if for_each_device is set to False.

chainer.cuda.clear_memo

chainer.cuda.clear_memo()

Clears the memoized results for all functions decorated by memoize.

This function works like cupy.clear_memo() as a counterpart for chainer.cuda.memoize(). It can be used even if CUDA is not available. In such a case, this function does nothing.

chainer.cuda.elementwise

chainer.cuda.elementwise(in_params, out_params, operation, name, **kwargs)

Creates an elementwise kernel function.

This function uses memoize() to cache the kernel object, i.e. the resulting kernel object is cached for each argument combination and CUDA device.

The arguments are the same as those for cupy.ElementwiseKernel, except that the name argument is mandatory.
chainer.cuda.reduce

chainer.cuda.reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr, identity, name, **kwargs)

Creates a global reduction kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached for each argument combination and CUDA device.

The arguments are the same as those for cupy.ReductionKernel, except that the name argument is mandatory.

CPU/GPU generic code support

chainer.cuda.get_array_module

chainer.cuda.get_array_module(*args)

Gets an appropriate one from numpy or cupy.

Parameters args – Values to determine whether NumPy or CuPy should be used.

Returns cupy or numpy is returned based on the types of the arguments.

Return type module

cuDNN support

chainer.cuda.set_max_workspace_size

chainer.cuda.set_max_workspace_size(size)

Sets the workspace size for cuDNN.

Parameters size – The workspace size for cuDNN.

chainer.cuda.get_max_workspace_size

chainer.cuda.get_max_workspace_size()

Gets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

Returns The workspace size for cuDNN.

Return type int
2.2.3 Common algorithms

chainer.utils.WalkerAlias

Implementation of Walker’s alias method.

class chainer.utils.WalkerAlias(probs)

This method generates a random sample from given probabilities \(p_1, \ldots, p_n\) in \(O(1)\) time. It is more efficient than \texttt{choice()}. This class works on both CPU and GPU.

Parameters:

- \texttt{probs} (float list) – Probabilities of entries. They are normalized with \(\text{sum}(probs)\).

See: Wikipedia article

Methods

- \texttt{sample}(shape)

  Generates a random sample based on given probabilities.

  Parameters:

  - \texttt{shape} (tuple of int) – Shape of a return value.

  Returns:

  Returns a generated array with the given shape. If a sampler is in CPU mode the return value is a \texttt{numpy.ndarray} object, and if it is in GPU mode the return value is a \texttt{cupy.ndarray} object.

- \texttt{sample_cpu}(shape)

- \texttt{sample_gpu}(shape)

- \texttt{to_cpu}()

  Make a sampler CPU mode.

- \texttt{to_gpu}()

  Make a sampler GPU mode.

2.2.4 Reporter

Reporter

chainer.Reporter

Object to which observed values are reported.

class chainer.Reporter

Object to which observed values are reported.

Reporter is used to collect values that users want to watch. The reporter object holds a mapping from value names to the actually observed values. We call this mapping \textit{observations}.
When a value is passed to the reporter, an object called *observer* can be optionally attached. In this case, the name of the observer is added as the prefix of the value name. The observer name should be registered beforehand.

See the following example:

```python
>>> from chainer import Reporter, report, report_scope
>>> reporter = Reporter()
>>> observer = object() # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer', observer)
>>> observation = {}
>>> with reporter.scope(observation):
... reporter.report({'x': 1}, observer)
...>>> observation
{'my_observer/x': 1}
```

There are also a global API to add values:

```python
>>> observation = {}
>>> with report_scope(observation):
... report({'x': 1}, observer)
...>>> observation
{'my_observer/x': 1}
```

The most important application of Reporter is to report observed values from each link or chain in the training and validation procedures. *Trainer* and some extensions prepare their own Reporter object with the hierarchy of the target link registered as observers. We can use `report()` function inside any links and chains to report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

**Variables**

- **observation** – Dictionary of observed values.

**Methods**

- **__enter__()**
  - Makes this reporter object current.

- **__exit__(exc_type, exc_value, traceback)**
  - Recovers the previous reporter object to the current.

- **add_observer(name, observer)**
  - Registers an observer of values.
  
  Observer defines a scope of names for observed values. Values observed with the observer are registered with names prefixed by the observer name.

  **Parameters**
  
  - **name** *(str)* – Name of the observer.
  
  - **observer** – The observer object. Note that the reporter distinguishes the observers by their object ids (i.e., `id(owner)`), rather than the object equality.

- **add_observers(prefix, observers)**
  - Registers multiple observers at once.

  This is a convenient method to register multiple objects at once.
Parameters

- **prefix** (*str*) – Prefix of each name of observers.
- **observers** – Iterator of name and observer pairs.

**report** *(values, observer=None)*

Reports observed values.

The values are written with the key, prefixed by the name of the observer object if given.

**Note:** As of v2.0.0, if a value is of type *Variable*, the variable is copied without preserving the computational graph and the new variable object purged from the graph is stored to the observer. This behavior can be changed by setting `chainer.config.keep_graph_on_report` to `True`.

Parameters

- **values** (*dict*) – Dictionary of observed values.
- **observer** – Observer object. Its object ID is used to retrieve the observer name, which is used as the prefix of the registration name of the observed value.

**scope** *(observation)*

Creates a scope to report observed values to *observation*.

This is a context manager to be passed to `with` statements. In this scope, the observation dictionary is changed to the given one.

It also makes this reporter object current.

**Parameters**

- **observation** (*dict*) – Observation dictionary. All observations reported inside of the `with` statement are written to this dictionary.

**chainer.get_current_reporter**

`chainer.get_current_reporter()`

Returns the current reporter object.

**chainer.report**

`chainer.report(values, observer=None)`

Reports observed values with the current reporter object.

Any reporter object can be set current by the `with` statement. This function calls the `Report.report()` method of the current reporter. If no reporter object is current, this function does nothing.

**Example**

The most typical example is a use within links and chains. Suppose that a link is registered to the current reporter as an observer (for example, the target link of the optimizer is automatically registered to the reporter of the `Trainer`). We can report some values from the link as follows:

```python
class MyRegressor(chainer.Chain):
 def __init__(self, predictor):
 super(MyRegressor, self).__init__(predictor=predictor)
```
```python
def __call__(self, x, y):
 # This chain just computes the mean absolute and squared errors between the prediction and y.
 pred = self.predictor(x)
 abs_error = F.sum(F.abs(pred - y)) / len(x.data)
 loss = F.mean_squared_error(pred, y)

 # Report the mean absolute and squared errors.
 report({'abs_error': abs_error, 'squared_error': loss}, self)

 return loss
```

If the link is named 'main' in the hierarchy (which is the default name of the target link in the StandardUpdater), these reported values are named 'main/abs_error' and 'main/squared_error'. If these values are reported inside the Evaluator extension, 'validation/' is added at the head of the link name, thus the item names are changed to 'validation/main/abs_error' and 'validation/main/squared_error' ('validation' is the default name of the Evaluator extension).

**Parameters**

- **values** (`dict`) – Dictionary of observed values.
- **observer** – Observer object. Its object ID is used to retrieve the observer name, which is used as the prefix of the registration name of the observed value.

**chainer.report_scope**

```python
chainer.report_scope(\observation)
```

Returns a report scope with the current reporter. This is equivalent to `get_current_reporter().scope(\observation)`, except that it does not make the reporter current redundantly.

**Summary and DictSummary**

<table>
<thead>
<tr>
<th><code>chainer.Summary</code></th>
<th>Online summarization of a sequence of scalars.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.DictSummary</code></td>
<td>Online summarization of a sequence of dictionaries.</td>
</tr>
</tbody>
</table>

**chainer.Summary**

```python
class chainer.Summary
```

Online summarization of a sequence of scalars.

Summary computes the statistics of given scalars online.

**Methods**

- **add** (`value`)  
  Adds a scalar value.
Parameters

value – Scalar value to accumulate. It is either a NumPy scalar or a zero-dimensional array (on CPU or GPU).

compute_mean()
Computes the mean.

make_statistics()
Computes and returns the mean and standard deviation values.

Returns Mean and standard deviation values.
Return type tuple

chainer.DictSummary

class chainer.DictSummary
Online summarization of a sequence of dictionaries.

DictSummary computes the statistics of a given set of scalars online. It only computes the statistics for scalar values and variables of scalar values in the dictionaries.

Methods

add(d)
Adds a dictionary of scalars.

Parameters d (dict) – Dictionary of scalars to accumulate. Only elements of scalars, zero-dimensional arrays, and variables of zero-dimensional arrays are accumulated.

compute_mean()
Creates a dictionary of mean values.

It returns a single dictionary that holds a mean value for each entry added to the summary.

Returns Dictionary of mean values.
Return type dict

make_statistics()
Creates a dictionary of statistics.

It returns a single dictionary that holds mean and standard deviation values for every entry added to the summary. For an entry of name 'key', these values are added to the dictionary by names 'key' and 'key.std', respectively.

Returns Dictionary of statistics of all entries.
Return type dict

serialize(serializer)

2.2.5 Experimental feature annotation

chainer.utils.experimental
Declares that user is using an experimental feature.
chainer.utils.experimental

chainer.utils.experimental(api_name)
Declares that user is using an experimental feature.

The developer of an API can mark it as experimental by calling this function. When users call experimental
APIs, FutureWarning is issued. The presentation of FutureWarning is disabled by setting chainer.
disable_experimental_feature_warning to True, which is False by default.

The basic usage is to call it in the function or method we want to mark as experimental along with the API name.

```python
from chainer import utils

def f(x):
 utils.experimental('chainer.foo.bar.f')
 # concrete implementation of f follows
f(1)
```

... FutureWarning: chainer.foo.bar.f is experimental. The interface can change in the future. ...

We can also make a whole class experimental. In that case, we should call this function in its __init__ method.

```python
class C():
 def __init__(self):
 utils.experimental('chainer.foo.C')

C()
```

... FutureWarning: chainer.foo.C is experimental. The interface can change in the future. ...

If we want to mark __init__ method only, rather than class itself, it is recommended that we explicitly feed
its API name.

```python
class D():
 def __init__(self):
 utils.experimental('D.__init__')

D()
```

... FutureWarning: D.__init__ is experimental. The interface can change in the future. ...

Currently, we do not have any sophisticated way to mark some usage of non-experimental function as experi-
mental. But we can support such usage by explicitly branching it.

```python
def g(x, experimental_arg=None):
 if experimental_arg is not None:
 utils.experimental('experimental_arg of chainer.foo.g')
```

Parameters

api_name (str) – The name of an API marked as experimental.
2.3 Assertion and Testing

Chainer provides some facilities to make debugging easy.

2.3.1 Type checking utilities

*FunctionNode* uses a systematic type checking of the `chainer.utils.type_check` module. It enables users to easily find bugs of forward and backward implementations. You can find examples of type checking in some function implementations.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.utils.type_check.Expr</code></td>
<td>Abstract syntax tree of an expression.</td>
</tr>
<tr>
<td><code>chainer.utils.type_check.expect</code></td>
<td>Evaluates and tests all given expressions.</td>
</tr>
<tr>
<td><code>chainer.utils.type_check.TypeInfo</code></td>
<td>Type information of an input/gradient array.</td>
</tr>
<tr>
<td><code>chainer.utils.type_check.TypeInfoTuple</code></td>
<td>Type information of input/gradient tuples.</td>
</tr>
</tbody>
</table>

### `chainer.utils.type_check.Expr`

**class** `chainer.utils.type_check.Expr(priority)`

Abstract syntax tree of an expression.

It represents an abstract syntax tree, and isn’t a value. You can get its actual value with `eval()` function, and get syntax representation with the `__str__()` method. Each comparison operator (e.g. `==`) generates a new `Expr` object which represents the result of comparison between two expressions.

**Example**

Let \( x \) and \( y \) be instances of `Expr`, then

```python
>>> x = Variable(1, 'x')
>>> y = Variable(1, 'y')
>>> c = (x == y)
```

is also an instance of `Expr`. To evaluate and get its value, call `eval()` method:

```python
>>> c.eval()
True
```

Call `str` function to get a representation of the original equation:

```python
>>> str(c)
'x == y'
```

You can actually compare an expression with a value:

```python
>>> (x == 1).eval()
True
```

Note that you can’t use boolean operators such as `and`, as they try to cast expressions to boolean values:

```python
>>> z = Variable(1, 'z')
>>> x == y and y == z # raises an error
Traceback (most recent call last):
RuntimeError: Don't convert Expr to bool. Please call Expr.eval method to evaluate expression.
```
Methods

__call__(*args)
__getitem__(key)
eval()
    Evaluates the tree to get actual value.
    Behavior of this function depends on an implementation class. For example, a binary operator + calls the __add__ function with the two results of eval() function.
__eq__(x, y)
__ne__(x, y)
__lt__(x, y)
__le__(x, y)
__gt__(x, y)
__ge__(x, y)
__nonzero__()
__bool__()

chainer.utils.type_check.expect

chainer.utils.type_check.expect(*bool_exprs)
    Evaluates and tests all given expressions.
    This function evaluates given boolean expressions in order. When at least one expression is evaluated as False, that means the given condition is not satisfied. You can check conditions with this function.
    Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to evaluate.

chainer.utils.type_check.TypeInfo

class chainer.utils.type_check.TypeInfo(shape, dtype)
    Type information of an input/gradient array.
    It contains type information of an array, such as the shape of array and the number of dimensions. This information is independent of CPU or GPU array.

Methods

chainer.utils.type_check.TypeInfoTuple

class chainer.utils.type_check.TypeInfoTuple
    Type information of input/gradient tuples.
It is a sub-class of tuple containing `TypeInfo`. The i-th element of this object contains type information of the i-th input/gradient data. As each element is `Expr`, you can easily check its validity.

**Methods**

- **count**(value) → integer – return number of occurrences of value
- **index**(value[, start[, stop]]) → integer – return first index of value. Raises ValueError if the value is not present.
- **size**()
  Returns an expression representing its length.

  **Returns** An expression object representing length of the tuple.

  **Return type** `Expr`

### 2.3.2 Gradient checking utilities

Most function implementations are numerically tested by gradient checking. This method computes numerical gradients of forward routines and compares their results with the corresponding backward routines. It enables us to make the source of issues clear when we hit an error of gradient computations. The `chainer.gradient_check` module makes it easy to implement the gradient checking.

- **chainer.gradient_check.check_backward**
- **chainer.gradient_check.numerical_grad**

**chainer.gradient_check.check_backward**

Test backward procedure of a given function.

This function automatically checks the backward-process of a given function to ensure that the computed gradients are approximately correct. For example, assuming you’ve defined a `FunctionNode` class `MyFunc`, that takes two arguments and returns one value, you can wrap it in a ordinary function and check its gradient computations as follows:

```python
>>> def test_my_func(self):
... def func(xs):
... y, = MyFunc().apply(xs)
... return y
... x1_data = xp.array(...) # x_data
... x2_data = xp.array(...) # x_data
... gy_data = xp.array(...) # y_data
... check_backward(func, (x1_data, x2_data), gy_data)
```

This method creates `Variable` objects with `x_data` and calls `func` with the `Variables` to get its result as `Variable`. Then, it sets `y_grad` array to `grad` attribute of the result and calls `backward` method to get gradients of the inputs. To check correctness of the gradients, the function calls `numerical_grad()` to calculate numerically the gradients and compares the types of gradients with `chainer.testing.assert_allclose()`.
To reduce computational time, it uses directional derivative along a random vector. A function $g : \mathbb{R} \to \mathbb{R}^n$ is defined as $g(\delta) = f(x + \delta r)$, where $\delta \in \mathbb{R}$, $r \in \mathbb{R}^n$ is a random vector and $f$ is a function which you want to test. Its gradient is

$$g'(\delta) = f'(x + \delta r) \cdot r.$$ 

Therefore, $g'(0) = f'(x) \cdot r$. So we can check the correctness of back propagation of $f$ indirectly by comparing this equation with the gradient of $g$ numerically calculated and that of $f$ computed by backprop. If $r$ is chosen from uniform distribution, we can conclude with high probability that the gradient of $f$ itself is correct.

If input objects (x1_data or/and x2_data in this example) represent integer variables, their gradients are ignored.

You can simplify a test when MyFunc gets only one argument:

```python
>>> check_backward(func, x1_data, gy_data)
```

If MyFunc is a loss function which returns a zero-dimensional array, pass None to gy_data. In this case, it sets 1 to grad attribute of the result:

```python
>>> check_backward(my_loss_func, (x1_data, x2_data), None)
```

If MyFunc returns multiple outputs, pass all gradients for outputs as a tuple:

```python
>>> gy1_data = xp.array(...)
>>> gy2_data = xp.array(...)
>>> check_backward(func, x1_data, (gy1_data, gy2_data))
```

You can also test a `Link`. To check gradients of parameters of the link, set a tuple of the parameters to `params` arguments:

```python
>>> check_backward(my_link, (x1_data, x2_data), gy_data,
>> (my_link.W, my_link.b))
```

Note that `params` are not ndarrays, but Variables.

Function objects are acceptable as `func` argument:

```python
>>> check_backward(lambda x1, x2: f(x1, x2),
>> (x1_data, x2_data), gy_data)
```

Note: `func` is called many times to get numerical gradients for all inputs. This function doesn’t work correctly when `func` behaves randomly as it gets different gradients.

### Parameters

- **func (callable)** – A function which gets Variables and returns Variables. `func` must returns a tuple of Variables or one Variable. You can use a Function, FunctionNode or a Link object or any other function satisfying the condition.

- **x_data (ndarray or tuple of ndarrays)** – A set of ndarrays to be passed to `func`. If `x_data` is one ndarray object, it is treated as (x_data,).

- **y_grad (ndarray or tuple of ndarrays or None)** – A set of ndarrays representing gradients of return-values of `func`. If `y_grad` is one ndarray object, it is treated as (y_grad,). If `func` is a loss-function, `y_grad` should be set to None.
• **params** (*Variable or tuple of ~chainer.Variable*) — A set of Variables whose gradients are checked. When `func` is a Link object, set its parameters as `params`. If `params` is one Variable object, it is treated as `(params,)`.

• **eps** (*float*) — Epsilon value to be passed to `numerical_grad()`.

• **atol** (*float*) — Absolute tolerance to be passed to `chainer.testing.assert_allclose()`.

• **rtol** (*float*) — Relative tolerance to be passed to `chainer.testing.assert_allclose()`.

• **no_grads** (*list of bool*) — Flag to skip variable for gradient assertion. It should be same length as `x_data`.

• **dtype** (*dtype*) — `x_data`, `y_grad` and `params` are casted to this dtype when calculating numerical gradients. Only float types and `None` are allowed.

See also:

`numerical_grad()`

### chainer.gradient_check.numerical_grad

`chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001)`

Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of `chainer.functions`.

**Parameters**

• **f** (*function*) — Python function with no arguments that runs forward computation and returns the result.

• **inputs** (*tuple of arrays*) — Tuple of arrays that should be treated as inputs. Each element of them is slightly modified to realize numerical gradient by finite differences.

• **grad_outputs** (*tuple of arrays*) — Tuple of arrays that are treated as output gradients.

• **eps** (*float*) — Epsilon value of finite differences.

**Returns** Numerical gradient arrays corresponding to `inputs`.

**Return type** tuple

### 2.3.3 Standard Assertions

The assertions have same names as NumPy's ones. The difference from NumPy is that they can accept both `numpy.ndarray` and `cupy.ndarray`.

| chainer.testing.assert_allclose | Asserts if some corresponding element of `x` and `y` differs too much. |
chainer.testing.assert_allclose

counter

chainer.testing.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)

Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.

Parameters

- x – Left-hand-side array.
- y – Right-hand-side array.
- atol (float) – Absolute tolerance.
- rtol (float) – Relative tolerance.
- verbose (bool) – If True, it outputs verbose messages on error.

2.3.4 Function testing utilities

Chainer provides some utilities for testing its functions.

chainer.testing.unary_math_function_unittest

chainer.testing.unary_math_function_unittest(func, func_expected=None, label_expected=None, make_data=None, is_linear=False, forward_options=None, backward_options=None, double_backward_options=None)

Decorator for testing unary mathematical Chainer functions.

This decorator makes test classes test unary mathematical Chainer functions. Tested are forward and backward, including double backward, computations on CPU and GPU across parameterized shape and dtype.

Parameters

- func (function or Function) – Chainer function to be tested by the decorated test class. Taking Function is for backward compatibility.
- func_expected – Function used to provide expected values for testing forward computation. If not given, a corresponding numpy function for func is implicitly picked up by its name.
- label_expected (string) – String used to test labels of Chainer functions. If not given, the name of func is implicitly used.
- make_data – Function to customize input and gradient data used in the tests. It takes shape and dtype as its arguments, and returns a tuple of input, gradient and double gradient data. By default, uniform distribution ranged [-1, 1] is used for all of them.
- is_linear (bool) – Tells the decorator that func is a linear function so that it wraps func as a non-linear function to perform double backward test. The default value is False.
- forward_options (dict) – Options to be specified as an argument of chainer.testing.assert_allclose() function. If not given, preset tolerance values are au-
tomatically selected.

- **backward_options** (`dict`) – Options to be specified as an argument of `chainer.gradient_check.check_backward()` function. If not given, preset tolerance values are automatically selected depending on `dtype`.

- **double_backward_options** (`dict`) – Options to be specified as an argument of `chainer.gradient_check.check_double_backward()` function. If not given, preset tolerance values are automatically selected depending on `dtype`.

The decorated test class tests forward, backward and double backward computations on CPU and GPU across the following `parameterize()` ed parameters:

- shape: rank of zero, and rank of more than zero
- `dtype`: `numpy.float16`, `numpy.float32` and `numpy.float64`

Additionally, it tests the label of the Chainer function.

Chainer functions tested by the test class decorated with the decorator should have the following properties:

- Unary, taking one parameter and returning one value
- `dtype` of input and output are the same
- Elementwise operation for the supplied ndarray

**Example**

The following code defines a test class that tests `sin()` Chainer function, which takes a parameter with `dtype` of float and returns a value with the same `dtype`.

```python
>>> import unittest
>>> from chainer import testing
>>> from chainer import functions as F

>>> @testing.unary_math_function_unittest(F.sin)
... class TestSin(unittest.TestCase):
... pass
```

Because the test methods are implicitly injected to `TestSin` class by the decorator, it is enough to place `pass` in the class definition.

To customize test data, `make_data` optional parameter can be used. The following is an example of testing `sqrt` Chainer function, which is tested in positive value domain here instead of the default input.

```python
>>> import numpy

>>> def make_data(shape, dtype):
... x = numpy.random.uniform(0.1, 1, shape).astype(dtype)
... gy = numpy.random.uniform(-1, 1, shape).astype(dtype)
... ggx = numpy.random.uniform(-1, 1, shape).astype(dtype)
... return x, gy, ggx

>>> @testing.unary_math_function_unittest(F.sqrt, make_data=make_data)
... class TestSqrt(unittest.TestCase):
... pass
```
make_data function which returns input, gradient and double gradient data generated in proper value domains with given shape and dtype parameters is defined, then passed to the decorator’s make_data parameter.

2.4 Standard Function implementations

Chainer provides basic FunctionNode implementations in the chainer.functions package. Most of them are wrapped by plain Python functions, which users should use.

Note: As of v1.5, the concept of parameterized functions are gone, and they are replaced by corresponding Link implementations. They are still put in the functions namespace for backward compatibility, though it is strongly recommended to use them via the chainer.links package.

2.4.1 Activation functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.clipped_relu</td>
<td>Clipped Rectifier Unit function.</td>
</tr>
<tr>
<td>chainer.functions.crelu</td>
<td>Concatenated Rectified Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.elu</td>
<td>Exponential Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.leaky_relu</td>
<td>Leaky Rectified Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.log_softmax</td>
<td>Channel-wise log-softmax function.</td>
</tr>
<tr>
<td>chainer.functions.lstm</td>
<td>Long Short-Term Memory units as an activation function.</td>
</tr>
<tr>
<td>chainer.functions.maxout</td>
<td>Maxout activation function.</td>
</tr>
<tr>
<td>chainer.functions.prelu</td>
<td>Parametric ReLU function.</td>
</tr>
<tr>
<td>chainer.functions.relu</td>
<td>Rectified Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.sigmoid</td>
<td>Scaled Exponential Linear Unit function.</td>
</tr>
<tr>
<td>chainer.functions.sigmoidlogistic</td>
<td>Element-wise sigmoid logistic function.</td>
</tr>
<tr>
<td>chainer.functions.ssoftmax</td>
<td>S-LSTM units as an activation function.</td>
</tr>
<tr>
<td>chainer.functions.softmax</td>
<td>Softmax function.</td>
</tr>
<tr>
<td>chainer.functions.softplus</td>
<td>Element-wise softplus function.</td>
</tr>
<tr>
<td>chainer.functions.tanh</td>
<td>Elementwise hyperbolic tangent function.</td>
</tr>
<tr>
<td>chainer.functions.tree_lstm</td>
<td>TreeLSTM unit as an activation function.</td>
</tr>
</tbody>
</table>

chainer.functions.clipped_relu

chainer.functions.clipped_relu(x, z=20.0)

Clipped Rectifier Unit function.

For a clipping value z(> 0), it computes

\[
\text{ClippedReLU}(x, z) = \min(\max(0, x), z).
\]

Parameters

- \(x\) (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_n)\)-shaped float array.
- \(z\) (float) – Clipping value. (default = 20.0)

Returns Output variable. A \((s_1, s_2, ..., s_n)\)-shaped float array.
Return type  Variable

Example

```python
>>> x = np.random.uniform(-100, 100, (10, 20)).astype('f')
>>> z = 10.0
>>> np.any(x < 0)
True
>>> np.any(x > z)
True
>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.data < 0)
False
>>> np.any(y.data > z)
False
```

chainer.functions.crelu

chainer.functions.crelu(x, axis=1)

Concatenated Rectified Linear Unit function.

This function is expressed as follows

\[
 f(x) = (\max(0, x), \max(0, -x)).
\]

Here, two output values are concatenated along an axis.

See: https://arxiv.org/abs/1603.05201

Parameters

- `x` (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- `axis` (int) – Axis that the output values are concatenated along. Default is 1.

Returns

Output variable of concatenated array. If the axis is 1, A \((s_1, s_2 \times 2, ..., s_N)\)-shaped float array.

Return type  Variable

Example

```python
>>> x = np.array([[-1, 0], [2, -3]], 'f')
>>> x
array([[-1., 0.],
 [2., -3.]], dtype=float32)
>>> y = F.crelu(x, axis=1)
>>> y.data
array([[0., 0., 1., 0.],
 [2., 0., 0., 3.]], dtype=float32)
```
**chainer.functions.elu**

**chainer.functions.elu(x, alpha=1.0)**

Exponential Linear Unit function.

For a parameter $\alpha$, it is expressed as

$$f(x) = \begin{cases} 
  x & \text{if } x \geq 0 \\
  \alpha(\exp(x) - 1) & \text{if } x < 0,
\end{cases}$$


**Parameters**

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable. A $(s_1, s_2, ..., s_N)$-shaped float array.

- **alpha** *(float)* – Parameter $\alpha$. Default is 1.0.

**Returns** Output variable. A $(s_1, s_2, ..., s_N)$-shaped float array.

**Return type** *Variable*

**Example**

```python
>>> x = np.array([[-1, 0], [2, -3]], 'f')
>>> x
array([[-1., 0.],
 [2., -3.]], dtype=float32)
>>> y = F.elu(x, alpha=1.)
>>> y.data
array([[-0.63212055, 0.],
 [2., -0.95021296]], dtype=float32)
```

**chainer.functions.hard_sigmoid**

**chainer.functions.hard_sigmoid(x)**

Element-wise hard-sigmoid function.

This function is defined as

$$f(x) = \begin{cases} 
  0 & \text{if } x < -2.5 \\
  0.2x + 0.5 & \text{if } -2.5 < x < 2.5 \\
  1 & \text{if } 2.5 < x.
\end{cases}$$

**Parameters**

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable. A $(s_1, s_2, ..., s_N)$-shaped float array.

**Returns** Output variable. A $(s_1, s_2, ..., s_N)$-shaped float array.

**Return type** *Variable*

**Example**

It maps the input values into the range of $[0, 1]$. 
```python
>>> x = np.array([-2.6, -1, 0, 1, 2.6])
array([-2.6, -1., 0., 1., 2.6])
>>> F.hard_sigmoid(x).data
array([0. , 0.3, 0.5, 0.7, 1.])
```

```python
chainer.functions.leaky_relu
chainer.functions.leaky_relu(x, slope=0.2)
Leaky Rectified Linear Unit function.

This function is expressed as

\[
 f(x) = \begin{cases}
 x & \text{if } x \geq 0 \\
 ax & \text{if } x < 0,
 \end{cases}
\]

where \(a\) is a configurable slope value.

Parameters
- **x** *(Variable or numpy.ndarray or cupy.ndarray)* — Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **slope** *(float)* — Slope value \(a\).

Returns Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*

Example
```python
>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], 'f')
array([[-1.,  0.],
       [ 2., -3.],
       [-2.,  1.]], dtype=float32)
>>> F.leaky_relu(x, slope=0.2).data
array([[ 0.2,  0. ],
       [ 2., -0.6],
       [-0.4,  1. ]], dtype=float32)
```

```python
chainer.functions.log_softmax
chainer.functions.log_softmax(x)
Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let \(c = (c_1, c_2, ..., c_D)\) be the slice of \(x\) along with the second axis. For each slice \(c\), it computes the logarithm of the function \(f(c)\) defined as

\[
    f(c) = \frac{\exp(c)}{\sum_d \exp(c_d)}.
\]

This method is theoretically equivalent to \(\log(\text{softmax}(x))\) but is more stable.
Note: log(softmax(x)) may cause underflow when x is too small, because softmax(x) may returns 0. log_softmax method is more stable.

Parameters x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A n-dimensional (n ≥ 2) float array.

Returns Output variable. A n-dimensional (n ≥ 2) float array, which is the same shape with x.

Return type Variable

See also:
softmax()

Example

```python
def softmax(x):
 return x - np.max(x)

def log_softmax(x):
 return softmax(x) - np.log(np.sum(softmax(x)))

x = np.array([[0, 1, 2], [0, 2, 4]], 'f')
x
array([[0. , 1. , 2.],
 [0. , 2. , 4.]], dtype=float32)
F.log_softmax(x).data
array([-2.407606 , -1.4076059 , -0.4076059],
 [-4.1429315 , -2.1429315 , -0.14293146]], dtype=float32)
np.allclose(F.log_softmax(x).data, F.log(F.softmax(x)).data)

>>> chainer.functions.lstm
```

chainer.functions.lstm(c_prev, x)

Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state c_prev and the input array x.

First, the input array x is split into four arrays a, i, f, o of the same shapes along the second axis. It means that x’s second axis must have 4 times the c_prev’s second axis.

The split input arrays are corresponding to:

- **a**: sources of cell input
- **i**: sources of input gate
- **f**: sources of forget gate
- **o**: sources of output gate

Second, it computes the updated cell state c and the outgoing signal h as:

\[
c = \tanh(a)\sigma(i) + c_{prev}\sigma(f),
\]

\[
h = \tanh(c)\sigma(o),
\]

where \(\sigma\) is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or smaller than that of the previous one. When mini-batch size of x is smaller than that of c, this function only
updates \(c[0: \text{len}(x)]\) and doesn’t change the rest of \(c, c[\text{len}(x):]\). So, please sort input sequences in descending order of lengths before applying the function.

**Parameters**

- **c_prev** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Variable that holds the previous cell state. The cell state should be a zero array or the output of the previous call of LSTM.
- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Variable that holds the sources of cell input, input gate, forget gate and output gate. It must have the second dimension whose size is four times of that of the cell state.

**Returns** Two *Variable* objects \(c\) and \(h\). \(c\) is the updated cell state. \(h\) indicates the outgoing signal.

**Return type** tuple

See the original paper proposing LSTM with forget gates: [Long Short-Term Memory in Recurrent Neural Networks](https://www.cs.toronto.edu/~graves/preprint.pdf).

**See also:**

*LSTM*

---

**Example**

Assuming \(y\) is the current incoming signal, \(c\) is the previous cell state, and \(h\) is the previous outgoing signal from an *lstm* function. Each of \(y, c, h\) has \(n\_units\) channels. Most typical preparation of \(x\) is:

```python
>>> n_units = 100
>>> y = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> h = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(n_units, 4 * n_units)
... model.v = L.Linear(n_units, 4 * n_units)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)
```

It corresponds to calculate the input array \(x\), or the input sources \(a, i, f, o\), from the current incoming signal \(y\) and the previous outgoing signal \(h\). Different parameters are used for different kind of input sources.

---

**Note:** We use the naming rule below.

- **incoming signal** The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of lower RNN layer). The input of *chainer.links.LSTM* is the *incoming signal*.
- **input array** The array which is linear transformed from *incoming signal* and the previous outgoing signal. The *input array* contains four sources, the sources of cell input, input gate, forget gate and output gate. The input of *chainer.functions.LSTM* is the *input array*.

---

### chainer.functions.maxout

**chainer.functions.maxout** \((x, \text{pool}\_\text{size}, \text{axis}=1)\)

Maxout activation function.
It accepts an input tensor \( x \), reshapes the axis dimension (say the size being \( M \times \text{pool_size} \)) into two dimensions \((M, \text{pool_size})\), and takes maximum along the axis dimension.

**Parameters**

- \( x \) ([Variable](#) or [numpy.ndarray](#) or [cupy.ndarray](#)) – Input variable. A \( n \)-dimensional \((n \geq \text{axis})\) float array. In general, its first dimension is assumed to be the minibatch dimension. The other dimensions are treated as one concatenated dimension.

- \( \text{pool_size} \) (int) – The size used for downsampling of pooling layer.

- \( \text{axis} \) (int) – The axis dimension to be reshaped. The size of axis dimension should be \( M \times \text{pool_size} \).

**Returns** Output variable. The shape of the output is same as \( x \) except that axis dimension is transformed from \( M \times \text{pool_size} \) to \( M \).

**Return type** [Variable](#)

**See also:** [Variable](#) 

**Maxout**

**Example**

Typically, \( x \) is the output of a linear layer or a convolution layer. The following is the example where we use \( \text{maxout()} \) in combination with a Linear link.

```python
>>> in_size, out_size, pool_size = 10, 10, 10
>>> bias = np.arange(out_size * pool_size).astype('f')
>>> l = L.Linear(in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((1, in_size), 'f') # prepare data
>>> x = l(x)
>>> y = F.maxout(x, pool_size)
>>> x.shape
(1, 100)
>>> y.shape
(1, 10)
>>> x.reshape((out_size, pool_size)).data
array([[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.],
 [40., 41., 42., 43., 44., 45., 46., 47., 48., 49.],
 [50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],
 [60., 61., 62., 63., 64., 65., 66., 67., 68., 69.],
 [70., 71., 72., 73., 74., 75., 76., 77., 78., 79.],
 [80., 81., 82., 83., 84., 85., 86., 87., 88., 89.],
 [90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]], dtype=float32)
>>> y.data
```

**chainer.functions.prelu**

chainer.functions.prelu\((x, W)\) 

Parametric ReLU function.
It accepts two arguments: an input \( x \) and a weight array \( W \) and computes the output as \( PReLU(x) = \max(x, W \ast x) \), where \( \ast \) is an elementwise multiplication for each sample in the batch.

When the PReLU function is combined with two-dimensional convolution, the elements of parameter \( W \) are typically shared across the same filter of different pixels. In order to support such usage, this function supports the shape of parameter array that indicates leading dimensions of input arrays except the batch dimension.

For example, if \( W \) has the shape of \((2, 3, 4)\), \( x \) must have the shape of \((B, 2, 3, 4, S_1, ..., S_N)\) where \( B \) is the batch size and the number of trailing \( S \)'s \( N \) is an arbitrary non-negative integer.

**Parameters**

- **\( x \) (Variable)** – Input variable. Its first argument is assumed to be the minibatch dimension.
- **\( W \) (Variable)** – Weight variable.

**Returns** Output variable

**Return type** Variable

See also:  

*PReLU*

**chainer.functions.relu**

chainer.functions.relu \((x)\)

Rectified Linear Unit function.

\[
f(x) = \max(0, x).
\]

**Parameters** \( x \) (\text{Variable or numpy.ndarray or cupy.ndarray}) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

**Returns** Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

**Return type** Variable

**Example**

```python
>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], 'f')
>>> np.any(x < 0)
True
>>> y = F.relu(x)
>>> np.any(y.data < 0)
False
>>> y.shape
(3, 2)
```

**chainer.functions.selu**

chainer.functions.selu \((x, \alpha=1.6732632423543772, \lambda=1.0507009873554805)\)

Scaled Exponential Linear Unit function.

For parameters \( \alpha \) and \( \lambda \), it is expressed as

\[
f(x) = \lambda \begin{cases} 
  x & \text{if } x \geq 0 \\
  \alpha(\exp(x) - 1) & \text{if } x < 0,
\end{cases}
\]
See: https://arxiv.org/abs/1706.02515

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **alpha** (*float*) – Parameter \(\alpha\).
- **scale** (*float*) – Parameter \(\lambda\).

Returns

Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*

### chainer.functions.sigmoid

**chainer.functions.sigmoid(x)**

Element-wise sigmoid logistic function.

\[
f(x) = (1 + \exp(-x))^{-1}.
\]

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Returns

Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

Return type *Variable*

**Example**

It maps the input values into the range of [0, 1].

```python
>>> x = np.arange(-2, 3, 2).astype('f')
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.sigmoid(x)
variable([0.11920291, 0.5 , 0.8807971])
```

### chainer.functions.s lstm

**chainer.functions.s lstm(c_prev1, c_prev2, x1, x2)**

S-LSTM units as an activation function.

This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states \(c_{prev1}\) and \(c_{prev2}\), and input arrays \(x1\) and \(x2\).

First both input arrays \(x1\) and \(x2\) are split into eight arrays \(a_1, i_1, f_1, o_1, a_2, i_2, f_2, o_2\). They have the same shape along the second axis. It means that \(x1\) and \(x2\) ’s second axis must have 4 times the length of \(c_{prev1}\) and \(c_{prev2}\).

The split input arrays are corresponding to:

- **a_i** : sources of cell input
• \(i_i\): sources of input gate
• \(f_i\): sources of forget gate
• \(o_i\): sources of output gate

It computes the updated cell state \(c\) and the outgoing signal \(h\) as:

\[
\begin{align*}
    c &= \tanh(a_1 + a_2)\sigma(i_1 + i_2) + c_{\text{prev1}}\sigma(f_1) + c_{\text{prev2}}\sigma(f_2), \\
    h &= \tanh(c)\sigma(o_1 + o_2),
\end{align*}
\]

where \(\sigma\) is the elementwise sigmoid function. The function returns \(c\) and \(h\) as a tuple.

**Parameters**

- \(c_{\text{prev1}}\) (`Variable` or `numpy.ndarray` or `cupy.ndarray`) – Variable that holds the previous cell state of the first child node. The cell state should be a zero array or the output of the previous call of LSTM.
- \(c_{\text{prev2}}\) (`Variable` or `numpy.ndarray` or `cupy.ndarray`) – Variable that holds the previous cell state of the second child node.
- \(x_1\) (`Variable` or `numpy.ndarray` or `cupy.ndarray`) – Variable that holds the sources of cell input, input gate, forget gate and output gate from the first child node. It must have the second dimension whose size is four times of that of the cell state.
- \(x_2\) (`Variable` or `numpy.ndarray` or `cupy.ndarray`) – Variable that holds the input sources from the second child node.

**Returns**

Two `Variable` objects \(c\) and \(h\). \(c\) is the cell state. \(h\) indicates the outgoing signal.

**Return type**

`tuple`

See detail in paper: *Long Short-Term Memory Over Tree Structures*.

**Example**

Assuming \(c_1, c_2\) is the previous cell state of children, and \(h_1, h_2\) is the previous outgoing signal from children. Each of \(c_1, c_2, h_1\) and \(h_2\) has \(n\_units\) channels. Most typical preparation of \(x_1, x_2\) is:

```python
>>> n_units = 100
>>> h1 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> h2 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c1 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> c2 = chainer.Variable(np.zeros((1, n_units), 'f'))
>>> model1 = chainer.Chain()
>>> with model1.init_scope():
... model1.w = L.Linear(n_units, 4 * n_units)
... model1.v = L.Linear(n_units, 4 * n_units)
>>> model2 = chainer.Chain()
>>> with model2.init_scope():
... model2.w = L.Linear(n_units, 4 * n_units)
... model2.v = L.Linear(n_units, 4 * n_units)
>>> x1 = model1.w(c1) + model1.v(h1)
>>> x2 = model2.w(c2) + model2.v(h2)
>>> c, h = F.slstm(c1, c2, x1, x2)
```

It corresponds to calculate the input array \(x_1\), or the input sources \(a_1, i_1, f_1, o_1\) from the previous cell state of first child node \(c_1\), and the previous outgoing signal from first child node \(h_1\). Different parameters are used for different kind of input sources.
**chainer.functions.softmax**

`chainer.functions.softmax(x, axis=1)`

Softmax function.

This function computes its softmax along an axis. Let \( c = (c_1, c_2, \ldots, c_D) \) be the slice of \( x \) along with the axis. For each slice \( c \), it computes the function \( f(c) \) defined as

\[
f(c) = \frac{\exp(c)}{\sum_{d} \exp(c_d)}.
\]

**Parameters**

- \( x \) (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – Input variable. A \( n \)-dimensional \( (n \geq 2) \) float array.
- \( axis \) (*int*) – The axis along which the softmax is to be computed.

**Returns**

Output variable. A \( n \)-dimensional \( (n \geq 2) \) float array, which is the same shape with \( x \).

**Return type** *Variable*

**Example**

```python
>>> x = np.array([[0, 1, 2], [0, 2, 4]], 'f')
>>> x
array([[0., 1., 2.],
 [0., 2., 4.]], dtype=float32)
>>> y = F.softmax(x, axis=1)
>>> y.data
array([[0.09003057, 0.24472848, 0.66524094],
 [0.01587624, 0.11731043, 0.86681336]], dtype=float32)
>>> F.sum(y, axis=1).data
array([1., 1.], dtype=float32)
```

**chainer.functions.softplus**

`chainer.functions.softplus(x, beta=1.0)`

Element-wise softplus function.

The softplus function is the smooth approximation of ReLU.

\[
f(x) = \frac{1}{\beta} \log(1 + \exp(\beta x)),
\]

where \( \beta \) is a parameter. The function becomes curved and akin to ReLU as the \( \beta \) is increasing.

**Parameters**

- \( x \) (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – Input variable. A \( (s_1, s_2, \ldots, s_N) \)-shaped float array.
- \( beta \) (*float*) – Parameter \( \beta \).

**Returns**

Output variable. A \( (s_1, s_2, \ldots, s_N) \)-shaped float array.

**Return type** *Variable*

**Example**

```python
```
>>> x = np.arange(-2, 3, 2).astype('f')
>>> x
array([-2.,  0.,  2.], dtype=float32)


chainer.functions.tanh

chainer.functions.\texttt{tanh}(x)

Elementwise hyperbolic tangent function.

\[ f(x) = \tanh(x). \]

\textbf{Parameters} x (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

\textbf{Returns} Output variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.

\textbf{Return type} Variable

\textbf{Example}

```python
>>> x = np.arange(-1, 4, 2).astype('f')
>>> x
array([-1., 1., 3.], dtype=float32)

```

```
>>> F.tanh(x).data
array([-0.7615942, 0.7615942, 0.9950548], dtype=float32)
```

chainer.functions.tree_lstm

chainer.functions.\texttt{tree_lstm}(\*inputs)

TreeLSTM unit as an activation function.

This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the children cell states \(c_1, c_2, ..., c_N\), and the incoming signal \(x\).

First, the incoming signal \(x\) is split into \((3 + N)\) arrays \(a, i, o, f_1, f_2, ..., f_N\) of the same shapes along the second axis. It means that \(x\)'s second axis must have \((3 + N)\) times of the length of each \(c_n\).

The splitted input signals are corresponding to:

- \(a\) : sources of cell input
- \(i\) : sources of input gate
- \(o\) : sources of output gate
- \(f_n\) : sources of forget gate for \(n\)-th ary

```
Second, it computes outputs as:

\[c = \tanh(a) \cdot \text{sigmoid}(i) + c_1 \cdot \text{sigmoid}(f_1) + c_2 \cdot \text{sigmoid}(f_2) + \ldots + c_N \cdot \text{sigmoid}(f_N), \]

\[h = \tanh(c) \cdot \text{sigmoid}(o). \]

These are returned as a tuple of \((N + 1)\) variables.

Parameters

- **inputs** (list of `Variable`) – Variable arguments which include all cell vectors from child-nodes, and an input vector. Each of the cell vectors and the input vector is `Variable`. The input vector must have the second dimension whose size is \((N + 3)\) times of that of each cell, where \(N\) denotes the total number of cells.

Returns

Two `Variable` objects \(c\) and \(h\). \(c\) is the updated cell state. \(h\) indicates the outgoing signal.

Return type `tuple`

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. only has one \(W\) matrix to be applied to \(x\), consistently for all children. On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each child’s cell individually.

Example

Assuming \(y\) is the current input signal, \(c\) is the previous cell state, and \(h\) is the previous output signal from an `tree_lstm()` function. Each of \(y\), \(c\) and \(h\) has \(n_units\) channels. Using 2-ary (binary) TreeLSTM, most typical preparation of \(x\) is:

```python
>>> model = chainer.Chain()
>>> with model.init_scope():
...     model.w = L.Linear(10, 5 * 10)
...     model.v1 = L.Linear(10, 5 * 10)
...     model.v2 = L.Linear(10, 5 * 10)
>>> y = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> h1 = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> h2 = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> c1 = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> c2 = np.random.uniform(-1, 1, (4, 10)).astype('f')
>>> x = model.w(y) + model.v1(h1) + model.v2(h2)
>>> c, h = F.tree_lstm(c1, c2, x)
```

It corresponds to calculate the input sources \(a, i, o, f_1, f_2\) from the current input \(y\) and the children’s outputs \(h_1\) and \(h_2\). Different parameters are used for different kind of input sources.

2.4.2 Array manipulations
chainer.functions.broadcast

Broadcast given variables.

Parameters:
- `args` (Variable or numpy.ndarray or cupy.ndarray) – Input variables to be broadcasted. Each dimension of the shapes of the input variables must have the same size.

Returns:
- `Variable` or tuple of `Variable` objects which are broadcasted from given arguments.

Return type: `Variable`
Example

```python
>>> x = np.random.uniform(0, 1, (3, 2)).astype('f')
>>> y = F.broadcast(x)
>>> np.all(x == y.data)
True
>>> z = np.random.uniform(0, 1, (3, 2)).astype('f')
>>> y, w = F.broadcast(x, z)
>>> np.all(x == y.data) & np.all(z == w.data)
True
```

chainer.functions.broadcast_to

chainer.functions.broadcast_to(x, shape)
Broadcast a given variable to a given shape.

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable be broadcasted. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **shape** (*tuple*) – Tuple of *int* of the shape of the output variable.

Returns Output variable broadcasted to the given shape.

Return type *Variable*

Example

```python
>>> x = np.arange(0, 3)
>>> x
array([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.data
array([[0, 1, 2],
       [0, 1, 2],
       [0, 1, 2]])
```

chainer.functions.cast

chainer.functions.cast(x, typ)
Cast an input variable to a given type.

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable to be casted. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- **typ** (*str* of *dtype* or *numpy.dtype*) – Typecode or data type to cast.

Returns Variable holding a casted array.

Return type *Variable*
Example

```python
>>> x = np.arange(0, 3, dtype=np.float64)
>>> x.dtype
dtype('float64')
>>> y = F.cast(x, np.float32)
>>> y.dtype
dtype('float32')
>>> y = F.cast(x, 'float16')
>>> y.dtype
dtype('float16')
```

chainer.functions.concat

chainer.functions.concat(xs, axis=1)
Concatenates given variables along an axis.

Parameters

- **xs** (tuple of Variable or numpy.ndarray or cupy.ndarray) – Input variables to be concatenated. The variables must have the same shape, except in the dimension corresponding to axis.
- **axis** (int) – The axis along which the arrays will be joined. Default is 1.

Returns
The concatenated variable.

Return type
Variable

Example

```python
>>> x = np.arange(0, 12).reshape(3, 4)
>>> x
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> y = np.arange(0, 3).reshape(3, 1)
>>> y
array([[0],
       [1],
       [2]])
>>> z = F.concat((x, y), axis=1)
>>> z.data
array([[ 0,  1,  2,  3,  0],
       [ 4,  5,  6,  7,  1],
       [ 8,  9, 10, 11,  2]])
```

chainer.functions.copy

chainer.functions.copy(x, dst)
Copies the input variable onto the specified device.
This function copies the array of input variable onto the device specified by `dst`. When `dst == -1`, it copies the array onto the host memory. This function supports copies from host to host, from host to device, from device to device and from device to host.

Parameters
- `x` (*Variable*, *numpy.ndarray*, *cupy.ndarray*) – Variable to be copied.
- `dst` (*int*) – Target device specifier.

Returns Output variable.

Return type *Variable*

Example
```python
>>> import chainer.cuda as cuda
>>> x = np.random.uniform(-1, 1, (5, 10))
>>> cuda.get_device_from_array(x).id
-1
>>> y = F.copy(x, 0)  # from host to device0
>>> cuda.get_device_from_array(y.data).id
0
>>> z = F.copy(y, -1)  # from device0 to host
>>> cuda.get_device_from_array(z.data).id
-1
```

chainer.functions.depth2space

chainer.functions. `depth2space`(*X*, *r*)

Computes the depth2space transformation for subpixel calculations.

Parameters
- `X` (*Variable*, *numpy.ndarray*, *cupy.ndarray*) – Variable holding a 4d array of shape `(batch, channel * r * r, dim1, dim2)`.
- `r` (*int*) – the upscaling factor.

Returns A variable holding the upscaled array from interspersed depth layers. The shape is `(batch, channel, dim1 * r, dim2 * r)`.

Return type *Variable*

Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for details.

See also:
- `space2depth()`

Example
```python
>>> X = np.arange(24).reshape(1, 4, 2, 3).astype('f')
>>> X.shape
(1, 4, 2, 3)
>>> X
```

```python
array([[[[ 0.,  1.,  2.],
         [ 3.,  4.,  5.]],
        [[ 6.,  7.,  8.],
         [ 9., 10., 11.]],
        [[12., 13., 14.],
         [15., 16., 17.]],
        [[18., 19., 20.],
         [21., 22., 23.]]], dtype=float32)
>>> y = F.depth2space(X, 2)

array([[[ 0.,  6.,  1.,  7.,  2.,  8.],
         [12., 18., 13., 19., 14., 20.],
         [ 3.,  9.,  4., 10.,  5., 11.],
         [15., 21., 16., 22., 17., 23.]]], dtype=float32)
```

chainer.functions.dstack

chainer.functions.dstack(xs)

Concatenates variables along third axis (depth wise).

Parameters

- **xs** (list of Variable or numpy.ndarray or cupy.ndarray) – Input variables to be concatenated. The variables must have the same ndim. When the variables have the third axis (i.e. ndim ≥ 3), the variables must have the same shape along all but the third axis. When the variables do not have the third axis (i.e. ndim < 3), the variables must have the same shape.

Returns

Output variable. When the input variables have the third axis (i.e. ndim ≥ 3), the shapes of inputs and output are the same along all but the third axis. The length of third axis is the sum of the lengths of inputs’ third axis. When the shape of variables are (N1, N2) (i.e. ndim = 2), the shape of output is (N1, N2, 2). When the shape of variables are (N1,) (i.e. ndim = 1), the shape of output is (1, N1, 2). When the shape of variables are () (i.e. ndim = 0), the shape of output is (1, 1, 2).

Return type Variable

Example

```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.dstack((x1, x2))
>>> y.shape
(1, 3, 2)
>>> y.data
array([[1, 2, 3, 4]])
```
```python
>>> x1 = np.arange(0, 6).reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array([[0, 1],
        [2, 3],
        [4, 5]])

>>> x2 = np.arange(6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[ 6,  7],
        [ 8,  9],
        [10, 11]])

>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 2)
>>> y.data
array([[[ 0,  6],
        [ 1,  7]],
       [[ 2,  8],
        [ 3,  9]],
       [[ 4, 10],
        [ 5, 11]]])
```

```python
>>> x1 = np.arange(0, 12).reshape(3, 2, 2)
>>> x2 = np.arange(12, 18).reshape(3, 2, 1)
>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 3)
>>> y.data
array([[[ 0,  1, 12],
        [ 2,  3, 13]],
       [[ 4,  5, 14],
        [ 6,  7, 15]],
       [[ 8,  9, 16],
        [10, 11, 17]]])
```

chainer.functions.expand_dims

chainer.functions.expand_dims *(x, axis)*

Expands dimensions of an input variable without copy.

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable.
- **axis** *(int)* – Position where new axis is to be inserted. The `axis` parameter is acceptable when $-ndim - 1 \leq axis \leq ndim$. (`ndim` is the dimension of input variables). When `axis < 0`, the result is the same with `ndim + 1 - |axis|`.

Returns Variable that holds a expanded input. The `ndim` of output is one greater than that of `x`.

Return type *Variable*

Example

```python
generate code
```

chainer.functions.flatten

chainer.functions.

```
flatten(x)
```

Flatten a given array into one dimension.

Parameters

\(x\) (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.

Returns

Output variable flatten to one dimension.

Return type *Variable*

Note: When you input a scalar array (i.e. the shape is ()), you can also get the one dimension array whose shape is (1,).

Example

```python
generate code
```
```python
>>> y = F.flatten(x)
>>> y.shape
(8,)
>>> y.data
array([0, 1, 2, 3, 4, 5, 6, 7])
```

chainer.functions.flip

chainer.functions.flip(x, axis)

Flips an input variable in reverse order along the given axis.

Parameters

- `x` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.
- `axis` (*int*) – Axis along which the input variable is reversed.

Returns Output variable.

Return type `Variable`

chainer.functions.fliplr

chainer.functions.fliplr(a)

Flip array in the left/right direction.

Parameters `xs` (*Variable*) – Input variable.

Returns Output variable.

Return type `Variable`

chainer.functions.flipud

chainer.functions.flipud(a)

Flip array in the up/down direction.

Parameters `xs` (*Variable*) – Input variable.

Returns Output variable.

Return type `Variable`

chainer.functions.get_item

chainer.functions.get_item(x, slices)

Extract elements from array with specified shape, axes and offsets.

Parameters

- `x` (*Variable*) – A variable to be sliced.
- `slices` (*int*, *slice*, *Ellipsis*, *None*, *integer array-like*, *boolean array-like* or *tuple of them*) – It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

Returns A `Variable` object which contains sliced array of `x`.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in slices. The supported types are `numpy.float32`, `numpy.int32`, `numpy.uint32`, `numpy.uint64` and `numpy.ulonglong`.

Note: It does not support slices that contain multiple boolean arrays.

Note: See NumPy document for details of indexing.

chainer.functions.hstack

chainer.functions.hstack(xs)

Concatenate variables horizontally (column wise).

Parameters

- `xs` (list of `Variable` or `numpy.ndarray` or `cupy.ndarray`) – Input variables to be concatenated. The variables must have the same `ndim`. When the variables have the second axis (i.e. `ndim ≥ 2`), the variables must have the same shape along all but the second axis. When the variables do not have the second axis (i.e. `ndim < 2`), the variables need not to have the same shape.

Returns

Output variable. When the input variables have the second axis (i.e. `ndim ≥ 2`), the shapes of inputs and output are the same along all but the second axis. The length of second axis is the sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e. `ndim < 2`), the shape of output is `(N,)` (N is the sum of the input variables’ size).

Return type `Variable`

Example

```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.hstack((x1, x2))
>>> y.shape
(6,)
>>> y.data
array([1, 2, 3, 2, 3, 4])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],
        [14, 15],
        [16, 17]])
```
```python
>>> y = F.hstack([x1, x2])
>>> y.shape
(3, 6)
>>> y.data
array([[ 0,  1,  2,  3, 12, 13],
        [ 4,  5,  6,  7, 14, 15],
        [ 8,  9, 10, 11, 16, 17]])
```

chainer.functions.im2col

The function rearranges patches of an image and puts them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of `stride` from the first position `-pad` for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.

- \(n\) is the batch size.
- \(c\) is the number of the input channels.
- \(h\) and \(w\) are the height and width of the input image, respectively.
- \(k_H\) and \(k_W\) are the height and width of the filters, respectively.
- \(s_Y\) and \(s_X\) are the strides of the filter.
- \(p_H\) and \(p_W\) are the spatial padding sizes.
- \(d_Y\) and \(d_X\) are the dilation factors of filter application.

The output size \((h_O, w_O)\) is determined by the following equations when `cover_all = False`:

\[
\begin{align*}
 h_O &= \left(h + 2p_H - k_H \right) - (k_H - 1) / s_Y + 1, \\
 w_O &= \left(w + 2p_W - k_W \right) - (k_W - 1) / s_X + 1.
\end{align*}
\]

When `cover_all = True`, the output size is determined by the following equations:

\[
\begin{align*}
 h_O &= \left(h + 2p_H - k_H \right) - (k_H - 1) / s_Y + 1, \\
 w_O &= \left(w + 2p_W - k_W \right) - (k_W - 1) / s_X + 1.
\end{align*}
\]

Parameters

- `x` *(Variable)* – Input variable of shape \((n, c, h, w)\).
- `ksize` *(int or pair of ints)* – Size of filters (a.k.a. kernels). `ksize=k` and `ksize=(k, k)` are equivalent.
- `stride` *(int or pair of ints)* – Stride of filter applications. `stride=s` and `stride=(s, s)` are equivalent.
- `pad` *(int or pair of ints)* – Spatial padding width for input arrays. `pad=p` and `pad=(p, p)` are equivalent.
- `cover_all` *(bool)* – If `True`, all spatial locations are rearranged into some output pixels. It may make the output size larger.
• **dilate** (*int or pair of ints*) – Dilation factor of filter applications. dilate=d and dilate=(d, d) are equivalent.

Returns Output variable whose shape is \((n, c \cdot k_H \cdot k_W, h_O, w_O)\)

Return type *Variable*

chainer.functions.pad

chainer.functions.pad *(x, pad_width, mode, **keywords)*

Pad an input variable.

Parameters

- **x** (*chainer.Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input data.
- **pad_width** (*int or array-like*) – Number of values padded to the edges of each axis.
- **mode** (*str*) – Specifies how the function fills the periphery of the array. The mode is passed to *numpy.pad()* or *cupy.pad()* If it is 'constant', the input is padded by a constant value specified by *constant_values*.
- **constant_values** (*int or array-like*) – Constant values to fill the periphery in the 'constant' mode.

Returns Output variable.

Return type *Variable*

chainer.functions.pad_sequence

chainer.functions.pad_sequence *(xs, length=None, padding=0)*

Pad given arrays to make a matrix.

Parameters

- **xs** (*list of ~chainer.Variable*) – Variables you want to concatenate.
- **length** (*None or int*) – Size of the first dimension of a padded array. If it is None, the longest size of the first dimension of xs is used.
- **padding** (*int or float*) – Value to fill.

Returns A padded matrix. Its shape is \((n, length, ...)\), where \(n == \text{len}(xs)\).

Return type *Variable*

chainer.functions.permutate

chainer.functions.permutate *(x, indices, axis=0, inv=False)*

Permutates a given variable along an axis.

This function permutate \(x\) with given \(indices\). That means \(y[i] = x[indices[i]]\) for all \(i\). Note that this result is same as \(y = x\.take(indices)\). \(indices\) must be a permutation of \([0, 1, ..., \text{len}(x) - 1]\).

When \(inv\) is True, \(indices\) is treated as its inverse. That means \(y[indices[i]] = x[i]\).

Parameters
• **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Variable to permute. A \((s_1, s_2, ..., s_N)\)-shaped float array.

• **indices** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Indices to extract from the variable. A one-dimensional int array.

• **axis** (*int*) – Axis that the input array is permute along.

• **inv** (*bool*) – If True, indices is treated as its inverse.

Returns Output variable.

Return type *Variable*

Example

```python
>>> x = np.arange(6).reshape((3, 2)).astype('f')
>>> x
array([[0., 1.],
[2., 3.],
[4., 5.]], dtype=float32)

>>> indices = np.array([2, 0, 1], 'i')
>>> y = F.permutate(x, indices)
>>> y.data
array([[4., 5.],
[0., 1.],
[2., 3.]], dtype=float32)

>>> y = F.permutate(x, indices, inv=True)
>>> y.data
array([[2., 3.],
[4., 5.],
[0., 1.]], dtype=float32)

>>> indices = np.array([1, 0], 'i')
>>> y = F.permutate(x, indices, axis=1)
>>> y.data
array([[1., 0.],
[3., 2.],
[5., 4.]], dtype=float32)
```

chainer.functions.reshape

chainer.functions.reshape *(x, shape)*

Reshapes an input variable without copy.

Parameters

• **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.

• **shape** (*tuple* of *int*) – Expected shape of the output array. The number of elements which the array of shape contains must be equal to that of input array. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions.

Returns Variable that holds a reshaped version of the input variable.

Return type *Variable*

See also:
Example

```python
>>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> y = F.reshape(x, (8,))
>>> y.shape
(8,)
>>> y.data
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> y = F.reshape(x, (4, -1))  # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.data
array([[1, 2],
       [3, 4],
       [5, 6],
       [7, 8]])
>>> y = F.reshape(x, (4, 3))  # the shape of input and output are not consistent
Traceback (most recent call last):
 ...  
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Reshape (Forward)
```

Expect: `prod(in_types[0].shape) == prod((4, 3))` Actual: 8 != 12

chainer.functions.resize_images

chainer.functions.resize_images(x, output_shape)

Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the sampling method.

Notation: here is a notation for dimensionalities.

- n is the batch size.
- c_I is the number of the input channels.
- h and w are the height and width of the input image, respectively.
- h_O and w_O are the height and width of the output image.

Parameters

- **x** *(Variable)* – Input variable of shape (n, c_I, h, w).
- **output_shape** *(tuple)* – This is a tuple of length 2 whose values are (h_O, w_O).
 Note that the order of height and width is opposite of the one in OpenCV.

Returns
Resized image whose shape is (n, c_I, h_O, w_O).

Return type *Variable*
chainer.functions.rollaxis

chainer.functions.rollaxis(x, axis, start=0)
Roll the axis backwards to the given position.

Parameters

• `x` (Variable) – Input variable.
• `axis` (int) – The axis to roll backwards.
• `start` (int) – The place to which the axis is moved.

Returns Variable whose axis is rolled.
Return type Variable

chainer.functions.select_item

chainer.functions.select_item(x, t)
Select elements stored in given indices.
This function returns `t.choose(x.T)`, that means `y[i] == x[i, t[i]]` for all `i`.

Parameters

• `x` (Variable or numpy.ndarray or cupy.ndarray) – Variable storing arrays. A two-dimensional float array.
• `t` (Variable or numpy.ndarray or cupy.ndarray) – Variable storing index numbers. A one-dimensional int array. Length of the `t` should be equal to `x.shape[0]`.

Returns Variable that holds `t`-th element of `x`.
Return type Variable

Example

```python
>>> x = np.array([[0, 1, 2], [3, 4, 5]], 'f')
>>> t = np.array([0, 2], 'i')
>>> y = F.select_item(x, t)
>>> y.shape
(2,)
>>> y.data
array([0., 5.], dtype=float32)
```

chainer.functions.separate

chainer.functions.separate(x, axis=0)
Separates an array along a given axis.

This function separates an array along a given axis. For example, shape of an array is `(2, 3, 4)`. When it separates the array with `axis=1`, it returns three `(2, 4)` arrays.

This function is an inverse of `chainer.functions.stack()`.

Parameters
• \texttt{x (Variable or numpy.ndarray or cupy.ndarray)} – Variable to be separated. A \((s_1, s_2, \ldots, s_N)\)-shaped float array.

• \texttt{axis (int)} – Axis along which variables are separated.

\textbf{Returns} Output variables.

\textbf{Return type} tuple of chainer.Variable

\textbf{See also:}
chainer.functions.stack()

\textbf{Example}

```python
>>> x = np.arange(6).reshape((2, 3)).astype('f')
>>> x
array([[0., 1., 2.],
       [3., 4., 5.]], dtype=float32)
>>> x.shape
(2, 3)
>>> y = F.separate(x) # split along axis=0
>>> isinstance(y, tuple)
True
>>> len(y)
2
>>> y[0].shape
(3,)
>>> y[0].data
array([0., 1., 2.], dtype=float32)
>>> y = F.separate(x, axis=1)
>>> len(y)
3
>>> y[0].shape
(2,)
>>> y[0].data
array([[0., 3.]], dtype=float32)
```

\textbf{chainer.functions.space2depth}

\textbf{chainer.functions.space2depth}(X, r)

Computes the space2depth transformation for subpixel calculations.

\textbf{Parameters}

• \texttt{X (Variable or numpy.ndarray or cupy.ndarray)} – Variable holding a 4d array of shape \((\text{batch, channel, dim1} \times r, \text{dim2} \times r)\).

• \texttt{r (int)} – the downscaling factor.

\textbf{Returns} A variable holding the downscaled layer array from subpixel array sampling. The shape is \((\text{batch, channel} \times r \times r, \text{dim1}, \text{dim2})\).

\textbf{Return type} Variable

\textbf{Note:} This can be used to compute inverse super-resolution transformations. See https://arxiv.org/abs/1609.05158 for details.
See also:

depth2space()

Example

```python
>>> X = np.arange(24).reshape(1, 1, 4, 6).astype('f')
>>> X.shape
(1, 1, 4, 6)
>>> X
array([[[[ 0., 1., 2., 3., 4., 5.],
         [ 6., 7., 8., 9., 10., 11.],
         [12., 13., 14., 15., 16., 17.],
         [18., 19., 20., 21., 22., 23.]]], dtype=float32)
```

```python
>>> y = F.space2depth(X, 2)
>>> y.shape
(1, 4, 2, 3)
```

```python
>>> y.data
array([[[[ 0., 2., 4.],
         [12., 14., 16.],
         [ 1., 3., 5.],
         [13., 15., 17.],
         [ 6., 8., 10.],
         [18., 20., 22.],
         [ 7., 9., 11.],
         [19., 21., 23.]]], dtype=float32)
```

chainer.functions.spatial_transformer_grid

```
chainer.functions.spatial_transformer_grid(theta, output_shape, **kwargs)
```

2D Spatial Transformer grid.

This function generates coordinates of the points sampled from an image to perform warping described in Spatial Transformer Networks.

Given a coordinate in the warped image \((x_t^i, y_t^i)\), the point sampled from the source image \((x_s^i, y_s^i)\) are calculated by the following equation.

\[
\begin{pmatrix}
 x_s^i \\
 y_s^i
\end{pmatrix} = \begin{pmatrix}
 \theta_{11} & \theta_{12} & \theta_{13} \\
 \theta_{21} & \theta_{22} & \theta_{23}
\end{pmatrix} \begin{pmatrix}
 x_t^i \\
 y_t^i \\
 1
\end{pmatrix}
\]

Notation: here is a notation for dimensionalities.

- \(n\) is the batch size.
- \(h_O\) and \(w_O\) are the height and the width of the output image.

Parameters

- **theta** *(Variable)* – An array of shape \((n, 2, 3)\). This is a batch of \(2 \times 3\) matrix used for the warping described above.

- **output_shape** *(tuple)* – A tuple of 2 elements: \(h_O, w_O\).

Returns A variable of shape \((n, 2, h_O, w_O)\). In the 2nd dimension, the first element is the coordinate along the x axis, and the second element is the coordinate along the y axis. All the coordinates in the image are scaled to fit range \([-1, 1]\). This means that the coordinate \((-1, -1)\) corresponds to the upper-left corner of the input image.

Return type *Variable*

chainer.functions.spatial_transformer_sampler

chainer.functions.spatial_transformer_sampler *(x, grid, **kwargs)*

2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points \(grid\) and an input feature map \(x\), this produces a sampled output feature map.

This function currently only supports bilinear interpolation as a sampling kernel.

When coordinates in \(grid\) is outside range \([-1, 1]\), values are sampled from a zero padded input image.

Notation: here is a notation for dimensionalities.

- \(n\) is the batch size.
- \(c_I\) is the number of the input channels.
- \(h\) and \(w\) are the height and width of the input image, respectively.
- \(h_O\) and \(w_O\) are the height and width of the output image.

See detail in the following paper: Spatial Transformer Networks.

Note: cuDNN supports SpatialTransformerSampler from version 5.0.0.

Parameters

- **x** *(Variable)* – Input variable of shape \((n, c_I, h, w)\).

- **grid** *(Variable)* – Coordinate variable of shape \((n, 2, h_O, w_O)\). Each coordinate defines the spatial location in the input where a sampling kernel is applied to get the value at a particular pixel in the output. \(grid[idx, :, i, j]\) corresponds to the coordinate that is used to sample the values for an output pixel at location \((i, j)\).

In the second dimension, the first coordinate corresponds to the location along the horizontal axis, and the second coordinate corresponds to the location along the vertical axis.

The coordinate \((-1, -1)\) corresponds to the upper-left corner of the input image.

Returns Output feature map of shape \((n, c_I, h_O, w_O)\).

Return type *Variable*

chainer.functions.split_axis

chainer.functions.split_axis *(x, indices_or_sections, axis, force_tuple=True)*

Splits given variables along an axis.
Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – A variable to be split.

- **indices_or_sections** (*int* or *1-D array*) – If this argument is an integer, N, the array will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers, it indicates the positions where the array is split.

- **axis** (*int*) – Axis that the input array is split along.

- **force_tuple** (*bool*) – If True (the default) this method returns a tuple even when the number of outputs is one. Otherwise, if False a Variable will be returned when the number of outputs is one.

Returns

Tuple of *Variable* objects if the number of outputs is more than 1 or *Variable* otherwise. When `force_tuple` is True, returned value is always a tuple regardless of the number of outputs.

Return type

tuple or *Variable*

Note: This function raises *ValueError* if at least one of the outputs is split to zero-size (i.e. *axis*-th value of its shape is zero).

chainer.functions.squeeze

chainer.functions.squeeze *(x, axis=None)*

Remove dimensions of size one from the shape of a ndarray.

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A *(s_1, s_2, ..., s_N)*-shaped float array.

- **axis** (*None*, *int*, or *tuple of ints*) – A subset of the single-dimensional entries in the shape to remove. If *None* is supplied, all of them are removed. The dimension index starts at zero. If an axis with dimension greater than one is selected, an error is raised.

Returns

Variable whose dimensions of size 1 are removed.

Return type

Variable

Example

```python
>>> x = np.array([[[[0, 1, 2]]], [[[3, 4, 5]]]], 'f')
>>> x.shape
(2, 1, 1, 3)
>>> y = F.squeeze(x)
>>> y.shape
(2, 3)
>>> y.data
array([[0., 1., 2.],
       [3., 4., 5.]], dtype=float32)
>>> y = F.squeeze(x, axis=1)
>>> y.shape
(2, 1, 3)
>>> y.data
array([[[0., 1., 2.],
```

chainer.functions.stack

chainer.functions.
stack
(xs, axis=0)

Concatenate variables along a new axis.

Parameters

- **xs** (list of Variable or numpy.ndarray or cupy.ndarray) – Input variables to be concatenated. The variables must have the same shape.

- **axis** (int) – The axis along which the arrays will be stacked. The axis parameter is acceptable when $-\text{ndim} - 1 \leq \text{axis} \leq \text{ndim}$. ($\text{ndim}$ is the dimension of input variables).

When axis < 0, the result is the same with $\text{ndim} + 1 - |\text{axis}|$.

Returns

Output variable. Let x_1, x_2, \ldots, x_n and y be the input variables and the output variable, $y[\vdots, \ldots, 0, \ldots, :]$ is x_1, $y[\vdots, \ldots, 1, \ldots, :]$ is x_2 and $y[\vdots, \ldots, n-1, \ldots, :]$ is x_n (The indexed axis indicates the axis).

Return type Variable

Example

```python
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
>>> x2 = np.arange(12, 24).reshape(3, 4)
>>> x2.shape
(3, 4)
>>> x2
array([[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]])
>>> y = F.stack([x1, x2], axis=0)
>>> y.shape
(2, 3, 4)
>>> y.data
array([[[ 0,  1,  2,  3],
          [ 4,  5,  6,  7],
          [ 8,  9, 10, 11]],
          [[12, 13, 14, 15],
          [16, 17, 18, 19],
          [20, 21, 22, 23]])
```
```python
>>> y.shape
(3, 2, 4)
>>> y.data
array([[[ 0, 1, 2, 3],
        [12, 13, 14, 15]],
       [[ 4, 5, 6, 7],
        [16, 17, 18, 19]],
       [[ 8, 9, 10, 11],
        [20, 21, 22, 23]])
>>> y = F.stack([x1, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.data
array([[[ 0, 12],
        [ 1, 13],
        [ 2, 14],
        [ 3, 15]],
       [[ 4, 16],
        [ 5, 17],
        [ 6, 18],
        [ 7, 19]],
       [[ 8, 20],
        [ 9, 21],
        [10, 22],
        [11, 23]])
>>> y = F.stack([x1, x2], axis=-1)
>>> y.shape
(3, 4, 2)
```

chainer.functions.swapaxes

Swap two axes of a variable.

Parameters

- `x` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. A `(s1, s2, ..., s_N)`-shaped float array.
- `axis1` (*int*) – The first axis to swap.
- `axis2` (*int*) – The second axis to swap.

Returns Variable whose axes are swapped.

Return type *Variable*

Example

```python
>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], 'f')
>>> x.shape
(1, 2, 3)
>>> y = F.swapaxes(x, axis1=0, axis2=1)
```
```python
>>> y.shape
(2, 1, 3)
>>> y.data
array([[[0., 1., 2.]],
       [[3., 4., 5.]]], dtype=float32)
```

chainer.functions.tile

chainer.functions.tile(x, reps)

Construct an array by tiling a given array.

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable. Let the length of *reps* be *d*. If *x.ndim < d*, *x* is treated as *d*-dimensional array by prepending new axes. For example, when the shape of *x* is *(2,)* and tiled with 2-dim repetitions, *x* is treated as the shape *(1, 2)*. If *x.ndim > d*, *reps* is treated as *x.ndim*-dimensional by pre-pending 1’s. For example, when the shape of *x* is *(2, 3, 2, 3)*, the 2-dim *reps* of *(2, 2)* is treated as *(1, 1, 2, 2)*.

- **reps** (*int* or *tuple* of *int*s) – The number of times which *x* is replicated along each axis.

Returns The tiled output Variable. Let the length of *reps* be *d*, the output has the dimension of \(\max(d, \text{x.ndim}) \).

Return type *Variable*

Example

```python
>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = np.tile(x, 2)
>>> y.shape
(6,)
>>> y
array([0, 1, 2, 0, 1, 2])
>>> y = np.tile(x, (2, 2))
>>> y.shape
(2, 6)
>>> y
array([[0, 1, 2, 0, 1, 2],
       [0, 1, 2, 0, 1, 2]])
>>> y = np.tile(x, (2, 1, 2))
>>> y.shape
(2, 1, 6)
>>> y
array([[[0, 1, 2, 0, 1, 2],
        [0, 1, 2, 0, 1, 2]]])
```

```python
>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
```

2.4. Standard Function implementations
```python
>>> y = np.tile(x, 2)
>>> y.shape
(2, 4)
>>> y
array([[1, 2, 1, 2],
       [3, 4, 3, 4]])

>>> y = np.tile(x, (2, 2))
>>> y.shape
(4, 4)
>>> y
array([[1, 2, 1, 2],
       [3, 4, 3, 4],
       [1, 2, 1, 2],
       [3, 4, 3, 4]])

>>> y = np.tile(x, (2, 1, 2))
>>> y.shape
(2, 2, 4)
>>> y
array([[[1, 2, 1, 2],
        [3, 4, 3, 4]],
       [[1, 2, 1, 2],
        [3, 4, 3, 4]]])
```

chainer.functions.transpose

chainer.functions.transpose(x, axes=None)

Permute the dimensions of an input variable without copy.

Parameters

- **x** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable to be transposed. A $(s_1, s_2, ..., s_N)$-shaped float array.

- **axes** (*tuple of ints*) – By default, reverse the dimensions, otherwise permute the axes according to the values given.

Returns Variable whose axes are permuted.

Return type *Variable*

Example

```python
>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], 'f')
>>> x.shape
(1, 2, 3)
>>> y = F.transpose(x)  # reverse the dimensions
>>> y.shape
(3, 2, 1)
>>> y.data
array([[0.,
        3.],
       [1.,
        4.],
       [2.,
        5.]])
```


```python
[[2.,
  5.]],
```
dtype=float32)
```python
>>> y = F.transpose(x, axes=(1, 0, 2)) # swap 1st and 2nd axis
```python
>>> y.shape
(2, 1, 3)
```python
```python
>>> y.data
array([[0., 1., 2.],
 [3., 4., 5.]],
dtype=float32)
```

### chainer.functions.transpose_sequence

**chainer.functions.transpose_sequence(xs)**  
Transpose a list of Variables.

This function transposes a list of `Variables` and returns a list of `Variables`. For example a user gives `[(0, 1, 2, 3), (4, 5), (6)]`, the function returns `[(0, 4, 6), (1, 5), (2), (3)]`. Note that a given list needs to be sorted by each length of `Variable`.

**Parameters**  
`xs` *(list of ~chainer.Variable)* – Variables to transpose.

**Returns**  
Transposed list.

**Return type**  
tuple or `Variable`

### chainer.functions.vstack

**chainer.functions.vstack(xs)**  
Concatenate variables vertically (row wise).

**Parameters**  
`xs` *(list of Variable or numpy.ndarray or cupy.ndarray)* – Input variables to be concatenated. The variables must have the same `ndim`. When the variables have the second axis (i.e. `ndim ≥ 2`), the variables must have the same shape along all but the first axis. When the variables do not have the second axis (i.e. `ndim < 2`), the variables must have the same shape.

**Returns**  
Output variable. When the input variables have the second axis (i.e. `ndim ≥ 2`), the shapes of inputs and output are the same along all but the first axis. The length of first axis is the sum of the lengths of inputs’ first axis. When the variables do not have the second axis (i.e. `ndim < 2`), the shape of output is `(2, N)` (`N` is the size of the input variable).

**Return type**  
`Variable`

### Example

```python
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
```python
```python
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
```python
```python
>>> y = F.vstack((x1, x2))
>>> y.shape
(2, 3)
```
>>> y.data
array([[1, 2, 3],
       [2, 3, 4]])

>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

>>> x2 = np.arange(12, 20).reshape(2, 4)
>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],
       [16, 17, 18, 19]])

>>> y = F.vstack([x1, x2])
>>> y.shape
(5, 4)
>>> y.data
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19]])

chainer.functions.where

chainer.functions.where(condition, x, y)

Choose elements depending on condition.

This function choose values depending on a given condition. All condition, x, and y must have the same shape.

Parameters

- condition (Variable or numpy.ndarray or cupy.ndarray) – Input variable containing the condition. A (s₁, s₂, ..., sₙ) -shaped boolean array. Only boolean array is permitted.
- x (Variable or numpy.ndarray or cupy.ndarray) – Input variable chosen when condition is True. A (s₁, s₂, ..., sₙ) -shaped float array.
- y (Variable or numpy.ndarray or cupy.ndarray) – Input variable chosen when condition is False. A (s₁, s₂, ..., sₙ) -shaped float array.

Returns
Variable containing chosen values.

Return type
Variable

Example

>>> cond = np.array([[1, 0], [0, 1]], dtype=np.bool)
>>> cond
array([[ True, False],
       [False,  True]])
>>> x = np.array([[1, 2], [3, 4]], 'f')
```python
>>> y = np.zeros((2, 2), 'f')
>>> F.where(cond, x, y).data
array([[1., 0.],
 [0., 4.]], dtype=float32)
```

## 2.4.3 Neural network connections

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.bilinear</code></td>
<td>Applies a bilinear function based on given parameters.</td>
</tr>
<tr>
<td><code>chainer.functions.convolution_2d</code></td>
<td>Two-dimensional convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.convolution_nd</code></td>
<td>N-dimensional convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.deconvolution_2d</code></td>
<td>Two-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.deconvolution_nd</code></td>
<td>N-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.depthwise_convolution_2d</code></td>
<td>Two-dimensional depthwise convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.dilated_convolution_2d</code></td>
<td>Two-dimensional dilated convolution function.</td>
</tr>
<tr>
<td><code>chainer.functions.embed_id</code></td>
<td>Efficient linear function for one-hot input.</td>
</tr>
<tr>
<td><code>chainer.functions.linear</code></td>
<td>Linear function, or affine transformation.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_bigru</code></td>
<td>Stacked Bi-directional Gated Recurrent Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_bilstm</code></td>
<td>Stacked Bi-directional Long Short-Term Memory function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_birnn</code></td>
<td>Stacked Uni-directional Gated Recurrent Unit function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_gru</code></td>
<td>Stacked Uni-directional Long Short-Term Memory function.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_lstm</code></td>
<td>Stacked Uni-directional RNN function for sequence inputs.</td>
</tr>
<tr>
<td><code>chainer.functions.n_step_rnn</code></td>
<td>Stacked Uni-directional RNN function for sequence inputs.</td>
</tr>
</tbody>
</table>

### chainer.functions.bilinear

**chainer.functions.bilinear**(e1, e2, W1=None, V2=None, b=None)

Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by $e^{1} \in \mathbb{R}^{I \cdot J}$, $e^{2} \in \mathbb{R}^{I \cdot K}$, $W \in \mathbb{R}^{J \cdot K \cdot L}$, $V^{1} \in \mathbb{R}^{J \cdot L}$, $V^{2} \in \mathbb{R}^{K \cdot L}$, and $b \in \mathbb{R}^{L}$, where $I$ is mini-batch size. In this document, we call $V^{1}$, $V^{2}$, and $b$ linear parameters.

The output of forward propagation is calculated as

$$y_{il} = \sum_{jk} e^{1}_{ij} e^{2}_{ik} W_{jkl} + \sum_{j} e^{1}_{ij} V^{1}_{jll} + \sum_{k} e^{2}_{ik} V^{2}_{kl} + b_{l}.$$  

Note that $V^{1}$, $V^{2}$, $b$ are optional. If these are not given, then this function omits the last three terms in the above equation.

**Note:** This function accepts an input variable $e^{1}$ or $e^{2}$ of a non-matrix array. In this case, the leading dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

**Note:** In the original paper, $J$ and $K$ must be equal and the author denotes $[V^{1} V^{2}]$ (concatenation of matrices) by $V$. 

---

2.4. Standard Function implementations
Parameters

- \( e_1 \) (Variable) – Left input variable.
- \( e_2 \) (Variable) – Right input variable.
- \( W \) (Variable) – Quadratic weight variable.
- \( V_1 \) (Variable) – Left coefficient variable.
- \( V_2 \) (Variable) – Right coefficient variable.
- \( b \) (Variable) – Bias variable.

Returns

Output variable.

Return type

Variable

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

chainer.functions.convolution_2d

chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, cover_all=False)

Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image \( x \), the filter weight \( W \), and the bias vector \( b \).

Notation: here is a notation for dimensionalities.

- \( n \) is the batch size.
- \( c_I \) and \( c_O \) are the number of the input and output channels, respectively.
- \( h_I \) and \( w_I \) are the height and width of the input image, respectively.
- \( h_K \) and \( w_K \) are the height and width of the filters, respectively.
- \( h_P \) and \( w_P \) are the height and width of the spatial padding size, respectively.

Then the Convolution2D function computes correlations between filters and patches of size \((h_K, w_K)\) in \( x \). Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at positions shifted by multiples of \( stride \) from the first position \((-h_P, -w_P)\) for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Let \((s_Y, s_X)\) be the stride of filter application. Then, the output size \((h_O, w_O)\) is determined by the following equations:

\[
\begin{align*}
  h_O &= (h_I + 2h_P - h_K)/s_Y + 1, \\
  w_O &= (w_I + 2w_P - w_K)/s_X + 1.
\end{align*}
\]

If \( \text{cover_all} \) option is True, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size \((h_O, w_O)\) is determined by the following equations:

\[
\begin{align*}
  h_O &= (h_I + 2h_P - h_K + s_Y - 1)/s_Y + 1, \\
  w_O &= (w_I + 2w_P - w_K + s_X - 1)/s_X + 1.
\end{align*}
\]

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.config.cudnn_deterministic is True and cuDNN version is \( \geq v3 \), it forces cuDNN to use a deterministic algorithm.
Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

**Warning:** deterministic argument is not supported anymore since v2. Instead, use `chainer.using_config('cudnn_deterministic', value)` (value is either `True` or `False`). See `chainer.using_config()`.

**Parameters**

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable of shape \((n, c_i, h_i, w_i)\).
- **W** *(Variable or numpy.ndarray or cupy.ndarray)* – Weight variable of shape \((c_o, c_i, h_K, w_K)\).
- **b** *(Variable or numpy.ndarray or cupy.ndarray)* – Bias variable of length \(c_O\) (optional).
- **stride** *(int or pair of int)* – Stride of filter applications. `stride=s` and `stride=(s, s)` are equivalent.
- **pad** *(int or pair of int)* – Spatial padding width for input arrays. `pad=p` and `pad=(p, p)` are equivalent.
- **cover_all** *(bool)* – If True, all spatial locations are convoluted into some output pixels.

**Returns** Output variable of shape \((n, c_O, h_O, w_O)\).

**Return type** Variable

**See also:** Convolution2D

**Example**

```python
def example():
 n = 10
 c_i, c_o = 3, 1
 h_i, w_i = 30, 40
 h_k, w_k = 10, 10
 h_p, w_p = 5, 5
 x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype('f')
 x.shape
 (10, 3, 30, 40)
 W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype('f')
 W.shape
 (1, 3, 10, 10)
 b = np.random.uniform(0, 1, (c_o,)).astype('f')
 b.shape
 (1,)
 s_y, s_x = 5, 7
 y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
 y.shape
 (10, 1, 7, 6)
 h_o = int((h_i + 2 * h_p - h_k) / s_y + 1)
 w_o = int((w_i + 2 * w_p - w_k) / s_x + 1)
 y.shape == (n, c_o, h_o, w_o)
```

2.4. Standard Function implementations 183
chainer.functions.convolution_nd

chainer.functions.convolution_nd(x, W, b=None, stride=1, pad=0, cover_all=False)
N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in ConvNets. It takes three variables: the input $x$, the filter weight $W$ and the bias vector $b$.

Notation: here is a notation for dimensionalities.

- $N$ is the number of spatial dimensions.
- $n$ is the batch size.
- $c_I$ and $c_O$ are the number of the input and output channels, respectively.
- $d_1, d_2, ..., d_N$ are the size of each axis of the input’s spatial dimensions, respectively.
- $k_1, k_2, ..., k_N$ are the size of each axis of the filters, respectively.
- $l_1, l_2, ..., l_N$ are the size of each axis of the output’s spatial dimensions, respectively.
- $p_1, p_2, ..., p_N$ are the size of each axis of the spatial padding size, respectively.

Then the $\text{convolution\_nd}$ function computes correlations between filters and patches of size $(k_1, k_2, ..., k_N)$ in $x$. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are extracted at positions shifted by multiples of $\text{stride}$ from the first position $(-p_1, -p_2, ..., -p_N)$ for each spatial axis.

Let $(s_1, s_2, ..., s_N)$ be the stride of filter application. Then, the output size $(l_1, l_2, ..., l_N)$ is determined by the following equations:

$$l_n = \frac{(d_n + 2p_n - k_n)}{s_n} + 1 \quad (n = 1, ..., N)$$

If $\text{cover\_all}$ option is True, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size is determined by the following equations:

$$l_n = \frac{(d_n + 2p_n - k_n + s_n - 1)}{s_n} + 1 \quad (n = 1, ..., N)$$

The N-dimensional convolution function is defined as follows.

**Parameters**

- $x$ (Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape $(n, c_I, d_1, d_2, ..., d_N)$.
- $W$ (Variable or numpy.ndarray or cupy.ndarray) – Weight variable of shape $(c_O, c_I, k_1, k_2, ..., k_N)$.
- $b$ (Variable or numpy.ndarray or cupy.ndarray) – One-dimensional bias variable with length $c_O$ (optional).
• **stride** (int or tuple of int s) – Stride of filter applications \((s_1, s_2, ..., s_N)\).
  
  \(\text{stride}=s\) is equivalent to \((s, s, ..., s)\).

• **pad** (int or tuple of int s) – Spatial padding width for input arrays \((p_1, p_2, ..., p_N)\).
  
  \(\text{pad}=p\) is equivalent to \((p, p, ..., p)\).

• **cover_all** (bool) – If True, all spatial locations are convoluted into some output pixels.
  
  It may make the output size larger. \text{cover_all} needs to be \text{False} if you want to use cuDNN.

**Returns** Output variable of shape \((n, c_O, l_1, l_2, ..., l_N)\).

**Return type** Variable

**Note:** This function uses cuDNN implementation for its forward and backward computation if ALL of the following conditions are satisfied:

- \text{cuda.cudnn_enabled} is True
- \text{chainer.config.use_cudnn} is 'always' or 'auto'
- The number of spatial dimensions is more than one.
- \text{cover_all} is False
- The input’s \text{dtype} is equal to the filter weight’s.
- The \text{dtype} is FP16, FP32 or FP64. (FP16 is only available when cuDNN version \(\geq v3\).)

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set \text{chainer.using_config('autotune', True)}

**See also:**

\text{ConvolutionND, convolution_2d()}

**Example**

```python
>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
>>> x.shape
(10, 3, 30, 40, 50)
>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype('f')
>>> W.shape
(1, 3, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype('f')
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> 11 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> 12 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> 13 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, 11, 12, 13)
```
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_all=True)
>>> y.shape == (n, c_o, 11, 12, 13 + 1)
True

chainer.functions.deconvolution_2d

c chainer.functions.deconvolution_2d(x, W=b=None, stride=1, pad=0, outsize=None)

Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep learning frameworks and papers, this function is called **transposed convolution**. But because of historical reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called **deconvolution** in Chainer.

It takes three variables: input image \( x \), the filter weight \( W \), and the bias vector \( b \).

Notation: here is a notation for dimensionalities.

- \( n \) is the batch size.
- \( c_I \) and \( c_O \) are the number of the input and output channels, respectively.
- \( h_I \) and \( w_I \) are the height and width of the input image, respectively.
- \( h_K \) and \( w_K \) are the height and width of the filters, respectively.
- \( h_P \) and \( w_P \) are the height and width of the spatial padding size, respectively.

Let \((s_Y, s_X)\) be the stride of filter application. Then, the output size \((h_O, w_O)\) is estimated by the following equations:

\[
\begin{align*}
h_O &= s_Y(h_I - 1) + h_K - 2h_P, \\
w_O &= s_X(w_I - 1) + w_K - 2w_P.
\end{align*}
\]

The output of this function can be non-deterministic when it uses cuDNN. If \( \text{chainer.configuration.config.deterministic} \) is \( \text{True} \) and cuDNN version is \( \geq v3 \), it forces cuDNN to use a deterministic algorithm.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set \( \text{chainer.using_config('autotune', True)} \)

**Warning:** deterministic argument is not supported anymore since v2. Instead, use \( \text{chainer.using_config('cudnn_deterministic', value)} \) (value is either True or False). See \( \text{chainer.using_config()} \).

**Parameters**

- \( x \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Input variable of shape \((n, c_I, h_I, w_I)\).
- \( W \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Weight variable of shape \((c_I, c_O, h_K, w_K)\).
- \( b \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Bias variable of length \( c_O \) (optional).
• **stride** (int or pair of int s) – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

• **pad** (int or pair of int s) – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

• **outsize** (tuple of int) – Expected output size of deconvolutional operation. It should be pair of height and width $(h_O, w_O)$. Default value is None and the outsize is estimated by input size, stride and pad.

**Returns** Output variable of shape $(n, c_O, h_O, w_O)$.

**Return type** *Variable*

**Example**

```python
>>> n = 10
>>> c_i, c_o = 1, 3
>>> h_i, w_i = 5, 10
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype('f')
>>> x.shape
(10, 1, 5, 10)
>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype('f')
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, c_o).astype('f')
>>> b.shape
(3,)
>>> s_y, s_x = 5, 5
>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 3, 20, 45)
>>> h_o = s_y * (h_i - 1) + h_k - 2 * h_p
>>> w_o = s_x * (w_i - 1) + w_k - 2 * w_p
>>> y.shape == (n, c_o, h_o, w_o)
True
```

**chainer.functions.deconvolution_nd**

`chainer.functions.deconvolution_nd(x, W, b=None, stride=1, pad=0, outsize=None)`

N-dimensional deconvolution function.

This is an implementation of N-dimensional deconvolution which generalizes two-dimensional one. In most of deep learning frameworks and papers, this function is called **transposed convolution**. But because of historical reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called **deconvolution** in Chainer.

It takes three variables: the input $x$, the filter weight $W$, and the bias vector $b$.

Notation: here is a notation for dimensionalities.

• $N$ is the number of spatial dimensions.

• $n$ is the batch size.

• $c_I$ and $c_O$ are the number of the input and output channels, respectively.
• $d_1, d_2, \ldots, d_N$ are the size of each axis of the input’s spatial dimensions, respectively.

• $k_1, k_2, \ldots, k_N$ are the size of each axis of the filters, respectively.

• $p_1, p_2, \ldots, p_N$ are the size of each axis of the spatial padding size, respectively.

• $s_1, s_2, \ldots, s_N$ are the stride of each axis of filter application, respectively.

If `outsize` option is `None`, the output size $(l_1, l_2, \ldots, l_N)$ is determined by the following equations with the items in the above list:

$$l_n = s_n(d_n - 1) + k_n - 2p_n \quad (n = 1, \ldots, N)$$

If `outsize` option is given, the output size is determined by `outsize`. In this case, the `outsize` $(l_1, l_2, \ldots, l_N)$ must satisfy the following equations:

$$d_n = \left\lfloor (l_n + 2p_n - k_n)/s_n \right\rfloor + 1 \quad (n = 1, \ldots, N)$$

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable of shape $(n, c_I, d_1, d_2, \ldots, d_N)$.

- **W** *(Variable or numpy.ndarray or cupy.ndarray)* – Weight variable of shape $(c_I, c_O, k_1, k_2, \ldots, k_N)$.

- **b** *(Variable or numpy.ndarray or cupy.ndarray)* – One-dimensional bias variable with length $c_O$ (optional).

- **stride** *(int or tuple of int)* – Stride of filter applications $(s_1, s_2, \ldots, s_N)$. `stride=s` is equivalent to $(s, s, \ldots, s)$.

- **pad** *(int or tuple of int)* – Spatial padding width for input arrays $(p_1, p_2, \ldots, p_N)$. `pad=p` is equivalent to $(p, p, \ldots, p)$.

- **outsize** *(tuple of int)* – Expected output size of deconvolutional operation. It should be a tuple of ints $(l_1, l_2, \ldots, l_N)$. Default value is `None` and the outsize is estimated by input size, stride and pad.

Returns Output variable of shape $(n, c_O, l_1, l_2, \ldots, l_N)$.

Return type **Variable**

See also: links.DeconvolutionND, `deconvolution_2d()`

Example

Example1: the case when `outsize` is not given.

```python
e = 10
c_i, c_o = 3, 1
d1, d2, d3 = 5, 10, 15
k1, k2, k3 = 10, 10, 10
p1, p2, p3 = 5, 5, 5
x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
x.shape
```
W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype('f')
W.shape
(3, 1, 10, 10, 10)
b = np.random.uniform(0, 1, (c_o)).astype('f')
b.shape
(1,)
s1, s2, s3 = 2, 4, 6
y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
y.shape
(10, 1, 8, 36, 84)
l1 = s1 * (d1 - 1) + k1 - 2 * p1
l2 = s2 * (d2 - 1) + k2 - 2 * p2
l3 = s3 * (d3 - 1) + k3 - 2 * p3
y.shape == (n, c_o, l1, l2, l3)
True

Example2: the case when outsize is given.

n = 10
c_i, c_o = 3, 1
d1, d2, d3 = 5, 10, 15
k1, k2, k3 = 10, 10, 10
p1, p2, p3 = 5, 5, 5
x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype('f')
x.shape
(10, 3, 5, 10, 15)
W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype('f')
W.shape
(3, 1, 10, 10, 10)
b = np.random.uniform(0, 1, (c_o)).astype('f')
b.shape
(1,)
s1, s2, s3 = 2, 4, 6
l1 = s1 * (d1 - 1) + k1 - 2 * p1
l2 = s2 * (d2 - 1) + k2 - 2 * p2
l3 = s3 * (d3 - 1) + k3 - 2 * p3
y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), outsize=(l1, l2, l3))
y.shape
(10, 1, 9, 38, 87)
y.shape == (n, c_o, l1, l2, l3)
True

chainer.functions.depthwise_convolution_2d

chainer.functions.depthwise_convolution_2d(x, W, b=None, stride=1, pad=0)

Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution. It takes two or three variables: the input image x, the filter weight W, and optionally, the bias vector b.
Notation: here is a notation for dimensionalities.

- $n$ is the batch size.
- $c_I$ is the number of the input.
- $c_M$ is the channel multiplier.
- $h$ and $w$ are the height and width of the input image, respectively.
- $h_O$ and $w_O$ are the height and width of the output image, respectively.
- $k_H$ and $k_W$ are the height and width of the filters, respectively.

**Parameters**

- **x** (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable of shape $(n, c_I, h, w)$.
- **W** (Variable) – Weight variable of shape $(c_M, c_I, k_H, k_W)$.
- **b** (Variable) – Bias variable of length $c_M * c_I$ (optional).
- **stride** (int or pair of ints) – Stride of filter applications. stride=1 and stride=(s, s) are equivalent.
- **pad** (int or pair of ints) – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

**Returns** Output variable. Its shape is $(n, c_I * c_M, h_O, w_O)$.

**Return type** Variable

Like Convolution2D, DepthwiseConvolution2D function computes correlations between filters and patches of size $(k_H, k_W)$ in $x$. But unlike Convolution2D, DepthwiseConvolution2D does not add up input channels of filters but concatenates them. For that reason, the shape of outputs of depthwise convolution are $(n, c_I * c_M, h_O, w_O)$, $c_M$ is called channel_multiplier.

$(h_O, w_O)$ is determined by the equivalent equation of Convolution2D.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See: L. Sifre. Rigid-motion scattering for image classification

See also:

DepthwiseConvolution2D

**Example**

```python
>>> x = np.random.uniform(0, 1, (2, 3, 4, 7))
>>> W = np.random.uniform(0, 1, (2, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (6,))
>>> y = F.depthwise_convolution_2d(x, W, b)
>>> y.shape
(2, 6, 2, 5)
```
Two-dimensional dilated convolution function.

This is an implementation of two-dimensional dilated convolution in ConvNets. It takes three variables: the input image $x$, the filter weight $W$, and the bias vector $b$.

Notation: here is a notation for dimensionalities.

- $n$ is the batch size.
- $c_I$ and $c_O$ are the number of the input and output, respectively.
- $h$ and $w$ are the height and width of the input image, respectively.
- $k_H$ and $k_W$ are the height and width of the filters, respectively.

Parameters

- $x$ (Variable) – Input variable of shape $(n, c_I, h, w)$.
- $W$ (Variable) – Weight variable of shape $(c_O, c_I, k_H, k_W)$.
- $b$ (Variable) – Bias variable of length $c_O$ (optional).
- $stride$ (int or pair of ints) – Stride of filter applications. $stride=s$ and $stride=(s, s)$ are equivalent.
- $pad$ (int or pair of ints) – Spatial padding width for input arrays. $pad=p$ and $pad=(p, p)$ are equivalent.
- $dilate$ (int or pair of ints) – Dilation factor of filter applications. $dilate=d$ and $dilate=(d, d)$ are equivalent.
- $cover_all$ (bool) – If True, all spatial locations are convoluted into some output pixels. It may make the output size larger.

Returns Output variable.

Return type Variable

The two-dimensional dilated convolution function is defined as follows. Then the DilatedConvolution2D function computes correlations between filters and patches of size $(k_H, k_W)$ in $x$. Patches here are extracted at intervals of the dilation factor. Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at intervals of the dilation factor and at positions shifted by multiples of $stride$ from the first position $-pad$ for each spatial axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Let $(s_Y, s_X)$ be the stride of filter application, $(p_H, p_W)$ the spatial padding size, and $(d_Y, d_X)$ the dilation factor of filter application. Then, the output size $(h_O, w_O)$ is determined by the following equations:

$$h_O = (h + 2p_H - k_H - (k_H - 1) * (d_Y - 1))/s_Y + 1,$$
$$w_O = (w + 2p_W - k_W - (k_W - 1) * (d_X - 1))/s_X + 1.$$

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

DilatedConvolution2D
**chainer.functions.embed_id**

**chainer.functions.embed_id(x, W, ignore_label=None)**

Efficient linear function for one-hot input.

This function implements so called *word embeddings*. It takes two arguments: a set of IDs (words) \( x \) in \( B \) dimensional integer vector, and a set of all ID (word) embeddings \( W \) in \( V \times d \) float32 matrix. It outputs \( B \times d \) matrix whose \( i \)-th column is the \( x[i] \)-th column of \( W \).

This function is only differentiable on the input \( W \).

**Parameters**

- \( x \) (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Batch vectors of IDs. Each element must be signed integer.
- \( W \) (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Distributed representation of each ID (a.k.a. word embeddings).
- \( ignore_label \) (*int* or *None*) – If \( ignore_label \) is an int value, \( i \)-th column of return value is filled with 0.

**Returns** Output variable.

**Return type** *Variable*

**See also:** *EmbedID*

**Example**

```python
>>> x = np.array([2, 1]).astype('i')
>>> x
array([2, 1], dtype=int32)
>>> W = np.array([[0, 0, 0],
 [1, 1, 1],
 [2, 2, 2]]).astype('f')
>>> W
array([[0., 0., 0.],
 [1., 1., 1.],
 [2., 2., 2.]], dtype=float32)
>>> F.embed_id(x, W).data
array([[2., 2., 2.],
 [1., 1., 1.]], dtype=float32)
>>> F.embed_id(x, W, ignore_label=1).data
array([[2., 2., 2.],
 [0., 0., 0.]], dtype=float32)
```

**chainer.functions.linear**

**chainer.functions.linear(x, W, b=None)**

Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch \( x \), a weight matrix \( W \), and optionally a bias vector \( b \). It computes

\[
Y = xW^T + b.
\]
Parameters

- \( x \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Input variable, which is a \((s_B, s_1, s_2, ..., s_n)\)-shaped float array. Its first dimension \((s_B)\) is assumed to be the mini-batch dimension. The other dimensions are treated as concatenated one dimension whose size must be \((s_1 \times ... \times s_n = N)\).

- \( W \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Weight variable of shape \((M, N)\), where \((N = s_1 \times ... \times s_n)\).

- \( b \) (**Variable** or **numpy.ndarray** or **cupy.ndarray**) – Bias variable (optional) of shape \((M,)\).

Returns

Output variable. A float array with shape of \((s_B, M)\).

Return type **Variable**

See also: **Linear**

Example

```python
>>> x = np.random.uniform(0, 1, (3, 4)).astype('f')
>>> W = np.random.uniform(0, 1, (5, 4)).astype('f')
>>> b = np.random.uniform(0, 1, (5,)).astype('f')
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)
```

**chainer.functions.n_step_bigru**

**chainer.functions.n_step_bigru**(*n_layers, dropout_ratio, hx, ws, bs, xs*)

Stacked Bi-directional Gated Recurrent Unit function.

This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state \(h_0\), an input sequence \(x\), weight matrices \(W\), and bias vectors \(b\). This function calculates hidden states \(h_t\) for each time \(t\) from input \(x_t\).

\[
\begin{align*}
    r_f^t &= \sigma(W_f^x x_t + W_f^h h_{t-1} + b_f^x + b_f^h) \\
    z_f^t &= \sigma(W_f^x x_t + W_f^h h_{t-1} + b_f^x + b_f^h) \\
    h_f' &= \tanh(W_f^x x_t + b_f^x + r_f^t \cdot (W_f^h h_{t-1} + b_f^h)) \\
    h_f^t &= (1 - z_f^t) \cdot h_{f'}^t + z_f^t \cdot h_{t-1} \\
    r_b^t &= \sigma(W_b^x x_t + W_b^h h_{t-1} + b_b^x + b_b^h) \\
    z_b^t &= \sigma(W_b^x x_t + W_b^h h_{t-1} + b_b^x + b_b^h) \\
    h_b' &= \tanh(W_b^x x_t + b_b^x + r_b^t \cdot (W_b^h h_{t-1} + b_b^h)) \\
    h_b^t &= (1 - z_b^t) \cdot h_{b'}^t + z_b^t \cdot h_{t-1} \\
    h_t &= [h_f^t; h_b^t]
\end{align*}
\]

where \(W^f\) is weight matrices for forward-GRU, \(W^b\) is weight matrices for backward-GRU.

As the function accepts a sequence, it calculates \(h_t\) for all \(t\) with one call. Six weight matrices and six bias vectors are required for each layers. So, when \(S\) layers exists, you need to prepare \(6S\) weight matrices and \(6S\) bias vectors.
If the number of layers `n_layers` is greater than 1, input of k-th layer is hidden state `h_t` of k-1-th layer. Note that all input variables except first layer may have different shape from the first layer.

| Warning: | `train` and `use_cudnn` arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('use_cudnn', use_cudnn)` respectively. See `chainer.using_config()`.

### Parameters

- **`n_layers (int)`** – Number of layers.
- **`dropout_ratio (float)`** – Dropout ratio.
- **`hx (chainer.Variable)`** – Variable holding stacked hidden states. Its shape is `(2S, B, N)` where `S` is number of layers and is equal to `n_layers`, `B` is mini-batch size, and `N` is dimension of hidden units.
- **`ws (list of list of chainer.Variable)`** – Weight matrices. `ws[i]` represents weights for i-th layer. Each `ws[i]` is a list containing six matrices. `ws[i][j]` is corresponding with `W_j` in the equation. Only `ws[0][j]` where `0 <= j < 3` is `(I, N)` shape as they are multiplied with input variables. All other matrices has `(N, N)` shape.
- **`bs (list of list of chainer.Variable)`** – Bias vectors. `bs[i]` represents biases for i-th layer. Each `bs[i]` is a list containing six vectors. `bs[i][j]` is corresponding with `b_j` in the equation. Shape of each matrix is `(N,)` where `N` is dimension of hidden units.
- **`xs (list of chainer.Variable)`** – A list of `Variable` holding input values. Each element `xs[t]` holds input value for time `t`. Its shape is `(B_t, I)`, where `B_t` is mini-batch size for time `t`, and `I` is size of input units. Note that this function supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. `transpose_sequence()` transpose a list of `Variable()` holding sequence. So `xs` needs to satisfy `xs[t].shape[0] >= xs[t + 1].shape[0].`
- **`use_bi_direction (bool)`** – If True, this function uses Bi-direction GRU.

### Returns

This functions returns a tuple containing three elements, `hy` and `ys`.

- `hy` is an updated hidden states whose shape is same as `hx`.
- `ys` is a list of `Variable`. Each element `ys[t]` holds hidden states of the last layer corresponding to an input `xs[t]`. Its shape is `(B_t, N)` where `B_t` is mini-batch size for time `t`, and `N` is size of hidden units. Note that `B_t` is the same value as `xs[t]`.

**Return type** tuple

chainer.functions.n_step_bilstm

chainer.functions.n_step_bilstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)

Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state `h0`, an initial cell state `c0`, an input sequence `x`, weight matrices `W`, and bias vectors `b`. This function calculates
hidden states $h_t$ and $c_t$ for each time $t$ from input $x_t$.

\[
i^f_t = \sigma(W^f_t x_t + W^f_{t-1} h_{t-1} + b^f_0 + b^f_4),
\]
\[
f^f_t = \sigma(W^f_t x_t + W^f_{t-1} h_{t-1} + b^f_1 + b^f_5),
\]
\[
o^f_t = \sigma(W^f_t x_t + W^f_{t-1} h_{t-1} + b^f_2 + b^f_6),
\]
\[
c^f_t = \tanh(W^f_3 x_t + W^f_7 h_{t-1} + b^f_3 + b^f_7),
\]
\[
\begin{align*}
& i^b_t = f^f_t \cdot c^f_{t-1} + i^f_t \cdot o^f_t, \\
& h^f_t = o^f_t \cdot \tanh(c^f_t), \\
& i^b_t = \sigma(W^b_0 x_t + W^b_{4} h_{t-1} + b^b_0 + b^b_4), \\
& f^b_t = \sigma(W^b_1 x_t + W^b_{5} h_{t-1} + b^b_1 + b^b_5), \\
& o^b_t = \sigma(W^b_2 x_t + W^b_{6} h_{t-1} + b^b_2 + b^b_6), \\
& a^b_t = \tanh(W^b_3 x_t + W^b_7 h_{t-1} + b^b_3 + b^b_7), \\
& c^b_t = f^b_t \cdot c^b_{t-1} + i^b_t \cdot a^b_t, \\
& h^b_t = o^b_t \cdot \tanh(c^b_t), \\
& h_t = [h^f_t; h^b_t]
\end{align*}
\]

where $W^f$ is the weight matrices for forward-LSTM, $W^b$ is weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates $h_t$ for all $t$ with one call. Eight weight matrices and eight bias vectors are required for each layer of each direction. So, when $S$ layers exist, you need to prepare $16S$ weight matrices and $16S$ bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state $h_{t-1}$ of the k-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

**Warning:** train and use_cudnn arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

**Parameters**

- **n_layers (**int**) – The number of layers.**
• **dropout_ratio** (*float*) – Dropout ratio.

• **hx** (*Variable*) – Variable holding stacked hidden states. Its shape is \((2S, B, N)\) where \(S\) is the number of layers and is equal to \(n\_layers\), \(B\) is the mini-batch size, and \(N\) is the dimension of the hidden units. Because of bi-direction, the first dimension length is \(2S\).

• **cx** (*Variable*) – Variable holding stacked cell states. It has the same shape as \(hx\).

• **ws** (list of list of *Variable*) – Weight matrices. \(ws[2 * l + m]\) represents the weights for the \(l\)-th layer of the \(m\)-th direction. \((m == 0\) means the forward direction and \(m == 1\) means the backward direction.) Each \(ws[i]\) is a list containing eight matrices. \(ws[i][j]\) corresponds to \(W_j\) in the equation. \(ws[0][j]\) and \(ws[1][j]\) where \(0 <= j < 4\) are \((1, N)\)-shaped because they are multiplied with input variables, where \(i\) is the size of the input. \(ws[1][j]\) where \(2 <= i\) and \(0 <= j < 4\) are \((N, 2N)\)-shaped because they are multiplied with two hidden layers \(h_t = [h^f_t; h^b_t]\). All other matrices are \((N, N)\)-shaped.

• **bs** (list of list of *Variable*) – Bias vectors. \(bs[2 * l + m]\) represents the weights for the \(l\)-th layer of \(m\)-th direction. \((m == 0\) means the forward direction and \(m == 1\) means the backward direction.) Each \(bs[i]\) is a list containing eight vectors. \(bs[i][j]\) corresponds to \(b_j\) in the equation. The shape of each matrix is \((N,)\).

• **xs** (list of *Variable*) – A list of *Variable* holding input values. Each element \(xs[t]\) holds input value for time \(t\). Its shape is \((B_t, I)\), where \(B_t\) is the mini-batch size for time \(t\). The sequences must be transposed. \(\text{transpose_sequence()}\) can be used to transpose a list of Variables each representing a sequence. When sequences has different lengths, they must be sorted in descending order of their lengths before transposing. So \(xs\) needs to satisfy \(xs[t].shape[0] >= xs[t + 1].shape[0]\).

**Returns**

This functions returns a tuple containing three elements, \(hy, cy\) and \(ys\).

• **hy** is an updated hidden states whose shape is the same as \(hx\).

• **cy** is an updated cell states whose shape is the same as \(cx\).

• **ys** is a list of *Variable*. Each element \(ys[t]\) holds hidden states of the last layer corresponding to an input \(xs[t]\). Its shape is \((B\_t, 2N)\) where \(B\_t\) is the mini-batch size for time \(t\), and \(N\) is size of hidden units. Note that \(B\_t\) is the same value as \(xs[t]\).

**Return type** tuple

**Example**

```python
def w_in(i, j):
 if i == 0 and j < 4:
 return in_size
 elif i > 0 and j < 4:
 return out_size * 2
 else:
 return out_size
```

```python
>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype('f') for b in batchs]
>>> [x.shape for x in xs]

[(3, 3), (2, 3), (1, 3)]
```

```python
>>> h_shape = (n_layers * 2, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> def w_in(i, j):
... if i == 0 and j < 4:
... return in_size
... elif i > 0 and j < 4:
... return out_size * 2
... else:
... return out_size
```
```
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
... for direction in (0, 1):
... ws.append([np.ones((out_size, w_in(n, i))).astype('f') for i in range(8)])
... bs.append([np.ones((out_size,)).astype('f') for _ in range(8)])

>>> ws[0][0].shape # ws[0:2][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[2][0].shape # ws[2:][4].shape are (out_size, 2 * out_size)
(2, 4)
>>> ws[0][4].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape # others are (out_size, out_size)
(2, 2)

>>> hy, cy, ys = F.n_step_bilstm(
... n_layers, dropout_ratio, hx, cx, ws, bs, xs)

>>> hy.shape
(4, 3, 2)
>>> cy.shape
(4, 3, 2)
>>> [y.shape for y in ys]
[(3, 4), (2, 4), (1, 4)]
```

**chainer.functions.n_step_birnn**

This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state $h_0$, an initial cell state $c_0$, an input sequence $x$, weight matrices $W$, and bias vectors $b$. This function calculates hidden states $h_t$ and $c_t$ for each time $t$ from input $x_t$.

\[
\begin{align*}
    h_t^f &= f(W_0^f x_t + W_1^f h_{t-1} + b_0^f + b_1^f), \\
    h_t^b &= f(W_0^b x_t + W_1^b h_{t-1} + b_0^b + b_1^b), \\
    h_t &= [h_t^f; h_t^b],
\end{align*}
\]

where $f$ is an activation function.

Weight matrices $W$ contains two matrices $W^f$ and $W^b$. $W^f$ is weight matrices for forward directional RNN. $W^b$ is weight matrices for backward directional RNN.

$W^f$ contains $W_0^f$ for an input sequence and $W_1^f$ for a hidden state. $W^b$ contains $W_0^b$ for an input sequence and $W_1^b$ for a hidden state.

Bias matrices $b$ contains two matrices $b^f$ and $b^b$. $b^f$ contains $b_0^f$ for an input sequence and $b_1^f$ for a hidden state. $b^b$ contains $b_0^b$ for an input sequence and $b_1^b$ for a hidden state.
As the function accepts a sequence, it calculates $h_t$ for all $t$ with one call. Two weight matrices and two bias vectors are required for each layer. So, when $S$ layers exist, you need to prepare $2S$ weight matrices and $2S$ bias vectors.

If the number of layers $n\_layers$ is greater than 1, input of $k$-th layer is hidden state $h_t$ of $k-1$-th layer. Note that all input variables except first layer may have different shape from the first layer.

**Warning:** `train` and `use_cudnn` arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('use_cudnn', use_cudnn)` respectively. See `chainer.using_config()`.

**Parameters**

- `n\_layers` (**int**) – Number of layers.
- `dropout\_ratio` (**float**) – Dropout ratio.
- `hx` (**chainer.Variable**) – Variable holding stacked hidden states. Its shape is $(2S, B, N)$ where $S$ is number of layers and is equal to $n\_layers$, $B$ is mini-batch size, and $N$ is dimension of hidden units. Because of bi-direction, the first dimension length is $2S$.
- `ws` (**list of list of chainer.Variable**) – Weight matrices. $ws[i + di]$ represents weights for $i$-th layer. Note that $di = 0$ for forward-RNN and $di = 1$ for backward-RNN. Each $ws[i + di]$ is a list containing two matrices. $ws[i + di][j]$ is corresponding with $W^f\_j$ if $di = 0$ and corresponding with $W^b\_j$ if $di = 1$ in the equation. Only $ws[0][j]$ and $ws[1][j]$ where $0 <= j < 1$ are $(I, N)$ shape as they are multiplied with input variables. All other matrices has $(N, N)$ shape.
- `bs` (**list of list of chainer.Variable**) – Bias vectors. $bs[i + di]$ represents biases for $i$-th layer. Note that $di = 0$ for forward-RNN and $di = 1$ for backward-RNN. Each $bs[i + di]$ is a list containing two vectors. $bs[i + di][j]$ is corresponding with $b^f\_j$ if $di = 0$ and corresponding with $b^b\_j$ if $di = 1$ in the equation. Shape of each matrix is $(N,)$ where $N$ is dimension of hidden units.
- `xs` (**list of chainer.Variable**) – A list of `Variable` holding input values. Each element $xs[t]$ holds input value for time $t$. Its shape is $(B_t, I)$, where $B_t$ is mini-batch size for time $t$, and $I$ is size of input units. Note that this functions supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. `transpose_sequence()` transpose a list of `Variable()` holding sequence. So $xs$ needs to satisfy $xs[t].shape[0] >= xs[t + 1].shape[0]$.
- `activation` (**str**) – Activation function name. Please select `tanh` or `relu`.

**Returns**

This functions returns a tuple containing three elements, $hy$ and $ys$.

- $hy$ is an updated hidden states whose shape is same as $hx$.
- $ys$ is a list of `Variable`. Each element $ys[t]$ holds hidden states of the last layer corresponding to an input $xs[t]$. Its shape is $(B_t, N)$ where $B_t$ is mini-batch size for time $t$, and $N$ is size of hidden units. Note that $B_t$ is the same value as $xs[t]$.

**Return type**  `tuple`
Stacked Uni-directional Gated Recurrent Unit function.

This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state \( h_0 \), an input sequence \( x \), weight matrices \( W \), and bias vectors \( b \). This function calculates hidden states \( h_t \) for each time \( t \) from input \( x_t \).

\[
\begin{align*}
 r_t &= \sigma(W_0 x_t + W_3 h_{t-1} + b_0 + b_3) \\
 z_t &= \sigma(W_1 x_t + W_4 h_{t-1} + b_1 + b_4) \\
 h'_t &= \tanh(W_2 x_t + b_2 + r_t \cdot (W_5 h_{t-1} + b_5)) \\
 h_t &= (1 - z_t) \cdot h'_t + z_t \cdot h_{t-1}
\end{align*}
\]

As the function accepts a sequence, it calculates \( h_t \) for all \( t \) with one call. Six weight matrices and six bias vectors are required for each layers. So, when \( S \) layers exists, you need to prepare \( 6S \) weight matrices and \( 6S \) bias vectors.

If the number of layers \( n_layers \) is greater than 1, input of \( k \)-th layer is hidden state \( h_t \) of \( k-1 \)-th layer. Note that all input variables except first layer may have different shape from the first layer.

**Warning:** train and use_cudnn arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

### Parameters

- **n_layers (int)** – Number of layers.
- **dropout_ratio (float)** – Dropout ratio.
- **hx (chainer.Variable)** – Variable holding stacked hidden states. Its shape is \((S, B, N)\) where \( S \) is number of layers and is equal to \( n_layers \), \( B \) is mini-batch size, and \( N \) is dimension of hidden units.
- **ws (list of list of chainer.Variable)** – Weight matrices. \( ws[i] \) represents weights for \( i \)-th layer. Each \( ws[i] \) is a list containing six matrices. \( ws[i][j] \) is corresponding with \( W_j \) in the equation. Only \( ws[0][j] \) where \( 0 \leq j < 3 \) is \((I, N)\) shape as they are multiplied with input variables. All other matrices has \((N, N)\) shape.
- **bs (list of list of chainer.Variable)** – Bias vectors. \( bs[i] \) represents biases for \( i \)-th layer. Each \( bs[i] \) is a list containing six vectors. \( bs[i][j] \) is corresponding with \( b_j \) in the equation. Shape of each matrix is \((N,)\) where \( N \) is dimension of hidden units.
- **xs (list of chainer.Variable)** – A list of Variable holding input values. Each element \( xs[t] \) holds input value for time \( t \). Its shape is \((B_t, I)\), where \( B_t \) is mini-batch size for time \( t \), and \( I \) is size of input units. Note that this functions supports variable length sequences. When sequences has different lengths, sort sequences in descending order by length, and transpose the sorted sequence. transpose_sequence() transpose a list of Variable() holding sequence. So \( xs \) needs to satisfy \( xs[t].shape[0] \geq xs[t + 1].shape[0] \).

### Returns

This functions returns a tuple containing three elements, \( hy \) and \( ys \).

- \( hy \) is an updated hidden states whose shape is same as \( hx \).
• `ys` is a list of `Variable`. Each element `ys[t]` holds hidden states of the last layer corresponding to an input `xs[t]`. Its shape is `(B_t, N)` where `B_t` is mini-batch size for time `t`, and `N` is size of hidden units. Note that `B_t` is the same value as `xs[t]`.

**Return type** `tuple`

**chainer.functions.n_step_lstm**

```python
chainer.functions.n_step_lstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)
```

Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state `h_0`, an initial cell state `c_0`, an input sequence `x`, weight matrices `W`, and bias vectors `b`. This function calculates hidden states `h_t` and `c_t` for each time `t` from input `x_t`.

\[
\begin{align*}
i_t &= \sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4) \\
f_t &= \sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5) \\
o_t &= \sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6) \\
a_t &= \tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7) \\
c_t &= f_t \cdot c_{t-1} + i_t \cdot a_t \\
h_t &= o_t \cdot \tanh(c_t)
\end{align*}
\]

As the function accepts a sequence, it calculates `h_t` for all `t` with one call. Eight weight matrices and eight bias vectors are required for each layer. So, when `S` layers exist, you need to prepare `8S` weight matrices and `8S` bias vectors.

If the number of layers `n_layers` is greater than 1, the input of the `k`-th layer is the hidden state `h_{k-1}` of the `k-1`-th layer. Note that all input variables except the first layer may have different shape from the first layer.

**Warning:** `train` and `use_cudnn` arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('use_cudnn', use_cudnn)` respectively. See `chainer.using_config()`.

**Parameters**

- `n_layers (int)` – The number of layers.
- `dropout_ratio (float)` – Dropout ratio.
- `hx (Variable)` – Variable holding stacked hidden states. Its shape is `(S, B, N)` where `S` is the number of layers and is equal to `n_layers`, `B` is the mini-batch size, and `N` is the dimension of the hidden units.
- `cx (Variable)` – Variable holding stacked cell states. It has the same shape as `hx`.
- `ws` (list of list of `Variable`) – Weight matrices. `ws[i]` represents the weights for the `i`-th layer. Each `ws[i]` is a list containing eight matrices. `ws[i][j]` corresponds to `W_j` in the equation. Only `ws[0][j]` where `0 <= j < 4` are `(I, N)`-shaped as they are multiplied with input variables, where `I` is the size of the input and `N` is the dimension of the hidden units. All other matrices are `(N, N)`-shaped.
- `bs` (list of list of `Variable`) – Bias vectors. `bs[i]` represents the biases for the `i`-th layer. Each `bs[i]` is a list containing eight vectors. `bs[i][j]` corresponds to `b_j` in the equation. The shape of each matrix is `(N,)` where `N` is the dimension of the hidden units.
- **xs** (list of **Variable**) – A list of **Variable** holding input values. Each element \( \text{xs}[t] \) holds input value for time \( t \). Its shape is \((B_t, I)\), where \( B_t \) is the mini-batch size for time \( t \). The sequences must be transposed. \text{transpose_sequence()} can be used to transpose a list of **Variables** each representing a sequence. When sequences have different lengths, they must be sorted in descending order of their lengths before transposing. So \( \text{xs} \) needs to satisfy \( \text{xs}[t].shape[0] >= \text{xs}[t + 1].shape[0] \).

**Returns**

This functions returns a tuple containing three elements, hy, cy and ys.

- **hy** is an updated hidden states whose shape is the same as \( \text{hx} \).
- **cy** is an updated cell states whose shape is the same as \( \text{cx} \).
- **ys** is a list of **Variable**. Each element \( \text{ys}[t] \) holds hidden states of the last layer corresponding to an input \( \text{xs}[t] \). Its shape is \((B_t, N)\) where \( B_t \) is the mini-batch size for time \( t \), and \( N \) is size of hidden units. Note that \( B_t \) is the same value as \( \text{xs}[t] \).

**Return type** **tuple**

**Note:** The dimension of hidden units is limited to only one size \( N \). If you want to use variable dimension of hidden units, please use \text{chainer.functions.lstm}.

**See also:**

\text{chainer.functions.lstm()}  

**Example**

```python
>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype('f') for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
...	ws.append([np.ones((out_size, w_in(n, i))).astype('f') for i in range(8)])
...	bs.append([np.ones((out_size,)).astype('f') for _ in range(8)])
...
>>> ws[0][0].shape # ws[0][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[1][0].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_lstm...
>>> hy.shape
(2, 3, 2)
>>> cy.shape
(2, 3, 2)
```
chainer.functions.n_step_rnn

chainer.functions.

n_step_rnn

(n_layers, dropout_ratio, hx, ws, bs, xs, activation='tanh')

Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state \( h_0 \), an initial cell state \( c_0 \), an input sequence \( x \), weight matrices \( W \), and bias vectors \( b \). This function calculates hidden states \( h_t \) and \( c_t \) for each time \( t \) from input \( x_t \).

\[
h_t = f(W_0 x_t + W_1 h_{t-1} + b_0 + b_1)
\]

where \( f \) is an activation function.

Weight matrices \( W \) contains two matrices \( W_0 \) and \( W_1 \). \( W_0 \) is a parameter for an input sequence. \( W_1 \) is a parameter for a hidden state. Bias matrices \( b \) contains two matrices \( b_0 \) and \( b_1 \). \( b_0 \) is a parameter for an input sequence. \( b_1 \) is a parameter for a hidden state.

As the function accepts a sequence, it calculates \( h_t \) for all \( t \) with one call. Two weight matrices and two bias vectors are required for each layer. So, when \( S \) layers exist, you need to prepare \( 2S \) weight matrices and \( 2S \) bias vectors.

If the number of layers \( n_layers \) is greater than 1, input of \( k \)-th layer is hidden state \( h_{t-1} \) of \( k-1 \)-th layer. Note that all input variables except first layer may have different shape from the first layer.

**Warning:** train and use_cudnn arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.

using_config('use_cudnn', use_cudnn) respectively. See chainer.using_config().

**Parameters**

- \( \text{n_layers} \) (int) – Number of layers.
- \( \text{dropout_ratio} \) (float) – Dropout ratio.
- \( \text{hx} \) (chainer.Variable) – Variable holding stacked hidden states. Its shape is \((S, B, N)\) where \( S \) is number of layers and is equal to \( \text{n_layers} \), \( B \) is mini-batch size, and \( N \) is dimension of hidden units.
- \( \text{ws} \) (list of list of chainer.Variable) – Weight matrices. \( \text{ws}[i] \) represents weights for \( i \)-th layer. Each \( \text{ws}[i] \) is a list containing two matrices. \( \text{ws}[i][j] \) is corresponding with \( W_j \) in the equation. Only \( \text{ws}[0][j] \) where \( 0 \leq j < 1 \) is \((I, N)\) shape as they are multiplied with input variables. All other matrices has \((N, N)\) shape.
- \( \text{bs} \) (list of list of chainer.Variable) – Bias vectors. \( \text{bs}[i] \) represents biases for \( i \)-th layer. Each \( \text{bs}[i] \) is a list containing two vectors. \( \text{bs}[i][j] \) is corresponding with \( b_j \) in the equation. Shape of each matrix is \((N,)\) where \( N \) is dimension of hidden units.
- \( \text{xs} \) (list of chainer.Variable) – A list of Variable holding input values. Each element \( \text{xs}[t] \) holds input value for time \( t \). Its shape is \((B_t, I)\), where \( B_t \) is mini-batch size for time \( t \), and \( I \) is size of input units. Note that this functions supports variable length sequences. When sequences has different lengths, sort sequences in descending order.
by length, and transpose the sorted sequence. `transpose_sequence()` transpose a 
list of `Variable()` holding sequence. So `xs` needs to satisfy `xs[t].shape[0] >= 
xs[t + 1].shape[0].`

- `activation (str)` – Activation function name. Please select `tanh` or `relu`.

Returns

This functions returns a tuple concaining three elements, `hy` and `ys`.

- `hy` is an updated hidden states whose shape is same as `hx`.
- `ys` is a list of `Variable`. Each element `ys[t]` holds hidden states of the last layer 
corresponding to an input `xs[t]`. Its shape is `(B_t, N)` where `B_t` is mini-batch size 
for time `t`, and `N` is size of hidden units. Note that `B_t` is the same value as `xs[t]`.

Return type `tuple`

### 2.4.4 Evaluation functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.accuracy</code></td>
<td>Computes multiclass classification accuracy of the minibatch.</td>
</tr>
<tr>
<td><code>chainer.functions.binary_accuracy</code></td>
<td>Computes binary classification accuracy of the minibatch.</td>
</tr>
<tr>
<td><code>chainer.functions.classification_summary</code></td>
<td>Calculates Precision, Recall, F beta Score, and support.</td>
</tr>
<tr>
<td><code>chainer.functions.f1_score</code></td>
<td></td>
</tr>
<tr>
<td><code>chainer.functions.precision</code></td>
<td></td>
</tr>
<tr>
<td><code>chainer.functions.r2_score</code></td>
<td>Computes R^2(coefficient of determination) regression score function.</td>
</tr>
<tr>
<td><code>chainer.functions.recall</code></td>
<td></td>
</tr>
</tbody>
</table>

#### chainer.functions.accuracy

**chainer.functions.accuracy** *(y, t, ignore_label=None)*
Computes multiclass classification accuracy of the minibatch.

**Parameters**

- `y` *(Variable or numpy.ndarray or cupy.ndarray)* – Array whose (i, j, k, ...)th 
element indicates the score of the class j at the (i, k, ...)th sample. The prediction label `\hat{t}` is 
calculated by the formula `\hat{t}(i,k,...) = \arg\max_j y(i,j,k,...)`.

- `t` *(Variable or numpy.ndarray or cupy.ndarray of signed integer)* – Array of 
ground truth labels.

- `ignore_label` *(int or None)* – Skip calculating accuracy if the true label is 
`ignore_label`.

**Returns** A variable holding a scalar array of the accuracy.

**Return type** `Variable`

**Note:** This function is non-differentiable.

**Example**
We show the most common case, when $y$ is the two dimensional array.

```python
>>> y = np.array([[0.1, 0.7, 0.2],
 [8.0, 1.0, 2.0],
 [-8.0, 1.0, 2.0],
 [-8.0, -1.0, -2.0]]) # prediction label is 1
... # prediction label is 0
... # prediction label is 2
... # prediction label is 1

>>> t = np.array([1, 0, 2, 1], 'i')

>>> F.accuracy(y, t).data # 100% accuracy because all samples are correct.
array(1.)

>>> t = np.array([1, 0, 0, 0], 'i')

>>> F.accuracy(y, t).data # 50% accuracy because 1st and 2nd samples are correct.
array(0.5)

>>> t = np.array([1, 0, 2, 1], 'i')

>>> F.accuracy(y, t, ignore_label=0).data # 100% accuracy because of ignoring the...
array(1.)
```

**chainer.functions.binary_accuracy**

chainer.functions.binary_accuracy($y$, $t$)

Computes binary classification accuracy of the minibatch.

**Parameters**

- $y$ (Variable or numpy.ndarray or cupy.ndarray) – Array whose $i$-th element indicates the score of positive at the $i$-th sample. The prediction label $\hat{t}[i]$ is 1 if $y[i] >= 0$, otherwise 0.

- $t$ (Variable or numpy.ndarray or cupy.ndarray) – Array holding a signed integer vector of ground truth labels. If $t[i] == 1$, it indicates that $i$-th sample is positive. If $t[i] == 0$, it indicates that $i$-th sample is negative. If $t[i] == -1$, corresponding $y[i]$ is ignored. Accuracy is zero if all ground truth labels are $-1$.

**Returns**

A variable holding a scalar array of the accuracy.

**Return type** Variable

**Note:** This function is non-differentiable.

**Example**

We show the most common case, when $y$ is the two dimensional array.

```python
>>> y = np.array([[-2.0, 0.0],
 [3.0, -5.0]]) # prediction labels are [0, 1]
... # prediction labels are [1, 0]

>>> t = np.array([[0, 1],
 [1, 0]], 'i')

>>> F.binary_accuracy(y, t).data # 100% accuracy because all samples are correct.
array(1.)

>>> t = np.array([[0, 0],
 [1, 1]], 'i')

>>> F.binary_accuracy(y, t).data # 50% accuracy because y[0][0] and y[1][0] are...
array(0.5)

>>> t = np.array([[0, -1],
 [1, -1]], 'i')
```
chainer.functions.classification_summary

chainer.functions.classification_summary(y, t, label_num=None, beta=1.0, ignore_label=-1)

Calculates Precision, Recall, F beta Score, and support.

This function calculates the following quantities for each class.

- Precision: \( \frac{tp}{tp+fp} \)
- Recall: \( \frac{tp}{tp+tn} \)
- F beta Score: The weighted harmonic average of Precision and Recall.
- Support: The number of instances of each ground truth label.

Here, \( tp \), \( fp \), and \( tn \) stand for the number of true positives, false positives, and true negative, respectively.

\( label\_num \) specifies the number of classes, that is, each value in \( t \) must be an integer in the range of \( [0, label\_num) \). If \( label\_num \) is None, this function regards \( label\_num \) as a maximum of in \( t \) plus one.

\( ignore\_label \) determines which instances should be ignored. Specifically, instances with the given label are not taken into account for calculating the above quantities. By default, it is set to -1 so that all instances are taken into consideration, as labels are supposed to be non-negative integers. Setting \( ignore\_label \) to a non-negative integer less than \( label\_num \) is illegal and yields undefined behavior. In the current implementation, it arises \( RuntimeWarning \) and \( ignore\_label \)-th entries in output arrays do not contain correct quantities.

Parameters

- \( y \) (Variable) – Variable holding a vector of scores.
- \( t \) (Variable) – Variable holding a vector of ground truth labels.
- \( label\_num \) (int) – The number of classes.
- \( beta \) (float) – The parameter which determines the weight of precision in the F-beta score.
- \( ignore\_label \) (int) – Instances with this label are ignored.

Returns 4-tuple of ~chainer.Variable of size \( (label\_num,) \). Each element represents precision, recall, F beta score, and support of this minibatch.

chainer.functions.f1_score

chainer.functions.f1_score(y, t, label_num=None, ignore_label=-1)

chainer.functions.precision

chainer.functions.precision(y, t, label_num=None, ignore_label=-1)
chainer.functions.r2_score

chainer.functions.r2_score(pred, true, sample_weight=None, multioutput='uniform_average')
Computes $R^2$(coefficient of determination) regression score function.

Parameters

- **pred** (Variable) – Variable holding a vector, matrix or tensor of estimated target values.
- **true** (Variable) – Variable holding a vector, matrix or tensor of correct target values.
- **sample_weight** – This argument is for compatibility with scikit-learn’s implementation of r2_score. Current implementation admits None only.
- **multioutput** (string) – ‘uniform_average’, ‘raw_values’. If ‘uniform_average’, this function returns an average of $R^2$ score of multiple output. If ‘raw_average’, this function return a set of $R^2$ scores of multiple output.

Returns A Variable holding a scalar array of the $R^2$ score if ‘multioutput’ is ‘uniform_average’ or a vector of $R^2$ scores if ‘multioutput’ is ‘raw_values’.

Return type Variable

Note: This function is non-differentiable.

chainer.functions.recall

chainer.functions.recall(y, t, label_num=None, ignore_label=-1)

2.4.5 Loss functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.absolute_error</td>
<td>Element-wise absolute error function.</td>
</tr>
<tr>
<td>chainer.functions.bernoulli_nll</td>
<td>Computes the negative log-likelihood of a Bernoulli distribution.</td>
</tr>
<tr>
<td>chainer.functions.black_out</td>
<td>BlackOut loss function.</td>
</tr>
<tr>
<td>chainer.functions.connectionist_temporal_classification</td>
<td>Connectionist Temporal Classification loss function.</td>
</tr>
<tr>
<td>chainer.functions.contrastive</td>
<td>Computes contrastive loss.</td>
</tr>
<tr>
<td>chainer.functions.crf1d</td>
<td>Calculates negative log-likelihood of linear-chain CRF.</td>
</tr>
<tr>
<td>chainer.functions.argmax_crf1d</td>
<td>Computes a state that maximizes a joint probability of the given CRF.</td>
</tr>
<tr>
<td>chainer.functions.cross_covariance</td>
<td>Computes the sum-squared cross-covariance penalty between y and z.</td>
</tr>
<tr>
<td>chainer.functions.decov</td>
<td>Computes the DeCov loss of $h$.</td>
</tr>
<tr>
<td>chainer.functions.gaussian_kl_divergence</td>
<td>Computes the KL-divergence of Gaussian variables from the standard one.</td>
</tr>
<tr>
<td>chainer.functions.gaussian_nll</td>
<td>Computes the negative log-likelihood of a Gaussian distribution.</td>
</tr>
<tr>
<td>chainer.functions.hinge</td>
<td>Computes the hinge loss for a one-of-many classification task.</td>
</tr>
<tr>
<td>chainer.functions.huber_loss</td>
<td>Loss function which is less sensitive to outliers in data than MSE.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2.36 – continued from previous page

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.mean_absolute_error</code></td>
<td>Mean absolute error function.</td>
</tr>
<tr>
<td><code>chainer.functions.mean_squared_error</code></td>
<td>Mean squared error function.</td>
</tr>
<tr>
<td><code>chainer.functions.negative_sampling</code></td>
<td>Negative sampling loss function.</td>
</tr>
<tr>
<td><code>chainer.functions.sigmoid_cross_entropy</code></td>
<td>Computes cross entropy loss for pre-sigmoid activations.</td>
</tr>
<tr>
<td><code>chainer.functions.softmax_cross_entropy</code></td>
<td>Computes cross entropy loss for pre-softmax activations.</td>
</tr>
<tr>
<td><code>chainer.functions.squared_error</code></td>
<td>Squared error function.</td>
</tr>
<tr>
<td><code>chainer.functions.triplet</code></td>
<td>Computes triplet loss.</td>
</tr>
</tbody>
</table>

**chainer.functions.absolute_error**

chainer.functions.absolute_error(x0, x1)

Element-wise absolute error function.

Computes the element-wise absolute error $L$ between two inputs $x_0$ and $x_1$ defined as follows.

$$L = |x_0 - x_1|$$

**Parameters**

- **x0** (Variable or numpy.ndarray or cupy.ndarray) – First input variable.
- **x1** (Variable or numpy.ndarray or cupy.ndarray) – Second input variable.

**Returns** An array representing the element-wise absolute error between the two inputs.

**Return type** Variable

**chainer.functions.bernoulli_nll**

chainer.functions.bernoulli_nll(x, y, reduce='sum')

Computes the negative log-likelihood of a Bernoulli distribution.

This function calculates the negative log-likelihood of a Bernoulli distribution.

$$-\log B(x; p) = -\sum_i \{x_i \log(p_i) + (1 - x_i) \log(1 - p_i)\},$$

where $p = \sigma(y)$, $\sigma(\cdot)$ is a sigmoid function, and $B(x; p)$ is a Bernoulli distribution.

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the elementwise loss values. If it is 'sum', loss values are summed up.

**Note:** As this function uses a sigmoid function, you can pass a result of fully-connected layer (that means Linear) to this function directly.

**Parameters**

- **x** (Variable or numpy.ndarray or cupy.ndarray) – Input variable.
- **y** (Variable or numpy.ndarray or cupy.ndarray) – A variable representing the parameter of Bernoulli distribution.
- **reduce** (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, ValueError is raised.
Returns A variable representing the negative log-likelihood. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type **Variable**

**chainer.functions.black_out**

```python
chainer.functions.black_out(x, t, W, samples, reduce='mean')
```

BlackOut loss function.

BlackOut loss function is defined as

$$-\log(p(t)) - \sum_{s \in S} \log(1 - p(s)),$$

where \(t\) is the correct label, \(S\) is a set of negative examples and \(p(\cdot)\) is likelihood of a given label. And, \(p\) is defined as

$$p(y) = \frac{\exp(W^\top y x)}{\sum_{s \in \text{samples}} \exp(W^\top y x)}.$$ 

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the no loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

- **x** (*Variable*) – Batch of input vectors. Its shape should be \((N, D)\).
- **t** (*Variable*) – Vector of ground truth labels. Its shape should be \((N,)\). Each elements \(v\) should satisfy \(0 \geq v \geq V\) or \(-1\) where \(V\) is the number of label types.
- **W** (*Variable*) – Weight matrix. Its shape should be \((V, D)\)
- **samples** (*Variable*) – Negative samples. Its shape should be \((N, S)\) where \(S\) is the number of negative samples.
- **reduce** (*str*) – Reduction option. Its value must be either 'no' or 'mean'. Otherwise, `ValueError` is raised.

Returns A variable object holding loss value(s). If `reduce` is 'no', the output variable holds an array whose shape is \((N,)\). If it is 'mean', it holds a scalar.

Return type **Variable**

See: BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies

See also:

BlackOut.

**chainer.functions.connectionist_temporal_classification**

```python
chainer.functions.connectionist_temporal_classification(x, t, blank_symbol, input_length=None, label_length=None, reduce='mean')
```

Connectionist Temporal Classification loss function.

Connectionist Temporal Classification (CTC) [Graves2006] is a loss function of sequence labeling where the alignment between the inputs and target is unknown. See also [Graves2012].
The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the samplewise loss values. If it is 'mean', it takes the mean of loss values.

**Parameters**

- `x (sequence of Variable)` – RNN output at each time. `x` must be a list of `Variable`s. Each element of `x`, `x[i]` is a `Variable` representing output of RNN at time `i`.
- `t (Variable)` – Expected label sequence.
- `blank_symbol (int)` – Index of blank_symbol. This value must be non-negative.
- `input_length (Variable)` – Length of valid sequence for each of mini batch `x` (optional). If `input_length` is skipped, it regards that all of `x` is valid input.
- `label_length (Variable)` – Length of valid sequence for each of mini batch `t` (optional). If `label_length` is skipped, it regards that all of `t` is valid input.
- `reduce (str)` – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, `ValueError` is raised.

**Returns** A variable holding a scalar value of the CTC loss. If `reduce` is 'no', the output variable holds array whose shape is `(B,)` where `B` is the number of samples. If it is 'mean', it holds a scalar.

**Return type** `Variable`

---

**Note:** You need to input `x` without applying to activation functions (e.g. softmax function), because this function applies softmax functions to `x` before calculating CTC loss to avoid numerical limitations. You also need to apply softmax function to forwarded values before you decode it.

---

**Note:** This function is differentiable only by `x`.

---

**Note:** This function supports (batch, sequence, 1-dimensional input)-data.

---

`chainer.functions.contrastive`

`chainer.functions.contrastive(x0, x1, y, margin=1, reduce='mean')`

Computes contrastive loss.

It takes a pair of samples and a label as inputs. The label is 1 when those samples are similar, or 0 when they are dissimilar.

Let \( N \) and \( K \) denote mini-batch size and the dimension of input variables, respectively. The shape of both input variables `x0` and `x1` should be \( (N, K) \). The loss value of the \( n \)-th sample pair \( L_n \) is

\[
L_n = \frac{1}{2} \left( y_n d_n^2 + (1 - y_n) \max(margin - d_n, 0)^2 \right)
\]

where \( d_n = \|x_{0_n} - x_{1_n}\|_2 \), \( x_{0_n} \) and \( x_{1_n} \) are \( n \)-th \( K \)-dimensional vectors of `x0` and `x1`.

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the elementwise loss values. If it is 'mean', this function takes a mean of loss values.

**Parameters**
• **x0** (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – The first input variable. The shape should be (N, K), where N denotes the mini-batch size, and K denotes the dimension of x0.

• **x1** (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – The second input variable. The shape should be the same as x0.

• **y** (*Variable* or `numpy.ndarray` or `cupy.ndarray`) – Labels. All values should be 0 or 1. The shape should be (N,), where N denotes the mini-batch size.

• **margin** (*float*) – A parameter for contrastive loss. It should be positive value.

• **reduce** (*str*) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, `ValueError` is raised.

**Returns** A variable holding the loss value(s) calculated by the above equation. If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

**Return type** *Variable*

---

**Note:** This cost can be used to train siamese networks. See *Learning a Similarity Metric Discriminatively, with Application to Face Verification* for details.

---

### Example

```python
>>> x0 = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> x1 = np.array([[-1.0, 3.0, 1.0], [3.5, 0.5, -2.0]]).astype('f')
>>> y = np.array([1, 0]).astype('i')
>>> F.contrastive(x0, x1, y)
variable(0.3125)
>>> F.contrastive(x0, x1, y, margin=3.0) # harder penalty
variable(0.3528857)
>>> z = F.contrastive(x0, x1, y, reduce='no')
>>> z.shape
(2,)
>>> z.data
array([0.625, 0.], dtype=float32)
```

---

**chainer.functions.crf1d**

**chainer.functions.crf1d**(cost, xs, ys, reduce='mean')

Calculates negative log-likelihood of linear-chain CRF.

It takes a transition cost matrix, a sequence of costs, and a sequence of labels. Let \(c_{st}\) be a transition cost from a label \(s\) to a label \(t\), \(x_{it}\) be a cost of a label \(t\) at position \(i\), and \(y_i\) be an expected label at position \(i\). The negative log-likelihood of linear-chain CRF is defined as

\[
L = - \left( \sum_{i=1}^{l-1} x_{iy_i} + \sum_{i=1}^{l-1} c_{y_i y_{i+1}} - \log(Z) \right),
\]

where \(l\) is the length of the input sequence and \(Z\) is the normalizing constant called partition function.
Note: When you want to calculate the negative log-likelihood of sequences which have different lengths, sort the sequences in descending order of lengths and transpose the sequences. For example, you have three input sequences:

```python
>>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype('f')
>>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype('f')
>>> c1 = c2 = np.random.uniform(-1, 1, 3).astype('f')
```

```python
>>> a = [a1, a2, a3, a4]
>>> b = [b1, b2, b3]
>>> c = [c1, c2]
```

where `a1` and all other variables are arrays with `(K,)` shape. Make a transpose of the sequences:

```python
>>> x1 = np.stack([a1, b1, c1])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])
>>> x4 = np.stack([a4])
```

and make a list of the arrays:

```python
>>> xs = [x1, x2, x3, x4]
```

You need to make label sequences in the same fashion. And then, call the function:

```python
>>> cost = chainer.Variable(
... np.random.uniform(-1, 1, (3, 3)).astype('f'))
>>> ys = [np.zeros(x.shape[0:1], dtype='i') for x in xs]
>>> loss = F.crf1d(cost, xs, ys)
```

It calculates mean of the negative log-likelihood of the three sequences.

The output is a variable whose value depends on the value of the option `reduce`. If it is `no`, it holds the elementwise loss values. If it is `mean`, it holds mean of the loss values.

**Parameters**

- **cost** (`Variable`) – A $K \times K$ matrix which holds transition cost between two labels, where $K$ is the number of labels.

- **xs** (`list of Variable`) – Input vector for each label. `len(xs)` denotes the length of the sequence, and each `Variable` holds a $B \times K$ matrix, where $B$ is mini-batch size, $K$ is the number of labels. Note that $B$s in all the variables are not necessary the same, i.e., it accepts the input sequences with different lengths.

- **ys** (`list of Variable`) – Expected output labels. It needs to have the same length as `xs`. Each `Variable` holds a $B$ integer vector. When $x$ in `xs` has the different $B$, corresponding $y$ has the same $B$. In other words, `ys` must satisfy `ys[i].shape == xs[i].shape[0:1]` for all `i`.

- **reduce** (`str`) – Reduction option. Its value must be either `mean` or `no`. Otherwise, `ValueError` is raised.

**Returns** A variable holding the average negative log-likelihood of the input sequences.

**Return type** `Variable`
chainer.functions.argmax_crf1d

chainer.functions.argmax_crf1d(cost, xs)
Computes a state that maximizes a joint probability of the given CRF.

Parameters

- **cost** (Variable) – A $K \times K$ matrix which holds transition cost between two labels, where $K$ is the number of labels.

- **xs** (list of Variable) – Input vector for each label. len(xs) denotes the length of the sequence, and each Variable holds a $B \times K$ matrix, where $B$ is mini-batch size, $K$ is the number of labels. Note that $B$s in all the variables are not necessarily the same, i.e., it accepts the input sequences with different lengths.

Returns A tuple of Variable object $s$ and a list $ps$. The shape of $s$ is $(B,)$, where $B$ is the mini-batch size. i-th element of $s, s[i]$, represents log-likelihood of i-th data. $ps$ is a list of numpy.ndarray or cupy.ndarray, and denotes the state that maximizes the point probability. len(ps) is equal to len(xs), and shape of each ps[i] is the mini-batch size of the corresponding xs[i]. That means, ps[i].shape == xs[i].shape[0:1].

Return type tuple

chainer.functions.cross_covariance

chainer.functions.cross_covariance(y, z, reduce='half_squared_sum')
Computes the sum-squared cross-covariance penalty between $y$ and $z$

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the covariant matrix that has as many rows (resp. columns) as the dimension of $y$ (resp. $z$). If it is 'half_squared_sum', it holds the half of the Frobenius norm (i.e. L2 norm of a matrix flattened to a vector) of the covariance matrix.

Parameters

- **y** (Variable) – Variable holding a matrix where the first dimension corresponds to the batches.

- **z** (Variable) – Variable holding a matrix where the first dimension corresponds to the batches.

- **reduce** (str) – Reduction option. Its value must be either 'half_squared_sum' or 'no'. Otherwise, ValueError is raised.

Returns A variable holding the cross covariance loss. If reduce is 'no', the output variable holds 2-dimensional array matrix of shape $(M, N)$ where $M$ (resp. $N$) is the number of columns of $y$ (resp. $z$). If it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to disentangle variables. See https://arxiv.org/abs/1412.6583v3 for details.
**chainer.functions.decov**

**chainer.functions.decov**(h, reduce='half_squared_sum')

Computes the DeCov loss of h.

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds a matrix whose size is same as the number of columns of y. If it is 'half_squared_sum', it holds the half of the squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix.

**Parameters**
- **h** (`Variable`) – Variable holding a matrix where the first dimension corresponds to the batches.
- **reduce** (`str`) – Reduction option. Its value must be either 'half_squared_sum' or 'no'. Otherwise, `ValueError` is raised.

**Returns** A variable holding a scalar of the DeCov loss. If `reduce` is 'no', the output variable holds 2-dimensional array matrix of shape (N, N) where N is the number of columns of y. If it is 'half_squared_sum', the output variable holds a scalar value.

**Return type** `Variable`

**Note:** See https://arxiv.org/abs/1511.06068 for details.

**chainer.functions.gaussian_kl_divergence**

**chainer.functions.gaussian_kl_divergence**(mean, ln_var, reduce='sum')

Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable `mean` representing $\mu$ and `ln_var` representing $\log(\sigma^2)$, this function calculates the KL-divergence in elementwise manner between the given multi-dimensional Gaussian $N(\mu, S)$ and the standard Gaussian $N(0, I)$

$$D_{KL}(N(\mu, S)\|N(0, I)),$$

where $S$ is a diagonal matrix such that $S_{ii} = \sigma^2_i$ and $I$ is an identity matrix.

The output is a variable whose value depends on the value of the option `reduce`. If it is 'no', it holds the elementwise loss values. If it is 'sum', loss values are summed up.

**Parameters**
- **mean** (`Variable` or `numpy.ndarray` or `cupy.ndarray`) – A variable representing mean of given gaussian distribution, $\mu$.
- **ln_var** (`Variable` or `numpy.ndarray` or `cupy.ndarray`) – A variable representing logarithm of variance of given gaussian distribution, $\log(\sigma^2)$.
- **reduce** (`str`) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, `ValueError` is raised.

**Returns** A variable representing KL-divergence between given gaussian distribution and the standard gaussian. If `reduce` is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

**Return type** `Variable`
chainer.functions.gaussian_nll

chainer.functions.gaussian_nll(x, mean, ln_var, reduce='sum')
Computes the negative log-likelihood of a Gaussian distribution. Given two variable mean representing $\mu$ and ln_var representing $\log(\sigma^2)$, this function computes in elementwise manner the negative log-likelihood of $x$ on a Gaussian distribution $N(\mu, \sigma^2)$,

$$-\log N(x; \mu, \sigma^2) = \log \left(\sqrt{(2\pi)^D|S|}\right) + \frac{1}{2}(x - \mu)^T S^{-1}(x - \mu),$$

where $D$ is a dimension of $x$ and $S$ is a diagonal matrix where $S_{ii} = \sigma_i^2$.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the elementwise loss values. If it is 'sum', loss values are summed up.

Parameters
- $x$ (Variable or numpy.ndarray or cupy.ndarray) – Input variable.
- $\text{mean}$ (Variable or numpy.ndarray or cupy.ndarray) – A variable representing mean of a Gaussian distribution, $\mu$.
- $\text{ln}_\text{var}$ (Variable or numpy.ndarray or cupy.ndarray) – A variable representing logarithm of variance of a Gaussian distribution, $\log(\sigma^2)$.
- $\text{reduce}$ (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, ValueError is raised.

Returns
A variable representing the negative log-likelihood. If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type Variable

chainer.functions.hinge

chainer.functions.hinge(x, t, norm='L1', reduce='mean')
Computes the hinge loss for a one-of-many classification task.

$$L = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} [\max(0, 1 - \delta\{t_n = k\}x_{nk})]^p$$

where $N$ denotes the batch size and $K$ is the number of classes of interest,

$$\delta\{\text{condition}\} = \begin{cases} 1 & \text{if condition is true} \\ -1 & \text{otherwise} \end{cases}$$

and

$$p = \begin{cases} 1 & \text{if norm = L1} \\ 2 & \text{if norm = L2} \end{cases}$$

Let the hinge loss function $l(x, \delta)$ be $[\max(0, 1 - \delta x)]^p$. When $x$ and $\delta$ have the same sign (meaning $x$ predicts the proper score for classification) and $|x| \geq 1$, the hinge loss $l(x, \delta) = 0$, but when they have opposite sign, $l(x, \delta)$ increases linearly with $x$.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the elementwise loss values. If it is 'mean', it takes the mean of loss values.
Parameters

- **x** (*Variable* or *numpu.ndarray* or *cupy.ndarray* of *numpy.float*) – Input variable. The shape of x should be \((N, K)\).
- **t** (*Variable* or *numpu.ndarray* or *cupy.ndarray* of signed integer) – The \(N\)-dimensional label vector with values \(t_n \in \{0, 1, 2, \ldots, K - 1\}\). The shape of t should be \((N,)\).
- **norm** (*string*) – Specifies norm type. Either 'L1' or 'L2' is acceptable.
- **reduce** (*str*) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, **ValueError** is raised.

Returns

A variable object holding a scalar array of the hinge loss \(L\). If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type: **Variable**

Example

In this case, the batch size \(N\) is 2 and the number of classes \(K\) is 3.

```python
>>> x = np.array([[[-2.0, 3.0, 0.5],
 ...],
 [5.0, 2.0, -0.5]]).astype('f')
>>> x
array([[[-2., 3., 0.5],
 [5., 2., -0.5]],
 dtype=float32)
>>> t = np.array([1, 0]).astype('i')
>>> t
array([1, 0], dtype=int32)
>>> F.hinge(x, t)
variable(2.5)
>>> F.hinge(x, t, reduce='no')
variable([-1.5, 0.5])
>>> F.hinge(x, t, norm='L2')
variable(5.75)
```

chainer.functions.huber_loss

chainer.functions.huber_loss \((x, t, \text{delta}, \text{reduce}=\text{'sum\_along\_second\_axis'})\)

Loss function which is less sensitive to outliers in data than MSE.

\[
a = x - t
\]

and

\[
L_\delta(a) = \begin{cases} 
\frac{1}{2}a^2 & \text{if } |a| \leq \delta \\
\delta(|a| - \frac{1}{2}\delta) & \text{otherwise}
\end{cases}
\]

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the elementwise loss values. If it is 'sum\_along\_second\_axis', loss values are summed up along the second axis (i.e. axis=1).
Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Input variable. The shape of x should be \((N, K)\).
- **t** *(Variable or numpy.ndarray or cupy.ndarray)* – Target variable for regression. The shape of t should be \((N, K)\).
- **delta** *(float)* – Constant variable for huber loss function as used in definition.
- **reduce** *(str)* – Reduction option. Its value must be either 'sum_along_second_axis' or 'no'. Otherwise, ValueError is raised.

Returns

A variable object holding a scalar array of the huber loss \(L_\delta\). If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum_along_second_axis', the shape of the array is same as the input variables, except the second axis is removed.

Return type  **Variable**

See:  Huber loss - Wikipedia.

Example

```python
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> x
array([[-2. , 3. , 0.5],
 [5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([[-2.0, 3.0, 0.0], [10.0, 2.0, -0.5]]).astype('f')
>>> t
array([[-2. , 3. , 0.],
 [10. , 2. , -0.5]], dtype=float32)
>>> y = F.huber_loss(x, t, 1.0)
>>> y.shape
(2,)
>>> y.data
array([0.125, 4.5], dtype=float32)
>>> y = F.huber_loss(x, t, 1.0, reduce='no')
>>> y.shape
(2, 3)
>>> y.data
array([[0. , 0. , 0.125],
 [4.5 , 0. , 0.]], dtype=float32)
```

**chainer.functions.mean_absolute_error**

**chainer.functions.mean_absolute_error**(x0, x1)

Mean absolute error function.

This function computes mean absolute error between two variables. The mean is taken over the minibatch.

**chainer.functions.mean_squared_error**

**chainer.functions.mean_squared_error**(x0, x1)

Mean squared error function.
This function computes mean squared error between two variables. The mean is taken over the minibatch. Note
that the error is not scaled by 1/2.

**Parameters**
- `x0` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.
- `x1` (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.

**Returns** A variable holding an array representing the mean squared error of two inputs.

**Return type** *Variable*

**chainer.functions.negative_sampling**

```python
chainer.functions.negative_sampling(x, t, W, sampler, sample_size, reduce='sum')
```

Negative sampling loss function.

In natural language processing, especially language modeling, the number of words in a vocabulary can be very
large. Therefore, you need to spend a lot of time calculating the gradient of the embedding matrix.

By using the negative sampling trick you only need to calculate the gradient for a few sampled negative exam-
ple.

The loss is defined as follows.

\[
f(x, p) = - \log \sigma(x^\top w_p) - k E_{i \sim P(i)} [\log \sigma(-x^\top w_i)]
\]

where \( \sigma(\cdot) \) is a sigmoid function, \( w_i \) is the weight vector for the word \( i \), and \( p \) is a positive example. It is approximated with \( k \) examples \( N \) sampled from probability \( P(i) \).

\[
f(x, p) \approx - \log \sigma(x^\top w_p) - \sum_{n \in N} \log \sigma(-x^\top w_n)
\]

Each sample of \( N \) is drawn from the word distribution \( P(w) = \frac{1}{Z} c(w)^a \), where \( c(w) \) is the unigram count of
the word \( w \), \( a \) is a hyper-parameter, and \( Z \) is the normalization constant.

**Parameters**
- `x` (*Variable*) – Batch of input vectors.
- `t` (*Variable*) – Vector of ground truth labels.
- `W` (*Variable*) – Weight matrix.
- `sampler` (*FunctionType*) – Sampling function. It takes a shape and returns an integer
array of the shape. Each element of this array is a sample from the word distribution. A
`WalkerAlias` object built with the power distribution of word frequency is recommended.
- `sample_size` (*int*) – Number of samples.
- `reduce` (*str*) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
`ValueError` is raised.

**Returns** A variable holding the loss value(s) calculated by the above equation. If `reduce` is 'no',
the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'sum', the output variable holds a scalar value.

**Return type** *Variable*

See: Distributed Representations of Words and Phrases and their Compositionality

See also: `NegativeSampling`.
chainer.functions.sigmoid_cross_entropy

chainer.functions.sigmoid_cross_entropy(x, t, normalize=True, reduce='mean')

Computes cross entropy loss for pre-sigmoid activations.

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – A variable object holding a matrix whose (i, j)-th element indicates the unnormalized log probability of the j-th unit at the i-th example.
- **t** *(Variable or numpy.ndarray or cupy.ndarray)* – A variable object holding a matrix whose (i, j)-th element indicates a signed integer vector of ground truth labels 0 or 1. If t[i, j] == -1, corresponding x[i, j] is ignored. Loss is zero if all ground truth labels are -1.
- **normalize** *(bool)* – Variable holding a boolean value which determines the normalization constant. If true, this function normalizes the cross entropy loss across all instances. If else, it only normalizes along a batch size.
- **reduce** *(str)* – Variable holding a str which determines whether to reduce the shape of the input. If it is 'mean', it computes the sum of cross entropy and normalize it according to normalize option. If is is 'no', this function computes cross entropy for each instance and does not normalize it (normalize option is ignored). In this case, the loss value of the ignored instance, which has -1 as its target value, is set to 0.

Returns

A variable object holding an array of the cross entropy. If reduce is 'mean', it is a scalar array. If reduce is 'no', the shape is same as x.

Return type

*Variable*

Note: This function is differentiable only by x.

Example

```python
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> x
array([[-2. , 3. , 0.5],
 [5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([[0, 1, 0], [1, 1, -1]]).astype('i')
>>> t
array([[0, 1, 0],
 [1, 1, -1]], dtype=int32)
>>> F.sigmoid_cross_entropy(x, t)
variable(0.25664714)
>>> F.sigmoid_cross_entropy(x, t, normalize=False)
variable(0.64161783)
>>> y = F.sigmoid_cross_entropy(x, t, reduce='no')
>>> y.shape
(2, 3)
>>> y.data
array([[0.126928 , 0.04858735, 0.974077],
 [0.00671535, 0.126928 , -0.]], dtype=float32)
```
chainer.functions.softmax_cross_entropy

chainer.functions.softmax_cross_entropy(x, t, normalize=True, cache_score=True, class_weight=None, ignore_label=-1, reduce='mean', enable_double_backprop=False)

Computes cross entropy loss for pre-softmax activations.

Parameters

- **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Variable holding a multidimensional array whose element indicates unnormalized log probability: the first axis of the variable represents the number of samples, and the second axis represents the number of classes. While this function computes a usual softmax cross entropy if the number of dimensions is equal to 2, it computes a cross entropy of the replicated softmax if the number of dimensions is greater than 2.

- **t** *(Variable or numpy.ndarray or cupy.ndarray)* – Variable holding a signed integer vector of ground truth labels. If t[i] == ignore_label, corresponding x[i] is ignored.

- **normalize** *(bool)* – If True, this function normalizes the cross entropy loss across all instances. If False, it only normalizes along a batch size.

- **cache_score** *(bool)* – When it is True, the function stores result of forward computation to use it on backward computation. It reduces computational cost though consumes more memory. If enable_double_backprop option is True, this option is forcibly turned off and the function does not cache the intermediate value.

- **class_weight** *(Variable or numpy.ndarray or cupy.ndarray)* – An array that contains constant weights that will be multiplied with the loss values along with the second dimension. The shape of this array should be (*x*.shape[1],). If this is not None, each class weight class_weight[i] is actually multiplied to y[:, i] that is the corresponding log-softmax output of x and has the same shape as x before calculating the actual loss value.

- **ignore_label** *(int)* – Label value you want to ignore. Its default value is -1. See description of the argument t.

- **reduce** *(str)* – A string that determines whether to reduce the loss values. If it is 'mean', it computes the sum of the individual cross entropy and normalize it according to normalize option. If it is 'no', this function computes cross entropy for each instance and does not normalize it (normalize option is ignored). In this case, the loss value of the ignored instance, which has ignore_label as its target value, is set to 0.

- **enable_double_backprop** *(bool)* – If True, this function uses implementation that supports higher order differentiation. If False, it uses single-backprop implementation. This function use the single-backprop version because we expect it is faster. So, if you need second or higher derivatives, you need to turn it on explicitly.

Returns A variable holding a scalar array of the cross entropy loss. If reduce is 'mean', it is a scalar array. If reduce is 'no', the shape is same as that of x.

Return type *Variable*

**Note:** This function is differentiable only by x.

**Example**
```python
>>> x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]]).astype('f')
>>> x
array([[-1.,
 0.,
 1.,
 2.],
 [2.,
 0.,
 1.,
 -1.]], dtype=float32)

>>> t = np.array([3, 0]).astype('i')
>>> t
array([3, 0], dtype=int32)

>>> y = F.softmax_cross_entropy(x, t)
>>> y
variable(0.44018972)

>>> log_softmax = -F.log_softmax(x)

>>> expected_loss = np.mean([log_softmax[row, column].data
for row, column in enumerate(t)])

>>> y.array == expected_loss
True
```

### chainer.functions.squared_error

**chainer.functions.squared_error(x0, x1)**

Squared error function.

This function computes the squared error between two variables:

\[ (x_0 - x_1)^2 \]

where operation is done in elementwise manner. Note that the error is not scaled by 1/2:

**Parameters**

- **x0** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.
- **x1** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Input variable.

**Returns** A variable holding an array representing the squared error of two inputs.

**Return type** *Variable*

### chainer.functions.triplet

**chainer.functions.triplet(anchor, positive, negative, margin=0.2, reduce='mean')**

Computes triplet loss.

It takes a triplet of variables as inputs, \( a, p \) and \( n \): anchor, positive example and negative example respectively. The triplet defines a relative similarity between samples. Let \( N \) and \( K \) denote mini-batch size and the dimension of input variables, respectively. The shape of all input variables should be \((N, K)\).

\[
L(a, p, n) = \frac{1}{N} \left( \sum_{i=1}^{N} \max\{d(a_i, p_i) - d(a_i, n_i) + \text{margin}, 0\} \right)
\]

where \( d(x_i, y_i) = \|x_i - y_i\|_2^2 \).

The output is a variable whose value depends on the value of the option *reduce*. If it is 'no', it holds the elementwise loss values. If it is 'mean', this function takes a mean of loss values.

**Parameters**
• anchor (Variable or numpy.ndarray or cupy.ndarray) – The anchor example variable. The shape should be \((N, K)\), where \(N\) denotes the minibatch size, and \(K\) denotes the dimension of the anchor.

• positive (Variable or numpy.ndarray or cupy.ndarray) – The positive example variable. The shape should be the same as anchor.

• negative (Variable or numpy.ndarray or cupy.ndarray) – The negative example variable. The shape should be the same as anchor.

• margin (float) – A parameter for triplet loss. It should be a positive value.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar that is the loss value calculated by the above equation. If reduce is 'no', the output variable holds array whose shape is same as one of (hence both of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train triplet networks. See Learning Fine-grained Image Similarity with Deep Ranking for details.

Example

```python
>>> anchor = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype('f')
>>> pos = np.array([[-2.1, 2.8, 0.5], [4.9, 2.0, -0.4]]).astype('f')
>>> neg = np.array([[-2.1, 2.7, 0.7], [4.9, 2.0, -0.7]]).astype('f')
>>> F.triplet(anchor, pos, neg)
variable(0.14000003)
>>> y = F.triplet(anchor, pos, neg, reduce='no')
>>> y.shape
(2,)
>>> y.data
array([0.11000005, 0.17000003], dtype=float32)
>>> F.triplet(anchor, pos, neg, margin=0.5) # harder penalty
variable(0.44000003)
```

2.4.6 Mathematical functions

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainer.Functions.Arctan</td>
<td>Elementwise arctangent function.</td>
</tr>
<tr>
<td>Chainer.Functions.Arctan2</td>
<td>Elementwise arctangent function with two arguments.</td>
</tr>
<tr>
<td>Chainer.Functions.Argmax</td>
<td>Returns index which holds maximum of array elements over a given axis.</td>
</tr>
<tr>
<td>Chainer.Functions.Argmin</td>
<td>Returns index which holds minimum of array elements over a given axis.</td>
</tr>
<tr>
<td>Chainer.Functions.Average</td>
<td>Calculate weighted average of array elements over a given axis.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2.37 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.functions.batch_inv</code></td>
<td>Computes the inverse of a batch of square matrices.</td>
</tr>
<tr>
<td><code>chainer.functions.batch_l2_norm_squared</code></td>
<td>L2 norm (a.k.a. Euclidean norm) squared.</td>
</tr>
<tr>
<td><code>chainer.functions.batch_matmul</code></td>
<td>Computes the batch matrix multiplications of two sets of arrays.</td>
</tr>
<tr>
<td><code>chainer.functions.bias</code></td>
<td>Elementwise summation with broadcasting.</td>
</tr>
<tr>
<td><code>chainer.functions.cell</code></td>
<td>Elementwise ceil function.</td>
</tr>
<tr>
<td><code>chainer.functions.clip</code></td>
<td>Clips (limits) elements of input variable.</td>
</tr>
<tr>
<td><code>chainer.functions.cos</code></td>
<td>Elementwise cos function.</td>
</tr>
<tr>
<td><code>chainer.functions.cosh</code></td>
<td>Elementwise hyperbolic cosine function.</td>
</tr>
<tr>
<td><code>chainer.functions.det</code></td>
<td>Computes the determinant of a single square matrix.</td>
</tr>
<tr>
<td><code>chainer.functions.batch_det</code></td>
<td>Computes the determinant of a batch of square matrices.</td>
</tr>
<tr>
<td><code>chainer.functions.exp</code></td>
<td>Elementwise exponential function.</td>
</tr>
<tr>
<td><code>chainer.functions.expm1</code></td>
<td>Elementwise exponential minus one function.</td>
</tr>
<tr>
<td><code>chainer.functions.fix</code></td>
<td>Elementwise fix function.</td>
</tr>
<tr>
<td><code>chainer.functions.fmod</code></td>
<td>Elementwise mod function.</td>
</tr>
<tr>
<td><code>chainer.functions.floor</code></td>
<td>Elementwise floor function.</td>
</tr>
<tr>
<td><code>chainer.functions.identity</code></td>
<td>Just returns input variables.</td>
</tr>
<tr>
<td><code>chainer.functions.inv</code></td>
<td>Computes the inverse of square matrix.</td>
</tr>
<tr>
<td><code>chainer.functions.linear_interpolate</code></td>
<td>Elementwise linear-interpolation function.</td>
</tr>
<tr>
<td><code>chainer.functions.log</code></td>
<td>Elementwise natural logarithm function.</td>
</tr>
<tr>
<td><code>chainer.functions.log10</code></td>
<td>Elementwise logarithm function to the base 10.</td>
</tr>
<tr>
<td><code>chainer.functions.log1p</code></td>
<td>Elementwise natural logarithm plus one function.</td>
</tr>
<tr>
<td><code>chainer.functions.log2</code></td>
<td>Elementwise logarithm function to the base 2.</td>
</tr>
<tr>
<td><code>chainer.functions.logsumexp</code></td>
<td>Log-sum-exp of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.matmul</code></td>
<td>Computes the matrix multiplication of two arrays.</td>
</tr>
<tr>
<td><code>chainer.functions.max</code></td>
<td>Maximum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.minimum</code></td>
<td>Element-wise minimum of input variables.</td>
</tr>
<tr>
<td><code>chainer.functions.mean</code></td>
<td>Calculate weighted average of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.min</code></td>
<td>Minimum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.prod</code></td>
<td>Product of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.rsqrt</code></td>
<td>Computes elementwise reciprocal of square root of input ( x_i ).</td>
</tr>
<tr>
<td><code>chainer.functions.scale</code></td>
<td>Elementwise product with broadcasting.</td>
</tr>
<tr>
<td><code>chainer.functions.sin</code></td>
<td>Elementwise sin function.</td>
</tr>
<tr>
<td><code>chainer.functions.sinh</code></td>
<td>Elementwise hyperbolic sine function.</td>
</tr>
<tr>
<td><code>chainer.functions.sign</code></td>
<td>Elementwise sign function.</td>
</tr>
<tr>
<td><code>chainer.functions.sqrt</code></td>
<td>Elementwise square root function.</td>
</tr>
<tr>
<td><code>chainer.functions.squared_difference</code></td>
<td>Squared difference of input variables.</td>
</tr>
<tr>
<td><code>chainer.functions.sum</code></td>
<td>Sum of array elements over a given axis.</td>
</tr>
<tr>
<td><code>chainer.functions.tanh</code></td>
<td>Elementwise hyperbolic tangent function.</td>
</tr>
<tr>
<td><code>chainer.functions.tan</code></td>
<td>Elementwise tan function.</td>
</tr>
<tr>
<td><code>chainer.functions.absolute</code></td>
<td>Element-wise absolute.</td>
</tr>
</tbody>
</table>

    chainer.functions.absolute(self)

    Element-wise absolute.

    Returns Output variable.
Return type  Variable

**chainer.functions.arccos**

chainer.functions.arccos(x)

Elementwise arccosine function.

\[ y_i = \arccos x_i. \]

**Parameters**

- **x** (*Variable*) – Input variable.

**Returns**

Output variable.

**Return type**  Variable

**chainer.functions.arcsin**

chainer.functions.arcsin(x)

Elementwise arcsine function.

\[ y_i = \arcsin x_i. \]

**Parameters**

- **x** (*Variable*) – Input variable.

**Returns**

Output variable.

**Return type**  Variable

**chainer.functions.arctan**

chainer.functions.arctan(x)

Elementwise arctangent function.

\[ y_i = \arctan x_i. \]

**Parameters**

- **x** (*Variable*) – Input variable.

**Returns**

Output variable.

**Return type**  Variable

**chainer.functions.arctan2**

chainer.functions.arctan2(x1, x2)

Elementwise arctangent function with two arguments.

**Parameters**

- **x1** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – Y-coordinates.
- **x2** (*Variable* or *numpy.ndarray* or *cupy.ndarray*) – X-coordinates.

**Returns**

Angles in radians, in the range [-pi, pi].

**Return type**  Variable
chainer.functions.argmax

chainer.functions.argmax(x, axis=None)
Returns index which holds maximum of array elements over a given axis.

Parameters

- x (Variable) – Array to find maximum elements.
- axis (None or int) – Axis over which a max is performed. The default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.
Return type Variable

cchainer.functions.argmin

chainer.functions.argmin(x, axis=None)
Returns index which holds minimum of array elements over a given axis.

Parameters

- x (Variable) – Array to find minimum elements.
- axis (None or int) – Axis over which a min is performed. The default (axis = None) is perform a min over all the dimensions of the input array.

Returns Output variable.
Return type Variable

chainer.functions.average

chainer.functions.average(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

- x (Variable) – Elements to sum.
- axis (None or int or tuple of int) – Axis which the method is performed. With the default (axis = None) it performs a mean over all the dimensions of the input array.
- weights (None or chainer.Variable) – An array holding weights to calculate weighted average. If it is None, all weights are assumed to be one. When axis is None, weights must have the same shape of x. And when axis is int, it must be 1-D array satisfying weights.shape == (x.shape[axis],).
- keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.
Return type Variable

chainer.functions.batch_inv

chainer.functions.batch_inv(a)
Computes the inverse of a batch of square matrices.
Parameters **a** (*Variable*) – Input array to compute the inverse for. Shape of the array should be \((m, n, n)\) where \(m\) is the number of matrices in the batch, and \(n\) is the dimensionality of a square matrix.

Returns Inverse of every matrix in the batch of matrices.

Return type *Variable*

**chainer.functions.batch_l2_norm_squared**

chainer.functions.batch_l2_norm_squared(*x*)

L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

Parameters **x** (*Variable*) – Input variable. The first dimension is assumed to be the minibatch dimension. If \(x\) has more than two dimensions all but the first dimension are flattened to one dimension.

Returns Two dimensional output variable.

Return type *Variable*

**chainer.functions.batch_matmul**

chainer.functions.batch_matmul(*a, b*, transa=False, transb=False)

Computes the batch matrix multiplications of two sets of arrays.

Parameters

- **a** (*Variable*) – The left operand of the batch matrix multiplications. A 2-D array of shape \((B, N)\) is considered as \(B \times N \times 1\) matrices. A 3-D array of shape \((B, M, N)\) is considered as \(B \times M \times N\) matrices.
- **b** (*Variable*) – The right operand of the batch matrix multiplications. Its array is treated as matrices in the same way as a’s array.
- **transa** (*bool*) – If True, transpose each matrix in \(a\).
- **transb** (*bool*) – If True, transpose each matrix in \(b\).

Returns The result of the batch matrix multiplications as a 3-D array.

Return type *Variable*

Deprecated since version v3.0.0: batch_matmul is deprecated. Use matmul instead.

**chainer.functions.bias**

chainer.functions.bias(*x, y, axis=1*)

Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of the latter variable broadcasted to match the shape of the former. \(axis\) is the first axis of the first variable along which the second variable is applied.

The term “broadcasting” here comes from Caffe’s bias layer so the “broadcasting” with the following arguments:
\[ x : 100 \times 3 \times 40 \times 60 \\
y : 3 \times 40 \\
axis : 1 \]

is equivalent to the following numpy broadcasting:

\[ x : 100 \times 3 \times 40 \times 60 \\
y : 1 \times 3 \times 40 \times 1 \]

Note that how the `axis` indicates to which axis of `x` we apply `y`.

**Parameters**

- \( x \) (Variable) – Input variable to be summed.
- \( y \) (Variable) – Input variable to sum, broadcasted.
- \( \text{axis} \) (int) – The first axis of `x` along which `y` is applied.

**Returns** Output variable.

**Return type** Variable

### chainer.functions.ceil

\[ \text{chainer.functions.ceil}(x) \]

Elementwise `ceil` function.

\[ y_i = [x_i] \]

**Parameters** \( x \) (Variable) – Input variable.

**Returns** Output variable.

**Return type** Variable

### chainer.functions.clip

\[ \text{chainer.functions.clip}(x, x_{\text{min}}, x_{\text{max}}) \]

Clips (limits) elements of input variable.

Given an interval \([x_{\text{min}}, x_{\text{max}}]\), elements outside the interval are clipped to the interval edges.

**Parameters**

- \( x \) (Variable) – Input variable to be clipped.
- \( x_{\text{min}} \) (float) – Minimum value.
- \( x_{\text{max}} \) (float) – Maximum value.

**Returns** Output variable.

**Return type** Variable

### chainer.functions.cos

\[ \text{chainer.functions.cos}(x) \]

Elementwise `cos` function.
chainer.functions.cosh

chainer.functions.cosh(x)
Elementwise hyperbolic cosine function.

\[ y_i = \cosh x_i. \]

Parameters  
\( x \) (Variable) – Input variable.

Returns  
Output variable.

Return type  
Variable

chainer.functions.det

chainer.functions.det(a)
Computes the determinant of a single square matrix.

Parameters  
\( a \) (Variable) – Input array to compute the determinant for.

Returns  
Scalar determinant of the matrix \( a \).

Return type  
Variable

chainer.functions.batch_det

chainer.functions.batch_det(a)
Computes the determinant of a batch of square matrices.

Parameters  
- \( a \) (Variable) – Input array to compute the determinant for.
- first dimension should iterate over each matrix and be (The) –
- the batchsize (of) –

Returns  
vector of determinants for every matrix in the batch.

Return type  
Variable

chainer.functions.exp

chainer.functions.exp(x)
Elementwise exponential function.

chainer.functions.expm1

chainer.functions.expm1(x)
Elementwise exponential minus one function.
chainer.functions.fix

chainer.functions.fix(x)
Elementwise fix function.

\[ y_i = x_i \]

Parameters  
- **x** (*Variable*) – Input variable.

Returns  Output variable.

Return type  *Variable*

chainer.functions.fmod

chainer.functions.fmod(x, divisor)
Elementwise mod function.

\[ y_i = x_i \mod \text{divisor} \]

Parameters  
- **x** (*Variable*) – Input variable.
- **divisor** (*Variable*) – Input divisor.

Returns  Output variable.

Return type  *Variable*

chainer.functions.floor

chainer.functions.floor(x)
Elementwise floor function.

\[ y_i = \lfloor x_i \rfloor \]

Parameters  
- **x** (*Variable*) – Input variable.

Returns  Output variable.

Return type  *Variable*

chainer.functions.identity

chainer.functions.identity(*inputs)
Just returns input variables.

chainer.functions.inv

chainer.functions.inv(a)
Computes the inverse of square matrix.

Parameters  
- **a** (*Variable*) – Input array to compute the inverse for. Shape of the array should be \((n, n)\) where \(n\) is the dimensionality of a square matrix.

Returns  Matrix inverse of \(a\).

Return type  *Variable*
**chainer.functions.linear_interpolate**

chainer.functions.linear_interpolate(p, x, y)

Elementwise linear-interpolation function.

This function is defined as

\[ f(p, x, y) = px + (1 - p)y. \]

**Parameters**

- **p (Variable)** – Input variable.
- **x (Variable)** – Input variable.
- **y (Variable)** – Input variable.

**Returns**

Output variable.

**Return type** `Variable`

**chainer.functions.log**

chainer.functions.log(x)

Elementwise natural logarithm function.

**chainer.functions.log10**

chainer.functions.log10(x)

Elementwise logarithm function to the base 10.

\[ y_i = \log_{10} x_i. \]

**Parameters**

- **x (Variable)** – Input variable.

**Returns**

Output variable.

**Return type** `Variable`

**chainer.functions.log1p**

chainer.functions.log1p(x)

Elementwise natural logarithm plus one function.

**chainer.functions.log2**

chainer.functions.log2(x)

Elementwise logarithm function to the base 2.

\[ y_i = \log_2 x_i. \]

**Parameters**

- **x (Variable)** – Input variable.

**Returns**

Output variable.

**Return type** `Variable`
chainer.functions.logsumexp

chainer.functions.logsumexp(x, axis=None)

Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.

\[ y_i = \log \left( \sum_j \exp(x_{ij}) \right) \]

Parameters

- x (Variable) – Elements to log-sum-exp.
- axis (None, int, or tuple of int) – Axis which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array.

Returns

Output variable.

Return type

Variable

chainer.functions.matmul

chainer.functions.matmul(a, b, transa=False, transb=False)

Computes the matrix multiplication of two arrays.

Parameters

- a (Variable) – The left operand of the matrix multiplication. If a and b are both 1-D arrays, matmul returns a dot product of vector a and vector b. If 2-D arrays, matmul returns matrix product of a and b. If arrays’ dimension is larger than 2, they are treated as a stack of matrices residing in the last two indexes. matmul returns a stack of each two arrays. a and b must have the same dimension.
- b (Variable) – The right operand of the matrix multiplication. Its array is treated as a matrix in the same way as a’s array.
- transa (bool) – If True, each matrices in a will be transposed. If a.ndim == 1, do nothing.
- transb (bool) – If True, each matrices in b will be transposed. If b.ndim == 1, do nothing.

Returns

The result of the matrix multiplication.

Return type

Variable

Example

```python
>>> a = np.array([[1, 0], [0, 1]], 'f')
>>> b = np.array([[4, 1], [2, 2]], 'f')
>>> F.matmul(a, b).data
array([[4., 1.],
 [2., 2.]], dtype=float32)
```
chainer.functions.max

chainer.functions.max(x, axis=None, keepdims=False)
Maximum of array elements over a given axis.

Parameters

• x (Variable) – Array to be maximized.
• axis (None, int, or tuple of int) – Axis over which a max is performed. The default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.
Return type Variable

chainer.functions.maximum

chainer.functions.maximum(x1, x2)
Element-wise maximum of input variables.

Parameters

• x1 (Variable) – Input variables to be compared.
• x2 (Variable) – Input variables to be compared.

Returns Output variable.
Return type Variable

chainer.functions.mean

chainer.functions.mean(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

• x (Variable) – Elements to sum.
• axis (None or int or tuple of int) – Axis which the method is performed. With the default (axis = None) it performs a mean over all the dimensions of the input array.
• weights (None or chainer.Variable) – An array holding weights to calculate weighted average. If it is None, all weights are assumed to be one. When axis is None, weights must have the same shape of x. And when axis is int, it must be 1-D array satisfying weights.shape == (x.shape[axis],).
• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.
Return type Variable

chainer.functions.min

chainer.functions.min(x, axis=None, keepdims=False)
Minimum of array elements over a given axis.

Parameters
• **x** *(Variable)* – Array to be minimized.

• **axis** *(None, int, or tuple of int)* – Axis over which a min is performed. The default (axis = None) is perform a min over all the dimensions of the input array.

**Returns**  Output variable.

**Return type**  *Variable*

### chainer.functions.minimum

```python
counter.functions.minimum(x1, x2)
```

Element-wise minimum of input variables.

**Parameters**

• **x1** *(Variable)* – Input variables to be compared.

• **x2** *(Variable)* – Input variables to be compared.

**Returns**  Output variable.

**Return type**  *Variable*

### chainer.functions.prod

```python
counter.functions.prod(x, axis=None, keepdims=False)
```

Product of array elements over a given axis.

**Parameters**

• **x** *(Variable or numpy.ndarray or cupy.ndarray)* – Elements to calculate the product.

• **axis** *(None, int, or tuple of int)* – Axis which a product is performed. The default (axis = None) is perform a product over all the dimensions of the input array.

• **keepdims** *(bool)* – If True, the specified axes are remained as axes of length one.

**Returns**  Output variable.

**Return type**  *Variable*

### chainer.functions.rsqrt

```python
counter.functions.rsqrt(x)
```

Computes elementwise reciprocal of square root of input $x_i$.

$$y_i = \frac{1}{\sqrt{x_i}}.$$

**Parameters**  **x** *(Variable)* – Input variable.

**Returns**  Output variable.

**Return type**  *Variable*

**See also:**  *sqrt()*
**chainer.functions.scale**

chainer.functions.scale(x, y, axis=1)

Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of the latter variable broadcasted to match the shape of the former. `axis` is the first axis of the first variable along which the second variable is applied.

The term “broadcasting” here comes from Caffe’s scale layer so the “broadcasting” with the following arguments:

\[
x : 100 \times 3 \times 40 \times 60 \\
y : 3 \times 40 \\
axis : 1
\]

is equivalent to the following numpy broadcasting:

\[
x : 100 \times 3 \times 40 \times 60 \\
y : 1 \times 3 \times 40 \times 1
\]

Note that how the `axis` indicates to which axis of `x` we apply `y`.

**Parameters**

- `x` (**Variable**) – Input variable to be scaled.
- `y` (**Variable**) – Input variable to scale, broadcasted.
- `axis` (**int**) – The first axis of `x` along which `y` is applied.

**Returns** Output variable.

**Return type** **Variable**

**chainer.functions.sin**

chainer.functions.sin(x)

Elementwise sin function.

**chainer.functions.sinh**

chainer.functions.sinh(x)

Elementwise hyperbolic sine function.

\[
y_i = \sinh x_i.
\]

**Parameters** `x` (**Variable**) – Input variable.

**Returns** Output variable.

**Return type** **Variable**

**chainer.functions.sign**

chainer.functions.sign(x)

Elementwise sign function.
For a given input $x$, this function returns $sgn(x)$ defined as

$$
sgn(x) = \begin{cases} 
-1 & \text{if } x < 0 \\
0 & \text{if } x = 0 \\
1 & \text{if } x > 0 
\end{cases}
$$

**Note:** The gradient of this function is None everywhere and therefore unchains the computational graph.

**Parameters** $x$ (Variable) – Input variable for which the sign is computed.

**Returns** Output variable.

**Return type** Variable

**chainer.functions.sqrt**

chainer.functions.sqrt ($x$)

Elementwise square root function.

$$y_i = \sqrt{x_i}.$$  

If the value of $x_i$ is negative, it returns Nan for $y_i$ respect to underlying numpy and cupy specification.

**Parameters** $x$ (Variable) – Input variable.

**Returns** Output variable.

**Return type** Variable

**chainer.functions.square**

chainer.functions.square ($x$)

Elementwise square function.

$$y_i = x_i^2.$$  

**Parameters** $x$ (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input variable.

**Returns** Output variable.

**Return type** Variable

**chainer.functions.squared_difference**

chainer.functions.squared_difference ($x1, x2$)

Squared difference of input variables.

**Parameters**

- $x1$ (Variable) – Input variables to be compared.
- $x2$ (Variable) – Input variables to be compared.

**Returns** $(x1 - x2)^2$ element-wise.

**Return type** Variable
chainer.functions.sum

chainer.functions.sum(x, axis=None, keepdims=False)
Sum of array elements over a given axis.

Parameters
  - x (Variable or numpy.ndarray or cupy.ndarray) – Elements to sum. A
    \((s_1, s_2, ..., s_N)\)-shaped float array.
  - axis (None, int, or tuple of int) – Axis along which a sum is performed.
    The default (axis = None) is perform a sum over all the dimensions of the input array.
  - keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.
Return type Variable

Example

```python
>>> x = np.arange(6).reshape(2,3).astype('f')
>>> x
array([[0., 1., 2.],
 [3., 4., 5.]], dtype=float32)
>>> y = F.sum(x)
>>> y.shape()
()
array(15., dtype=float32)
>>> y = F.sum(x, axis=1)
>>> y.shape(2,)
array([3., 12.], dtype=float32)
>>> y = F.sum(x, keepdims=True)
>>> y.shape(1, 1)
array([[[15.]]], dtype=float32)
```
chainer.functions.dropout

chainer.functions.dropout \( (x, \text{ratio}=0.5) \)
Drops elements of input variable randomly.

This function drops input elements randomly with probability \( \text{ratio} \) and scales the remaining elements by factor \( 1 / (1 - \text{ratio}) \). In testing mode, it does nothing and just returns \( x \).

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', boolean). See chainer.using_config().

Parameters

- \( x \) (Variable or numpy.ndarray or cupy.ndarray) – Input variable. A \((s_1, s_2, ..., s_N)\)-shaped float array.
- \( \text{ratio} \) (float) – Dropout ratio. The \( \text{ratio} \) must be \( 0.0 \leq \text{ratio} < 1.0 \).

Returns
Output variable.

Return type
Variable

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

Example

```python
>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], 'f')
>>> with chainer.using_config('train', True):
... y = F.dropout(x)
>>> y.data
array([[0., 2.],
 [4., 6.],
 [2., 7.]], dtype=float32)
>>> with chainer.using_config('train', True):
... y = F.dropout(x, ratio=0.0) # dropout returns original input if ratio=0.0
>>> (x == y.data).all() # dropout returns original input if ratio=0.0
True
>>> with chainer.using_config('train', False):
... y = F.dropout(x) # dropout in test mode returns original input
>>> (x == y.data).all() # dropout in test mode returns original input
True
```

chainer.functions.gaussian

chainer.functions.gaussian \( (mean, ln\_var) \)
Gaussian sampling function.

This function takes a mean \( \mu \) and the logarithm of a variance \( \log(\sigma^2) \) as inputs and outputs a sample drawn from a Gaussian distribution \( N(\mu, \sigma) \).

The inputs must have the same shape.
Parameters

- **mean** *(Variable)* – Input variable representing the mean $\mu$.
- **ln_var** *(Variable)* – Input variable representing the logarithm of a variance $\log(\sigma^2)$.

**Returns** Output variable with the shape of `mean` and/or `ln_var`.

**Return type** *Variable*

---

### chainer.functions.simplified_dropconnect

**chainer.functions.simplified_dropconnect** $(x, W, b=None, ratio=0.5, train=True, mask=None, use_batchwise_mask=True)$

Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with probability $\text{ratio}$ and scales the remaining elements by factor $1 / (1 - \text{ratio})$. It accepts two or three arguments: an input minibatch $x$, a weight matrix $W$, and optionally a bias vector $b$. It computes $Y = xW^T + b$.

In testing mode, zero will be used as simplified dropconnect ratio instead of $\text{ratio}$.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the current implementation and the original one. The original version uses sampling with gaussian distribution before passing activation function, whereas the current implementation averages before activation.

**Parameters**

- **x** *(chainer.Variable or numpy.ndarray or cupy.ndarray)* – Input variable. Its first dimension $n$ is assumed to be the *minibatch dimension*. The other dimensions are treated as concatenated one dimension whose size must be $N$.
- **W** *(Variable)* – Weight variable of shape $(M, N)$.
- **b** *(Variable)* – Bias variable (optional) of shape $(M,)$.
- **ratio** *(float)* – Dropconnect ratio.
- **train** *(bool)* – If True, executes simplified dropconnect. Otherwise, simplified dropconnect function works as a linear function.
- **mask** *(None or chainer.Variable or numpy.ndarray or cupy.ndarray)* – If None, randomized dropconnect mask is generated. Otherwise, The mask must be $(n, M, N)$ or $(M, N)$ shaped array, and `use_batchwise_mask` is ignored. Main purpose of this option is debugging. `mask` array will be used as a dropconnect mask.
- **use_batchwise_mask** *(bool)* – If True, dropped connections depend on each sample in mini-batch.

**Returns** Output variable.

**Return type** *Variable*

See also:

Dropconnect

See also:

chainer.functions.zoneout

chainer.functions.zoneout (h, x, ratio=.5)

Drops elements of input variable and sets to previous variable randomly.

This function drops input elements randomly with probability ratio and instead sets dropping element to their previous variable. In testing mode, it does nothing and just returns x.

Warning: train argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().

Parameters

• h (Variable) – Previous variable.
• x (Variable) – Input variable.
• ratio (float) – Zoneout ratio.

Returns Output variable.

Return type Variable

See the paper: Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations.

2.4.8 Normalization functions

chainer.functions.batch_normalization	Batch normalization function.
chainer.functions.batch_renormalization	Batch renormalization function.
chainer.functions.fixed_batch_normalization	Batch normalization function with fixed statistics.
chainer.functions.fixed_batch_renormalization	Batch renormalization function with fixed statistics.
chainer.functions.layer_normalization	Layer normalization.
chainer.functions.local_response_normalization	Local response normalization across neighboring channels.
chainer.functions.normalize	L2 norm squared (a.k.a. Euclidean norm).

chainer.functions.batch_normalization

chainer.functions.batch_normalization (x, gamma, beta, eps=2e-5, running_mean=None, running_var=None, decay=0.9)

Batch normalization function.

It takes the input variable x and two parameter variables gamma and beta. The parameter variables must both have the same dimensionality, which is referred to as the channel shape. This channel shape corresponds to the dimensions in the input which are not averaged over. Since the first dimension of the input corresponds to the batch size, the second dimension of x will correspond to the first dimension of the channel shape, the third dimension of x will correspond to the second channel dimension (if it exists) and so on. Therefore, the dimensionality of the input must be at least one plus the number of channel dimensions. The total effective “batch size” will then be considered to be the product of all dimensions in x except for the channel dimensions.

As an example, if the input is four dimensional and the parameter variables are one dimensional, then it is assumed that the first dimension of the input is the batch size, the second dimension is the channel size, and
the remaining two dimensions are considered to be spatial dimensions that will be averaged over along with the batch size in the batch normalization computations. That is, the total batch size will be considered to be the product of all input dimensions except the second dimension.

Note: If this function is called, it will not be possible to access the updated running mean and variance statistics, because they are members of the function object, which cannot be accessed by the caller. If it is desired to access the updated running statistics, it is necessary to get a new instance of the function object, call the object, and then access the running_mean and/or running_var attributes. See the corresponding Link class for an example of how to do this.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

- x (Variable) – Input variable.
- gamma (Variable) – Scaling parameter of normalized data.
- beta (Variable) – Shifting parameter of scaled normalized data.
- eps (float) – Epsilon value for numerical stability.
- running_mean (numpy.ndarray or cupy.ndarray) – Running average of the mean. This is a running average of the mean over several mini-batches using the decay parameter. If None, the running average is not computed. If this is None, then running_var must also be None.
- running_var (numpy.ndarray or cupy.ndarray) – Running average of the variance. This is a running average of the variance over several mini-batches using the decay parameter. If None, the running average is not computed. If this is None, then running_mean must also be None.
- decay (float) – Decay rate of moving average. It is used during training.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
See also:
links.BatchNormalization

chainer.functions.batch_renormalization

chainer.functions.batch_renormalization(x, gamma, beta, rmax, dmax, eps=2e-05, running_mean=None, running_var=None, decay=0.9)

Batch renormalization function.

This is an extension of batch normalization, which ensures that the training and inference models generate the same outputs that depend on individual examples rather than the entire minibatch.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
See also:
links.BatchRenormalization
See also:
functions.BatchNormalization()
chainer.functions.fixed_batch_normalization

chainer.functions.fixed_batch_normalization($x$, $gamma$, $beta$, $mean$, $var$, $eps=2e-05$)
Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as fixed variables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used for prediction consistency.

Parameters

- `x` *(Variable)* – Input variable.
- `gamma` *(Variable)* – Scaling parameter of normalized data.
- `beta` *(Variable)* – Shifting parameter of scaled normalized data.
- `mean` *(Variable)* – Shifting parameter of input.
- `var` *(Variable)* – Square of scaling parameter of input.
- `eps` *(float)* – Epsilon value for numerical stability.

See also:
functions.batch_normalization(), links.BatchNorm

chainer.functions.fixed_batch_renormalization

chainer.functions.fixed_batch_renormalization($x$, $gamma$, $beta$, $mean$, $var$, $eps=2e-05$)

chainer.functions.layer_normalization

chainer.functions.layer_normalization($x$, $gamma$, $beta$, $eps=1e-05$)
Layer normalization.

This function implements a “layer normalization” which normalizes the input units by statistics that are computed along the second axis, scales and shifts them.

Parameters

- `x` *(Variable)* – Batch vectors. Shape of this value must be `$\text{batch_size}, \text{unit_size}$`, e.g., the output of `linear()`.
- `gamma` *(Variable)* – Scaling vectors.
- `beta` *(Variable)* – Shifting vectors.

Returns The output variable which has the same shape as $x$.

Return type *Variable*

See: Layer Normalization

chainer.functions.local_response_normalization

chainer.functions.local_response_normalization($x$, $n=5$, $k=2$, $alpha=0.0001$, $beta=0.75$)
Local response normalization across neighboring channels.
This function implements normalization across channels. Let $x$ an input image with $N$ channels. Then, this function computes an output image $y$ by following formula:

$$
y_i = \frac{x_i}{\left(k + \alpha \sum_{j=\max(1,i-n/2)}^{\min(N,i+n/2)} x_j^2\right)^{\beta}}
$$

Parameters

- $x$ (Variable) – Input variable.
- $n$ (int) – Normalization window width.
- $k$ (float) – Smoothing parameter.
- $\alpha$ (float) – Normalizer scaling parameter.
- $\beta$ (float) – Normalizer power parameter.

Returns: Output variable.

Return type: Variable

See: Section 3.3 of ImageNet Classification with Deep Convolutional Neural Networks

**chainer.functions.normalize**

chainer.functions.normalize $(x, eps=1e-05, axis=1)$

L2 norm squared (a.k.a. Euclidean norm).

This function implements L2 normalization on a vector along the given axis. No reduction is done along the normalization axis.

In the case when $axis=1$ and $x$ is a vector of dimension $(N, K)$, where $N$ and $K$ denote mini-batch size and the dimension of the input variable, this function computes an output vector $y$ by the following equation:

$$
y_i = \frac{x_i}{\|x_i\|_2 + \epsilon}
$$

$\epsilon$ is used to avoid division by zero when norm of $x$ along the given axis is zero.

The default value of $axis$ is determined for backward compatibility.

Parameters

- $x$ (Variable) – Two dimensional output variable. The first dimension is assumed to be the mini-batch dimension.
- $\epsilon$ (float) – Epsilon value for numerical stability.
- $axis$ (int) – Axis along which to normalize.

Returns: The output variable which has the same shape as $x$.

Return type: Variable

### 2.4.9 Spatial pooling

<table>
<thead>
<tr>
<th>chainer.functions.average_pooling_2d</th>
<th>Spatial average pooling function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.functions.average_pooling_nd</td>
<td>N-dimensionally spatial average pooling function.</td>
</tr>
<tr>
<td>chainer.functions.max_pooling_2d</td>
<td>Spatial max pooling function.</td>
</tr>
</tbody>
</table>

Continued on next page
chainer.functions.max_pooling_nd

N-dimensionally spatial max pooling function.

chainer.functions.roi_pooling_2d

Spatial Region of Interest (ROI) pooling function.

spatial_pyramid_pooling_2d

Spatial pyramid pooling function.

chainer.functions.unpooling_2d

Inverse operation of pooling for 2d array.

chainer.functions.unpooling_nd

Inverse operation of N-dimensional spatial pooling.

chainer.functions.upsampling_2d

Upsampling using pooling indices.

chainer.functions.average_pooling_2d

Spatial average pooling function.

This function acts similarly to Convolution2D, but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products.

Parameters

- **x (Variable)** – Input variable.
- **ksize (int or pair of ints)** – Size of pooling window. ksize=k and ksize=(k, k) are equivalent.
- **stride (int or pair of ints or None)** – Stride of pooling applications. stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same stride as the pooling window size.
- **pad (int or pair of ints)** – Spatial padding width for the input array. pad=p and pad=(p, p) are equivalent.

Returns Output variable.

Return type Variable

Note: This function currently does not support **cover_all** mode as max_pooling_2d(). Average pooling runs in non-cover-all mode.

chainer.functions.average_pooling_nd

N-dimensionally spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of average_pooling_2d(). This acts similarly to ConvolutionND, but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products.

Parameters

- **x (Variable)** – Input variable.
- **ksize (int or tuple of ints)** – Size of pooling window. ksize=k and ksize=(k, k, \ldots, k) are equivalent.
• **stride** *(int or tuple of ints or None)* – Stride of pooling applications. `stride=s` and `stride=(s, s, ..., s)` are equivalent. If `None` is specified, then it uses the same stride as the pooling window size.

• **pad** *(int or tuple of ints)* – Spatial padding width for the input array. `pad=p` and `pad=(p, p, ..., p)` are equivalent.

**Returns** Output variable.

**Return type** *Variable*

**Note:** This function currently does not support `cover_all` mode as `max_pooling_nd()`. Average pooling runs in non-cover-all mode.

**chainer.functions.max_pooling_2d**

`chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True)`

Spatial max pooling function.

This function acts similarly to `Convolution2D`, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.

**Parameters**

- **x** *(Variable)* – Input variable.
- **ksize** *(int or pair of ints)* – Size of pooling window. `ksize=k` and `ksize=(k, k)` are equivalent.
- **stride** *(int or pair of ints or None)* – Stride of pooling applications. `stride=s` and `stride=(s, s)` are equivalent. If `None` is specified, then it uses the same stride as the pooling window size.
- **pad** *(int or pair of ints)* – Spatial padding width for the input array. `pad=p` and `pad=(p, p)` are equivalent.
- **cover_all** *(bool)* – If True, all spatial locations are pooled into some output pixels. It may make the output size larger.

**Returns** Output variable.

**Return type** *Variable*

**chainer.functions.max_pooling_nd**

`chainer.functions.max_pooling_nd(x, ksize, stride=None, pad=0, cover_all=True)`

N-dimensionally spatial max pooling function.

**Warning:** This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of `max_pooling_2d()`. This acts similarly to `ConvolutionND`, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products.

**Parameters**

- **x** *(Variable)* – Input variable.
• **ksize** (*int or tuple of ints*) – Size of pooling window. \(ksize=k\) and \(ksize=(k, k, \ldots, k)\) are equivalent.

• **stride** (*int or tuple of ints or None*) – Stride of pooling applications. \(stride=s\) and \(stride=(s, s, \ldots, s)\) are equivalent. If None is specified, then it uses same stride as the pooling window size.

• **pad** (*int or tuple of ints*) – Spatial padding width for the input array. \(pad=p\) and \(pad=(p, p, \ldots, p)\) are equivalent.

• **cover_all** (*bool*) – If True, all spatial locations are pooled into some output pixels. It may make the output size larger.

**Returns** Output variable.

**Return type** `Variable`

### `chainer.functions.roi_pooling_2d`

`chainer.functions.roi_pooling_2d(x, rois, outh, outw, spatial_scale)`

Spatial Region of Interest (ROI) pooling function.

This function acts similarly to `MaxPooling2D`, but it computes the maximum of input spatial patch for each channel with the region of interest.

**Parameters**

• **x** (*Variable*) – Input variable. The shape is expected to be 4 dimensional: \((n: \text{batch, c: channel}, h, \text{height}, w: \text{width})\).

• **rois** (*Variable*) – Input roi variable. The shape is expected to be \((n: \text{data size, 5})\), and each datum is set as below: \((\text{batch_index, x_min, y_min, x_max, y_max})\).

• **outh** (*int*) – Height of output image after pooled.

• **outw** (*int*) – Width of output image after pooled.

• **spatial_scale** (*float*) – Scale of the roi is resized.

**Returns** Output variable.

**Return type** `Variable`

See the original paper proposing ROI Pooling: Fast R-CNN.

### `chainer.functions.spatial_pyramid_pooling_2d`

`chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling_class)`

Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array \(x\) with different kernel sizes and padding sizes, and then flattens all dimensions except first dimension of all pooling results, and finally concatenates them along second dimension.
At $i$-th pyramid level, the kernel size $(k_h^{(i)}, k_w^{(i)})$ and padding size $(p_h^{(i)}, p_w^{(i)})$ of pooling operation are calculated as below:

$$
k_h^{(i)} = \left\lceil \frac{b_h}{2^i} \right\rceil,
$$

$$
k_w^{(i)} = \left\lceil \frac{b_w}{2^i} \right\rceil,
$$

$$
p_h^{(i)} = \frac{2^i k_h^{(i)} - b_h}{2},
$$

$$
p_w^{(i)} = \frac{2^i k_w^{(i)} - b_w}{2},
$$

where $\lceil \cdot \rceil$ denotes the ceiling function, and $b_h, b_w$ are height and width of input variable $x$, respectively. Note that index of pyramid level $i$ is zero-based.


Parameters

- $x$ (Variable) – Input variable. The shape of $x$ should be (batchsize, # of channels, height, width).

- pyramid_height (int) – Number of pyramid levels

- pooling_class (MaxPooling2D or AveragePooling2D) – Only MaxPooling2D class can be available for now.

Returns Output variable. The shape of the output variable will be $(\text{batchsize}, c \sum_{h=0}^{H-1} 2^{2h}, 1, 1)$, where $c$ is the number of channels of input variable $x$ and $H$ is the number of pyramid levels.

Return type Variable

Note: This function uses some pooling classes as components to perform spatial pyramid pooling. Now it supports only MaxPooling2D as elemental pooling operator so far.

chainer.functions.unpooling_2d

chainer.functions.unpooling_2d($x$, ksize, stride=None, pad=0, outsize=None, cover_all=True)

Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2D, but it spreads input 2d array’s value without any parameter instead of computing the inner products.

Parameters

- $x$ (Variable) – Input variable.

- ksize (int or pair of ints) – Size of pooling window. ksize=k and ksize=(k, k) are equivalent.

- stride (int, pair of ints or None) – Stride of pooling applications. stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same stride as the pooling window size.

- pad (int or pair of ints) – Spatial padding width for the input array. pad=p and pad=(p, p) are equivalent.

- outsize (None or pair of ints) – Expected output size (height, width) of array after the operation. If None, the size (height or width) is estimated from the size of input array in first batch with get_deconv_outsize(). If outsize is not None, the result of outsize applied to get_conv_outsize() must be equal to the shape of the 2d array in the input batch $x$.
• **cover_all** *(bool)* – If True, the output size may be smaller than the size if cover_all is False. This flag serves to align behavior to the pooling functions which can cover all input locations, see `max_pooling_2d()` and `convolution_2d()`.

**Returns** Output variable.

**Return type** `Variable`

**chainer.functions.unpooling_nd**

`chainer.functions.unpooling_nd(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)`

Inverse operation of N-dimensional spatial pooling.

**Warning:** This feature is experimental. The interface can change in the future.

This function acts similarly to `DeconvolutionND`, but it spreads input N-dimensional array’s value without any parameter instead of computing the inner products.

**Parameters**

- **x** *(Variable)* – Input variable.
- **ksize** *(int or pair of ints)* – Size of pooling window \((k_1, k_2, \ldots, k_N)\). ksize=k is equivalent to \((k, k, \ldots, k)\).
- **stride** *(int, pair of ints or None)* – Stride of pooling applications \((s_1, s_2, \ldots, s_N)\). stride=s is equivalent to \((s, s, \ldots, s)\). If None is specified, then it uses same stride as the pooling window size.
- **pad** *(int or pair of ints)* – Spatial padding width for the input array \((p_1, p_2, \ldots, p_N)\). pad=p is equivalent to \((p, p, \ldots, p)\).
- **outsize** *(None or pair of ints)* – Expected output size of unpooling operation \((out_1, out_2, \ldots, out_N)\). If None, the size is estimated from input size, stride and padding.
- **cover_all** *(bool)* – If True, the pooling window is assumed to cover all of the output array, eventually the output size may be smaller than that in the case cover_all is False.

**Returns** Output variable.

**Return type** `Variable`

**chainer.functions.upsampling_2d**

`chainer.functions.upsampling_2d(x, indexes, ksize, stride=None, pad=0, outsize=None, cover_all=True)`

Upsampling using pooling indices.

This function produces an upsampled image using pooling indices.

**Example**

It should be noted that you need to turn off `chainer.config.use_cudnn` flag when you perform `max_pooling_2d()` function which will make a pooling indices for this `upsampling_2d()`. It is because `indexes` is never created and stored in the `MaxPooling2D` object when cuDNN is used for it.
>>> x = np.arange(1, 37).reshape(1, 1, 6, 6).astype('f')
>>> x = chainer.Variable(x)
>>> x.data
array([[[ 1.,  2.,  3.,  4.,  5.,  6.],
         [ 7.,  8.,  9., 10., 11., 12.],
         [13., 14., 15., 16., 17., 18.],
         [19., 20., 21., 22., 23., 24.],
         [25., 26., 27., 28., 29., 30.],
         [31., 32., 33., 34., 35., 36.]]], dtype=float32)

This is the original x before max pooling.

>>> p = F.MaxPooling2D(2, 2)
>>> with chainer.using_config('use_cudnn', 'never'):
...    pooled_x = p.apply((x,))[0]
>>> pooled_x.data
array([[[ 8., 10., 12.],
         [20., 22., 24.],
         [32., 34., 36.]]], dtype=float32)

This is the output of the max pooling operation. upsampling_2d() needs indexes array stored in the max pooling object p.

>>> upsampled_x = F.upsampling_2d(
...          pooled_x, p.indexes, p.kh, p.sy, p.ph, x.shape[2:])
>>> upsampled_x.shape
(1, 1, 6, 6)
>>> upsampled_x.data
array([[[ 0., 0., 0., 0., 0., 0.],
         [ 0., 8., 0., 10., 0., 12.],
         [ 0., 0., 0., 0., 0., 0.],
         [ 0., 20., 0., 22., 0., 24.],
         [ 0., 0., 0., 0., 0., 0.],
         [ 0., 32., 0., 34., 0., 36.]]], dtype=float32)

Parameters

• **x (Variable)** – Input variable.

• **indexes (ndarray or ndarray)** – Index array that was used to calculate x with MaxPooling2D.

• **ksize (int or (int, int))** – ksize attribute of MaxPooling2D object that is used to calculate x

• **stride (int or (int, int))** – stride attribute of MaxPooling2D object that is used to calculate x

• **pad (int or (int, int))** – pad attribute of MaxPooling2D object that is used to calculate x

• **outsize (int, int)** – Expected output size (height, width).

• **cover_all (bool)** – Whether cover_all is used in the MaxPooling2D object or not.

Returns Output variable.

Return type **Variable**
2.4.10 Utility functions

chainer.functions.forget

chainer.functions.forget (func, *xs)
Calls a function without storing intermediate results.

On a forward propagation, Chainer normally stores all intermediate results of VariableNodes on a computational graph as they are required on backward propagation. Sometimes these results consume too much memory. F.forget forgets such intermediate results on forward propagation, and still supports backpropagation with recalculation.

On a forward propagation, F.forget calls a given function with given variables without creating a computational graph. That means, no intermediate results are stored. On a backward propagation, F.forget calls the given function again to create a computational graph for backpropagation.

F.forget reduces internal memory usage, whereas it requires more calculation time as it calls the function twice.

Example

Let f be a function defined as:

```python
>>> def f(a, b):
... return a + b + a
```

and, x and y be Variables:

```python
>>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f'))
>>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype('f'))
```

When z is calculated as z = f(x, y), its intermediate result x + y is stored in memory. Instead, if you call f with F.forget:

```python
>>> z = F.forget(f, x, y)
```

intermediate x + y is forgotten.

Note: F.forget does not support functions which behave differently in multiple calls with the same inputs, such as F.dropout() and F.negative_sampling().

Note: In case input argument variables are of class numpy.ndarray or cupy.ndarray objects, arguments will automatically be converted to Variables. This conversion takes place to ensure that this function is included in the computational graph to enable backward computations.

Parameters

- **func** (callable) – A function to call. It needs to be called with Variable object(s) and to return a Variable object or a tuple of Variable objects.
• **xs** (*Variable*) – Argument variables of the function.

**Returns**
A variable `func` returns. If it returns a tuple, the method returns a tuple too.

**Return type** *Variable*

## 2.5 Standard Link implementations

Chainer provides many *Link* implementations in the `chainer.links` package.

**Note:** Some of the links are originally defined in the `chainer.functions` namespace. They are still left in the namespace for backward compatibility, though it is strongly recommended to use them via the `chainer.links` package.

### 2.5.1 Learnable connections

<table>
<thead>
<tr>
<th><code>chainer.links.Bias</code></th>
<th>Broadcasted elementwise summation with learnable parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.Bilinear</code></td>
<td>Bilinear layer that performs tensor multiplication.</td>
</tr>
<tr>
<td><code>chainer.links.ChildSumTreeLSTM</code></td>
<td>Child-Sum TreeLSTM unit.</td>
</tr>
<tr>
<td><code>chainer.links.Convolution2D</code></td>
<td>Two-dimensional convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.ConvolutionND</code></td>
<td>N-dimensional convolution layer.</td>
</tr>
<tr>
<td><code>chainer.links.Deconvolution2D</code></td>
<td>Two dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.links.DeconvolutionND</code></td>
<td>N-dimensional deconvolution function.</td>
</tr>
<tr>
<td><code>chainer.links.DepthwiseConvolution2D</code></td>
<td>Two-dimensional depthwise convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.DilatedConvolution2D</code></td>
<td>Two-dimensional dilated convolutional layer.</td>
</tr>
<tr>
<td><code>chainer.links.EmbedID</code></td>
<td>Efficient linear layer for one-hot input.</td>
</tr>
<tr>
<td><code>chainer.links.GRU</code></td>
<td>Stateful Gated Recurrent Unit function (GRU)</td>
</tr>
<tr>
<td><code>chainer.links.Highway</code></td>
<td>Highway module.</td>
</tr>
<tr>
<td><code>chainer.links.Inception</code></td>
<td>Inception module of GoogLeNet.</td>
</tr>
<tr>
<td><code>chainer.links.InceptionBN</code></td>
<td>Inception module of the new GoogLeNet with BatchNormalization.</td>
</tr>
<tr>
<td><code>chainer.links.Linear</code></td>
<td>Linear layer (a.k.a. fully-connected layer).</td>
</tr>
<tr>
<td><code>chainer.links.LSTM</code></td>
<td>Fully-connected LSTM layer.</td>
</tr>
<tr>
<td><code>chainer.links.MLPConvolution2D</code></td>
<td>Two-dimensional MLP convolution layer of Network in Network.</td>
</tr>
<tr>
<td><code>chainer.links.NaryTreeLSTM</code></td>
<td>N-ary TreeLSTM unit.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiGRU</code></td>
<td>Stacked Bi-directional GRU for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiLSTM</code></td>
<td>Stacked Bi-directional LSTM for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiRNNReLU</code></td>
<td>Stacked Bi-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepBiRNNTanh</code></td>
<td>Stacked Bi-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepGRU</code></td>
<td>Stacked Uni-directional GRU for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepLSTM</code></td>
<td>Stacked Uni-directional LSTM for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepRNNReLU</code></td>
<td>Stacked Uni-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.NStepRNNTanh</code></td>
<td>Stacked Uni-directional RNN for sequences.</td>
</tr>
<tr>
<td><code>chainer.links.Parameter</code></td>
<td>Link that just holds a parameter and returns it.</td>
</tr>
<tr>
<td><code>chainer.links.Scale</code></td>
<td>Broadcasted elementwise product with learnable parameters.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2.42 – continued from previous page

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.StatefulGRU</code></td>
<td>Stateful Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.StatelessGRU</code></td>
<td>Stateless Gated Recurrent Unit function (GRU).</td>
</tr>
<tr>
<td><code>chainer.links.StatefulMGU</code></td>
<td></td>
</tr>
<tr>
<td><code>chainer.links.StatelessMGU</code></td>
<td></td>
</tr>
<tr>
<td><code>chainer.links.StatefulPeepholeLSTM</code></td>
<td>Fully-connected LSTM layer with peephole connections.</td>
</tr>
<tr>
<td><code>chainer.links.StatefulZoneoutLSTM</code></td>
<td></td>
</tr>
<tr>
<td><code>chainer.links.StatelessLSTM</code></td>
<td>Stateless LSTM layer.</td>
</tr>
</tbody>
</table>

**chainer.links.Bias**

**class** *chainer.links.Bias*(*axis=1, shape=None*)

Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as `bias()` function does except that its second input is a learnable bias parameter \( b \) the link has.

**Parameters**

- **axis** (*int*) – The first axis of the first input of `bias()` function along which its second input is applied.
- **shape** (*tuple of ints*) – Shape of the learnable bias parameter. If `None`, this link does not have learnable parameters so an explicit bias needs to be given to its `__call__` method’s second input.

**See also:**

See `bias()` for details.

**Variables** \( b \) (*Variable*) – Bias parameter if `shape` is given. Otherwise, no attributes.

**Methods**

**__call__**(\(^\ast\)xs)

Applies broadcasted elementwise summation.

**Parameters** \( \text{xs} \) (*list of Variables*) – Input variables whose length should be one if the link has a learnable bias parameter, otherwise should be two.

**add_param**(*name*, *shape=None*, *dtype=<class 'numpy.float32'>*, *initializer=None*)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, *dtype* argument is ignored.

**add_persistent** *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

**addgrads** *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

• **link** *(Link)* – Source link object.

**children** *

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads** *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy** *

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Returns** Copied link object.

**Return type** *Link*

**copyparams** *(link)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

**Parameters**

• **link** *(Link)* – Source link object.

**disable_update** *

Disables update rules of all parameters under the link hierarchy.

This method sets the **enabled** flag of the update rule of each parameter variable to **False**.
enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.
Parameters `name` *(str)* — Name of the attribute to be registered.

`serialize` *(serializer)*
Serializes the link object.

Parameters `serializer` *(AbstractSerializer)* — Serializer object.

`to_cpu` ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

`to_gpu` *(device=None)*
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters `device` — Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds` ()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

### chainer.links.Bilinear

#### class chainer.links.Bilinear *(left_size, right_size, out_size, nobias=False, initialW=None, initial_bias=None)*

Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the `bilinear()` functions. It holds parameters $W, V_1, V_2,$ and $b$ corresponding to the arguments of `bilinear()`.

Parameters

- `left_size` *(int)* — Dimension of input vector $e^1 (J)$
- `right_size` *(int)* — Dimension of input vector $e^2 (K)$
- `out_size` *(int)* — Dimension of output vector $y (L)$
- `nobias` *(bool)* — If True, parameters $V_1, V_2,$ and $b$ are omitted.
- `initialW` *(initializer)* — Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 3.
- `initial_bias` *(tuple of initializer)* — Initial values of $V_1, V_2$ and $b$. The length of this argument must be 3. Each element of this tuple must have the shapes of $(left_size, out_size), (right_size, out_size),$ and $(out_size,)$, respectively if they are `numpy.ndarray`. If None, $V_1$ and $V_2$ are initialized by the default initializer and $b$ is set to 0.

See also:

See `chainer.functions.bilinear()` for details.
Variables

- \( W \) (Variable) – Bilinear weight parameter.
- \( V_1 \) (Variable) – Linear weight parameter for the first argument.
- \( V_2 \) (Variable) – Linear weight parameter for the second argument.
- \( b \) (Variable) – Bias parameter.

Methods

__call__ \((e_1, e_2)\)

Applies the bilinear function to inputs and the internal parameters.

Parameters

- \( e_1 \) (Variable) – Left input.
- \( e_2 \) (Variable) – Right input.

Returns Output variable.

Return type Variable

add_param \((name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)\)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent \((name, value)\)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.
addgrads\(\text{link}\)\nAccumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters** link (Link) – Source link object.

children\()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads\()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy\()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns
Copied link object.

Return type Link

copyparams\(\text{link}\)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

**Parameters** link (Link) – Source link object.

disable_update\()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update\()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope\()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))

    links (skipself=False)
    Returns a generator of all links under the hierarchy.

    Parameters skipself (bool) – If True, then the generator skips this link and starts with the
    first child link.

    Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

**Parameters**

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

**zero_grads()**

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

---

### chainer.links.ChildSumTreeLSTM

**class chainer.links.ChildSumTreeLSTM(in_size, out_size)**

Child-Sum TreeLSTM unit.

**Warning:** This feature is experimental. The interface can change in the future.

This is a Child-Sum TreeLSTM unit as a chain. This link is a variable arguments function, which compounds the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, $c$, and the output, $h$, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as `func(c1, c2, h1, h2, x)` if the number of children nodes is 2, while `func(c1, c2, c3, h1, h2, h3, x)` if that is 3. This function is independent from an order of children nodes. Thus, the returns of `func(c1, c2, h1, h2, x)` equal to those of `func(c2, c1, h2, h1, x)`.

**Parameters**

- **in_size** (`int`) – Dimension of input vectors.
- **out_size** (`int`) – Dimensionality of cell and output vectors.

**Variables**

- **W_x** (`chainer.links.Linear`) – Linear layer of connections from input vectors.
- **W_h_aio** (`chainer.links.Linear`) – Linear layer of connections between $a$, $i$, $o$ and summation of children’s output vectors. $a$, $i$ and $o$ denotes input compound, input gate and output gate, respectively. $a$, input compound, equals to $u$ in the paper by Tai et al.
- **W_h_f** (`chainer.links.Linear`) – Linear layer of connections between forget gate $f$ and the output of each child.

See the paper for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.

**Methods**

- **__call__(**cshsx**)**

  Returns new cell state and output of Child-Sum TreeLSTM.
Parameters **cshsx** (list of Variable) – Variable arguments which include all cell vectors and all output vectors of variable children, and an input vector.

Returns Returns \((c_{\text{new}}, h_{\text{new}})\), where \(c_{\text{new}}\) represents new cell state vector, and \(h_{\text{new}}\) is new output vector.

Return type tuple of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
 chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the child link. This name is also used as the attribute name.
- **link (Link)** – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

```python
addgrads(link)
children()
cleargrads()
```

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```python
copy()
copyparams(link)
disable_update()
```

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

```python
enable_update()
```

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

```python
init_scope()
```

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

```python
links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)
register_persistent(name)
```

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If \texttt{name} has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters**  
\textbf{name} (**str**) – Name of the attribute to be registered.

\textbf{serialize} (**serializer**)  
\textbf{to_cpu}()  
\textbf{to_gpu}(**device=None**)  
\textbf{zerograds}()  

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use \texttt{cleargrads()} instead.

**chainer.links.Convolution2D**

\texttt{class chainer.links.Convolution2D(self, in_channels, out_channels, ksize=None, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None)}

Two-dimensional convolutional layer.

This link wraps the \texttt{convolution_2d()} function and holds the filter weight and bias vector as parameters.

The output of this function can be non-deterministic when it uses cuDNN. If \texttt{chainer.configuration.config.deterministic} is \texttt{True} and cuDNN version is $\geq$ v3, it forces cuDNN to use a deterministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set \texttt{chainer.using_config('autotune', True)}

**Warning:**  
deterministic argument is not supported anymore since v2. Instead, use \texttt{chainer.using_config('cudnn_deterministic', value (value is either True or False). See \texttt{chainer.using_config()}.}

**Parameters**

- \textbf{in_channels} (**int or None**) – Number of channels of input arrays. If \texttt{None}, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- \textbf{out_channels} (**int**) – Number of channels of output arrays.
- \textbf{ksize} (**int or pair of ints**) – Size of filters (a.k.a. kernels). \texttt{ksize=k} and \texttt{ksize=(k, k)} are equivalent.
- \textbf{stride} (**int or pair of ints**) – Stride of filter applications. \texttt{stride=s} and \texttt{stride=(s, s)} are equivalent.
- \textbf{pad} (**int or pair of ints**) – Spatial padding width for input arrays. \texttt{pad=p} and \texttt{pad=(p, p)} are equivalent.
- \textbf{nobias} (**bool**) – If \texttt{True}, then this link does not use the bias term.
• **initialW** (*initializer*) – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 4.

• **initial_bias** (*initializer*) – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.

See also:

See `chainer.functions.convolution_2d()` for the definition of two-dimensional convolution.

**Variables**

• **W** (*Variable*) – Weight parameter.

• **b** (*Variable*) – Bias parameter.

**Example**

There are several ways to make a Convolution2D link.

Let an input vector `x` be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype='f').reshape(1, 3, 10, 10)
```

1. Give the first three arguments explicitly:

```python
>>> l = L.Convolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

2. Omit `in_channels` or fill it with None:

   The below two cases are the same.

```python
>>> l = L.Convolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

```python
>>> l = L.Convolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Convolution2D(7, 5, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

```python
>>> l = L.Convolution2D(None, 7, 5, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```
Methods

__call__(x)
Applies the convolution layer.

    Parameters x (Variable) – Input image.
    Returns Output of the convolution.
    Return type Variable

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

    Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

    link.add_param('W', shape=(5, 3))

    can be replaced by the following assignment.

    with link.init_scope():
        link.W = chainer.Parameter(None, (5, 3))

    The latter is easier for IDEs to keep track of the attribute’s type.

    Parameters

    • name (str) – Name of the parameter. This name is also used as the attribute name.
    • shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
    • dtype – Data type of the parameter array.
    • initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.

    The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

    Parameters

    • name (str) – Name of the persistent value. This name is also used for the attribute name.
    • value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

    This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

    Parameters link (Link) – Source link object.

children ()
Returns a generator of all child links.
Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link
copyparams(link)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.
Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

`namedlinks (skipself=False)`

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself` (bool) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

`namedparams (include_uninit=True)`

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit` (bool) – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` (bool) – If `True`, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name` (str) – Name of the attribute to be registered.

`serialize (serializer)`

Serializes the link object.

Parameters `serializer` (AbstractSerializer) – Serializer object.

`to_cpu ()`

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

`to_gpu (device=None)`

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters `device` – Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds ()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.
Deprecated since version v1.15: Use `cleargrads()` instead.

**chainer.links.ConvolutionND**

```python
class chainer.links.ConvolutionND(ndim, in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, cover_all=False)
```

N-dimensional convolution layer.

This link wraps the `convolution_nd()` function and holds the filter weight and bias vector as parameters.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

**Parameters**

- `ndim (int)`: Number of spatial dimensions.
- `in_channels (int)`: Number of channels of input arrays.
- `out_channels (int)`: Number of channels of output arrays.
- `ksize (int or tuple of ints)`: Size of filters (a.k.a. kernels). \( k \text{size}=k \) and \( k\text{size}=(k, k, \ldots, k) \) are equivalent.
- `stride (int or tuple of ints)`: Stride of filter application. \( \text{stride}=s \) and \( \text{stride}=(s, s, \ldots, s) \) are equivalent.
- `pad (int or tuple of ints)`: Spatial padding width for input arrays. \( \text{pad}=p \) and \( \text{pad}=(p, p, \ldots, p) \) are equivalent.
- `nobias (bool)`: If True, then this function does not use the bias.
- `initialW (initializer)`: Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be \( n+2 \) where \( n \) is the number of spatial dimensions.
- `initial_bias (initializer)`: Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.
- `cover_all (bool)`: If True, all spatial locations are convoluted into some output pixels. It may make the output size larger. `cover_all` needs to be False if you want to use cuDNN.

**See also:**

See `convolution_nd()` for the definition of N-dimensional convolution. See `convolution_2d()` for the definition of two-dimensional convolution.

**Variables**

- `W (Variable)`: Weight parameter.
- `b (Variable)`: Bias parameter. If `initial_bias` is None, set to None.

**Methods**

```python
__call__(x)
```

Applies N-dimensional convolution layer.

**Parameters**

- `x (Variable)`: Input image.
**Returns**  Output of convolution.

**Return type**  Variable

**add_param**(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

- **name**(str) – Name of the parameter. This name is also used as the attribute name.
- **shape**(int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

**add_persistent**(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name**(str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

**addgrads**(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link**(Link) – Source link object.

**children**()

Returns a generator of all child links.

**Returns**  A generator object that generates all child links.

**cleargrads**()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy**()

Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns  Copied link object.

Return type  Link

**copyparams** *(link)*
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters  **link** *(Link)* – Source link object.

disabled_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

**Example**

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links** *(skipself=False)*
Returns a generator of all links under the hierarchy.

Parameters  **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns  A generator object that generates all links.

**namedlinks** *(skipself=False)*
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters  **skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.
**Returns** A generator object that generates all (path, link) pairs.

**namedparams** *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters** *include_uninit* *(bool)* – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

**Parameters** *include_uninit* *(bool)* – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all parameters.

**register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters** *name* *(str)* – Name of the attribute to be registered.

**serialize** *(serializer)*

Serializes the link object.

**Parameters** *serializer* *(AbstractSerializer)* – Serializer object.

**to_cpu** ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

**Returns**: self

**to_gpu** *(device=None)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

**Parameters** *device* – Target device specifier. If omitted, the current device is used.

**Returns**: self

**zerograds** ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use *cleargrads()* instead.

---

**chainer.links.Deconvolution2D**

**class** chainer.links.Deconvolution2D *(self, in_channels, out_channels, ksize=None, stride=1, pad=0, nobias=False, outsize=None, initialW=None, initial_bias=None)*

Two dimensional deconvolution function.
This link wraps the `deconvolution_2d()` function and holds the filter weight and bias vector as parameters. Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`.

**Warning:** deterministic argument is not supported anymore since v2. Instead, use `chainer.using_config('cudnn_deterministic', value)` (value is either `True` or `False`). See `chainer.using_config()`.

**Parameters**

- **in_channels** (`int` or `None`) – Number of channels of input arrays. If `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **out_channels** (`int`) – Number of channels of output arrays.
- **ksize** (`int` or pair of `ints`) – Size of filters (a.k.a. kernels). `ksize=k` and `ksize=(k, k)` are equivalent.
- **stride** (`int` or pair of `ints`) – Stride of filter applications. `stride=s` and `stride=(s, s)` are equivalent.
- **pad** (`int` or pair of `ints`) – Spatial padding width for input arrays. `pad=p` and `pad=(p, p)` are equivalent.
- **nobias** (`bool`) – If `True`, then this function does not use the bias term.
- **outsize** (`tuple`) – Expected output size of deconvolutional operation. It should be pair of height and width (`out_H`, `out_W`). Default value is `None` and the outsize is estimated by input size, stride and pad.
- **initialW** (`initializer`) – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 4.
- **initial_bias** (`initializer`) – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.

The filter weight has four dimensions (`c_I`, `c_O`, `k_H`, `k_W`) which indicate the number of input channels, output channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d. Gaussian random samples, each of which has zero mean and deviation `\sqrt{1/(c_I k_H k_W)}` by default.

The bias vector is of size `c_O`. Its elements are initialized by `bias` argument. If `nobias` argument is set to `True`, then this function does not hold the bias parameter.

The output of this function can be non-deterministic when it uses cuDNN. If `chainer.configuration.config.cudnn_deterministic` is `True` and cuDNN version is `>= v3`, it forces cuDNN to use a deterministic algorithm.

See also:

See `chainer.functions.deconvolution_2d()` for the definition of two-dimensional convolution.

See also:

See `chainer.links.Convolution2D()` for the examples of ways to give arguments to this link.

**Example**
There are several ways to make a Deconvolution2D link.

Let an input vector $x$ be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype='f').reshape(1, 3, 10, 10)
```

1. Give the first three arguments explicitly:

   In this case, all the other arguments are set to the default values.

   ```python
 >>> l = L.Deconvolution2D(3, 7, 4)
 >>> y = l(x)
 >>> y.shape
 (1, 7, 13, 13)
   ```

2. Omit `in_channels` or fill it with `None`:

   The below two cases are the same.

   ```python
 >>> l = L.Deconvolution2D(7, 4)
 >>> y = l(x)
 >>> y.shape
 (1, 7, 13, 13)
   ```

   ```python
 >>> l = L.Deconvolution2D(None, 7, 4)
 >>> y = l(x)
 >>> y.shape
 (1, 7, 13, 13)
   ```

When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Deconvolution2D(None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)
```

```python
>>> l = L.Deconvolution2D(7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)
```

---

**Methods**

`__call__`(x)

`add_param`(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.
```
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

**add_persistent** (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

**addgrads** (*link*)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link** (*Link*) – Source link object.

**children**()

Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads**()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy**()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Returns** Copied link object.

**Return type** *Link*

**copyparams** (*link*)

Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

**link** *(Link)* – Source link object.

**disable_update()**

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to False.

**enable_update()**

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to True.

**init_scope()**

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links** *(skipself=False)*

Returns a generator of all links under the hierarchy.

Parameters

**skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all links.

**namedlinks** *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

**skipself** *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all (path, link) pairs.

**namedparams** *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters

**include_uninit** *(bool)* – If True, it also generates uninitialized parameters.

Returns

A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters

**include_uninit** *(bool)* – If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

`register_persistent(name)`
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name (str)` – Name of the attribute to be registered.

`serialize(serializer)`
Serializes the link object.

Parameters `serializer (AbstractSerializer)` – Serializer object.

`to_cpu()`
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

`to_gpu(device=None)`
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters `device` – Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds()`
Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads()`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

**chainer.links.DeconvolutionND**

```python
class chainer.links.DeconvolutionND(ndim, in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, outsize=None, initialW=None, initial_bias=None)
```

N-dimensional deconvolution function.

This link wraps `deconvolution_nd()` function and holds the filter weight and bias vector as its parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set `chainer.using_config('autotune', True)`

Parameters

- `ndim (int)` – Number of spatial dimensions.
- `in_channels (int)` – Number of channels of input arrays.
- `out_channels (int)` – Number of channels of output arrays.
• **ksize** *(int or tuple of ints)* – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k, ..., k) are equivalent.

• **stride** *(int or tuple of ints)* – Stride of filter application. stride=s and stride=(s, s, ..., s) are equivalent.

• **pad** *(int or tuple of ints)* – Spatial padding width for input arrays. pad=p and pad=(p, p, ..., p) are equivalent.

• **nobias** *(bool)* – If True, then this function does not use the bias.

• **outsize** *(tuple of ints)* – Expected output size of deconvolutional operation. It should be a tuple of ints that represents the output size of each dimension. Default value is None and the outsize is estimated with input size, stride and pad.

• **initialW** *(initializer)* – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be n + 2 where n is the number of spatial dimensions.

• **initial_bias** *(initializer)* – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is numpy.ndarray, its ndim should 1.

**See also:**

deconvolution_nd()

**Variables**

• **W** *(Variable)* – Weight parameter.

• **b** *(Variable)* – Bias parameter. If initial_bias is None, set to None.

**Methods**

__call__(x)

**add_param** *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.
**add_persistent** (*name, value*)  
Registers a persistent value to the link.  
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.  

**Parameters**  
- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.  
- **value** – Value to be registered.

**addgrads** (*link*)  
Accumulates gradient values from given link.  
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**  
- **link** (*Link*) – Source link object.

**children** ()  
Returns a generator of all child links.

**Returns** A generator object that generates all child links.

**cleargrads** ()  
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

**copy** ()  
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

**Returns** Copied link object.

**Return type** *Link*

**copyparams** (*link*)  
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

**Parameters**  
- **link** (*Link*) – Source link object.

**disable_update** ()  
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to **False**.

**enable_update** ()  
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to **True**.

**init_scope** ()  
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
```

**links** *(skipself=False)*

Returns a generator of all links under the hierarchy.

**Parameters** skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all links.

**namedlinks** *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

**Parameters** skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.

**Returns** A generator object that generates all (path, link) pairs.

**namedparams** *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

**Parameters** include_uninit *(bool)* – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

**params** *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

**Parameters** include_uninit *(bool)* – If True, it also generates uninitialized parameters.

**Returns** A generator object that generates all parameters.

**register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

**Parameters** name *(str)* – Name of the attribute to be registered.

**serialize** *(serializer)*

Serializes the link object.

**Parameters** serializer *(AbstractSerializer)* – Serializer object.
**to_cpu**
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

**to_gpu** *(device=None)*
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

**Parameters**
- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

**zerograds**
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

---

**chainer.links.DepthwiseConvolution2D**

**class** `chainer.links.DepthwiseConvolution2D`(in_channels, channel_multiplier, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None)

Two-dimensional depthwise convolutional layer.

This link wraps the `depthwise_convolution_2d()` function and holds the filter weight and bias vector as parameters.

**Parameters**

- **in_channels** *(int)* – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **channel_multiplier** *(int)* – Channel multiplier number. Number of output arrays equal in_channels * channel_multiplier.

- **ksize** *(int or pair of ints)* – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.

- **stride** *(int or pair of ints)* – Stride of filter applications. stride=s and stride=(s, s) are equivalent.

- **pad** *(int or pair of ints)* – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.

- **nobias** *(bool)* – If True, then this link does not use the bias term.

- **initialW** *(initializer)* – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 4.

- **initial_bias** *(initializer)* – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 1.
See also:
See `chainer.functions.depthwise_convolution_2d()`.

Variables

- **W** *(Variable)* – Weight parameter.
- **b** *(Variable)* – Bias parameter.

Methods

**__call__**(x)
Applies the depthwise convolution layer.

**Parameters**

- **x** *(chainer.Variable or numpy.ndarray or cupy.ndarray)* – Input image.

**Returns**
Output of the depthwise convolution.

**Return type**
Variable

**add_param**(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

**Parameters**

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

**add_persistent**(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

**Parameters**

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.
addgrads \((\text{link})\)
Accumulates gradient values from given link.
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

**Parameters**

- **link** \((\text{Link})\) – Source link object.

children()
Returns a generator of all child links.

Returns
A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns
Copied link object.

Return type **Link**

copyparams \((\text{link})\)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

**Parameters**

- **link** \((\text{Link})\) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.
Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all links.
namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.
Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all (path, link) pairs.
namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.
Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.
params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.
Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.
register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.
Parameters name (str) – Name of the attribute to be registered.
serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer) – Serializer object.
to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.
Returns: self
to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

**Parameters**

**device** – Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

### chainer.links.DilatedConvolution2D

**class** chainer.links.DilatedConvolution2D(in_channels, out_channels, ksize=None, stride=1, pad=0, dilate=1, nobias=False, initialW=None, initial_bias=None)

Two-dimensional dilated convolutional layer.

This link wraps the `dilated_convolution_2d()` function and holds the filter weight and bias vector as parameters.

**Parameters**

- **in_channels** *(int or None)* – Number of channels of input arrays. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **out_channels** *(int)* – Number of channels of output arrays.
- **ksize** *(int or pair of ints)* – Size of filters (a.k.a. kernels). ksize=k and ksize=(k, k) are equivalent.
- **stride** *(int or pair of ints)* – Stride of filter applications. stride=s and stride=(s, s) are equivalent.
- **pad** *(int or pair of ints)* – Spatial padding width for input arrays. pad=p and pad=(p, p) are equivalent.
- **dilate** *(int or pair of ints)* – Dilation factor of filter applications. dilate=d and dilate=(d, d) are equivalent.
- **nobias** *(bool)* – If True, then this link does not use the bias term.
- **initialW** *(initializer)* – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 4.
- **initial_bias** *(initializer)* – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 1.

**See also:**

See `chainer.functions.dilated_convolution_2d()` for the definition of two-dimensional dilated convolution.

**Variables**

- **W** *(Variable)* – Weight parameter.
- **b** *(Variable)* – Bias parameter.
Example

There are several ways to make a DilatedConvolution2D link.

Let an input vector \( x \) be:

```python
>>> x = np.arange(1 * 3 * 10 * 10, dtype='f').reshape(1, 3, 10, 10)
```

1. Give the first three arguments explicitly:

```python
>>> l = L.DilatedConvolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)
```

2. Omit `in_channels` or fill it with `None`:

   The below two cases are the same.

   ```python
 >>> l = L.DilatedConvolution2D(7, 5)
 >>> y = l(x)
 >>> y.shape
 (1, 7, 6, 6)
 >>> l = L.DilatedConvolution2D(None, 7, 5)
 >>> y = l(x)
 >>> y.shape
 (1, 7, 6, 6)
 ``

 When you omit the first argument, you need to specify the other subsequent arguments from `stride` as keyword arguments. So the below two cases are the same.

   ```python
   >>> l = L.DilatedConvolution2D(None, 7, 5, 1, 0, 2)
   >>> y = l(x)
   >>> y.shape
   (1, 7, 2, 2)
   >>> l = L.DilatedConvolution2D(7, 5, stride=1, pad=0, dilate=2)
   >>> y = l(x)
   >>> y.shape
   (1, 7, 2, 2)
   ```

Methods

`__call__(x)`

Applies the convolution layer.

Parameters

- \(x \) (`Variable`) – Input image.

Returns

Output of the convolution.

Return type

`Variable`

`add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`

Registers a parameter to the link.
Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within \texttt{init_scope()} instead. For example, the following code

\begin{verbatim}
link.add_param('W', shape=(5, 3))
\end{verbatim}

can be replaced by the following assignment.

\begin{verbatim}
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- \texttt{name} (\texttt{str}) – Name of the parameter. This name is also used as the attribute name.
- \texttt{shape} (\texttt{int} or \texttt{tuple of ints}) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- \texttt{dtype} – Data type of the parameter array.
- \texttt{initializer} – If it is not \texttt{None}, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \texttt{dtype} argument is ignored.

add_persistent (\texttt{name}, \texttt{value})

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- \texttt{name} (\texttt{str}) – Name of the persistent value. This name is also used for the attribute name.
- \texttt{value} – Value to be registered.

add_gradients (\texttt{link})

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- \texttt{link} (\texttt{Link}) – Source link object.

children ()

Returns a generator of all child links.

Returns A generator object that generates all child links.

clear_gradients ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).
Returns Copied link object.

Return type Link

copyparams (link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.
Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds ()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

chainer.links.EmbedID

class chainer.links.EmbedID (in_size, out_size, initialW=None, ignore_label=None)
Efficient linear layer for one-hot input.
This is a link that wraps the embed_id() function. This link holds the ID (word) embedding matrix \(W \) as a parameter.

Parameters

- **in_size** (int) – Number of different identifiers (a.k.a. vocabulary size).
- **out_size** (int) – Size of embedding vector.
• **initialW** (*initializer*) – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 2.

• **ignore_label** (*int or None*) – If `ignore_label` is an int value, i-th column of return value is filled with 0.

See also:

`embed_id()`

Variables **W** (*Variable*) – Embedding parameter matrix.

Example

```python
>>> W = np.array([[0, 0, 0],
    ... [1, 1, 1],
    ... [2, 2, 2]]).astype('f')
>>> W
array([[ 0.,  0.,  0.],
    [ 1.,  1.,  1.],
    [ 2.,  2.,  2.]], dtype=float32)
>>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
>>> x = np.array([2, 1]).astype('i')
>>> x
array([2, 1], dtype=int32)
>>> y = l(x)
>>> y.data
array([[ 2.,  2.,  2.],
    [ 1.,  1.,  1.]], dtype=float32)
```

Methods

`__call__`(x)

Extracts the word embedding of given IDs.

Parameters **x** (*Variable*) – Batch vectors of IDs.

Returns Batch of corresponding embeddings.

Return type **Variable**

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not **None**, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters **link** *(Link)* – Source link object.

children()

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type **Link**

copyparams(link)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters **link** *(Link)* – Source link object.

disable_update()

Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the **init_scope** method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

Returns a generator of all links under the hierarchy.

- **Parameters skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all links.

namedlinks (skipself=False)

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters skipself (bool)** – If True, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters include_uninit (bool)** – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)

Returns a generator of all parameters under the link hierarchy.

- **Parameters include_uninit (bool)** – If True, it also generates uninitialized parameters.

- **Returns** A generator object that generates all parameters.

register_persistent (name)

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

`name (str)` – Name of the attribute to be registered.

`serialize (serializer)`

Serializes the link object.

Parameters

`serializer (AbstractSerializer)` – Serializer object.

`to_cpu ()`

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

`to_gpu (device=None)`

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

`device` – Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds ()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.GRU

class `chainer.links.GRU (in_size, out_size, init=None, inner_init=None, bias_init=0)`

Stateful Gated Recurrent Unit function (GRU)

This is an alias of `StatefulGRU`.

Warning: In Chainer v1, GRU was *stateless*, as opposed to the current implementation. To align with LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points the stateful links. You can use `StatelessGRU` for stateless version, whose implementation is identical to GRU in v1.

See issue #2537 for details.

Methods

`__call__ (self, x)`

Does forward propagation.

`__getitem__ (name)`

Equivalent to `getattr`.
add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the child link. This name is also used as the attribute name.
- link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads (link)
children ()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)
register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name(str) – Name of the attribute to be registered.
reset_state()
serialize(serializer)
set_state(h)
to_cpu()
to_gpu(device=None)
zerograds()
 Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

chainer.links.Highway

class chainer.links.Highway(in_out_size, nobias=False, activate=<function relu>,
 init_Wh=None, init_Wt=None, init_bh=None, init bt=-1)

 Highway module.

In highway network, two gates are added to the ordinal non-linear transformation ($H(x) = activate(W_h x + b_h)$). One gate is the transform gate $T(x) = \sigma(W_t x + b_t)$, and the other is the carry gate $C(x)$. For simplicity, the author defined $C = 1 - T$. Highway module returns y defined as

$$ y = activate(W_h x + b_h) \odot \sigma(W_t x + b_t) + x \odot (1 - \sigma(W_t x + b_t)) $$

The output array has the same spatial size as the input. In order to satisfy this, W_h and W_t must be square matrices.

Parameters

- **in_out_size** (int) – Dimension of input and output vectors.
- **nobias** (bool) – If True, then this function does not use the bias.
- **activate** – Activation function of plain array. $tanh$ is also available.
- **init_Wh** (initializer) – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 2.
- **init_bh** (initializer) – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 1.
- **init_Wt** (initializer) – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 2.
- **init bt** (initializer) – Initializer to initialize the bias. If None, the bias will be initialized to zero. When it is `numpy.ndarray`, its ndim should be 1. Negative value is recommended by the author of the paper. (e.g. -1, -3, ...).

See: Highway Networks.

Methods

__call__(x)

 Computes the output of the Highway module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the input array.

Return type Variable

__getitem__(name)

 Equivalent to getattr.
add_link *(name, link)*

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

children ()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name(str) – Name of the attribute to be registered.

serialize(serializer)
to_cpu()
to_gpu(device=None)
zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

`chainer.links.Inception`

class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool, conv_init=None, bias_init=None)

Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension. Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1 convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and 3x3 max pooling.

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

- **in_channels** (*int or None*) -- Number of channels of input arrays.
- **out1** (*int*) -- Output size of 1x1 convolution path.
- **proj3** (*int*) -- Projection size of 3x3 convolution path.
- **out3** (*int*) -- Output size of 3x3 convolution path.
- **proj5** (*int*) -- Projection size of 5x5 convolution path.
- **out5** (*int*) -- Output size of 5x5 convolution path.
- **proj_pool** (*int*) -- Projection size of max pooling path.
- **conv_init** (*initializer*) -- Initializer to initialize the convolution matrix weights. When it is `numpy.ndarray`, its `ndim` should be 4.
- **bias_init** (*initializer*) -- Initializer to initialize the convolution matrix weights. When it is `numpy.ndarray`, its `ndim` should be 1.

Methods

- **__call__**(x)

 Computes the output of the Inception module.

 Parameters
 - `x` (*Variable*) -- Input variable.

 Returns
 Output variable. Its array has the same spatial size and the same minibatch size as the input array. The channel dimension has size `out1 + out3 + out5 + proj_pool`.

 Return type
 `Variable`

- **__getitem__**(name)

 Equivalent to `getattr`.

- **add_link**(name, link)

 Registers a child link to this chain.
Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)` – Name of the child link. This name is also used as the attribute name.
- `link (Link)` – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)` – Name of the parameter. This name is also used as the attribute name.
- `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
- `initializer` – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)` – Name of the persistent value. This name is also used for the attribute name.
- `value` – Value to be registered.

addgrads (link)

children ()
cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(link)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)

namedlinks(skipself=False)

namedparams(include_uninit=True)

params(include_uninit=True)

register_persistent(name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and reregisters it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize(serializer)

to_cpu()

to_gpu(device=None)

zerograd()

Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.InceptionBN

class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype,
proj_pool=None, stride=1, conv_init=None, dtype=<class 'numpy.float32'>)

Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the BatchNormalization on top of each con-
volution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling
method is configurable.

Parameters

- `in_channels (int or None)` – Number of channels of input arrays.
- `out1 (int)` – Output size of the 1x1 convolution path.
- `proj3 (int)` – Projection size of the single 3x3 convolution path.
- `out3 (int)` – Output size of the single 3x3 convolution path.
- `proj33 (int)` – Projection size of the double 3x3 convolutions path.
- `out33 (int)` – Output size of the double 3x3 convolutions path.
- `pooltype (str)` – Pooling type. It must be either 'max' or 'avg'.
- `proj_pool (int or None)` – Projection size in the pooling path. If None, no projec-
tion is done.
- `stride (int)` – Stride parameter of the last convolution of each path.
- `conv_init (initializer)` – Initializer to initialize the convolution matrix weights. When it
 is `numpy.ndarray`, its ndim should be 4.
- `dtype (numpy.dtype)` – Type to use in ~batch_normalization.

See also:

Inception

Methods

__call__(x)

__getitem__(name)

 Equivalent to getattr.

add_link(name, link)

 Registers a child link to this chain.

 Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()`
instead. For example, the following code
chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name** (str) – Name of the child link. This name is also used as the attribute name.
- **link** (Link) – The link object to be registered.

add_param (name, shape=None, dtype=\(\text{numpy.float32}\), initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
Copy

copyparams(link)

disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)

register_persistent(name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- name (str) – Name of the attribute to be registered.

serialize(serializer)
to_cpu()
to_gpu(device=None)
zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.
chainer.links.Linear

class chainer.links.Linear(in_size, out_size=None, nobias=False, initialW=None, initial_bias=None)

Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the `linear()` function, and holds a weight matrix \(W \) and optionally a bias vector \(b \) as parameters.

The weight matrix \(W \) is initialized with i.i.d. Gaussian samples, each of which has zero mean and deviation \(\sqrt{1/\text{in_size}} \).

Parameters

- **in_size** *(int or None)* – Dimension of input vectors. If `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **out_size** *(int)* – Dimension of output vectors.
- **nobias** *(bool)* – If `True`, then this function does not use the bias.
- **initialW** *(initializer)* – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 2.
- **initial_bias** *(initializer)* – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.

See also:

`linear()`

Variables

- **w** *(Variable)* – Weight parameter.
- **b** *(Variable)* – Bias parameter.

Example

There are several ways to make a Linear link.

Define an input vector \(x \) as:

```python
>>> x = np.array([[0, 1, 2, 3, 4]], 'f')
```

1. Give the first two arguments explicitly:

 Those numbers are considered as the input size and the output size.

   ```python
   >>> l = L.Linear(5, 10)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```

2. Omit `in_size` (give the output size only as the first argument) or fill it with `None`:

 In this case, the size of second axis of \(x \) is used as the input size. So the below two cases are the same.

   ```python
   >>> l = L.Linear(10)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```

   ```python
   >>> l = L.Linear(None, 10)
   >>> y = l(x)
   >>> y.shape
   (1, 10)
   ```
When you omit the first argument, you need to specify the other subsequent arguments from `nobias` as keyword arguments. So the below two cases are the same.

```python
>>> l = L.Linear(None, 10, False, None, 0)
>>> y = l(x)
>>> y.shape
(1, 10)
```

```python
>>> l = L.Linear(10, nobias=False, initialW=None, initial_bias=0)
>>> y = l(x)
>>> y.shape
(1, 10)
```

Methods

__call__(x)
Applies the linear layer.

Parameters

- **x** *(Variable)* – Batch of input vectors.

Returns
Output of the linear layer.

Return type *Variable*

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

`addgrads(link)`
Accumulates gradient values from given link.
This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters
- **link** *(Link)* – Source link object.

`children()`
Returns a generator of all child links.

Returns
A generator object that generates all child links.

`cleargrads()`
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

`copy()`
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns
Copied link object.

Return type *
Link*

`copyparams(link)`
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters
- **link** *(Link)* – Source link object.

`disable_update()`
Disables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`
Enables update rules of all parameters under the link hierarchy.
This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`init_scope()`
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns

self

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.LSTM

class chainer.links.LSTM(in_size, out_size=None, lateral_init=None, upward_init=None, bias_init=None, forget_bias_init=None)

Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the `lstm()` function, which is defined as a stateless activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be used as a stateful LSTM.

This link supports variable length inputs. The mini-batch size of the current input must be equal to or smaller than that of the previous one. The mini-batch size of \(c \) and \(h \) is determined as that of the first input \(x \). When mini-batch size of \(i \)-th input is smaller than that of the previous input, this link only updates \(c[0:len(x)] \) and \(h[0:len(x)] \) and doesn’t change the rest of \(c \) and \(h \). So, please sort input sequences in descending order of lengths before applying the function.

Parameters

- **in_size** (*int*) – Dimension of input vectors. If it is `None` or omitted, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_size** (*int*) – Dimensionality of output vectors.

- **lateral_init** – A callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. It is used for initialization of the lateral connections. May be `None` to use default initialization.

- **upward_init** – A callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. It is used for initialization of the upward connections. May be `None` to use default initialization.

- **bias_init** – A callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. It is used for initialization of the biases of cell input, input gate and output gate.and gates of the upward connection. May be a scalar, in that case, the bias is initialized by this value. If it is `None`, the cell-input bias is initialized to zero.

- **forget_bias_init** – A callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. It is used for initialization of the biases of the forget gate of the upward connection. May be a scalar, in that case, the bias is initialized by this value. If it is `None`, the forget bias is initialized to one.

Variables

- **upward (Linear)** – Linear layer of upward connections.
• **lateral** *(Linear)* – Linear layer of lateral connections.
• **c** *(Variable)* – Cell states of LSTM units.
• **h** *(Variable)* – Output at the previous time step.

Example

There are several ways to make a LSTM link.

Let a two-dimensional input array x be:

```python
>>> x = np.zeros((1, 10), dtype='f')
```

1. Give both `in_size` and `out_size` arguments:

```python
>>> l = L.LSTM(10, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)
```

2. Omit `in_size` argument or fill it with `None`:

 The below two cases are the same.

```python
>>> l = L.LSTM(20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)
```

   ```python
   >>> l = L.LSTM(None, 20)
   >>> h_new = l(x)
   >>> h_new.shape
   (1, 20)
   ```

Methods

__call__(x)

Updates the internal state and returns the LSTM outputs.

- **Parameters** `x` *(Variable)* – A new batch from the input sequence.

- **Returns** Outputs of updated LSTM units.

- **Return type** *Variable*

__getitem__(name)

Equivalent to `getattr`.

add_link(name, link)

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```
can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the child link. This name is also used as the attribute name.
- **link** (*Link*) – The link object to be registered.

add_param (*name*, *shape=None, dtype=<class 'numpy.float32'>, initializer=None*)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (*name*, *value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams (*link*)
disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (`skipself=False`)

namedlinks (`skipself=False`)

namedparams (`include_uninit=True`)

params (`include_uninit=True`)

register_persistent (`name`)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (`str`): Name of the attribute to be registered.

reset_state()

Resets the internal state.

It sets `None` to the `c` and `h` attributes.

serialize (`serializer`)

set_state *(c, h)*

Sets the internal state.

It sets the `c` and `h` attributes.

Parameters

- **c** (`Variable`): A new cell states of LSTM units.
- **h** (`Variable`): A new output at the previous time step.
to_cpu()

to_gpu(device=None)

erors

__call__(x)

Computes the output of the mlpconv layer.

Parameters x (Variable) – Input image.
Returns Output of the mlpconv layer.

Return type Variable

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads(link)
append (link)
Registers a child link and adds it to the tail of the list.

This is equivalent to add_link(). This method has been added to emulate the list interface.

Parameters link (Link) – The link object to be registered.

children ()
cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy ()
copyparams (link)
disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)
register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.
serialize(serializer)

to_cpu()

to_gpu(device=None)

to_gpudev()

to_cpu()

to_gpu()

to_device()

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Depreciated since version v1.15: Use cleargrads() instead.

chainer.links.NaryTreeLSTM

class chainer.links.NaryTreeLSTM(in_size, out_size, n_ary=2)

N-ary TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a N-ary TreeLSTM unit as a chain. This link is a fixed-length arguments function, which compounds the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, c, and the output, h, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as func(c1, c2, h1, h2, x) if the number of children nodes was set 2 (n_ary = 2), while func(c1, c2, c3, h1, h2, h3, x) if that was 3 (n_ary = 3). This function is dependent from an order of children nodes unlike Child-Sum TreeLSTM. Thus, the returns of func(c1, c2, h1, h2, x) are different from those of func(c2, c1, h2, h1, x).

Parameters

• in_size(int) – Dimension of input vectors.

• out_size(int) – Dimensionality of cell and output vectors.

• n_ary(int) – The number of children nodes in a tree structure.

Variables

• W_x(chainer.links.Linear) – Linear layer of connections from input vectors.

• W_h(chainer.links.Linear) – Linear layer of connections between (a, i, o, all f) and the output of each child. a, i, o and f denotes input compound, input gate, output gate and forget gate, respectively. a, input compound, equals to u in the paper by Tai et al.

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. has only one W matrix to be applied to x, consistently for all children. On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each child’s cell individually.

Methods

__call__(*cshsx)

Returns new cell state and output of N-ary TreeLSTM.
Parameters **cshsx** (list of `Variable`) – Arguments which include all cell vectors and all output vectors of fixed-length children, and an input vector. The number of arguments must be same as \(n_{ary} \times 2 + 1 \).

Returns Returns \((c_{new}, h_{new})\), where \(c_{new}\) represents new cell state vector, and \(h_{new}\) is new output vector.

Return type tuple of `~chainer.Variable`

__getitem__ `__getitem__(name)`
Equivalent to `getattr`.

`add_link` `add_link(name, link)`
Registers a child link to this chain.

Depreciated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (`str`) – Name of the child link. This name is also used as the attribute name.
- **link** (`Link`) – The link object to be registered.

`add_param` `add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`
Registers a parameter to the link.

Depreciated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (`str`) – Name of the parameter. This name is also used as the attribute name.
- **shape** (`int or tuple of ints`) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent` `add_persistent(name, value)`
Registers a persistent value to the link.
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams *(link)*

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

params *(include_uninit=True)*

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If \texttt{name} has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- \texttt{name} (\texttt{str}) – Name of the attribute to be registered.

- \texttt{serialize} (\texttt{serializer})

- \texttt{to_cpu}()

- \texttt{to_gpu} (\texttt{device=None})

- \texttt{zerograds}()

 Initialize all gradient arrays by zero.

 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use \texttt{cleargrads()} instead.

\texttt{chainer.links.NStepBiGRU}

class \texttt{chainer.links.NStepBiGRU} (\texttt{self, n_layers, in_size, out_size, dropout})

Stacked Bi-directional GRU for sequences.

This link is stacked version of Bi-directional GRU for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike \texttt{chainer.functions.n_step_bigru()}, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of \texttt{chainer.Variable} holding sequences.

Warning: use\texttt{cudnn} argument is not supported anymore since v2. Instead, use \texttt{chainer.using_config('use\texttt{cudnn}', use\texttt{cudnn})}. See \texttt{chainer.using_config()}.

Parameters

- \texttt{n_layers} (\texttt{int}) – Number of layers.

- \texttt{in_size} (\texttt{int}) – Dimensionality of input vectors.

- \texttt{out_size} (\texttt{int}) – Dimensionality of hidden states and output vectors.

- \texttt{dropout} (\texttt{float}) – Dropout ratio.

See also:

\texttt{chainer.functions.n_step_bigru()}

Methods

- \texttt{__call__} (\texttt{self, hx, xs})

 Calculate all hidden states and cell states.

Warning: \texttt{train} argument is not supported anymore since v2. Instead, use \texttt{chainer.using_config('train', train)}. See \texttt{chainer.using_config()}.
Parameters

- **hx** *(Variable or None)* – Initial hidden states. If None is specified zero-vector is used.

- **xs** *(list of ~chainer.Variable)* – List of input sequences. Each element xs[i] is a chainer.Variable holding a sequence.

__getitem__(index)

Returns the child at given index.

Parameters **index** *(int)* – Index of the child in the list.

Returns The index-th child link.

Return type **Link**

__len__()

Returns the number of children.

__iter__()

add_link(link)

Registers a child link and adds it to the tail of the list.

Parameters **link** *(Link)* – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

- **dtype** – Data type of the parameter array.

- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
• **value** – Value to be registered.

addgrads *(link)*

append *(link)*

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the list interface.

Parameters

- **link** *(Link)* – The link object to be registered.

children *

cleargrads *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

copyparams *(link)*

disable_update *

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `False`.

enable_update *

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `True`.

init_hx *(xs)*

init_scope *

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

params *(include_uninit=True)*

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name (str)` – Name of the attribute to be registered.
- `serialize (serializer)`
- `to_cpu()`
- `to_gpu (device=None)`
- `zerograds ()`

 Initializes all gradient arrays by zero.

 This method can be used for the same purpose of `cleargrads()`, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use `cleargrads ()` instead.

chainer.links.NStepBiLSTM

class chainer.links.NStepBiLSTM (self, n_layers, in_size, out_size, dropout)

Stacked Bi-directional LSTM for sequences.

This link is stacked version of Bi-directional LSTM for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike `chainer.functions.n_step_bilstm()`, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of `chainer.Variable` holding sequences.

Warning: Use `use_cudnn` argument is not supported anymore since v2. Instead, use `chainer.using_config('use_cudnn', use_cudnn)`. See `chainer.using_config()`.

Parameters

- `n_layers (int)` – Number of layers.
- `in_size (int)` – Dimensionality of input vectors.
- `out_size (int)` – Dimensionality of hidden states and output vectors.
- `dropout (float)` – Dropout ratio.
- `initialW (initializer)` – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 2.
- `initial_bias (initializer)` – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.

See also:

`chainer.functions.n_step_bilstm()`

Methods

- `__call__ (self, hx, cx, xs)`

 Calculate all hidden states and cell states.
Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

- **hx** (*Variable or None*) – Initial hidden states. If None is specified zero-vector is used.
- **cx** (*Variable or None*) – Initial cell states. If None is specified zero-vector is used.
- **xs** (*list of ~chainer.Variable*) – List of input sequences. Each element xs[i] is a chainer.Variable holding a sequence.

__getitem__(index)
 Returns the child at given index.

Parameters **index** (*int*) – Index of the child in the list.

Returns The index-th child link.

Return type **Link**

__len__()
 Returns the number of children.

__iter__()

add_link(link)
 Registers a child link and adds it to the tail of the list.

Parameters **link** (*Link*) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
 Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.
add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)
append (link)
Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the `list` interface.

Parameters

- **link (Link)** – The link object to be registered.

children ()
cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()
copyparams (link)

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_hx (xs)
init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)
register_persistent (name)
 Registers an attribute of a given name as a persistent value.
 This is a convenient method to register an existing attribute as a persistent value.
 If name has been already registered as a parameter, this method removes it from the list
 of parameter names and re-registers it as a persistent value.
 Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
to_cpu ()
to_gpu (device=None)
zerograds ()
 Initializes all gradient arrays by zero.
 This method can be used for the same purpose of cleargrads, but less efficient.
 This method is left for backward compatibility.
 Deprecated since version v1.15: Use cleargrads () instead.

chainer.links.NStepBiRNNReLU

class chainer.links.NStepBiRNNReLU (self, n_layers, in_size, out_size, dropout)
 Stacked Bi-directional RNN for sequences.
 This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is
 relu. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of
 the last layer for each time.
 Unlike chainer.functions.n_step_birnn (), this function automatically sort inputs in descending
 order by length, and transpose the sequence. Users just need to call the link with a list of
 chainer.Variable holding sequences.

 Parameters
 • n_layers (int) – Number of layers.
 • in_size (int) – Dimensionality of input vectors.
 • out_size (int) – Dimensionality of hidden states and output vectors.
 • dropout (float) – Dropout ratio.

 See also:
 chainer.functions.n_step_birnn ()

2.5. Standard Link implementations
Methods

__call__(self, hx, xs)
Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is
 used.

• xs (list of ~chainer.Variable) – List of input sequences. Each element
 xs[i] is a chainer.Variable holding a sequence.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__len__()
Returns the number of children.

__iter__()

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Depreciated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
 the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.
• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent(`name`, `value`)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (`str`) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(`link`)

append(`link`)

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the `list` interface.

Parameters

- **link** (`Link`) – The link object to be registered.

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(`link`)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `True`.

init_hx(`xs`)

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
```

2.5. Standard Link implementations 323
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)
register_persistent (name)

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
to_cpu ()
to_gpu (device=None)
zerograds ()

Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

chainer.links.NStepBiRNNTanh

class chainer.links.NStepBiRNNTanh (self, n_layers, in_size, out_size, dropout)

Stacked Bi-directional RNN for sequences.
This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is \texttt{tanh}. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.
Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.

Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.using_config('use_cudnn', use_cudnn). See chainer.using_config().

Parameters

- n_layers (int) – Number of layers.
- in_size (int) – Dimensionality of input vectors.
- out_size (int) – Dimensionality of hidden states and output vectors.
- dropout (float) – Dropout ratio.
- use_cudnn (bool) – Use cuDNN.
See also:

chainer.functions.n_step_birnn()

Methods

```python
__call__(self, hx, xs)
```

Calculate all hidden states and cell states.

Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

- `hx` (`Variable` or `None`) – Initial hidden states. If `None` is specified zero-vector is used.
- `xs` (`list of ~chainer.Variable`) – List of input sequences. Each element `xs[i]` is a `chainer.Variable` holding a sequence.

```python
__getitem__(index)
```

Returns the child at given index.

Parameters

- `index` (`int`) – Index of the child in the list.

Returns

The `index`-th child link.

Return type `Link`

```python
__len__()
```

Returns the number of children.

```python
__iter__()
```

```python
add_link(link)
```

Registers a child link and adds it to the tail of the list.

Parameters

- `link` (`Link`) – The link object to be registered.

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name` (`str`) – Name of the parameter. This name is also used as the attribute name.
- `shape` (`int` or `tuple of int`) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

2.5. Standard Link implementations
• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent(name, value)`
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

`addgrads(link)`

`append(link)`
Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the `list` interface.

Parameters

- **link** (Link) – The link object to be registered.

`children()`

`cleargrads()`
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy()`

`copyparams(link)`

`disable_update()`
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`init_hx(xs)`

`init_scope()`
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
```

```python
with self.init_scope():
    self.W = chainer.Parameter(0, (10, 5))
    self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

params *(include_uninit=True)*

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

to_cpu *

to_gpu *(device=None)*

zerograds *

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.NStepGRU

class `chainer.links.NStepGRU` *(self, n_layers, in_size, out_size, dropout)*

Stacked Uni-directional GRU for sequences.

This link is stacked version of Uni-directional GRU for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike `chainer.functions.n_step_gru()`, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of `chainer.Variable` holding sequences.

Warning: The `use_cudnn` argument is not supported anymore since v2. Instead, use `chainer.using_config('use_cudnn', use_cudnn)`. See `chainer.using_config()`.

Parameters

- **n_layers** *(int)* – Number of layers.
- **in_size** *(int)* – Dimensionality of input vectors.
- **out_size** *(int)* – Dimensionality of hidden states and output vectors.
- **dropout** *(float)* – Dropout ratio.
See also:

\texttt{chainer.functions.n_step_gru()}

\textbf{Methods}

\texttt{__call__}(self, hx, xs)
Calculate all hidden states and cell states.

\textbf{Warning}: train argument is not supported anymore since v2. Instead, use \texttt{chainer.
using_config('train', train)}. See \texttt{chainer.using_config()}.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{hx} (\texttt{Variable} or \texttt{None}) – Initial hidden states. If \texttt{None} is specified zero-vector is used.
 \item \texttt{xs} (list of \texttt{~chainer.Variable}) – List of input sequences. Each element \texttt{xs[i]} is a \texttt{chainer.Variable} holding a sequence.
\end{itemize}

\texttt{__getitem__}(index)
Returns the child at given index.

\textbf{Parameters} \texttt{index} (int) – Index of the child in the list.

\textbf{Returns} The \texttt{index}-th child link.

\textbf{Return type} \texttt{Link}

\texttt{__len__}()
Returns the number of children.

\texttt{__iter__}()

\begin{itemize}
 \item \texttt{add_link}(link)
 Registers a child link and adds it to the tail of the list.
 \end{itemize}

\begin{itemize}
 \item \texttt{add_param}(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
 Registers a parameter to the link.
\end{itemize}

\textbf{Parameters} \texttt{name} (str) – Name of the parameter. This name is also used as the attribute name.

\textbf{Parameters} \texttt{shape} (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

\textbf{Warning}: train argument is not supported anymore since v2. Instead, use \texttt{chainer.
using_config('train', train)}. See \texttt{chainer.using_config()}.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{name} (str) – Name of the parameter. This name is also used as the attribute name.
 \item \texttt{shape} (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
\end{itemize}
• **dtype** – Data type of the parameter array.

• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent (name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

`addgrads (link)`

`append (link)`

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the list interface.

Parameters

• **link** *(Link)* – The link object to be registered.

`children ()`

`cleargrads ()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy ()`

`copyparams (link)`

`disable_update ()`

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `False`.

`enable_update ()`

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `True`.

`init_hx (xs)`

`init_scope ()`

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
```

2.5. Standard Link implementations 329
```python
with self.init_scope():
    self.W = chainer.Parameter(0, (10, 5))
    self.b = chainer.Parameter(0, (5,))
```

links (*skipself=False*)

namedlinks (*skipself=False*)

namedparams (*include_uninit=True*)

params (*include_uninit=True*)

register_persistent (*name*)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (*str*) – Name of the attribute to be registered.

serialize (*serializer*)

to_cpu()

to_gpu (*device=None*)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.NStepLSTM

class *chainer.links.NStepLSTM* (*self, n_layers, in_size, out_size, dropout*)

Stacked Uni-directional LSTM for sequences.

This link is stacked version of Uni-directional LSTM for sequences. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike *chainer.functions.n_step_lstm()*, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of *chainer.Variable* holding sequences.

Warning: `use_cudnn` argument is not supported anymore since v2. Instead, use `chainer.using_config('use_cudnn', use_cudnn)`. See *chainer.using_config()*.

Parameters

- **n_layers** (*int*) – Number of layers.
- **in_size** (*int*) – Dimensionality of input vectors.
- **out_size** (*int*) – Dimensionality of hidden states and output vectors.
- **dropout** (*float*) – Dropout ratio.
• **initialW** (*initializer*) – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 2.

• **initial_bias** (*initializer*) – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 1.

See also:

`chainer.functions.n_step_lstm()`

Methods

`__call__`(self, hx, cx, xs)

Calculate all hidden states and cell states.

```
Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().
```

Parameters

- **hx** (*Variable or None*) – Initial hidden states. If `None` is specified zero-vector is used.
- **cx** (*Variable or None*) – Initial cell states. If `None` is specified zero-vector is used.
- **xs** (*list of ~chainer.Variable*) – List of input sequences. Each element `xs[i]` is a `chainer.Variable` holding a sequence.

`__getitem__`(index)

Returns the child at given index.

Parameters

- **index** (*int*) – Index of the child in the list.

Returns

The `index`-th child link.

Return type

`Link`

`__len__`()

Returns the number of children.

`__iter__`()

Registers a child link and adds it to the tail of the list.

Parameters

- **link** (*Link*) – The link object to be registered.

`add_param`(name, shape=None, dtype=*

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

append (*link*)

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the list interface.

Parameters

- **link** (*Link*) – The link object to be registered.

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams (*link*)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_hx (*xs*)

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.
Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links` (skipself=False)

`namedlinks` (skipself=False)

`namedparams` (include_uninit=True)

`params` (include_uninit=True)

`register_persistent` (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name` (str) – Name of the attribute to be registered.

`serialize` (serializer)

`to_cpu`()

`to_gpu` (device=None)

`zerograds`()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

`chainer.links.NStepRNNReLU`

```python
class chainer.links.NStepRNNReLU(chainer.links.NStepRNNReLU)
    Stacked Uni-directional RNN for sequences.

    This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is `relu`. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

    Unlike `chainer.functions.n_step_rnn()`, this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of `chainer.Variable` holding sequences.

    Warning: use_cudnn argument is not supported anymore since v2. Instead, use chainer.using_config('use_cudnn', use_cudnn). See chainer.using_config().
```

2.5. Standard Link implementations
Parameters

- **n_layers** (*int*) – Number of layers.
- **in_size** (*int*) – Dimensionality of input vectors.
- **out_size** (*int*) – Dimensionality of hidden states and output vectors.
- **dropout** (*float*) – Dropout ratio.

See also:

`chainer.functions.n_step_rnn()`

Methods

__call__ (*self, hx, xs*)

Calculate all hidden states and cell states.

```
Warning: train argument is not supported anymore since v2. Instead, use
chainer.using_config('train', train). See chainer.using_config().
```

Parameters

- **hx** (*Variable or None*) – Initial hidden states. If None is specified zero-vector is
 used.
- **xs** (*list of ~chainer.Variable*) – List of input sequences. Each element
 `xs[i]` is a `chainer.Variable` holding a sequence.

__getitem__ (*index*)

Returns the child at given index.

Parameters **index** (*int*) – Index of the child in the list.

Returns The `index`-th child link.

Return type **Link**

__len__ ()

Returns the number of children.

__iter__ ()

Registers a child link and adds it to the tail of the list.

Parameters **link** (*Link*) – The link object to be registered.

add_param (**name**, **shape**=`None`, **dtype**=`<class 'numpy.float32'>`, **initializer**=`None`)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within
`init_scope()` instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (*str*) – Name of the parameter. This name is also used as the attribute name.
- **shape** (*int or tuple of ints*) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (*name, value*)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (*link*)

append (*link*)

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the `list` interface.

Parameters

- **link** (*Link*) – The link object to be registered.

children()

clearparams()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams (*link*)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to `True`.

init_hx (*xs*)

init_scope()

Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

params *(include_uninit=True)*

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

name *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

to_cpu ()

to_gpu *(device=None)*

zerograds ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

chainer.links.NStepRNNTanh

class chainer.links.NStepRNNTanh *(self, n_layers, in_size, out_size, dropout)*

Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is tanh. It calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable holding sequences.
Parameters

- **n_layers** (*int*) – Number of layers.
- **in_size** (*int*) – Dimensionality of input vectors.
- **out_size** (*int*) – Dimensionality of hidden states and output vectors.
- **dropout** (*float*) – Dropout ratio.

See also:

`chainer.functions.n_step_rnn()`

Methods

__call__ *(self, hx, xs)*

Calculate all hidden states and cell states.

```python
Warning: train argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().
```

Parameters

- **hx** (*Variable or None*) – Initial hidden states. If None is specified zero-vector is used.
- **xs** (*list of ~chainer.Variable*) – List of input sequences. Each element xs[i] is a chainer.Variable holding a sequence.

__getitem__ *(index)*

Returns the child at given index.

Parameters **index** (*int*) – Index of the child in the list.

Returns The index-th child link.

Return type **Link**

__len__ *

Returns the number of children.

__iter__ *

add_link *(link)*

Registers a child link and adds it to the tail of the list.

Parameters **link** (*Link*) – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
2.5. Standard Link implementations
```
```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

```python
add_persistent(name, value)
```

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

```python
addgrads(link)
```

```python
append(link)
```

Registers a child link and adds it to the tail of the list.

This is equivalent to `add_link()`. This method has been added to emulate the list interface.

Parameters

- **link** *(Link)* – The link object to be registered.

```python
children()
```

```python
cleargrads()
```

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```python
copy()
```

```python
copyparams(link)
```

```python
disable_update()
```

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

```python
enable_update()
```

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

```python
init_hx(xs)
```
`init_scope()`
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links (skipself=False)`

`namedlinks (skipself=False)`

`namedparams (include_uninit=True)`

`params (include_uninit=True)`

`register_persistent (name)`
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name (str)` – Name of the attribute to be registered.

`serialize (serializer)`

`to_cpu()`

`to_gpu (device=None)`

`zerograds ()`
Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

`chainer.links.Parameter`

```python
class chainer.links.Parameter(array)
Link that just holds a parameter and returns it.
```

Deprecated since version v1.5: The parameters are stored as variables as of v1.5. Use them directly instead.

Parameters `array` – Initial parameter array.

Variables `W (Variable)` – Parameter variable.

2.5. Standard Link implementations 339
Methods

__call__ (volatile='off')
Returns the parameter variable.

Parameters volatile (Flag) – The volatility of the returned variable.

Returns A copy of the parameter variable with given volatility.

Return type Variable

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.
cleargrads ()
Clears all gradient arrays.
This method should be called before the backward computation at every iteration of the optimization.

copy ()
Copies the link hierarchy to new one.
The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.
Return type Link

copyparams (link)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

disable_update ()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update ()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.
Returns A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

Serializes the link object.

Parameters serializer *(AbstractSerializer)* – Serializer object.

to_cpu

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu *(device=None)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

zerograds

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.
chainer.links.Scale

class chainer.links.Scale(axis=1, W_shape=None, bias_term=False, bias_shape=None)
Broadcasted elementwise product with learnable parameters.

Computes a elementwise product as scale() function does except that its second input is a learnable weight parameter W the link has.

Parameters

• axis (int) – The first axis of the first input of scale() function along which its second input is applied.
• W_shape (tuple of ints) – Shape of learnable weight parameter. If None, this link does not have learnable weight parameter so an explicit weight needs to be given to its __call__ method’s second input.
• bias_term (bool) – Whether to also learn a bias (equivalent to Scale link + Bias link).
• bias_shape (tuple of ints) – Shape of learnable bias. If W_shape is None, this should be given to determine the shape. Otherwise, the bias has the same shape W_shape with the weight parameter and bias_shape is ignored.

See also:
See scale() for details.

Variables

• W (Parameter) – Weight parameter if W_shape is given. Otherwise, no W attribute.
• bias (Bias) – Bias term if bias_term is True. Otherwise, no bias attribute.

Methods

__call__(*xs)
Applies broadcasted elementwise product.

Parameters xs (list of Variables) – Input variables whose length should be one if the link has a learnable weight parameter, otherwise should be two.

__getitem__(name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

chain.add_link('ll', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
 chain.ll = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.
• **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code can be replaced by the following assignment.

```python
link.add_param('W', shape=(5, 3))
```

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** *(str)* – Name of the parameter. This name is also used as the attribute name.

• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams *(link)*

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.
init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (`skipself=False`)

namedlinks (`skipself=False`)

namedparams (`include_uninit=True`)

params (`include_uninit=True`)

register_persistent (`name`)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** (`str`) – Name of the attribute to be registered.

serialize (`serializer`)

to_cpu()

to_gpu (`device=None`)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecation since version v1.15: Use `cleargrads()` instead.

chainer.links.StatefulGRU

```
class chainer.links.StatefulGRU(in_size, out_size, init=None, inner_init=None, bias_init=0)
```

Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters $W_r, W_z, W, U_r, U_z, \text{ and } U$. All these parameters are $n \times n$ matrices, where n is the dimension of hidden vectors.
Given input vector \(x \), Stateful GRU returns the next hidden vector \(h' \) defined as

\[
\begin{align*}
 r &= \sigma(W_r x + U_r h), \\
 z &= \sigma(W_z x + U_z h), \\
 \tilde{h} &= \tanh(Wx + U(r \odot h)), \\
 h' &= (1 - z) \odot h + z \odot \tilde{h},
\end{align*}
\]

where \(h \) is current hidden vector.

As the name indicates, StatefulGRU is stateful, meaning that it also holds the next hidden vector \(h' \) as a state. For a stateless GRU, use StatelessGRU.

Parameters

- **in_size** *(int)* – Dimension of input vector \(x \).
- **out_size** *(int)* – Dimension of hidden vector \(h \).
- **init** – Initializer for GRU’s input units \(W \). It is a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. If it is None, the default initializer is used.
- **inner_init** – Initializer for the GRU’s inner recurrent units \(U \). It is a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. If it is None, the default initializer is used.
- **bias_init** – Bias initializer. It is a callable that takes `numpy.ndarray` or `cupy.ndarray` and edits its value. If None, the bias is set to zero.

Variables

- **h** *(Variable)* – Hidden vector that indicates the state of StatefulGRU.

See also:

- StatelessGRU
- GRU: an alias of StatefulGRU

Methods

- **__call__(x)**
- **__getitem__(name)**
 Equivalent to getattr.
- **add_link(name, link)**
 Registers a child link to this chain.
 Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
    chain.add_link('ll', L.Linear(3, 5))
```

 can be replaced by the following line.

```python
    with chain.init_scope():
        chain.ll = L.Linear(3, 5)
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

```python
add_persistent(name, value)
```

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

```python
addgrads(link)
```

```python
children()
```

```python
cleargrads()
```

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

```python
copy()
```

```python
copyparams(link)
```

```python
disable_update()
```

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)

register_persistent (name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

reset_state ()
serialize (serializer)
set_state (h)
to_cpu ()
to_gpu (device=None)
zerograds ()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.
Deprecated since version v1.15: Use cleargrads() instead.
chainer.links.StatelessGRU

class chainer.links.StatelessGRU(in_size, out_size, init=None, inner_init=None, bias_init=None)

Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters W_r, W_z, W, U_r, U_z, and U. All these parameters are $n \times n$ matrices, where n is the dimension of hidden vectors.

Given two inputs a previous hidden vector h and an input vector x, GRU returns the next hidden vector h' defined as

\[
\begin{align*}
 r &= \sigma(W_rx + U_rh), \\
 z &= \sigma(W_zx + U_zh), \\
 \tilde{h} &= \tanh(Wx + U(r \odot h)), \\
 h' &= (1 - z) \odot h + z \odot \tilde{h},
\end{align*}
\]

where σ is the sigmoid function, and \odot is the element-wise product.

As the name indicates, StatelessGRU is stateless, meaning that it does not hold the value of hidden vector h. For a stateful GRU, use StatelessGRU.

Parameters

- **in_size** (int) – Dimension of input vector x. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
- **out_size** (int) – Dimension of hidden vector h, \tilde{h} and h'.

See:

- Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Chung+NIPS2014 DLWorkshop].

See also:

StatefulGRU

Methods

- **__call__**(h, x)
- **__getitem__**(name)

 Equivalent to getattr.
- **add_link**(name, link)

 Registers a child link to this chain.

 Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code
chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

children()
cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy()
copyparams(link)
disable_update()
 Disables update rules of all parameters under the link hierarchy.
 This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()
 Enables update rules of all parameters under the link hierarchy.
 This method sets the enabled flag of the update rule of each parameter variable to True.
init_scope()
 Creates an initialization scope.
 This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)
register_persistent(name)
 Registers an attribute of a given name as a persistent value.
 This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
name(str) – Name of the attribute to be registered.
serialize(serializer)
to_cpu()
to_gpu(device=None)
zerograds()
 Initializes all gradient arrays by zero.
 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.
 Deprecated since version v1.15: Use cleargrads() instead.
class chainer.links.StatefulMGU(in_size, out_size)

Methods

__call__(x)
__getitem__(name)
 Equivalent to getattr.

add_link(name, link)
 Registers a child link to this chain.

 Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

 with chain.init_scope():
 chain.l1 = L.Linear(3, 5)

 can be replaced by the following line.

 with chain.init_scope():
 chain.l1 = L.Linear(3, 5)

 The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the child link. This name is also used as the attribute name.
- link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
 Registers a parameter to the link.

 Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

 link.add_param('W', shape=(5, 3))

 can be replaced by the following assignment.

 with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))

 The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.
add_persistent(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads(link)

children()

cleargrads()

Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams(link)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))
`register_persistent(name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name (str) – Name of the attribute to be registered.`

`reset_state()`

`serialize(serializer)`

`set_state(h)`

`to_cpu()`

`to_gpu(device=None)`

`zerograds()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.StatelessMGU

class chainer.links.StatelessMGU(n_inputs, n_units)

Methods

- `__call__(h, x)`

- `__getitem__(name)`

 Equivalent to `getattr`.

- `add_link(name, link)`

 Registers a child link to this chain.

 Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

  ```python
  chain.add_link('ll', L.Linear(3, 5))
  ```

 can be replaced by the following line.

  ```python
  with chain.init_scope():
    chain.ll = L.Linear(3, 5)
  ```

 The latter is easier for IDEs to keep track of the attribute’s type.

 Parameters

 - `name (str) – Name of the child link. This name is also used as the attribute name.`
 - `link (Link) – The link object to be registered.`
add_param \((name, \text{shape} = \text{None}, \text{dtype} = \text{<class 'numpy.float32'>}, \text{initializer} = \text{None}) \)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent \((name, value) \)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads \((link) \)

children()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
copyparams \((link) \)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

Links (skipself=False)

Namedlinks (skipself=False)

Namedparams (include_uninit=True)

Params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu()

to_gpu (device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

chainer.links.StatefulPeepholeLSTM

class chainer.links.StatefulPeepholeLSTM (in_size, out_size)

Fully-connected LSTM layer with peephole connections.

This is a fully-connected LSTM layer with peephole connections as a chain. Unlike the LSTM link, this chain holds peep_i, peep_f and peep_o as child links besides upward and lateral.
Given a input vector \(x \), Peephole returns the next hidden vector \(h' \) defined as

\[
\begin{align*}
a &= \tanh(upwardx + lateralth), \\
i &= \sigma(upwardx + lateralth + peepic), \\
f &= \sigma(upwardx + lateralth + peepfc), \\
c' &= a \odot i + f \odot c, \\
o &= \sigma(upwardx + lateralth + peepoc'), \\
h' &= o \tanh(c'),
\end{align*}
\]

where \(\sigma \) is the sigmoid function, \(\odot \) is the element-wise product, \(c \) is the current cell state, \(c' \) is the next cell state and \(h \) is the current hidden vector.

Parameters
- \(\text{in_size} \ (\text{int}) \) – Dimension of the input vector \(x \).
- \(\text{out_size} \ (\text{int}) \) – Dimension of the hidden vector \(h \).

Variables
- \(\text{upward} \ (\text{Linear}) \) – Linear layer of upward connections.
- \(\text{lateral} \ (\text{Linear}) \) – Linear layer of lateral connections.
- \(\text{peep_i} \ (\text{Linear}) \) – Linear layer of peephole connections to the input gate.
- \(\text{peep_f} \ (\text{Linear}) \) – Linear layer of peephole connections to the forget gate.
- \(\text{peep_o} \ (\text{Linear}) \) – Linear layer of peephole connections to the output gate.
- \(c \ (\text{Variable}) \) – Cell states of LSTM units.
- \(h \ (\text{Variable}) \) – Output at the current time step.

Methods

\(\text{__call__}(x) \)

Updates the internal state and returns the LSTM outputs.

Parameters \(x \ (\text{Variable}) \) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type \(\text{Variable} \)

\(\text{__getitem__}(\text{name}) \)

Equivalent to getattr.

\(\text{add_link}(\text{name}, \text{link}) \)

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within \text{init_scope()} instead. For example, the following code
chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)` – Name of the child link. This name is also used as the attribute name.
- `link (Link)` – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)` – Name of the parameter. This name is also used as the attribute name.
- `shape (int or tuple of ints)` – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
- `initializer` – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)` – Name of the persistent value. This name is also used for the attribute name.
- `value` – Value to be registered.

addgrads (link)

children()

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to False.

disable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)
namedlinks(skipself=False)
namedparams(include_uninit=True)
params(include_uninit=True)

register_persistent(name)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name(str) – Name of the attribute to be registered.

reset_state()
Resets the internal states.
It sets None to the c and h attributes.

serialize(serializer)
to_cpu()
to_gpu(device=None)
zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.StatefulZoneoutLSTM

```python
class chainer.links.StatefulZoneoutLSTM(in_size, out_size, c_ratio=0.5, h_ratio=0.5, **kwargs)
```

Methods

__call__(x)

Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

__getitem__(name)

Equivalent to getattr.

add_link (name, link)

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- name (str) – Name of the child link. This name is also used as the attribute name.
- link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.
Parameters

- **name** (str) – Name of the parameter. This name is also used as the attribute name.
- **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** (str) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

children ()

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()

copyparams (link)

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
```
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

```
links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)
register_persistent (name)
    Registers an attribute of a given name as a persistent value.
    This is a convenient method to register an existing attribute as a persistent value. If name has
    been already registered as a parameter, this method removes it from the list of parameter names
    and re-registers it as a persistent value.
    Parameters name (str) – Name of the attribute to be registered.
reset_state ()
    Resets the internal state.
    It sets None to the c and h attributes.
serialize (serializer)
set_state (c, h)
    Sets the internal state.
    It sets the c and h attributes.
    Parameters
        • c (Variable) – A new cell states of LSTM units.
        • h (Variable) – A new output at the previous time step.
to_cpu ()
to_gpu (device=None)
zero grads ()
    Initializes all gradient arrays by zero.
    This method can be used for the same purpose of cleargrads, but less efficient. This method is left
    for backward compatibility.
    Deprecated since version v1.15: Use cleargrads () instead.
```

chainer.links.StatelessLSTM

class chainer.links.StatelessLSTM (in_size, out_size=None, lateral_init=None, upward_init=None, bias_init=None, forget_bias_init=None)
Stateless LSTM layer.
This is a fully-connected LSTM layer as a chain. Unlike the lstm () function, this chain holds upward
and lateral connections as child links. This link doesn’t keep cell and hidden states.
Parameters
• **in_size** (*int* or *None*) – Dimension of input vectors. If *None*, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

• **out_size** (*int*) – Dimensionality of output vectors.

Variables

• **upward** (*chainer.links.Linear*) – Linear layer of upward connections.

• **lateral** (*chainer.links.Linear*) – Linear layer of lateral connections.

Example

There are several ways to make a StatelessLSTM link.

Let a two-dimensional input array \(x \), a cell state array \(h \), and the output array of the previous step \(h \) be:

```python
>>> x = np.zeros((1, 10), dtype='f')
>>> c = np.zeros((1, 20), dtype='f')
>>> h = np.zeros((1, 20), dtype='f')
```

1. Give both **in_size** and **out_size** arguments:

```python
>>> l = L.StatelessLSTM(10, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)
```

2. Omit **in_size** argument or fill it with *None*:

The below two cases are the same.

```python
>>> l = L.StatelessLSTM(20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)
```

```python
>>> l = L.StatelessLSTM(*None, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)
```

Methods

__call__(*c, h, x*)

Returns new cell state and updated output of LSTM.

Parameters

• **c** (*Variable*) – Cell states of LSTM units.
• \(h \) (Variable) – Output at the previous time step.
• \(x \) (Variable) – A new batch from the input sequence.

Returns
Returns \((c_{\text{new}}, h_{\text{new}})\), where \(c_{\text{new}}\) represents new cell state, and \(h_{\text{new}}\) is updated output of LSTM units.

Return type
tuple of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Depreciated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name (str)** – Name of the child link. This name is also used as the attribute name.
- **link (Link)** – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Depreciated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams *(link)*

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

Parameters

- **links** *(skipself=False)*
- **namedlinks** *(skipself=False)*
- **namedparams** *(include_uninit=True)*
- **params** *(include_uninit=True)*
- **register_persistent** *(name)*

Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- `name (str)` – Name of the attribute to be registered.

- `serialize (serializer)`

- `to_cpu ()`

- `to_gpu (device=None)`

- `zerograds ()`

 Initializes all gradient arrays by zero.

 This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use `cleargrads ()` instead.

2.5.2 Activation/loss/normalization functions with parameters

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.links.BatchNormalization</code></td>
<td>Batch normalization layer on outputs of linear or convolution functions.</td>
</tr>
<tr>
<td><code>chainer.links.BatchRenormalization</code></td>
<td>Batch renormalization layer on outputs of linear or convolution functions.</td>
</tr>
<tr>
<td><code>chainer.links.LayerNormalization</code></td>
<td>Layer normalization layer on outputs of linear functions.</td>
</tr>
<tr>
<td><code>chainer.links.BinaryHierarchicalSoftmax</code></td>
<td>Hierarchical softmax layer over binary tree.</td>
</tr>
<tr>
<td><code>chainer.links.BlackOut</code></td>
<td>BlackOut loss layer.</td>
</tr>
<tr>
<td><code>chainer.links.CRF1d</code></td>
<td>Linear-chain conditional random field loss layer.</td>
</tr>
<tr>
<td><code>chainer.links.SimplifiedDropconnect</code></td>
<td>Fully-connected layer with simplified dropconnect regularization.</td>
</tr>
<tr>
<td><code>chainer.links.PReLU</code></td>
<td>Parametric ReLU function as a link.</td>
</tr>
<tr>
<td><code>chainer.links.Maxout</code></td>
<td>Fully-connected maxout layer.</td>
</tr>
<tr>
<td><code>chainer.links.NegativeSampling</code></td>
<td>Negative sampling loss layer.</td>
</tr>
</tbody>
</table>

`chainer.links.BatchNormalization`

class chainer.links.BatchNormalization

```python
(size, decay=0.9, eps=2e-05, dtype=<class 'numpy.float32'>, use_gamma=True, use_beta=True, initial_gamma=None, initial_beta=None)
```

Batch normalization layer on outputs of linear or convolution functions.

This link wraps the `batch_normalization ()` and `fixed_batch_normalization ()` functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by *batch statistics*. It also maintains approximated population statistics by moving averages, which can be used for instant evaluation in testing mode.

In fine-tuning mode, it accumulates the input to compute *population statistics*. In order to correctly compute the population statistics, a user must use this mode to feed mini-batches running through whole training dataset.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-tuning mode.
Parameters

- **size (int or tuple of ints)** – Size (or shape) of channel dimensions.
- **decay (float)** – Decay rate of moving average. It is used on training.
- **eps (float)** – Epsilon value for numerical stability.
- **dtype (numpy.dtype)** – Type to use in computing.
- **use_gamma (bool)** – If True, use scaling parameter. Otherwise, use unit(1) which makes no effect.
- **use_beta (bool)** – If True, use shifting parameter. Otherwise, use unit(0) which makes no effect.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

batch_normalization(), fixed_batch_normalization()

Variables

- **gamma (Variable)** – Scaling parameter.
- **beta (Variable)** – Shifting parameter.
- **avg_mean (numpy.ndarray or cupy.ndarray)** – Population mean.
- **avg_var (numpy.ndarray or cupy.ndarray)** – Population variance.
- **N (int)** – Count of batches given for fine-tuning.
- **decay (float)** – Decay rate of moving average. It is used on training.
- **eps (float)** – Epsilon value for numerical stability. This value is added to the batch variances.

Methods

```python
__call__(self, x, finetune=False)
```
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation during training, and normalizes the input using batch statistics.

Warning: test argument is not supported anymore since v2. Instead, use chainer. using_config('train', False). See chainer.using_config().

Parameters

- **x (Variable)** – Input variable.
- **finetune (bool)** – If it is in the training mode and finetune is True, BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute population statistics for normalization, and normalizes the input using batch statistics.
add_param \((\text{name, shape}=\text{None, dtype}=<\text{class 'numpy.float32'>, initializer}=\text{None}) \)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a \textit{Parameter} object directly to an attribute within \textit{init_scope()} instead. For example, the following code

\begin{verbatim}
link.add_param('W', shape=(5, 3))
\end{verbatim}

can be replaced by the following assignment.

\begin{verbatim}
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

\textbf{Parameters}

- \textbf{name (str)} – Name of the parameter. This name is also used as the attribute name.
- \textbf{shape (int or tuple of ints)} – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- \textbf{dtype} – Data type of the parameter array.
- \textbf{initializer} – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \textbf{dtype} argument is ignored.

add_persistent \((\text{name, value}) \)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

\textbf{Parameters}

- \textbf{name (str)} – Name of the persistent value. This name is also used for the attribute name.
- \textbf{value} – Value to be registered.

addgrads \((\text{link}) \)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

\textbf{Parameters}

- \textbf{link (Link)} – Source link object.

children()

Returns a generator of all child links.

\textbf{Returns} A generator object that generates all child links.

cleargradients()

Cuts all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.
The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type `Link`

`copyparams(link)`
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (`Link`) – Source link object.

`disable_update()`
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`init_scope()`
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

`links(skipself=False)`
Returns a generator of all links under the hierarchy.

Parameters skipself (`bool`) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

`namedlinks(skipself=False)`
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (`bool`) – If `True`, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

`namedparams(include_uninit=True)`
Returns a generator of all (path, param) pairs under the hierarchy.
Parameters `include_uninit` *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`
Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit` *(bool)* – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent (name)`
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name` *(str)* – Name of the attribute to be registered.

`serialize (serializer)`
Serializes the link object.

Parameters `serializer` *(AbstractSerializer)* – Serializer object.

`start_finetuning ()`
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method should be called before starting the fine-tuning mode again.

`to_cpu ()`
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

`to_gpu (device=None)`
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters `device` – Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds ()`
Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads ()` instead.
Batch renormalization layer on outputs of linear or convolution functions.

This link wraps the `batch_renormalization()` and `fixed_batch_renormalization()` functions.

This is an extension of batch normalization, which ensures that the training and inference models generate the same outputs that depend on individual examples rather than the entire minibatch.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:

`batch_renormalization()`, `fixed_batch_renormalization()`, `batch_normalization()`

Methods

`__call__`(x, finetune=False)

`add_param`(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code can be replaced by the following assignment.

```python
link.add_param('W', shape=(5, 3))
```

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name**(str) – Name of the parameter. This name is also used as the attribute name.
- **shape**(int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent`(name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

`addgrads`(link)

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- `link` (*Link*) – Source link object.

`children()`

Returns a generator of all child links.

Returns

A generator object that generates all child links.

`cleargrads()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`copy()`

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns

Copied link object.

Return type

Link

`copyparams`(link)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- `link` (*Link*) – Source link object.

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`init_scope()`

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
 Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation must override this method to do so.

2.5. Standard Link implementations
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self
zerograds ()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

chainer.links.LayerNormalization

class chainer.links.LayerNormalization (size=None, eps=1e-06, initial_gamma=None, initial_beta=None)
Layer normalization layer on outputs of linear functions.

Warning: This feature is experimental. The interface can change in the future.

This link implements a “layer normalization” layer which normalizes the input units by statistics that are computed along the second axis, scales and shifts them. Parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

Parameters

• size (int) – Size of input units. If None, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.
• eps (float) – Epsilon value for numerical stability of normalization.
• initial_gamma (Initializer) – Initializer for scaling vector. If None, then the vector is filled by 1. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is set by it.
• initial_beta (Initializer) – Initializer for shifting vector. If None, then the vector is filled by 0. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is set by it.

Variables

• gamma (Parameter) – Scaling parameter.
• beta (Parameter) – Shifting parameter.
• eps (float) – Epsilon value for numerical stability.

See: Layer Normalization
Methods

__call__(x)
Apply layer normalization to given input.

Parameters x (Variable) – Batch vectors. Shape of this value must be (batch_size, unit_size),
e.g., the output of linear().

Returns Output of the layer normalization.

Return type Variable

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

2.5. Standard Link implementations
cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams(link)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link *(Link)* – Source link object.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

Returns a generator of all links under the hierarchy.

Parameters skipself *(bool)* – If True, then the generator skips this link and starts with the first child link.
Returns a generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)* - If True, then the generator skips this link and starts with the first child link.

Returns a generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)* - If True, it also generates uninitialized parameters.

Returns a generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)* - If True, it also generates uninitialized parameters.

Returns a generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str)* - Name of the attribute to be registered.

serialize *(serializer)*

Serializes the link object.

Parameters serializer (AbstractSerializer)* - Serializer object.

to_cpu *

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu *(device=None)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device - Target device specifier. If omitted, the current device is used.

Returns: self

zerograds *

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.
chainer.links.BinaryHierarchicalSoftmax

class chainer.links.BinaryHierarchicalSoftmax(in_size, tree)
Hierarchical softmax layer over binary tree.

In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical softmax uses product of sigmoid functions. It costs only $O(\log(n))$ time where n is the vocabulary size in average.

At first a user need to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When a word x is given, exactly one path from the root of the tree to the leaf of the word exists. Let $\text{path}(x) = ((e_1, b_1), \ldots, (e_m, b_m))$ be the path of x, where e_i is an index of i-th internal node, and $b_i \in \{-1, 1\}$ indicates direction to move at i-th internal node (-1 is left, and 1 is right). Then, the probability of x is given as below:

$$P(x) = \prod_{(e, b) \in \text{path}(x)} P(b | e)$$
$$= \prod_{(e, b) \in \text{path}(x)} \sigma(b x^\top w_e),$$

where $\sigma(\cdot)$ is a sigmoid function, and w is a weight matrix.

This function costs $O(\log(n))$ time as an average length of paths is $O(\log(n))$, and $O(n)$ memory as the number of internal nodes equals $n - 1$.

Parameters
- **in_size** (int) – Dimension of input vectors.
- **tree** – A binary tree made with tuples like $((1, 2), 3)$.

Variables W (Variable) – Weight parameter matrix.

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

Methods

__call__(x, t)
Computes the loss value for given input and ground truth labels.

Parameters
- **x** (Variable) – Input to the classifier at each node.
- **t** (Variable) – Batch of ground truth labels.

Returns Loss value.
Return type Variable

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute's type.

Parameters
• name (str) – Name of the parameter. This name is also used as the attribute name.
• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
• dtype – Data type of the parameter array.
• initializer – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
• name (str) – Name of the persistent value. This name is also used for the attribute name.
• value – Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams (link)
Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- **link** (*Link*)

 Source link object.

static create_huffman_tree (*word_counts*)

Makes a Huffman tree from a dictionary containing word counts.

This method creates a binary Huffman tree, that is required for *BinaryHierarchicalSoftmax*. For example, `{0: 8, 1: 5, 2: 6, 3: 4}` is converted to `((3, 1), (2, 0))`.

Parameters

- **word_counts** (*dict of int key and int or float values*)

 Dictionary representing counts of words.

Returns

Binary Huffman tree with tuples and keys of `word_counts`.

disable_update

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for *Chain*) by an assignment. A *Parameter* object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a *Parameter* object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (*skipself=False*)

Returns a generator of all links under the hierarchy.

Parameters

- **skipself** (*bool*)

 If `True`, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all links.

namedlinks (*skipself=False*)

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters

- **skipself** (*bool*)

 If `True`, then the generator skips this link and starts with the first child link.

Returns

A generator object that generates all (path, link) pairs.
namedparams (include_uninit=True)
 Returns a generator of all (path, param) pairs under the hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
 Returns a generator of all parameters under the link hierarchy.

 Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

 Returns A generator object that generates all parameters.

register_persistent (name)
 Registers an attribute of a given name as a persistent value.

 This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

 Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
 Serializes the link object.

 Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu ()

to_gpu (device=None)

to_cpu ()

zerograds ()
 Initializes all gradient arrays by zero.

 This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

 Deprecated since version v1.15: Use cleargrads () instead.

chainer.links.BlackOut

class chainer.links.BlackOut (in_size, counts, sample_size)
 BlackOut loss layer.

 See also:

 black_out () for more detail.

 Parameters

 • in_size (int) – Dimension of input vectors.

 • counts (int list) – Number of each identifiers.

 • sample_size (int) – Number of negative samples.

 Variables W (Parameter) – Weight parameter matrix.
Methods

__call__(x, t)
Computes the loss value for given input and ground truth labels.

Parameters
- x (Variable) – Input of the weight matrix multiplication.
- t (Variable) – Batch of ground truth labels.

Returns Loss value.
Return type Variable

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within
init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- name (str) – Name of the parameter. This name is also used as the attribute name.
- shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the
 parameter variable is left uninitialized.
- dtype – Data type of the parameter array.
- initializer – If it is not None, the data is initialized with the given initializer. If
 it is an array, the data is directly initialized by it. If it is callable, it is used as a weight
 initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
- name (str) – Name of the persistent value. This name is also used for the attribute name.
- value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children() Returns a generator of all child links.
Returns A generator object that generates all child links.

cleargrads ()
Cleans all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams (link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.
Parameters `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

`namedlinks (skipself=False)`

Returns a generator of all (path, link) pairs under the hierarchy.

Parameters `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

`namedparams (include_uninit=True)`

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name (str)` – Name of the attribute to be registered.

`serialize (serializer)`

Serializes the link object.

Parameters `serializer (AbstractSerializer)` – Serializer object.

`to_cpu ()`

`to_gpu (device=None)`

`zerograd ()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads()`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads ()` instead.

`chainer.links.CRF1d`

class `chainer.links.CRF1d (n_label)`

Linear-chain conditional random field loss layer.

This link wraps the `crf1d ()` function. It holds a transition cost matrix as a parameter.

Parameters `n_label (int)` – Number of labels.
See also:

\texttt{crf1d()} for more detail.

\textbf{Variables} \texttt{cost \texttt{(Variable)}} – Transition cost parameter.

\textbf{Methods}

\underline{\texttt{__call__}(xs, ys, reduce='mean')}

\underline{\texttt{add_param}(name, shape=None, \texttt{dtype=}<\texttt{class 'numpy.float32'>, \texttt{initializer}=\texttt{None})}}

Registers a parameter to the link.

\texttt{Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within \texttt{init_scope()} instead. For example, the following code}

\begin{verbatim}
link.add_param('W', shape=(5, 3))
\end{verbatim}

\texttt{can be replaced by the following assignment.}

\begin{verbatim}
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{name (str)} – Name of the parameter. This name is also used as the attribute name.
 \item \texttt{shape (int or tuple of ints)} – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
 \item \texttt{dtype} – Data type of the parameter array.
 \item \texttt{initializer} – If it is not \texttt{None}, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \texttt{dtype} argument is ignored.
\end{itemize}

\underline{\texttt{add_persistent}(name, value)}

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{name (str)} – Name of the persistent value. This name is also used for the attribute name.
 \item \texttt{value} – Value to be registered.
\end{itemize}

\underline{\texttt{add_grads}(link)}

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

\textbf{Parameters} \texttt{link (Link)} – Source link object.

\underline{\texttt{argmax}(xs)}

Computes a state that maximizes a joint probability.

\textbf{Parameters} \texttt{xs (list of Variable)} – Input vector for each label.
Returns A tuple of Variable representing each log-likelihood and a list representing the argmax path.

Return type tuple

See also:
See crf1d_argmax() for more detail.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.
class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns

`self`

zerograds

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.SimplifiedDropconnect

class chainer.links.SimplifiedDropconnect

Synopsis

Fully-connected layer with simplified dropconnect regularization.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the current implementation and the original one. The original version uses sampling with gaussian distribution before passing activation function, whereas the current implementation averages before activation.

Parameters

- **in_size** (*int*) – Dimension of input vectors. If `None`, parameter initialization will be deferred until the first forward data pass at which time the size will be determined.

- **out_size** (*int*) – Dimension of output vectors.

- **nobias** (*bool*) – If `True`, then this link does not use the bias term.

- **initialW** (*initializer*) – Initializer to initialize the weight. When it is `numpy.ndarray`, its `ndim` should be 3.

- **initial_bias** (*initializer*) – Initializer to initialize the bias. If `None`, the bias will be initialized to zero. When it is `numpy.ndarray`, its `ndim` should be 2.

Variables

- **W** (*Variable*) – Weight parameter.

- **b** (*Variable*) – Bias parameter.

See also:

- `simplified_dropconnect()`

Methods

- **_call_(x, train=True, mask=None, use_batchwise_mask=True)**

 Applies the simplified dropconnect layer.

 Parameters
• **x** (chainer.Variable or numpy.ndarray or cupy.ndarray) – Batch of input vectors. Its first dimension \(n \) is assumed to be the minibatch dimension.

• **train** (bool) – If True, executes simplified dropconnect. Otherwise, simplified dropconnect link works as a linear unit.

• **mask** (None or chainer.Variable or numpy.ndarray or cupy.ndarray) – If None, randomized simplified dropconnect mask is generated. Otherwise, the mask must be \((n, M, N)\) or \((M, N)\) shaped array, and `use_batchwise_mask` is ignored. Main purpose of this option is debugging. `mask` array will be used as a dropconnect mask.

• **use_batchwise_mask** (bool) – If True, dropped connections depend on each sample in mini-batch.

Returns Output of the simplified dropconnect layer.

Return type Variable

`add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)`

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• **name** (str) – Name of the parameter. This name is also used as the attribute name.

• **shape** (int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent(name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** (str) – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

`addgrads(link)`

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.
Parameter **link** *(Link)* – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type Link

copyparams(link)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters **link** *(Link)* – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```
`links (skipself=False)`
Returns a generator of all links under the hierarchy.

Parameters
- `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all links.

`namedlinks (skipself=False)`
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters
- `skipself (bool)` – If `True`, then the generator skips this link and starts with the first child link.

Returns
A generator object that generates all (path, link) pairs.

`namedparams (include_uninit=True)`
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters
- `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

Returns
A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`
Returns a generator of all parameters under the link hierarchy.

Parameters
- `include_uninit (bool)` – If `True`, it also generates uninitialized parameters.

Returns
A generator object that generates all parameters.

`register_persistent (name)`
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- `name (str)` – Name of the attribute to be registered.

`serialize (serializer)`
Serializes the link object.

Parameters
- `serializer (AbstractSerializer)` – Serializer object.

`to_cpu ()`
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

`to_gpu (device=None)`
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters
- `device` – Target device specifier. If omitted, the current device is used.

Returns: self

`zerograds ()`
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.PReLU

```python
class chainer.links.PReLU(shape=(), init=0.25)
```

Parametric ReLU function as a link.

Parameters

- `shape` *(tuple of ints)* – Shape of the parameter array.
- `init` *(float)* – Initial parameter value.

See the paper for details: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

See also:

`chainer.functions.prelu()`

Variables

- `W` *(Parameter)* – Coefficient of parametric ReLU.

Methods

```python
__call__(x)
```

Applies the parametric ReLU activation function.

Parameters

- `x` *(Variable)* – Input variable.

Returns

Output of the parametric ReLU function.

Return type

`Variable`

```python
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
```

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name` *(str)* – Name of the parameter. This name is also used as the attribute name.
- `shape` *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype` – Data type of the parameter array.
• **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters

- **link** *(Link)* – Source link object.

children *(link)*

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads *(link)*

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *(link)*

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type *Link*

copyparams *(link)*

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

- **link** *(Link)* – Source link object.

disable_update *(link)*

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update *(link)*

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

2.5. Standard Link implementations
init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters** `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters** `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters** `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.

- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters** `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.

- **Returns** A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

- **Parameters** `name` *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

Serializes the link object.
Parameters **serializer**(*AbstractSerializer*) – Serializer object.

to_cpu()
Copies parameter variables and persistent values to CPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.
Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.
This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters device – Target device specifier. If omitted, the current device is used.
Returns: self

zerograds()
Initializes all gradient arrays by zero.
This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use **cleargrads()** instead.

chainer.links.Maxout

class chainer.links.Maxout(in_size, out_size, pool_size, initialW=None, initial_bias=0)
Fully-connected maxout layer.

Let M, P and N be an input dimension, a pool size, and an output dimension, respectively. For an input vector x of size M, it computes

\[Y_i = \max_j (W_{ij} \cdot x + b_{ij}). \]

Here W is a weight tensor of shape \((M, P, N)\), b an optional bias vector of shape \((M, P)\) and \(W_{ij}\) is a sub-vector extracted from W by fixing first and second dimensions to \(i\) and \(j\), respectively. Minibatch dimension is omitted in the above equation.

As for the actual implementation, this chain has a Linear link with a \((M \times P, N)\) weight matrix and an optional \(M \times P\) dimensional bias vector.

Parameters

- **in_size**(*int*) – Dimension of input vectors.
- **out_size**(*int*) – Dimension of output vectors.
- **pool_size**(*int*) – Number of channels.
- **initialW**(*initializer*) – Initializer to initialize the weight. When it is `numpy.ndarray`, its ndim should be 3.
- **initial_bias**(*initializer*) – Initializer to initialize the bias. If `None`, the bias is omitted. When it is `numpy.ndarray`, its ndim should be 2.

Variables linear(*Link*) – The Linear link that performs affine transformation.
See also:

maxout()

See also:

Methods

__call__(x)
Applies the maxout layer.

Parameters

x (Variable) – Batch of input vectors.

Returns

Output of the maxout layer.

Return type

Variable

__getitem__(name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

chain.add_link('l1', L.Linear(3, 5))

can be replaced by the following line.

with chain.init_scope():
 chain.l1 = L.Linear(3, 5)

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.
• **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• **dtype** – Data type of the parameter array.

• **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.

• **value** – Value to be registered.

addgrads *(link)*

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy

copyparams*(link)*

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

2.5. Standard Link implementations
links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu()

to_gpu (device=None)

zerograds ()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads () instead.

chainer.links.NegativeSampling

class chainer.links.NegativeSampling (in_size, counts, sample_size, power=0.75)

Negative sampling loss layer.

This link wraps the negative_sampling() function. It holds the weight matrix as a parameter. It also builds a sampler internally given a list of word counts.

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

• power (float) – Power factor \(\alpha \).

See also:

negative_sampling() for more detail.

Variables

W (Variable) – Weight parameter matrix.

Methods

__call__ (x, t, reduce='sum')

Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.
• \texttt{t (Variable)} – Batch of ground truth labels.

• \texttt{reduce (str)} – Reduction option. Its value must be either 'sum' or 'no'. Otherwise, ValueError is raised.

Returns Loss value.

Return type \texttt{Variable}

\begin{verbatim}
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
\end{verbatim}

Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within \texttt{init_scope()} instead. For example, the following code

\begin{verbatim}
link.add_param('W', shape=(5, 3))
\end{verbatim}

can be replaced by the following assignment.

\begin{verbatim}
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))
\end{verbatim}

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• \texttt{name (str)} – Name of the parameter. This name is also used as the attribute name.

• \texttt{shape (int or tuple of ints)} – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.

• \texttt{dtype} – Data type of the parameter array.

• \texttt{initializer} – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \texttt{dtype} argument is ignored.

\begin{verbatim}
add_persistent(name, value)
\end{verbatim}

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

• \texttt{name (str)} – Name of the persistent value. This name is also used for the attribute name.

• \texttt{value} – Value to be registered.

\begin{verbatim}
addgrads(link)
\end{verbatim}

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters \texttt{link (Link)} – Source link object.

\begin{verbatim}
children()
\end{verbatim}

Returns a generator of all child links.

Returns A generator object that generates all child links.

\begin{verbatim}
cleargrads()
\end{verbatim}

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.
copy()
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.
Return type Link

copyparams(link)
 Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters link (Link) – Source link object.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

able_enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.
Parameters `skipself (bool)` – If True, then the generator skips this link and starts with the first child link.

Returns A generator object that generates all (path, link) pairs.

`namedparams (include_uninit=True)`

Returns a generator of all (path, param) pairs under the hierarchy.

Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

`params (include_uninit=True)`

Returns a generator of all parameters under the link hierarchy.

Parameters `include_uninit (bool)` – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

`register_persistent (name)`

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters `name (str)` – Name of the attribute to be registered.

`serialize (serializer)`

Serializes the link object.

Parameters `serializer (AbstractSerializer)` – Serializer object.

`to_cpu ()`

`to_gpu (device=None)`

`zerograds ()`

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads ()` instead.

2.5.3 Machine learning models

`chainer.links.Classifier` A simple classifier model.

`chainer.links.Classifier` class

`chainer.links.Classifier (predictor, lossfun=<function softmax_cross_entropy>, accfun=<function accuracy>, label_key=-1)`

A simple classifier model.

This is an example of chain that wraps another chain. It computes the loss and accuracy based on a given input/label pair.

Parameters

- `predictor (Link)` – Predictor network.
• **lossfun** (*function*) – Loss function.
• **accfun** (*function*) – Function that computes accuracy.
• **label_key** (*int or str*) – Key to specify label variable from arguments. When it is *int*, a variable in positional arguments is used. And when it is *str*, a variable in keyword arguments is used.

Variables

• **predictor** (*Link*) – Predictor network.
• **lossfun** (*function*) – Loss function.
• **accfun** (*function*) – Function that computes accuracy.
• **y** (*Variable*) – Prediction for the last minibatch.
• **loss** (*Variable*) – Loss value for the last minibatch.
• **accuracy** (*Variable*) – Accuracy for the last minibatch.
• **compute_accuracy** (*bool*) – If True, compute accuracy on the forward computation. The default value is True.

Note: This link uses `chainer.softmax_cross_entropy()` with default arguments as a loss function (specified by `lossfun`), if users do not explicitly change it. In particular, the loss function does not support double backpropagation. If you need second or higher order differentiation, you need to turn it on with `enable_double_backprop=True`:

```python
>>> import chainer.functions as F
>>> import chainer.links as L

>>> def lossfun(x, t):
...     return F.softmax_cross_entropy(x, t, enable_double_backprop=True)

>>> predictor = L.Linear(10)
>>> model = L.Classifier(predictor, lossfun=lossfun)
```

Methods

`__call__` (*args, **kwargs*)

Computes the loss value for an input and label pair. It also computes accuracy and stores it to the attribute.

Parameters

• **args** (*list of ~chainer.Variable*) – Input minibatch.
• **kwargs** (*dict of ~chainer.Variable*) – Input minibatch.

When `label_key` is *int*, the corresponding element in `args` is treated as ground truth labels. And when it is *str*, the element in `kwargs` is used. The all elements of `args` and `kwargs` except the ground truth labels are features. It feeds features to the predictor and compare the result with ground truth labels.

Returns Loss value.

Return type *Variable*
__getitem__ (name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.
Depreciated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```
can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.
Depreciated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent (name, value)
Registers a persistent value to the link.
The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters
- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.
addgrads (link)

children()

cleargrads()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy()

copyparams (link)

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

registerpersistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu()

to_gpu (device=None)
zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for
backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

2.5.4 Pre-trained models

Pre-trained models are mainly used to achieve a good performance with a small dataset, or extract a semantic feature
vector. Although CaffeFunction automatically loads a pre-trained model released as a caffemodel, the following
link models provide an interface for automatically converting caffemodels, and easily extracting semantic feature
vectors.

For example, to extract the feature vectors with VGG16Layers, which is a common pre-trained model in the field of
image recognition, users need to write the following few lines:

```python
from chainer.links import VGG16Layers
from PIL import Image

model = VGG16Layers()
img = Image.open("path/to/image.jpg")
feature = model.extract([[img], layers=['fc7'])['fc7']"
```

where fc7 denotes a layer before the last fully-connected layer. Unlike the usual links, these classes automatically
load all the parameters from the pre-trained models during initialization.

VGG16Layers

<table>
<thead>
<tr>
<th>chainer.links.VGG16Layers</th>
<th>A pre-trained CNN model with 16 layers provided by VGG team.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.links.model.vision.vgg.prepare</td>
<td>Converts the given image to the numpy array for VGG models.</td>
</tr>
</tbody>
</table>

chainer.links.VGG16Layers

class chainer.links.VGG16Layers(pretrained_model='auto')

A pre-trained CNN model with 16 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another
chainer model, stores it on your local directory, and initializes all the parameters with it. This model would
be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a
different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

Parameters

pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify an-
other value as a environment variable. The converted chainer model is automatically used from the second time. If the argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.

initializers.Normal(scale=0.01).

Variables available_layers (list of str) – The list of available layer names used by __call__ and extract methods.

Methods

__call__(self, x, layers=['prob'])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.
• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
with chain.init_scope():
    # ...
    chain.add_param('w', chainer.Parameter(...))
    # ...
```
link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name (str)`: Name of the parameter. This name is also used as the attribute name.
- `shape (int or tuple of ints)`: Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- `dtype`: Data type of the parameter array.
- `initializer`: If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

`add_persistent (name, value)`

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- `name (str)`: Name of the persistent value. This name is also used for the attribute name.
- `value`: Value to be registered.

`addgrads (link)`

`children()`

`cleargrads()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`classmethod convert_caffemodel_to_npz (path_caffemodel, path_npz)`

Converts a pre-trained caffemodel to a chainer model.

Parameters

- `path_caffemodel (str)`: Path of the pre-trained caffemodel.
- `path_npz (str)`: Path of the converted chainer model.

`copy ()`

`copyparams (link)`

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to False.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to True.
extract *(self, images, layers=['fc7'], size=(224, 224))*

Extracts all the feature maps of given images.

The difference of directly executing **__call__** is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls **prepare** and **__call__** functions.

Warning: test and volatile arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('enable_backprop', not volatile)` respectively. See `chainer.using_config()`.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
- **layers** *(list of str)* – The list of layer names you want to extract.
- **size** *(pair of ints)* – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope *(self)*

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the **init_scope** method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

params *(include_uninit=True)*

predict *(images, oversample=True)*

Computes all the probabilities of given images.

Parameters
• **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images. When you specify a color image as a `numpy.ndarray`, make sure that color order is RGB.

• **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `Variable`

`register_persistent` *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

`serialize` *(serializer)*

`to_cpu` *

`to_gpu` *(device=None)*

`zerograds` *

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.model.vision.vgg.prepare

Chainer's GoogLeNet

A pre-trained GoogLeNet model provided by BVLC.

continued on next page
chainer.links.GoogLeNet

class chainer.links.GoogLeNet(pretrained_model='auto')

A pre-trained GoogLeNet model provided by BVLC.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use convert_caffemodel_to_npz classmethod instead.

GoogLeNet, which is also called Inception-v1, is an architecture of convolutional neural network proposed in 2014. This model is relatively lightweight and requires small memory footprint during training compared with modern architectures such as ResNet. Therefore, if you fine-tune your network based on a model pre-trained by Imagenet and need to train it with large batch size, GoogLeNet may be useful. On the other hand, if you just want an off-the-shelf classifier, we recommend you to use ResNet50 or other models since they are more accurate than GoogLeNet.

The original model is provided here: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

Parameters

pretrained_model (str) – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically downloads the caffemodel from the internet. Note that in this case the converted chainer model is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where $CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify another value as a environment variable. The converted chainer model is automatically used from the second time. If the argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in BVLC, i.e., chainer.initializers.LeCunUniform(scale=1.0). Note that, in Caffe, when weight_filler is specified as “xavier” type without variance_norm parameter, the weights are initialized by Uniform(-s, s), where $s = \sqrt{\frac{3}{fan_{in}}}$ and fan_{in} is the number of input units. This corresponds to LeCunUniform in Chainer but not GlorotUniform.

Variables

available_layers (list of str) – The list of available layer names used by __call__ and extract methods.

Methods

__call__(self, x, layers=['prob'])

Computes all the feature maps specified by layers.

Warning: train argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.
Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of :class:`chainer.Variable`

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

```
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name**(str) – Name of the child link. This name is also used as the attribute name.
- **link**(Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

```
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name**(str) – Name of the parameter. This name is also used as the attribute name.
- **shape**(int or tuple of ints) – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.
Parameters

- **name** (*str*) – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

`addgrads(link)`

`children()`

`cleargrads()`

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

`classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)`

Converts a pre-trained caffemodel to a chainer model.

Parameters

- **path_caffemodel** (*str*) – Path of the pre-trained caffemodel.
- **path_npz** (*str*) – Path of the converted chainer model.

`copy()`

`copyparams(link)`

`disable_update()`

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

`enable_update()`

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

`extract(self, images, layers=['pool5'], size=(224, 224))`

Extracts all the feature maps of given images.

The difference of directly executing `__call__` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls `prepare` and `__call__` functions.

Warning: `train` and `volatile` arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('enable_backprop', not volatile)` respectively. See `chainer.using_config()`.

Parameters

- **images** (*iterable of PIL.Image or numpy.ndarray*) – Input images.
- **layers** (*list of str*) – The list of layer names you want to extract.
- **size** (*pair of ints*) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable
init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)
predict (images, oversample=True)
Computes all the probabilities of given images.

Parameters

- **images** (iterable of PIL.Image or numpy.ndarray) – Input images. When you specify a color image as a numpy.ndarray, make sure that color order is RGB.
- **oversample** (bool) – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters name (str) – Name of the attribute to be registered.

serialize (serializer)

to_cpu ()

to_gpu (device=None)

zerograds ()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.
chainer.links.model.vision.googlenet.prepare

chainer.links.model.vision.googlenet.prepare(image, size=(224, 224))

Converts the given image to the numpy array for GoogLeNet.

Note that you have to call this method before __call__ because the pre-trained GoogLeNet model requires
to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before
calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
 ndarray, its shape must be (height, width), (height, width, channels),
 or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
 resized.

Returns The converted output array.

Return type numpy.ndarray

Residual Networks

chainer.links.model.vision.resnet.ResNetLayers

A pre-trained CNN model provided by MSRA.

chainer.links.ResNet50Layers

A pre-trained CNN model with 50 layers provided by
MSRA.

chainer.links.ResNet101Layers

A pre-trained CNN model with 101 layers provided by
MSRA.

chainer.links.ResNet152Layers

A pre-trained CNN model with 152 layers provided by
MSRA.

chainer.links.model.vision.resnet.prepare

Converts the given image to the numpy array for ResNets.

chainer.links.model.vision.resnet.ResNetLayers

class chainer.links.model.vision.resnet.ResNetLayers(pretrained_model, n_layers)

A pre-trained CNN model provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and converts the caffemodel from
$CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-{n-layers}-model.caffemodel, where $CHAINER_DATASET_ROOT
is set as $HOME/.chainer/dataset unless you specify another value by modifying the environment variable and {n_layers} is replaced with the specified number of layers
given as the first argument to this constructor. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

• n_layers (int) – The number of layers of this model. It should be either 50, 101, or 152.

Variables
available_layers (list of str) – The list of available layer names used by
__call__ and extract methods.

Methods

__call__ (self, x, layers=['prob'])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.
using_config('train', train). See chainer.using_config().

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.
• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__ (name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```
can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.
add_param
(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** - Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** - Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** - Data type of the parameter array.
- **initializer** - If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent
(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** - Name of the persistent value. This name is also used for the attribute name.
- **value** - Value to be registered.

addgrads
(link)

children()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz
(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

- **path_caffemodel (str)** - Path of the pre-trained caffemodel.
- **path_npz (str)** - Path of the converted chainer model.

copy()
copyparams
(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=['pool5'], size=(224, 224))

Extracts all the feature maps of given images.

The difference of directly executing __call__ is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and __call__ functions.

Parameters

- **images (iterable of PIL.Image or numpy.ndarray)** – Input images.
- **layers (list of str)** – The list of layer names you want to extract.
- **size (pair of ints)** – The resolution of resized images used as an input of CNN.
 All the given images are not resized if this argument is None, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

2.5. Standard Link implementations
predict *(images, oversample=True)*
Computes all the probabilities of given images.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images. When you specify a color image as a `numpy.ndarray`, make sure that color order is RGB.

- **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `Variable`

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

to_cpu

to_gpu *(device=None)*

zerograds

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.ResNet50Layers

class `chainer.links.ResNet50Layers` *(pretrained_model='auto')*

A pre-trained CNN model with 50 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a `.npz` file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike `VGG16Layers`, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use `convert_caffemodel_to_npz` classmethod instead.

ResNet50 has 25,557,096 trainable parameters, and it’s 58% and 43% fewer than ResNet101 and ResNet152, respectively. On the other hand, the top-5 classification accuracy on ImageNet dataset drops only 0.7% and 1.1% from ResNet101 and ResNet152, respectively. Therefore, ResNet50 may have the best balance between the accuracy and the model size. It would be basically just enough for many cases, but some advanced models for object detection or semantic segmentation use deeper ones as their building blocks, so these deeper ResNets are here for making reproduction work easier.

See: K. He et al., Deep Residual Learning for Image Recognition
Parameters

pretrained_model *(str)* – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically loads and converts the caffemodel from $\text{SCHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-50-model.caffemodel}$, where $\text{SCHAINER_DATASET_ROOT}$ is set as $\text{HOME/.chainer/dataset}$ unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., `chainer.initializers.HeNormal(scale=1.0)`.

Variables

available_layers *(list of str)* – The list of available layer names used by `__call__` and `extract` methods.

Methods

`__call__` *(self, x, layers=['prob'])*

Computes all the feature maps specified by layers.

Warning: the `test` argument is not supported anymore since v2. Instead, use `chainer.using_config('train', train)`. See `chainer.using_config()`.

Parameters

- `x` *(Variable)* – Input variable. It should be prepared by `prepare` function.
- `layers` *(list of str)* – The list of layer names you want to extract.

Returns

A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type

Dictionary of ~chainer.Variable

`__getitem__` *(name)*

Equivalent to `getattr`.

`add_link` *(name, link)*

Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- `name` *(str)* – Name of the child link. This name is also used as the attribute name.
- `link` *(Link)* – The link object to be registered.
add_param(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```
can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```
The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads(link)
children()
cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

- **path_caffemodel (str)** – Path of the pre-trained caffemodel.
- **path_npz (str)** – Path of the converted chainer model.

copy()
copyparams(link)
disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.
enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

extract(self, images, layers=['pool5'], size=(224, 224))

Extracts all the feature maps of given images.

The difference of directly executing `__call__` is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls `prepare` and `__call__` functions.

Warning: `test` and `volatile` arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('enable_backprop', not volatile)` respectively. See `chainer.using_config()`.

Parameters

- **images**(iterable of PIL.Image or numpy.ndarray) – Input images.
- **layers**(list of str) – The list of layer names you want to extract.
- **size**(pair of ints) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is `None`, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of `~chainer.Variable`

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links(skipself=False)

namedlinks(skipself=False)

namedparams(include_uninit=True)

params(include_uninit=True)
predict \((\text{images, oversample=True})\)
Computes all the probabilities of given images.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
When you specify a color image as a `numpy.ndarray`, make sure that color order is RGB.
- **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `Variable`

register_persistent \((\text{name})\)
Registers an attribute of a given name as a persistent value.
This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

serialize \((\text{serializer})\)

to_cpu()

to_gpu \((\text{device=None})\)

zerograds()
Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use `cleargrads()` instead.

chainer.links.ResNet101Layers

class chainer.links.ResNet101Layers \((\text{pretrained_model='auto'})\)
A pre-trained CNN model with 101 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a `.npz` file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use `convertcaffemodel_to_npz` classmethod instead.

ResNet101 has 44,549,224 trainable parameters, and it’s 43% fewer than ResNet152 model, while the top-5 classification accuracy on ImageNet dataset drops 1.1% from ResNet152. For many cases, ResNet50 may have the best balance between the accuracy and the model size.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

- **pretrained_model** *(str)* – the destination of the pre-trained chainer model serialized as a `.npz` file. If this argument is specified as `auto`, it automatically
loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-101-model.caffemodel, where $CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

Variables **available_layers** (list of str) – The list of available layer names used by __call__ and extract methods.

Methods

__call__ (self, x, layers=['prob'])
Computes all the feature maps specified by layers.

<table>
<thead>
<tr>
<th>Warning: test argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().</th>
</tr>
</thead>
</table>

Parameters

- **x** (Variable) – Input variable. It should be prepared by prepare function.
- **layers** (list of str) – The list of layer names you want to extract.

Returns

A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type

Dictionary of ~chainer.Variable

__getitem__ (name)
Equivalent to getattr.

add_link (name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link('l1', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.l1 = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** (str) – Name of the child link. This name is also used as the attribute name.
- **link** (Link) – The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
Registers a parameter to the link.

2.5. Standard Link implementations
Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within \texttt{init_scope()} instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name (str)** – Name of the parameter. This name is also used as the attribute name.
- **shape (int or tuple of ints)** – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, \texttt{dtype} argument is ignored.

add_persistent (name, value)

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

children ()

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

convert_caffemodel_to_npz (path_caffemodel, path_npz, n_layers=50)

Converts a pre-trained caffemodel to a chainer model.

Parameters

- **path_caffemodel (str)** – Path of the pre-trained caffemodel.
- **path_npz (str)** – Path of the converted chainer model.

copy ()

copy_params (link)

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to \texttt{False}.

enable_update()
Enables update rules of all parameters under the link hierarchy.
This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[‘pool5’], size=(224, 224))
Extracts all the feature maps of given images.
The difference of directly executing __call__ is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls prepare and __call__ functions.

Warning: test and volatile arguments are not supported anymore since v2. Instead, use chainer.using_config('train', train) and chainer.using_config('enable_backprop', not volatile) respectively. See chainer.using_config().

Parameters
- **images** (iterable of PIL.Image or numpy.ndarray) – Input images.
- **layers** (list of str) – The list of layer names you want to extract.
- **size** (pair of ints) – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is None, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()
Creates an initialization scope.
This method returns a context manager object that enables registration of parameters (and links for Chain) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example
In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
 def __init__(self):
 super().__init__()
 with self.init_scope():
 self.W = chainer.Parameter(0, (10, 5))
 self.b = chainer.Parameter(0, (5,))

links (skipself=False)
namedlinks (skipself=False)
namedparams (include_uninit=True)
params (include_uninit=True)
predict *(images, oversample=True)*
Computes all the probabilities of given images.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
 When you specify a color image as a `numpy.ndarray`, make sure that color order is RGB.

- **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors.
 Otherwise, it uses only the center.

Returns
Output that contains the class probabilities of given images.

Return type
Variable

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*
to_cpu *(device=None)*
to_gpu *(device=None)*
zerograds *(*)
Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecation since version v1.15: Use `cleargrads()` instead.

chainer.links.ResNet152Layers

class
chainer.links.ResNet152Layers *(pretrained_model='auto')*
A pre-trained CNN model with 152 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this chain model automatically initializes all the parameters with it. This model would be useful when you want to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike `VGG16Layers`, it does not automatically download a pre-trained caffemodel. This caffemodel can be downloaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the constructor, please use `convert_caffemodel_to_npz` classmethod instead.

ResNet152 has 60,192,872 trainable parameters, and it’s the deepest ResNet model and it achieves the best result on ImageNet classification task in ILSVRC 2015.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

- **pretrained_model** *(str)* – the destination of the pre-trained chainer model serialized as a .npz file. If this argument is specified as auto, it automatically loads and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/ResNet-152-model.caffemodel$, where $CHAINER_DATASET_ROOT$ is
set as $HOME/.chainer/dataset unless you specify another value by modifying the environment variable. Note that in this case the converted chainer model is stored on the same directory and automatically used from the next time. If this argument is specified as None, all the parameters are not initialized by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

Variables available_layers (list of str) – The list of available layer names used by __call__ and extract methods.

Methods

__call__(self, x, layers=[‘prob’])
Computes all the feature maps specified by layers.

Warning: test argument is not supported anymore since v2. Instead, use chainer.using_config(‘train’, train). See chainer.using_config().

Parameters
• x (Variable) – Input variable. It should be prepared by prepare function.
• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

__getitem__(name)
Equivalent to getattr.

add_link(name, link)
Registers a child link to this chain.

Deprecated since version v2.0.0: Assign the child link directly to an attribute within init_scope() instead. For example, the following code

```python
chain.add_link(‘ll’, L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters
• name (str) – Name of the child link. This name is also used as the attribute name.
• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ‘numpy.float32’>, initializer=None)
Registers a parameter to the link.

Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code

```python
2.5. Standard Link implementations
```
link.add_param('W', shape=(5, 3))

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, dtype argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

children

cleargrads

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

convert_caffemodel_to_npz *(path_caffemodel, path_npz, n_layers=50)*

Converts a pre-trained caffemodel to a chainer model.

Parameters

- **path_caffemodel** *(str)* – Path of the pre-trained caffemodel.
- **path_npz** *(str)* – Path of the converted chainer model.

copy

copyparams *(link)*

disable_update

Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update

Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
extract *(self, images, layers=['pool5'], size=(224, 224))*

Extracts all the feature maps of given images.

The difference of directly executing **__call__** is that it directly accepts images as an input and automatically transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly calls **prepare** and **__call__** functions.

Warning: test and volatile arguments are not supported anymore since v2. Instead, use `chainer.using_config('train', train)` and `chainer.using_config('enable_backprop', not volatile)` respectively. See `chainer.using_config()`.

Parameters

- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images.
- **layers** *(list of str)* – The list of layer names you want to extract.
- **size** *(pair of ints)* – The resolution of resized images used as an input of CNN. All the given images are not resized if this argument is None, but the resolutions of all the images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corresponding feature map variable.

Return type Dictionary of ~chainer.Variable

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we can simply assign a Parameter object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

namedlinks *(skipself=False)*

namedparams *(include_uninit=True)*

params *(include_uninit=True)*

predict *(images, oversample=True)*

Computes all the probabilities of given images.

Parameters
- **images** *(iterable of PIL.Image or numpy.ndarray)* – Input images. When you specify a color image as a `numpy.ndarray`, make sure that color order is RGB.

- **oversample** *(bool)* – If True, it averages results across center, corners, and mirrors. Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type `Variable`

register_persistent *(name)*
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters
- **name** *(str)* – Name of the attribute to be registered.

serialize *(name)*

to_cpu *

to_gpu *(device=None)*

zerograd *

Initializes all gradient arrays by zero.

This method can be used for the same purpose of `cleargrads`, but less efficient. This method is left for backward compatibility.

Deprecation Since version v1.15: Use `cleargrads()` instead.

chainer.links.model.vision.resnet.prepare

Parameters
- **image** *(PIL.Image or numpy.ndarray)* – Input image. If an input is `numpy.ndarray`, its shape must be `(height, width), (height, width, channels)`, or `(channels, height, width)`, and the order of the channels must be RGB.

- **size** *(pair of ints)* – Size of converted images. If None, the given image is not resized.

Returns The converted output array.

Return type `numpy.ndarray`

Compatibility with other frameworks

| **chainer.links.TheanoFunction** | Theano function wrapper. |
| **chainer.links.caffe.CaffeFunction** | Caffe emulator based on the model file of Caffe. |
chainer.links.TheanoFunction

class chainer.links.TheanoFunction(inputs, outputs)
Chainer function wrapper.

Warning: This feature is experimental. The interface can change in the future.

This function wraps Theano function as a chainer.Link. A user needs to make input Theano variables and output Theano variables. This function automatically creates Theano function for forward calculation and backward calculation from inputs and outputs. And then, it sends data in chainer.Variable to the function and gets results from Theano.

Example

```python
>>> import theano
>>> x = theano.tensor.fvector()
>>> y = theano.tensor.fvector()
>>> z = x + y
>>> w = x - y
>>> f = L.TheanoFunction(inputs=[x, y], outputs=[z, w])
>>> a = chainer.Variable(np.array([1, 2], dtype='f'))
>>> b = chainer.Variable(np.array([2, 3], dtype='f'))
>>> c, d = f(a, b)
>>> c.data
array([3., 5.], dtype=float32)
>>> d.data
array([-1., -1.], dtype=float32)
```

Note: The current implementation always copies cupy.ndarray to CPU.

Parameters

- **inputs** (tuple of theano.tensor.TensorVariable) – Input variables of Theano. This function accepts the same number of Variables in forward computation.
- **outputs** (tuple of theano.tensor.TensorVariable) – Output variables of Theano. The function returns the same number of Variables as outputs.

Methods

- **_call_**(*args)

- **add_param**(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)
 Registers a parameter to the link.
 Deprecated since version v2.0.0: Assign a Parameter object directly to an attribute within init_scope() instead. For example, the following code
    ```python
    link.add_param('W', shape=(5, 3))
    ```
 can be replaced by the following assignment.
with link.init_scope():
 link.W = chainer.Parameter(None, (5, 3))

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not None, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, **dtype** argument is ignored.

add_persistent *(name, value)*

Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.

Parameters

- **name** *(str)* – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads *(link)*

Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumulation is even done across host and different devices.

Parameters **link** *(Link)* – Source link object.

children *

Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads *

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy *

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. The copy is basically shallow, except that the parameter variables are also shallowly copied. It means that the parameter variables of copied one are different from ones of original link, while they share the data and gradient arrays.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain (even if exists).

Returns Copied link object.

Return type **Link**

copyparams *(link)*

Copies all parameters from given link.
This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and devices. Note that this method does not copy the gradient arrays.

Parameters

link *(Link)* – Source link object.

disable_update()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links *(skipself=False)*

Returns a generator of all links under the hierarchy.

- **Parameters**
 - `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all links.

namedlinks *(skipself=False)*

Returns a generator of all (path, link) pairs under the hierarchy.

- **Parameters**
 - `skipself` *(bool)* – If `True`, then the generator skips this link and starts with the first child link.

- **Returns** A generator object that generates all (path, link) pairs.

namedparams *(include_uninit=True)*

Returns a generator of all (path, param) pairs under the hierarchy.

- **Parameters**
 - `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.

- **Returns** A generator object that generates all (path, parameter) pairs. The paths are relative from this link.

params *(include_uninit=True)*

Returns a generator of all parameters under the link hierarchy.

- **Parameters**
 - `include_uninit` *(bool)* – If `True`, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent *(name)*

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If *name* has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name** *(str)* – Name of the attribute to be registered.

serialize *(serializer)*

Serializes the link object.

Parameters

- **serializer** *(AbstractSerializer)* – Serializer object.

to_cpu

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the link implementation must override this method to do so.

Returns: self

to_gpu *(device=none)*

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the link implementation must override this method to do so.

Parameters

- **device** – Target device specifier. If omitted, the current device is used.

Returns: self

zernograds

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Depreciated since version v1.15: Use *cleargrads()* instead.

chainer.links.caffe.CaffeFunction

class chainer.links.caffe.CaffeFunction(model_path)

Caffe emulator based on the model file of Caffe.

Given a protocol buffers file of a Caffe model, this class loads and emulates it on Variable objects. It supports the official reference models provided by BVLC.

Note: CaffeFunction ignores the following layers:

- Layers that CaffeFunction does not support (including data layers)
- Layers that have no top blobs
- Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)
Warning: It does not support full compatibility against Caffe. Some layers and configurations are not implemented in Chainer yet, though the reference models provided by the BVLC team are supported except data layers.

Example

Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply written as follows:

```python
# Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

# Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
...
# (Fill the minibatch here)

# Forward the pre-trained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])
```

The result y contains the Variable corresponding to the fc8 blob. The computational graph is memorized as a usual forward computation in Chainer, so we can run backprop through this pre-trained net.

Parameters

- **model_path** *(str)* – Path to the binary-proto model file of Caffe.

Variables

- **forwards** *(dict)* – A mapping from layer names to corresponding functions.

Methods

- **__call__** *(self, inputs, outputs, disable=())*

 Executes a sub-network of the network.

 This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output blobs as Variable objects.

Warning: train argument is not supported anymore since v2. Instead, use chainer.using_config('train', train). See chainer.using_config().

Parameters

- **inputs** *(dict)* – A dictionary whose key-value pairs indicate initial correspondences between blob names and Variable objects.

- **outputs** *(Iterable)* – A list of blob names whose corresponding Variable objects are returned.

- **disable** *(Iterable)* – A list of layer names that will be ignored during the forward computation.
Returns A tuple of output `Variable` objects corresponding to elements of the `outputs` argument.

Return type tuple

__getitem__ *(name)*
Equivalent to `getattr`.

add_link *(name, link)*
Registers a child link to this chain.

Deprecating since version v2.0.0: Assign the child link directly to an attribute within `init_scope()` instead. For example, the following code

```python
chain.add_link('ll', L.Linear(3, 5))
```

can be replaced by the following line.

```python
with chain.init_scope():
    chain.ll = L.Linear(3, 5)
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the child link. This name is also used as the attribute name.
- **link** *(Link)* – The link object to be registered.

add_param *(name, shape=None, dtype=<class 'numpy.float32'>, initializer=None)*
Registers a parameter to the link.

Deprecating since version v2.0.0: Assign a `Parameter` object directly to an attribute within `init_scope()` instead. For example, the following code

```python
link.add_param('W', shape=(5, 3))
```

can be replaced by the following assignment.

```python
with link.init_scope():
    link.W = chainer.Parameter(None, (5, 3))
```

The latter is easier for IDEs to keep track of the attribute’s type.

Parameters

- **name** *(str)* – Name of the parameter. This name is also used as the attribute name.
- **shape** *(int or tuple of ints)* – Shape of the parameter array. If it is omitted, the parameter variable is left uninitialized.
- **dtype** – Data type of the parameter array.
- **initializer** – If it is not `None`, the data is initialized with the given initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer. Note that in these cases, `dtype` argument is ignored.

add_persistent *(name, value)*
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of the link.
Parameters

- **name (str)** – Name of the persistent value. This name is also used for the attribute name.
- **value** – Value to be registered.

addgrads (link)

children ()

cleargrads ()

Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy ()

copyparams (link)

disable_update ()

Disables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `False`.

enable_update ()

Enables update rules of all parameters under the link hierarchy.

This method sets the `enabled` flag of the update rule of each parameter variable to `True`.

init_scope ()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for `Chain`) by an assignment. A `Parameter` object can be automatically registered by assigning it to an attribute under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the `init_scope` method, we can simply assign a `Parameter` object to register it to the link.

```python
class MyLink(chainer.Link):
    def __init__(self):
        super().__init__()
        with self.init_scope():
            self.W = chainer.Parameter(0, (10, 5))
            self.b = chainer.Parameter(0, (5,))
```

links (skipself=False)

namedlinks (skipself=False)

namedparams (include_uninit=True)

params (include_uninit=True)

register_persistent (name)

Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If `name` has been already registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent value.

Parameters

- **name (str)** – Name of the attribute to be registered.
serialize(serializer)

to_cpu()

to_gpu(device=None)

zerograds()

Initializes all gradient arrays by zero.

This method can be used for the same purpose of cleargrads, but less efficient. This method is left for backward compatibility.

Deprecated since version v1.15: Use cleargrads() instead.

2.6 Optimizers

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.optimizers.AdaDelta</td>
<td>Zeiler’s ADADELTA.</td>
</tr>
<tr>
<td>chainer.optimizers.Adam</td>
<td>Adam optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.MomentumSGD</td>
<td>Momentum SGD optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.NesterovAG</td>
<td>Nesterov’s Accelerated Gradient.</td>
</tr>
<tr>
<td>chainer.optimizers.RMSprop</td>
<td>RMSprop optimizer.</td>
</tr>
<tr>
<td>chainer.optimizers.RMSpropGraves</td>
<td>Alex Graves’s RMSprop.</td>
</tr>
<tr>
<td>chainer.optimizers.SGD</td>
<td>Vanilla Stochastic Gradient Descent.</td>
</tr>
<tr>
<td>chainer.optimizers.SMORMS3</td>
<td>Simon Funk’s SMORMS3.</td>
</tr>
</tbody>
</table>

2.6.1 chainer.optimizers.AdaDelta

class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)

Zeiler’s ADADELTA.

Parameters

- `rho (float)` – Exponential decay rate of the first and second order moments.
- `eps (float)` – Small value for the numerical stability.

Methods

add_hook (hook, name=None)

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

- `hook (function)` – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- `name (str)` – Name of the registration. If omitted, hook.name is used by default.

call_hooks ()

Invokes hook functions in registration order.
create_update_rule()

new_epoch()

Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()

Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook(name)

Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states
• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads(use=True)

Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

2.6.2 chainer.optimizers.AdaGrad

class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)

AdaGrad optimizer.

See: http://jmlr.org/papers/v12/duchi11a.html

Parameters
• **lr** (*float*) – Learning rate.
• **eps** (*float*) – Small value for the numerical stability.

Methods

`add_hook (hook, name=None)`

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

- **hook** (*function*) – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name** (*str*) – Name of the registration. If omitted, `hook.name` is used by default.

`call_hooks ()`

Invokes hook functions in registration order.

`create_update_rule ()`

`new_epoch ()`

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

`reallocate_cleared_grads ()`

Reallocate gradients cleared by `cleargrad ()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

`remove_hook (name)`

Removes a hook function.

Parameters

- **name** (*str*) – Registered name of the hook function to remove.

`serialize (serializer)`

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters

- **serializer** (*AbstractSerializer*) – Serializer or deserializer object.

`setup (link)`

`update (lossfun=None, *args, **kwds)`

Updates parameters based on a loss function or computed gradients.

This method runs in two ways:

- If `lossfun` is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

```python
def use_cleargrads(use=True)
    Enables or disables use of `cleargrads()` in `update`.
    
    Parameters
    `use` (bool) -- If True, this function enables use of `cleargrads`. If False, disables use of `cleargrads` (zeroegrads is used).

    Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zeroegrads()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.
```

2.6.3 chainer.optimizers.Adam

```python
class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08)
Adam optimizer.


Parameters

• `alpha` (float) -- Step size.
• `beta1` (float) -- Exponential decay rate of the first order moment.
• `beta2` (float) -- Exponential decay rate of the second order moment.
• `eps` (float) -- Small value for the numerical stability.

Methods

```python
add_hook(hook, name=None)
 Registers a hook function.

 Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

 Parameters
 `hook` (function) -- Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
• `name` (str) -- Name of the registration. If omitted, `hook.name` is used by default.

call_hooks()
 Invokes hook functions in registration order.

create_update_rule()

call_hooks()
 Invokes hook functions in registration order.

new_epoch()
 Starts a new epoch.

 This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.
```
reallocate_cleared_grads()
  Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook(name)
  Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
  Serializes or deserializes the optimizer.

It only saves or loads the following things:
  • Optimizer states
  • Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)
  Updates parameters based on a loss function or computed gradients.

This method runs in two ways.
  • If lossfun is given, then it is used as a loss function to compute gradients.
  • Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

use_cleargrads(use=True)
  Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

2.6.4 chainer.optimizers.MomentumSGD

class chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)
  Momentum SGD optimizer.

Parameters
  • lr (float) – Learning rate.
  • momentum (float) – Exponential decay rate of the first order moment.
Methods

**add_hook** *(hook, name=None)*

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

**Parameters**

- **hook** *(function)* – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
- **name** *(str)* – Name of the registration. If omitted, `hook.name` is used by default.

**call_hooks** *

Invokes hook functions in registration order.

**create_update_rule** *

**new_epoch** *

Starts a new epoch.

This method increments the `epoch` count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**reallocate_cleared_grads** *

Reallocate gradients cleared by `cleargrad()`.

This method allocates arrays for all gradients which have `None`. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

**remove_hook** *(name)*

Removes a hook function.

**Parameters**

- **name** *(str)* – Registered name of the hook function to remove.

**serialize** *(serializer)*

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (`t` and `epoch`)

**It does not saves nor loads the parameters of the target link.** They should be separately saved or loaded.

**Parameters**

- **serializer** *(AbstractSerializer)* – Serializer or deserializer object.

**setup** *(link)*

**update** *(lossfun=None, *args, **kwds)*

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.
use_cleargrads (use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.

2.6.5 chainer.optimizers.NesterovAG

class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)
Nesterov’s Accelerated Gradient.


Parameters

• lr (float) – Learning rate.
• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook (hook, name=None)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

• hook (function) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
• name (str) – Name of the registration. If omitted, hook.name is used by default.

call_hooks ()
Invokes hook functions in registration order.

create_update_rule ()

new_epoch ()
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads ()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

remove_hook (name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.
**serialize**(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (t and epoch)

**It does not saves nor loads the parameters of the target link.** They should be separately saved or loaded.

**Parameters**

- **serializer** *(AbstractSerializer)* – Serializer or deserializer object.

**setup**(link)

**update**(lossfun=None, *args, **kwds)

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If `lossfun` is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

**use_cleargrads**(use=True)

Enables or disables use of `cleargrads()` in `update`.

**Parameters**

- **use** *(bool)* – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (`zerograds` is used).

Depreciated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

### 2.6.6 chainer.optimizers.RMSprop

**class** chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08)

RMSprop optimizer.


**Parameters**

- **lr** *(float)* – Learning rate.
- **alpha** *(float)* – Exponential decay rate of the second order moment.
- **eps** *(float)* – Small value for the numerical stability.

**Methods**

**add_hook**(hook, name=None)

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

**Parameters**
• **hook** (*function*) – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

• **name** (*str*) – Name of the registration. If omitted, hook.name is used by default.

**call_hooks()**
Invokes hook functions in registration order.

**create_update_rule()**

**new_epoch()**
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**reallocate_cleared_grads()**
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

**remove_hook(name)**
Removes a hook function.

**Parameters** name (*str*) – Registered name of the hook function to remove.

**serialize(serializer)**
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states
• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

**Parameters** serializer (*AbstractSerializer*) – Serializer or deserializer object.

**setup(link)**

**update(lossfun=None, *args, **kwds)**
Updates parameters based on a loss function or computed gradients.

This method runs in two ways:

• If lossfun is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

**use_cleargrads(use=True)**
Enables or disables use of cleargrads() in update.

**Parameters** use (*bool*) – If True, this function enables use of cleargrads. If False, disables use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default. cleargrads() is more efficient than zerograds(), so one does not have to call use_cleargrads(). This method remains for backward compatibility.
2.6.7 chainer.optimizers.RMSpropGraves

```
class chainer.optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.9, eps=0.0001)
```

Alex Graves’s RMSprop.

See: http://arxiv.org/abs/1308.0850

**Parameters**

- **lr (float)** – Learning rate.
- **alpha (float)** – Exponential decay rate of the first and second order moments of the raw gradient.
- **momentum (float)** – Exponential decay rate of the first order moment of the adjusted gradient.
- **eps (float)** – Small value for the numerical stability.

**Methods**

- **add_hook (hook, name=None)**
  Registers a hook function.
  
  Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.
  
  **Parameters**
  
  - **hook (function)** – Hook function. If hook.call_for_each_param is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.
  
  - **name (str)** – Name of the registration. If omitted, hook.name is used by default.

- **call_hooks ()**
  Invokes hook functions in registration order.

- **create_update_rule ()**

- **new_epoch ()**
  Starts a new epoch.
  
  This method increments the epoch count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

- **reallocate_cleared_grads ()**
  Reallocate gradients cleared by cleargrad().
  
  This method allocates arrays for all gradients which have None. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

- **remove_hook (name)**
  Removes a hook function.
  
  **Parameters**
  
  - **name (str)** – Registered name of the hook function to remove.

- **serialize (serializer)**
  Serializes or deserializes the optimizer.
  
  It only saves or loads the following things:
• Optimizer states
• Global states ($t$ and $epoch$)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters `serializer` (`AbstractSerializer`) – Serializer or deserializer object.

`setup` (`link`)  
`update` (`lossfun=None, *args, **kwds`)  
Updates parameters based on a loss function or computed gradients.  
This method runs in two ways.  
• If `lossfun` is given, then it is used as a loss function to compute gradients.  
• Otherwise, this method assumes that the gradients are already computed.  
In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

`use_cleargrads` (`use=True`)  
Enables or disables use of `cleargrads()` in `update`.  

Parameters `use` (`bool`) – If `True`, this function enables use of `cleargrads`. If `False`, disables use of `cleargrads` (`zerograds` is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

### 2.6.8 chainer.optimizers.SGD

`class chainer.optimizers.SGD(lr=0.01)`  
Vanilla Stochastic Gradient Descent.

Parameters `lr` (`float`) – Learning rate.

Methods

`add_hook` (`hook, name=None`)  
Registers a hook function.  
Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

Parameters

• `hook` (`function`) – Hook function. If `hook.call_for_each_param` is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

• `name` (`str`) – Name of the registration. If omitted, `hook.name` is used by default.

`call_hooks` ()  
Invokes hook functions in registration order.

`create_update_rule` ()
new_epoch()

Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

reallocate_cleared_grads()

Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)

Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states
• Global states (t and epoch)

It does not save nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

setup(link)

update(lossfun=None, *args, **kwds)

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.
• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

use_cleargrads(use=True)

Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograd is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograde(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

2.6.9 chainer.optimizers.SMORMS3

class chainer.optimizers.SMORMS3(lr=0.001, eps=1e-16)

Simon Funk’s SMORMS3.


Parameters

• lr (float) – Learning rate.
• \texttt{eps (float)} – Small value for the numerical stability.

### Methods

**add_hook** \((\texttt{hook, name=None})\)

Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the optimization method.

**Parameters**

- \texttt{hook (function)} – Hook function. If \texttt{hook.call_for_each_param} is true, this hook function is called for each parameter by passing the update rule and the parameter. Otherwise, this hook function is called only once each iteration by passing the optimizer.

- \texttt{name (str)} – Name of the registration. If omitted, \texttt{hook.name} is used by default.

**call_hooks**

Invokes hook functions in registration order.

**create_update_rule**

**new_epoch**

Starts a new epoch.

This method increments the \texttt{epoch} count. Note that if the optimizer depends on the epoch count, then user should call this method appropriately at the beginning of each epoch.

**reallocate_cleared_grads**

Reallocate gradients cleared by \texttt{cleargrad()}.

This method allocates arrays for all gradients which have \texttt{None}. This method is called before and after every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override this method with a blank function.

**remove_hook** \((\texttt{name})\)

Removes a hook function.

**serialize** \((\texttt{serializer})\)

Serializes or deserializes the optimizer.

It only saves or loads the following things:

- Optimizer states
- Global states (\texttt{t} and \texttt{epoch})

**It does not save nor loads the parameters of the target link.** They should be separately saved or loaded.

**Parameters** \texttt{serializer (AbstractSerializer)} – Serializer or deserializer object.

**setup** \((\texttt{link})\)

**update** \((\texttt{lossfun=None, *args, **kwds})\)

Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

- If \texttt{lossfun} is given, then it is used as a loss function to compute gradients.
- Otherwise, this method assumes that the gradients are already computed.
In both cases, the computed gradients are used to update parameters. The actual update routines are defined by the update rule of each parameter.

**use_cleargrads (use=True)**

Enables or disables use of `cleargrads()` in `update`.

**Parameters**

- **use (bool)** – If True, this function enables use of `cleargrads`. If False, disables use of `cleargrads` (zerograds is used).

Deprecated since version v2.0: Note that `update()` calls `cleargrads()` by default. `cleargrads()` is more efficient than `zerograds()`, so one does not have to call `use_cleargrads()`. This method remains for backward compatibility.

## 2.7 Serializers

### 2.7.1 Serialization in NumPy NPZ format

NumPy serializers can be used in arbitrary environments that Chainer runs with. It consists of asymmetric serializer/deserializer due to the fact that `numpy.savez()` does not support online serialization. Therefore, serialization requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.

**chainer.serializers.DictionarySerializer**

Serializer for dictionary.

This is the standard serializer in Chainer. The hierarchy of objects are simply mapped to a flat dictionary with keys representing the paths to objects in the hierarchy.

**Parameters**

- **target (dict)** – The dictionary that this serializer saves the objects to. If target is None, then a new dictionary is created.

**Variables**

- **target (dict)** – The target dictionary. Once the serialization completes, this dictionary can be fed into `numpy.savez()` or `numpy.savez_compressed()` to serialize it in the NPZ format.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DictionarySerializer</td>
<td>Serializer for dictionary.</td>
</tr>
<tr>
<td>chainer.serializers.NpzDeserializer</td>
<td>Deserializer for NPZ format.</td>
</tr>
<tr>
<td>chainer.serializers.save_npz</td>
<td>Saves an object to the file in NPZ format.</td>
</tr>
<tr>
<td>chainer.serializers.load_npz</td>
<td>Loads an object from the file in NPZ format.</td>
</tr>
</tbody>
</table>

**Note:** Despite of its name, this serializer DOES NOT serialize the object into external files. It just build a flat dictionary of arrays that can be fed into `numpy.savez()` and `numpy.savez_compressed()`. If you want to use this serializer directly, you have to manually send a resulting dictionary to one of these functions.
Methods

__call__(key, value)
__getitem__(key)

save(obj)
   Saves an object by this serializer.
   This is equivalent to obj.serialize(self).
   Parameters: obj – Target object to be serialized.

chainer.serializers.NpzDeserializer

class chainer.serializers.NpzDeserializer(npz, path=", strict=True)
   Deserializer for NPZ format.
   This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by save_npz().
   Parameters:
   • npz – npz file object.
   • path – The base path that the deserialization starts from.
   • strict (bool) – If True, the deserializer raises an error when an expected value is not found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

Methods

__call__(key, value)
__getitem__(key)

load(obj)
   Loads an object from this deserializer.
   This is equivalent to obj.serialize(self).
   Parameters: obj – Target object to be serialized.

chainer.serializers.save_npz

cainer.serializers.save_npz(file, obj, compression=True)
   Saves an object to the file in NPZ format.
   This is a short-cut function to save only one object into an NPZ file.
   Parameters:
   • file (str or file-like) – Target file to write to.
   • obj – Object to be serialized. It must support serialization protocol.
   • compression (bool) – If True, compression in the resulting zip file is enabled.

See also:

chainer.serializers.load_npz()
chainer.serializers.load_npz

chainer.serializers.load_npz(file, obj, path=", strict=True)

Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only one object.

Parameters

- **file**(str or file-like) – File to be loaded.
- **obj** – Object to be deserialized. It must support serialization protocol.
- **path**(str) – The path in the hierarchy of the serialized data under which the data is to be loaded. The default behavior (blank) will load all data under the root path.
- **strict**(bool) – If True, the deserializer raises an error when an expected value is not found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

See also:

chainer.serializers.save_npz()

2.7.2 Serialization in HDF5 format

<table>
<thead>
<tr>
<th>chainer.serializers.HDF5Serializer</th>
<th>Serializer for HDF5 format.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.serializers.HDF5Deserializer</td>
<td>Deserializer for HDF5 format.</td>
</tr>
<tr>
<td>chainer.serializers.save_hdf5</td>
<td>Saves an object to the file in HDF5 format.</td>
</tr>
<tr>
<td>chainer.serializers.load_hdf5</td>
<td>Loads an object from the file in HDF5 format.</td>
</tr>
</tbody>
</table>

chainer.serializers.HDF5Serializer

class chainer.serializers.HDF5Serializer(group, compression=4)

Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply mapped to HDF5 hierarchical groups.

Parameters

- **group**(h5py.Group) – The group that this serializer represents.
- **compression**(int) – Gzip compression level.

Methods

__call__(key, value)

__getitem__(key)

save(obj)

Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters **obj** – Target object to be serialized.
chainer.serializers.HDF5Deserializer

class chainer.serializers.HDF5Deserializer(group, strict=True)

Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by HDF5Serializer.

Parameters

- **group** (h5py.Group) – The group that the deserialization starts from.
- **strict** (bool) – If True, the deserializer raises an error when an expected value is not found in the given HDF5 file. Otherwise, it ignores the value and skip deserialization.

Methods

__call__(key, value)
__getitem__(key)
load(obj)

Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters **obj** – Target object to be serialized.

chainer.serializers.save_hdf5

counter.chainer.serializers.save_hdf5(filename, obj, compression=4)

Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If you want to save multiple objects to one HDF5 file, use HDF5Serializer directly by passing appropriate h5py.Group objects.

Parameters

- **filename** (str) – Target file name.
- **obj** – Object to be serialized. It must support serialization protocol.
- **compression** (int) – Gzip compression level.

Note: Currently save_hdf5() only supports writing to an actual file on file system due to a limitation of HD5F library. See h5py/h5py#687 for details.

See also:

chainer.serializers.load_hdf5()

chainer.serializers.load_hdf5

chainer.serializers.load_hdf5(filename, obj)

Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only one object. If you want to load multiple objects from one HDF5 file, use HDF5Deserializer directly by passing appropriate h5py.Group objects.
Parameters

- **filename** *(str)* – Name of the file to be loaded.
- **obj** – Object to be deserialized. It must support serialization protocol.

**Note:** Currently `load_hdf5()` only supports loading an actual file on file system due to a limitation of HD5F library. See h5py/h5py#687 for details.

See also:

`chainer.serializers.save_hdf5()`

## 2.8 Function hooks

Chainer provides a function-hook mechanism that enriches the behavior of forward and backward propagation of `FunctionNode`

### 2.8.1 Base class

`chainer.FunctionHook`

*class* `chainer.FunctionHook`  
Base class of hooks for Functions.

Function hooks that derive `FunctionHook` are required to implement four methods: `forward_preprocess()`, `forward_postprocess()`, `backward_preprocess()`, and `backward_postprocess()`. By default, these methods do nothing.

Specifically, when `__call__()` method of some function is invoked, `forward_preprocess()` (resp. `forward_postprocess()`) of all function hooks registered to this function are called before (resp. after) forward propagation.

Likewise, when `backward()` of some Variable is invoked, `backward_preprocess()` (resp. `backward_postprocess()`) of all function hooks registered to the function which holds this variable as a gradient are called before (resp. after) backward propagation.

There are two ways to register `FunctionHook` objects to `FunctionNode` objects.

First one is to use `with` statement. Function hooks hooked in this way are registered to all functions within `with` statement and are unregistered at the end of `with` statement.

### Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation procedure with `TimerHook`, which is a subclass of `FunctionHook`.

```python
>>> from chainer import function_hooks
>>> class Model(chainer.Chain):
```

---

2.8. Function hooks 455
In this example, we measure the elapsed times for each forward propagation of all functions in `model1` and `model2` (specifically, `LinearFunction` and `Exp` of `model1` and `model2`). Note that `model3` is not a target of measurement as `TimerHook` is unregistered before forward propagation of `model3`.

**Note:** Chainer stores the dictionary of registered function hooks as a thread local object. So, function hooks registered are different depending on threads.

The other one is to register directly to `FunctionNode` object with `add_hook()` method. Function hooks registered in this way can be removed by `delete_hook()` method. Contrary to former registration method, function hooks are registered only to the function which `add_hook()` is called.

**Parameters**

- **name**(str) – Name of this function hook.

**Methods**

- `__enter__()`
- `__exit__(*_)`
- `added(function=None)`
  
  Callback function invoked when a function hook is added

  **Parameters**

  - **function**(FunctionNode) – Function object to which the function hook is added.

- `backward_postprocess(function, in_data, out_grad)`
  
  Callback function invoked after backward propagation.

  **Parameters**

  - **function**(FunctionNode) – Function object to which the function hook is registered.
  - **in_data**(tuple of numpy.ndarray or tuple of cupy.ndarray) – Input of forward propagation.
  - **out_grad**(tuple of numpy.ndarray or tuple of cupy.ndarray) – Gradient data of backward propagation.
**backward_preprocess** *(function, in_data, out_grad)*

Callback function invoked before backward propagation.

**Parameters**
- **function** *(FunctionNode)* – Function object to which the function hook is registered.
- **in_data** *(tuple of numpy.ndarray or tuple of cupy.ndarray)* – Input data of forward propagation.
- **out_grad** *(tuple of numpy.ndarray or tuple of cupy.ndarray)* – Gradient data of backward propagation.

**deleted** *(function=None)*

Callback function invoked when a function hook is deleted

**Parameters**
- **function** *(FunctionNode)* – Function object to which the function hook is deleted.

**forward_postprocess** *(function, in_data)*

Callback function invoked after forward propagation.

**Parameters**
- **function** *(FunctionNode)* – Function object to which the function hook is registered.
- **in_data** *(tuple of numpy.ndarray or tuple of cupy.ndarray)* – Input data of forward propagation.

**forward_preprocess** *(function, in_data)*

Callback function invoked before forward propagation.

**Parameters**
- **function** *(FunctionNode)* – Function object to which the function hook is registered.
- **in_data** *(tuple of numpy.ndarray or tuple of cupy.ndarray)* – Input data of forward propagation.

### 2.8.2 Concrete function hooks

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.function_hooks.CUDAProfileHook</td>
<td>Function hook for measuring memory usage of functions in cupy memory pool.</td>
</tr>
<tr>
<td>chainer.function_hooks.CupyMemoryProfileHook</td>
<td>Function hook that prints debug information.</td>
</tr>
<tr>
<td>chainer.function_hooks.TimerHook</td>
<td>Function hook for measuring elapsed time of functions.</td>
</tr>
</tbody>
</table>

#### chainer.function_hooks.CUDAProfileHook

**class** chainer.function_hooks.CUDAProfileHook

**Methods**
- __enter__(self)

---

2.8. Function hooks
added (function=None)
Callback function invoked when a function hook is added.

Parameters

- **function** (*FunctionNode*) – Function object to which the function hook is added.

backward_postprocess (function, in_data, out_grad)
backward_preprocess (function, in_data, out_grad)
deleted (function=None)
Callback function invoked when a function hook is deleted.

Parameters

- **function** (*FunctionNode*) – Function object to which the function hook is deleted.

forward_postprocess (function, in_data)
forward_preprocess (function, in_data)

chainer.function_hooks.CupyMemoryProfileHook

class chainer.function_hooks.CupyMemoryProfileHook
Function hook for measuring memory usage of functions in cupy memory pool.

Example

Code example:

```python
from chainer.function_hooks import CupyMemoryProfileHook
hook = CupyMemoryProfileHook()
with hook:
 trainer.run()
hook.print_report()
```

Output example:

<table>
<thead>
<tr>
<th>FunctionName</th>
<th>UsedBytes</th>
<th>AcquiredBytes</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinearFunction</td>
<td>5.16GB</td>
<td>179.98MB</td>
<td>3900</td>
</tr>
<tr>
<td>ReLU</td>
<td>991.82MB</td>
<td>458.97MB</td>
<td>2600</td>
</tr>
<tr>
<td>SoftmaxCrossEntropy</td>
<td>7.71MB</td>
<td>5.08MB</td>
<td>1300</td>
</tr>
<tr>
<td>Accuracy</td>
<td>617.97KB</td>
<td>351.00KB</td>
<td>700</td>
</tr>
</tbody>
</table>

where **FunctionName** is the name of function that calls the hook, and **UsedBytes** is the memory bytes the function used from cupy memory pool, and **AcquiredBytes** is the actual memory bytes the cupy memory pool acquired from GPU device on the function call, and **Occurrence** is the number of calls.

Variables

**call_history** – List of measurement results. It consists of the function that calls this hook, the memory bytes the function used from cupy memory pool, and the memory bytes the cupy memory pool acquired from GPU device on the function call.

Methods

__enter__ ()
__exit__(*_)

added(function=None)

backward_postprocess(function, in_data, out_grad)

backward_preprocess(function, in_data, out_grad)

deleted(function=None)

forward_postprocess(function, in_data)

forward_preprocess(function, in_data)

print_report(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

Prints a summary report of memory profiling in functions.

summary()

Returns a summary of memory profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
used_bytes, acquired_bytes, and occurrence.

total_acquired_bytes()

Returns total bytes that cupy memory pool acquired from GPU.

total_used_bytes()

Returns total bytes that functions used from cupy memory pool.

cracker.function_hooks.PrintHook

class cracker.function_hooks.PrintHook

Function hook that prints debug information.

This function hook outputs the debug information of input arguments of forward and backward methods
involved in the hooked functions at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions at every function to be inspected, we
can show the information of all functions involved with single with statement.

Further, this hook enables us to show the information of backward methods without inserting print functions
into Chainer’s library code.

Variables

• sep – Separator of print function.

• end – Character to be added at the end of print function.

• file – Output file_like object that that redirect to.

• flush – If True, this hook forcibly flushes the text stream at the end of preprocessing.

Example

The basic usage is to use it with with statement.

```python
>>> from cracker import function_hooks
>>> l = L.Linear(10, 10)
>>> x = cracker.Variable(np.zeros((1, 10), 'f'))
>>> with cracker.function_hooks.PrintHook():
```

2.8. Function hooks 459
In this example, PrintHook shows the debug information of forward propagation of LinearFunction (which is implicitly called by \( l \)) and Sum (called by \( F\).sum) and backward propagation of \( z \) and \( y \).

### Methods

**\_\_enter\_\_()**

**\_\_exit\_\_(\*)**

**\_\_add\_\_(function=None)**

Callback function invoked when a function hook is added

- **Parameters**
  - **function** (*FunctionNode*) – Function object to which the function hook is added.

**backward\_postprocess (function, in\_data, out\_grad)**

Callback function invoked after backward propagation.

- **Parameters**
  - **function** (*FunctionNode*) – Function object to which the function hook is registered.
  - **in\_data** (*tuple of numpy.ndarray or tuple of cupy.ndarray*) – Input of forward propagation.
  - **out\_grad** (*tuple of numpy.ndarray or tuple of cupy.ndarray*) – Gradient data of backward propagation.

**backward\_preprocess (function, in\_data, out\_grad)**

Deleted

- **Parameters**
  - **function** (*FunctionNode*) – Function object to which the function hook is deleted.

**forward\_postprocess (function, in\_data)**

Callback function invoked after forward propagation.

- **Parameters**
  - **function** (*FunctionNode*) – Function object to which the function hook is registered.
  - **in\_data** (*tuple of numpy.ndarray or tuple of cupy.ndarray*) – Input data of forward propagation.

**forward\_preprocess (function, in\_data)**

- **Parameters**
  - **function** (*FunctionNode*) – Function object to which the function hook is registered.

---

**chainer.function\_hooks.TimerHook**

**class** chainer.function\_hooks.TimerHook

Function hook for measuring elapsed time of functions.
Example

Code example:

```python
from chainer.function_hooks import TimerHook
hook = TimerHook()
with hook:
 trainer.run()
hook.print_report()
```

Output example:

<table>
<thead>
<tr>
<th>FunctionName</th>
<th>ElapsedTime</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinearFunction</td>
<td>1.24sec</td>
<td>3900</td>
</tr>
<tr>
<td>ReLU</td>
<td>593.05ms</td>
<td>2600</td>
</tr>
<tr>
<td>SoftmaxCrossEntropy</td>
<td>824.11ms</td>
<td>1300</td>
</tr>
<tr>
<td>Accuracy</td>
<td>176.54ms</td>
<td>700</td>
</tr>
</tbody>
</table>

where `FunctionName` is the name of function that calls the hook, and `ElapsedTime` is the elapsed time the function consumed, and `Occurrence` is the number of calls.

Variables `call_history` – List of measurement results. It consists of pairs of the function that calls this hook and the elapsed time the function consumes.

Methods

```python
__enter__()
__exit__(*)
added(function=None)
backward_postprocess(function, in_data, out_grad)
backward_preprocess(function, in_data, out_grad)
deleted(function=None)
forward_postprocess(function, in_data)
forward_preprocess(function, in_data)
print_report(file=<io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)
summary()
```

Returns a summary of time profiling in functions.

```
Returns A summarized dictionary whose keys are function names and values are dictionaries of elapsed_time and occurrence.
```

```
total_time()
Returns total elapsed time in seconds.
```
2.9 Weight Initializers

Weight initializers are used to initialize arrays. They destructively modify the content of `numpy.ndarray` or `cupy.ndarray`. Typically, weight initializers are passed to `Links` to initialize their weights and biases.

A weight initializer can be any of the following objects.

- `chainer.Initializer` class instance.
- Python or NumPy scalar or `numpy.ndarray`.
- A callable that takes an array (`numpy.ndarray` or `cupy.ndarray`) and feeds the initial data into it.
- `None`, in which case the default initializer is used. Unless explicitly specified, it is `LeCunNormal` with scale value 1.

2.9.1 Base class

```python
chainer.Initializer

class chainer.Initializer(dtype=None)

Initializes array.

It initializes the given array.

Variables dtype – Data type specifier. It is for type check in __call__ function.

Methods

__call__(array)

Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (numpy.ndarray or cupy.ndarray) – An array to be initialized by this initializer.
```

2.9.2 Concrete initializers

```python
chainer.initializers.Identity
chainer.initializers.Constant
chainer.initializers.Zero
chainer.initializers.One
chainer.initializers.NaN
chainer.initializers.Normal

chainer.initializers.LeCunNormal

Initializes array with the identity matrix.
Initializes array with constant value.
Returns initializer that initializes array with the all-zero array.
Returns initializer that initializes array with the all-one array.
Returns initializer that initializes array with the all-NaN array.
Initializes array with a normal distribution.
Initializes array with scaled Gaussian distribution.
```
chainer.initializers.GlorotNormal

Initializes array with scaled Gaussian distribution.

chainer.initializers.HeNormal

Initializes array with scaled Gaussian distribution.

chainer.initializers.Optogonal

Initializes array with an orthogonal system.

chainer.initializers.Uniform

Initializes array with a scaled uniform distribution.

chainer.initializers.HeUniform

Initializes array with a scaled uniform distribution.

chainer.initializers.GlorotUniform

Initializes array with a scaled uniform distribution.

chainer.initializers.HeUniform

Initializes array with a scaled uniform distribution.

chainer.initializers.Identity

It initializes the given array with the constant multiple of the identity matrix. Note that arrays to be passed must be 2D squared matrices.

Variables

- **scale** (scalar) – A constant to be multiplied to identity matrices.

Methods

___call___(array)

chainer.initializers.Constant

Initializes array with constant value.

Variables

- **fill_value** (scalar or numpy.ndarray or cupy.ndarray) – A constant to be assigned to the initialized array. Broadcast is allowed on this assignment.
- **dtype** – Data type specifier.

Methods

___call___(array)

chainer.initializers.Zero

Returns initializer that initializes array with the all-zero array.

Parameters **dtype** – Data type specifier.

Returns An initialized array.

Return type numpy.ndarray or cupy.ndarray
chainer.initializers.One

chainer.initializers.One(dtype=None)
Returns initializer that initializes array with the all-one array.

Parameters
dtype – Data type specifier.

Returns An initialized array.

Return type numpy.ndarray or cupy.ndarray

chainer.initializers.NaN

chainer.initializers.NaN(dtype=None)
Returns initializer that initializes array with the all-NaN array.

Parameters
dtype – Data type specifier.

Returns An initializer that initializes an array by NaN.

chainer.initializers.Normal

class chainer.initializers.Normal(scale=0.05, dtype=None)
Initializes array with a normal distribution. Each element of the array is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and standard deviation is scale.

Parameters

• scale (float) – Standard deviation of Gaussian distribution.

• dtype – Data type specifier.

Methods

__call__(array)

chainer.initializers.LeCunNormal

class chainer.initializers.LeCunNormal(scale=1.0, dtype=None)
Initializes array with scaled Gaussian distribution. Each element of the array is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and standard deviation is \( scale \times \sqrt{\frac{1}{fan_{in}}} \), where \( fan_{in} \) is the number of input units.


Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.
Methods

___call___(array)

chainer.initializers.GlorotNormal

class chainer.initializers.GlorotNormal(scale=1.0, dtype=None)

Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and standard deviation is \( \text{scale} \times \sqrt{\frac{2}{\text{fan}_{\text{in}} + \text{fan}_{\text{out}}}} \), where \( \text{fan}_{\text{in}} \) and \( \text{fan}_{\text{out}} \) are the number of input and output units, respectively.

Reference: Glorot & Bengio, AISTATS 2010

Parameters

• **scale** (float) – A constant that determines the scale of the standard deviation.

• **dtype** – Data type specifier.

Methods

___call___(array)

chainer.initializers.HeNormal

class chainer.initializers.HeNormal(scale=1.0, dtype=None)

Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and standard deviation is \( \text{scale} \times \sqrt{\frac{2}{\text{fan}_{\text{in}}}} \), where \( \text{fan}_{\text{in}} \) is the number of input units.


Parameters

• **scale** (float) – A constant that determines the scale of the standard deviation.

• **dtype** – Data type specifier.

Methods

___call___(array)

chainer.initializers.Orthogonal

class chainer.initializers.Orthogonal(scale=1.1, dtype=None)

Initializes array with an orthogonal system.

This initializer first makes a matrix of the same shape as the array to be initialized whose elements are drawn independently from standard Gaussian distribution. Next, it applies Singular Value Decomposition (SVD) to the matrix. Then, it initializes the array with either side of resultant orthogonal matrices, depending on the shape of the input array. Finally, the array is multiplied by the constant \( \text{scale} \).
If the `ndim` of the input array is more than 2, we consider the array to be a matrix by concatenating all axes except the first one.

The number of vectors consisting of the orthogonal system (i.e. first element of the shape of the array) must be equal to or smaller than the dimension of each vector (i.e. second element of the shape of the array).

Variables
- `scale (float)` – A constant to be multiplied by.
- `dtype` – Data type specifier.


Methods

```python
__call__(array)
```

**chainer.initializers.Uniform**

```python
class chainer.initializers.Uniform(scale=0.05, dtype=None)
```

Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution $[-scale, scale]$.

Variables
- `scale (float)` – A constant to be multiplied by.
- `dtype` – Data type specifier.

Methods

```python
__call__(array)
```

**chainer.initializers.LeCunUniform**

```python
class chainer.initializers.LeCunUniform(scale=1.0, dtype=None)
```

Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution $[-s, s]$ where $s = scale \times \sqrt{\frac{3}{fan_{in}}}$. Here $fan_{in}$ is the number of input units.


Variables
- `scale (float)` – A constant to be multiplied by.
- `dtype` – Data type specifier.

Methods

```python
__call__(array)
```
chainer.initializers.GlorotUniform

class chainer.initializers.GlorotUniform(scale=1.0, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution \([-s, s]\) where 
\[s = \text{scale} \times \sqrt{\frac{6}{\text{fan}_{\text{in}} + \text{fan}_{\text{out}}}}.\]
Here, \(\text{fan}_{\text{in}}\) and \(\text{fan}_{\text{out}}\) are the number of input and output units, respectively.

Variables
- scale (float) – A constant that determines the scale of the uniform distribution.
- dtype – Data type specifier.

Methods

__call__(array)

chainer.initializers.HeUniform

class chainer.initializers.HeUniform(scale=1.0, dtype=None)
Initializes array with scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution \([-s, s]\) where 
\[s = \text{scale} \times \sqrt{\frac{6}{\text{fan}_{\text{in}}}}.\]
Here, \(\text{fan}_{\text{in}}\) is the number of input units.

Variables
- scale (float) – A constant that determines the scale of the uniform distribution.
- dtype – Data type specifier.

Methods

__call__(array)

2.9.3 Helper function

chainer.initializers.generate_array

Return initialized array.

chainer.initializers.generate_array

chainer.initializers.generate_array(initializer, shape, xp)

Return initialized array.

The algorithms used to make the new values depend on the concrete derived classes. The dtype of a generated array depends on initializer.dtype.

Parameters
- initializer – A callable object that takes numpy.ndarray or cupy.ndarray and edits its value.
- shape (tuple) – Shape of a return array.
**xp (module)** – cupy or numpy.

Returns
An initialized array.

Return type
numpy.ndarray or cupy.ndarray

## 2.10 Dataset examples

The most basic dataset implementation is an array. Both NumPy and CuPy arrays can be used directly as datasets. In many cases, though, the simple arrays are not enough to write the training procedure. In order to cover most of such cases, Chainer provides many built-in implementations of datasets.

These built-in datasets are divided into two groups. One is a group of general datasets. Most of them are wrapper of other datasets to introduce some structures (e.g., tuple or dict) to each data point. The other one is a group of concrete, popular datasets. These concrete examples use the downloading utilities in the `chainer.dataset` module to cache downloaded and converted datasets.

### 2.10.1 General datasets

General datasets are further divided into four types.

The first one is `DictDataset` and `TupleDataset`, both of which combine other datasets and introduce some structures on them.

The second one is `ConcatenatedDataset` and `SubDataset`. `ConcatenatedDataset` represents a concatenation of existing datasets. It can be used to merge datasets and make a larger dataset. `SubDataset` represents a subset of an existing dataset. It can be used to separate a dataset for hold-out validation or cross validation. Convenient functions to make random splits are also provided.

The third one is `TransformDataset`, which wraps around a dataset by applying a function to data indexed from the underlying dataset. It can be used to modify behavior of a dataset that is already prepared.

The last one is a group of domain-specific datasets. Currently, `ImageDataset` and `LabeledImageDataset` are provided for datasets of images.

### DictDataset

`chainer.datasets.DictDataset` Dataset of a dictionary of datasets.

```
chainer.datasets.DictDataset
```

Dataset of a dictionary of datasets.

```
chainer.datasets.DictDataset
```

```python
class chainer.datasets.DictDataset(**datasets)
```

Dataset of a dictionary of datasets.

It combines multiple datasets into one dataset. Each example is represented by a dictionary mapping a key to an example of the corresponding dataset.

**Parameters**

- **datasets** – Underlying datasets. The keys are used as the keys of each example. All datasets must have the same length.
### TupleDataset

```python
class chainer.datasets.TupleDataset(datasets):
 # Dataset of tuples from multiple equal-length datasets.
```

A `TupleDataset` combines multiple equal-length datasets into a single dataset of tuples. The `i`-th tuple contains the `i`-th example from each of the argument datasets, in the same order that they were supplied.

Recall that in Chainer, a dataset is defined as an iterable that supports both `__getitem__` and `__len__`. The `__getitem__` method should support indexing by both an integer and a slice.

As an example, consider creating a `TupleDataset` from two argument datasets `d1 = [8, 0, 5, 1]` and `d2 = [3, 1, 7, 4]` as `tuple_dataset = TupleDataset(d1, d2)`. The `tuple_dataset` will then contain the examples `(8, 3), (0, 1), (5, 7), (1, 4)`. Note that this behavior is similar to that of the built-in `zip()` function.

**Parameters**

- `datasets` – Underlying datasets that will be aggregated. Each dataset must be an iterable that implements `__getitem__` and `__len__`. The `j`-th dataset will be used for the `j`-th item of each example tuple. All datasets must have the same length.

### ConcatenatedDataset

```python
class chainer.datasets.ConcatenatedDataset(datasets):
 # Dataset which concatenates some base datasets.
```

This dataset wraps some base datasets and works as a concatenated dataset. For example, if a base dataset with 10 samples and another base dataset with 20 samples are given, this dataset works as a dataset which has 30 samples.

**Parameters**

- `datasets` – The underlying datasets. Each dataset has to support `__len__()` and `__getitem__()`.

### SubDataset

```python
class chainer.datasets.SubDataset(base_dataset, start, stop):
 # Subset of a base dataset.
```

This class allows for selecting a subset of a base dataset.

**Parameters**

- `base_dataset` – The base dataset.
- `start`, `stop` – The start and end indices for the subset.

---

2.10. Dataset examples

469
Table 2.59 – continued from previous page

<table>
<thead>
<tr>
<th>chainer.datasets.split_dataset</th>
<th>Splits a dataset into two subsets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.datasets.split_dataset_random</td>
<td>Splits a dataset into two subsets randomly.</td>
</tr>
<tr>
<td>chainer.datasets.get_cross_validation_datasets</td>
<td>Creates a set of training/test splits for cross validation.</td>
</tr>
<tr>
<td>chainer.datasets.get_cross_validation_datasets_random</td>
<td>Creates a set of training/test splits for cross validation randomly.</td>
</tr>
</tbody>
</table>

chainer.datasets.SubDataset
class chainer.datasets.SubDataset (dataset, start, finish, order=None)

Subset of a base dataset.

SubDataset defines a subset of a given base dataset. The subset is defined as an interval of indexes, optionally with a given permutation.

If order is given, then the i-th example of this dataset is the order[start + i]-th example of the base dataset, where i is a non-negative integer. If order is not given, then the i-th example of this dataset is the start + i-th example of the base dataset. Negative indexing is also allowed: in this case, the term start + i is replaced by finish + i.

SubDataset is often used to split a dataset into training and validation subsets. The training set is used for training, while the validation set is used to track the generalization performance, i.e. how the learned model works well on unseen data. We can tune hyperparameters (e.g. number of hidden units, weight initializers, learning rate, etc.) by comparing the validation performance. Note that we often use another set called test set to measure the quality of the tuned hyperparameter, which can be made by nesting multiple SubDatasets.

There are two ways to make training-validation splits. One is a single split, where the dataset is split just into two subsets. It can be done by split_dataset() or split_dataset_random(). The other one is a k-fold cross validation, in which the dataset is divided into k subsets, and k different splits are generated using each of the k subsets as a validation set and the rest as a training set. It can be done by get_cross_validation_datasets().

Parameters

* dataset – Base dataset.
* start (int) – The first index in the interval.
* finish (int) – The next-to-the-last index in the interval.
* order (sequence of ints) – Permutation of indexes in the base dataset. If this is None, then the ascending order of indexes is used.

Methods

__getitem__(index)

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters

* index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns

If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.
Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__ ()

get_example (i)

chainer.datasets.split_dataset

chainer.datasets.split_dataset (dataset, split_at, order=None)
Splits a dataset into two subsets.

This function creates two instances of SubDataset. These instances do not share any examples, and they together cover all examples of the original dataset.

Parameters

- **dataset** – Dataset to split.
- **split_at** (int) – Position at which the base dataset is split.
- **order** (sequence of ints) – Permutation of indexes in the base dataset. See the document of SubDataset for details.

Returns
Two SubDataset objects. The first subset represents the examples of indexes order[:split_at] while the second subset represents the examples of indexes order[split_at:].

Return type tuple

chainer.datasets.split_dataset_random

chainer.datasets.split_dataset_random (dataset, first_size, seed=None)
Splits a dataset into two subsets randomly.

2.10. Dataset examples
This function creates two instances of `SubDataset`. These instances do not share any examples, and they together cover all examples of the original dataset. The split is automatically done randomly.

**Parameters**

- `dataset` – Dataset to split.
- `first_size (int)` – Size of the first subset.
- `seed (int)` – Seed the generator used for the permutation of indexes. If an integer being convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the given dataset always belongs to a specific subset. If `None`, the permutation is changed randomly.

**Returns** Two `SubDataset` objects. The first subset contains `first_size` examples randomly chosen from the dataset without replacement, and the second subset contains the rest of the dataset.

**Return type** `tuple`

**chainer.datasets.get_cross_validation_datasets**

`chainer.datasets.get_cross_validation_datasets (dataset, n_fold, order=None)`

Creates a set of training/test splits for cross validation.

This function generates `n_fold` splits of the given dataset. The first part of each split corresponds to the training dataset, while the second part to the test dataset. No pairs of test datasets share any examples, and all test datasets together cover the whole base dataset. Each test dataset contains almost same number of examples (the numbers may differ up to 1).

**Parameters**

- `dataset` – Dataset to split.
- `n_fold (int)` – Number of splits for cross validation.
- `order (sequence of ints)` – Order of indexes with which each split is determined. If it is `None`, then no permutation is used.

**Returns** List of dataset splits.

**Return type** `list of tuples`

**chainer.datasets.get_cross_validation_datasets_random**

`chainer.datasets.get_cross_validation_datasets_random (dataset, n_fold, seed=None)`

Creates a set of training/test splits for cross validation randomly.

This function acts almost same as `get_cross_validation_dataset()`, except automatically generating random permutation.

**Parameters**

- `dataset` – Dataset to split.
- `n_fold (int)` – Number of splits for cross validation.
- `seed (int)` – Seed the generator used for the permutation of indexes. If an integer being convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the given dataset always belongs to a specific subset. If `None`, the permutation is changed randomly.
Returns  List of dataset splits.

Return type  list of tuples

TransformDataset

chainer.datasets.TransformDataset

Dataset that indexes the base dataset and transforms the data.

class chainer.datasets.TransformDataset (dataset, transform)

This dataset wraps the base dataset by modifying the behavior of the base dataset's `__getitem__()`. Arrays returned by `__getitem__()` of the base dataset with integer as an argument are transformed by the given function `transform`. Also, `__len__()` returns the integer returned by the base dataset's `__len__()`.

The function `transform` takes, as an argument, `in_data`, which is the output of the base dataset's `__getitem__()`, and returns the transformed arrays as output. Please see the following example.

```python
>>> from chainer.datasets import get_mnist
>>> from chainer.datasets import TransformDataset

>>> dataset, _ = get_mnist()
>>> def transform(in_data):
... img, label = in_data
... img -= 0.5 # scale to [-0.5, -0.5]
... return img, label

>>> dataset = TransformDataset(dataset, transform)
```

Parameters

- **dataset** – The underlying dataset. The index of this dataset corresponds to the index of the base dataset. This object needs to support functions `__getitem__()` and `__len__()` as described above.

- **transform** (callable) – A function that is called to transform values returned by the underlying dataset's `__getitem__()`.

Methods

- **__getitem__(index)**

  Returns an example or a sequence of examples.

  It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

  Parameters `index` (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

  Returns  If index is int, returns an example created by `get_example`. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by `get_example`.

Example
```python
>>> import numpy
>>> from chainer import
dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]

>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

**ImageData**

`chainer.datasets.ImageDataset` — Dataset of images built from a list of paths to image files.

This dataset reads an external image file on every call of the `__getitem__()` operator. The paths to the image to retrieve is given as either a list of strings or a text file that contains paths in distinct lines.

Each image is automatically converted to arrays of shape `channels, height, width`, where `channels` represents the number of channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color images).

**Note:** This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow (e.g. by using the command `pip install Pillow`). Be careful to prepare appropriate libraries for image formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

**Warning:** You are responsible for preprocessing the images before feeding them to a model. For example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale images.

**Parameters**
• **paths** (*str or list of strs*) – If it is a string, it is a path to a text file that contains paths to images in distinct lines. If it is a list of paths, the i-th element represents the path to the i-th image. In both cases, each path is a relative one from the root path given by another argument.

• **root** (*str*) – Root directory to retrieve images from.

• **dtype** – Data type of resulting image arrays.

**Methods**

**__getitem__**(index)

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the `get_example()` method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

**Parameters**

- **index** (*int, slice, list or numpy.ndarray*) – An index of an example or indexes of examples.

**Returns**

- If index is int, returns an example created by `get_example`. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by `get_example`.

**Example**

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

**__len__()**

**get_example**(i)

**LabeledImageDataset**

2.10. Dataset examples
chainer.datasets.LabeledImageDataset

class chainer.datasets.LabeledImageDataset(pairs, root='.', dtype=<class 'numpy.float32'>, label_dtype=<class 'numpy.int32'>)

Dataset of image and label pairs built from a list of paths and labels.

This dataset reads an external image file like ImageDataset. The difference from ImageDataset is that this dataset also returns a label integer. The paths and labels are given as either a list of pairs or a text file contains paths/labels pairs in distinct lines. In the latter case, each path and corresponding label are separated by white spaces. This format is same as one used in Caffe.

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow (e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale images.

Parameters

- **pairs** *(str or list of tuples)* – If it is a string, it is a path to a text file that contains paths to images in distinct lines. If it is a list of pairs, the i-th element represents a pair of the path to the i-th image and the corresponding label. In both cases, each path is a relative one from the root path given by another argument.
- **root** *(str)* – Root directory to retrieve images from.
- **dtype** – Data type of resulting image arrays.
- **label_dtype** – Data type of the labels.

Methods

__getitem__(index)

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters **index** *(int, slice, list or numpy.ndarray)* – An index of an example or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.
Example

```python
>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
... >>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
```

__len__()
get_example(i)

2.10.2 Concrete datasets

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chainer.datasets.get_mnist</code></td>
<td>Gets the MNIST dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_cifar10</code></td>
<td>Gets the CIFAR-10 dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_cifar100</code></td>
<td>Gets the CIFAR-100 dataset.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_ptb_words</code></td>
<td>Gets the Penn Tree Bank dataset as long word sequences.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_ptb_words_vocabulary</code></td>
<td>Gets the Penn Tree Bank word vocabulary.</td>
</tr>
<tr>
<td><code>chainer.datasets.get_svhn</code></td>
<td>Gets the SVHN dataset.</td>
</tr>
</tbody>
</table>

`chainer.datasets.get_mnist`

`chainer.datasets.get_mnist(withlabel=True, ndim=1, scale=1.0, dtype=<class 'numpy.float32'>, label_dtype=<class 'numpy.int32'>, rgb_format=False)`

Gets the MNIST dataset.

**MNIST** is a set of hand-written digits represented by grey-scale 28x28 images. In the original images, each pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official MNIST dataset. If `withlabel` is `True`, each dataset consists of tuples of images and labels, otherwise it only consists of images.

**Parameters**

- **withlabel (bool)**: If `True`, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
chainer.datasets.get_cifar10

chainer.datasets.get_cifar10(withlabel=True, ndim=3, scale=1.0)

Gets the CIFAR-10 dataset.

CIFAR-10 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into 10 groups. In the original images, each component of pixels is represented by one-byte unsigned integer. This function scales the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official CIFAR-10 dataset. If withlabel is True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

- `withlabel (bool)` — If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
- `ndim (int)` — Number of dimensions of each image. The shape of each image is determined depending on ndim as follows:
  - `ndim == 1`: the shape is (3072,)
  - `ndim == 3`: the shape is (3, 32, 32)
- `scale (float)` — Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0, 1].

Returns A tuple of two datasets. If withlabel is True, both datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.

cghainer.datasets.get_cifar100

cghainer.datasets.get_cifar100(withlabel=True, ndim=3, scale=1.0)

Gets the CIFAR-100 dataset.

CIFAR-100 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into 100 groups. In the original images, each component pixels is represented by one-byte unsigned integer. This function scales the components to floating point values in the interval [0, scale].

Parameters

- `withlabel (bool)` — If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
- `ndim (int)` — Number of dimensions of each image. The shape of each image is determined depending on ndim as follows:
  - `ndim == 1`: the shape is (3072,)
  - `ndim == 3`: the shape is (3, 32, 32)
- `scale (float)` — Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0, 1].

Returns A tuple of two datasets. If withlabel is True, both datasets are `TupleDataset` instances. Otherwise, both datasets are arrays of images.
This function returns the training set and the test set of the official CIFAR-100 dataset. If \texttt{withlabel} is \texttt{True}, each dataset consists of tuples of images and labels, otherwise it only consists of images.

**Parameters**

- **\texttt{withlabel} (bool)** – If \texttt{True}, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
- **\texttt{ndim} (int)** – Number of dimensions of each image. The shape of each image is determined depending on \texttt{ndim} as follows:
  - \texttt{ndim == 1}: the shape is \( (3072,) \)
  - \texttt{ndim == 3}: the shape is \( (3, 32, 32) \)
- **\texttt{scale} (float)** – Pixel value scale. If it is 1 (default), pixels are scaled to the interval \([0, 1]\).

**Returns** A tuple of two datasets. If \texttt{withlabel} is \texttt{True}, both are \texttt{TupleDataset} instances. Otherwise, both datasets are arrays of images.

**chainer.datasets.get_ptb_words**

\texttt{chainer.datasets.get_ptb_words()}

Gets the Penn Tree Bank dataset as long word sequences.

- **Penn Tree Bank** is originally a corpus of English sentences with linguistic structure annotations. This function uses a variant distributed at \url{https://github.com/wojzaremba/lstm}, which omits the annotation and splits the dataset into three parts: training, validation, and test.

This function returns the training, validation, and test sets, each of which is represented as a long array of word IDs. All sentences in the dataset are concatenated by End-of-Sentence mark ‘<eos>‘, which is treated as one of the vocabulary.

**Returns** Int32 vectors of word IDs.

**Return type** tuple of numpy.ndarray

**See also:**

Use \texttt{get_ptb_words_vocabulary()} to get the mapping between the words and word IDs.

**chainer.datasets.get_ptb_words_vocabulary**

\texttt{chainer.datasets.get_ptb_words_vocabulary()}

Gets the Penn Tree Bank word vocabulary.

**Returns** Dictionary that maps words to corresponding word IDs. The IDs are used in the Penn Tree Bank long sequence datasets.

**Return type** dict

**See also:**

See \texttt{get_ptb_words()} for the actual datasets.

**chainer.datasets.get_svhn**

\texttt{chainer.datasets.get_svhn(\texttt{withlabel=True}, \texttt{scale=1.0}, \texttt{dtype=class 'numpy.float32'}, \texttt{label_dtype=class 'numpy.int32'})}

Gets the SVHN dataset.
The Street View House Numbers (SVHN) dataset is a dataset similar to MNIST but composed of cropped images of house numbers. The functionality of this function is identical to the counterpart for the MNIST dataset (get_mnist()), with the exception that there is no ndim argument.

**Note:** SciPy is required to use this feature.

### Parameters

- **withlabel (bool)** – If True, it returns datasets with labels. In this case, each example is a tuple of an image and a label. Otherwise, the datasets only contain images.
- **scale (float)** – Pixel value scale. If it is 1 (default), pixels are scaled to the interval \([0, 1]\).
- **dtype** – Data type of resulting image arrays.
- **label_dtype** – Data type of the labels.

**Returns** A tuple of two datasets. If withlabel is True, both datasets are TupleDataset instances. Otherwise, both datasets are arrays of images.

### 2.11 Iterator examples

Chainer provides some iterators that implement typical strategies to create mini-batches by iterating over datasets. *SerialIterator* is the simplest one, which extract mini batches in the main thread. *MultiprocessIterator* is a parallelized version of *SerialIterator*. It maintains worker subprocesses to load the next mini-batch in parallel.

<table>
<thead>
<tr>
<th>Dataset iterator that serially reads the examples.</th>
<th>Dataset iterator that loads examples in parallel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.iterators.SerialIterator</td>
<td>chainer.iterators.MultiprocessIterator</td>
</tr>
</tbody>
</table>

#### 2.11.1 chainer.iterators.SerialIterator

**class** chainer.iterators.SerialIterator (*dataset*, *batch_size*, *repeat=True*, *shuffle=True*)  
Dataset iterator that serially reads the examples.

This is a simple implementation of *Iterator* that just visits each example in either the order of indexes or a shuffled order.

To avoid unintentional performance degradation, the `shuffle` option is set to `True` by default. For validation, it is better to set it to `False` when the underlying dataset supports fast slicing. If the order of examples has an important meaning and the updater depends on the original order, this option should be set to `False`.

This iterator saves \(-1\) instead of `None` in snapshots since some serializers do not support `None`.

**Parameters**

- **dataset** – Dataset to iterate.
- **batch_size (int)** – Number of examples within each batch.
- **repeat (bool)** – If True, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.
- **shuffle** (*bool*) – If `True`, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes.

### Methods

```python
__next__()
__iter__()
finalize()
next()
reset()
serialize(serializer)
```

#### 2.11.2 `chainer.iteratorsMultiprocessIterator`

```python
class chainer.iterators.MultiprocessIterator(dataset, batch_size, repeat=True, shuffle=True, n_processes=None, n_prefetch=1, shared_mem=None)
```

Dataset iterator that loads examples in parallel.

This is an implementation of `Iterator` that loads examples with worker processes. It uses the standard `multiprocessing` module to parallelize the loading. The dataset is sent to the worker processes in the standard way using pickle.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current batch is returned.

This iterator saves `-1` instead of `None` in snapshots since some serializers do not support `None`.

**Parameters**

- **dataset** (*Dataset*) – Dataset to iterate.
- **batch_size** (*int*) – Number of examples within each batch.
- **repeat** (*bool*) – If `True`, it infinitely loops over the dataset. Otherwise, it stops iteration at the end of the first epoch.
- **shuffle** (*bool*) – If `True`, the order of examples is shuffled at the beginning of each epoch. Otherwise, examples are extracted in the order of indexes.
- **n_processes** (*int*) – Number of worker processes. The number of CPUs is used by default.
- **n_prefetch** (*int*) – Number of prefetch batches.
- **shared_mem** (*int*) – The size of using shared memory per data. If `None`, size is adjusted automatically.
2.12 Trainer extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.training.extensions.dump_graph</td>
<td>Returns a trainer extension to dump a computational graph.</td>
</tr>
<tr>
<td>chainer.training.extensions.Evaluator</td>
<td>Trainer extension to evaluate models on a validation set.</td>
</tr>
<tr>
<td>chainer.training.extensions.ExponentialShift</td>
<td>Trainer extension to exponentially shift an optimizer attribute.</td>
</tr>
<tr>
<td>chainer.training.extensions.LinearShift</td>
<td>Trainer extension to change an optimizer attribute linearly.</td>
</tr>
<tr>
<td>chainer.training.extensions.LogReport</td>
<td>Trainer extension to output the accumulated results to a log file.</td>
</tr>
<tr>
<td>chainer.training.extensions.observe_lr</td>
<td>Returns a trainer extension to record the learning rate.</td>
</tr>
<tr>
<td>chainer.training.extensions.observe_value</td>
<td>Returns a trainer extension to continuously record a value.</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot</td>
<td>Returns a trainer extension to take snapshots of the trainer.</td>
</tr>
<tr>
<td>chainer.training.extensions.snapshot_object</td>
<td>Returns a trainer extension to take snapshots of a given object.</td>
</tr>
<tr>
<td>chainer.training.extensions.PlotReport</td>
<td>Trainer extension to output plots.</td>
</tr>
<tr>
<td>chainer.training.extensions.PrintReport</td>
<td>Trainer extension to print the accumulated results.</td>
</tr>
<tr>
<td>chainer.training.extensions.ProgressBar</td>
<td>Trainer extension to print a progress bar and recent training status.</td>
</tr>
</tbody>
</table>

2.12.1 chainer.training.extensions.dump_graph

chainer.training.extensions.dump_graph(root_name, out_name='cg.dot', variable_style=None, function_style=None)

Returns a trainer extension to dump a computational graph.

This extension dumps a computational graph. The graph is output in DOT language.

It only dumps a graph at the first invocation.

**Note:** As of v2.0.0, the computational graph is not kept by default. This extension changes this behavior until the first invocation. **It is strongly recommended to use it with the default trigger setting.**

The detailed behavior of this extension since v2.0.0 is as follows.

1. In its initializer, it turns on the chainer.config.keep_graph_on_report flag.
2. At the first iteration, it dumps the graph using the graph held by the reported variable.

3. After dumping the graph, it turns off the flag (if it was originally turned off) so that any variable reported afterward does not hold a computational graph.

When the `keep_graph_on_report` flag is turned on, the computational graph created by the updater is kept during the invocation of extensions. It will cause an unnecessarily large memory consumption when an extension also uses a large amount of memory, e.g. `Evaluator`.

With the default setting, the `dump_graph` extension is called at the first iteration. Since `Evaluator` is not called at the first iteration in most cases, it does not cause any memory problem.

**Parameters**

- `root_name (str)` – Name of the root of the computational graph. The root variable is retrieved by this name from the observation dictionary of the trainer.
- `out_name (str)` – Output file name.
- `variable_style (dict)` – Dot node style for variables. Each variable is rendered by an octagon by default.
- `function_style (dict)` – Dot node style for functions. Each function is rendered by a rectangular by default.

See also:

See `build_computational_graph()` for the `variable_style` and `function_style` arguments.

### 2.12.2 `chainer.training.extensions.Evaluator`  

```python
class chainer.training.extensions.Evaluator(iterator, target, converter=<function concat_examples>, device=None, eval_hook=None, eval_func=None)
```

Trainer extension to evaluate models on a validation set.

This extension evaluates the current models by a given evaluation function. It creates a `Reporter` object to store values observed in the evaluation function on each iteration. The report for all iterations are aggregated to `DictSummary`. The collected mean values are further reported to the reporter object of the trainer, where the name of each observation is prefixed by the evaluator name. See `Reporter` for details in naming rules of the reports.

Evaluator has a structure to customize similar to that of `StandardUpdater`. The main differences are:

- There are no optimizers in an evaluator. Instead, it holds links to evaluate.
- An evaluation loop function is used instead of an update function.
- Preparation routine can be customized, which is called before each evaluation. It can be used, e.g., to initialize the state of stateful recurrent networks.

There are two ways to modify the evaluation behavior besides setting a custom evaluation function. One is by setting a custom evaluation loop via the `eval_func` argument. The other is by inheriting this class and overriding the `evaluate()` method. In latter case, users have to create and handle a reporter object manually. Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation. In both cases, the functions are called in testing mode (i.e., `chainer.config.train` is set to `False`).

This extension is called at the end of each epoch by default.

**Parameters**
• **iterator** – Dataset iterator for the validation dataset. It can also be a dictionary of iterators. If this is just an iterator, the iterator is registered by the name ‘main’.

• **target** – Link object or a dictionary of links to evaluate. If this is just a link object, the link is registered by the name ‘main’.

• **converter** – Converter function to build input arrays. `concat_examples()` is used by default.

• **device** – Device to which the training data is sent. Negative value indicates the host memory (CPU).

• **eval_hook** – Function to prepare for each evaluation process. It is called at the beginning of the evaluation. The evaluator extension object is passed at each call.

• **eval_func** – Evaluation function called at each iteration. The target link to evaluate as a callable is used by default.

**Variables**

• **converter** – Converter function.

• **device** – Device to which the training data is sent.

• **eval_hook** – Function to prepare for each evaluation process.

• **eval_func** – Evaluation function called at each iteration.

**Methods**

```python
__call__(trainer=None)
```

Executes the evaluator extension.

Unlike usual extensions, this extension can be executed without passing a trainer object. This extension reports the performance on validation dataset using the `report()` function. Thus, users can use this extension independently from any trainer by manually configuring a `Reporter` object.

*Parameters*

- **trainer** *(Trainer)* – Trainer object that invokes this extension. It can be omitted in case of calling this extension manually.

*Returns*  Result dictionary that contains mean statistics of values reported by the evaluation function.

*Return type*  `dict`

```python
evaluate()
```

Evaluates the model and returns a result dictionary.

This method runs the evaluation loop over the validation dataset. It accumulates the reported values to `DictSummary` and returns a dictionary whose values are means computed by the summary.

Users can override this method to customize the evaluation routine.

*Note:* This method encloses `eval_func` calls with `function.no_backprop_mode()` context, so all calculations using `FunctionNodes` inside `eval_func` do not make computational graphs. It is for reducing the memory consumption.

*Returns*  Result dictionary. This dictionary is further reported via `report()` without specifying any observer.
Return type  dict

finalize()
Finalizes the evaluator object.
This method calls the finalize method of each iterator that this evaluator has. It is called at the end of
training loops.

get_all_iterators()
Returns a dictionary of all iterators.

get_all_targets()
Returns a dictionary of all target links.

get_iterator(name)
Returns the iterator of the given name.

get_target(name)
Returns the target link of the given name.

initialize(trainer)
Initializes up the trainer state.
This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters
trainer (Trainer) – Trainer object that runs the training loop.

serialize(serializer)
Serializes the extension state.
It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

2.12.3 chainer.training.extensions.ExponentialShift

class chainer.training.extensions.ExponentialShift(attr, rate, init=None, target=None, optimizer=None)

Trainer extension to exponentially shift an optimizer attribute.

This extension exponentially increases or decreases the specified attribute of the optimizer. The typical use case
is an exponential decay of the learning rate.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• rate (float) – Rate of the exponential shift. This value is multiplied to the attribute at
each call.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.
• **target** (*float*) – Target value of the attribute. If the attribute reaches this value, the shift stops.

• **optimizer** (*Optimizer*) – Target optimizer to adjust the attribute. If it is *None*, the main optimizer of the updater is used.

### Methods

`__call__` *(trainer)*

Finalizes the extension.

This method is called at the end of the training loop.

`initialize` *(trainer)*

`serialize` *(serializer)*

#### 2.12.4 chainer.training.extensions.LinearShift

```python
class chainer.training.extensions.LinearShift(attr, value_range, time_range, optimizer=None)
```

Trainer extension to change an optimizer attribute linearly.

This extension changes an optimizer attribute from the first value to the last value linearly within a specified duration. The typical use case is warming up of the momentum coefficient.

For example, suppose that this extension is called at every iteration, and `value_range == (x, y)` and `time_range == (i, j)`. Then, this extension keeps the attribute to be `x` up to the `i`-th iteration, linearly shifts the value to `y` by the `j`-th iteration, and then keeps the value to be `y` after the `j`-th iteration.

This extension is also called before the training loop starts by default.

### Parameters

• **attr** (*str*) – Name of the optimizer attribute to adjust.

• **value_range** (*tuple of float*) – The first and the last values of the attribute.

• **time_range** (*tuple of ints*) – The first and last counts of calls in which the attribute is adjusted.

• **optimizer** (*Optimizer*) – Target optimizer object. If it is *None*, the main optimizer of the trainer is used.

### Methods

`__call__` *(trainer)*

Finalizes the extension.

This method is called at the end of the training loop.

`initialize` *(trainer)*

`serialize` *(serializer)*
2.12.5 chainer.training.extensions.LogReport

```python
class chainer.training.extensions.LogReport (keys=None, trigger=(1, 'epoch'), postprocess=None, log_name='log')
```

Trainer extension to output the accumulated results to a log file.

This extension accumulates the observations of the trainer to :class:`DictSummary` at a regular interval specified by a supplied trigger, and writes them into a log file in JSON format.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes a new fresh summary object which is used until the next time that the trigger fires.

It also adds some entries to each result dictionary.

- 'epoch' and 'iteration' are the epoch and iteration counts at the output, respectively.
- 'elapsed_time' is the elapsed time in seconds since the training begins. The value is taken from :attr:`Trainer.elapsed_time`.

**Parameters**

- **keys** ([iterable of str]) – Keys of values to accumulate. If this is None, all the values are accumulated and output to the log file.
- **trigger** – Trigger that decides when to aggregate the result and output the values. This is distinct from the trigger of this extension itself. If it is a tuple in the form \(<\text{int}>, \ 'epoch'\ or \<\text{int}>, \ 'iteration'\), it is passed to :class:`IntervalTrigger`.
- **postprocess** – Callback to postprocess the result dictionaries. Each result dictionary is passed to this callback on the output. This callback can modify the result dictionaries, which are used to output to the log file.
- **log_name** (str) – Name of the log file under the output directory. It can be a format string: the last result dictionary is passed for the formatting. For example, users can use '{iteration}' to separate the log files for different iterations. If the log name is None, it does not output the log to any file.

**Methods**

- **__call__(trainer)**
- **finalize()**
  Finalizes the extension.
  This method is called at the end of the training loop.
- **initialize(trainer)**
  Initializes up the trainer state.
  This method is called before entering the training loop. An extension that modifies the state of :class:`Trainer` can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, :class:`ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension.
to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize`
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- `trainer` (Trainer) – Trainer object that runs the training loop.
- `serialize` (serializer)

## 2.12.6 chainer.training.extensions.observe_lr

`chainer.training.extensions.observe_lr` (optimizer_name='main', observation_key='lr')

Returns a trainer extension to record the learning rate.

Parameters

- `optimizer_name` (str) – Name of optimizer whose learning rate is recorded.
- `observation_key` (str) – Key of observation to record.

Returns

The extension function.

## 2.12.7 chainer.training.extensions.observe_value

`chainer.training.extensions.observe_value` (observation_key, target_func)

Returns a trainer extension to continuously record a value.

Parameters

- `observation_key` (str) – Key of observation to record.
- `target_func` (function) – Function that returns the value to record. It must take one

Returns

The extension function.

## 2.12.8 chainer.training.extensions.snapshot

`chainer.training.extensions.snapshot` (savefun=<function save_npz>,
   file_name='snapshot_iter_{.updater.iteration}')

Returns a trainer extension to take snapshots of the trainer.

This extension serializes the trainer object and saves it to the output directory. It is used to support resuming the
training loop from the saved state.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object
specifying the required interval can be passed along with this extension to the `extend()` method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

Note: This extension first writes the serialized object to a temporary file and then rename it to the target file
name. Thus, if the program stops right before the renaming, the temporary file might be left in the output
directory.

Parameters

- `savefun` – Function to save the trainer. It takes two arguments: the output file path and
  the trainer object.
• **filename** (*str*) – Name of the file into which the trainer is serialized. It can be a format string, where the trainer object is passed to the `str.format()` method.

### 2.12.9 chainer.training.extensions.snapshot_object

`chainer.training.extensions.snapshot_object(target, filename, savefun=<function save_npz>)`

Returns a trainer extension to take snapshots of a given object.

This extension serializes the given object and saves it to the output directory.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object specifying the required interval can be passed along with this extension to the `extend()` method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

**Parameters**

- **target** – Object to serialize.
- **filename** (*str*) – Name of the file into which the object is serialized. It can be a format string, where the trainer object is passed to the `str.format()` method. For example, `'snapshot_{.updater.iteration}'` is converted to `'snapshot_10000'` at the 10,000th iteration.
- **savefun** – Function to save the object. It takes two arguments: the output file path and the object to serialize.

**Returns** An extension function.

### 2.12.10 chainer.training.extensions.ParameterStatistics

`class chainer.training.extensions.ParameterStatistics(links, statistics={'max': <function amax at 0x7fb1084de488>, 'mean': <function mean at 0x7fb1084de9d8>, 'min': <function amin at 0x7fb1084de510>, 'percentile': <function ParameterStatistics.<lambda> at 0x7fb10747bd90>, 'std': <function std at 0x7fb1084dea60>, 'zeros': <function ParameterStatistics.<lambda> at 0x7fb10747bd08>}, report_params=True, report_grads=True, prefix=None, trigger=(1, 'epoch'))`

Trainer extension to report parameter statistics.

Statistics are collected and reported for a given *Link* or an iterable of *Links*. If a link contains child links, the statistics are reported separately for each child.

Any function that takes a one-dimensional `numpy.ndarray` or a `cupy.ndarray` and outputs a single or multiple real numbers can be registered to handle the collection of statistics, e.g. `numpy.ndarray.mean()`.
The keys of reported statistics follow the convention of link name followed by parameter name, attribute name and function name, e.g. `VGG16Layers/conv1_1/W/data/mean`. They are prepended with an optional prefix and appended with integer indices if the statistics generating function return multiple values.

**Parameters**

- `links` (*Link or iterable of ~chainer.Link*) – Link(s) containing the parameters to observe. The link is expected to have a `name` attribute which is used as a part of the report key.
- `statistics` (*dict*) – Dictionary with function name to function mappings. The name is a string and is used as a part of the report key. The function is responsible for generating the statistics.
- `report_params` (*bool*) – If True, report statistics for parameter values such as weights and biases.
- `report_grads` (*bool*) – If True, report statistics for parameter gradients.
- `prefix` (*str*) – Optional prefix to prepend to the report keys.
- `trigger` – Trigger that decides when to aggregate the results and report the values.

**Methods**

- `__call__(trainer)`
  Execute the statistics extension.
  Collect statistics for the current state of parameters.
  Note that this method will merely update its statistic summary, unless the internal trigger is fired. If the trigger is fired, the summary will also be reported and then reset for the next accumulation.

  **Parameters**
  
  - `trainer` (*Trainer*) – Associated trainer that invoked this extension.

- `finalize()`
  Finalizes the extension.
  This method is called at the end of the training loop.

- `initialize(trainer)`
  Initializes up the trainer state.
  This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.
  When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

  For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

  **Parameters**
  
  - `trainer` (*Trainer*) – Trainer object that runs the training loop.

- `register_statistics(name, function)`
  Register a function to compute a certain statistic.
  The registered function will be called each time the extension runs and the results will be included in the report.

  **Parameters**
  
  - `name` (*str*)
  - `function` (*function*)
• **name** *(str)* – Name of the statistic.

• **function** – Function to generate the statistic. Any function that takes a one-dimensional `numpy.ndarray` or a `cupy.ndarray` and outputs a single or multiple real numbers is allowed.

**serialize** *(serializer)*

Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

### 2.12.11 chainer.training.extensions.PlotReport

**class** `chainer.training.extensions.PlotReport` *(y_keys, x_key='iteration', trigger=(1, 'epoch'), postprocess=None, file_name='plot.png', marker='x', grid=True)*

Trainer extension to output plots.

This extension accumulates the observations of the trainer to `DictSummary` at a regular interval specified by a supplied trigger, and plot a graph with using them.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used to handle the timing of accumulating the results. It is set to `1, 'iteration'` by default. The other is the trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes a new fresh summary object which is used until the next time that the trigger fires.

It also adds `epoch` and `iteration` entries to each result dictionary, which are the epoch and iteration counts at the output.

---

**Warning:** If your environment needs to specify a backend of matplotlib explicitly, please call `matplotlib.use` before calling `trainer.run`. For example:

```python
import matplotlib
matplotlib.use('Agg')
trainer.extend(
 extensions.PlotReport(["main/loss", 'validation/main/loss'],
 'epoch', file_name='loss.png'))
trainer.run()
```

Then, once one of instances of this extension is called, `matplotlib.use` will have no effect.

For the details, please see here: [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend](http://matplotlib.org/faq/usage_faq.html#what-is-a-backend)

**Parameters**

• **y_keys** *(iterable of strs)* – Keys of values regarded as y. If this is None, nothing is output to the graph.

• **x_key** *(str)* – Keys of values regarded as x. The default value is ‘iteration’.

• **trigger** – Trigger that decides when to aggregate the result and output the values. This is distinct from the trigger of this extension itself. If it is a tuple in the form `<int>, 'epoch'` or `<int>, 'iteration'`, it is passed to `IntervalTrigger`.  

---

2.12. Trainer extensions
• **postprocess** – Callback to postprocess the result dictionaries. Figure object, Axes object, and all plot data are passed to this callback in this order. This callback can modify the figure.

• **file_name** *(str)* – Name of the figure file under the output directory. It can be a format string.

• **marker** *(str)* – The marker used to plot the graph. Default is 'x'. If None is given, it draws with no markers.

• **grid** *(bool)* – Set the axis grid on if True. Default is True.

### Methods

```python
__call__(trainer)
```

**static available()**

**finalize()**

Finalizes the extension.

This method is called at the end of the training loop.

**initialize(trainer)**

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer's hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

**Parameters**

- **trainer** *(Trainer)* – Trainer object that runs the training loop.

```python
serialize(serializer)
```

### 2.12.12 chainer.training.extensions.PrintReport

**class chainer.training.extensions.PrintReport**( **entries**, **log_report='LogReport',**

```
out=<_io.TextIOWrapper name='<stdout>' mode='w',
encoding='UTF-8'>)
```

Trainer extension to print the accumulated results.

This extension uses the log accumulated by a `LogReport` extension to print specified entries of the log in a human-readable format.

**Parameters**

- **entries** *(list of str)* – List of keys of observations to print.

- **log_report** *(str or LogReport)* – Log report to accumulate the observations. This is either the name of a `LogReport` extensions registered to the trainer, or a `LogReport` instance to use internally.

- **out** – Stream to print the bar. Standard output is used by default.
Methods

__call__(trainer)

finalize()

This method is called at the end of the training loop.

initialize(trainer)

Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of `Trainer` can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, `ExponentialShift` extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The `ExponentialShift` extension recovers it in its `initialize` method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters

- **trainer** *(Trainer)* – Trainer object that runs the training loop.

serialize(serializer)

2.12.13 chainer.training.extensions.ProgressBar

class chainer.training.extensions.ProgressBar(training_length=None, update_interval=100, bar_length=50, out=<io.TextIOWrapper name='<stdout>' mode='w', encoding='UTF-8'>)

Trainer extension to print a progress bar and recent training status.

This extension prints a progress bar at every call. It watches the current iteration and epoch to print the bar.

Parameters

- **training_length** *(tuple)* – Length of whole training. It consists of an integer and either 'epoch' or 'iteration'. If this value is omitted and the stop trigger of the trainer is `IntervalTrigger`, this extension uses its attributes to determine the length of the training.
- **update_interval** *(int)* – Number of iterations to skip printing the progress bar.
- **bar_length** *(int)* – Length of the progress bar in characters.
- **out** – Stream to print the bar. Standard output is used by default.

Methods

__call__(trainer)

finalize()

initialize(trainer)

Initializes up the trainer state.
This method is called before entering the training loop. An extension that modifies the state of Trainer can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invocation. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

serialize (serializer)  
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

2.13 Trainer triggers

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BestValueTrigger</td>
<td>Trigger invoked when specific value becomes best.</td>
</tr>
<tr>
<td>IntervalTrigger</td>
<td>Trigger based on a fixed interval.</td>
</tr>
<tr>
<td>ManualScheduleTrigger</td>
<td>Trigger invoked at specified point(s) of iterations or epochs.</td>
</tr>
<tr>
<td>MaxValueTrigger</td>
<td>Trigger invoked when specific value becomes maximum.</td>
</tr>
<tr>
<td>MinValueTrigger</td>
<td>Trigger invoked when specific value becomes minimum.</td>
</tr>
</tbody>
</table>

2.13.1 chainer.training.triggers.BestValueTrigger

class chainer.training.triggers.BestValueTrigger (key, compare, trigger=(1, 'epoch'))  
Trigger invoked when specific value becomes best.

Parameters

- **key** (str): Key of value.
- **compare** (function): Compare function which takes current best value and new value and returns whether new value is better than current best.
- **trigger** – Trigger that decides the comparison interval between current best value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>, 'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)  
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer): Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.
Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

2.13.2 chainer.training.triggers.IntervalTrigger

class chainer.training.triggers.IntervalTrigger(period, unit)

Trigger based on a fixed interval.

This trigger accepts iterations divided by a given interval. There are two ways to specify the interval: per iterations and epochs. Iteration means the number of updates, while epoch means the number of sweeps over the training dataset. Fractional values are allowed if the interval is a number of epochs; the trigger uses the iteration and epoch_detail attributes defined by the updater.

For the description of triggers, see get_trigger().

Parameters

• period (int or float) – Length of the interval. Must be an integer if unit is 'iteration'.
• unit (str) – Unit of the length specified by period. It must be either 'iteration' or 'epoch'.

Methods

__call__(trainer)

Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

2.13.3 chainer.training.triggers.ManualScheduleTrigger

class chainer.training.triggers.ManualScheduleTrigger(points, unit)

Trigger invoked at specified point(s) of iterations or epochs.

This trigger accepts iterations or epochs indicated by given point(s). There are two ways to specify the point(s): iteration and epoch. Iteration means the number of updates, while epoch means the number of sweeps over the training dataset. Fractional values are allowed if the point is a number of epochs; the trigger uses the iteration and epoch_detail attributes defined by the updater.

Parameters

• points (int, float, or list of int or float) – time of the trigger. Must be an integer or list of integer if unit is 'iteration'.
• unit (str) – Unit of the time specified by points. It must be either 'iteration' or 'epoch'.

2.13. Trainer triggers 495
Methods

___call___(trainer)
Decides whether the extension should be called on this iteration.

Parameters

trainer (Trainer) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns

True if the corresponding extension should be invoked in this iteration.

Return type

bool

serialize(serializer)

2.13.4 chainer.training.triggers.MaxValueTrigger

class chainer.training.triggers.MaxValueTrigger(key, trigger=(1, 'epoch'))
Trigger invoked when specific value becomes maximum.

For example you can use this trigger to take snapshot on the epoch the validation accuracy is maximum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes maximum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

___call___(trainer)
Decides whether the extension should be called on this iteration.

Parameters

trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns

True if the corresponding extension should be invoked in this iteration.

Return type

bool

2.13.5 chainer.training.triggers.MinValueTrigger

class chainer.training.triggers.MinValueTrigger(key, trigger=(1, 'epoch'))
Trigger invoked when specific value becomes minimum.

For example you can use this trigger to take snapshot on the epoch the validation loss is minimum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes minimum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.
Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters
trainer (Trainer) – Trainer object that this trigger is associated with. The observation of this trainer is used to determine if the trigger should fire.

Returns
True if the corresponding extension should be invoked in this iteration.

Return type
bool

2.14 Caffe Reference Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities, and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference models in their Model Zoo, one of the reason why this framework gets popular.

Chainer can import the reference models and emulate the network by Link implementations. This functionality is provided by the chainer.links.caffe.CaffeFunction class.

chainer.links.caffe.CaffeFunction Caffe emulator based on the model file of Caffe.

2.15 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by invoking build_computational_graph(). Generated computational graphs are dumped to specified format (Currently Dot Language is supported).

Basic usage is as follows:

```python
import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:
 o.write(g.dump())
```

where vs is list of Variable instances and g is an instance of ComputationalGraph. This code generates the computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of vs.

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from example/imagenet.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainer.computational_graph.build_computational_graph</td>
<td>Builds a graph of functions and variables backward-reachable from outputs.</td>
</tr>
<tr>
<td>chainer.computational_graph.ComputationalGraph</td>
<td>Class that represents computational graph.</td>
</tr>
</tbody>
</table>

2.15. Visualization of Computational Graph
2.15.1 chainer.computational_graph.build_computational_graph

chainer.computational_graph.build_computational_graph(outputs, remove_split=True, variable_style={'fillcolor': '#E0E0E0', 'shape': 'octagon', 'style': 'filled'}, function_style={'fillcolor': '#6495ED', 'shape': 'record', 'style': 'filled'}, rankdir='TB', remove_variable=False, show_name=True)

Builds a graph of functions and variables backward-reachable from outputs.

Parameters

- **outputs (list)** – nodes from which the graph is constructed. Each element of outputs must be either Variable object, VariableNode object, or Function object.

- **remove_split (bool)** – It must be True. This argument is left for backward compatibility.

- **variable_style (dict)** – Dot node style for variable. Possible keys are ‘shape’, ‘color’, ‘fillcolor’, ‘style’, and etc.

- **function_style (dict)** – Dot node style for function.

- **rankdir (str)** – Direction of the graph that must be TB (top to bottom), BT (bottom to top), LR (left to right) or RL (right to left).

- **remove_variable (bool)** – If True, Variables are removed from the resulting computational graph. Only Functions are shown in the output.

- **show_name (bool)** – If True, the name attribute of each node is added to the label of the node. Default is True.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of outputs.

If unchain_backward was called in some variable in the computational graph before this function, backward step is stopped at this variable.
For example, suppose that computational graph is as follows:

```
|--> f ---> y
| -+
|--> g ---> z
```

Let `outputs = [y, z]`. Then the full graph is emitted.

Next, let `outputs = [y]`. Note that `z` and `g` are not backward-reachable from `y`. The resulting graph would be following:

```
x ---> f ---> y
```

See `TestGraphBuilder` for details.

**Return type** *ComputationalGraph*

---

**Note:** The default behavior of `ComputationalGraph` has been changed from v1.23.0, so that it outputs the richest representation of a graph as default, namely, styles are set and names of functions and variables are shown. To reproduce the same result as previous versions (<= v1.22.0), please specify `variable_style=None`, `function_style=None`, and `show_name=False` explicitly.

### 2.15.2 `chainer.computational_graph.ComputationalGraph`

Class that represents computational graph.

**Note:** We assume that the computational graph is directed and acyclic.

**Parameters**

- `nodes (list)` – List of nodes. Each node is either `VariableNode` object or `Function` object.
- `edges (list)` – List of edges. Each edge consists of pair of nodes.
- `variable_style (dict)` – Dot node style for variable.
- `function_style (dict)` – Dot node style for function.
- `rankdir (str)` – Direction of the graph that must be TB (top to bottom), BT (bottom to top), LR (left to right) or RL (right to left).
- `remove_variable (bool)` – If True, `Variables` are removed from the resulting computational graph. Only `Functions` are shown in the output.
- `show_name (bool)` – If True, the `name` attribute of each node is added to the label of the node. Default is True.
Note: The default behavior of **ComputationalGraph** has been changed from v1.23.0, so that it outputs the richest representation of a graph as default, namely, styles are set and names of functions and variables are shown. To reproduce the same result as previous versions (<= v1.22.0), please specify \texttt{variable\_style=None}, \texttt{function\_style=None}, and \texttt{show\_name=False} explicitly.

### Methods

**dump** *(format=’dot’)*  
Dumps graph as a text.  

**Parameters**

- **format** *(str)* – The graph language name of the output.  
- **it must be ‘dot’. (Currently,)** –

**Returns** The graph in specified format.  

**Return type** str

### 2.16 Environment variables

Here are the environment variables Chainer uses.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAINER_CUDNN</td>
<td>Set 0 to disable cuDNN in Chainer. Otherwise cuDNN is enabled automatically.</td>
</tr>
<tr>
<td>CHAINER_SEED</td>
<td>Default seed value of random number generators for CUDA. If it is not set, the seed value is generated from Python random module. Set an integer value in decimal format.</td>
</tr>
<tr>
<td>CHAINER_TYPECHECK</td>
<td>Set 0 to disable type checking. Otherwise type checking is enabled automatically. See Type checking utilities for details.</td>
</tr>
<tr>
<td>CHAINER_DEBUG</td>
<td>Set 1 to enable debug mode. It is disabled by default. In debug mode, Chainer performs various runtime checks that can help debug user’s code at the cost of some overhead. For details, see Debug mode.</td>
</tr>
</tbody>
</table>
CHAPTER 3

API Compatibility Policy

This document explains the design policy on compatibilities of Chainer APIs. Development team should follow this policy on deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers. Users can decide the level of dependencies on Chainer’s implementations in their codes based on this document. Developers should read through this document before creating pull requests that contain changes on the interface. Note that this document may contain ambiguities on the level of supported compatibilities.

3.1 Targeted Versions

This policy is applied to Chainer v2.0.0 and higher. Note that this policy is not applied to Chainer of lower versions. For older versions of Chainer, see the old version of API Compatibility Policy.

3.2 Versioning and Backward Compatibility

The versioning of Chainer follows the PEP 440 and a part of Semantic versioning. See Contribution Guide for details of versioning.

The backward compatibility is kept for revision updates and minor updates, which are applied to the stable version. A major update from the latest release candidate basically keeps the backward compatibility, although it is not guaranteed. Any pre-releases may break the backward compatibility.

3.3 Breaking the Compatibility

We sometimes need to break the backward compatibility to improve the framework design and to support new kinds of machine learning methods. Such a change is only made into pre-releases (alpha, beta, and release candidate) and sometimes into the major update.
A change that breaks the compatibility affects user codes. We try to lower the cost of adapting your code to the newer version. The following list shows an example of what we can do to reduce the cost (Note: this is not a promise; what kind of actions we can take depends on the situation).

- When an argument is removed from an existing API, passing the argument to the updated API will emit an error with a special error message. The error message tells you how to fix your code.
- When a function or a class is removed, we make the current stable version emit a deprecation warning. Note that the deprecation warning is not printed by default in Python. You have to manually turn on the deprecation warning by warnings.simplefilter('always', DeprecationWarning).
- When a definition of a link is changed, we try to enable it to deserialize a model dumped with an older version of Chainer. In most cases, we cannot guarantee that a model serialized with a newer version of Chainer is loadable by an older version of Chainer.

**Note:** Since Chainer v2, we have stopped adopting any solid processes to break backward compatibilities (e.g. a solid schedule for deprecating and removing a feature) in order to keep the development fast enough to support the cutting-edge research. It does not mean we stop taking care of maintainability of user codes. We are still paying much attention to not breaking user codes.

### 3.4 Experimental APIs

Thanks to many contributors, we have introduced many new features to Chainer.

However, we have sometimes released new features only to later notice that their APIs are not appropriate. In particular, we sometimes know that the API is likely to be modified in the near future because we do not have enough knowledge about how well the current design fits to the real usages. The objective of experimental APIs is to declare that the APIs are likely to be updated in the near future so that users can decide if they can(not) use them.

Any newly added API can be marked as experimental. Any API that is not experimental is called stable in this document.

**Note:** Undocumented behaviors are not considered as APIs, so they can be changed at any time (even in a revision update). The treatment of undocumented behaviors are described in Undocumented behaviors section.

When users use experimental APIs for the first time, warnings are raised once for each experimental API, unless users explicitly disable the emission of the warnings in advance.

See the document of chainer.utils.experimental() to know how developers mark APIs as experimental and how users enable or disable the warnings practically.

**Note:** It is up to developers if APIs should be annotated as experimental or not. We recommend to make the APIs experimental if they implement large modules or make a decision from several design choices.

### 3.5 Supported Backward Compatibility

This section defines backward compatibilities that revision updates must maintain.
3.5.1 Documented Interface

Chainer has the official API documentation. Many applications can be written based on the documented features. We support backward compatibilities of documented features. In other words, codes only based on the documented features run correctly with revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes outside of the documented APIs should have one or more underscores at the prefix of their names.

Note: Although it is not stated as a rule, we also try to keep the compatibility for any interface that looks like a stable feature. For example, if the name of a symbol (function, class, method, attribute, etc.) is not prefixed by an underscore and the API is not experimental, the API should be kept over revision updates even if it is not documented.

3.5.2 Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined. Undocumented behaviors are not guaranteed to be stable between different revision versions.

Even revision updates may contain changes to undefined behaviors. One of the typical examples is a bug fix. Another example is an improvement on implementation, which may change the internal object structures not shown in the documentation. As a consequence, even revision updates do not support compatibility of pickling, unless the full layout of pickled objects is clearly documented.

3.5.3 Documentation Error

Compatibility is basically determined based on the documentation, although it sometimes contains errors. It may make the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the documentation errors in any updates that may break the compatibility in regard to the documentation.

Note: Developers should not fix the documentation and implementation of the same functionality at the same time in revision updates as a “bug fix” unless the bug is so critical that no users are expected to be using the old version correctly.

3.5.4 Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other. It does not break the user codes, except the codes depend on how the attributes and properties are implemented.

3.5.5 Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values. It does not break the user codes, except the codes depend on how the methods and callable attributes are implemented.

3.5.6 Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception is raised in the future revision versions with correct usages that the documentation allows.
On the other hand, warnings may be added at any revision updates for any APIs. It means revision updates do not keep backward compatibility of warnings.

### 3.6 Model Format Compatibility

Links and chains serialized by official serializers that Chainer provides are correctly loaded with the future versions. They might not be correctly loaded with Chainer of the lower versions.

**Note:** Current serialization APIs do not support versioning. It prevents us from introducing changes in the layout of objects that support serialization. We are discussing versioning in serialization APIs.

### 3.7 Installation Compatibility

The installation process is another concern of compatibilities.

Any changes on the set of dependent libraries that force modifications on the existing environments should be done in pre-releases and major updates. Such changes include following cases:

- dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)
- adding new mandatory dependencies (e.g. adding h5py to setup_requires)

**Note:** We sometimes have to narrow the supported versions due to bugs in the specific versions of libraries. In such a case, we may drop the support of those versions even in revision updates unless a workaround is found for the issue.
Chapter 4

Contribution Guide

This is a guide for all contributions to Chainer. The development of Chainer is running on the official repository at GitHub. Anyone that wants to register an issue or to send a pull request should read through this document.

Note: Many points of this document are updated at v2. We strongly recommend all contributors of v1 to read through the document again.

4.1 Classification of Contributions

There are several ways to contribute to Chainer community:

1. Registering an issue
2. Sending a pull request (PR)
3. Sending a question/reply to StackOverflow (with chainer tag) or Chainer User Group
4. Open-sourcing an external example
5. Writing a post about Chainer

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

4.2 Development Cycle

This section explains the development process of Chainer. Before contributing to Chainer, it is strongly recommended to understand the development cycle.
4.2.1 Versioning

The versioning of Chainer follows PEP 440 and a part of Semantic versioning. The version number consists of three or four parts: \texttt{X.Y.Zw} where \texttt{X} denotes the major version, \texttt{Y} denotes the minor version, \texttt{Z} denotes the revision number, and the optional \texttt{w} denotes the pre-release suffix. While the major, minor, and revision numbers follow the rule of semantic versioning, the pre-release suffix follows PEP 440 so that the version string is much friendly with Python eco-system.

Note that a major update basically does not contain compatibility-breaking changes from the last release candidate (RC). This is not a strict rule, though; if there is a critical API bug that we have to fix for the major version, we may add breaking changes to the major version up.

As for the backward compatibility, see \texttt{API Compatibility Policy}.

4.2.2 Release Cycle

Starting from v2.0.0, we are developing two tracks of versions at the same time. The first one is the track of stable versions, which is a series of revision updates for the latest major version. The second one is the track of development versions, which is a series of pre-releases for the upcoming major version.

Consider that \texttt{X.0.0} is the latest major version and \texttt{Y.0.0}, \texttt{Z.0.0} are the succeeding major versions. Then, the timeline of the updates is depicted by the following table.

<table>
<thead>
<tr>
<th>Date</th>
<th>ver X</th>
<th>ver Y</th>
<th>ver Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 weeks</td>
<td>X.0.0rc1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4 weeks</td>
<td>X.0.0</td>
<td>Y.0.0a1</td>
<td>–</td>
</tr>
<tr>
<td>8 weeks</td>
<td>X.1.0*</td>
<td>Y.0.0b1</td>
<td>–</td>
</tr>
<tr>
<td>12 weeks</td>
<td>X.2.0*</td>
<td>Y.0.0rc1</td>
<td>–</td>
</tr>
<tr>
<td>16 weeks</td>
<td>–</td>
<td>Y.0.0</td>
<td>Z.0.0a1</td>
</tr>
</tbody>
</table>

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of \texttt{X.0.0rc1}. In particular, each revision/minor release is made four weeks after the previous one of the same major version, and the pre-release of the upcoming major version is made at the same time. Whether these releases are revision or minor is determined based on the contents of each update.

Note that there are only three stable releases for the versions \texttt{X.x.x}. During the parallel development of \texttt{Y.0.0} and \texttt{Z.0.0a1}, the version \texttt{Y} is treated as an almost-stable version and \texttt{Z} is treated as a development version.

If there is a critical bug found in \texttt{X.x.x} after stopping the development of version \texttt{X}, we may release a hot-fix for this version at any time.

We create a milestone for each upcoming release at GitHub. The GitHub milestone is basically used for collecting the issues and PRs resolved in the release.

4.2.3 Git Branches

The \texttt{master} branch is used to develop pre-release versions. It means that alpha, beta, and RC updates are developed at the \texttt{master} branch. This branch contains the most up-to-date source tree that includes features newly added after the latest major version.

The stable version is developed at the individual branch named as \texttt{vN} where “N” reflects the version number (we call it a versioned branch). For example, \texttt{v3.0.0}, \texttt{v3.0.1}, and \texttt{v3.0.2} will be developed at the \texttt{v3} branch.
**Notes for contributors:** When you send a pull request, you basically have to send it to the master branch. If the change can also be applied to the stable version, a core team member will apply the same change to the stable version so that the change is also included in the next revision update.

If the change is only applicable to the stable version and not to the master branch, please send it to the versioned branch. We basically only accept changes to the latest versioned branch (where the stable version is developed) unless the fix is critical.

If you want to make a new feature of the master branch available in the current stable version, please send a backport PR to the stable version (the latest vN branch). See the next section for details.

*Note: a change that can be applied to both branches should be sent to the master branch. Each release of the stable version is also merged to the development version so that the change is also reflected to the next major version.*

### 4.2.4 Feature Backport PRs

We basically do not backport any new features of the development version to the stable versions. If you desire to include the feature to the current stable version and you can work on the backport work, we welcome such a contribution. In such a case, you have to send a backport PR to the latest vN branch. **Note that we do not accept any feature backport PRs to older versions because we are not running quality assurance workflows (e.g. CI) for older versions so that we cannot ensure that the PR is correctly ported.**

There are some rules on sending a backport PR.

- Start the PR title from the prefix `[backport]`.
- Clarify the original PR number in the PR description (something like “This is a backport of #XXXX”).
- (optional) Write to the PR description the motivation of backporting the feature to the stable version.

Please follow these rules when you create a feature backport PR.

*Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are usually backported by core dev members. It is also appreciated to make such a backport PR by any contributors, though, so that the overall development proceeds more smoothly!*

### 4.3 Issues and Pull Requests

In this section, we explain how to file issues and send pull requests (PRs).

#### 4.3.1 Issue/PR Labels

Issues and PRs are labeled by the following tags:

- **Bug**: bug reports (issues) and bug fixes (PRs)
- **Enhancement**: implementation improvements without breaking the interface
- **Feature**: feature requests (issues) and their implementations (PRs)
- **NoCompat**: disrupts backward compatibility
- **Test**: test fixes and updates
- **Document**: document fixes and improvements
- **Example**: fixes and improvements on the examples
- **Install**: fixes installation script
• **Contribution-Welcome**: issues that we request for contribution (only issues are categorized to this)
• **Other**: other issues and PRs

Multiple tags might be labeled to one issue/PR. **Note that revision releases cannot include PRs in Feature and NoCompat categories.**

## 4.3.2 How to File an Issue

On registering an issue, write precise explanations on how you want Chainer to be. Bug reports must include necessary and sufficient conditions to reproduce the bugs. Feature requests must include **what** you want to do (and **why** you want to do, if needed) with Chainer. You can contain your thoughts on **how** to realize it into the feature requests, though **what** part is most important for discussions.

**Warning:** If you have a question on usages of Chainer, it is highly recommended to send a post to StackOverflow or Chainer User Group instead of the issue tracker. The issue tracker is not a place to share knowledge on practices. We may suggest these places and immediately close how-to question issues.

## 4.3.3 How to Send a Pull Request

If you can write code to fix an issue, we encourage to send a PR. First of all, before starting to write any code, do not forget to confirm the following points.

- Read through the **Coding Guidelines** and **Unit Testing**.
- Check the appropriate branch that you should send the PR following **Git Branches**. If you do not have any idea about selecting a branch, please choose the **master** branch.

In particular, **check the branch before writing any code**. The current source tree of the chosen branch is the starting point of your change.

After writing your code (**including unit tests and hopefully documentations**!), send a PR on GitHub. You have to write a precise explanation of **what** and **how** you fix; it is the first documentation of your code that developers read, which is a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI for Linux and Mac OS X, and on AppVeyor for Windows. Your PR needs to pass at least the test for Linux on Travis CI. After the automatic test passes, some of the core developers will start reviewing your code. Note that this automatic PR test only includes CPU tests.

**Note:** We are also running continuous integration with GPU tests for the **master** branch and the versioned branch of the latest major version. Since this service is currently running on our internal server, we do not use it for automatic PR tests to keep the server secure.

If you are planning to add a new feature or modify existing APIs, **it is recommended to open an issue and discuss the design first**. The design discussion needs lower cost for the core developers than code review. Following the consequences of the discussions, you can send a PR that is smoothly reviewed in a shorter time.

Even if your code is not complete, you can send a pull request as a **work-in-progress PR** by putting the [WIP] prefix to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join the discussion about how to proceed the PR. WIP PR is also useful to have discussions based on a concrete code.
4.4 Coding Guidelines

**Note:** Coding guidelines are updated at v3.0. Those who have contributed to older versions should read the guidelines again.

We use PEP 8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

To check your code, use `autopep8` and `flake8` command installed by `hacking` package:

```
$ pip install autopep8 hacking
$ autopep8 --global-config .pep8 path/to/your/code.py
$ flake8 path/to/your/code.py
```

The `autopep8` supports automatically correct Python code to conform to the PEP 8 style guide:

```
$ autopep8 --in-place --global-config .pep8 path/to/your/code.py
```

The `flake8` command lets you know the part of your code not obeying our style guidelines. Before sending a pull request, be sure to check that your code passes the `flake8` checking.

Note that `flake8` command is not perfect. It does not check some of the style guidelines. Here is a (not-complete) list of the rules that `flake8` cannot check.

- Relative imports are prohibited. [H304]
- Importing non-module symbols is prohibited.
- Import statements must be organized into three parts: standard libraries, third-party libraries, and internal imports. [H306]

In addition, we restrict the usage of *shortcut aliases* in any global-scope code. In particular, you cannot use shortcut aliases to designate a parent class in global-scope class definitions. When you want to make a class inheriting another class defined in another module, you have to spell out the full module name instead of importing a module that provides an alias.

For example, the following code is not allowed.

```python
import chainer

class MyLink(chainer.Link): ...
```

Instead, import `chainer.link` and use that.

```python
import chainer.link

class MyLink(chainer.link.Link): ...
```

If you feel the code too verbose, you can also use `from import` or `import as`.

```python
from chainer import link

class MyLink(link.Link): ...
```

**Note:** From v3.0, we allow shortcut aliases used inside of functions and methods that are not called from any global scope code. For example, you can write `chainer.Variable` instead of `chainer.variable.Variable` inside of functions and methods. Use of such aliases is prohibited in the past for avoiding confusing errors related to cyclic dependencies; we relaxed the rule so that the library code looks similar to user code.
When you use such shortcut aliases, please be careful with cyclic imports. One of the typical pitfalls is a way to import \texttt{chainer.functions}. An import like \texttt{import chainer.functions as F} within modules under \texttt{chainer.functions} does not work. An import like \texttt{from chainer import functions} works well with Python 3, but does not with Python 2. We recommend you to use \texttt{import chainer.functions} and spell out like \texttt{chainer.functions.foo} in your methods.

Once you send a pull request, your coding style is automatically checked by Travis-CI. The reviewing process starts after the check passes.

### 4.5 Unit Testing

Testing is one of the most important part of your code. You must write test cases and verify your implementation by following our testing guide.

Note that we are using pytest and mock package for testing, so install them before writing your code:

\begin{verbatim}
$ pip install pytest mock
\end{verbatim}

#### 4.5.1 How to Run Tests

You can run unit tests simply by running \texttt{python -m pytest} command at the repository root:

\begin{verbatim}
$ python -m pytest
\end{verbatim}

or specify the test script that you want to run:

\begin{verbatim}
$ python -m pytest path/to/your/test.py
\end{verbatim}

You can also run all unit tests under a specified directory:

\begin{verbatim}
$ python -m pytest tests/chainer_tests/<directory name>
\end{verbatim}

It requires CUDA and cuDNN by default. In order to run unit tests that do not require CUDA and cuDNN, use \texttt{CHAINER_TEST_GPU_LIMIT=0} environment variable and \texttt{-m='not cudnn'} option:

\begin{verbatim}
$ export CHAINER_TEST_GPU_LIMIT=0
$ python -m pytest path/to/your/test.py -m='not cudnn'
\end{verbatim}

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify the number of available GPUs to \texttt{CHAINER_TEST_GPU_LIMIT}. For example, if you have only one GPU, launch \texttt{pytest} by the following command to skip multi-GPU tests:

\begin{verbatim}
$ export CHAINER_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py
\end{verbatim}

Some tests spend too much time. If you want to skip such tests, pass \texttt{-m='not slow'} option to the command:

\begin{verbatim}
$ python -m pytest path/to/your/test.py -m='not slow'
\end{verbatim}

If you modify the code related to existing unit tests, you must run appropriate commands and confirm that the tests pass.
4.5.2 Test File and Directory Naming Conventions

Tests are put into the tests/chainer_tests directory. In order to enable test runner to find test scripts correctly, we are using special naming convention for the test subdirectories and the test scripts.

- The name of each subdirectory of tests must end with the _tests suffix.
- The name of each test script must start with the test_ prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence to the tested module is clear. For example, if you want to write a test for a module chainer.x.y.z, the test script must be located at tests/chainer_tests/x_tests/y_tests/test_z.py.

4.5.3 How to Write Tests

There are many examples of unit tests under the tests directory, so reading some of them is a good and recommended way to learn how to write tests for Chainer. They simply use the unittest package of the standard library, while some tests are using utilities from chainer.testing.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability. Test functions that require CUDA must be tagged by chainer.testing.attr.gpu decorator:

```python
import unittest
from chainer.testing import attr
class TestMyFunc(unittest.TestCase):
 ...
 @attr.gpu
def test_my_gpu_func(self):
 ...
```

The functions tagged by the gpu decorator are skipped if CHAINER_TEST_GPU_LIMIT=0 environment variable is set. We also have the chainer.testing.attr.cudnn decorator to let pytest know that the test depends on cuDNN. The test functions decorated by cudnn are skipped if -m='not cudnn' is given.

The test functions decorated by gpu must not depend on multiple GPUs. In order to write tests for multiple GPUs, use chainer.testing.attr.multi_gpu() decorator instead:

```python
import unittest
from chainer.testing import attr
class TestMyFunc(unittest.TestCase):
 ...
 @attr.multi_gpu(2) # specify the number of required GPUs here
def test_my_two_gpu_func(self):
 ...
```

If your test requires too much time, add chainer.testing.attr.slow decorator. The test functions decorated by slow are skipped if -m='not slow' is given:

```python
import unittest
from chainer.testing import attr
class TestMyFunc(unittest.TestCase):
 ...
```
@attr.slow
def test_my_slow_func(self):
...

Note: If you want to specify more than two attributes, use and operator like `-m='not cudnn and not slow'`. See detail in the document of pytest.

Once you send a pull request, your code is automatically tested by Travis-CI except for tests annotated with "gpu", "multi_gpu" and "slow". Since Travis-CI does not support CUDA, we cannot check your CUDA-related code automatically. The reviewing process starts after the test passes. Note that reviewers will test your code without the option to check CUDA-related code.

Note: Some of numerically unstable tests might cause errors irrelevant to your changes. In such a case, we ignore the failures and go on to the review process, so do not worry about it!
5.1 Recommended Environments

We recommend these Linux distributions.

- Ubuntu 14.04/16.04 LTS 64bit
- CentOS 7 64bit

The following versions of Python can be used: 2.7.6+, 3.4.3+, 3.5.1+, and 3.6.0+.

**Note:** We are testing Chainer automatically with Jenkins, where all the above recommended environments are tested. We cannot guarantee that Chainer works on other environments including Windows and macOS (especially with CUDA support), even if Chainer looks running correctly.

5.2 Dependencies

Before installing Chainer, we recommend to upgrade `setuptools` if you are using an old one:

```bash
$ pip install -U setuptools
```

The following Python packages are required to install Chainer. The latest version of each package will automatically be installed if missing.

- NumPy 1.9, 1.10, 1.11, 1.12, 1.13
- Six 1.9+

The following packages are optional dependencies. Chainer can be installed without them, in which case the corresponding features are not available.

- CUDA/cuDNN support
5.3 Install Chainer

5.3.1 Install Chainer via pip

We recommend to install Chainer via pip:

```
$ pip install chainer
```

Note: Any optional dependencies (including CuPy) can be added after installing Chainer. Chainer automatically detects the available packages and enables/disables the optional features appropriately.

5.3.2 Install Chainer from source

The tarball of the source tree is available via `pip download chainer` or from the release notes page. You can use `setup.py` to install Chainer from the tarball:

```
$ tar zxf chainer-x.x.x.tar.gz
$ cd chainer-x.x.x
$ python setup.py install
```

You can also install the development version of Chainer from a cloned Git repository:

```
$ git clone https://github.com/chainer/chainer.git
$ cd chainer
$ python setup.py install
```

5.3.3 When an error occurs...

Use `--vvvv` option with `pip` command. That shows all logs of installation. It may help you:

```
$ pip install chainer --vvvv
```

5.3.4 Enable CUDA/cuDNN support

In order to enable CUDA support, you have to install CuPy manually. If you also want to use cuDNN, you have to install CuPy with cuDNN support. See CuPy’s installation guide to install CuPy. Once CuPy is correctly set up, Chainer will automatically enable CUDA support.
You can refer to the following flags to confirm if CUDA/cuDNN support is actually available.

\texttt{chainer.cuda.available} True if Chainer successfully imports \texttt{cupy}.
\texttt{chainer.cuda.cudnn_enabled} True if cuDNN support is available.

### 5.3.5 Support image dataset

Install Pillow manually to activate image dataset feature:

\$ pip install pillow

Note that this feature is optional.

### 5.3.6 Support HDF5 serialization

Install h5py manually to activate HDF5 serialization:

\$ pip install h5py

Before installing h5py, you need to install libhdf5. The way to install it depends on your environment:

# Ubuntu 14.04/16.04
\$ apt-get install libhdf5-dev

# CentOS 7
\$ yum -y install epel-release
\$ yum install hdf5-devel

Note that this feature is optional.

### 5.4 Uninstall Chainer

Use pip to uninstall Chainer:

\$ pip uninstall chainer

**Note:** When you upgrade Chainer, pip sometimes install the new version without removing the old one in \texttt{site-packages}. In this case, \texttt{pip uninstall} only removes the latest one. To ensure that Chainer is completely removed, run the above command repeatedly until pip returns an error.

### 5.5 Upgrade Chainer

Just use pip with \texttt{--upgrade} option:

\$ pip install --upgrade chainer
5.6 Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it. We recommend to use `--no-cache-dir` option as `pip` sometimes uses cache:

```bash
$ pip uninstall chainer
$ pip install chainer --no-cache-dir
```

5.7 Run Chainer with Docker

We are providing the official Docker image. Use `nvidia-docker` command to run Chainer image with GPU. You can login to the environment with bash, and run the Python interpreter:

```bash
$ nvidia-docker run -it chainer/chainer /bin/bash
```

Or run the interpreter directly:

```bash
$ nvidia-docker run -it chainer/chainer /usr/bin/python
```

5.8 FAQ

5.8.1 The installer says “hdf5.h is not found”

You don’t have libhdf5. Please install it first. See `Support HDF5 serialization`.

5.8.2 Examples say “cuDNN is not enabled”

You failed to build CuPy with cuDNN. If you don’t need cuDNN, ignore this message. Otherwise, retry to install CuPy with cuDNN. `-vvvv` option helps you. There is no need of re-installing Chainer itself. See `CuPy’s installation guide` for more details.
6.1 It takes too long time to compile a computational graph. Can I skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels. CuPy compiles kernels on demand to make kernels optimized to the number of dimensions and element types of input arguments. Pre-compilation is not available, because we have to compile an exponential number of kernels to support all CuPy functionalities. This restriction is unavoidable because Python cannot call CUDA/C++ template functions in generic way. Note that every framework using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as cutorch) and Chainer is whether a kernel is compiled at installation or at the first use.

These compilations should run only at the first use of the kernels. The compiled binaries are cached to the $(HOME)/.cupy/kernel_cache directory by default. If you see that compilations run every time you run the same script, then the caching is failed. Please check that the directory is kept as is between multiple executions of the script. If your home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel caching directory by setting the CUPY_CACHE_DIR environment variable to an appropriate path. See CuPy Overview for more details.

6.2 MNIST example does not converge in CPU mode on Mac OS X

Note: Mac OS X is not officially supported. Please use it at your own risk.

Many users have reported that MNIST example does not work correctly when using vecLib as NumPy backend on Mac OS X. vecLib is the default BLAS library installed on Mac OS X.

We recommend using other BLAS libraries such as OpenBLAS.

To use an alternative BLAS library, it is necessary to reinstall NumPy. Here is an instruction to install NumPy with OpenBLAS using Homebrew.
If you want to install NumPy with pip, use `site.cfg` file.

For details of this problem, see issue #704.
This is a list of changes introduced in each release that users should be aware of when migrating from older versions. Most changes are carefully designed not to break existing code; however changes that may possibly break them are highlighted with a box.

### 7.1 Chainer v3

#### 7.1.1 Introduction of New-style Functions

This release introduces new-style functions (classes inheriting from `FunctionNode`) that support double backward (gradient of gradient). See the [Release Note for v3.0.0](#) for the usage of this feature.

Many of **Standard Function implementations** are already migrated to new-style, although some of functions are still old-style (classes inheriting from `Function`). We are going to migrate more old-style functions to new-style in upcoming minor releases.

This does not break the existing code. Old-style functions (classes inheriting from `Function`) are still supported in v3 and future versions of Chainer.

If you are going to write new functions, it is encouraged to use `FunctionNode` to support double backward.

---

**Attention:** Users relying on undocumented function APIs (directly instantiating old-style classes) may experience an error like `TypeError: 'SomeFunction' object is not callable` after upgrading to v3. Please use the function APIs documented in **Standard Function implementations.**

#### 7.1.2 Changed Behavior of matmul Function

The behavior of `chainer.functions.matmul()` has been changed to behave like the corresponding NumPy function (`numpy.matmul()`). See the discussion in #2426 for more details.
Attention: The existing code using `chainer.functions.matmul()` may require modification to work with Chainer v3.

Also note that `chainer.functions.batch_matmul()` is now deprecated by this change. You can rewrite it using `chainer.functions.matmul()`.

7.1.3 Removed use_cudnn Argument in spatial_transformer_grid and spatial_transformer_sampler Functions

`use_cudnn` argument has been removed from `chainer.functions.spatial_transformer_grid()` and `chainer.functions.spatial_transformer_sampler()`. See the discussion in #2955 for more details.

Attention: The existing code using `use_cudnn` argument of `chainer.functions.spatial_transformer_grid()` and `chainer.functions.spatial_transformer_sampler()` require modification to work with Chainer v3. Please use the configuration context (e.g., with `chainer.using_config('use_cudnn', 'auto'):`) to enable or disable use of cuDNN. See Configuring Chainer for details.

7.2 Chainer v2

See Upgrade Guide from v1 to v2 for the changes introduced in Chainer v2.

7.2.1 Upgrade Guide from v1 to v2

This document provides detailed information of differences between Chainer v1 and v2. You will know by reading it which part of your code is required (or recommended) to be fixed when you upgrade Chainer from v1 to v2.

- **CuPy**
  - CuPy has been separated from Chainer into a separate package
- **Global configurations**
  - Training mode is configured by a thread-local flag
  - Configurations are added and replace some of existing global flags
- **Variable**
  - Volatile flag is removed
  - Variable is not a part of a computational graph anymore
  - Parameter has to be an instance of Parameter class
  - Small changes to Variable
- **Function**
  - The force_tuple option of split_axis is True by default
  - Type check APIs are updated to enable lazy building of the error messages
Methods to release unneeded arrays are added

- **Link/Chain/ChainList**
  - wscale option is removed from links
  - bias option is removed from links
  - The bias vector is enabled by default in N-dimensional convolution links
  - init_weight function is removed
  - The order of arguments of GRU is changed
  - The default value of the forget bias for LSTM and StatelessLSTM is changed to 1
  - The interfaces of GRU and LSTM are aligned
  - Aliases of links in chainer.functions are removed
  - Parameter link is removed
  - New-style parameter registration APIs are added to Link
  - New-style child link registration APIs are added to Chain
  - The input-size placeholder of links are made optional

- **Optimizer**
  - Deprecated methods of Optimizer are removed
  - GradientMethod uses Link.cleargrads instead of Link.zerograds by default
  - GradientMethod is redesigned to allow parameter-specific update rules

- **Serializer**
  - None is serializable

- **Trainer and Extension**
  - Updater and Evaluator pass raw data arrays to the loss function
  - trigger option is removed from snapshot and snapshot_object
  - Extension.invoke_before_training is removed
  - The dump_graph extension dumps the valid graph only at its first invocation

- **Reporter**
  - When a variable is reported, the variable is copied with the graph purged

- **Other utilities**
  - Some obsolete classes and functions are removed

---

**CuPy**

**CuPy has been separated from Chainer into a separate package**

CuPy, which was originally a part of Chainer, has been separated into a different Python package since Chainer v2. It changes the way to set up Chainer with CUDA support. In particular, you have to separately install cupy package to enable CUDA support. See Installation Guide for the recommended installation steps.
Fortunately, there is no need of updating your source code to catch up with this change.

Global configurations

Training mode is configured by a thread-local flag

In Chainer v2, the concept of *training mode* is added. It is represented by a thread-local flag `chainer.config.train`, which is a part of the unified configuration. When `chainer.config.train` is True, functions of Chainer run in the training mode, and otherwise they run in the test mode. For example, `BatchNormalization` and `dropout()` behave differently in each mode.

In Chainer v1, such a behavior was configured by the `train` or `test` argument of each function. This `train/test` argument has been removed in Chainer v2. If your code is using the `train` or `test` argument, you have to update it. In most cases, what you have to do is just removing the `train/test` argument from any function calls.

Example

Consider the following model definition and the code to call it in test mode written for Chainer v1.

```
Chainer v1
import chainer.functions as F

class MyModel(chainer.Link):
 ...

 def __call__(self, x, train=True):
 return f(F.dropout(x, train=train))

m = MyModel(...)
y = m(x, train=False)
```

In Chainer v2, it should be updated into the following code:

```
Chainer v2
import chainer.functions as F

class MyModel(chainer.Link):
 ...

 def __call__(self, x):
 return f(F.dropout(x))

m = MyModel(...)
with chainer.using_config('train', False):
 y = m(x)
```

Configurations are added and replace some of existing global flags

There are many global settings moved to the unified configuration other than the training mode. Following is the complete list of the configuration entries that have corresponding features in Chainer v1.

`chainer.config.cudnn_deterministic` It is corresponding to the `deterministic` argument of some convolution functions in Chainer v1. This argument has been removed since Chainer v2. If you are using this
argument, you have to use the `chainer.config.cudnn_deterministic` flag to change the behavior of the convolution functions.

`chainer.config.debug` It is corresponding to the debug mode in Chainer v1, which was configured by `set_debug()` and extracted by `is_debug()`. These functions are also available in Chainer v2, so you basically do not need to update the code related to the debug mode.

`chainer.config.enable_backprop` It is corresponding to the backprop mode in Chainer v1. The functions `no_backprop_mode()` and `force_backprop_mode()` are still available in Chainer v2, which automatically turns on/off the `enable_backprop` flag. One important difference from Chainer v1 is that the volatile flag is removed from `Variable`. Therefore, there are more situations that you need to modify the `enable_backprop` flag.

`chainer.config.keep_graph_on_report` This flag configures whether or not to keep the computational graph alive for a reported variable. In Chainer v2, when a `Variable` object is reported by `report()`, a copy of the variable isolated from the computational graph is created and stored by default. Setting `True` to this flag, you can change this behavior and then the original `Variable` object is stored as is. See When a variable is reported, the variable is copied with the graph purged for the details.

`chainer.config.train` It is corresponding to the `train` or `test` argument of some functions in Chainer v1. This argument has been removed since Chainer v2. If you are using this argument, you have to use the `chainer.config.train` flag instead. See Training mode is configured by a thread-local flag for more details.

`chainer.config.type_check` It is corresponding to the `Function.type_check_enable` flag. If your code touches this flag, you have to use `chainer.config.type_check` instead. Note that the environment variable `CHAINER_TYPE_CHECK` is still available in Chainer v2, so if you are only using the environment variable, there is no need of updating your code.

`chainer.config.use_cudnn` It is corresponding to the `use_cudnn` argument of many functions that have cuDNN implementations. This argument has been removed since Chainer v2. If you are using this argument, you have to use the `chainer.config.use_cudnn` flag instead. Note that this flag is ternary, not binary. See Configuring Chainer for more details.

These configurations can be modified in two ways.

- Simply substituting a new value to an entry, like `chainer.config.train = False`.
- Using the `chainer.using_config` context manager. It can be used with the `with` statement of Python as follows:

```python
with chainer.using_config('train', False):
 do something # this code runs with chainer.config.train == False
```

It recovers the original configuration after quitting the `with` block.

The `chainer.config` manages the thread-local configuration. You can also set the global configuration by modifying `chainer.global_config`. Note that the global configuration is used only if the entry of the thread-local configuration is not explicitly set up.

**Variable**

**Volatile flag is removed**

The `Variable.volatile` flag has been removed since Chainer v2.

Instead, the configuration `chainer.config.enable_backprop` can be used to enable/disable the automatic differentiation feature. If it is `True`, Chainer always creates a computational graph on the forward propagation, which corresponds to passing non-volatile variables in Chainer v1. Otherwise, Chainer does not create a graph, which
corresponds to passing volatile variables in Chainer v1. The biggest difference is that enable_backprop is a thread-local flag, whereas volatile was a flag local to each Variable object. Note that enable_backprop flag has already existed in Chainer v1, which took effect only if all the inputs to the function have volatile == 'auto'.

The chainer.config.enable_backprop flag can be modified directly or by using using_config(). See Configuring Chainer for details. There is also a convenience function, no_backprop_mode(), to turn off the flag.

If you are using the Variable.volatile flag, you have to stop setting this flag (it will not take effect), and set the enable_backprop flag instead.

Example

Let model be your model, and consider the following code that calls it in volatile mode.

```python
Chainer v1
x_data = ... # ndarray
x = chainer.Variable(x_data, volatile=True)
y = model(x)
```

In Chainer v2, it should be updated as follows.

```python
Chainer v2
x_data = ... # ndarray
x = chainer.Variable(x_data)
with chainer.no_backprop_mode():
 y = model(x)
```

**Variable is not a part of a computational graph anymore**

The Variable class has been separated into two distinct classes, the Variable class and the VariableNode class, since Chainer v2. Every class:Variable object owns its own VariableNode object. A computational graph consists of Function objects and VariableNode objects. When one applies a Function to a Variable, the VariableNode object of the variable is extracted and set to one of the inputs of the function.

Note that the underlying data array of the variable is still held by the Variable object. It allows each Function implementation to release unneeded arrays from the computational graph, resulting in greatly reduced memory consumption.

**This change does not affect most users’ code.** If you are directly traversing the computational graph by yourself or modifying the graph ad-hoc, you may have to update your code. In most cases, it is enough to just change Variable into VariableNode in the code traversing the computational graph.

**Parameter has to be an instance of Parameter class**

Chainer v2 has a subclass of Variable called Parameter. This class has an interface convenient on setting up a parameter variable registered to Link.

You basically do not need to update your code because Link.add_param() creates a Parameter object in Chainer v2. There is a new recommended way of registering parameters to a link in Chainer v2, though. See here for the recommended way of parameter registration.
Small changes to Variable

There are some changes on the interface and specification of methods.

- `len(variable)` returns the length of the first axis of the underlying array in Chainer v2. This is equivalent to `len(variable.data)`. It is different from the behavior of Chainer v1, in which `len` returned the total number of elements in the underlying array.

- `repr(variable)` returns a NumPy-like text representation of the underlying array in Chainer v2. In Chainer v1, it just returns a string that shows the name of the variable.

Function

The `force_tuple` option of `split_axis` is True by default

In Chainer v2, the `force_tuple` argument of `functions.split_axis()` is set to `True` by default. Therefore, it always returns a tuple regardless of the number of sections made after the split. It was `False` by default in Chainer v1.

Type check APIs are updated to enable lazy building of the error messages

In Chainer v2, the type check APIs are updated so that the overhead of checking types is greatly reduced. In order to achieve the overhead reduction, some APIs are changed.

If you have custom Function implementations that do type checking, you have to update your code. The following list shows which part has to be updated.

- Use `utils.type_check.eval()` instead of `Expr.eval`.

- Use `utils.type_check.make_variable()` to create a `utils.type_check.Variable` object instead of directly constructing it by yourself.

- Stop using `.name` attribute of any expression.

Background of this change: In Chainer v1, the type checking APIs build an abstract syntax tree (AST) based on each expression that tests some condition. The AST is used to emit a kind error message. However, building an AST requires constructions of many Python objects, which adds large Python overheads. In Chainer v2, the `Function.type_check_forward()` method is called once or twice. At the first call, the type checking APIs run in lightweight mode, where it does not build an AST and just checks the condition. The second call is made only if there is a test that fails, where it builds an AST. This change makes the ordinary path of running the type checking much faster, while keeping the kind error messages.

Methods to release unneeded arrays are added

As is written above, Chainer v2 introduced a new mechanism to reduce the memory consumption of each Function implementation. In many cases, a Function implementation does not need some input arrays in its backward computation. A new method called `Function.retain_inputs()` can be used to specify which input arrays are actually needed. This method must not be called from the outside of `Function.forward()`.

Example

For example, consider the following simple addition function.
class AddFunction(chainer.Function):
    def forward(self, inputs):
        return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
    return grad_outputs[0], grad_outputs[0]

It can be seen that the backward computation of this function does not use any of the inputs. Then, specifying an empty tuple of indexes to `retain_inputs()` will reduce the memory overhead.

class AddFunction(chainer.Function):
    def forward(self, inputs):
        self.retain_inputs(())
        # does not retain both inputs
        return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
    return grad_outputs[0], grad_outputs[0]

In some cases, the function can (or have to) use the output arrays instead of the inputs in its backward computation. In Chainer v1, we have written code that store the output arrays to attributes of the `Function` object and reuse them in the `backward()` method. In Chainer v2, it is recommended to use `Function.retain_outputs()` to declare which outputs are required in the backward computation. The retained output arrays can be accessed via `Function.output_data`.

Note: The existing `Function` implementations that store the output arrays to its attributes will run correctly in Chainer v2. There is no any memory overhead right now. It is recommended to use `retain_outputs()`, though, so that we can incorporate more memory optimization in the future.

Example

For example, consider the following simple implementation of the tanh function.

class TanhFunction(chainer.Function):
    def forward(self, inputs):
        xp = chainer.cuda.get_array_module(inputs[0])
        self.y = xp.tanh(inputs[0])
        return self.y,

def backward(self, inputs, grad_outputs):
    one = self.y.dtype.type(1)
    # avoid type promotion
    return grad_outputs[0] * (one - self.y * self.y),

We can use `retain_outputs()` instead of preserving the output array by ourselves as follows.

class TanhFunction(chainer.Function):
    def forward(self, inputs):
        self.retain_outputs((0,))
        xp = chainer.cuda.get_array_module(inputs[0])
        return xp.tanh(inputs[0]),

def backward(self, inputs, grad_outputs):
    y = self.output_data[0]
    one = y.dtype.type(1)
    # avoid type promotion
    return grad_outputs[0] * (one - y * y)
Link/Chain/ChainList

wscale option is removed from links

The wscale option has been removed from links since Chainer v2. **If you are using wscale option, you have to update your code.** The recommended way is to explicitly set the initializer.

Example

Consider the case of adding a Linear link with the weight initialized by 0.5x of the default initialization.

```python
Chainer v1
linear = chainer.links.Linear(10, 5, wscale=0.5)
```

Note that the default initializer of the weight matrix of Linear is a normal distribution of the standard deviation $1/\sqrt{\text{fanin}}$. Therefore, it can be fixed as follows.

```python
Chainer v2
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.Normal(0.5 / math.sqrt(10)))
```

Or, by using the fact that initializers.HeNormal provides the initialization with a normal distribution of the standard deviation $\text{scale} \times \sqrt{2/\text{fanin}}$, the following code is also equivalent to the original.

```python
Chainer v2, using HeNormal
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.HeNormal(0.5 / math.sqrt(2)))
```

bias option is removed from links

In Chainer v2, the bias option is removed from the following links: Linear, Convolution2D, Deconvolution2D, and DilatedConvolution2D. The effect of this argument was duplicated with the initial_bias option. Use initial_bias instead.

The bias vector is enabled by default in N-dimensional convolution links

In Chainer v2, the bias parameter is enabled by default in ConvolutionND and DeconvolutionND. It was unintentionally disabled by default in Chainer v1.

**If you are using ConvolutionND or DeconvolutionND without specifying the initial_bias argument, you have to fix your code.** If you want to keep the old behavior (i.e., no bias vector is created by the link), pass nobias=True to the link at the construction. Otherwise it will automatically create a bias vector.

init_weight function is removed

The chainer.initializers.init_weight function that was used on weight initialization has been removed since Chainer v2.
You have to update your code if you are using `init_weight`. In most cases, the update is simple: pass an initializer to `Parameter`.

Example

Consider the following code that initializes a weight matrix randomly and a bias vector by zero.

```python
Chainer v1
class MyLink(chainer.Link):
 def __init__(self):
 super(MyLink, self).__init__(
 W=(10, 5),
 b=(5),
)
 chainer.initializers.init_weight(self.W, chainer.initializers.Normal(0.05))
 self.b.data.fill(0)
...
This code should be fixed as follows (see the next topic for the use of `Parameter`).

```python
# Chainer v2
class MyLink(chainer.Link):
    def __init__(self):
        super(MyLink, self).__init__()
        self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
        self.b = chainer.Parameter(0, (5,))
...
```  

The order of arguments of GRU is changed

In Chainer v2, the first two arguments of `GRU` is the input size and the output size. It was reversed in Chainer v1, causing an inconsistent interface compared to other links including `LSTM`. If you are using `GRU`, you have to update your code. The update is done by simply flipping the first two arguments.

Example

Consider the following code that creates a `GRU` link.

```python
# Chainer v1
gru = chainer.links.GRU(20, 10)
```

It should be fixed into the following code.

```python
# Chainer v2
gru = chainer.links.GRU(10, 20)
```

Note that if you were omitting the output size, the code works as is because `GRU` supports the omitted input size.
The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

In Chainer v2, the default forget bias value of LSTM and StatelessLSTM links is changed to 1. This change is based on the paper reporting that using a large forget bias improves the training performance. The new behavior is also consistent with the implementation of BasicLSTMCell in TensorFlow.

It will improve the most use cases of LSTMs, although this change would break the reproducibility of the existing experiments. If you want to keep the same initialization procedure, you have to update your code. The change is simple: pass forget_bias_init=0 to LSTM and StatelessLSTM.

The interfaces of GRU and LSTM are aligned

In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with the naming convention of LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points the stateful links. If you are using StatelessGRU for stateless version, whose implementation is identical to chainer.linksGRU in v1.

Aliases of links in chainer.functions are removed

For the compatibility reason, there were some links that have aliases in the chainer.functions module. These aliases are removed in Chainer v2. Use chainer.links instead.

Parameter link is removed

The chainer.links.Parameter link is removed in Chainer v2. This link existed in Chainer v1 only for the backward compatibility. Use chainer.Parameter instead (for the new Parameter class, see Parameter has to be an instance of Parameter class).

New-style parameter registration APIs are added to Link

In Chainer v2, Link.init_scope() method returns a context manager that automatically registers a Parameter object to the link at setting it to an attribute. If you are using IDE like PyCharm, it is recommended to use this new-style parameter registration so that IDEs can easily detect the existence of the parameter as an attribute. It is also a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering parameters are still valid.

Example

For example, the following link initialization code

```python
# Chainer v1
class MyLink(chainer.Link):
    def __init__(self):
        super(MyLink, self).__init__(
            W=(10, 5),
            b=(5,),
        )
        chainer.initializers.Normal(0.05)(self.W.data)
```
is recommended to be updated as follows.

```python
# Chainer v2
class MyLink(chainer.Link):
    def __init__(self):
        super(MyLink, self).__init__()
        with self.init_scope():
            self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
            self.b = chainer.Parameter(0, (5,))  # initialize by zero

...  
```

Note: To keep a `Parameter` object as an attribute without registration, you can set the attribute without using the with `self.init_scope()` block.

New-style child link registration APIs are added to Chain

Like `Parameter`, a `Link` object is also automatically registered to a `Chain` object by substitution to an attribute within a `init_scope()` scope. If you are using IDE like PyCharm, it is recommended to use the new-style child link registration so that IDEs can easily detect the existence of the child link as an attribute. It is also a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering child links are still valid.

Example

For example, the following chain initialization code

```python
# Chainer v1
class MyMLP(chainer.Chain):
    def __init__(self):
        super(MyMLP, self).__init__()
        layer1=L.Linear(None, 20),
        layer2=L.Linear(None, 30),
        ...

...  
```

is recommended to be updated as follows.

```python
# Chainer v2
class MyMLP(chainer.Chain):
    def __init__(self):
        super(MyMLP, self).__init__()
        with self.init_scope():
            self.layer1 = L.Linear(20)
            self.layer2 = L.Linear(30)

...  
```

Note that this example also demonstrates the use of new APIs with the *omitted input size*, explained below.
Note: To keep a Link object as an attribute without registration, you can set the attribute without using the with self.init_scope(): block.

The input-size placeholder of links are made optional

In Chainer v2, the input size of many links, including Linear and Convolution2D, is made optional. In Chainer v1, we had to use None as the placeholder to specify that the input size should be determined at the first iteration. The placeholder can also be used in Chainer v2, although it is easier to just omit the input size.

See the previous item for the example of omitting the input size of Linear. The following links currently support the omitted input size.

- Convolution2D
- Deconvolution2D
- DilatedConvolution2D
- Linear
- LSTM
- MLPConvolution2D
- StatelessLSTM

Optimizer

Deprecated methods of Optimizer are removed

The following methods are removed from Optimizer. These methods have been already deprecated in the past versions. If you are using these methods, you have to update your code.

- zero_grads: use Link.zerograds() instead.
- compute_grads_norm: you can compute the gradient norm by iterating the list of parameters by Link.params().
- clip_grads: use GradientClipping instead.
- weight_decay: use WeightDecay instead.
- accumulate_grads: use Link.addgrads() instead.

GradientMethod uses Link.cleargrads instead of Link.zerograds by default

In Chainer v2, GradientMethod clears the gradient before running backprop by Link.cleargrads(). It means that the gradient of each parameter is initialized by None instead of a zero array. Note that all the optimizer implementations provided by Chainer are subclasses of GradientMethod, and therefore this change affects all of them.

In most cases, you do not need to update your code. If your code relies on the zeroing initialization, you have to fix your code to explicitly initialize the gradient by zero, or to pass False to GradientMethod.use_cleargrads().
GradientMethod is redesigned to allow parameter-specific update rules

In Chainer v2, the new class `UpdateRule` is used to define an update rule specific to each `Parameter` object. The `UpdateRule` is set to each `Parameter` object, and is used at each update step. This object implements an update formula using the data and gradient arrays.

Each `UpdateRule` object has enabled flag, which configures if the update rule should be applied to that parameter on update. By setting the flag to `False`, you can freeze the parameter. There is also a convenient method `Link.enable_update()` and `Link.disable_update()`, which configure the flag of each parameter under the link hierarchy. In other frameworks, a similar feature is called layer freezing. In Chainer v2, this is officially supported by these methods.

Each `UpdateRule` object can also hold its own hook functions similar to `Optimizer`. The built-in hook functions except for `GradientClipping` can also be used as a hook function of `UpdateRule`.

In most cases, you do not have to update your code because each optimizer automatically sets up an appropriate `UpdaterRule` object to each parameter.

If you are using a custom gradient-based optimizer implementation, you need to update the implementation. The following list shows what you have to do.

1. Write a subclass of `UpdateRule` that implements the update rule.
2. Rewrite your `GradientMethod` implementation. The new implementation only has to set up the update rule for each parameter in the target link.

You can see live examples in the optimizer implementations provided by Chainer.

Serializer

None is serializable

In Chainer v2, all serializers start supporting `None` value to be serialized and deserialized. Users’ code can rely on this feature, i.e., it can serialize and deserialize `None` value with any given serializer. This change only affects your code if it provides its own serializer implementations.

Trainer and Extension

Updater and Evaluator pass raw data arrays to the loss function

In Chainer v2, `Updater` and `Evaluator` pass raw data arrays to the loss function without wrapping them with `Variable`. You might need to update your code so that the loss function (in most cases, the model’s `__call__`) accepts raw arrays.

Note that raw arrays can be directly passed to any `Function`; they are automatically wrapped by `Variable`. For example, if the input is directly passed to a `Function` object (or any function under `chainer.functions`), you do not need to update the code.

Example

Consider the following code that obtains the shape of the input via `Variable.data`.

```python
# Chainer v1
class MyLink(chainer.Link):
    def __call__(self, x):
```
It should be updated so that the link also accepts a raw array as the input. In this case, we have `Variable.shape` which is equivalent to `data.shape`, so you can simply write as follows.

```python
# Chainer v2
class MyLink(chainer.Link):
    def __call__(self, x):
        shape = x.shape  # valid regardless of x being Variable or ndarray
        ...
```

trigger option is removed from snapshot and snapshot_object

In Chainer v2, the `trigger` option is removed from the `snapshot()` and `snapshot_object()` extensions. The effect of the option was duplicated with the `trigger` option of `Trainer.extend`. **If you are passing the trigger argument to these extensions, you have to update your code.** The update can be done by passing the value to the corresponding `Trainer.extend`.

Example

Assume that `trainer` is an instance of `Trainer`, and consider that you were adding a `snapshot()` extension as follows.

```python
# Chainer v1
trainer.extend(chainer.training.extensions.snapshot(trigger=(1000, 'iteration')))
```

It should be updated as follows (note that this code also works with Chainer v1).

```python
# Chainer v1/v2
trainer.extend(chainer.training.extensions.snapshot(), trigger=(1000, 'iteration'))
```

Extension.invoke_before_training is removed

In Chainer v2, The attribute `invoke_before_training` of `Extension` is removed. Instead, the `Extension.initialize` method is added. This method is called by `Trainer.run` before entering the training loop.

In Chainer v1, the extension is just called before entering the training loop when `invoke_before_training` is True. **If you have a custom extension that has invoke_before_training=True**, you have to update the code. What you have to do is to remove the `invoke_before_training` flag and override `initialize()` method. If you are using the `make_extension()` decorator, you can set the initialize function by passing the initializer argument to `make_extension()`.

The dump_graph extension dumps the valid graph only at its first invocation

In Chainer v2, the `dump_graph()` extension dumps the valid computational graph only at its first invocation. **If you want to dump the graph more than once, you have to fix the code.** The easiest fix is setting the `chainer.config.keep_graph_on_report` flag to True. **Note that this fix will cancel the improvement on the memory**
consumption made in Chainer v2. More memory-efficient fix is to dump the graph without using an extension, e.g. by customizing the loss function or the updater.

Here is the background of this change. In Chainer v2, the Reporter copies reported variables with purging the computational graph by default. On the other hand, the dump_graph() extension requires the computational graph reachable from the reported variable. In order to make the graph available, the dump_graph() extension turns on the chainer.config.keep_graph_on_report flag at its initializer (i.e., it turns on the graph before entering the training loop). Since we also wanted to achieve the memory efficiency, the dump_graph() extension turns off the flag after dumping the graph at its first invocation (strictly speaking, it recovers the original value). As a result, the computational graph is not available from the second invocation.

Since the dump_graph() recovers the original flag value at its invocation, you can keep the graph dumped more than once by changing the original flag value.

Reporter

When a variable is reported, the variable is copied with the graph purged

In Chainer v2, when a Variable object is reported using report() function (or directly using Reporter), a copy of the variable is made without preserving the computational graph. **If your code depends on the reachability of the computational graph from the reported variable, you have to update your code.** The easiest way to update your code is setting chainer.config.keep_graph_on_report to True, then Chainer will keep the computational graph reachable from the reported variable.

The possible examples that are affected by this change are as follows (not exhaustive).

- A custom extension that runs backprop from a reported variable. It is definitely an example of assuming the reachability of the computational graph from the reported variable.
- An extension that visualizes the computational graph from a reported variable. If you are writing such an extension by yourself, you have to turn on the keep_graph_on_report flag. The dump_graph() extension is another example, for which see the above item for the details.

This change is made for the memory performance reason; with this change, the memory used by the computational graph for training is immediately released before invoking extensions. Therefore, **changing the behavior by overwriting chainer.config.keep_graph_on_report may increase the memory consumption.** It may cause an out-of-memory error if the computational graph of the loss function consumes almost all the memory available in your environment and there is an extension that uses a certain amount of memory (e.g. Evaluator).

Other utilities

Some obsolete classes and functions are removed

The following classes and functions are removed in Chainer v2.

- chainer.Flag
- chainer.FunctionSet (Use Chain or ChainList instead)
- chainer.cuda.init (It did nothing except for calling check_cuda_available())
- chainer.cuda.empty (Use cupy.empty())
- chainer.cuda.empty_like (Use cupy.empty_like())
- chainer.cuda.full (Use cupy.full())
- chainer.cuda.full_like (Use cupy.full_like())
• `chainer.cuda.ones` *(Use `cupy.ones()`)*
• `chainer.cuda.ones_like` *(Use `cupy.ones_like()`)*
• `chainer.cuda.zeros` *(Use `cupy.zeros()`)*
• `chainer.cuda.zeros_like` *(Use `cupy.zeros_like()`)*
Comparison with Other Frameworks

8.1 A table for quick comparison

This table compares Chainer with other actively developed deep learning frameworks. Content is current as of July 2017.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>define-by-run</td>
<td>define-by-run</td>
<td>symbolic autograd</td>
<td>static</td>
<td>symbolic autograd</td>
<td>static</td>
<td>manual grads</td>
<td>symbolic autograd</td>
<td>static</td>
<td>manual grads</td>
<td>symbolic autograd</td>
<td>static</td>
<td>manual grads</td>
<td>symbolic autograd</td>
<td>static</td>
<td>symbolic autograd</td>
<td>static</td>
<td>symbolic autograd</td>
<td>static</td>
<td>symbolic autograd</td>
<td>static</td>
<td>symbolic autograd</td>
</tr>
<tr>
<td>CPU backend package</td>
<td>NumPy</td>
<td>PyTorch</td>
<td>Eiger</td>
<td>NumPy</td>
<td>TH</td>
<td>mshadow</td>
<td>Eigen</td>
<td>ND4</td>
<td>mshadow</td>
<td>Eigen</td>
<td>ND4</td>
<td>neon</td>
<td>Knet.jl</td>
<td>CuPy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU backend package</td>
<td>PyTorch</td>
<td>THC</td>
<td>Eiger</td>
<td>libgpuarray</td>
<td>THC</td>
<td>mshadow</td>
<td>Eigen</td>
<td>ND4</td>
<td>mshadow</td>
<td>Eigen</td>
<td>ND4</td>
<td>neon</td>
<td>Knet.jl</td>
<td>CuPy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary sponsor</td>
<td>Preferred Networks</td>
<td>Facebook</td>
<td>Google</td>
<td>Facebook</td>
<td>ILML</td>
<td>Facebook</td>
<td>Amazon/Apache</td>
<td>Baidu</td>
<td>Skymind</td>
<td>Microsoft</td>
<td>Koç University</td>
<td>Joe Redmon</td>
<td>Explosion AI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNs</td>
<td>CNNs</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>partial</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNNs</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>partial</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>full</td>
<td>partial</td>
<td>partial</td>
<td>partial</td>
<td>partial</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse mode autograd</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>torch autograd</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>torch autograd</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Forward mode autograd</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>tensorflow-forward</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>tensorflow-forward</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Higher order gradients</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>RNNs</td>
<td>2017</td>
<td>RNNs</td>
<td>dynamic axis</td>
<td>none</td>
<td>dynamic axis</td>
<td>none</td>
<td>dynamic axis</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Variance length loops</td>
<td>native</td>
<td>native</td>
<td>while loop</td>
<td>RNNs</td>
<td>native</td>
<td>2017</td>
<td>native</td>
<td>none</td>
<td>dynamic axis</td>
<td>none</td>
<td>dynamic axis</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Differential architectures per</td>
<td>native</td>
<td>native</td>
<td>fold</td>
<td>torch autograd</td>
<td>native</td>
<td>MinPy</td>
<td>native</td>
<td>native</td>
<td>native</td>
<td>native</td>
<td>native</td>
<td>native</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 8. Comparison with Other Frameworks
8.2 Benchmarks

Benchmarks for convolutional networks can be found at convnet-benchmarks while some NLP benchmarks are at dyenet-benchmark. Chainer wraps the latest available cuDNN kernels for CNNs and RNNs, so performance of most common networks that use these kernels is typically similar to that of other modern frameworks. As Chainer’s define-by-run approach means the user’s Python code is executed directly at runtime, particularly complex networks or those with very small tensor sizes may be slower than in static-graph frameworks.

1 Define-by-run is in development as of June 2017 and tracked in dmlc/mxnet#5705. It is also possible using the much slower MinPy extension.
2 Symbolic autograd is in development as of June 2017 and tracked in deeplearning4j/nd4j#1750.
3 Symbolic autograd is available only with ngraph backend (experimental).
4 Nervana provides kernels that are meant to compete with cuDNN.
5 Multiprocessing provides a significant performance improvement only for frameworks that use Python at runtime.
Copyright (c) 2015 Preferred Infrastructure, Inc.
Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
CHAPTER 10

Indices and tables

• genindex
• modindex
• search

[Graves2006] Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber, Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

[Graves2012] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks
C
chainer, 63
chainer.computational_graph, 497
chainer.cuda, 126
chainer.dataset, 105
chainer.datasets, 468
chainer.function_hooks, 457
chainer.functions, 144
chainer.initializers, 462
chainer.iterators, 480
chainer.links, 249
chainer.links.caffe, 497
chainer.serializers, 451
chainer.training, 110
chainer.training.extensions, 482
chainer.utils, 502
Symbols

__bool__() (chainer.Parameter method), 70
__bool__() (chainer.Variable method), 66
__bool__() (chainer.utils.type_check.Expr method), 138
__call__() (chainer.AbstractSerializer method), 102
__call__() (chainer.Deserializer method), 104
__call__() (chainer.Function method), 72
__call__() (chainer.FunctionAdapter method), 76
__call__() (chainer.FunctionNode method), 80
__call__() (chainer.Initializer method), 462
__call__() (chainer.Serializer method), 103
__call__() (chainer.initializers.Constant method), 463
__call__() (chainer.initializers.GlorotNormal method), 465
__call__() (chainer.initializers.GlorotUniform method), 467
__call__() (chainer.initializers.HeNormal method), 465
__call__() (chainer.initializers.HeUniform method), 467
__call__() (chainer.initializers.Identity method), 463
__call__() (chainer.initializers.LeCunNormal method), 465
__call__() (chainer.initializers.LeCunUniform method), 466
__call__() (chainer.initializers.Normal method), 464
__call__() (chainer.initializers.Orthogonal method), 466
__call__() (chainer.initializers.Uniform method), 466
__call__() (chainer.links.BatchNormalization method), 367
__call__() (chainer.links.BatchRenormalization method), 371
__call__() (chainer.links.Bias method), 250
__call__() (chainer.links.Bilinear method), 254
__call__() (chainer.links.BinaryHierarchicalSoftmax method), 378
__call__() (chainer.links.BlackOut method), 382
__call__() (chainer.links.CRF1d method), 385
__call__() (chainer.links.ChildSumTreeLSTM method), 257
__call__() (chainer.links.Classifier method), 402
__call__() (chainer.links.Convolution2D method), 262
__call__() (chainer.links.ConvolutionND method), 265
__call__() (chainer.links.Deconvolution2D method), 270
__call__() (chainer.links.DeconvolutionND method), 274
__call__() (chainer.links.DepthwiseConvolution2D method), 278
__call__() (chainer.links.DilatedConvolution2D method), 282
__call__() (chainer.links.EmbedID method), 286
__call__() (chainer.links.GRU method), 289
__call__() (chainer.links.GoogLeNet method), 410
__call__() (chainer.links.Highway method), 292
__call__() (chainer.links.Inception method), 295
__call__() (chainer.links.InceptionBN method), 298
__call__() (chainer.links.LSTM method), 306
__call__() (chainer.links.LayerNormalization method), 375
__call__() (chainer.links.Linear method), 302
__call__() (chainer.links.MLPConvolution2D method), 309
__call__() (chainer.links.Maxout method), 396
__call__() (chainer.links.NStepBiGRU method), 315
__call__() (chainer.links.NStepBiLSTM method), 318
__call__() (chainer.links.NStepBiRNNTanh method), 322
__call__() (chainer.links.NStepBiRNNReLU method), 325
__call__() (chainer.links.NStepBiRNNTanh method), 328
__call__() (chainer.links.NStepBiLSTM method), 331
__call__() (chainer.links.NStepRNNTanh method), 334
__call__() (chainer.links.NStepRNNReLU method), 337
__call__() (chainer.links.NaryTreeLSTM method), 312
__call__() (chainer.links.NegativeSampling method), 398
__call__() (chainer.links.PReLU method), 392
__call__() (chainer.links.Parameter method), 340
__call__() (chainer.links.ResNet101Layers method), 423
__call__() (chainer.links.ResNet152Layers method), 427
__call__() (chainer.links.ResNet50Layers method), 419
__call__() (chainer.links.Scale method), 343
__call__() (chainer.links.SimplifiedDropconnect method), 388
__ne__() (chainer.Variable method), 66
__ne__() (chainer.utils.type_check.Expr method), 138
__next__() (chainer.dataset.Iterator method), 107
__next__() (chainer.iterators.MultiprocessIterator method), 482
__next__() (chainer.iterators.SerialIterator method), 481
__nonzero__() (chainer.Parameter method), 70
__nonzero__() (chainer.Variable method), 66
__nonzero__() (chainer.utils.type_check.Expr method), 138
A
absolute() (in module chainer.functions), 222
absolute_error() (in module chainer.functions), 207
AbstractSerializer (class in chainer), 102
accuracy() (in module chainer.functions), 203
AdaDelta (class in chainer.optimizers), 438
AdaGrad (class in chainer.optimizers), 439
Adam (class in chainer.optimizers), 441
add() (chainer.DictSummary method), 135
add() (chainer.Summary method), 134
add_hook() (chainer.Function method), 72
add_hook() (chainer.FunctionAdapter method), 76
add_hook() (chainer.FunctionNode method), 80
add_hook() (chainer.GradientMethod method), 99
add_hook() (chainer.Optimizer method), 97
add_hook() (chainer.optimizers.AdaDelta method), 438
add_hook() (chainer.optimizers.Adam method), 440
add_hook() (chainer.optimizers.Adam method), 441
add_hook() (chainer.optimizers.MomentumSGD method), 443
add_hook() (chainer.optimizers.NesterovAG method), 444
add_hook() (chainer.optimizers.RMSprop method), 445
add_hook() (chainer.optimizers.RMSpropGraves method), 447
add_hook() (chainer.optimizers.SMORMS3 method), 448
add_hook() (chainer.optimizers.SMORMS3 method), 450
add_hook() (chainer.UpdateRule method), 96
add_link() (chainer.Chain method), 90
add_link() (chainer.ChainList method), 93
add_link() (chainer.links.caffe.CaffeFunction method), 436
add_link() (chainer.links.Classifier method), 403
add_link() (chainer.links.GoogLeNet method), 411
add_link() (chainer.links.Highway method), 289
add_link() (chainer.links.Inception method), 292
add_link() (chainer.links.Inception method), 295
add_link() (chainer.links.InceptionBN method), 298
add_link() (chainer.links.LSTM method), 306
add_link() (chainer.links.Maxout method), 396
add_link() (chainer.links.MLPConvolution2D method), 310
add_link() (chainer.links.model.vision.resnet.ResNetLayers method), 415
add_link() (chainer.links.NaryTreeLSTM method), 313
add_link() (chainer.links.NStepBiGRU method), 316
add_link() (chainer.links.NStepBiLSTM method), 319
add_link() (chainer.links.NStepBiRNNTanh method), 322
add_link() (chainer.links.NStepBiRNNTanh method), 325
add_link() (chainer.links.NStepGRU method), 328
add_link() (chainer.links.NStepLSTM method), 331
add_link() (chainer.links.NStepRNNTanh method), 334
add_link() (chainer.links.NStepRNNTanh method), 337
add_link() (chainer.links.ResNet101Layers method), 423
add_link() (chainer.links.ResNet152Layers method), 426
add_link() (chainer.links.ResNet50Layers method), 419
add_link() (chainer.links.Scale method), 434
add_link() (chainer.links.StatefulGRU method), 436
add_link() (chainer.links.StatefulMGU method), 352
add_link() (chainer.links.StatefulPeepholeLSTM method), 357
add_link() (chainer.links.StatefulZoneoutLSTM method), 360
add_link() (chainer.links.StatelessGRU method), 349
add_link() (chainer.links.StatelessLSTM method), 364
add_link() (chainer.links.StatelessMGU method), 354
add_link() (chainer.links.VGG16Layers method), 406
add_observer() (chainer.Reporter method), 132
add_observers() (chainer.Reporter method), 132
add_param() (chainer.Chain method), 90
add_param() (chainer.ChainList method), 93
add_param() (chainer.Chain method), 86
add_param() (chainer.links.BatchNormalization method), 367
add_param() (chainer.links.BatchRenormalization method), 371
add_param() (chainer.links.Bias method), 250
add_param() (chainer.links.Bilinear method), 254
add_param() (chainer.links.BinaryHierarchicalSoftmax method), 378
add_param() (chainer.links.BlackOut method), 382
add_param() (chainer.links.caffe.CaffeFunction method), 436
add_param() (chainer.links.ChildSumTreeLSTM method), 258
add_param() (chainer.links.Classifier method), 403
add_param() (chainer.links.Convolution2D method), 262
add_param() (chainer.links.ConvolutionND method), 266
add_param() (chainer.links.CRF1d method), 385
add_param() (chainer.links.Deconvolution2D method), 270

552 Index
add_param() (chainer.links.DeconvolutionND method), 274
add_param() (chainer.links.DepthwiseConvolution2D method), 278
add_param() (chainer.links.DilatedConvolution2D method), 282
add_param() (chainer.links.EmbedID method), 286
add_param() (chainer.links.GoogLeNet method), 411
add_param() (chainer.links.GRU method), 290
add_param() (chainer.links.Highway method), 293
add_param() (chainer.links.Inception method), 296
add_param() (chainer.links.InceptionBN method), 299
add_param() (chainer.links.LayerNormalization method), 375
add_param() (chainer.links.Linear method), 302
add_param() (chainer.links.LSTM method), 307
add_param() (chainer.links.Maxout method), 396
add_param() (chainer.links.MLPConvolution2D method), 310
add_param() (chainer.links.model.vision.resnet.ResNet101Layers method), 416
add_param() (chainer.links.NaryTreeLSTM method), 313
add_param() (chainer.links.NegativeSampling method), 399
add_param() (chainer.links.NStepBiGRU method), 316
add_param() (chainer.links.NStepBiLSTM method), 319
add_param() (chainer.links.NStepBiRNNReLU method), 322
add_param() (chainer.links.NStepBiRNNTanh method), 325
add_param() (chainer.links.NStepGRU method), 328
add_param() (chainer.links.NStepLSTM method), 331
add_param() (chainer.links.NStepRNNReLU method), 334
add_param() (chainer.links.NStepRNNTanh method), 337
add_param() (chainer.links.Parameter method), 340
add_param() (chainer.links.PReLU method), 392
add_param() (chainer.links.ResNet101Layers method), 423
add_param() (chainer.links.ResNet152Layers method), 427
add_param() (chainer.links.ResNet50Layers method), 419
add_param() (chainer.links.Scale method), 344
add_param() (chainer.links.SimplifiedDropconnect method), 389
add_param() (chainer.links.StatefulGRU method), 347
add_param() (chainer.links.StatefulMGU method), 352
add_param() (chainer.links.StatefulPeepholeLSTM method), 358
add_param() (chainer.links.StatefulZoneoutLSTM method), 360
add_param() (chainer.links.StatelessGRU method), 350
add_param() (chainer.links.StatelessLGU method), 364
add_param() (chainer.links.StatelessMGU method), 354
add_param() (chainer.links.TheanoFunction method), 431
add_param() (chainer.links.VGG16Layers method), 406
add_persistent() (chainer.Chain method), 91
add_persistent() (chainer.ChainList method), 93
add_persistent() (chainer.Link method), 86
add_persistent() (chainer.links.BatchNormalization method), 368
add_persistent() (chainer.links.BatchRenormalization method), 371
add_persistent() (chainer.links.Bias method), 251
add_persistent() (chainer.links.Bilinear method), 254
add_persistent() (chainer.links.BinaryHierarchicalSoftmax method), 379
add_persistent() (chainer.links.BlackOut method), 382
add_persistent() (chainer.links.caffe.CaffeFunction method), 436
add_persistent() (chainer.links.ChildSumTreeLSTM method), 258
add_persistent() (chainer.links.Classifier method), 403
add_persistent() (chainer.links.Convolution2D method), 262
add_persistent() (chainer.links.ConvolutionND method), 266
add_persistent() (chainer.links.CRF1d method), 385
add_persistent() (chainer.links.Deconvolution2D method), 271
add_persistent() (chainer.links.DeconvolutionND method), 274
add_persistent() (chainer.links.DepthwiseConvolution2D method), 278
add_persistent() (chainer.links.DilatedConvolution2D method), 283
add_persistent() (chainer.links.EmbedID method), 287
add_persistent() (chainer.links.GoogLeNet method), 411
add_persistent() (chainer.links.GRU method), 290
add_persistent() (chainer.links.Highway method), 293
add_persistent() (chainer.links.Inception method), 296
add_persistent() (chainer.links.InceptionBN method), 299
add_persistent() (chainer.links.LayerNormalization method), 375
add_persistent() (chainer.links.Linear method), 302
add_persistent() (chainer.links.LSTM method), 307
add_persistent() (chainer.links.Maxout method), 397
add_persistent() (chainer.links.MLPConvolution2D method), 310
add_persistent() (chainer.links.model.vision.resnet.ResNet101Layers method), 416
add_persistent() (chainer.links.NaryTreeLSTM method), 313
add_persistent() (chainer.links.NegativeSampling method), 399
add_persistent() (chainer.links.NStepBiGRU method), 316
add_persistent() (chainer.links.NStepBiLSTM method), 319
add_persistent() (chainer.links.NStepBiRNNReLU method), 322
add_persistent() (chainer.links.NStepBiRNNTanh method), 325
add_persistent() (chainer.links.NStepGRU method), 328
add_persistent() (chainer.links.NStepLSTM method), 331
add_persistent() (chainer.links.NStepRNNReLU method), 334
add_persistent() (chainer.links.NStepRNNTanh method), 337
add_persistent() (chainer.links.Parameter method), 340
add_persistent() (chainer.links.PReLU method), 392
add_persistent() (chainer.links.ResNet101Layers method), 423
add_persistent() (chainer.links.ResNet152Layers method), 427
add_persistent() (chainer.links.ResNet50Layers method), 419
add_persistent() (chainer.links.Scale method), 344
add_persistent() (chainer.links.SimplifiedDropconnect method), 389
add_persistent() (chainer.links.StatefulGRU method), 347
add_persistent() (chainer.links.StatefulMGU method), 352
add_persistent() (chainer.links.StatefulPeepholeLSTM method), 358
add_persistent() (chainer.links.StatefulZoneoutLSTM method), 360
add_persistent() (chainer.links.StatelessGRU method), 350
add_persistent() (chainer.links.StatelessLGU method), 364
add_persistent() (chainer.links.StatelessMGU method), 354
add_persistent() (chainer.links.TheanoFunction method), 431
add_persistent() (chainer.links.VGG16Layers method), 406
add_persistent() (chainer.Chain method), 91
add_persistent() (chainer.ChainList method), 93
add_persistent() (chainer.Link method), 86
add_persistent() (chainer.links.BatchNormalization method), 368
add_persistent() (chainer.links.BatchRenormalization method), 371
add_persistent() (chainer.links.Bias method), 251
add_persistent() (chainer.links.Bilinear method), 254
add_persistent() (chainer.links.BinaryHierarchicalSoftmax method), 379
add_persistent() (chainer.links.BlackOut method), 382
add_persistent() (chainer.links.caffe.CaffeFunction method), 436
add_persistent() (chainer.links.ChildSumTreeLSTM method), 258
add_persistent() (chainer.links.Classifier method), 403
add_persistent() (chainer.links.Convolution2D method), 262
add_persistent() (chainer.links.ConvolutionND method), 266
add_persistent() (chainer.links.CRF1d method), 385
add_persistent() (chainer.links.Deconvolution2D method), 271
add_persistent() (chainer.links.DeconvolutionND method), 274
add_persistent() (chainer.links.DepthwiseConvolution2D method), 278
add_persistent() (chainer.links.DilatedConvolution2D method), 283
add_persistent() (chainer.links.EmbedID method), 287
add_persistent() (chainer.links.GoogLeNet method), 411
add_persistent() (chainer.links.GRU method), 290
add_persistent() (chainer.links.Highway method), 293
add_persistent() (chainer.links.Inception method), 296
add_persistent() (chainer.links.InceptionBN method), 299
add_persistent() (chainer.links.LayerNormalization method), 375
add_persistent() (chainer.links.Linear method), 302
add_persistent() (chainer.links.LSTM method), 307
add_persistent() (chainer.links.Maxout method), 397
add_persistent() (chainer.links.MLPConvolution2D method), 310
add_persistent() (chainer.links.model.vision.resnet.ResNet101Layers method), 416
add_persistent() (chainer.links.NaryTreeLSTM method), 313
add_persistent() (chainer.links.NegativeSampling method), 399
connectionist_temporal_classification() (in module chainer.functions), 208
Constant (class in chainer.initializers), 463
contrastive() (in module chainer.functions), 209
convert_caffemodel_to_npz() (chainer.links.GoogLeNet class method), 412
convert_caffemodel_to_npz() (chainer.links.model.vision.resnet.ResNetLayers class method), 416
convert_caffemodel_to_npz() (chainer.links.ResNet101Layers method), 424
convert_caffemodel_to_npz() (chainer.links.ResNet152Layers method), 428
convert_caffemodel_to_npz() (chainer.links.ResNet50Layers method), 420
convert_caffemodel_to_npz() (chainer.links.VGG16Layers class method), 407
Convolution2D (class in chainer.links), 260
convolution_2d() (in module chainer.functions), 182
convolution_nd() (in module chainer.functions), 184
ConvolutionND (class in chainer.links), 265
Copy (in module chainer.cuda), 127
Copy (in module chainer.functions), 159
copydata() (chainer.Parameter method), 69
copyparams() (chainer.Chain method), 91
copyparams() (chainer.ChainList method), 94
copyparams() (chainer.Link method), 87
copyparams() (chainer.links.BatchNormalization method), 368
copyparams() (chainer.links.BatchRenormalization method), 372
copyparams() (chainer.links.Bias method), 251
copyparams() (chainer.links.Bilinear method), 255
copyparams() (chainer.links.BinaryHierarchicalSoftmax method), 379
copyparams() (chainer.links.BlackOut method), 383
copyparams() (chainer.links.caffe.CaffeFunction method), 437
copyparams() (chainer.links.ChildSumTreeLSTM method), 259
copyparams() (chainer.links.Classifier method), 404
copyparams() (chainer.links.Convolution2D method), 263
copyparams() (chainer.links.ConvolutionND method), 266
copyparams() (chainer.links.CRF1d method), 386
copyparams() (chainer.links.Deconvolution2D method), 271
copyparams() (chainer.links.DeconvolutionND method), 275
copyparams() (chainer.links.DepthwiseConvolution2D method), 279
copyparams() (chainer.links.DilatedConvolution2D method), 283
copyparams() (chainer.links.EmbedID method), 287
copyparams() (chainer.links.GoogLeNet method), 412
copyparams() (chainer.links.GRU method), 291
copyparams() (chainer.links.Highway method), 294
copyparams() (chainer.links.Inception method), 297
copyparams() (chainer.links.InceptionBN method), 299
copyparams() (chainer.links.LayerNormalization method), 376
copyparams() (chainer.links.Linear method), 303
copyparams() (chainer.links.LSTM method), 307
copyparams() (chainer.links.Maxout method), 397
copyparams() (chainer.links.MLPConvolution2D method), 311
copyparams() (chainer.links.model.vision.resnet.ResNetLayers method), 416
copyparams() (chainer.links.NaryTreeLSTM method), 314
copyparams() (chainer.links.NegativeSampling method), 400
copyparams() (chainer.links.NStepBiGRU method), 317
copyparams() (chainer.links.NStepBiLSTM method), 320
copyparams() (chainer.links.NStepBiRNReLU method), 323
copyparams() (chainer.links.NStepBiRNNtanh method), 326
copyparams() (chainer.links.NStepGRU method), 329
copyparams() (chainer.links.NStepLSTM method), 332
copyparams() (chainer.links.NStepRNReLU method), 335
copyparams() (chainer.links.NStepRNNTanh method), 338
copyparams() (chainer.links.Parameter method), 341
copyparams() (chainer.links.PReLU method), 393
copyparams() (chainer.links.ResNet101Layers method), 424
copyparams() (chainer.links.ResNet152Layers method), 428
copyparams() (chainer.links.ResNet50Layers method), 420
copyparams() (chainer.links.Scale method), 444
copyparams() (chainer.links.SimplifiedDropconnect method), 390
copyparams() (chainer.links.StatefulBiGRU method), 347
copyparams() (chainer.links.StatefulBiMGU method), 353
copyparams() (chainer.links.StatefulBiPeepholeLSTM method), 358
copyparams() (chainer.links.StatefulZoneoutLSTM method), 361
copyparams() (chainer.links.StatelessBiGRU method), 350
copyparams() (chainer.links.StatelessBiMGU method), 365
copyparams() (chainer.links.StatelessMGU method), 355
copyparams() (chainer.links.TheanoFunction method), 432
copyparams() (chainer.links.VGG16Layers method), 407
copyparams() (in module chainer.cuda), 127
copyparams() (in module chainer.functions), 159
copyparams() (chainer.Variables method), 65
copyparams() (chainer.Chain method), 91
copyparams() (chainer.ChainList method), 94
copyparams() (chainer.Link method), 87
copyparams() (chainer.links.BatchNormalization method), 369
copyparams() (chainer.links.BatchRenormalization method), 372
copyparams() (chainer.links.Bias method), 251
copyparams() (chainer.links.BinaryHierarchicalSoftmax method), 379
copyparams() (chainer.links.CaffeFunction method), 437
copyparams() (chainer.links.Convolution2D method), 263
copyparams() (chainer.links.ConvolutionND method), 266
copyparams() (chainer.links.CRF1d method), 386
copyparams() (chainer.links.Deconvolution2D method), 271
copyparams() (chainer.links.DeconvolutionND method), 275
copyparams() (chainer.links.DepthwiseConvolution2D method), 279
copyparams() (chainer.links.DilatedConvolution2D method), 283
copyparams() (chainer.links.EmbedID method), 287
copyparams() (chainer.links.GoogLeNet method), 412
copyparams() (chainer.links.GRU method), 291
copyparams() (chainer.links.Highway method), 294
copyparams() (chainer.links.Inception method), 297
copyparams() (chainer.links.InceptionBN method), 299
copyparams() (chainer.links.LayerNormalization method), 376
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Class/Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.ChildSumTreeLSTM</code> method</td>
<td>259</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Classifier</code> method</td>
<td>404</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Convolution2D</code> method</td>
<td>263</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.ConvolutionND</code> method</td>
<td>267</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.CRF1d</code> method</td>
<td>386</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Deconvolution2D</code> method</td>
<td>271</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.DeconvolutionND</code> method</td>
<td>275</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.DepthwiseConvolution2D</code>method</td>
<td>279</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.DilatedConvolution2D</code> method</td>
<td>284</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.EmbedID</code> method</td>
<td>287</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.GoogLeNet</code> method</td>
<td>412</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.GRU</code> method</td>
<td>291</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Highway</code> method</td>
<td>294</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Inception</code> method</td>
<td>297</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.InceptionBN</code> method</td>
<td>300</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.LayerNormalization</code> method</td>
<td>376</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Linear</code> method</td>
<td>303</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.LSTM</code> method</td>
<td>307</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Maxout</code> method</td>
<td>397</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.MLPConvolution2D</code> method</td>
<td>311</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.model.vision.resnet.ResNetLayers</code> method</td>
<td>416</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NaryTreeLSTM</code> method</td>
<td>314</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NegativeSampling</code> method</td>
<td>400</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepBiGRU</code> method</td>
<td>317</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepBiLSTM</code> method</td>
<td>320</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepBiRNNReLU</code> method</td>
<td>323</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepBiRNNTanh</code> method</td>
<td>326</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepGRU</code> method</td>
<td>329</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepLSTM</code> method</td>
<td>332</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepRNNReLU</code> method</td>
<td>335</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.NStepRNNTanh</code> method</td>
<td>338</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Parameter</code> method</td>
<td>341</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.PReLU</code> method</td>
<td>393</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.ResNet101Layers</code> method</td>
<td>424</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.ResNet152Layers</code> method</td>
<td>428</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.ResNet50Layers</code> method</td>
<td>420</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.Scale</code> method</td>
<td>344</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.SimplifiedDropconnect</code> method</td>
<td>390</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.StatefulGRU</code> method</td>
<td>347</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.StatefulMGU</code> method</td>
<td>353</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.StatefulPeepholeLSTM</code> method</td>
<td>359</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.StatefulZoneoutLSTM</code> method</td>
<td>361</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.StatelessGRU</code> method</td>
<td>351</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.StatelessLSTM</code> method</td>
<td>365</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.StatelessMGU</code> method</td>
<td>355</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.TheanoFunction</code> method</td>
<td>432</td>
</tr>
<tr>
<td><code>copyparams()</code></td>
<td><code>chainer.links.VGG16Layers</code> method</td>
<td>407</td>
</tr>
<tr>
<td><code>cos()</code></td>
<td>in module <code>chainer.functions</code></td>
<td>226</td>
</tr>
<tr>
<td><code>cosh()</code></td>
<td>in module <code>chainer.functions</code></td>
<td>227</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>(in module <code>chainer.utils.type_check.TypeInfoTuple</code> method)</td>
<td>139</td>
</tr>
<tr>
<td><code>create_huffman_tree()</code></td>
<td><code>chainer.links.BinaryHierarchicalSoftmax</code> static method</td>
<td>380</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.GradientMethod</code> method</td>
<td>99</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.AdaDelta</code> method</td>
<td>438</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.AdaGrad</code> method</td>
<td>440</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.Adam</code> method</td>
<td>441</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.MomentumSGD</code> method</td>
<td>443</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.NesterovAG</code> method</td>
<td>444</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.RMSprop</code> method</td>
<td>446</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.RMSpropGraves</code> method</td>
<td>447</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.SGD</code> method</td>
<td>448</td>
</tr>
<tr>
<td><code>create_update_rule()</code></td>
<td><code>chainer.optimizers.SMORMS3</code> method</td>
<td>450</td>
</tr>
<tr>
<td><code>crelu()</code></td>
<td>(in module <code>chainer.functions</code>)</td>
<td>145</td>
</tr>
<tr>
<td><code>CRF1d</code></td>
<td>(class in <code>chainer.links</code>)</td>
<td>384</td>
</tr>
<tr>
<td><code>crf1d()</code></td>
<td>(in module <code>chainer.functions</code>)</td>
<td>210</td>
</tr>
<tr>
<td><code>cross_covariance()</code></td>
<td>(in module <code>chainer.functions</code>)</td>
<td>212</td>
</tr>
<tr>
<td><code>CUDAProfileHook</code></td>
<td>(class in <code>chainer.function_hooks</code>)</td>
<td>457</td>
</tr>
<tr>
<td><code>CupyMemoryProfileHook</code></td>
<td>(class in <code>chainer.function_hooks</code>)</td>
<td>458</td>
</tr>
</tbody>
</table>

D

DatasetMixin (class in `chainer.dataset`), 105

debug_print() (chainer.Parameter method), 69

debug_print() (chainer.Variable method), 65

DebugMode (class in `chainer`), 121

Index

559
Deconvolution2D (class in chainer.links), 268
decov() (in module chainer.functions), 213
deleted() (chainer.function_hooks.CUDAProfileHook method), 458
deleted() (chainer.function_hooks.CupyMemoryProfileHook method), 459
deleted() (chainer.function_hooks.PrintHook method), 460
deleted() (chainer.function_hooks.TimerHook method), 461
deleted() (chainer.FunctionHook method), 457
depth2space() (in module chainer.functions), 160
depthwise_convolution_2d() (in module chainer.functions), 189
DepthwiseConvolution2D (class in chainer.links), 277
Deserializer (class in chainer), 104
dict() (in module chainer.functions), 227
DictDataset (class in chainer.datasets), 468
DictionarySerializer (class in chainer.serializers), 451
DictSummary (class in chainer), 135
dilated_convolution_2d() (in module chainer.functions), 191
DilatedConvolution2D (class in chainer.links), 281
disable_update() (chainer.Chain method), 91
disable_update() (chainer.ChainList method), 94
disable_update() (chainer.Link method), 87
disable_update() (chainer.links.BatchNormalization method), 369
disable_update() (chainer.links.BatchRenormalization method), 372
disable_update() (chainer.links.Bias method), 251
disable_update() (chainer.links.Bilinear method), 255
disable_update() (chainer.links.BinaryHierarchicalSoftmax method), 380
disable_update() (chainer.links.BlackOut method), 383
disable_update() (chainer.links.caffe.CaffeFunction method), 437
disable_update() (chainer.links.ChildSumTreeLSTM method), 259
disable_update() (chainer.links.Classifier method), 404
disable_update() (chainer.links.Convolution2D method), 263
disable_update() (chainer.links.ConvolutionND method), 267
disable_update() (chainer.links.CRF1d method), 386
disable_update() (chainer.links.Deconvolution2D method), 272
enable_update() (chainer.links.StatelessGRU method), 361
enable_update() (chainer.links.StatelessLSTM method), 365
enable_update() (chainer.links.StatelessMGU method), 355
enable_update() (chainer.links.TheanoFunction method), 433
enable_update() (chainer.links.VGG16Layers method), 407
eval() (chainer.utils.type_check.Expr method), 138
evaluate() (chainer.training.extensions.Evaluator method), 483
evaluator (class in chainer.training.extensions), 483
exp() (in module chainer.functions), 227
expand_dims() (in module chainer.functions), 162
expect() (in module chainer.utils.type_check), 138
experimental() (in module chainer.utils), 227
ExponentialShift (class in chainer.training.extensions), 485
Expr (class in chainer.utils.type_check), 137
extend() (chainer.training.Trainer method), 112
Extension (class in chainer.training), 118
extract() (chainer.links.GoogLeNet method), 412
extract() (chainer.links.model.vision.resnet.ResNetLayers method), 417
extract() (chainer.links.ResNet101Layers method), 425
extract() (chainer.links.ResNet152Layers method), 428
extract() (chainer.links.ResNet50Layers method), 421
extract() (chainer.links.VGG16Layers method), 407
f1_score() (in module chainer.functions), 205
finalize() (chainer.dataset.Iterator method), 107
finalize() (chainer.iterators.MultiprocessIterator method), 482
finalize() (chainer.iterators.SerialIterator method), 481
finalize() (chainer.training.Extension method), 119
finalize() (chainer.training.extensions.Evaluator method), 485
finalize() (chainer.training.extensions.ExponentialShift method), 486
finalize() (chainer.training.extensions.LinearShift method), 486
finalize() (chainer.training.extensions.LogReport method), 487
finalize() (chainer.training.extensions.ParameterStatistics method), 490
finalize() (chainer.training.extensions.PlotReport method), 492
finalize() (chainer.training.extensions.PrintReport method), 493
finalizer() (chainer.training.extensions.ProgressBar method), 493
finalizer() (chainer.training.ParallelUpdater method), 116
finalizer() (chainer.training.StandardUpdater method), 115
finalizer() (chainer.training.Updater method), 113
finalizer() (chainer.training.updaters.MultiprocessParallelUpdater method), 117
fix() (in module chainer.functions), 228
fixed_batch_normalization() (in module chainer.functions), 240
fixed_batch_renormalization() (in module chainer.functions), 240
flatten() (in module chainer.functions), 163
flip() (in module chainer.functions), 164
fliplr() (in module chainer.functions), 164
flipud() (in module chainer.functions), 164
floor() (in module chainer.functions), 228
fmod() (in module chainer.functions), 228
force_backprop_mode() (in module chainer), 83
forget() (in module chainer.functions), 248
forward() (chainer.Function method), 74
forward() (chainer.FunctionAdapter method), 77
forward() (chainer.FunctionNode method), 81
forward_cpu() (chainer.Function method), 74
forward_cpu() (chainer.FunctionAdapter method), 77
forward_cpu() (chainer.FunctionNode method), 82
forward_gpu() (chainer.Function method), 74
forward_gpu() (chainer.FunctionAdapter method), 77
forward_gpu() (chainer.FunctionNode method), 82
forward_postprocess() (chainer.function_hooks.CUDAProfileHook method), 458
forward_postprocess() (chainer.function_hooks.CupyMemoryProfileHook method), 459
forward_postprocess() (chainer.function_hooks.PrintHook method), 460
forward_postprocess() (chainer.function_hooks.TimerHook method), 461
forward_preprocess() (chainer.FunctionHook method), 457
forward_preprocess() (chainer.function_hooks.CUDAProfileHook method), 458
forward_preprocess() (chainer.function_hooks.CupyMemoryProfileHook method), 459
forward_preprocess() (chainer.function_hooks.PrintHook method), 460
forward_preprocess() (chainer.function_hooks.TimerHook method), 461
forward_preprocess() (chainer.FunctionHook method), 457
Function (class in chainer), 72
FunctionAdapter (class in chainer), 75
FunctionHook (class in chainer), 455
FunctionNode (class in chainer), 78
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception (class in chainer.links)</td>
<td>295</td>
</tr>
<tr>
<td>InceptionBN (class in chainer.links)</td>
<td>298</td>
</tr>
<tr>
<td>index()</td>
<td>139</td>
</tr>
<tr>
<td>init_hx()</td>
<td>317</td>
</tr>
<tr>
<td>init_hx()</td>
<td>320</td>
</tr>
<tr>
<td>init_hx()</td>
<td>323</td>
</tr>
<tr>
<td>init_hx()</td>
<td>326</td>
</tr>
<tr>
<td>init_hx()</td>
<td>329</td>
</tr>
<tr>
<td>init_hx()</td>
<td>332</td>
</tr>
<tr>
<td>init_hx()</td>
<td>335</td>
</tr>
<tr>
<td>init_hx()</td>
<td>338</td>
</tr>
<tr>
<td>init_scope()</td>
<td>91</td>
</tr>
<tr>
<td>init_scope()</td>
<td>94</td>
</tr>
<tr>
<td>init_scope()</td>
<td>87</td>
</tr>
<tr>
<td>init_scope()</td>
<td>369</td>
</tr>
<tr>
<td>init_scope()</td>
<td>372</td>
</tr>
<tr>
<td>init_scope()</td>
<td>252</td>
</tr>
<tr>
<td>init_scope()</td>
<td>255</td>
</tr>
<tr>
<td>init_scope()</td>
<td>380</td>
</tr>
<tr>
<td>init_scope()</td>
<td>259</td>
</tr>
<tr>
<td>init_scope()</td>
<td>404</td>
</tr>
<tr>
<td>init_scope()</td>
<td>263</td>
</tr>
<tr>
<td>init_scope()</td>
<td>267</td>
</tr>
<tr>
<td>init_scope()</td>
<td>386</td>
</tr>
<tr>
<td>init_scope()</td>
<td>272</td>
</tr>
<tr>
<td>init_scope()</td>
<td>275</td>
</tr>
<tr>
<td>init_scope()</td>
<td>279</td>
</tr>
<tr>
<td>init_scope()</td>
<td>284</td>
</tr>
<tr>
<td>init_scope()</td>
<td>288</td>
</tr>
<tr>
<td>init_scope()</td>
<td>413</td>
</tr>
<tr>
<td>init_scope()</td>
<td>291</td>
</tr>
<tr>
<td>init_scope()</td>
<td>294</td>
</tr>
<tr>
<td>init_scope()</td>
<td>297</td>
</tr>
<tr>
<td>init_scope()</td>
<td>300</td>
</tr>
<tr>
<td>init_scope()</td>
<td>303</td>
</tr>
<tr>
<td>init_scope()</td>
<td>308</td>
</tr>
<tr>
<td>init_scope()</td>
<td>397</td>
</tr>
<tr>
<td>init_scope()</td>
<td>311</td>
</tr>
<tr>
<td>init_scope()</td>
<td>417</td>
</tr>
<tr>
<td>init_scope()</td>
<td>314</td>
</tr>
<tr>
<td>init_scope()</td>
<td>400</td>
</tr>
<tr>
<td>init_scope()</td>
<td>317</td>
</tr>
<tr>
<td>init_scope()</td>
<td>320</td>
</tr>
<tr>
<td>init_scope()</td>
<td>323</td>
</tr>
<tr>
<td>init_scope()</td>
<td>326</td>
</tr>
<tr>
<td>init_scope()</td>
<td>329</td>
</tr>
<tr>
<td>init_scope()</td>
<td>332</td>
</tr>
<tr>
<td>init_scope()</td>
<td>335</td>
</tr>
<tr>
<td>init_scope()</td>
<td>338</td>
</tr>
<tr>
<td>init_scope()</td>
<td>341</td>
</tr>
<tr>
<td>init_scope()</td>
<td>343</td>
</tr>
<tr>
<td>init_scope()</td>
<td>348</td>
</tr>
<tr>
<td>init_scope()</td>
<td>353</td>
</tr>
<tr>
<td>init_scope()</td>
<td>359</td>
</tr>
<tr>
<td>init_scope()</td>
<td>361</td>
</tr>
<tr>
<td>init_scope()</td>
<td>351</td>
</tr>
<tr>
<td>init_scope()</td>
<td>355</td>
</tr>
<tr>
<td>init_scope()</td>
<td>433</td>
</tr>
<tr>
<td>init_state()</td>
<td>96</td>
</tr>
<tr>
<td>initialize()</td>
<td>69</td>
</tr>
<tr>
<td>initialize()</td>
<td>119</td>
</tr>
<tr>
<td>initialize()</td>
<td>485</td>
</tr>
<tr>
<td>initialize()</td>
<td>486</td>
</tr>
<tr>
<td>initialize()</td>
<td>486</td>
</tr>
<tr>
<td>initialize()</td>
<td>487</td>
</tr>
<tr>
<td>initialize()</td>
<td>490</td>
</tr>
<tr>
<td>initialize()</td>
<td>492</td>
</tr>
<tr>
<td>initialize()</td>
<td>493</td>
</tr>
</tbody>
</table>
initialize() (chainer.training.extensions.ProgressBar method), 493
Initializer (class in chainer), 462
IntervalTrigger (class in chainer.training.triggers), 495
inv() (in module chainer.functions), 228
is_debug() (in module chainer), 121
Iterator (class in chainer.dataset), 107
LabeledImageDataset (class in chainer.datasets), 476
Lasso (class in chainer.optimizer), 101
layer_normalization() (in module chainer.functions), 240
LayerNormalization (class in chainer.links), 374
leaky_relu() (in module chainer.functions), 147
LeCunNormal (class in chainer.initializers), 464
LeCunUniform (class in chainer.initializers), 466
Linear (class in chainer.links), 301
linear() (in module chainer.functions), 192
linear_interpolate() (in module chainer.functions), 229
LinearShift (class in chainer.training.extensions), 486
Link (class in chainer), 85
links() (chainer.Chain method), 92
links() (chainer.ChainList method), 94
links() (chainer.Link method), 88
links() (chainer.links.BatchNormalization method), 369
links() (chainer.links.BatchRenormalization method), 373
links() (chainer.links.Bias method), 252
links() (chainer.links.Bilinear method), 256
links() (chainer.links.BinaryHierarchicalSoftmax method), 380
links() (chainer.links.BlackOut method), 383
links() (chainer.links.caffe.CaffeFunction method), 437
links() (chainer.links.ChildSumTreeLSTM method), 259
links() (chainer.links.Classifier method), 404
links() (chainer.links.Convolution2D method), 263
links() (chainer.links.ConvolutionND method), 267
links() (chainer.links.CRF1d method), 387
links() (chainer.links.Deconvolution2D method), 272
links() (chainer.links.DeconvolutionND method), 276
links() (chainer.links.DepthwiseConvolution2D method), 280
links() (chainer.links.DilatedConvolution2D method), 284
links() (chainer.links.EmbedID method), 288
links() (chainer.links.GoogLeNet method), 413
links() (chainer.links.GRU method), 291
links() (chainer.links.Highway method), 294
links() (chainer.links.Inception method), 297
links() (chainer.links.InceptionBN method), 300
links() (chainer.links.LayerNormalization method), 376
links() (chainer.links.Linear method), 304
links() (chainer.links.LSTM method), 308
links() (chainer.links.Maxout method), 397
links() (chainer.links.MLPConvolution2D method), 311
links() (chainer.links.model.vision.resnet.ResNetLayers method), 417
links() (chainer.links.NaryTreeLSTM method), 314
links() (chainer.links.NegativeSampling method), 400
links() (chainer.links.NStepBiGRU method), 317
links() (chainer.links.NStepBiLSTM method), 320
links() (chainer.links.NStepBiRNNReLU method), 324
links() (chainer.links.NStepBiRNNTanh method), 327
links() (chainer.links.NStepGRU method), 330
links() (chainer.links.NStepLSTM method), 333
links() (chainer.links.NStepRNNReLU method), 336
links() (chainer.links.NStepRNNTanh method), 339
links() (chainer.links.Parameter method), 341
links() (chainer.links.PReLU method), 394
links() (chainer.links.ResNet101Layers method), 425
links() (chainer.links.ResNet152Layers method), 429
links() (chainer.links.ResNet50Layers method), 421
links() (chainer.links.Scale method), 345
links() (chainer.links.SimplifiedDropconnect method), 390
links() (chainer.links.StatefulGRU method), 348
links() (chainer.links.StatefulMGU method), 353
links() (chainer.links.StatefulPeepholeLSTM method), 359
links() (chainer.links.StatefulZoneoutLSTM method), 362
links() (chainer.links.StatelessGRU method), 351
links() (chainer.links.StatelessLSTM method), 365
links() (chainer.links.StatelessMGU method), 356
links() (chainer.links.TheanoFunction method), 433
links() (chainer.links.VGG16Layers method), 408
load() (chainer.Deserializer method), 104
load() (chainer.serializers.HDF5Deserializer method), 454
load() (chainer.serializers.NpzDeserializer method), 452
load_hdf5() (in module chainer.serializers), 454
load_npz() (in module chainer.serializers), 453
local_response_normalization() (in module chainer.functions), 240
LocalConfig (class in chainer.configuration), 124
log() (in module chainer.functions), 229
log10() (in module chainer.functions), 229
log1p() (in module chainer.functions), 229
log2() (in module chainer.functions), 229
log_softmax() (in module chainer.functions), 147
LogReport (class in chainer.training.extensions), 487
logsumexp() (in module chainer.functions), 230
LSTM (class in chainer.links), 305
lstm() (in module chainer.functions), 148
make_extension() (in module chainer.training), 119
make_statistics() (chainer.DictSummary method), 135
make_statistics() (chainer.Summary method), 135
ManualScheduleTrigger (class in chainer.training.triggers), 495
matmul() (in module chainer.functions), 230
max() (in module chainer.functions), 231
max_pooling_2d() (in module chainer.functions), 243
max_pooling_nd() (in module chainer.functions), 243
maximum() (in module chainer.functions), 231
Maxout (class in chainer.links), 395
maxout() (in module chainer.functions), 149
MaxValueTrigger (class in chainer.training.triggers), 496
mean() (in module chainer.functions), 231
mean_absolute_error() (in module chainer.functions), 216
mean_squared_error() (in module chainer.functions), 216
memoize() (in module chainer.cuda), 129
min() (in module chainer.functions), 231
minimum() (in module chainer.functions), 232
MinValueTrigger (class in chainer.training.triggers), 496
MomentumSGD (class in chainer.optimizers), 442
MultiprocessIterator (class in chainer.iterators), 481
MultiprocessParallelUpdater (class in chainer.training.updaters), 117
n_step_bigru() (in module chainer.functions), 193
n_step_bilstm() (in module chainer.functions), 194
n_step_birnn() (in module chainer.functions), 197
n_step_gru() (in module chainer.functions), 199
n_step_lstm() (in module chainer.functions), 200
n_step_rnn() (in module chainer.functions), 202
namedlinks() (chainer.Chain method), 92
namedlinks() (chainer.ChainList method), 94
namedlinks() (chainer.Link method), 88
namedlinks() (chainer.links.BatchNormalization method), 369
namedlinks() (chainer.links.BatchRenormalization method), 373
namedlinks() (chainer.links.Bias method), 252
namedlinks() (chainer.links.Bilinear method), 256
namedlinks() (chainer.links.BinaryHierarchicalSoftmax method), 380
namedlinks() (chainer.links.BlackOut method), 384
namedlinks() (chainer.links.caffe.CaffeFunction method), 437
namedlinks() (chainer.links.ChildSumTreeLSTM method), 259
namedlinks() (chainer.links.Classifier method), 404
namedlinks() (chainer.links.Convolution2D method), 404
namedlinks() (chainer.links.ConvolutionND method), 267
namedlinks() (chainer.links.CRF1d method), 387
namedlinks() (chainer.links.Deconvolution2D method), 272
namedlinks() (chainer.links.DeconvolutionND method), 276
namedlinks() (chainer.links.DepthwiseConvolution2D method), 280
namedlinks() (chainer.links.DilatedConvolution2D method), 284
namedlinks() (chainer.links.EmbedID method), 288
namedlinks() (chainer.links.GoogLeNet method), 413
namedlinks() (chainer.links.GRU method), 291
namedlinks() (chainer.links.Highway method), 294
namedlinks() (chainer.links.Inception method), 297
namedlinks() (chainer.links.InceptionBN method), 300
namedlinks() (chainer.links.LayerNormalization method), 377
namedlinks() (chainer.links.Linear method), 304
namedlinks() (chainer.links.LSTM method), 308
namedlinks() (chainer.links.Maxout method), 398
namedlinks() (chainer.links.MLPConvolution2D method), 311
namedlinks() (chainer.links.NaryTreeLSTM method), 417
namedlinks() (chainer.links.NegativeSampling method), 314
namedlinks() (chainer.links.NStepBiGRU method), 400
namedlinks() (chainer.links.NStepBiLSTM method), 321
namedlinks() (chainer.links.NStepBiRNNReLU method), 324
namedlinks() (chainer.links.NStepBiRNNTanH method), 327
namedlinks() (chainer.links.NStepGRU method), 330
namedlinks() (chainer.links.NStepLSTM method), 333
namedlinks() (chainer.links.NStepRNNTanh method), 336
namedlinks() (chainer.links.NStepRNNTanh method), 339
namedlinks() (chainer.links.Neighbor method), 342
namedlinks() (chainer.links.PReLU method), 348
namedlinks() (chainer.links.ResNet101Layers method), 380
namedlinks() (chainer.links.ResNet152Layers method), 394
namedlinks() (chainer.links.ResNet50Layers method), 404
namedlinks() (chainer.links.Scale method), 425
namedlinks() (chainer.links.Scale method), 421
namedlinks() (chainer.links.StatefulGRU method), 345
namedlinks() (chainer.links.StatefulLSTM method), 391
namedlinks() (chainer.links.StatefulLSTM method), 394
namedlinks() (chainer.links.StatefulMGU method), 353
namedlinks() (chainer.links.StatefulPeepholeLSTM method), 359
namedlinks() (chainer.links.StatefulZoneoutLSTM method), 362

N

manual_schedule_trigger (class in chainer.training.triggers), 495
max() (in module chainer.functions), 230
max_pooling_2d() (in module chainer.functions), 243
max_pooling_nd() (in module chainer.functions), 243
maximum() (in module chainer.functions), 231
Maxout (class in chainer.links), 395
maxout() (in module chainer.functions), 149
MaxValueTrigger (class in chainer.training.triggers), 496
mean() (in module chainer.functions), 231
mean_absolute_error() (in module chainer.functions), 216
mean_squared_error() (in module chainer.functions), 216
memoize() (in module chainer.cuda), 129
min() (in module chainer.functions), 231
minimum() (in module chainer.functions), 232
MinValueTrigger (class in chainer.training.triggers), 496
MomentumSGD (class in chainer.optimizers), 442
MultiprocessIterator (class in chainer.iterators), 481
MultiprocessParallelUpdater (class in chainer.training.updaters), 117
n_step_bigru() (in module chainer.functions), 193
n_step_bilstm() (in module chainer.functions), 194
n_step_birnn() (in module chainer.functions), 197
n_step_gru() (in module chainer.functions), 199
n_step_lstm() (in module chainer.functions), 200
n_step_rnn() (in module chainer.functions), 202
namedlinks() (chainer.Chain method), 92
namedlinks() (chainer.ChainList method), 94
namedlinks() (chainer.Link method), 88
namedlinks() (chainer.links.BatchNormalization method), 369
namedlinks() (chainer.links.BatchRenormalization method), 373
namedlinks() (chainer.links.Bias method), 252
namedlinks() (chainer.links.Bilinear method), 256
namedlinks() (chainer.links.BinaryHierarchicalSoftmax method), 380
namedlinks() (chainer.links.BlackOut method), 384
namedlinks() (chainer.links.caffe.CaffeFunction method), 437
namedlinks() (chainer.links.ChildSumTreeLSTM method), 259
namedlinks() (chainer.links.Classifier method), 404
namedlinks() (chainer.links.Convolution2D method), 404
namedlinks() (chainer.links.ConvolutionND method), 267
namedlinks() (chainer.links.CRF1d method), 387
namedlinks() (chainer.links.Deconvolution2D method), 272
namedlinks() (chainer.links.DeconvolutionND method), 276
namedlinks() (chainer.links.DepthwiseConvolution2D method), 280
namedlinks() (chainer.links.DilatedConvolution2D method), 284
namedlinks() (chainer.links.EmbedID method), 288
namedlinks() (chainer.links.GoogLeNet method), 413
namedlinks() (chainer.links.GRU method), 291
namedlinks() (chainer.links.Highway method), 294
namedlinks() (chainer.links.Inception method), 297
namedlinks() (chainer.links.InceptionBN method), 300
namedlinks() (chainer.links.LayerNormalization method), 377
namedlinks() (chainer.links.Linear method), 304
namedlinks() (chainer.links.LSTM method), 308
namedlinks() (chainer.links.Maxout method), 398
namedlinks() (chainer.links.MLPConvolution2D method), 311
namedlinks() (chainer.links.NaryTreeLSTM method), 417
namedlinks() (chainer.links.NegativeSampling method), 314
namedlinks() (chainer.links.NStepBiGRU method), 400
namedlinks() (chainer.links.NStepBiLSTM method), 321
namedlinks() (chainer.links.NStepBiRNNReLU method), 324
namedlinks() (chainer.links.NStepBiRNNTanH method), 327
namedlinks() (chainer.links.NStepGRU method), 330
namedlinks() (chainer.links.NStepLSTM method), 333
namedlinks() (chainer.links.NStepRNNTanh method), 336
namedlinks() (chainer.links.NStepRNNTanh method), 339
namedlinks() (chainer.links.Neighbor method), 342
namedlinks() (chainer.links.PReLU method), 348
namedlinks() (chainer.links.ResNet101Layers method), 380
namedlinks() (chainer.links.ResNet152Layers method), 394
namedlinks() (chainer.links.ResNet50Layers method), 404
namedlinks() (chainer.links.Scale method), 425
namedlinks() (chainer.links.Scale method), 421
namedlinks() (chainer.links.StatefulGRU method), 345
namedlinks() (chainer.links.StatefulLSTM method), 391
namedlinks() (chainer.links.StatefulLSTM method), 394
namedlinks() (chainer.links.StatefulMGU method), 353
namedlinks() (chainer.links.StatefulPeepholeLSTM method), 359
namedlinks() (chainer.links.StatefulZoneoutLSTM method), 362

566 Index
| namedlinks() (chainer.links.StatelessGRU method), 351 |
| namedlinks() (chainer.links.StatelessLSTM method), 365 |
| namedlinks() (chainer.links.StatelessMGU method), 356 |
| namedlinks() (chainer.links.VGG16Layers method), 408 |
| namedparams() (chainer.Chain method), 92 |
| namedparams() (chainer.ChainList method), 94 |
| namedparams() (chainer.Link method), 88 |
| namedparams() (chainer.links.BatchNormalization method), 369 |
| namedparams() (chainer.links.BatchRenormalization method), 373 |
| namedparams() (chainer.links.Bias method), 252 |
| namedparams() (chainer.links.Bilinear method), 256 |
| namedparams() (chainer.links.BinaryHierarchicalSoftmax method), 380 |
| namedparams() (chainer.links.BlackOut method), 384 |
| namedparams() (chainer.links.caffe.CaffeFunction method), 437 |
| namedparams() (chainer.links.ChildSumTreeLSTM method), 259 |
| namedparams() (chainer.links.Classifier method), 404 |
| namedparams() (chainer.links.Convolution2D method), 264 |
| namedparams() (chainer.links.ConvolutionND method), 268 |
| namedparams() (chainer.links.CRF1d method), 387 |
| namedparams() (chainer.links.Deconvolution2D method), 272 |
| namedparams() (chainer.links.DeconvolutionND method), 276 |
| namedparams() (chainer.links.DepthwiseConvolution2D method), 280 |
| namedparams() (chainer.links.DilatedConvolution2D method), 284 |
| namedparams() (chainer.links.EmbedID method), 288 |
| namedparams() (chainer.links.GoogLeNet method), 413 |
| namedparams() (chainer.links.GRU method), 291 |
| namedparams() (chainer.links.Highway method), 294 |
| namedparams() (chainer.links.Inception method), 297 |
| namedparams() (chainer.links.InceptionBN method), 300 |
| namedparams() (chainer.links.LayerNormalization method), 377 |
| namedparams() (chainer.links.Linear method), 304 |
| namedparams() (chainer.links.LSTM method), 356 |
| namedparams() (chainer.links.Maxout method), 398 |
| namedparams() (chainer.links.MLPConvolution2D method), 311 |
| namedparams() (chainer.links.model.vision.resnet.ResNetLayers method), 417 |
| namedparams() (chainer.links.NaryTreeLSTM method), 314 |
| namedparams() (chainer.links.NegativeSampling method), 401 |
| namedparams() (chainer.links.NStepBiGRU method), 317 |
| namedparams() (chainer.links.NStepBiLSTM method), 321 |
| namedparams() (chainer.links.NStepBiRNNReLU method), 324 |
| namedparams() (chainer.links.NStepBiRNNTanh method), 327 |
| namedparams() (chainer.links.NStepGRU method), 330 |
| namedparams() (chainer.links.NStepLSTM method), 333 |
| namedparams() (chainer.links.NStepRNNReLU method), 336 |
| namedparams() (chainer.links.NStepRNNTanh method), 339 |
| namedparams() (chainer.links.Parameter method), 342 |
| namedparams() (chainer.links.PReLU method), 394 |
| namedparams() (chainer.links.ResNet101Layers method), 425 |
| namedparams() (chainer.links.ResNet152Layers method), 429 |
| namedparams() (chainer.links.ResNet50Layers method), 421 |
| namedparams() (chainer.links.Scale method), 345 |
| namedparams() (chainer.links.SimplifiedDropconnect method), 391 |
| namedparams() (chainer.links.StatefulGRU method), 348 |
| namedparams() (chainer.links.StatefulMGU method), 353 |
| namedparams() (chainer.links.StatefulPeepholeLSTM method), 359 |
| namedparams() (chainer.links.StatefulZoneoutLSTM method), 362 |
| namedparams() (chainer.links.StatelessGRU method), 351 |
| namedparams() (chainer.links.StatelessLSTM method), 365 |
| namedparams() (chainer.links.StatelessMGU method), 356 |
| namedparams() (chainer.links.TheanoFunction method), 433 |
| namedparams() (chainer.links.VGG16Layers method), 408 |
| NaN() (in module chainer.initializers), 464 |
| NaryTreeLSTM (class in chainer.links), 312 |
| negative_sampling() (in module chainer.functions), 217 |
| NegativeSampling (class in chainer.links), 398 |
| NesterovAG (class in chainer.optimizers), 444 |
| new_epoch() (chainer.GradientMethod method), 99 |
| new_epoch() (chainer.Optimizer method), 98 |
| new_epoch() (chainer.optimizers.AdaDelta method), 439 |
| new_epoch() (chainer.optimizers.AdaGrad method), 440 |
| new_epoch() (chainer.optimizers.Adam method), 441 |
| new_epoch() (chainer.optimizers.MomentumSGD method), 443 |
new_epoch() (chainer.optimizers.NesterovAG method), 443
new_epoch() (chainer.optimizers.RMSprop method), 446
new_epoch() (chainer.optimizers.RMSpropGraves method), 447
new_epoch() (chainer.optimizers.SGD method), 448
new_epoch() (chainer.optimizers.SMORMS3 method), 450
next() (chainer.dataset.Iterator method), 107
next() (chainer.iterators.MultiprocessIterator method), 482
next() (chainer.iterators.SerialIterator method), 481
no_backprop_mode() (in module chainer), 83
Normal (class in chainer.initializers), 464
normalize() (in module chainer.functions), 241
NpzDeserializer (class in chainer.serializers), 452
NStepBiGRU (class in chainer.links), 315
NStepBiLSTM (class in chainer.links), 318
NStepBiRNNReLU (class in chainer.links), 321
NStepBiRNNTanh (class in chainer.links), 324
NStepGRU (class in chainer.links), 327
NStepLSTM (class in chainer.links), 330
NStepRNNReLU (class in chainer.links), 333
NStepRNNTanh (class in chainer.links), 336
numerical_grad() (in module chainer.gradient_check), 141
Observe_lr() (in module chainer.training.extensions), 488
Observe_value() (in module chainer.training.extensions), 488
One() (in module chainer.initializers), 464
Optimizer (class in chainer), 97
Orthogonal (class in chainer.initializers), 465
Pad() (in module chainer.functions), 167
Pad_sequence() (in module chainer.functions), 167
ParallelUpdater (class in chainer.training), 115
Parameter (class in chainer), 67
Parameter (class in chainer.links), 339
ParameterStatistics (class in chainer.training.extensions), 489
params() (chainer.Chain method), 92
params() (chainer.ChainList method), 94
params() (chainer.Link method), 88
params() (chainer.links.BatchNormalization method), 370
params() (chainer.links.BatchRenormalization method), 373
params() (chainer.links.Bias method), 252
params() (chainer.links.Bilinear method), 256
params() (chainer.links.BinaryHierarchicalSoftmax method), 381
params() (chainer.links.BlackOut method), 384
params() (chainer.links.caffe.CaffeFunction method), 437
params() (chainer.links.Classifier method), 404
params() (chainer.links.Convolution2D method), 264
params() (chainer.links.ConvolutionND method), 268
params() (chainer.links.CRF1d method), 387
params() (chainer.links.Deconvolution2D method), 272
params() (chainer.links.DeconvolutionND method), 276
params() (chainer.links.DepthwiseConvolution2D method), 280
params() (chainer.links.DilatedConvolution2D method), 285
params() (chainer.links.EmbedID method), 288
params() (chainer.links.GoogLeNet method), 413
params() (chainer.links.GRU method), 291
params() (chainer.links.Highway method), 294
params() (chainer.links.Inception method), 297
params() (chainer.links.InceptionBN method), 300
params() (chainer.links.LayerNormalization method), 377
params() (chainer.links.Linear method), 304
params() (chainer.links.LSTM method), 308
params() (chainer.links.Maxout method), 398
params() (chainer.links.MLPConvolution2D method), 311
params() (chainer.links.model.vision.resnet.ResNetLayers method), 417
params() (chainer.links.NegativeSamplingLSTM method), 401
params() (chainer.links.NStepBiGRU method), 317
params() (chainer.links.NStepBiLSTM method), 321
params() (chainer.links.NStepBiRNNReLU method), 324
params() (chainer.links.NStepBiRNNTanh method), 327
params() (chainer.links.NStepGRU method), 330
params() (chainer.links.NStepLSTM method), 333
params() (chainer.links.NStepRNNTanh method), 336
params() (chainer.links.Parameter method), 342
params() (chainer.links.PReLU method), 394
params() (chainer.links.Scale method), 345
params() (chainer.links.SimplifiedDropconnect method), 391
params() (chainer.links.StatefulGRU method), 348
params() (chainer.links.StatefulMGU method), 353
params() (chainer.links.StatefulPeepholeLSTM method), 359
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>params() (chainer.links.StatefulZoneoutLSTM method)</td>
<td>362</td>
</tr>
<tr>
<td>params() (chainer.links.StatelessGRU method)</td>
<td>351</td>
</tr>
<tr>
<td>params() (chainer.links.StatelessLSTM method)</td>
<td>365</td>
</tr>
<tr>
<td>params() (chainer.links.StatelessMGU method)</td>
<td>356</td>
</tr>
<tr>
<td>params() (chainer.links.TheanoFunction method)</td>
<td>433</td>
</tr>
<tr>
<td>permutate() (in module chainer.functions)</td>
<td>167</td>
</tr>
<tr>
<td>precision() (in module chainer.functions)</td>
<td>205</td>
</tr>
<tr>
<td>predict() (chainer.links.GoogLeNet method)</td>
<td>413</td>
</tr>
<tr>
<td>predict() (chainer.links.model.vision.resnet.ResNetLayers method)</td>
<td>417</td>
</tr>
<tr>
<td>predict() (chainer.links.ResNet101Layers method)</td>
<td>425</td>
</tr>
<tr>
<td>predict() (chainer.links.ResNet152Layers method)</td>
<td>429</td>
</tr>
<tr>
<td>predict() (chainer.links.ResNet50Layers method)</td>
<td>421</td>
</tr>
<tr>
<td>predict() (chainer.links.VGG16Layers method)</td>
<td>408</td>
</tr>
<tr>
<td>PReLU (class in chainer.links)</td>
<td>392</td>
</tr>
<tr>
<td>prelu() (in module chainer.functions)</td>
<td>150</td>
</tr>
<tr>
<td>prepare() (in module chainer.links.model.vision.googlenet)</td>
<td>414</td>
</tr>
<tr>
<td>prepare() (in module chainer.links.model.vision.resnet)</td>
<td>430</td>
</tr>
<tr>
<td>prepare() (in module chainer.links.model.vision.vgg)</td>
<td>409</td>
</tr>
<tr>
<td>print_report() (chainer.function_hooks.CupyMemoryProfileHook method)</td>
<td>459</td>
</tr>
<tr>
<td>print_report() (chainer.function_hooks.TimerHook method)</td>
<td>461</td>
</tr>
<tr>
<td>PrintReport (class in chainer.function_hooks)</td>
<td>459</td>
</tr>
<tr>
<td>prod() (in module chainer.functions)</td>
<td>232</td>
</tr>
<tr>
<td>ProgressBar (class in chainer.training.extensions)</td>
<td>493</td>
</tr>
<tr>
<td>r2_score() (in module chainer.functions)</td>
<td>206</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.GradientMethod method)</td>
<td>99</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.AdaDelta method)</td>
<td>439</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.AdaGrad method)</td>
<td>440</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.Adam method)</td>
<td>441</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.MomentumSGD method)</td>
<td>443</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.NesterovAG method)</td>
<td>444</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.RMSprop method)</td>
<td>446</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.RMSpropGraves method)</td>
<td>447</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.SGD method)</td>
<td>449</td>
</tr>
<tr>
<td>reallocate_cleared_grads() (chainer.optimizers.SMORMS3 method)</td>
<td>450</td>
</tr>
<tr>
<td>recall() (in module chainer.functions)</td>
<td>206</td>
</tr>
<tr>
<td>reduce() (in module chainer.cuda)</td>
<td>130</td>
</tr>
<tr>
<td>register_persistent() (chainer.Chain method)</td>
<td>92</td>
</tr>
<tr>
<td>register_persistent() (chainer.ChainList method)</td>
<td>94</td>
</tr>
<tr>
<td>register_persistent() (chainer.Link method)</td>
<td>88</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.BatchNormalization method)</td>
<td>370</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.BatchRenormalization method)</td>
<td>373</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Bias method)</td>
<td>252</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Bilinear method)</td>
<td>256</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.BinaryHierarchicalSoftmax method)</td>
<td>381</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.BlackOut method)</td>
<td>384</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.caffe.CaffeFunction method)</td>
<td>437</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.ChildSumTreeLSTM method)</td>
<td>259</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Classifier method)</td>
<td>404</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Convolution2D method)</td>
<td>264</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.ConvolutionND method)</td>
<td>268</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.CRF1d method)</td>
<td>387</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Deconvolution2D method)</td>
<td>273</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.DeconvolutionND method)</td>
<td>276</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.DepthwiseConvolution2D method)</td>
<td>280</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.DilatedConvolution2D method)</td>
<td>285</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.EmbedID method)</td>
<td>288</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.GoogLeNet method)</td>
<td>413</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.GRU method)</td>
<td>291</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Highway method)</td>
<td>294</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Inception method)</td>
<td>297</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.InceptionBN method)</td>
<td>300</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.LayerNormalization method)</td>
<td>377</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Linear method)</td>
<td>304</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.LSTM method)</td>
<td>308</td>
</tr>
<tr>
<td>register_persistent() (chainer.links.Maxout method)</td>
<td>398</td>
</tr>
</tbody>
</table>
retain_outputs() (chainer.FunctionNode method), 82
RMSprop (class in chainer.optimizers), 445
RMSpropGraves (class in chainer.optimizers), 447
roi_pooling_2d() (in module chainer.functions), 244
rollaxis() (in module chainer.functions), 170
rsqrt() (in module chainer.functions), 232
run() (chainer.training.Trainer method), 112
sample() (chainer.utils.WalkerAlias method), 131
sample_cpu() (chainer.utils.WalkerAlias method), 131
sample_gpu() (chainer.utils.WalkerAlias method), 131
save() (chainer.Serializer method), 104
save() (chainer.serializers.DictionarySerializer method), 452
save() (chainer.serializers.HDF5Serializer method), 453
save_hdf5() (in module chainer.serializers), 454
save_npz() (in module chainer.serializers), 452
Scale (class in chainer.links), 343
scale() (in module chainer.functions), 233
scope() (chainer.Reporter method), 133
select_item() (in module chainer.functions), 170
selu() (in module chainer.functions), 233
separate() (in module chainer.functions), 170
SerialIterator (class in chainer.iterators), 480
serialize() (chainer.Chain method), 92
serialize() (chainer.ChainList method), 94
serialize() (chainer.dataset.Iterator method), 107
serialize() (chainer.DictSummary method), 135
serialize() (chainer.GradientMethod method), 100
serialize() (chainer.iterators.MultiprocessIterator method), 482
serialize() (chainer.iterators.SerialIterator method), 481
serialize() (chainer.Link method), 88
serialize() (chainer.links.BatchNormalization method), 370
serialize() (chainer.links.BatchRenormalization method), 373
serialize() (chainer.links.Bias method), 253
serialize() (chainer.links.Bilinear method), 256
serialize() (chainer.links.BinaryHierarchicalSoftmax method), 381
serialize() (chainer.links.BlackOut method), 384
serialize() (chainer.links.caffe.CaffeFunction method), 438
serialize() (chainer.links.ChildSumTreeLSTM method), 260
serialize() (chainer.links.Classifier method), 404
serialize() (chainer.links.Convolution2D method), 264
serialize() (chainer.links.ConvolutionND method), 268
serialize() (chainer.links.CRF1d method), 387
serialize() (chainer.links.Deconvolution2D method), 273
serialize() (chainer.links.DeconvolutionND method), 276
serialize() (chainer.links.DepthwiseConvolution2D method), 280
serialize() (chainer.links.DilatedConvolution2D method), 285
serialize() (chainer.links.EmbedID method), 289
serialize() (chainer.links.GoogLeNet method), 413
serialize() (chainer.links.GRU method), 291
serialize() (chainer.links.Highway method), 294
serialize() (chainer.links.Inception method), 297
serialize() (chainer.links.InceptionBN method), 300
serialize() (chainer.links.LayerNormalization method), 377
serialize() (chainer.links.Linear method), 304
serialize() (chainer.links.LSTM method), 308
serialize() (chainer.links.Maxout method), 398
serialize() (chainer.links.MLPConvolution2D method), 311
serialize() (chainer.links.model.vision.resnet.ResNetLayers method), 418
serialize() (chainer.links.NaryTreeLSTM method), 315
serialize() (chainer.links.NegativeSampling method), 401
serialize() (chainer.links.NStepBiGRU method), 318
serialize() (chainer.links.NStepBiLSTM method), 321
serialize() (chainer.links.NStepBiRNNReLU method), 324
serialize() (chainer.links.NStepBiRNNtanh method), 327
serialize() (chainer.links.NStepBiGRU method), 330
serialize() (chainer.links.NStepLSTM method), 333
serialize() (chainer.links.NStepRNNReLU method), 336
serialize() (chainer.links.NStepRNNtanh method), 339
serialize() (chainer.links.Parameter method), 342
serialize() (chainer.links.PReLU method), 394
serialize() (chainer.links.ResNet101Layers method), 426
serialize() (chainer.links.ResNet152Layers method), 430
serialize() (chainer.links.ResNet50Layers method), 422
serialize() (chainer.links.Scale method), 345
serialize() (chainer.links.SimplifiedDropconnect method), 391
serialize() (chainer.links.StatefulGRU method), 348
serialize() (chainer.links.StatefulMGU method), 354
serialize() (chainer.links.StatefulPeepholeLSTM method), 359
serialize() (chainer.links.StatefulZoneoutLSTM method), 362
serialize() (chainer.links.StatelessGRU method), 351
serialize() (chainer.links.StatelessLSTM method), 366
serialize() (chainer.links.StatelessMGU method), 356
serialize() (chainer.links.TheanoFunction method), 434
serialize() (chainer.links.VGG16Layers method), 409
serialize() (chainer.optimizers.Adam method), 98
serialize() (chainer.optimizers.AdaDelta method), 439
serialize() (chainer.optimizers.AdaGrad method), 440
serialize() (chainer.optimizers.Adam method), 442
update() (chainer.optimizers.SGD method), 449
update() (chainer.optimizers.SMORMS3 method), 450
update() (chainer.Parameter method), 70
update() (chainer.training.ParallelUpdater method), 116
update() (chainer.training.StandardUpdater method), 115
update() (chainer.training.Updater method), 114
update() (chainer.training.updaters.MultiprocessParallelUpdater
method), 118
update() (chainer.UpdateRule method), 96
update_core() (chainer.training.ParallelUpdater method), 116
update_core() (chainer.training.StandardUpdater method), 115
update_core() (chainer.training.updaters.MultiprocessParallelUpdater
method), 118
update_core() (chainer.UpdateRule method), 97
update_core_cpu() (chainer.UpdateRule method), 97
Updater (class in chainer.training), 113
Updaterule (class in chainer), 95
upsampling_2d() (in module chainer.functions), 246
use_cleargrads() (chainer.GradientMethod method), 100
use_cleargrads() (chainer.optimizers.Adadelta method), 439
use_cleargrads() (chainer.optimizers.Adam method), 442
use_cleargrads() (chainer.optimizers.MomentumSGD method), 443
use_cleargrads() (chainer.optimizers.NesterovAG
method), 445
use_cleargrads() (chainer.optimizers.RMSprop method), 446
use_cleargrads() (chainer.optimizers.RMSpropGraves
method), 448
use_cleargrads() (chainer.optimizers.SGD method), 449
use_cleargrads() (chainer.optimizers.SMORMS3
method), 451
using_config() (in module chainer), 124

V
Variable (class in chainer), 63
VariableNode (class in chainer.variable), 70
VGG16Layers (class in chainer.links), 405
vstack() (in module chainer.functions), 179

W
WalkerAlias (class in chainer.utils), 131
WeightDecay (class in chainer.optimizer), 101
where() (in module chainer.functions), 180

Z
Zero() (in module chainer.initializers), 463
zero_grads() (chainer.links.Bilinear method), 257
zerograd() (chainer.Parameter method), 70
zerograd() (chainer.Variable method), 66
zerograds() (chainer.Chain method), 92
zerograds() (chainer.ChainList method), 95
zerograds() (chainer.Link method), 89
zerograds() (chainer.links.BatchNormalization method), 370
zerograds() (chainer.links.BatchRenormalization
method), 374
zerograds() (chainer.links.Bias method), 253
zerograds() (chainer.links.Bilinear method), 257
zerograds() (chainer.links.BinaryHierarchicalSoftmax
method), 381
zerograds() (chainer.links.BlackOut method), 384
zerograds() (chainer.links.caffe.CaffeFunction method), 438
zerograds() (chainer.links.ChildSumTreeLSTM method), 260
zerograds() (chainer.links.Classifier method), 405
zerograds() (chainer.links.Convolution2D method), 264
zerograds() (chainer.links.ConvolutionND method), 268
zerograds() (chainer.computations.CRF1d method), 388
zerograds() (chainer.links.Deconvolution2D method), 273
zerograds() (chainer.links.DeconvolutionND method), 277
zerograds() (chainer.links.DepthwiseConvolution2D
method), 281
zerograds() (chainer.links.DilatedConvolution2D
method), 285
zerograds() (chainer.links.EmbedID method), 289
zerograds() (chainer.links.GoogLeNet method), 413
zerograds() (chainer.links.GRU method), 292
zerograds() (chainer.links.Highway method), 294
zerograds() (chainer.links.Inception method), 297
zerograds() (chainer.links.InceptionBN method), 300
zerograds() (chainer.links.LayerNormalization method), 377
zerograds() (chainer.links.Linear method), 305
zerograds() (chainer.links.LSTM method), 309
zerograds() (chainer.links.Maxout method), 398
zerograds() (chainer.links.MLPConvolution2D method), 312
zerograds() (chainer.links.model.vision.resnet.ResNetLayers
method), 418
zerograds() (chainer.links.NaryTreeLSTM method), 315
zerograds() (chainer.links.NegativeSampling
method), 401
zerograds() (chainer.links.NStepBiGRU method), 318
zerograds() (chainer.links.NStepBiLSTM method), 321
zerograds() (chainer.links.NStepBiRNNReLU method), 324
zerograds() (chainer.links.NStepBiRNNTanh
method), 327

Index 575
zero_grads() (chainer.links.NStepGRU method), 330
zero_grads() (chainer.links.NStepLSTM method), 333
zero_grads() (chainer.links.NStepRNNReLU method), 336
zero_grads() (chainer.links.NStepRNNtanh method), 339
zero_grads() (chainer.links.Parameter method), 342
zero_grads() (chainer.links.PReLU method), 395
zero_grads() (chainer.links.ResNet101Layers method), 426
zero_grads() (chainer.links.ResNet152Layers method), 430
zero_grads() (chainer.links.ResNet50Layers method), 422
zero_grads() (chainer.links.Scale method), 345
zero_grads() (chainer.links.SimplifiedDropconnect method), 391
zero_grads() (chainer.links.StatefulGRU method), 348
zero_grads() (chainer.links.StatefulMGU method), 354
zero_grads() (chainer.links.StatefulPeepholeLSTM method), 359
zero_grads() (chainer.links.StatefulZoneoutLSTM method), 362
zero_grads() (chainer.links.StatelessGRU method), 351
zero_grads() (chainer.links.StatelessLSTM method), 366
zero_grads() (chainer.links.StatelessMGU method), 356
zero_grads() (chainer.links.TheanoFunction method), 434
zero_grads() (chainer.links.VGG16Layers method), 409
zoneout() (in module chainer.functions), 238