Chainer Documentation
Release 6.1.0

Preferred Networks, inc. and Preferred Infrastructure, inc.

Jun 21, 2019

TUTORIALS

1 Chainer at a Glance 3
1.1 Mushrooms —tasty ordeadly? 3
1.2 Code Breakdown e e e e e e e 3
1.3 Output . . . o e e e 8
2 Concepts Walkthrough 13
2.1 Define-by-Run 13
2.2 Variables and Derivativeso e 13
23 LInKS e e e 15
2.4 Define your own function oL e e e e e e e e e 17
2.5 Creating Models L e e e e e 34
2.6 OptmIZEr e e e e e 36
2.7 Trainer o e e e 37
2.8 Trainer EXtensions L e e e e e 38
2.9 Using GPU(s)inChainer. i it i e e e e e e e e e e 42
2.10 Type Checks o o o i e e e e e e e 48
2.11 Serializers —saving and loading L 52
2.12 Customize your own logging e 53
3 Neural Net Examples 57
3.1 MNISTusing Trainer e 57
3.2 MNIST with a Manual Training Loop s 65
3.3 Convolutional Network for Visual Recognition Tasks 73
3.4 DCGAN: Generate images with Deep Convolutional GAN 80
3.5 Recurrent Nets and their Computational Graph 90
3.6 RNNLanguage Models e 96
3.7 Word2Vec: Obtain word embeddings L 106
3.8 Write a Sequence to Sequence (seq2seq) Model e 114
4 API Reference 131
4.1 Variable and Parameter 131
4.2 Functions i e e e e e e e 150
43 Linkand Chains e e e e 311
4.4 Probability Distributions e e e e e e e e e e e e e 776
4.5 OpHMIZEIS L v v vt ittt e e e e e e e e e e e 842
4.6 WeightInitializers L L L e e e e 890
47 Snapshot WIIters L L e e e e 903
4.8 Training Tools e e e e e e e e 911
4.9 DatasetS e e e e e e e e e e e e 972
410 Tterator L. e e e e e 1008

10

411 Serializers e e e e e e e
4.12 Backendsand Devices e e e e e e
413 ULHHES . . . o . o o e e e e e e e e e e e
4.14 Configuring Chainer L
4.15 DebugMode L e e e e e e e
4.16 Visualization of Computational Graph oo
4.17 Static Subgraph Optimizations: Usage o v v i i i e e e e e e e e e
4.18 Static Subgraph Optimizations: Design Notes v it
4.19 Caffe Model Support o o o e e e e e e e e e e e
420 Assertion and Testing L L. oL e e e e e e e e
Installation

5.1 Recommended Environments e
5.2 RequIrements o v v vt it e e e e e e e e e e e e e e e e e e e
5.3 Install Chainer e
54 Uninstall Chainer e e e e e
5.5 Upgrade Chainer 0 0 i e e e e e e e e e e e e
5.6 Reinstall Chainer e e e
5.7 Run Chainer with Docker e e
5.8 FAQ . . . o s
ChainerX Documentation

6.1 Installation e e e e e e e e
6.2 ChainerX Tutorial e
6.3 Limitations o o i e e e e e e e e e e e e e e e
6.4 Reference e
6.5 Contribution Guide e e
6.6 Tipsand FAQs o . e e e e
Distributed Deep Learning with ChainerMN

7.1 Installation L e e e e e e e e e e e e
7.2 Tutorial e e e e e e e
7.3 Model Parallel e e e e e e e
7.4 APIReference e e e e e
API Compatibility Policy

8.1 Versioning and Backward Compatibility L
8.2 Breaking the Compatibility e e e e e e e
8.3 Experimental APIs L e e e e e e e
8.4 Supported Backward Compatibility L
8.5 Model Format Compatibility e e e
8.6 Installation Compatibility e
Contribution Guide

9.1 Classification of Contributions e
9.2 DevelopmentCycle e e
9.3 Issuesand Pull Requests o i i v i e e e e e e e e e e
9.4 Coding Guidelines i e e e e e e e e
0.5 UnitTesting o o o o e e e e e e e e e e e e e e
0.6 Documentation i it e
Tips and FAQs

10.1 It takes too long time to compile a computational graph. Can I skipit?.
10.2 MNIST example does not converge in CPUmodeon MacOS X
10.3 How do I fix InvalidType error? i i e

1044

11 Performance Best

Practices

11.1 Usethe Latest Version i ittt e ettt e e e e e
11.2 Enable Hardware Accelerations i it e
11.3 Migrate Data Preprocessing Code from NumPytoCuPy
11.4 Avoid Data Transfer o . . o e e e e e e e e e
11.5 Optimize cuDNN Convolution o o vttt e e e e e e e e
11.6 Fine-Tune Configuration ittt st e e e
11.7 Load Datasets Concurrently 0 i it e e e e e e e e
11.8 Use Multiple GPUS e e e e e e e e
11.9 UseMultiple Nodes e

12 Upgrade Guide
12.1 Chainer v6
12.2 Chainer v5
12.3 Chainer v4
12.4 Chainer v3
12.5 Chainer v2

13 License

14 Indices and tables
Bibliography

Python Module Index

Index

1277

1279

1281

Chainer Documentation, Release 6.1.0

Chainer is a powerful, flexible and intuitive deep learning framework.

* Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on
multiple GPUs with little effort.

* Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recur-
sive nets. It also supports per-batch architectures.

» Forward computation can include any control flow statements of Python without lacking the ability of back-
propagation. It makes code intuitive and easy to debug.

TUTORIALS 1

https://chainer.org

Chainer Documentation, Release 6.1.0

2 TUTORIALS

© ® 9 o

CHAPTER
ONE

CHAINER AT A GLANCE

Welcome to Chainer!
Chainer is a rapidly growing neural network platform. The strengths of Chainer are:

* Python-based — Chainer is developed in Python, allowing for inspection and customization of all code in python
and understandable python messages at run time

* Define by Run — neural networks definitions are defined on-the-fly at run time, allowing for dynamic network
changes

* NumPy based syntax for working with arrays, thanks to CuPy implementation

* Fully customizable — since Chainer is pure python, all classes and methods can be adapted to allow for the latest
cutting edge or specialized approaches

* Broad and deep support — Chainer is actively used for most of the current approaches for neural nets (CNN,
RNN, RL, etc.), aggressively adds new approaches as they’re developed, and provides support for many kinds
of hardware as well as parallelization for multiple GPUs

1.1 Mushrooms - tasty or deadly?

Let’s take a look at a basic program of Chainer to see how it works. For a dataset, we’ll work with Kaggle’s edible
vs. poisonous mushroom dataset, which has over 8,000 examples of mushrooms, labelled by 22 categories including
odor, cap color, habitat, etc., in a mushrooms.csv file.

How will Chainer learn which mushrooms are edible and which mushrooms will kill you? Let’s see!

The code below is from the glance example in the examples/glance directory.

1.2 Code Breakdown

1.2.1 Initialization

Let’s start the program. Here are the typical imports for a Chainer program. chainer.links contain trainable
parameters and chainer. functions do not.

import chainer as ch

from chainer import datasets
import chainer.functions as F
import chainer.links as L
from chainer import training

(continues on next page)

https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/uciml/mushroom-classification
https://raw.githubusercontent.com/chainer/chainer/master/examples/glance/mushrooms.csv
https://github.com/chainer/chainer/tree/v6.1.0/examples/glance

Chainer Documentation, Release 6.1.0

(continued from previous page)

from chainer.training import extensions

import numpy as np

We’ll use Matplotlib for the graphs to show training progress.

import matplotlib
matplotlib.use ('Agg')

1.2.2 Trainer Structure

A trainerisused to set up our neural network and data for training. The components of the t ra i ner are generally
hierarchical, and are organized as follows:

Trainer

Updater —Extensions —

Iterator —— Optimizer——

Dataset rModel—‘

Each of the components is fed information from the components within it. Setting up the trainer starts at the inner
components, and moves outward, with the exception of extensions, which are added after the t rainer is defined.

1.2.3 Dataset

Trainer

Updater — Extensions —

Iterator —— Optimizer——
Dataset [Modelj

Our first step is to format the dataset. From the raw mushrooms.csv, we format the data into a Chainer
TupleDataset.

4 Chapter 1. Chainer at a Glance

20

21

22

23

24

25

26

27

Chainer Documentation, Release 6.1.0

mushroomsfile = 'mushrooms.csv'
data_array = np.genfromtxt (
mushroomsfile, delimiter=',', dtype=str, skip_header=1)
for col in range(data_array.shape[l]):
data_arrayl[:, col] = np.unique(data_array[:, col], return_inverse=True) [1]

X = data_array[:, 1l:].astype(np.float32)

Y = data_array[:, 0].astype(np.int32)[:, None]

train, test = datasets.split_dataset_random(
datasets.TupleDataset (X, Y), int(data_array.shapel[0] * .7))

1.2.4 lterator

Trainet
Updater — Extensions —
lterator —— Optimizer——
ataset Model

Configure iterators to step through batches of the data for training and for testing validation. In this case, we’ll
use a batch size of 100. For the training iterator, repeating and shuffling are implicitly enabled, while they are explicitly
disabled for the testing iterator.

train_iter = ch.iterators.Seriallterator (train, 100)
test_iter = ch.iterators.Seriallterator (
test, 100, repeat=False, shuffle=False)

1.2.5 Model

Trainer
Updater — Extensions —
Iterator —— Optimizer——
ataset: Model

Next, we need to define the neural network for inclusion in our model. For our mushrooms, we’ll chain together two
fully-connected, Linear, hidden layers between the input and output layers.

As an activation function, we’ll use standard Rectified Linear Units (relu ()).

Using Sequential allows us to define the neural network model in a compact format.

1.2. Code Breakdown 5

43

44

46

47

Chainer Documentation, Release 6.1.0

Network definition

def MLP (n_units, n_out):
layer = ch.Sequential(L.Linear (n_units), F.relu)
model = layer.repeat (2)
model . append (L.Linear (n_out))

return model

Since mushrooms are either edible or poisonous (no information on psychedelic effects!) in the dataset, we’ll use a
Link Classifier for the output, with 44 units (double the features of the data) in the hidden layers and a single
edible/poisonous category for classification.

model = L.Classifier(
MLP (44, 1), lossfun=F.sigmoid_cross_entropy, accfun=F.binary_accuracy)

Note that in the two code snippets above we have not specified the size of the input layer. Once we start feeding the
neural network with samples, Chainer will recognize the dimensionality of the input automatically and initialize the
matrix for each layer with the appropriate shape. In the example above, that is 44x22 for the first hidden layer, 44x44
for the second hidden layer, and 1x44 for the output layer.

1.2.6 Optimizer

Trainer

Updater — Extensions —

Iterator —— Optimizer—

ataset |:ModeI]

Pick an optimizer, and set up the model to use it.

Setup an optimizer
optimizer = ch.optimizers.SGD () .setup (model)

1.2.7 Updater

Trainer

Updater — Extensions —

Iterator —— Optimizer—

ataset |:ModeI]

6 Chapter 1. Chainer at a Glance

49

50

52

55

57

59

63

64

Chainer Documentation, Release 6.1.0

Now that we have the training i terator and optimizer set up, we link them both together into the updater.
The updater uses the minibatches from the i terator, does the forward and backward processing of the model,
and updates the parameters of the model according to the opt imizer. Setting the device=-1 sets the device as
the CPU. To use a GPU, set device equal to the number of the GPU, usually device=0.

Create the updater, using the optimizer
updater = training.StandardUpdater (train_iter, optimizer, device=-1)

Finally we create a Trainer object. The trainer processes minibatches using the updater defined above until
a certain stop condition is met and allows the use of extensions during the training. We set it to run for 50 epochs and
store all files created by the extensions (see below) in the result directory.

Set up a trainer
trainer = training.Trainer (updater, (50, 'epoch'), out='result')

1.2.8 Extensions

Trainer
Updater — Extensions —
Iterator —— Optimizer——
ataset: Model

Extensions can be used to execute code at certain events during the training, such as every epoch or every 1000
iterations. This mechanism is used in Chainer to evaluate models during training, print progress messages, or dump
intermediate model files.

First, use the testing i terator defined above for an Evaluator extension to the trainer to provide test scores. If
using a GPU instead of the CPU, set device to the ID of the GPU, usually 0.

Evaluate the model with the test dataset for each epoch
trainer.extend (extensions.Evaluator (test_iter, model, device=-1))

Save a computational graph from loss variable at the first iteration. main refers to the target link of the main
optimizer. The graph is saved in the Graphviz’s dot format. The output location (directory) to save the graph is set
by the out argument of t rainer.

Dump a computational graph from 'loss' variable at the first iteration
The "main" refers to the target link of the "main" optimizer.
trainer.extend(extensions.DumpGraph('main/loss"'))

Take a snapshot of the t rainer object every 20 epochs.

trainer.extend (extensions.snapshot (), trigger=(20, 'epoch'))

Write a log of evaluation statistics for each epoch.

Write a log of evaluation statistics for each epoch
trainer.extend (extensions.LogReport ())

1.2. Code Breakdown 7

https://www.graphviz.org/

66

67

68

69

70

71

2

73

74

76

77

78

79

Chainer Documentation, Release 6.1.0

Save two plot images to the result directory.

Save two plot images to the result dir
if extensions.PlotReport.available():
trainer.extend/(
extensions.PlotReport (['main/loss', 'validation/main/loss'],
'epoch', file_name='loss.png'))
trainer.extend
extensions.PlotReport (
['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name='accuracy.png'))

Print selected entries of the log to standard output.

Print selected entries of the log to stdout
trainer.extend (extensions.PrintReport (
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

1.2.9 Main Loop

Finally, with the t rainer and all the extensions set up, we can add the line that actually starts the main loop:

Run the training
trainer.run()

1.2.10 Inference

Once the training is complete, only the model is necessary to make predictions. Let’s check that a random line from
the test data set and see if the inference is correct:

x, t = test[np.random.randint (len(test))]

predict = model.predictor (x[None]) .array
predict = predict[0][0]

if predict >= O0:

print ('Predicted Poisonous, Actual ' + ['Edible', 'Poisonous'][t[O0]])
else:

print ('Predicted Edible, Actual ' + ['Edible', 'Poisonous'][t[0]1])

1.3 Output

Output for this instance will look like:

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy,
— elapsed_time

1 0.550724 0.502818 0.733509 0.752821 o
— 0.215426

2 0.454206 0.446234 0.805439 0.786926 o
— 0.902108

3 0.402783 0.395893 0.838421 0.835979 o

1.50414

(continues on next page)

8 Chapter 1. Chainer at a Glance

Chainer Documentation, Release 6.1.0

(continued from previous page)

4 .362979 .359988 .862807 .852632 -
- 2.24171

5 .32713 .329881 .88 .874232 -
— 2.83247

6 .303469 .31104 .892456 .887284 .
— 3.45173

7 .284755 .288553 .901754 .903284 .
— 3.9877

8 .26801 .272033 .9125 .907137 -
— 4.54794

9 .25669 .261355 .920175 .917937 .
— 5.21672

10 .241789 .251821 .927193 .917937 .
— 5.79541

11 .232291 .238022 .93 .925389 -
— 6.3055

12 .222805 .22895 .934035 .923389 =
— 6.87083

13 .21276 .219291 .93614 .928189 =
— 7.54113

14 .204822 .220736 .938596 .922589 -
— 8.12495

15 .197671 .207017 .938393 .936042 .
— 8.69219

16 .190285 .199129 .941053 .934842 .
— 9.24302

17 .182827 .193303 .944386 .942695 -
— 9.80991

18 .176776 .194284 .94614 .934042 .
— 10.3603

19 .16964 .177684 .945789 .945242 .
— 10.8531

20 .164831 .171988 .949825 .947347 -
— 11.3876

21 .158394 .167459 .952982 .949747 .
— 11.9866

22 .153353 .161774 .956964 .949347 .
— 12.6433

23 .148209 .156644 .957368 .951747 -
— 13.3825

24 .144814 .15322 .957018 .955495 =
— 13.962

25 .138782 .148277 .958947 .954147 .
— 14.6

26 .135333 .145225 .961228 .956695 -
— 15.2284

27 .129593 .141141 .964561 .958295 -
— 15.7413

28 .128265 .136866 .962632 .960547 .
- 16.2711

29 .123848 .133444 .966071 .961347 -
- 16.7772

30 .119687 .129579 .967193 .964547 -
— 17.3311

31 .115857 .126606 .968596 .966547 .
— 17.8252

32 .113911 124272 .968772 .962547 -
— 18.3121 (continues on next page)

1.3. Output

Chainer Documentation, Release 6.1.0

(continued from previous page)

33 0.111502 0.122548 0.968596 0.965095 o
— 18.8973
34 0.107427 0.116724 0.970526 0.969747 o
— 19.4723
35 0.104536 0.114517 0.970877 0.969095 .
— 20.0804
36 0.099408 0.112128 0.971786 0.970547 o
— 20.6509
37 0.0972982 0.107618 0.973158 0.970947 o
— 21.2467
38 0.0927064 0.104918 0.973158 0.969347 .
— 21.7978
39 0.0904702 0.101141 0.973333 0.969747 o
— 22.3328
40 0.0860733 0.0984015 0.975263 0.971747 o
— 22.8447
41 0.0829282 0.0942095 0.977544 0.974947 .
— 23.5113
42 0.082219 0.0947418 0.975965 0.969347 .
— 24.0427
43 0.0773362 0.0906804 0.977857 0.977747 o
— 24.5252
44 0.0751769 0.0886449 0.977895 0.972147 .
— 25.1722
45 0.072056 0.0916797 0.978246 0.977495 .
— 26.0778
46 0.0708111 0.0811359 0.98 0.979347 o
— 26.6648
47 0.0671919 0.0783265 0.982456 0.978947 .
— 27.2929
48 0.0658817 0.0772342 0.981754 0.977747 o
— 27.8119
49 0.0634615 0.0762576 0.983333 0.974947 o
— 28.3876
50 0.0622394 0.0710278 0.982321 0.981747 .
— 28.9067

Predicted Edible Actual Edible

Our prediction was correct. Success!

The loss function:

10 Chapter 1. Chainer at a Glance

Chainer Documentation, Release 6.1.0

== main/loss
T\ —— validation/main/loss
0.5
0.4
0.3
0.2 %%-
0.1
0 10 20 30 40 50
epoch

And the accuracy

—— main/accuracy
—— validation/main/accuracy

0.95

0.90 f

0.85

0.80

0.75
!

epoch

1.3. Output 1

Chainer Documentation, Release 6.1.0

12 Chapter 1. Chainer at a Glance

CHAPTER
TWO

CONCEPTS WALKTHROUGH

2.1 Define-by-Run

As mentioned on the top page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it
must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined
and fixed, and then the user periodically feeds it with mini-batches of training data. Since the network is statically
defined before any forward/backward computation, all the logic must be embedded into the network architecture as
data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note
that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based
frameworks, and TensorFlow).

In contrast, Chainer adopts a “Define-by-Run’’ scheme, i.e., the network is defined dynamically via the actual forward
computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy
enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic
to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of
Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.

2.2 Variables and Derivatives

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

13

Chainer Documentation, Release 6.1.0

As described previously, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network.
In order to start forward computation, we have to set the input array to a chainer. Variable object. Here we start
with a simple ndarray with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable (x_data)

A Variable object supports basic arithmetic operators. In order to compute y = 22 — 2 + 1, just write:

>>> y = Xxx2 — 2 % X + 1

The resulting vy is also a Variable object, whose value can be extracted by accessing the array attribute:

>>> y.array
array([16.], dtype=float32)

Note: Variable has two attributes to represent the underlying array: array and data. There is no difference
between the two; both refer to exactly the same object. However it is not recommended that you use . data because
it might be confused with numpy . ndarray.data attribute.

What y holds is not only the result value. It also holds the history of computation (or computational graph), which
enables us to compute its derivative. This is done by calling its backward () method:

>>> y.backward ()

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is
computed and stored in the grad attribute of the input variable x:

>>> x.grad
array ([8.], dtype=float32)

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays
of intermediate variables for memory efficiency. In order to preserve gradient information, pass the retain_grad
argument to the backward method:

>>> 7 = 2%X

>>> y = xxx2 — z + 1

>>> y.backward(retain_grad=True)
>>> z.grad

array([-1.], dtype=float32)

All these computations can be generalized to a multi-element array input. While single-element arrays are automati-
cally initialized to [1], to start backward computation from a variable holding a multi-element array, we must set the
initial error manually. This is done simply by setting the grad attribute of the output variable:

>>> x = Variable (np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = Xxx2 — 2%x + 1

>>> y.grad = np.ones((2, 3), dtype=np.float32)

>>> y.backward ()

>>> x.grad

array ([[0., 2., 4.]

[6., 8., 10.]11, dtype=float32)

Note: Many functions taking Variable object(s) are defined in the chainer. functions module. You can

14 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.data.html#numpy.ndarray.data

Chainer Documentation, Release 6.1.0

combine them to realize complicated functions with automatic backward computation.

Note: Instead of using backward (), you can also calculate gradients of any variables in a computational graph
w.r.t. any other variables in the graph using the chainer. grad () function.

2.2.1 Higher-Order Derivatives

Variable also supports higher-order derivatives (a.k.a. double backpropagation).

Let’s see a simple example. First calculate the first-order derivative. Note that enable_double_backprop=True
is passed to y . backward ().

>>> = chainer.Variable (np.array([[0, 2, 31, [4, 5, 6]], dtype=np.float32))

X
>>>y:x**3
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward (enable_double_backprop=True)
>>> x.grad_var
variable([[0., 12., 27.1,

[48., 75., 108.]1])
>>> assert x.grad_var.array is x.grad
>>> assert (x.grad == (3 % x%x+%2).array).all()

chainer.Variable.grad_var is a Variable for chainer.Variable.grad (which is an ndarray).
By passing enable_double_backprop=True to backward (), a computational graph for the backward cal-
culation is recorded. So, you can start backpropagation from x . grad_var to calculate the second-order derivative.

>>> gx = x.grad_var

>>> x.cleargrad()

>>> gx.grad = np.ones((2, 3), dtype=np.float32)
>>> gx.backward()

>>> x.grad

array ([[0., 12., 18.],
[24., 30., 36.]1]1, dtype=float32)
>>> assert (x.grad == (6 x x).array).all()

2.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You
can use the class Link to do this. A Link is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their
parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the Linear link (a.k.a. fully-connected layer or affine transformation).
It represents a mathematical function f(x) = Wax + b, where the matrix W and the vector b are parameters. This
link corresponds to its pure counterpart 1 inear (), which accepts x, W, b as arguments. A linear link from three-
dimensional space to two-dimensional space is defined by the following line:

>>> f = L.Linear (3, 2)

2.3. Links 15

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

Note: Most functions and links only accept mini-batch input, where the first dimension of the input array is considered
as the batch dimension. In the above Linear link case, input must have shape of (N, 3), where N is the mini-batch
size.

The parameters of a link are stored as attributes. Each parameter is an instance of Variable. In the case of the
Linear link, two parameters, W and b, are stored. By default, the matrix W is initialized randomly, while the vector b is
initialized with zeros. This is the preferred way to initialize these parameters.

>>> f.W.array
array ([[1.0184761 , 0.23103087, 0.5650746 7,
[1.2937803 , 1.0782351 , -0.56423163]], dtype=float32)
>>> f.b.array
array ([0., 0.], dtype=float32)

An instance of the Linear link acts like a usual function:

>>> x = Variable (np.array([[1, 2, 31, [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.array
array ([[3.1757617, 1.7575557],
[8.619507 , 7.1809077]11, dtype=float32)

Note: Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of
(de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch.

For example, the following line creates a linear link whose output dimension is two:

>>> f = L.Linear (2)

If we feed a mini-batch of shape (2, M), the input dimension will be inferred as M, which means 1 .W will be a2 x M
matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, 1 does not have W
attribute if no data is put to the link.

Gradients of parameters are computed by the backward () method. Note that gradients are accumulated by the
method rather than overwritten. So first you must clear the gradients to renew the computation. It can be done by
calling the cleargrads () method.

>>> f.cleargrads ()

Now we can compute the gradients of parameters by simply calling the backward method and access them via the
grad property.

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array ([[5., 7., 9.1,
[5., 7., 9.1]1, dtype=float32)
>>> f.b.grad
array([2., 2.], dtype=float32)

16 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 6.1.0

2.4 Define your own function

In this section, you will learn about the following things:
* How to define a function on variables
* Useful tools to write a function using a GPU
* How to test the function definition
After reading this section, you will be able to:
* Write your own functions
* Define simple kernels in the function definition

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

2.4.1 Differentiable Functions

Chainer provides a collection of functions in the chainer. functions module. It covers typical use cases in deep
learning, so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly
and we cannot cover all possible functions to define unseen architectures. So it is important to learn how to define
your own functions.

2.4.2 New-Style v.s. Old-Style Functions

In Chainer, you can define a function in two ways: new-style and old-style.

* New-style functions inherit from chainer.FunctionNode class (introduced in Chainer v3). Forward com-
putation can be implemented using NumPy/CuPy. Backward computation needs to be implemented by using
(possibly a composition of) other new-style functions.

¢ Old-style functions inherit from chainer.Function class. Forward and backward computation can be
implemented using NumPy/CuPy.

The primary advantage of using new-style functions is that they support computation of higher-order gradients (a.k.a.
higher-order derivative or double backpropagation). Higher-order gradients are used in some models e.g., recently-
proposed GAN architectures. New-style functions are also better in terms of performance of backward, as the interface
allows an implementation to skip the computation of unneeded input gradients.

2.4. Define your own function 17

Chainer Documentation, Release 6.1.0

Currently, most of built-in functions are implemented in new-style (with a few exceptions listed in #4449). Basically,
we recommend you use new-style when implementing new functions. However, you can still continue to use existing
old-style functions for the foreseeable future.

In the following sections, we describe steps to implenent user-defiend functions in new-style. You can also refer
to Implementing Old-Style Functions and Migrating From Old-Style Functions To New-Style Functions if you have
interest.

2.4.3 Implementing New-Style Functions

First, suppose we want to define an elementwise function f(z,y,2) = x * y + z. While it is possible to implement
this equation using a combination of the » and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. New-style functions must inherit the chainer.
FunctionNode class. The skeleton of a function looks like:

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):
do forward computation on CPU
return some_tuple

def backward(self, target_input_indexes, grad_outputs):
do backward computation
return some_tuple

We must implement forward cpu () and backward () methods.

e In forward cpu () function, inputs is a tuple of array(s). You need to return a tuple of array(s), which is
a result of forward computation.

e In backward () function, grad_outputs is a tuple of Variable(s) which are gradients with regard
to each output(s), i.e., the length of grad_outputs tuple equals to the number of outputs returned by
forward_cpu). You need to return a tuple of Variable(s) which are gradients with regard to each input(s),
i.e., the length of returned tuple equals to the number of inputs to forward_cpu. You can optionally use
target_input_indexes (atuple of indices required to compute gradients) to omit computing unnecessary
gradients. We will show you the usage of target_input_indexes later.

Warning: Be careful to return a tuple even if you have just one array or Variable to return.

Note: Unlike old-style functions, inputs and outputs of backward method in new-style functions are Variables.
In other words, the backward method is device agnostic; there are no backward_cpu or backward_gpu in
FunctionNode.

MulAdd is simple and can be implemented as follows:

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):
Unpack input arrays (‘numpy.ndarray).
X, y, z = inputs

Mark inputs (' 'x'° and "'y ') as retained so that it can be
accessed during the backward process.

(continues on next page)

18 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/issues/4449

Chainer Documentation, Release 6.1.0

(continued from previous page)

self.retain_inputs((0, 1))

Compute results.
W =X *xy + z

Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):
Unpack inputs retained in the forward process ("Variable).
x, y = self.get_retained_inputs/()

Get gradients w.r.t. the output (Variable).
gw, = grad_outputs

Compute gradients w.r.t the inputs.
gx =y * gw

gy = X * gw

gz = gw

Return the result as a tuple.
return gx, gy, gz

As per the warning above, the forward cpu () method returns a tuple of single element. Note that all arrays
appearing in forward_cpu are numpy .ndarray. The forward function is straightforward; it unpacks the input
tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule
of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, FunctionNode class provides a chaining logic on
it (i.e., storing the history of computation, etc.).

Note: Assuming we implement a (forward) function y = f(x) which takes as input the vector € R™ and produces
as output a vector y € R™. Then the backward method has to compute

m 3yj ,
)\izjz:;a—xi'yj fori=1...n

where v is the grad_outputs. Note, that the resulting vector A must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU method. You can easily predict that the method we have to write is named
forward gpu():

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):

def forward_gpu(self, inputs):
Unpack input arrays (‘cupy.ndarray).
X, y, z = inputs

Mark inputs (' 'x'° and "y ') as retained so that it can be
accessed during the backward process.

(continues on next page)

2.4. Define your own function 19

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

(continued from previous page)

self.retain_inputs((0, 1))

Compute results.
W =X *xy + z

Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):

In forward_gpu method, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class.
These operators implement the basic elementwise arithmetics.

You may find that the definitions of forward_gpu is exactly same as forward_cpu. In that case, we can reduce
themio forward().

class MulAdd (FunctionNode) :
def forward(self, inputs):
Unpack input arrays (“numpy.ndarray’ or ° 'cupy.ndarray).
X, Yy, z = inputs

Mark inputs (" 'x'° and "y ') as retained so that it can be
accessed during the backward process.
self.retain_inputs((0, 1))

Compute results.
W =X *xy + z

Return the result as a tuple.
return w,

def backward(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

Since the cupy . ndarray class implements many methods of numpy . ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

x = Variable (np.random.uniform (-1, 1, (3, 2)).astype(np.float32))
y = Variable (np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z Variable (np.random.uniform (-1, 1, (3, 2)).astype(np.float32))
w, = MulAdd() .apply((x, y, z))

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd() .apply ((x, vy, 2z))

(continues on next page)

20 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

(continued from previous page)

w = muladd(x, y, z)

All functions under chainer. functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function f(z,y) = exp(x) + exp(y). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd (FunctionNode) :
def forward_cpu(self, inputs):
self.retain_inputs((0, 1))

X, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def forward_gpu(self, inputs):
self.retain_inputs((0, 1))
cupy = cuda.cupy

X, y = inputs
Z = cupy.exp(x) + cupy.exp(y)
return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)

gy = gz * F.exp(y)
return gx, gy

def expadd(x, y):
z, = ExpAdd() .apply((x, y))
return z

Note: Here we used chainer.backends.cuda. cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends. cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in forward_gpu.
We can unify these functions using the chainer.backends.cuda.get_array_module () function. This
function accepts arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd (FunctionNode) :
def forward(self, inputs):
self.retain_inputs ((0, 1))

(continues on next page)

2.4. Define your own function 21

https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

(continued from previous page)

xp = backend.get_array_module (xinputs)
x, y = inputs

z = xp.exp(x) + xp.exp(y)

return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)

gy = gz * F.exp(y)
return gx, gy

def expadd(x, Vy):
z, = ExpAdd() .apply((x, y))
return z

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module () function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x = y + z)and backward (gx = v gwand gy = x =
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

CuPy provides a useful tool to define elementwise kernels, the cupy . ElementwiseKernel class, and Chainer
wraps it by chainer.backends.cuda.elementwise () function. Our MulAdd implementation can be im-
proved as follows:

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):
self.retain_inputs((0, 1))

X, y, z = inputs
w =X *y + z
return w,

def forward_gpu(self, inputs):
self.retain_inputs ((0, 1))

X, y, z = inputs
w = cuda.cupy.elementwise (
'float32 x, float32 y, float32 z',
'float32 w',
'w=x xy t+ z',
'muladd_fwd') (x, y, z)
return w,

def backward(self, target_input_indexes, grad_outputs):
X, y, z = self.get_retained_inputs()
gw, = grad_outputs

(continues on next page)

22 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel

Chainer Documentation, Release 6.1.0

(continued from previous page)

return MulAddGrad() .apply ((x, v, 2z, gw))

class MulAddGrad (FunctionNode) :
def forward_cpu(self, inputs):
X, yV, z, gw = inputs
gx =y * gw
gy = X * gw
gz = gw
return gx, gy, gz

def forward_gpu(self, inputs):
X, y, z, gw = inputs
gx, gy = cuda.elementwise (
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
gx =y * gw,
gy = x * gw;

rro
4

'muladd_bwd') (x, y, gw)

gz gw
return gx, gy, gz

def backward(self, target_input_indexes, grad_outputs):
You can leave this unimplemented unless you need to compute
higher-order derivative using this function.
raise NotImplementedError ()

chainer.backends.cuda.elementwise () function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.
3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.
4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise ().

The first one is binary caching: chainer.backends.cuda.elementwise () function caches the compiled
binary in the $ (HOME) /. cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise () function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd (Function) :
def forward_cpu(self, inputs):

(continues on next page)

2.4. Define your own function 23

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel

Chainer Documentation, Release 6.1.0

(continued from previous page)

def backward_cpu(self, inputs,

def forward_gpu(self, inputs):
cupy = cuda.cupy

X, y, z = inputs

w = cuda.elementwise (
'Tx, Ty, T z"',
'Tw',
'w = x xy t+z',

'muladd_fwd') (x, y, z)
return w,

def backward_gpu(self, inputs,
X, Yy, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise (
'T x, Ty, T gw',
'T gx, T gy',
gx =y * gw/
gy = X * gw;

rro
’

'muladd_bwd') (x, y, gw)

gz = gw
return gx, gy, gz

grad_outputs) :

grad_outputs) :

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels

for more details.

2.4.4 Advanced Topics

Write a function with training/test mode

We sometimes want to make a function behave differently in training and test modes. The training/test mode in
Chainer is configured by chainer.config. This is a thread-local configuration object, and users can substitute
True or False to its t rain attribute. You can refer to Configuring Chainer to see how to configure this flag as well as

other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the
value of the boolean flag chainer.config.train and branch appropriately.

For example, consider the following simple dropout function:

def dropout (x):

xp = backend.get_array_module(x.array)
mask = 2 % (xp.random.rand(xx.shape)

return x * mask

> 0.5) .astype (x.dtype)

24

Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel
https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel

Chainer Documentation, Release 6.1.0

This function applies dropout to each element and doubles survived elements to preserve the scale. The above imple-
mentation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

def dropout (x) :
if not chainer.config.train:
return x

xp = backend.get_array_module (x.array)
mask = 2 % (xp.random.rand(xx.shape) > 0.5).astype (x.dtype)
return x * mask

The function now supports test mode. Note that you usually do not have to implement your own dropout function
because dropout () is officially provided.

Testing Functions

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implemen-
tations. Chainer provides simple utilities to help writing unit tests. They are defined in the gradient_check
module.

The most important test utility is the numerical grad () function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows:

x = np.random.randn (4, 3).astype(np.float32)

gy = np.ones((4, 3), dtype=np.float32)

f = lambda: (x *» X,)

gx = gradient_check.numerical_grad(f, (x,), (gy,))

f is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
numerical_grad () are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of sum (f (x)), where sum indicates the summation over all elements. The summation can
be weighted by changing gy. numerical grad () function also accepts additional eps argument, which indicates
the quantization width of finite differences.

Note: numerical_grad () function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

Another utility is chainer.testing.assert_allclose () function. This is similar to numpy.testing.
assert_allclose () function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We
can mix them in one invocation of chainer.testing.assert_allclose (). The default values of optional
arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of functions.relu () function:

import unittest
from chainer import testing

class TestRelLU (unittest.TestCase) :
def test_backward_cpu(self) :
x = Variable (np.random.randn (3, 2).astype(np.float32))
vy F.relu(x)
y.grad = np.random.randn (3, 2).astype(np.float32)
y.backward (retain_grad=True)

(continues on next page)

2.4. Define your own function 25

https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose

Chainer Documentation, Release 6.1.0

(continued from previous page)

def f():
return F.relu(x) .array,

gx, = gradient_check.numerical_grad(f, (x.array,), (y.grad,))
testing.assert_allclose(gx, x.grad)

The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines
compute numerical gradient using the same forward function without backward routine. And at last, we compare these
two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing
CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function chainer.
gradient_check.check_backward () that follows this procedure.

import unittest
from chainer import gradient_check

class TestRelLU (unittest.TestCase) :
def test_backward_cpu(self) :

def f (x):
return F.relu(x)

X

np.random.randn (3, 2).astype(np.float32)
y_grad = np.random.randn (3, 2).astype(np.float32)

gradient_check.check_backward(f, x, y_grad, atol=le-4, rtol=le-4)

You can find many examples of function tests under tests/chainer_tests/functions_tests directory.

You canuse chainer.gradient_check.check_double backward () torun gradient check for the second
order gradient computed by new-style functions. This function runs two backwpropagations; first to compute the
gradient gx of y w.r.t. x, and second to compute the gradient of gx w.r.t. x. It can be used like check_backward (),
but check_double backward () expects an additional argument x_grad_grad, which is an array or a tuple
of arrays used for initializing the gradient array of each gradient w.r.t. an input. In other words, this argument is used
to initialize gx . grad for the second backprop.

2.4.5 Implementing User-Defined Links

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps the
function. We have already seen how to define a chain that wraps other links (by inheriting Chain class) in Creating
Models. Here we study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and
the parameter array. It can be defined as follows:

class EltwiseParamProduct (Link) :
def _ _init__ (self, shape):
super (EltwiseParamProduct, self).__ _init__ ()
with self.init_scope():
self.W = chainer.Parameter (initializers.Normal (scale=1.), shape)

def _ call_ (self, x):
return self.W » x

26 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/tree/v6.1.0/tests/chainer_tests/functions_tests

Chainer Documentation, Release 6.1.0

For another example, assume we want to define a simple linear layer. It is already defined as chainer.links.
Linear, so this is an educational example. The linear layer is divided into two parts: a function and its wrapper link.
First, we have to define a function on variables:

class LinearFunction (FunctionNode) :
def forward(self, inputs):
x, W, b = inputs
return x.dot (W.T) + b,

def backward(self, inputs, grad_outputs):
x, W, b = inputs
gy, = grad_outputs

gx = gy.dot (W)

gW = gy.T.dot (x)

gb = gy.sum(axis=0)
return gx, gW, gb

def linear(x, W, Db):
return LinearFunction() (x, W, b)

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is
inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient
module, let’s wrap it into a link:

class Linear (Link):
def _ init_ (self, in_size, out_size):
super (Linear, self).__init__ ()
with self.init_scope():
self.W = chainer.Parameter (
initializers.Normal (1. / math.sqgrt (in_size)),
(out_size, in_size))
self.b = chainer.Parameter (0, (out_size,))

def _ call_ (self, x):
return linear(x, self.W, self.b)

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase the
memory consumption during the whole forward-backward computation. If you want to train very large networks on a
GPU with limited memory, it is not recommended that you cache arrays between forward and backward. There is one
exception for this: caching the output arrays does not change the memory consumption, because they are also held by
the output Variable objects.

Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

2.4.6 Migrating From Old-Style Functions To New-Style Functions

Here are the key differences between Function and FunctionNode.

2.4. Define your own function 27

Chainer Documentation, Release 6.1.0

e Implementing forward computation (difference between chainer.Function.forward() and
chainer.FunctionNode.forward())

— There are no difference between Function and FunctionNode except that the input arrays are NOT
retained by default.

If you want the inputs to be retained to use them in backward, call retain inputs () explicitly. In
other words, self.retain_inputs (()) hasno effectin FunctionNode.

* Implementing backward computation (difference between chainer.Function.backward () and
chainer.FunctionNode.backward())

— Arguments to the method has been changed.
* inputs argument is no longer passed.

You can use get_retained inputs () and get_retained outputs () to retrieve the in-
puts/outputs retained in the forward method. Note that grad_outputs and these retained in-
puts/outputs are all given as Variable objects, and backward method must return a tuple of
Variable objects.

* target_input_indexes argument has been added.

It contains a sorted indices of the input variables w.r.t. which the gradients are required. You can use
it to skip calculation of unneeded gradients. The use of target_input_indexes is optional; it
is acceptable to calculate and return all gradients.

— All inputs (grad_outputs) and retained values are given in Variable in FunctionNode, whereas
ndarray in Function.

¢ Invoking forward computation
— Functionis a callable, whereas FunctionNode is not.

You need to use f.apply ((x,)) instead of f (x). Note that apply () always returns outputs as
tuple even if the function generates only one output value.

When migrating from old-style to new-style, typically you will need to write a new function class that implements the
first-order gradient of the original function. Here is an example of rewriting old-style MyOldFunc unary function to
new-style MyFunc function.

class MyOldFunc (chainer.Function) :

def forward(self, inputs):

x, = inputs
forward computation code
return vy,

def backward(self, inputs, grad_outputs):
x, = 1nputs
gy, = grad_outputs
backward computation code
return gx,

class MyFunc (chainer.FunctionNode) :

def forward(self, inputs):
self.retain_inputs ((0,))
x, = inputs
forward computation code in MyOldFunc
return vy,

(continues on next page)

28 Chapter 2. Concepts Walkthrough

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

(continued from previous page)

def backward(self, target_input_indexes, grad_outputs):
x, = self.get_retained_inputs ()
gy, = grad_outputs
gx, = MyFuncGrad() .apply((x, gy))
return gx,

class MyFuncGrad (chainer.FunctionNode) :

def forward(self, inputs):
X, gy = inputs
backward computation code in MyOldFunc
return gx,

def backward(self, target_input_indexes, grad_outputs):
You can leave this unimplemented unless you need to compute
higher-order derivative using this function.
raise NotImplementedError ()

2.4.7 Implementing Old-Style Functions

Note: Asnoted in the New-Style v.s. Old-Style Functions, we recommend you to use new-style for newly implemented
functions. This section uses the same example as in Implementing New-Style Functions but using old-style.

First, suppose we want to define an elementwise function f(z,y,z) = x * y + z. While it is possible to implement
this equation using a combination of the » and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Old-style functions must inherit the Function class. The
skeleton of a function looks like:

class MulAdd (Function) :
def forward_cpu(self, inputs):
do forward computation on CPU
return some_tuple

def backward_cpu(self, inputs, grad_outputs):
do backward computation on CPU
return some_tuple

We must implement forward_cpu () and backward_cpu () methods. The non-self arguments of these functions
are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows:

class MulAdd (Function) :
def forward_cpu(self, inputs):
X, Yy, z = inputs
W =X *Yy +t z

(continues on next page)

2.4. Define your own function 29

Chainer Documentation, Release 6.1.0

(continued from previous page)

return w,

def backward_cpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

As per the warning above, the forward_cpu method returns a tuple of single element. Note that all arrays appear-
ing in CPU functions are numpy .ndarray. The forward function is straightforward; it unpacks the input tuple,
computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of
differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, Funct ion class provides a chaining logic on it (i.e.,
storing the history of computation, etc.).

Note: Assuming we implement a (forward) function y = f(x) which takes as input the vector € R™ and produces
as output a vector y € R™. Then the backward method has to compute

)\izzi{% forr=1...n

where v is the grad_outputs. Note, that the resulting vector A must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named
forward _gpu () and backward_gpu ():

class MulAdd (Function) :
def forward_cpu(self, inputs):

def backward_cpu(self, inputs, grad_outputs):

def forward_gpu(self, inputs):
X, y, z = inputs
w =X *y t z
return w,

def backward_gpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

In GPU methods, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class. These
operators implement the basic elementwise arithmetics.

30 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 6.1.0

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can
reduce them to forward () and backward () methods.

class MulAdd (Function) :
def forward(self, inputs):

X, y, z = inputs
W =X *y + z
return w,

def backward(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

Since the cupy . ndarray class implements many methods of numpy . ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

Variable
Variable
= Variable
MulAdd ()

np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
np.random.uniform (-1, 1, (3, 2)).astype(np.float32))
np.random.uniform (-1, 1, (3, 2)).astype(np.float32))

X, Y, Z)

=5 N K X
]

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd() (x, y, 2z2)

w = muladd(x, y, z)

All functions under chainer. functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function f(z,y) = exp(x) + exp(y). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd (Function) :
def forward_cpu(self, inputs):

X, y = inputs
Z = np.exp(x) + np.exp(y)
return z,

def backward_cpu(self, inputs, grad_outputs):
x, y = inputs
gz, = grad_outputs

(continues on next page)

2.4. Define your own function 31

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

(continued from previous page)

gx = gz * np.exp(x)
gy = gz * np.exp(y)
return gx, gy

def forward_gpu(self, inputs):
cupy = cuda.cupy
X, y = inputs
Z = Ccupy.exp(x) + cupy.exp(y)
return z,

def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
X, y = inputs
gz, = grad_outputs

gx = gz * Ccupy.exp (x)
gy = gz * cupy.exp (y)
return gx, gy

def expadd(x, vy):
return ExpAdd() (x, V)

Note: Here we used chainer.backends.cuda. cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends. cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in GPU methods. We
can unify these functions using the chainer.backend.get_array_module () function. This function accepts
arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd (Function) :
def forward(self, inputs):
xp = backend.get_array_module (xinputs)

X, y = inputs
zZ = xp.exp(x) + xp.exp(y)
return z,

def backward(self, inputs, grad_outputs):
xp = backend.get_array_module (xinputs)
X, y = inputs
gz, = grad_outputs

gx = gz * Xp.exp (X)
gy = gz * xp.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd() (x, V)

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module () function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.

32 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 6.1.0

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x = y + z)and backward (gx = v gwand gy = x =
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define elemen-
twise kernels, the cupy.ElementwiseKernel class, and Chainer wraps it by chainer.backends.cuda.
elementwise () function. Our MulAdd implementation can be improved as follows:

class MulAdd (Function) :
def forward_cpu(self, inputs):

def backward_cpu(self, inputs, grad_outputs):

def forward_gpu(self, inputs):

cupy = cuda.cupy

X, y, z = inputs

w = cuda.elementwise (
'float32 x, float32 y, float32 z',
'float32 w',
'w=x xy + z',
'muladd_fwd') (x, vy, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise (
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',

rrir
gx =y * gw,
gy = X * gw,

rro
’

'muladd_bwd') (x, y, gw)

gz = gw
return gx, gy, gz

chainer.backends.cuda.elementwise () function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.
3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

2.4. Define your own function 33

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel

Chainer Documentation, Release 6.1.0

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise ().

The first one is binary caching: chainer.backends.cuda.elementwise () function caches the compiled
binary in the $ (HOME) /.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise () function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd (Function) :
def forward_cpu(self, inputs):

def backward_cpu(self, inputs, grad_outputs):

def forward_gpu(self, inputs):
cupy = cuda.cupy

X, y, z = inputs

w = cuda.elementwise (
'T x, Ty, T z',
'Tw',

w=x*y +z',
'muladd_fwd') (x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx, gy cuda.elementwise (
'T %, Ty, T gw',
'T gx, T gy',

rro

gx =y * gw,
gy = X *x gw,

rro
I4

'muladd_bwd') (x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.5 Creating Models

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

34 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel
https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel

Chainer Documentation, Release 6.1.0

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple
linear layers. We can write complex procedures with parameters by combining multiple links like this:

>>> 11 = L.Linear (4, 3)
>>> 12 L.Linear (3, 2)

>>> def my_forward(x):
h = 11 (%)
return 12 (h)

Here the L indicates the 1inks module. A procedure with parameters defined in this way is hard to reuse. More
Pythonic way is combining the links and procedures into a class:

>>> class MyProc (object) :
def _ init_ (self):
self.ll = L.Linear (4, 3)
self.12 = L.Linear (3, 2)

def forward(self, x):
h = self.1l1(x)
return self.12 (h)

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible
save/load features, etc. These features are all supported by the Chain class in Chainer. Then, what we have to do
here is just define the above class as a subclass of Chain:

>>> class MyChain (Chain) :
def _ init_ (self):
super (MyChain, self).__init__ ()
with self.init_scope():
self.11 = L.Linear (4, 3)
self.12 = L.Linear (3, 2)

def forward(self, x):
h = self.11(x)
return self.12 (h)

It shows how a complex chain is constructed by simpler links. Links like 11 and 12 are called child links of MyChain.
Note that Chain itself inherits Link. It means we can define more complex chains that hold MyChain objects as
their child links.

Note: We often define a single forward method of a link by the forward operator. Such links and chains are callable

2.5. Creating Models 35

Chainer Documentation, Release 6.1.0

and behave like regular functions of Variables.

Another way to define a chain is using the ChainList class, which behaves like a list of links:

>>> class MyChain2 (ChainList) :
def _ init_ (self):
super (MyChain2, self).__init__ (
L.Linear (4, 3),
L.Linear (3, 2),

def forward(self, x):
h = self[0] (x)
return self[1] (h)

ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above
case, the Chain class is recommended as a base class.

2.6 Optimizer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

From the previous guide on Creating Models, let’s use the MyChain class:

>>> class MyChain (Chain) :
def = init__ (self):
super (MyChain, self).__init__ ()
with self.init_scope():
self.11 = L.Linear (4, 3)
self.12 = L.Linear (3, 2)

def forward(self, x):
h = self.11(x)
return self.12 (h)

To tune parameters values to minimize loss, etc., we have to optimize them by the Optimizer class. It runs a
numerical optimization algorithm on a given link. Many algorithms are implemented in the opt imizers module.
Here we use the simplest one, called Stochastic Gradient Descent (SGD):

36 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 6.1.0

>>> model = MyChain ()
>>> optimizer = optimizers.SGD () .setup (model)

The method setup () prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook func-
tions to the optimizer. Hook functions are called after the gradient computation and right before the actual update of
parameters. For example, we can set weight decay regularization by running the next line beforehand:

>>> optimizer.add_hook (chainer.optimizer_hooks.WeightDecay (0.0005))

Of course, you can write your own hook functions. It should be a function or a callable object.

There are two ways to use the optimizer. One is using it via Trainer, which we will see in the following sections.
The other way is using it directly. We here review the latter case. To use the optimizer in an automated fashion, see
the Trainer guide.

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the
update () method with no arguments. Do not forget to clear the gradients beforehand!

>>> x = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> model.cleargrads ()

>>> # compute gradient here...

>>> loss = F.sum(model (chainer.Variable(x)))

>>> loss.backward()

>>> optimizer.update ()

The other way is just passing a loss function to the update () method. In this case, cleargrads () is automatically
called by the update method, so the user does not have to call it manually.

>>> def lossfun(argl, arg2):
calculate loss
loss = F.sum(model (argl - arg2))
return loss

>>> argl = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> optimizer.update (lossfun, chainer.Variable(argl), chainer.Variable (arg?2))

See chainer.Optimizer.update () for the full specification.

2.7 Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times. A
typical training loop consists of the following procedures:

1. Iterations over training datasets
. Preprocessing of extracted mini-batches
. Forward/backward computations of the neural networks

2

3

4. Parameter updates

5. Evaluations of the current parameters on validation datasets
6

. Logging and printing of the intermediate results

2.7. Trainer 37

Chainer Documentation, Release 6.1.0

Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop
abstraction mainly consists of two components:

* Dataset abstraction. It implements 1 and 2 in the above list. The core components are defined in the dataset
module. There are also many implementations of datasets and iterators in datasets and iterators mod-
ules, respectively.

e Trainer. It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by Trainer.
The way to update parameters (3 and 4) is defined by Updater, which can be freely customized. 5 and 6 are
implemented by instances of Extension, which appends an extra procedure to the training loop. Users can
freely customize the training procedure by adding extensions. Users can also implement their own extensions.

2.8 Trainer Extensions

In this section, you will learn about the following topics:
* How to create your own trainer extension
— by defining a simple function
— by defining a function decorated with @make_extension
— by defining a class inherited from Extension class

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

2.8.1 What is trainer Extension?

Extension is a callable object that takes a Trainer object as an argument. By adding an Extensionto a
Trainer using the extend () method, the Extension will be called according to the schedule specified by using
a trigger object (See the details in /. trigger)

The Trainer object contains all information used in a training loop, e.g., models, optimizers, updaters, iterators, and
datasets, etc. This makes it possible to change settings such as the learning rate of an optimizer.

2.8.2 Write a simple function

You can make a new Extension by writing a simple function which takes a Trainer object as its argument.
For example, when you want to reduce the learning rate periodically during training, an 1r_drop extension can be
written as follows:

38 Chapter 2. Concepts Walkthrough

https://docs.python.org/3/reference/compound_stmts.html#function

Chainer Documentation, Release 6.1.0

def lr_drop(trainer):
trainer.updater.get_optimizer ('main').lr %= 0.1

Then you can add this function to a Trainer object via extend () method.

trainer.extend (lr_drop, trigger=(10, 'epoch'))

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

2.8.3 Write a function decorated with @make_extension

make_extension () is a decorator that adds some attributes to a given function. For example, the simple extension
we created above can be written in this form:

@training.make_extension (trigger=(10, 'epoch'))
def lr_drop(trainer):
trainer.updater.get_optimizer ('main').lr %= 0.1

The difference between the above example and this is whether it has a default trigger or not. In the latter case,
lr_drop () has its default trigger so that unless another trigger is specified via extend () method, the
trigger specified in make_extension () is used by default. The code below acts the same as the former exam-
ple, i.e., it reduces the learning rate every 10 epochs.

trainer.extend (lr_drop)

There are several attributes you can add using the make_extension () decorator.

1. trigger

trigger is an object that takes a Trainer object as an argument and returns a boolean value. If a tuple in the form

(period, unit) is given as a trigger, it will be considered as an TntervalTrigger that invokes the extension
every period unit. For example, when the given tuple is (10, 'epoch'), the extension will run every 10
epochs.

trigger can also be given to the extend () method that adds an extension to a Trainer object. The priority of
triggersis as follows:

* When both extend () and a given Extensionhave triggers, the trigger givento extend () is used.

* When None is given to extend () as the trigger argument and a given Extension has trigger, the
trigger given to the Extension is used.

¢ When both trigger attributes in extend () and Extension are None, the Extension will be fired
every iteration.

See the details in the documentation of get_ trigger () for more information.
2. default_name

An Extension is kept in a dictionary which is a property in a Trainer. This argument gives the name of the
Extension. Users will see this name in the keys of the snapshot which is a dictionary generated by serialization.

2.8. Trainer Extensions 39

Chainer Documentation, Release 6.1.0

3. priority
As a Trainer object can be assigned multiple Ext ension objects, the execution order is defined according to the
following three values:

e PRIORITY_WRITER: The priority for extensions that write some records to the observation dictionary. It
includes cases that the extension directly adds values to the observation dictionary, or the extension uses the
chainer.report() function to report values to the observation dictionary. Extensions which write something to
reporter should go first because other Extensions which read those values may be added.

e PRIORITY_EDITOR: The priority for extensions that edit the observation dictionary based on already reported
values. Extensions which edit some values of reported ones should go after the extensions which write values
to reporter but before extensions which read the final values.

* PRIORITY_READER: The priority for extensions that only read records from the observation dictionary. This
is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the
reported values should be fired after all the extensions which have other priorities, e.g, PRIORITY_WRITER
and PRIORITY_ EDITOR because it should read the final values.

See the details in the documentation of Trainer for more information.
4. finalizer

You can specify a function which takes a Trainer object as an argument to finalize the extension. It is called once
at the end of the training loop, i.e., when run () has finished.

5. initializer

You can specify a function which takes a Trainer object as an argument to initialize the extension. It is called once
before the training loop begins.

2.8.4 Write a class inherited from the Extension class

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside
of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this

equation:
¢ power
7 = Ninit (1 -)
tmax

The learning rate will be dropped according to the curve below with power = 0.5:

40 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 6.1.0

0.10

0.08

learning rate
o
=
[=2]

%

0.02

0.00

0 2000 4000 6000 8000 10000
iteartion

class PolynomialShift (training.Extension) :

def _ _init__ (self, attr, power, stop_trigger, batchsize=None,
len_dataset=None) :
self._attr = attr
self._power = power
self._init = None
self._t =0

self._last_value = 0

if stop_trigger[l] == 'iteration':
self._maxiter = stop_trigger[0]

elif stop_trigger[l] == 'epoch':

if batchsize is None or len_dataset is None:
raise ValueError (
'"When the unit of \'stop_trigger\' is \'epoch\', '
'"\'batchsize\' and \'len_dataset\' should be '
'specified to calculate the maximum iteration.')
n_iter_per_epoch = len_dataset / float (batchsize)
self._maxiter = float (stop_trigger[0] * n_iter_per_epoch)

def initialize(self, trainer):
optimizer = trainer.updater.get_optimizer ('main')
ensure that _init 1is set
if self._init is None:
self._init = getattr(optimizer, self._attr)

def _ call_ (self, trainer):

(continues on next page)

2.8. Trainer Extensions 41

Chainer Documentation, Release 6.1.0

(continued from previous page)

self._t += 1

optimizer = trainer.updater.get_optimizer ('main')

value = self._init x ((1 - (self._t / self._maxiter)) *+% self._power)
setattr (optimizer, self._attr, value)

self._last_value = value

def serialize(self, serializer):
self._t = serializer('_t', self._t)
self._last_value = serializer('_last_value', self._last_value)
if isinstance(self._last_value, np.ndarray):
self._last_value = self._last_value.item()

stop_trigger = (10000, 'iteration')
trainer.extend(PolynomialShift ('lr', 0.5, stop_trigger)

This extension PolynomialShift takes five arguments.
* attr: The name of the optimizer property you want to update using this extension.
* power: The power of the above equation to calculate the learning rate.
* stop_trigger: The trigger given to the Trainer object to specify when to stop the training loop.
* batchsize: The training mini-batchsize.
e len_dataset: The length of the dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed during training by using stop_trigger,
batchsize, and len_dataset, then stores it as a property _maxiter. This property will be used in the
__call__ () method to update the learning rate. The initialize () method obtains the initial learning rate
from the optimizer given to the Trainer object. The serialize () method stores or recovers the properties, _t
(number of iterations) and _last_value (the latest learning rate), belonging to this extension.

2.9 Using GPU(s) in Chainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

In this section, you will learn about the following topics:

* Relationship between Chainer and CuPy

42 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 6.1.0

* Basics of CuPy

¢ Single-GPU usage of Chainer

* Multi-GPU usage of model-parallel computing

* Multi-GPU usage of data-parallel computing
After reading this section, you will be able to:

* Use Chainer on a CUDA-enabled GPU

¢ Write model-parallel computing in Chainer

» Write data-parallel computing in Chainer

2.9.1 Relationship between Chainer and CuPy

Note: Even if you have CUDA installed in your environment, you have to install CuPy separately to use GPUs. See
Working with Custom CUDA Installation for the way to set up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy .ndarray class is the GPU array
implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables
us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which
enables us to write fast implementations dedicated to GPU.

Note: The chainer.backends.cuda module imports many important symbols from CuPy. For example, the
cupy namespace is referred as cuda . cupy in the Chainer code. Note that the chainer.backends. cuda module
can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and
destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since
memory allocation and release in CUDA (i.e. cudaMalloc and cudaF ree functions) synchronize CPU and GPU
computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation,
Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy
to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

2.9.2 Basics of cupy.ndarray

See the documentation of CuPy for the basic usage of cupy .ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy . ndarray class is in its core,
which is a compatible GPU alternative of numpy . ndarray. CuPy implements many functions on cupy .ndarray
objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most
features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy .ndarray from numpy . ndarray is that the content is allocated on the device mem-
ory. The allocation takes place on the current device by default. The current device can be changed by cupy . cuda.
Device object as follows:

with cupy.cuda.Device (1) :
x_on_gpul = cupy.array([l, 2, 3, 4, 51)

2.9. Using GPU(s) in Chainer 43

https://docs-cupy.chainer.org/en/stable/install.html#install-cuda
https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/index.html#cupy-reference
https://docs.scipy.org/doc/numpy/index.html
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device

Chainer Documentation, Release 6.1.0

Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a
non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the
chainer.backends.cuda.to_gpu () function copies a numpy . ndarray object to a specified device:

X_cpu = np.ones((5, 4, 3), dtype=np.float32)
X_gpu = cuda.to_gpu(x_cpu, device=1l)

It is equivalent to the following code using CuPy:

X_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device (1) :
X_gpu = cupy.array (x_cpu)

Moving a device array to the host can be done by chainer.backends.cuda.to_cpu () as follows:

x_cpu = cuda.to_cpu (x_gpu)

It is equivalent to the following code using CuPy:

with x_gpu.device:
X_Ccpu = x_gpu.get ()

Note: The with statements in these codes are required to select the appropriate CUDA device. If user uses only one de-
vice, these device switching is not needed. chainer.backends.cuda.to_cpu () and chainer.backends.
cuda.to_gpu () functions automatically switch the current device correctly.

Chainer also provides a convenient function chainer.backends.cuda.get_device from_id() and
chainer.backends.cuda.get_device from array () to select a device. The former function accepts
an integer or None. When None is given, it returns a dummy device object. Otherwise, it returns a corresponding
device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a
dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device
object also supports with statements like the above example but does nothing. Here are some other examples:

cuda.get_device_from_id (1) .use ()
x_gpul = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_id(1):
x_gpul = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_array (x_gpul) :
y_gpul = x_gpu + 1

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device
switching:

def addl (x):
with cuda.get_device_from_array (x) :
return x + 1

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the
chainer.backend.get_array_module () function. This function returns the numpy or cupy module based
on arguments. A CPU/GPU generic function is defined using it like follows:

44 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

Stable implementation of log(l + exp(x))
def softplus (x):
xp = backend.get_array_module (x)
return xp.maximum(0, x) + xp.loglp (xp.exp(-abs(x)))

2.9.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand.
In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_ gpu () method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu () method also accepts
a device ID like model.to_gpu (0) . In this case, the link object is transferred to the appropriate GPU device. The
current device is used by default.

If we use chainer.training. Trainer, what we have to do is just let the updater know the device ID to send
each mini-batch.

updater = training.updaters.StandardUpdater (train_iter, optimizer, device=0)
trainer = training.Trainer (updater, (20, 'epoch'), out='result')

We also have to specify the device ID for an evaluator extension as well.

trainer.extend (extensions.Evaluator (test_iter, model, device=0))

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

model.to_gpul()
batchsize = 100

datasize = len(x_train)
for epoch in range (20):
print ('epoch ' % epoch)
indexes = np.random.permutation (datasize)
for i in range (0, datasize, batchsize):
x = Variable (cuda.to_gpu(x_train[indexes[i : 1 + batchsize]]))
t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))

optimizer.update (model, x, t)

2.9.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and ‘“data-parallel”.
Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means paral-
lelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs
in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers
with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two
GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

(GPUO) input -—-+--> 11 --> 12 --> 13 ——+--> 14 ——> 15 —-> 16 ——+-—> output
\ \ \
(GPU1) +--> 11 ——> 12 ——> 13 ——+-——-> 14 ——> 15 ——> 16 ——+

We can use the above MLP chain as following diagram:

2.9. Using GPU(s) in Chainer 45

Chainer Documentation, Release 6.1.0

(GPUO) input ——+--> mlpl ——+--> mlp2 -—+-—> output

(GPU1) +--> mlpl ——+--> mlp2 ——+

Let’s write a link for the whole network.

class ParallelMLP (Chain) :
def init_ (self):
super (ParallelMLP, self)._ _init__ ()
with self.init_scope():
the input size, 784, is inferred
self.mlpl_gpu0 = MLP (1000, 2000).to_gpu(0)
self.mlpl_gpul = MLP (1000, 2000).to_gpu(l)

the input size, 2000, is inferred
self.mlp2_gpu0 = MLP (1000, 10).to_gpu(0)
self.mlp2_gpul = MLP (1000, 10).to_gpu(l)

def forward(self, x):
assume x 1s on GPU 0
z0 = self.mlpl_gpu0 (x)
z1l = self.mlpl_gpul (F.copy(x, 1))

sync
hO = F.relu(z0 + F.copy(zl, 0))
hl = F.relu(zl + F.copy(z0, 1))

y0 = self.mlp2_gpul (hO0)
vl self.mlp2_gpul (hl)

sync
y = y0 + F.copy(yl, 0)
return y # output is on GPUO

Recall that the Zink. to_gpu () method returns the link itself. The copy () function copies an input variable to
specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely
transfers an output gradient to the input device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the
above code run asynchronously to the host CPU.

An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py.

2.9.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it
means that a different device does computation on a different subset of the input data. In this subsection, we review
the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The
most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define
a model and optimizer instances:

46 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/blob/v6.1.0/examples/mnist/train_mnist_model_parallel.py

Chainer Documentation, Release 6.1.0

model = L.Classifier (MLP (1000, 10)) # the input size, 784, is inferred
optimizer = optimizers.SGD ()
optimizer.setup (model)

Recall that the MLP link implements the multi-layer perceptron, and the C1assifier link wraps it to provide a clas-
sifier interface. We used StandardUpdater in the previous example. In order to enable data-parallel computation
with multiple GPUs, we only have to replace it with ParallelUpdater.

updater = training.updaters.ParallelUpdater (train_iter, optimizer,
devices={'main': 0, 'second': 1})

The devices option specifies which devices to use in data-parallel learning. The device with name 'main’ is used
as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above
example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every
backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the
updated parameters are sent to GPU 1 again.

See also the example code in examples/mnist/train_mnist_data_parallel.py.

2.9.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer. Most users can skip
this section. If you are interested in how to write a data-parallel computation by yourself, this section should be
informative. It is also helpful to, e.g., customize the ParallelUpdater class.

We again start from the MNIST example. At this time, we use a suffix like _0 and _1 to distinguish objects on each
device. First, we define a model.

model_0 = L.Classifier (MLP (1000, 10)) # the input size, 784, is inferred

We want to make two copies of this instance on different GPUs. The Link. to_gpu () method runs in place, so we
cannot use it to make a copy. In order to make a copy, we can use Link.copy () method.

model_1 = model_0.copy ()
model_0.to_gpu (0)
model_1.to_gpu(l)

The Link. copy () method copies the link into another instance. It just copies the link hierarchy, and does not copy
the arrays it holds.

Then, set up an optimizer:

optimizer = optimizers.SGD()
optimizer.setup (model_0)

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be
aggregated to those of model_0.

Then, we can write a data-parallel learning loop as follows:

batchsize = 100

datasize = len(x_train)
for epoch in range (20):
print ('epoch ' % epoch)
indexes = np.random.permutation (datasize)

for i in range (0, datasize, batchsize):

(continues on next page)

2.9. Using GPU(s) in Chainer 47

https://github.com/chainer/chainer/blob/v6.1.0/examples/mnist/train_mnist_data_parallel.py

Chainer Documentation, Release 6.1.0

(continued from previous page)

x_batch = x_train[indexes[i1i : 1 + batchsize]]
y_batch y_train[indexes[i : i1 + batchsize]]

x0 = Variable
t0 = Variable
x1 = Variable
tl = Variable

cuda.to_gpu
cuda.to_gpu
cuda.to_gpu
cuda.to_gpu

x_batch[:batchsize//2], 0
y_batch[:batchsize//2], O
x_batch[batchsize//2:]1, 1
y_batch[batchsize//2:], 1

4

(
(
(
(

4

loss_0 = model_0(x0, tO0)
loss_1 model_1(x1, tl)

model_0.cleargrads ()
model_1l.cleargrads ()

loss_0.backward()
loss_1.backward ()

model_0.addgrads (model_1)
optimizer.update ()

model_1.copyparams (model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU O, the
other half to GPU 1. Then the gradients are accumulated by the Link.addgrads () method. This method adds the
gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual
way. Note that the update only modifies the parameters of model_0. So we must manually copy them to model_1
using Link.copyparams () method.

Note: If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the
number of models, when we aggregate gradients from all models by chainer.Link.addgrads (). So you need
to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please
refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define
a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple
(elementwise) CUDA kernel using Chainer’s CUDA utilities.

2.10 Type Checks

In this section, you will learn about the following things:
* Basic usage of type check
¢ Detail of type information
¢ Internal mechanism of type check
* More complicated cases
e Call functions
* Typical type check example

After reading this section, you will be able to:

48 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/tree/v6.1.0/examples

Chainer Documentation, Release 6.1.0

* Write a code to check types of input arguments of your own functions

2.10.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result
by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such
problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check type forward (). This function is
called just before the forward () method of the Function class. You can override this method to check the
condition on types and shapes of arguments.

check_type forward () getsan argument in_types:

def check_type_forward(self, in_types):

in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the
first argument, use in_types [0]. If the function gets multiple arguments, we recommend to use new variables for
readability:

x_type, y_type = in_types

In this case, x_type represents the type of the first argument, and y_ t ype represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type
equals to 2, write this code:

utils.type_check.expect (x_type.ndim == 2)

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message
like this:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

2.10.2 Detail of type information

You can access three information of x_type.
* .shape is a tuple of ints. Each value is size of each dimension.
* .ndimis int value representing the number of dimensions. Note that ndim == len (shape)
e .dtype is numpy .dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect (x_type.shape[0] > 0)

You can also check data types with . dtype:

2.10. Type Checks 49

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

utils.type_check.expect (x_type.dtype == np.float64)

And an error is like this:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: in_types[0].dtype == <class 'numpy.

—float64'>
Actual: float32 != <class 'numpy.float64'>

You can also check kind of dtype. This code checks if the type is floating point

’utils.type_check.expect(x_type.dtype.kin == 'f")

You can compare between variables. For example, the following code checks if the first argument and the second
argument have the same length:

’utils.type_check.expect(x_type.shape[l] == y_type.shape[l])

2.10.3 Internal mechanism of type check

How does it show an error message like "in_types[0] .ndim == 2"?If x_type is an object containing ndim
member variable, we cannot show such an error message because this equation is evaluated as a boolean value by
Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself. Expr represents a syntax
tree. x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim').x_type.ndim ==
2 makes an object like (eq, (getattr, x_type, 'ndim'), 2).expect () getsa Expr object and eval-
uates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable error
message.

If you want to evaluate a Expr object, call eval () method:

actual_type = x_type.eval()

actual_type is an instance of TypeInfo, while x_type is an instance of Expr. In the same way, x_type.
shape[0] .eval () returns an int value.

2.10.4 More powerful methods

Expr class is more powerful. It supports all mathematical operators such as + and x. You can write a condition that
the first dimension of x_type is the first dimension of y_t ype times four:

utils.type_check.expect (x_type.shape[0] == y_type.shapel[0] * 4)

When x_type.shape[0] == 3and y_type.shape[0] == 1, userscan get the error message below:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1l].

—shape[0] * 4
Actual: 3 != 4

To compare a member variable of your function, wrap a value with Variable to show readable error message:

50 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 6.1.0

’x_type.shape[O] == utils.type_check.Variable(self.in_size, "in_ size")

This code can check the equivalent condition below:

’x_type.shape[@] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter
code shows unreadable error message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4 # what does
—'4'" mean?
Actual: 3 != 4

Note that the second argument of utils.type check.Variable is only for readability.

The former shows this message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size # OK
— in_size' 1is a value that is given to the constructor

7

Actual: 3 != 4 # You can also check actual value here

2.10.5 Call functions

How to check summation of all values of shape? Expr also supports function call:

sum = utils.type_check.Variable (np.sum, 'sum')
utils.type_check.expect (sum(x_type.shape) == 10)

Why do we need to wrap the function numpy . sum with utils. type_check.Variable? x_type.shape is
not a tuple but an object of Expr as we have seen before. Therefore, numpy . sum (x_type.shape) fails. We
need to evaluate this function lazily.

The above example produces an error message like this:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10

2.10.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate Expr and get
its result value with eval () method. Then check the condition and show warning message by hand:

x_shape = x_type.shape.eval () # get actual shape (int tuple)
if not more_complicated_condition (x_shape) :

expect_msg = 'Shape is expected to be ...'

actual_msg = 'Shape is ...'

raise utils.type_check.InvalidType (expect_msg, actual_msqg)

Please write a readable error message. This code generates the following error message:

2.10. Type Checks 51

Chainer Documentation, Release 6.1.0

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: Shape is expected to be
Actual: Shape is

2.10.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect (in_types.size() == 2)

in_types.size () returns a Expr object representing the number of arguments. You can check it in the same
way.

And then, get each type:

x_type, y_type = in_types

Don’t get each value before checking in_types.size (). When the number of argument is illegal, t ype_check.
expect might output unuseful error messages. For example, this code doesn’t work when the size of in_types is
0:

utils.type_check.expect (
in_types.size() == 2,
in_types[0] .ndim == 3,

After that, check each type:

utils.type_check.expect (

x_type.dtype == np.float32,
x_type.ndim == 3,
Xx_type.shape[l] == 2,
)
The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.

2.11 Serializers — saving and loading

Serializer is a simple interface to serialize or deserialize an object. Link, Optimizer, and Trainer support
serialization.

Concrete serializers are defined in the serializers module. It supports NumPy NPZ and HDFS5 formats.
For example, we can serialize a link object into NPZ file by the save _npz () function:

Assuming we have defined a model:

>>> from chainer import serializers
>>> sgserializers.save_npz ('my.model', model)

This saves the parameters of model into the file 'my.model"' in NPZ format. The saved model can be read back
from my . mode1 back into model by the 1oad_npz () function:

52 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 6.1.0

>>> serializers.load_npz('my.model', model)

Note: Note that only the parameters and the persistent values are serialized by this serialization code. Other at-
tributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values
by the add _persistent () method. The registered values can be accessed by attributes of the name passed to the
add_persistent method.

The state of an optimizer can also be saved by the same functions:

>>> sgserializers.save_npz('my.state', optimizer)
>>> serializers.load npz('my.state', optimizer)

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum
vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to
explicitly save the target link with the optimizer to resume the optimization from saved states. This can be done by
saving the entire Trainer object, like this:

>>> serializers.save_npz('my.state', trainer)

Support of the HDF5 format is enabled if the hSpy package is installed. Serialization and deserialization with the
HDFS5 format are almost identical to those with the NPZ format; just replace save _npz () and l1oad npz () by
save_hdf5 () and load_hdf5 (), respectively.

2.12 Customize your own logging

In this section, you will learn about the following things:
e Whatis chainer.Reporter?
* How to report logging with chainer.Reporter?
* The naming rule for the reported values.

After reading this section, you will be able to:

¢ Write your own report.

2.12.1 What is Reporter?

chainer.Reporter isused to collect values that users want to watch. The reporter object manipulates a dictionary
from value names to the actually observed values. We call this dictionary as observation.

See the following example:

>>> from chainer import Reporter, report, report_scope

>>>
>>> reporter = Reporter ()

>>> observer = object () # it can be an arbitrary (reference) object
>>> reporter.add_observer ('my_observer:', observer)

>>> observation = {}

>>> with reporter.scope (observation) :

(continues on next page)

2.12. Customize your own logging 53

Chainer Documentation, Release 6.1.0

(continued from previous page)

reporter.report ({'x': 1}, observer)

>>> observation
{'my_observer:/x"': 1}

When a value is passed to the reporter, an object called observer can be optionally attached. In this case,
the name of the observer is added as the prefix of the value name. The observer name should be registered
beforehand. Using reporter. scope, you can select which observation to save the observed values.

There are also a global API chainer. report (), which reports observed values with the current reporter object. In
this case, current means which with statement scope the current code line is in. This function calls the Reporter.
report () method of the current reporter.

>>> observation = {}
>>> with reporter.scope (observation) :
report ({'x': 1}, observer)

>>> observation
{'my_observer:/x': 1}

2.12.2 Use report in Chain or Link

The most important application of Reporter is to report observed values from each Link or Chain in the training
and validation procedures.

But, how to report the observed values from each link or chain? Shold we prepare the Reporter? No, you only need
tocall report () inchain or link, because Trainer and some extensions prepare their own Reporter object with
the hierarchy of the target link registered as observers. We can use report () function inside any links and chains to
report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

See the following example:

>>> class Classifier (Chain):
def _ _init__ (self, predictor):
super (Classifier, self).__init__ ()
with self.init_scope() :
self.predictor = predictor

def forward(self, x, t):
y = self.predictor (x)

loss = F.softmax_cross_entropy(y, t)
accuracy = F.accuracy(y, t)
report ({'loss': loss, 'accuracy': accuracy}, self)

return loss

If the link is named 'main' in the hierarchy (which is the default name of the target link in the
StandardUpdater), these reported values are named 'main/loss' and 'main/accuracy’'. If these val-
ues are reported inside the Evaluator extension, 'validation/' is added at the head of the link name,
thus the item names are changed to 'validation/main/loss' and 'validation/main/accuracy'
("validation" is the default name of the Evaluator extension).

54 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 6.1.0

2.12.3 Naming rule for the reported values
So, you know almost everything about Reporter. However, there is one more thing. It is what is the naming rule
for the reported values, especially when the values are reported from a link that is not the root of the link hierarchy.

As we explained in the previous section, the root of links is named as 'main' by the the StandardUpdater and
the names of reported values in the root have the prefix 'main/'. When the values are reported from a link that is
not the root of the link hierarchy, the prefix of the names are determined by the link hierarchy, or namedlinks ().

See the following example:

>>> class MLP (Chain) :
def _ init_ (self, n_units, n_out):
super (MLP, self).__init__ ()
with self.init_scope() :
the size of the inputs to each layer will be inferred

self.1ll = L.Linear (None, n_units) # n_1in -> n_units
self.12 = L.Linear (None, n_units) # n_units -> n_units
self.13 = L.Linear (None, n_out) # n_units —-> n_out

def forward(self, x):
hl = F.relu(self.1l1l(x))
h2 = F.relu(self.12(hl))
y = self.13(h2)
report ({'sum_vy': F.sum(y)}, self)
return y

>>> model = Classifier (MLP (100, 10))

>>> for name, observer in model.namedlinks (skipself=True) :
.. print (name)

/predictor
/predictor/11
/predictor/12
/predictor/13

You can get the parameters of the link hierarchy by namedlinks (). In this example, we report 'loss' and
'accuracy' in the root of links, and 'sum_y"' in the link of ' /predictor'. So, you can access the reported
values by 'main/accuracy’', 'main/accuracy’',and 'main/predictor/sum_y"'.

See what we explained is correct:

>>> train, test = datasets.get_mnist ()
>>> train iter = iterators.Seriallterator(train, batch size=100, shuffle=True)
>>> test_ite iterators.Seriallterator (test, batch size=100, repeat=False,

—shuffle
>>> optimize = optimizers.SGD ()
>>> optimizer.setup (model)
>>> updater = training.StandardUpdater (train_iter, optimizer)
>>> trainer = training.Trainer (updater, (1, 'epoch'), out='result')
>>> trainer.extend (extensions.Evaluator (test_iter, model))
>>> trainer.extend (extensions.LogReport ())
>>> trainer.extend (extensions.PrintReport (
['epoch', 'main/accuracy', 'main/loss', 'main/predictor/sum_y', 'validation/

—main/accuracy']))

>>> trainer.run/()

epoch main/accuracy main/loss main/predictor/sum_y validation/main/accuracy
1 0.662317 1.38345 47.9927 0.8498

2.12. Customize your own logging 55

Chainer Documentation, Release 6.1.0

56 Chapter 2. Concepts Walkthrough

CHAPTER
THREE

NEURAL NET EXAMPLES

3.1 MNIST using Trainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

By using Trainer, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides
many useful extensions that can be used with Trainer to visualize your results, evaluate your model, store and
manage log files more easily.

This example will show how to use the Trainer to train a fully-connected feed-forward neural network on the
MNIST dataset.

Note: If you would like to know how to write a training loop without using the Trainer, please check MNIST with
a Manual Training Loop instead of this tutorial.

3.1.1 1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

from chainer.datasets import mnist

train, test = mnist.get_mnist ()

Note: You can use a Python list as a dataset. That’s because Iterator can take any object as a dataset whose
elements can be accessed via [] accessor and whose length can be obtained with 1en () function. For example,

57

Chainer Documentation, Release 6.1.0

train = [(x1, tl), (x2, t2), ...]

a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in datasets. It is recommended that you utilize them in the actual
applications.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those
data into a list like above. In that case, you can use TmageDataset, which just keeps the paths to image files. The
actual image data will be loaded from the disk when the corresponding element is requested via [] accessor. Until
then, no images are loaded to the memory to reduce memory use.

3.1.2 2. Prepare the dataset iterations

Iterator creates a mini-batch from the given dataset.

batchsize = 128

train_iter = iterators.Seriallterator(train, batchsize)
test_iter = iterators.Seriallterator (test, batchsize, False, False)

3.1.3 3. Prepare the model

Here, we are going to use the same model as the one defined in MNIST with a Manual Training Loop.

class MLP (Chain) :

def _ init_ (self, n_mid_units=100, n_out=10):
super (MLP, self).__init__ ()
with self.init_scope():
self.1ll = L.Linear (None, n_mid_units)
self.12 = L.Linear (None, n_mid_units)
self.13 = L.Linear (None, n_out)

def forward(self, x):
hl = F.relu(self.11(x))
h2 = F.relu(self.12(hl))
return self.13(h2)

gpu_id = 0 # Set to -1 if you use CPU
model = MLP ()

if gpu_id >= 0:
model.to_gpu (gpu_id)

3.1.4 4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown
below.

58 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

Trainer
Updater < > Extension
> Extension
lterator Optimizer

v v > Extension

Dataset Model '

(]

(]

(]

— . uUse

Basically, all you need to pass to Trainer is an Updater. However, Updater contains an Iterator and
Optimizer. Since ITterator can access the dataset and Opt im1 zer has references to the model, Updater can
access to the model to update its parameters.

So, Updater can perform the training procedure as shown below:
1. Retrieve the data from dataset and construct a mini-batch (Iterator)
2. Pass the mini-batch to the model and calculate the loss
3. Update the parameters of the model (Opt imizer)

Now let’s create the Updater object !

max_epoch = 10

Wrap your model by Classifier and include the process of loss calculation within,,
—your model.

Since we do not specify a loss function here, the default 'softmax_cross_entropy'
—1s used.

model = L.Classifier (model)

selection of your optimizing method
optimizer = optimizers.MomentumSGD ()

Give the optimizer a reference to the model

(continues on next page)

3.1. MNIST using Trainer 59

Chainer Documentation, Release 6.1.0

(continued from previous page)

optimizer.setup (model)

Get an updater that uses the Iterator and Optimizer
updater = training.updaters.StandardUpdater (train_iter, optimizer, device=gpu_id)

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier,
which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you
give the input data and the corresponding class labels to the model by the () operator,

1. forward () of the model is invoked. The data is then given to predictor to obtain the output y.

2. Next, together with the given labels, the output y is passed to the loss function which is determined by 1ossfun
argument in the constructor of Classifier.

3. The loss is returned as a Variable.
InClassifier,the lossfunissetto softmax cross_entropy () as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the
MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses
the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

3.1.5 5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that
we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like
(length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is
given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will
never be stopped.

Setup a Trainer
trainer = training.Trainer (updater, (max_epoch, 'epoch'), out='mnist_result')

The out argument specifies an output directory used to save the log files, the image files of plots to show the time
progress of loss, accuracy, etc. when you use P1otReport extension. Next, we will explain how to display or save
those information by using trainer Extension.

3.1.6 6. Add Extensions to the Trainer object

The Trainer extensions provide the following capabilities:
* Save log files automatically (LogReport)
* Display the training information to the terminal periodically (PrintReport)
* Visualize the loss progress by plotting a graph periodically and save it as an image file (P1otReport)
* Automatically serialize the state periodically (snapshot () / snapshot_object ())
* Display a progress bar to the terminal to show the progress of training (ProgressBar)
» Save the model architecture as a Graphviz’s dot file (DumpGraph ())

To use these wide variety of tools for your training task, pass Extension objects to the extend () method of your
Trainer object.

60 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

from chainer.training import extensions

trainer.extend (extensions.LogReport ())

trainer.extend (extensions.snapshot (filename="'snapshot_ epoch-{.updater.epoch} "))
trainer.extend (extensions.snapshot_object (model.predictor, filename='model epoch-{.
—updater.epoch}'))

trainer.extend (extensions.Evaluator (test_iter, model, device=gpu_id))

trainer.extend (extensions.PrintReport (['epoch', 'main/loss', 'main/accuracy',
—'validation/main/loss', 'validation/main/accuracy', 'elapsed_time']))

trainer.extend (extensions.PlotReport (['main/loss', 'validation/main/loss'], x_key=
—'epoch', file_name='loss.png'))

trainer.extend (extensions.PlotReport (['main/accuracy', 'validation/main/accuracy'], x_

—key="epoch', file_name='accuracy.png'))
trainer.extend (extensions.DumpGraph ('main/loss"))

LogReport

Collect 1oss and accuracy automatically every epoch or iteration and store the information under the 1og
file in the directory specified by the out argument when you create a Trainer object.

snapshot ()

The snapshot () method saves the Trainer object at the designated timing (default: every epoch) in the directory
specified by out. The Trainer object, as mentioned before, has an Updater which contains an Opt imizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make
inferences using the previously trained model later.

snapshot_object ()

However, when you keep the whole Trainer object, in some cases, it is very tedious to retrieve only the inside of
the model. By using snapshot_object (), you can save the particular object (in this case, the model wrapped
by Classifier) as a separate snapshot. Classifier is a Chain object which keeps the model that is also a
Chain object as its predictor property, and all the parameters are under the predictor, so taking the snapshot
of predictor is enough to keep all the trained parameters.

This is a list of commonly used trainer extensions:

LogReport This extension collects the loss and accuracy values every epoch or iteration and stores in a log file. The
log file will be located under the output directory (specified by out argument of the Trainer object).

snapshot () This extension saves the Trainer object at the designated timing (defaut: every epoch) in the output
directory. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or
make inferences using the previously trained model later.

snapshot_object () snapshot () extension above saves the whole Trainer object. However, in some cases,
it is tedious to retrieve only the inside of the model. By using snapshot_object (), you can save the
particular object (in the example above, the model wrapped by Classifier) as a separeted snapshot. Taking
the snapshot of predictor is enough to keep all the trained parameters, because Classifier (whichis a
subclass of Chain) keeps the model as its predictor property, and all the parameters are under this property.

DumpGraph () This extension saves the structure of the computational graph of the model. The graph is saved in
Graphviz dot format under the output directory of the Trainer.

3.1. MNIST using Trainer 61

http://www.graphviz.org/

Chainer Documentation, Release 6.1.0

Evaluator Iterators that use the evaluation dataset and the model object are required to use Evaluator
extension. It evaluates the model using the given dataset (typically it’s a validation dataset) at the specified
timing interval.

PrintReport This extension outputs the spcified values to the standard output.
PlotReport This extension plots the values specified by its arguments and saves it as a image file.

This is not an exhaustive list of built-in extensions. Please take a look at Extensions for more of them.

3.1.7 7. Start Training

Just call run () method from Trainer object to start training.

trainer.run ()

epoch main/loss main/accuracy validation/main/loss validation/main/accuracy,,
— elapsed_time

1 1.53241 0.638409 0.74935 0.835839 o
— 4.93409

2 0.578334 0.858059 0.444722 0.882812 o
— 7.72883

3 0.418569 0.886844 0.364943 0.899229 o
— 10.4229

4 0.362342 0.899089 0.327569 0.905558 o
— 13.148

5 0.331067 0.906517 0.304399 0.911788 o
— 15.846

6 0.309019 0.911964 0.288295 0.917722 o
— 18.5395

7 0.292312 0.916128 0.272073 0.921776 o
— 21.2173

8 0.278291 0.92059 0.261351 0.923457 o
— 23.9211

9 0.266266 0.923541 0.253195 0.927314 o
— 26.6612

10 0.255489 0.926739 0.242415 0.929094 o
— 29.466

Let’s see the plot of loss progress saved in the mnist_result directory.

62 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

—wi= r@in/loss
«= alidation/main/loss

How about the accuracy?

—w— mainfaccuracy

0.an 4 == validation/main/accuracy

(.85 -

080 -

075 1

070

0.65 -

2 4 & 8 10
epoch

Furthermore, let’s visualize the computational graph saved with DumpGraph () using Graphviz.

)

% dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png

3.1. MNIST using Trainer 63

Chainer Documentation, Release 6.1.0

(100), float32 (100, 784), float32 (128, 784), float32

(128, 100), float32

(100, 100), float32 (128, 100), float32 (100), float32

(128, 100), float32

(10, 100), float32 (10), float32 (128, 100), float32

@ (128, 10), float32

64 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and
parameters are passed to the Functions.

3.1.8 8. Evaluate a pre-trained model

Evaluation using the snapshot of a model is as easy as what explained in the MNIST with a Manual Training Loop.

import matplotlib.pyplot as plt

model = MLP ()
serializers.load_npz ('mnist_result/model_epoch-10', model)

Show the output

x, t = test[0]

plt.imshow (x.reshape (28, 28), cmap='gray')
plt.show ()

print ('label:', t)

y = model (x[None, ...])

print ('predicted_label:', y.array.argmax (axis=1) [0])

label: 7
predicted_label: 7

The prediction looks correct. Success!

3.2 MNIST with a Manual Training Loop

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

3.2. MNIST with a Manual Training Loop 65

Chainer Documentation, Release 6.1.0

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in
the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example
is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are
10 classes for the labels.

Chainer provides a feature called Trainer that can simplify the training procedure of your model. However, it is
also good to know how the training works in Chainer before starting to use the useful Trainer class that hides the
actual processes. Writing your own training loop can be useful for learning how Trainer works or for implementing
features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. Prepare a dataset

2. Create a dataset iterator

3. Define a network

4. Select an optimization algorithm

5. Write a training loop
a. Retrieve a set of examples (mini-batch) from the training dataset.
b. Feed the mini-batch to your network.
c. Run a forward pass of the network and compute the loss.

d. Just call the backward () method from the loss Variable to compute the gradients for all trainable
parameters.

e. Run the optimizer to update those parameters.
6. Save the trained model

7. Perform classification by the saved model and check the network performance on validation/test sets.

3.2.1 1. Prepare a dataset
Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can
automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to
make sure the images are correctly obtained.

66 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

from __ future import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

Download the MNIST data if you haven't downloaded it yet

train, test = mnist.get_mnist (withlabel=True, ndim=1)

Display an example from the MNI

'x' contains that target class
label as an integ

X, t = trainl[O0]

plt.imshow (x.reshape (28, 28), cmap='gray')
plt.savefig('5.png')
print ('label:', t)

label: 5

The saved image 5 . png will look like:

o

10

15

20

25

3.2.2 2. Create a dataset iterator

Although this is an optional step, we’d like to introduce the Tterator class that retrieves a set of data and labels
from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in
different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use Seriallterator, which is also a subclass of Iterator in the example code below. The
Seriallterator can provide mini-batches with or without shuffling the order of data in the given dataset.

All Tterators produce a new mini-batch by calling its next () method. All Tterators also have properties to
know how many times we have taken all the data from the given dataset (epoch) and whether the next mini-batch
will be the start of a new epoch (1 s_new_epoch), and so on.

The code below shows how to create a SerialIterator object from a dataset object.

3.2. MNIST with a Manual Training Loop 67

Chainer Documentation, Release 6.1.0

from chainer import iterators

Choose the minibatch size.
batchsize = 128

train_iter = iterators.Seriallterator(train, batchsize)
test_iter = iterators.Seriallterator (test, batchsize,
repeat=False, shuffle=False)

Note: Tterators can take a built-in Python list as a given dataset. It means that the example code below is able to
work,

train = [(x1, tl), (x2, t2), ...] # A list of tuples
train_iter = iterators.Seriallterator (train, batchsize)
where x1, x2, ... denotetheinputdataandtl, t2, ... denote the corresponding labels.

Details of Seriallterator
e Seriallterator is a built-in subclass of Tterator that can retrieve a mini-batch from a given dataset in
either sequential or shuffled order.
* The Tterator’s constructor takes two arguments: a dataset object and a mini-batch size.

* If you want to use the same dataset repeatedly during the training process, set the repeat argument to True
(default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.

* If you want to shuffle the training dataset every epoch, set the shuffle argument to True. Otherwise, the
order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set batchsize = 128 inboth train_iter and test_iter. So, these
iterators will provide 128 images and corresponding labels at a time.

3.2.3 3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-
layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is
corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of Chain. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be
instantiated and assigned to a property in the scope specified by init_scope ():

2. Define a forward () method that represents the actual forward computation of your network. This method
takes one or more Variable, numpy.ndarray, or cupy.ndarray as its inputs and calculates the forward
pass using them.

class MyNetwork (Chain) :

def _ init_ (self, n_mid_units=100, n_out=10):

(continues on next page)

68 Chapter 3. Neural Net Examples

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 6.1.0

(continued from previous page)

super (MyNetwork, self).__init__ ()

with self.init_scope() :
self.1l1l L.Linear (None, n_mid_units)
self.12 = L.Linear (n_mid_units, n_mid_units)
self.13 = L.Linear (n_mid_units, n_out)

def forward(self, x):
h = F.relu(self.11(x))
h = F.relu(self.12(h))
return self.13(h)

model = MyNetwork ()
gpu_id = 0 # Set to -1 if you use CPU

if gpu_id >= 0:
model.to_gpu (gpu_id)

Link, Chain, ChainList, and those subclass objects which contain trainable parameters should be registered
to the model by assigning it as a property inside the init_scope (). For example, a FunctionNode does not
contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want
touse relu () in your network, using it as a function in forward () works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words,
we can conceptually think of the computation graph for our network being constructed dynamically as this forward
computation code executes. This allows Chainer to describe networks in which different computations can be per-
formed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key
feature of Chainer that we call Define-by-Run.

3.2.4 4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during
training. They are located in opt imizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by
MomentumSGD. To use the optimizer, we give the network object (typically it’s a Chain or ChainList) to the
setup () method of the optimizer object to register it. In this way, the Optimizer can automatically find the
model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example,
you could try to change MomentumSGD to Adam, RMSprop, etc.

from chainer import optimizers

Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD (1lr=0.01, momentum=0.9)

Give the optimizer a reference to the model so that it
can locate the model's parameters.
optimizer.setup (model)

Note: In the above example, we set 1 to 0.01 in the constructor. This value is known as the “learning rate”, one
of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various
optimizers may each have different hyperparameters and so be sure to check the documentation for the details.

3.2. MNIST with a Manual Training Loop 69

Chainer Documentation, Release 6.1.0

3.2.5 5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use
softmax_cross_entropy () as the loss function for the optimizer to minimize. For other types of problems,
such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed
information on the various loss functions for more details.

Our training loop will be structured as follows.

1.
2.

We will first get a mini-batch of examples from the training dataset.

We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute
the forward-pass code that are written in the forward () method.

This will return the network output that represents class label predictions. We supply it to the loss function along
with the true (that is, target) values. The loss function will output the loss as a Variable object.

We then clear any previous gradients in the network and perform the backward pass by calling the backward ()
method on the loss variable which computes the parameter gradients. We need to clear the gradients first because
the backward () method accumulates gradients instead of overwriting the previous values.

. Since the optimizer already has a reference to the network, it has access to the parameters and the computed

gradients so that we can now call the update () method of the optimizer which will update the model param-
eters.

In addition to the above steps, you might want to check the performance of the network with a validation dataset. This
allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to
the training data. The code below checks the performance on the test set at the end of each epoch. The code has the
same structure as the training code except that no backpropagation is performed and we also compute the accuracy on
the test data using the accuracy () function.

The training loop code is as follows:

import numpy as np
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu

max_

epoch = 10

while train_iter.epoch < max_epoch:

#ommm One iteration of the training loop —————————-
train_batch = train_iter.next ()
image_train, target_train = concat_examples (train_batch, gpu_id)

Calculate the prediction of the network
prediction_train = model (image_train)

Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy (prediction_train, target_train)

Calculate the gradients in the network
model.cleargrads ()
loss.backward()

Update all the trainable parameters
optimizer.update ()

(continues on next page)

70

Chapter 3. Neural Net Examples

../reference/functions.html#loss-functions
../reference/functions.html#loss-functions

Chainer Documentation, Release 6.1.0

(continued from previous page)

Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the_
—current epoch

Display the training loss
print ('epoch:{:02d} train_loss:{:.04f} '.format (
train_iter.epoch, float (to_cpu(loss.array))), end='")

test_losses = []
test_accuracies = []
for test_batch in test_iter:
image_test, target_test = concat_examples (test_batch, gpu_id)

Forward the test data
prediction_test = model (image_test)

Calculate the loss
loss_test = F.softmax_cross_entropy (prediction_test, target_test)
test_losses.append(to_cpu(loss_test.array))

Calculate the accuracy

accuracy = F.accuracy (prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.array)

test_iter.reset ()

print ('val_loss:{:.04f} val_accuracy:{:.04f}"'.format (
np.mean (test_losses), np.mean(test_accuracies)))

Output

epoch:01 train_loss:0.8072 val_loss:0.7592 val_accuracy:0.8289
epoch:02 train_loss:0.5021 val_loss:0.4467 val_accuracy:0.8841
epoch:03 train_loss:0.3539 val_loss:0.3673 val_accuracy:0.9007
epoch:04 train_loss:0.2524 val_loss:0.3307 val_accuracy:0.9067
epoch:05 train_loss:0.4232 val_loss:0.3076 val_accuracy:0.9136
epoch:06 train_loss:0.3033 val_loss:0.2910 val_accuracy:0.9167
epoch:07 train_loss:0.2004 val_loss:0.2773 val_accuracy:0.9222
epoch:08 train_loss:0.2885 val_loss:0.2679 val_accuracy:0.9239
epoch:09 train_loss:0.2818 val_loss:0.2579 val_accuracy:0.9266
epoch:10 train_loss:0.2403 val_loss:0.2484 val_accuracy:0.9307

3.2.6 6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the
HDFS5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to
save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

serializers.save_npz ('my_mnist.model', model)

3.2. MNIST with a Manual Training Loop 71

Chainer Documentation, Release 6.1.0

3.2.7 7. Perform classification by the saved model
Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform
the following two steps:

1. Instantiate the same network as what you trained.

2. Overwrite all parameters in the model instance with the saved weights using the 7oad_npz () function.

Once the model is restored, it can be used to predict image labels on new input data.

from chainer import serializers

Create an instance of the network you trained

model = MyNetwork ()

Load the saved parameters into the instance

serializers.load_npz('my_mnist.model', model)

Get a test image and label

x, t = test[0]

plt.imshow (x.reshape (28, 28), cmap='gray')
plt.savefig('7.png'")

print ('label:', t)

label: 7

The saved test image looks like:

0

10

15

20

25

print (x.shape, end=' -> ')
x = X[None, ...]

(continues on next page)

72 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

(continued from previous page)

print (x.shape)

Forward calculation of the model by sending X
y = model (x)

The result is given as Variable, then we can take a look at the contents by the,
—attribute, .array.

y = y.array

Look up the most probable digit number using argmax
pred_label = y.argmax (axis=1)

print ('predicted label:', pred_label[0])

(784,) —> (1, 784)
predicted label: 7

The prediction result looks correct. Yay!

3.3 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

¢ A small convolutional network with a model class that is inherited from Chain,

* A large convolutional network that has several building block networks with ChainList.
After reading this section, you will be able to:

* Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly
used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object
classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmen-
tation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is (N, C, H, W), where
* N denotes the number of images in a mini-batch,
* (denotes the number of channels of those images,
e H and W denote the height and width of those images,

respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes.
It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task,
etc.

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 73

Chainer Documentation, Release 6.1.0

(continued from previous page)

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—~Variable

from chainer import datasets, initializers, iterators, optimizers, serializers

from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

3.3.1 LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer. In this example, we show a simplified version of LeNet5
introduced in Deep Learning Tutorials. This is a ConvNet model that has 5 layers comprised of 3 convolutional layers
and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In Chainer, the model
can be written as follows:

class LeNet5 (Chain) :
def _ init_ (self):
super (LeNet5, self).__init__ ()
with self.init_scope() :
self.convl = L.Convolution2D (
in_channels=1, out_channels=6, ksize=5, stride=1)
self.conv2 = L.Convolution2D (
in_channels=6, out_channels=16, ksize=5, stride=1)
self.conv3 = L.Convolution2D (
in_channels=16, out_channels=120, ksize=4, stride=1)
self.fcd4 = L.Linear (None, 84)
self.fc5 = L.Linear (84, 10)

def forward(self, x):

h = F.sigmoid(self.convl (x))
.max_pooling_2d(h, 2, 2)
.sigmoid(self.conv2 (h))
.max_pooling_2d(h, 2, 2)
.sigmoid(self.conv3(h))
= F.sigmoid(self.fc4 (h))
if chainer.config.train:

return self.fcb5 (h)
return F.softmax(self.fcb5(h))

[e = o
Il
L e e e

A typical way to write your network is creating a new class inherited from Chain class. When defining your model in
this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects
of Link as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors
simply by calling the model object like a function, forward () is usually defined in the model class. This method
performs the forward computation of the model. Chainer uses the powerful autograd system for any computational
graphs written with FunctionNodes and Links (actually a Link calls a corresponding Funct ionNode inside
of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the
data, then give it to the model. The way this works is the resulting output Variable from the forward computation
has a backward () method to perform autograd. In the above model, forward () has a if statement at the end to
switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as
a global variable chainer.config.train. When it’s in training mode, forward () returns the output value of
the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating softmax ().

It is recommended that you use the global configuration chainer.config.train to switch the running mode.

74 Chapter 3. Neural Net Examples

http://deeplearning.net/tutorial/lenet.html#lenet

Chainer Documentation, Release 6.1.0

If you don’t want to write conv1l and the other layers more than once, you can also write the same model like in this
way:

from functools import partial

class LeNet5 (Chain) :
def _ init_ (self):

super (LeNet5, self).__init__ ()
net = [('convl', L.Convolution2D(1l, 6, 5, 1))]
net += ' _sigml', F.sigmoid)]

net += ' _mpooll', partial (F.max_pooling_2d, ksize=2, stride=2))]
net += 'conv2', L.Convolution2D (6, 16, 5, 1))]

net += ' _sigm2', F.sigmoid)]

net += ' _mpool2', partial (F.max_pooling_2d, ksize=2, stride=2))]

[(
[(
[(
[(
[(
net += [('conv3', L.Convolution2D (16, 120, 4, 1))]
[(
[(
[(
[(
[(

net += ' _sigm3', F.sigmoid)]

net += ' _mpool3', partial (F.max_pooling_2d, ksize=2, stride=2))]
net += 'fcd4', L.Linear (None, 84))]

net += ' sigm4', F.sigmoid)]

net += 'fc5', L.Linear (84, 10))]

net += [('_sigmb', F.sigmoid)]
with self.init_scope():
for n in net:
if not n[0].startswith('_'"):
setattr(self, n[0], n[1l])
self.layers = net

def forward(self, x):
for n, £ in self.layers:
if not n.startswith('_"):
x = getattr(self, n) (x)
else:
x = f(x)
if chainer.config.train:
return x
return F.softmax (x)

Note: You can also use Sequential to write the above model more simply. Please note that Sequential is an
experimental feature introduced in Chainer v4 and its interface may be changed in the future versions.

This code creates a list of pairs of component name (e.g., convl, _sigml, etc.) and all Links and functions
(e.g., F.sigmoid, which internally invokes Funct i onNode) after calling its superclass’s constructor. In this case,
components whose name start with __ are functions (Funct ionNode), which doesn’t have any trainable parameters,
so that we don’t register (setattr) it to the model. Others (convl, fc4, etc.) are Links, which are trainable
layers that hold parameters. This operation can be freely replaced with many other ways because those component
names are just designed to select Links only from the list net easily. The list net is stored as an attribute layers
torefer itin forward (). In forward (), it retrieves all layers in the network from self . forward sequentially
and gives the input variable or the intermediate output from the previous layer to the current layer. The last part of the
forward () to switch its behavior by the training/inference mode is the same as the former way.

Ways to calculate loss

When you train the model with label vector t, the loss should be calculated using the output from the model. There
also are several ways to calculate the loss:

3.3. Convolutional Network for Visual Recognition Tasks 75

Chainer Documentation, Release 6.1.0

model = LeNet5 ()

Input data and label
x = np.random.rand (32, 1, 28, 28).astype(np.float32)
t = np.random.randint (0, 10, size=(32,)).astype(np.int32)

Forward computation
y = model (x)

Loss calculation
loss = F.softmax_cross_entropy(y, t)

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation
can be included in the model itself by wrapping the model object (Chainor ChainList object) with a class inherited
from Chain. The outer Chain should take the model defined above and register it with init_scope (). Chain
is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain.
Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually,
there is already a C1assifier class that can be used to wrap the model and include the loss computation as well. It
can be used like this:

model = L.Classifier (LeNetb5())

Foward & Loss calculation
loss = model (x, t)

This class takes a model object as an input argument and registers it to a predictor property as a trained parameter.
As shown above, the returned object can then be called like a function in which we pass x and t as the input arguments
and the resulting loss value (which we recall is a Variable) is returned.

See the detailed implementation of Classifier fromhere: chainer.links.Classifier and check the im-
plementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many
different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

3.3.2 VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block
networks, ChainIist is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

class VGG1l6 (chainer.ChainlList) :
def _ init_ (self):
super (VGGl6, self).__init__ (
VGGBlock (64),
VGGBlock (128),
VGGBlock (256, 3),
VGGBlock (512, 3),
VGGBlock (512, 3, True))

def forward(self, x):
for £ in self.children():
x = f(x)
if chainer.config.train:
return x
return F.softmax (x)

(continues on next page)

76 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

(continued from previous page)

class VGGBlock (chainer.Chain) :
def _ init_ (self, n_channels, n_convs=2, fc=False):
w = chainer.initializers.HeNormal ()
super (VGGBlock, self).__init__ ()
with self.init_scope() :
self.convl = L.Convolution2D (None, n_channels, 3, 1, 1, initialW=w)
self.conv2 = L.Convolution2D (
n_channels, n_channels, 3, 1, 1, initialW=w)
if n_convs ==
self.conv3 = L.Convolution2D (
n_channels, n_channels, 3, 1, 1, initialW=w)
if fc:
self.fc4 = L.Linear (None, 4096, initialW=w)

self.fc5 = L.Linear (4096, 4096, initialW=w)
self.fc6 = L.Linear (4096, 1000, initialW=w)
self.n_convs = n_convs

self.fc = fc

def forward(self, x):

h = F.relu(self.convl (x))

h = F.relu(self.conv2(h))

if self.n_convs == 3:
h = F.relu(self.conv3(h))

h = F.max_pooling_2d(h, 2, 2)

if self.fc:
h = F.dropout (F.relu(self.fc4 (h)))
h = F.dropout (F.relu(self.fc5(h)))
h = self.fc6 (h)

return h

That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since
then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so
it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists
of several building blocks that have the same architecture, we can build the whole network by re-using the building
block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu())
following them, and max_pooling 2d () operations. This block is written as VGGBlock in the above example
code. And the whole network just calls this block one by one in sequential manner.

3.3.3 ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16,
having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as
VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNetl52 (chainer.Chain) :
def _ init_ (self, n_blocks=[3, 8, 36, 31):
w = chainer.initializers.HeNormal ()
super (ResNetl152, self).__init__ ()
with self.init_scope():
self.convl = L.Convolution2D (None, 64, 7, 2, 3, initialW=w, nobias=True)
self.bnl = L.BatchNormalization (64)
self.res2 = ResBlock(n_blocks[0], 64, 64, 256, 1)
self.res3 = ResBlock(n_blocks[1], 256, 128, 512)

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 77

http://www.image-net.org/challenges/LSVRC/2014/results#clsloc

Chainer Documentation, Release 6.1.0

(continued from previous page)

self.resd4d = ResBlock(n_blocks([2], 512, 256, 1024)
self.resb5 = ResBlock(n_blocks([3], 1024, 512, 2048)
self.fc6 = L.Linear (2048, 1000)

def forward(self, x):

h = self.bnl(self.convl (X))
= F.max_pooling_2d(F.relu(h), 2, 2)
= self.res2 (h)
= self.res3(h)

self.res4d (h)

= self.res5 (h)
= F.average_pooling 2d(h, h.shape[2:], stride=1)
= self.fc6 (h)
if chainer.config.train:

return h
return F.softmax (h)

[op= = = g = S o)
Il

class ResBlock (chainer.ChainList):
def _ init__ (self, n_layers, n_in, n_mid, n_out, stride=2):
super (ResBlock, self).__init__ ()
self.add_link (BottleNeck (n_in, n_mid, n_out, stride, True))
for _ in range(n_layers - 1):
self.add_link (BottleNeck (n_out, n_mid, n_out))

def forward(self, x):
for £ in self.children():
x = f(x)
return x

class BottleNeck (chainer.Chain) :
def _ init__ (self, n_in, n_mid, n_out, stride=1, proj=False):
w = chainer.initializers.HeNormal ()
super (BottleNeck, self).__init__ ()
with self.init_scope() :
self.convlxla = L.Convolution2D (
n_in, n_mid, 1, stride, 0, initialW=w, nobias=True)
self.conv3x3b = L.Convolution2D (
n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True)
self.convlxlc = L.Convolution2D (
n_mid, n_out, 1, 1, 0, initialW=w, nobias=True)
self.bn_a = L.BatchNormalization (n_mid)
self.bn_b = L.BatchNormalization (n_mid)
self.bn_c = L.BatchNormalization (n_out)
if proj:
self.convlxlr = L.Convolution2D (
n_in, n_out, 1, stride, 0, initialW=w, nobias=True)
self.bn_r = L.BatchNormalization (n_out)
self.proj = proj

def forward(self, x):
h = F.relu(self.bn_a(self.convlxla(x)))
h = F.relu(self.bn_b(self.conv3x3b(h)))
h self.bn_c(self.convlxlc (h))
if self.proj:
x = self.bn_r(self.convlxlr (x))

(continues on next page)

78 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

(continued from previous page)

return F.relu(h + x)

In the Bot t LeNeck class, depending on the value of the proj argument supplied to the initializer, it will conditionally
compute a convolutional layer conv1x1r which will extend the number of channels of the input x to be equal to the
number of channels of the output of conv1x1c, and followed by a batch normalization layer before the final ReLU
layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in
__class___ () by flags but also the parameter registration. In this case, when proj is False, the BottleNeck
doesn’t have convixIr and bn_r layers, so the memory usage would be efficient compared to the case when it registers
both anyway and just ignore them if projis False.

Using nested Chains and ChainList for sequential part enables us to write complex and very deep models easily.

3.3.4 Use Pre-trained Models

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as
general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer
provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these
models as follows:

from chainer.links import VGGlé6Layers

model = VGGléLayers ()

When VGGI6Layers is instantiated, the pre-trained parameters are automatically downloaded from the author’s
server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the
details of this model here: chainer. links.VGGIlé6Layers.

In the case of ResNet models, there are three variations differing in the number of layers. We have chainer. links.
ResNet50Layers, chainer.links.ResNetlOlLayers, and chainer.links.ResNetl52Layers
models with easy parameter loading feature. ResNet’s pre-trained parameters are not available for direct down-
loading, so you need to download the weight from the author’s web page first, and then place it into the dir
SCHAINER_DATSET_ROOT/pfnet/chainer/models or your favorite place. Once the preparation is finished,
the usage is the same as VGG16:

from chainer.links import ResNetl52Layers

model = ResNetlb52Layers()

Traceback (most recent call last):
OSError: The pre-trained caffemodel does not exist. Please download it from 'https://
—github.com/KaimingHe/deep-residual-networks', and place it on

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: chainer.links.
ResNet50Layers

3.3. Convolutional Network for Visual Recognition Tasks 79

Chainer Documentation, Release 6.1.0

References

3.4 DCGAN: Generate images with Deep Convolutional GAN

3.4.1 0. Introduction
In this tutorial, we generate images with generative adversarial networks (GAN). GAN are kinds of deep neural

network for generative modeling that are often applied to image generation. GAN-based models are also used in
PaintsChainer, an automatic colorization service.

In this tutorial, you will learn the following things:
1. Generative Adversarial Networks (GAN)
2. Implementation of DCGAN in Chainer

3.4.2 1. Generarive Adversarial Networks (GAN)

1.1 What are GAN?

As explained in GAN tutorial in NIPS 2016 [1], generative models can be classified into the categories as shown in
the following figure:

1 Direct

Maximum Likelihood |
| / \ / GAN

Explicit density Implicit density
) _ : : [M k Ch) .
Tractable density | Approximate density | arkov Chain

| — . /| GSN
-Fully visible belief nets
-NADE . / \.

_MADE Variational |Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

Fig. 1: cited from [1]

80 Chapter 3. Neural Net Examples

https://paintschainer.preferred.tech/index_en.html

Chainer Documentation, Release 6.1.0

Besides GAN, other famous generative models include Fully visible belief networks (FVBNs) and Variational autoen-
coder (VAE). Unlike FVBNs and VAE, GAN do not explicitly model the probability distribution p(s) that generates
training data. Instead, we model a generator G : z — s. The generator G samples s ~ p(s) from the latent variable z.
Apart from the generator G, we create a discriminator D(x) which discriminates between samples from the generator
G and examples from training data. While training the discriminator D, the generator G tries to maximize the proba-
bility of the discriminator D making a mistake. So, the generator G tries to create samples that seem to be drawn from
the same distribution as the training data.

The advantages of GAN are low sampling cost and its state-of-the-art performance in image generation. The disad-
vantage is that we cannot calculate the likelihood py,0qe1(S) because we do not model any probability distribution, and
we cannot infer the latent variable z from a sample.

1.2 How GAN work?

As explained above, GAN use the two models, the generator and the discriminator. When training the networks, we
should match the data distribution p(s) with the distribution of the samples s = G(z) generated from the generator.

generated
distribution

gaussian / pmodel(s)

Z

Generator

\

\ feature space

Discriminator

\

p(s)

.

feature space

true data
distribution

The generator G learns the target distribution, and ideally eventually reaches a Nash equilibrium [2] of game theory.
In detail, while training the discriminator D, the generator G is also trained, so that the discriminator D makes a
mistake.

As an intuitive example, the relationship between counterfeiters of banknotes and the police is frequently used. The
counterfeiters try to make counterfeit notes that look like real banknotes. The police try to distinguish real bank notes
from counterfeit notes. It is supposed that the ability of the police gradually rises, so that real banknotes and counterfeit

3.4. DCGAN: Generate images with Deep Convolutional GAN 81

Chainer Documentation, Release 6.1.0

notes can be recognized well. Then, the counterfeiters will not be able to use counterfeit banknotes, so they will create
counterfeit banknotes that appear more realistic. As the police improve their skill further, they can distinguish real and
counterfeit notes. .. Eventually, the counterfeiter will be able to produce counterfeit banknotes look as real as genuine
ones.

The training process is explained by the following mathematical expressions. First, since the discriminator D(s) is the
probability that a sample s is generated from the data distribution at, it can be expressed as follows:

_ p(s)
D(S) B p(S) + pmodel(s)

Then, when we match the data distribution s ~ p(s) and the distribution of generated samples by G, it means that we
should minimize the dissimilarity between the two distributions. It is common to use Jensen-Shannon Divergence
Djg to measure the dissimilarity between distributions[3].

The D;s of prmodel(s) and p(s) can be written as follows by using D(s):

2Djg =
Dxkw(p(s)][p(s)) + Dxr(pmoder(s)|[(s))

QP(S) :| |: 2pmodcl(s)
E log——————— | +E log ——MmMm——
p(s) & p(S) + pmodel(s) Pmodel s p(S) + pmodel(s)

E,s)log D(s) + E log(1 — D(s)) + log 4

Pmodel

E,s) log D(s) + E,, log(1 — D(G(z))) + log4

where p(s) = w. The Djg will be ma{bf s}imized by the discriminator D and minimized by the generator

G, namely, pmodel. And the distribution pp,.4e1(S) generated by G(s) can match the data distribution p(s).

m(%n max E,s) log D(s) + E,p, log(1 — D(G(z)))

When we actually train the model, the above min-max problem is solved by alternately updating the discriminator
D(s) and the generator G(z) [4]. The actual training procedures are described as follows:

1.3 What are DCGAN?
In this section, we will introduce the model called DCGAN(Deep Convolutional GAN) proposed by Radford et al.[5].
As shown below, it is a model using CNN(Convolutional Neural Network) as its name suggests.

In addition, although GAN are known for its difficulty in training, this paper introduces various techniques for suc-
cessful training:

1. Convert max-pooling layers to convolution layers with larger or fractional strides
2. Convert fully connected layers to global average pooling layers in the discriminator
3. Use batch normalization layers in the generator and the discriminator

4. Use leaky ReLU activation functions in the discriminator

3.4.3 2. Implementation of DCGAN in Chainer

There is an example of DCGAN in the official repository of Chainer, so we will explain how to implement DCGAN
based on this: chainer/examples/dcgan

82 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/dcgan

Chainer Documentation, Release 6.1.0

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, &, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for & steps do

e Sample minibatch of m noise samples {z(!), ..., 2™} from noise prior p,(z).
e Sample minibatch of m examples {a:(l),...,a:[m)} from data generating distribution
pdula(a:)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23" [iog D (20) +10g (1 - D (6 (=0)))]

i=1

end for
e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3 ox (120 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Fig. 2: cited from [4]

Stride 2 16

Project and reshape

CONV 2

Fig. 3: cited from [5]

3.4. DCGAN: Generate images with Deep Convolutional GAN 83

Chainer Documentation, Release 6.1.0

2.1 Define the generator model

First, let’s define a network for the generator.

Listing 1: train_dcgan.py

class Generator (chainer.Chain) :

def

def

def

_ init_ (self, n_hidden, bottom_width=4, ch=512, wscale=0.02):
super (Generator, self).__init__ ()

self.n_hidden = n_hidden

self.ch = ch

self.bottom_width = bottom_width

with self.init_scope():
w = chainer.initializers.Normal (wscale)
self.10 = L.Linear (self.n_hidden, bottom_width * bottom_width =+ ch,
initialW=w)

self.dcl = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
self.dec2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
self.dec3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
self.dcd4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
self.bn0 = L.BatchNormalization (bottom_width * bottom_width =+ ch)
self.bnl = L.BatchNormalization(ch // 2)

self.bn2 = L.BatchNormalization(ch // 4)

self.bn3 = L.BatchNormalization(ch // 8)

make_hidden (self, batchsize):

dtype = chainer.get_dtype ()

return numpy.random.uniform(-1, 1, (batchsize, self.n_hidden, 1, 1))\
.astype (dtype)

forward(self, z):
h = F.reshape(F.relu(self.bn0(self.10(z))),
(len(z), self.ch, self.bottom_width, self.bottom_width))

.relu(self.bnl(self.dcl(h)))
.relu(self.bn2(self.dc2(h)))
.relu(self.bn3(self.dc3(h)))

= F.sigmoid(self.dc4d (h))
return x

© oo o
Il
e |

When we make a network in Chainer, there are some conventions:

L.
2.
3.

Define a network class which inherits Chain.

Make chainer. 1inks’sinstances in the init_scope () : of the initializer __init_ .

Define network connections in the __call___ operator by using the chainer.links’s instances and

chainer. functions.

If you are not familiar with constructing a new network, please refer to this tutorial.

As we can see from the initializer ___init

except the last layer.

Because the first argument of L.Deconvolution is the channel size of input and the second is the channel size
of output, we can find that each layer halves the channel size. When we construct Generator with ch=1024, the

network is same as the above image.

84

Chapter 3. Neural Net Examples

, the Generator uses deconvolution layers DeconvolutionZ2D and
batch normalization layers BatchNormalization. In __call__, each layer is called and followed by relu

Chainer Documentation, Release 6.1.0

Note: Be careful when passing the output of a fully connected layer to a convolution layer, because the convolutional
layer needs additional dimensions for inputs. As we can see the Ist line of __call__, the output of the fully
connected layer is reshaped by reshape to add the dimensions of the channel, the width and the height of images.

2.2 Define the discriminator model
In addtion, let’s define the network for the discriminator.

Listing 2: train_dcgan.py

class Discriminator (chainer.Chain) :

def _ init_ (self, bottom_width=4, ch=512, wscale=0.02):

initialwW=w)

N

’ ll
14 4
14 I4
’ ’

14 4

N RN e
e e

14 I4

initialW=w
initialW=w
initialW=w

initialW=w
initialW=w

w = chainer.initializers.Normal (wscale)

super (Discriminator, self).__init__ ()

with self.init_scope():
self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1,
self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4,
self.cl_0 = L.Convolution2D(ch // 4, ch // 4, 3,
self.cl_1 = L.Convolution2D(ch // 4, ch // 2, 4,
self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3,
self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4,
self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3,
self.l1l4 = L.Linear (bottom_width % bottom_width =«
self.bn0_1 = L.BatchNormalization(ch // 4,
self.bnl_0 = L.BatchNormalization(ch // 4,
self.bnl_1 = L.BatchNormalization(ch // 2,
self.bn2_0 = L.BatchNormalization(ch // 2,
self.bn2_1 = L.BatchNormalization(ch // 1,
self.bn3_0 = L.BatchNormalization(ch // 1,

def forward(self, x):
device = self.device
= add_noise (device, x)
.leaky_relu(add_noise (device,
.leaky_relu(add_noise (device,

self.c0_0(h)))

self.bnl_0
self.bnl_1

(
((
.leaky_relu(add_noise (device,
.leaky_relu(add_noise (device,
.leaky_relu(add_noise (device,

((self.bn2_1

((self.bn3_0

.leaky_relu(add_noise (device,
= F.leaky_relu(add_noise (device,
return self.14 (h)

[e = e o B aN e
Il
e I I B B 3

ch, 1,

self.bn0_1(self.c0_1(h))))
(self.cl_0(h))))
(self.cl_1(h))))
self.bn2_0(self.c2_0(h))))
(self.c2_1(h))))
(self.c3_0(h))))

)
)
)
initialW=w)
)
)
w

initialwW=
use_gamma=False)
use_gamma=False
use_gamma=False
use_gamma=False
use_gamma=False
use_gamma=False

)
)
)
)
)

)

The Discriminator network is almost mirrors of the Generator network. However, there are minor different

points:
1. Use leaky relu as activation functions

2. Deeper than Generator

3. Add some noise to every intermediate outputs before giving them to the next layers

Listing 3: train_dcgan.py

def add_noise(device, h, sigma=0.2):
if chainer.config.train:

(continues on next page)

3.4. DCGAN: Generate images with Deep Convolutional GAN

85

Chainer Documentation, Release 6.1.0

(continued from previous page)

xp = device.xp
TODO (niboshi): Support random.randn in ChainerX
if device.xp is chainerx:
fallback_device = device.fallback_device
with chainer.using_device (fallback_device) :
randn = device.send(fallback_device.xp.random.randn («h.shape))
else:
randn = xp.random.randn (xh.shape)
return h + sigma * randn
else:
return h

2.3 Prepare dataset and iterator

Let’s retrieve the CIFAR-10 dataset by using Chainer’s dataset utility function get_ cifar10. CIFAR-10 is a set of
small natural images. Each example is an RGB color image of size 32x32. In the original images, each of R, G, B of
pixels is represented by one-byte unsigned integer (i.e. from 0 to 255). This function changes the scale of pixel values
into [0, scale] float values.

train, _ = chainer.datasets.get_cifarl0(withlabel=False, scale=255.)

Listing 4: train_dcgan.py

train_iter = chainer.iterators.Seriallterator(train, args.batchsize)

2.4 Prepare model and optimizer
Let’s make the instances of the generator and the discriminator.

Listing 5: train_dcgan.py

gen = Generator (n_hidden=args.n_hidden)
dis = Discriminator ()

gen.to_device (device) # Copy the model to the device
dis.to_device (device)

Setup an optimizer
def make_optimizer (model, alpha=0.0002, betal=0.5):
optimizer = chainer.optimizers.Adam(alpha=alpha, betal=betal)
optimizer.setup (model)
optimizer.add_hook (
chainer.optimizer_hooks.WeightDecay (0.0001), 'hook_dec")
return optimizer

opt_gen = make_optimizer (gen)
opt_dis = make_optimizer (dis)

Next, let’s make optimizers for the models created above.

86 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

Listing 6: train_dcgan.py

def make_optimizer (model, alpha=0.0002, betal=0.5):
optimizer = chainer.optimizers.Adam(alpha=alpha, betal=betal)
optimizer.setup (model)
optimizer.add_hook (
chainer.optimizer_hooks.WeightDecay (0.0001), 'hook_dec")
return optimizer

opt_gen = make_optimizer (gen)
opt_dis = make_optimizer (dis)

2.5 Prepare updater

GAN need the two models: the generator and the discriminator. Usually, the default updaters pre-defined in Chainer
take only one model. So, we need to define a custom updater for GAN training.

The definition of DCGANUpdater is a little complicated. However, it just minimizes the loss of the discriminator and
that of the generator alternately.

As you can see in the class definiton, DCGANUpdater inherits StandardUpdater. In this case, almost
all necessary functions are defined in StandardUpdater, we just override the functions of __init__ and
update_core.

Note: We do not need to define 1oss_dis and 1oss_gen because the functions are called only in update_core.
It aims at improving readability.

Listing 7: train_dcgan.py

class DCGANUpdater (chainer.training.updaters.StandardUpdater) :

def _ _init__ (self, =args, +**kwargs):
self.gen, self.dis = kwargs.pop('models’")
super (DCGANUpdater, self).__init__ (xargs, =xkwargs)

def loss_dis(self, dis, y_fake, y_real):
batchsize = len(y_fake)
Ll = F.sum(F.softplus(-y_real)) / batchsize
L2 = F.sum(F.softplus(y_fake)) / batchsize
loss = L1 + L2
chainer.report ({'loss': loss}, dis)
return loss

def loss_gen(self, gen, y_fake):
batchsize = len(y_fake)
loss = F.sum(F.softplus(-y_fake)) / batchsize
chainer.report ({'loss': loss}, gen)
return loss

def update_core(self):
gen_optimizer = self.get_optimizer ('gen')
dis_optimizer = self.get_optimizer ('dis"')

(continues on next page)

3.4. DCGAN: Generate images with Deep Convolutional GAN 87

Chainer Documentation, Release 6.1.0

(continued from previous page)

batch = self.get_iterator('main') .next ()
device = self.device
X_real = Variable(self.converter (batch, device)) / 255.

gen, dis = self.gen, self.dis
batchsize = len (batch)

y_real = dis(x_real)
z = Variable (device.xp.asarray (gen.make_hidden (batchsize)))
x_fake = gen(z)

y_fake = dis(x_fake)

dis_optimizer.update(self.loss_dis, dis, y_fake, y_real)
gen_optimizer.update(self.loss_gen, gen, y_fake)

In the intializer __init__, an addtional keyword argument models is required as you can see the code below.
Also, we use keyword arguments iterator, optimizer and device. It should be noted that the opt imizer
augment takes a dictionary. The two different models require two different optimizers. To specify the different opti-
mizers for the models, we give a dictionary, { 'gen': opt_gen, 'dis': opt_dis},tothe optimizer
argument. we should input optimizer as a dictionary { 'gen': opt_gen, 'dis': opt_dis}. Inthe
DCGANUpdater, you can access the iterator with self.get_iterator ('main'). Also, you can access the
optimizers with self.get_optimizer ('gen') and self.get_optimizer ('dis').

In update_core, the two loss functions loss_dis and loss_gen are minimized by the optimizers.
At first two lines, we access the optimizers. Then, we create next minibatch of training data by self.
get_iterator ('main') .next (), copy batch to the device by self.converter, and make it a
Variable object. After that, we minimize the loss functions with the optimizers.

Note: When defining update_core, we may want to manipulate the underlying array of a Variable with
numpy or cupy library. Note that the type of arrays on CPU is numpy.ndarray, while the type of arrays on
GPU is cupy . ndarray. However, users do not need to write i £ condition explicitly, because the appropriate array
module can be obtained by xp = chainer.backends.cuda.get_array_module (variable.array).
If variable is on GPU, cupy is assigned to xp, otherwise numpy is assigned to xp.

Listing 8: train_dcgan.py

updater = DCGANUpdater (
models=(gen, dis),
iterator=train_iter,
optimizer={
'gen': opt_gen, 'dis': opt_dis},
device=device)

2.6 Prepare trainer and run

Listing 9: train_dcgan.py

trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)

snapshot_interval = (args.snapshot_interval, 'iteration')

(continues on next page)

88 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

(continued from previous page)

display_interval = (args.display_interval, 'iteration')
trainer.extend(
extensions.snapshot (filename="'snapshot_iter {.updater.iteration}.npz'),
trigger=snapshot_interval)
trainer.extend (extensions.snapshot_object (
gen, 'gen_iter_ {.updater.iteration}.npz'), trigger=snapshot_interval)
trainer.extend (extensions.snapshot_object (
dis, 'dis_iter_ {.updater.iteration}.npz'), trigger=snapshot_interval)
trainer.extend (extensions.LogReport (trigger=display_interval))
trainer.extend (extensions.PrintReport ([
'epoch', 'iteration', 'gen/loss', 'dis/loss',
1), trigger=display_interval)
trainer.extend (extensions.ProgressBar (update_interval=10))
trainer.extend(
out_generated_image (
gen, dis,
10, 10, args.seed, args.out),
trigger=snapshot_interval)

Listing 10: train_dcgan.py

trainer.run ()

2.7 Start training

We can run the example as follows.

$ pwd
/root2chainer/chainer/examples/dcgan
$ python train_dcgan.py —--gpu 0

GPU: O

Minibatch-size: 50

n_hidden: 100

epoch: 1000

epoch iteration gen/loss dis/1oSS i] 0.01%
0 100 1.2292 1.76914

L =] 0.02%
this epoch [H##dFF#HHF . . o ottt e e e e e e] 19.00%

190 iter, 0 epoch / 1000 epochs
10.121 iters/sec. Estimated time to finish: 1 day, 3:26:26.372445.

The results will be saved in the directory /root2chainer/chainer/examples/dcgan/result/. The im-
age is generated by the generator trained for 1000 epochs, and the GIF image on the top of this page shows generated
images after every 10 epochs.

3.4. DCGAN: Generate images with Deep Convolutional GAN 89

Chainer Documentation, Release 6.1.0

3.4.4 3. Reference

e [1] NIPS 2016 Tutorial: Generative Adversarial Networks

* [2] Nash equilibrium

* [3] Jensen-Shannon Divergence

¢ [4] Generative Adversarial Networks

* [5] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

3.5 Recurrent Nets and their Computational Graph

In the example code of this tutorial, we assume for simplicity that the following symbols are already

imported.

import math
import numpy

as np

import chainer

from chainer
from chainer

from chainer.

from chainer
—Variable
from chainer

import backend

import backends

backends import cuda

import Function, FunctionNode, gradient_check, report, training, utils,

import datasets, initializers, iterators, optimizers, serializers

(continues on next page)

90

Chapter 3. Neural Net Examples

http://arxiv.org/abs/1701.00160
http://en.wikipedia.org/wiki/Nash_equilibrium
http://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.06434

Chainer Documentation, Release 6.1.0

(continued from previous page)

from chainer import Link, Chain, ChainList
import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

In this section, you will learn how to write
* recurrent nets with full backprop,
* recurrent nets with truncated backprop,
* evaluation of networks with few memory.
After reading this section, you will be able to:
* Handle input sequences of variable length
* Truncate upper stream of the network during forward computation

» Use no-backprop mode to prevent network construction

3.5.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an
input stream 1, 2o, . . ., Ty, . . . and the initial state hg, a recurrent net iteratively updates its state by hy = f(x¢, he—1),
and at some or every point in time ¢, it outputs y; = g(h;). If we expand the procedure along the time axis, it looks
like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence
of words, we want to predict the next word at each position without peeking the successive words. Suppose there
are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word
embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the chainer.
links.LSTM link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-
connected layer. On construction, you pass the input and output size to the constructor:

>>> 1 = L.LSTM(100, 50)

Then, call on this instance 1 (x) executes one step of LSTM layer:

>>> 1.reset_state()
>>> x = Variable (np.random.randn (10, 100).astype(np.float32))
>>> y = 1(x)

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds
its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the
internal state. Then, the next input can be directly fed to the LSTM instance:

>>> x2 Variable (np.random.randn (10, 100) .astype(np.float32))
>>> y2 = 1(x2)

Based on this LSTM link, let’s write our recurrent network as a new chain:

class RNN (Chain) :
def _ init_ (self):
super (RNN, self).__init__ ()

(continues on next page)

3.5. Recurrent Nets and their Computational Graph 91

Chainer Documentation, Release 6.1.0

(continued from previous page)

with self.init_scope():
self.embed = L.EmbedID (1000, 100) # word embedding
self.mid L.LSTM (100, 50) # the first LSTM layer
self.out = L.Linear (50, 1000) # the feed-forward output layer

def reset_state(self):
self.mid.reset_state ()

def forward(self, cur_word):
Given the current word ID, predict the next word.
x = self.embed (cur_word)
h = self.mid(x)
y = self.out (h)
return y

rnn = RNN ()

model = L.Classifier (rnn)
optimizer = optimizers.SGD ()
optimizer.setup (model)

Here EmbedID is alink for word embedding. It converts input integers into corresponding fixed-dimensional embed-
ding vectors. The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it
to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_ 11 st. Then, we can compute loss values for the word sequence by simple
for loop.

def compute_loss(x_list):
loss = 0
for cur_word, next_word in zip(x_list, x_list[1l:]):
loss += model (cur_word, next_word)
return loss

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its
backward () method to compute gradients of the total loss according to the model parameters:

Suppose we have a list of word variables x_list.
rnn.reset_state ()

model.cleargrads ()

loss = compute_loss(x_list)

loss.backward ()

optimizer.update ()

Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state ()
optimizer.update (compute_loss, x_list)

3.5.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence
is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This
technique is called truncated backprop. 1t is heuristic, and it makes the gradients biased. However, this technique
works well in practice if the time range is long enough.

92 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called back-
ward unchaining. It is implemented in the Variable.unchain_backward () method. Backward unchaining
starts from the Variable object, and it chops the computation history backwards from the variable. The chopped vari-
ables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are
no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsec-
tion. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We
can write truncated backprop using the model defined above:

loss = 0
count = 0
seqglen = len(x_list[1l:])

rnn.reset_state ()
for cur_word, next_word in zip(x_list, x_list[l:]):
loss += model (cur_word, next_word)
count += 1
if count % 30 == 0 or count == seqglen:
model.cleargrads ()
loss.backward ()
loss.unchain_backward ()

optimizer.update ()

State is updated at model (), and the losses are accumulated to 1oss variable. At each 30 steps, backprop takes
place at the accumulated loss. Then, the unchain_backward () method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance
holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize
this method to different situations. For example, we can easily extend the above code to use different schedules
between backprop timing and truncation length.

3.5.3 Network Evaluation without Storing the Computation History
On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables
us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation
history. This is enabled by just calling no_backprop_mode () context:

with chainer.no_backprop_mode () :
x_1list = [Variable(...) for _ in range(100)] # list of 100 words
loss = compute_loss (x_list)

Note that we cannot call 1oss.backward () to compute the gradient here, since the variable created in the no-
backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.

We can combine a fixed feature extractor network and a trainable predictor network using no_backprop_mode ().
For example, suppose we want to train a feed-forward network predictor_func, which is located on top of another
fixed pre-trained network fixed_ func. We want to train predictor_func without storing the computation
history for fixed_func. This is simply done by following code snippets (suppose x_data and y_data indicate
input data and label, respectively):

3.5. Recurrent Nets and their Computational Graph 93

Chainer Documentation, Release 6.1.0

with chainer.no_backprop_mode () :
x = Variable (x_data)
feat = fixed_func (x)
y = predictor_func (feat)
y.backward ()

At first, the input variable x is in no-backprop mode, so fixed_func does not memorize the computation history.
Then predictor_func is executed in backprop mode, i.e., with memorizing the history of computation. Since
the history of computation is only memorized between variables feat and y, the backward computation stops at the
feat variable.

3.5.4 Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use
Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set
of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word
sequence, in which each sentence is separated by a special word <eos>, which stands for “End of Sequence”. This
dataset is easily obtained by chainer.datasets.get_pthb_words (). This function returns train, validation,
and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different
locations to form mini-batches. It means we maintain B indices pointing to different locations in the sequence, read
from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the
end of the whole sequence, we turn the index back to 0.

In order to implement this training procedure, we have to customize the following components of Trainer:

e Iterator. Built-in iterators do not support reading from different locations and aggregating them into a mini-
batch.

» Update function. The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface
is not fixed. On the other hand, the iterator must support the Iterator interface. The important methods and
attributes to implement are batch_size, epoch, epoch_detail, is_new_epoch, iteration,___next__,
and serialize. Following is a code from the official example in the examples/ptb directory.

from _ future import division

class ParallelSequentiallIterator (chainer.dataset.Iterator):
def _ _init__ (self, dataset, batch_size, repeat=True):

self.dataset = dataset
self.batch_size = batch_size
self.epoch = 0
self.is_new_epoch = False
self.repeat = repeat
self.offsets = [1i » len(dataset) // batch_size for i in range (batch_size)]
self.iteration = 0

def _ next_ (self):
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:
raise StopIteration
cur_words = self.get_words()
self.iteration += 1

(continues on next page)

94 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/v6.1.0/examples/ptb

Chainer Documentation, Release 6.1.0

(continued from previous page)

next_words = self.get_words ()

epoch = self.iteration » self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list (zip (cur_words, next_words))

@property
def epoch_detail (self):
return self.iteration * self.batch_size / len(self.dataset)

def get_words (self):
return [self.dataset [(offset + self.iteration) % len(self.dataset)]
for offset in self.offsets]

def serialize(self, serializer):
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer ('epoch', self.epoch)

train_iter = ParallelSequentiallterator (train, 20)
val_iter = ParallelSequentiallterator(val, 1, repeat=False)

Although the code is slightly long, the idea is simple. First, this iterator creates of fsets pointing to positions
equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset.
The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of
integer arrays by the concat_examples function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.

class BPTTUpdater (training.updaters.StandardUpdater) :

def _ _init__ (self, train_iter, optimizer, bprop_len):
super (BPTTUpdater, self)._ _init__ (train_iter, optimizer)
self.bprop_len = bprop_len

The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0

When we pass one iterator and optimizer to StandardUpdater.__init__,
they are automatically named 'main'.

train_iter = self.get_iterator('main')

optimizer = self.get_optimizer ('main')

Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

Get the next batch (a list of tuples of two word IDs)

batch = train_iter._ next_ ()

Concatenate the word IDs to matrices and send them to the device
self.converter does this job

(it is chainer.dataset.concat_examples by default)

x, t = self.converter (batch)

Compute the loss at this time step and accumulate it
loss += optimizer.target (chainer.Variable(x), chainer.Variable(t))

(continues on next page)

3.5. Recurrent Nets and their Computational Graph 95

Chainer Documentation, Release 6.1.0

(continued from previous page)

optimizer.target.cleargrads () # Clear the parameter gradients
loss.backward () # Backprop

loss.unchain_backward/() # Truncate the graph

optimizer.update () # Update the parameters

updater = BPTTUpdater (train_iter, optimizer, bprop_len) # instantiation

In this case, we update the parameters on every bprop_len consecutive words. The call of unchain_backward
cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost
same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to man-
age the history of computation (a.k.a. computational graph). The example in the examples/ptb directory implements
truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will
review how to use GPU(s) in Chainer.

3.6 RNN Language Models

3.6.1 0. Introduction

The language model is modeling the probability of generating natural language sentences or documents. You can
use the language model to estimate how natural a sentence or a document is. Also, with the language model, you can
generate new sentences or documents.

Let’s start with modeling the probability of generating sentences. We represent a sentence as X = (xg, X1, ..., X7), in
which x; is a one-hot vector. Generally, X is the one-hot vector of BOS (beginning of sentence), and xr is that of
EOS (end of sentence).

A language model models the probability of a word occurrence under the condition of its previous words in a sentence.
Let X; ;1 be (x4, Xi41, .-, X;), the occurrence probability of sentence X can be represented as follows:

P(X) = P(xo) HP(Xt\X[o,tq])
=1

So, the language model P(X) can be decomposed into word probabilities conditioned with its previous words. In this
tutorial, we model P(x;|X{o 1)) With a recurrent neural network to obtain a language model P(X).

3.6.2 1. Basic Idea of Recurrent Neural Net Language Model

1.1 Recurrent Neural Net Language Model

Recurrent Neural Net Language Model (RNNLM) is a type of neural net language models which contains the RNNs
in the network. Since an RNN can deal with the variable length inputs, it is suitable for modeling the sequential data
such as sentences in natural language.

We show one layer of an RNNLM with these parameters.

96 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/v6.1.0/examples/ptb

Chainer Documentation, Release 6.1.0

Symbol | Definition
X the one-hot vector of ¢-th word
Vi the ¢-th output
hg’) the ¢-th hidden layer of i-th layer
Pt the next word’s probability of ¢-th word
E Embedding matrix
W, Hidden layer matrix
W, Output layer matrix
he
Xt Pt
he
B £]]
W Wo

softmax_

I
LITTIITTTTI
I

The process to get a next word prediction from i-th input word x;

1. Get the embedding vector: hEO) =Ex;

(0)

2. Calculate the hidden layer: hgl) = tanh (Wh l :ll(tl)])
t—1

3. Calculate the output layer: y; = Wohgl)

4. Transform to probability: p; = softmax(y;)

Note:
* Note that tanh in the above equation is applied to the input vector in element-wise manner.

a

¢ Note that [b

] denotes a concatenated vector of a and b.

¢ Note that softmax in the above equation converts an arbitrary real vector to a probability vector which the
summation over all elements is 1.

3.6. RNN Language Models 97

Chainer Documentation, Release 6.1.0

1.2 Perplexity (Evaluation of the language model)

Perplexity is the common evaluation metric for a language model. Generally, it measures how well the proposed

probability model Py,oq01(X) represents the target data P*(X). Let a validation dataset be D = {X (™)} ‘nD:‘l, which is
a set of sentences, where the n-th sentence length is 70, and the vocabulary size of this dataset is |V, the perplexity
is represented as follows:

|D| T
1 n n
b* st. z= _M Z Z logb Pmodcl(xg)7 Xfa,)tfl])

n=1 t=1

We usually use b = 2 or b = e. The perplexity shows how much varied the predicted distribution for the next word is.
When a language model represents the dataset well, it should show a high probability only for the correct next word,
so that the entropy should be high. In the above equation, the sign is reversed, so that smaller perplexity means better
model.

During training, we minimize the below cross entropy:
H(pa Pmodel) = _P(X) lOg Pmodel(X>

where P is the empirical distribution of a sequence in the training dataset.

3.6.3 2. Implementation of Recurrent Neural Net Language Model

There is an example of RNN language model in the official repository, so we will explain how to implement a
RNNLM in Chainer based on that: examples/ptb

2.1 Model Overview

|| || | Wo —|—

dropout dropout dropout

1 2
ht—l ht—l

The RNNLM used in this notebook is depicted in the above figure. The symbols appeared in the figure are defined as
follows:

98 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/v6.1.0/examples/ptb

Chainer Documentation, Release 6.1.0

Symbol | Definition

Xy the one-hot vector of ¢-th word

Yt the ¢-th output

NG the ¢-th hidden layer of i-th layer

Pt the next word’s probability of ¢-th word
E Embedding matrix

W, Hidden layer matrix

W, Output layer matrix

LSTMs (long short-term memory) are used for the connection of hidden layers. A LSTM is one of major recurrent
neural net modules. It is designed for remembering the long-term memory, so that it should be able to consider
relationships of distant words, such that a word at beginning of sentence and it at the end. We also use Dropout
before both LSTMs and linear transformations. Dropout is one of regularization techniques for preventing overfitting

on training dataset.
2.2 Step-by-step Implementation
2.2.1 Import Package

First, let’s import necessary packages.

Listing 11: train_ptb.py

nun

from __ future_ import division
import argparse
import sys

import numpy as np

2.2.2 Define Training Settings

Define all training settings here.

Listing 12: train_ptb.py

parser.add_argument ('--batchsize', '-b', type=int, default=20,
help='Number of examples in each mini-batch')
parser.add_argument ('--bproplen', '-1', type=int, default=35,

help='Number of words in each mini-batch '
'(= length of truncated BPTT) ')

parser.add_argument ('--epoch', '-e', type=int, default=39,

help='Number of sweeps over the dataset to train')
parser.add_argument ('-—device', '-d', type=str, default='-1",

help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer,
'CuPy arrays with specified device id are used. If
'negative integer, NumPy arrays are used')

parser.add_argument ('-—-gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip"')
parser.add_argument ('--out', '-o', default='result',

(continues on next page)

3.6. RNN Language Models

99

Chainer Documentation, Release 6.1.0

(continued from previous page)

help='Directory to output the result')
parser.add_argument ('—-—-resume', '-r', type=str,

help='Resume the training from snapshot')
parser.add_argument ('--test', action='store_ true',

help='Use tiny datasets for quick tests')
parser.set_defaults (test=False)

parser.add_argument ('--unit', '-u', type=int, default=650,
help='Number of LSTM units in each layer')
parser.add_argument ('-—-model', '-m', default='model.npz',

help='Model file name to serialize')

2.2.3 Define Network Structure

An RNNLM written in Chainer is shown below. It implements the model depicted in the above figure.

Listing 13: train_ptb.py

class RNNForLM (chainer.Chain) :

def _ init_ (self, n_vocab, n_units):
super (RNNForLM, self)._ _init__ ()
with self.init_scope():
self.embed = L.EmbedID(n_vocab, n_units)
self.l1l = L.LSTM(n_units, n_units)
self.12 = L.LSTM(n_units, n_units)
self.13 = L.Linear (n_units, n_vocab)

for param in self.params() :
param.array[...] = np.random.uniform(-0.1, 0.1, param.shape)

def reset_state(self):
self.ll.reset_state()
self.l2.reset_state()

def forward(self, x):
h0 = self.embed(x)
hl self.1l1(F.dropout (h0))
h2 self.12 (F.dropout (hl))
y = self.13(F.dropout (h2))
return y

* When we instantiate this class for making a model, we give the vocabulary size to n_vocab and the size of
hidden vectors to n_units.

¢ This network uses chainer.links.LSTM, chainer.links.Linear, and chainer.functions.
dropout as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

* You can access all the parameters in those layers by calling self.params ().
* In the constructor, it initializes all parameters with values sampled from a uniform distribution U (-1, 1).

* The forward method takes an word ID x, and calculates the word probability vector for the next word by
forwarding it through the network, and returns the output.

* Note that the word ID x is automatically converted to a |V|-dimensional one-hot vector and then multiplied with
the input embedding matrix in self.embed (x) to obtain an embed vector h0 at the first line of forward.

100 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

2.2.4 Load the Penn Tree Bank Long Word Sequence Dataset

In this notebook, we use Penn Tree Bank dataset that contains number of sentences. Chainer provides an utility func-
tion to obtain this dataset from server and convert it to a long single sequence of word IDs. chainer.datasets.
get_ptb_words () actually returns three separated datasets which are for train, validation, and test.

Let’s download and make dataset objects using it:

Listing 14: train_ptb.py

Load the Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()

2.2.5 Define lterator for Making a Mini-batch from the Dataset

Dataset iterator creates a mini-batch of couple of words at different positions, namely, pairs of current word and its next
word. Each example is a part of sentences starting from different offsets equally spaced within the whole sequence.

Listing 15: train_ptb.py

class ParallelSequentiallIterator (chainer.dataset.Iterator):

def _ _init__ (self, dataset, batch_size, repeat=True):
super (ParallelSequentiallterator, self).__init__ ()
self.dataset = dataset
self.batch_size = batch_size # batch size
self.repeat = repeat
length = len(dataset)
Offsets maintain the position of each sequence in the mini-batch.
self.offsets = [i * length // batch_size for i in range (batch_size)]
self.reset ()

def reset (self):
Number of completed sweeps over the dataset. In this case, it is
incremented if every word is visited at least once after the last
increment.
self.epoch = 0
True if the epoch is incremented at the last iteration.
self.is_new_epoch = False
NOTE: this is not a count of parameter updates. It is just a count of
calls of ' '__next_ "
self.iteration = 0
use -1 instead of None internally
self._previous_epoch_detail -1.

def _ next_ (self):
This iterator returns a list representing a mini-batch. Each item
indicates a different position in the original sequence. Each item 1is
represented by a pair of two word IDs. The first word 1is at the
"current" position, while the second word at the next position.
At each iteration, the iteration count is incremented, which pushes
forward the "current" position.

length = len(self.dataset)

if not self.repeat and self.iteration * self.batch_size >= length:

If not self.repeat, this iterator stops at the end of the first

(continues on next page)

3.6. RNN Language Models 101

Chainer Documentation, Release 6.1.0

(continued from previous page)

epoch (i.e., when all words are visited once).
raise StopIteration
cur_words = self.get_words()
self._previous_epoch_detail = self.epoch_detail
self.iteration += 1
next_words = self.get_words ()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list (zip (cur_words, next_words))

@property
def epoch_detail (self):
Floating point version of epoch.
return self.iteration x self.batch_size / len(self.dataset)

@property
def previous_epoch_detail (self):
if self._previous_epoch_detail < 0:
return None
return self._previous_epoch_detail

def get_words (self):
It returns a list of current words.
return [self.dataset[(offset + self.iteration) % len(self.dataset)]
for offset in self.offsets]

def serialize(self, serializer):
It is important to serialize the state to be recovered on resume.
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer ('epoch', self.epoch)
try:
self._previous_epoch_detail = serializer(
'previous_epoch_detail', self._previous_epoch_detail)
except KeyError:
guess previous_epoch _detail for older version
self._previous_epoch_detail = self.epoch + \
(self.current_position - self.batch_size) / len(self.dataset)
if self.epoch_detail > O:
self._previous_epoch_detail = max(
self._previous_epoch_detail, 0.)
else:
self._previous_epoch_detail = -1.

2.2.6 Define Updater

We use Backpropagation through time (BPTT) for optimize the RNNLM. BPTT can be implemented by overrid-
ing update_core () method of StandardUpdater. First, in the constructor of the BPTTUpdater, it takes
bprop_len as an argument in addition to other arguments StandardUpdater needs. bprop_len defines the

102 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

length of sequence T to calculate the loss:

T V|
L=- Z Z P(Xgﬂ) log Podel (Xgi)l | XE"))
t=0 n=1

where P(x?) is a probability for n-th word in the vocabulary at the position ¢ in the training data sequence.

Listing 16: train_ptb.py

class BPTTUpdater (training.updaters.StandardUpdater) :

def _ _init__ (self, train_iter, optimizer, bprop_len, device):
super (BPTTUpdater, self)._ _init__ (
train_iter, optimizer, device=device)
self.bprop_len = bprop_len

The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0

When we pass one iterator and optimizer to StandardUpdater.__init__,
they are automatically named 'main'.

train_iter = self.get_iterator('main')

optimizer = self.get_optimizer('main')

Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

Get the next batch (a list of tuples of two word IDs)

batch = train_iter._ next_ ()

Concatenate the word IDs to matrices and send them to the device
self.converter does this job

(it is chainer.dataset.concat_examples by default)

x, t = self.converter (batch, self.device)

Compute the loss at this time step and accumulate it
loss += optimizer.target (x, t)

optimizer.target.cleargrads () # Clear the parameter gradients
loss.backward() # Backprop

loss.unchain_backward/() # Truncate the graph
optimizer.update() # Update the parameters

2.2.7 Define Evaluation Function (Perplexity)

Define a function to calculate the perplexity from the loss value. If we take e as b in the above definition of perplexity,
calculating the perplexity is just to give the loss value to the power of e:

Listing 17: train_ptb.py

def compute_perplexity (result):

result['perplexity'] = np.exp(result['main/loss'])
if 'validation/main/loss' in result:
result['val_perplexity'] = np.exp(result['validation/main/loss'])

3.6. RNN Language Models 103

Chainer Documentation, Release 6.1.0

2.2.8 Create Iterator

Here, the code below just creates iterator objects from dataset splits (train/val/test).

Listing 18: train_ptb.py

train_iter = ParallelSequentiallterator(train, args.batchsize)
val_iter = ParallelSequentiallterator(val, 1, repeat=False)
test_iter = ParallelSequentiallterator(test, 1, repeat=False)

2.2.9 Create RNN and Classification Model

Instantiate RNNLM model and wrap it with chainer. links.Classifier because it calculates softmax cross
entropy as the loss.

Listing 19: train_ptb.py

rnn = RNNForLM (n_vocab, args.unit)
model = L.Classifier (rnn)
model.compute_accuracy = False # we only want the perplexity

Note that C1assifier computes not only the loss but also accuracy based on a given input/label pair. To learn the
RNN language model, we only need the loss (cross entropy) in the C1assifier because we calculate the perplexity
instead of classification accuracy to check the performance of the model. So, we turn off computing the accuracy by
giving False to model . compute_accuracy attribute.

2.2.10 Setup Optimizer

Prepare an optimizer. Here, we use GradientClipping to prevent gradient explosion. It automatically clips the
gradient to be used to update the parameters in the model with given constant gradclip.

Listing 20: train_ptb.py

optimizer = chainer.optimizers.S3SGD (lr=1.0)
optimizer.setup (model)
optimizer.add_hook (chainer.optimizer_hooks.GradientClipping (args.gradclip))

2.2.11 Setup and Run Trainer

Let’s make a trainer object and start the training! Note that we add an eval_hook to the Evaluator extension
to reset the internal states before starting evaluation process. It can prevent to use training data during evaluating the
model.

Listing 21: train_ptb.py

updater = BPTTUpdater (train_iter, optimizer, args.bproplen, device)
trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)

eval_model = model.copy() # Model with shared params and distinct states

(continues on next page)

104 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

(continued from previous page)

eval_rnn = eval_model.predictor

trainer.extend (extensions.Evaluator (
val_iter, eval_model, device=device,
Reset the RNN state at the beginning of each evaluation
eval_hook=lambda _: eval_rnn.reset_state()))

interval = 10 if args.test else 500
trainer.extend (extensions.LogReport (postprocess=compute_perplexity,
trigger=(interval, 'iteration')))
trainer.extend (extensions.PrintReport (
["epoch', 'iteration', 'perplexity', 'val_perplexity']
), trigger=(interval, 'iteration'))
trainer.extend (extensions.ProgressBar (
update_interval=1 if args.test else 10))
trainer.extend (extensions.snapshot ())
trainer.extend (extensions.snapshot_object (
model, 'model_iter_ {.updater.iteration}'))
if args.resume is not None:
chainer.serializers.load_npz(args.resume, trainer)

trainer.run ()

2.2.12 Evaluate the trained model on test dataset

Let’s see the perplexity on the test split. Trainer’s extension can be used as just a normal function outside of
Trainer.

Listing 22: train_ptb.py

print ('test')

eval_rnn.reset_state ()

evaluator = extensions.Evaluator (test_iter, eval_model, device=device)
result = evaluator ()

print ('test perplexity: {}'.format (np.exp(float (result['main/loss']))))

2.3 Run Example

2.3.1 Training the model

You can train the model with the script: examples/ptb/train_ptb.py

$ pwd

/root2chainer/chainer/examples/ptb

$ python train_ptb.py --test # run by test mode. If you want to use all data, remove
—"——test".

Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
—train.txt...

Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
—valid.txt...

Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
—test.txt...

(continues on next page)

3.6. RNN Language Models 105

https://github.com/chainer/chainer/blob/v6.1.0/examples/ptb/train_ptb.py

Chainer Documentation, Release 6.1.0

(continued from previous page)

#vocab = 10000
test
test perplexity: 29889.9857364

2.3.2 Generating sentences

You can generate the sentence which starts with a word in the vocabulary. In this example, we generate a sen-
tence which starts with the word apple. We use the script in the PTB example of the official repository: exam-
ples/ptb/gentxt.py

$ pwd

/root2chainer/chainer/examples/ptb

$ python gentxt.py -m model.npz -p apple

apple a new u.s. economist with <unk> <unk> fixed more than to N the company said who_,
—~1is looking back to

3.7 Word2Vec: Obtain word embeddings

3.7.1 0. Introduction

Word2vec is the tool for generating the distributed representation of words, which is proposed by Mikolov et al[1].
When the tool assigns a real-valued vector to each word, the closer the meanings of the words, the greater similarity
the vectors will indicate.

Distributed representation means assigning a real-valued vector for each word and representing the word by the
vector. When representing a word by distributed representation, we call the word embeddings. In this tutorial, we
aim at explaining how to get the word embeddings from Penn Tree Bank dataset.

Let’s think about what the meaning of word is. Since we are human, we can understand that the words “animal” and
“dog” are deeply related each other. But what information will Word2vec use to learn the vectors for words? The
words “animal” and “dog” should have similar vectors, but the words “food” and “dog” should be far from each other.
How to know the features of those words automatically?

3.7.2 1. Basic Idea

Word2vec learns the similarity of word meanings from simple information. It learns the representation of words from
sentences. The core idea is based on the assumption that the meaning of a word is affected by the words around it.
This idea follows distributional hypothesis[2].

The word we focus on to learn its representation is called center word, and the words around it are called context
words. The window size C' determines the number of context words which is considered.

Here, let’s see the algorithm by using an example sentence: “The cute cat jumps over the lazy dog.”.
* All of the following figures consider “cat” as the center word.

¢ According to the window size C, you can see that the number of context words is changed.

106 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/blob/v6.1.0/examples/ptb/gentxt.py
https://github.com/chainer/chainer/blob/v6.1.0/examples/ptb/gentxt.py

Chainer Documentation, Release 6.1.0

" : Center Word
: Context Word

c=0 The cute cat jumps over the lazy dog.
c=1 The cute cat jumps over the lazy dog.

c=2 | The cute cat jumps over the lazy dog.

3.7.3 2. Main Algorithm

Word2vec, the tool for creating the word embeddings, is actually built with two models, which are called Skip-gram
and CBoW.

To explain the models with the figures below, we will use the following symbols.

Symbol | Definition

[V] The size of vocabulary

D The size of embedding vector

Vi A one-hot center word vector

Vitco A set of 2C' context vectors around v, namely, {vt+c}§:70\vt
1y An embedding vector of an input word vector

lo An output vector of the network

Wy The embedding matrix for inputs

Wo The embedding matrix for outputs

Note: Using negative sampling or hierarchical softmax for the loss function is very common, however, in this
tutorial, we will use the softmax over all words and skip the other variants for the sake of simplicity.

2.1 Skip-gram
This model learns to predict context words V1~ when a center word v; is given. In the model, each row of the
embedding matrix for input W iy becomes a word embedding of each word.
When you input a center word v; into the network, you can predict one of context words V1. € V;_¢ as follows:
1. Calculate an embedding vector of the input center word vector: 17 = W v,
2. Calculate an output vector of the embedding vector: 1o = Woply
3. Calculate a probability vector of a context word: V. = softmax(lp)

Each element of the |)|-dimensional vector V. is a probability that a word in the vocabulary turns out to be a context
word at position c. So, the probability p(v¢.|v;) can be estimated by a dot product of the one-hot vector v;,. which
represents the actual word at the position ¢ and the output vector V.

P(Verelve) = Vi Vire

3.7. Word2Vec: Obtain word embeddings 107

Chainer Documentation, Release 6.1.0

The loss function to predict all the context words V; ¢ given a center word v, is defined as follows:

L(Visc|vi; Wi, Wo) = Z —log (p(Vete | Vi)

Vitce

= —log(v{iViye)

Vite

2.2 Continuous Bag of Words (CBoW)
This model learns to predict center word v; when context words V1 ¢ is given. When you give a set of context words
Vi1 to the network, you can estimate the probability of the center word v; as follows:

1. Calculate a mean embedding vector over all context words: 1 = % th o Wgyviie

2. Calculate an output vector of the embedding vector: 1o = Wply

3. Calculate a probability vector of a center word: ¥, = softmax(lp)

Each element of the |V|-dimensional vector v, is a probability that a word in the vocabulary turns out to be a center
word. So, the probability p(v:|V;c) can be estimated by a dot product of the one-hot vector v; which represents the
actual center word and the output vector V.

T ~
P(Vt‘th:C) =V V¢
The loss function to predict the center word v; given context words V; ¢ is defined as follows:

L(v|Vitc; Wr, Wo) = —log (p(v¢ | Vizc))

= —log(v{ V1)

3.7.4 3. Details of Skip-gram

In this tutorial, we mainly explain Skip-gram model because
1. It is easier to understand the algorithm than CBoW.
2. Even if the number of words increases, the accuracy is largely maintained. So, it is more scalable.
So, let’s think about a concrete example of calculating Skip-gram under this setup:
* The size of vocabulary |V| is 10.
* The size of embedding vector D is 2.
¢ Center word is “dog”.
* Context word is “animal”.
Since there should be more than one context word, repeat the following process for each context word.
1. The one-hot vector of “dog”is [0 0 1 0 0 0 0 0 O 0] and you input it as the center word.
2. The third row of embedding matrix W g is used for the word embedding of “dog” 1.
3. Then, multiply W with 1y to obtain the output vector 1p.
4

. Give 1o to the softmax function to make it a predicted probability vector v, . for a context word at the position
c.

e

Calculate the error between vy . and the one-hot vector of “animal”; [1 0 0 0 0 0 0 0 0 0 0].

6. Propagate the error back to the network to update the parameters.

108 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

dog lo Vt-|-c animal
0 ‘NZT' 35 0.78 1
H)

0 e Wo -0.4| l0.02

1 [0.4,-0.1] -1.1 0.01 0
[-0.6, 0.4] l

0 [-05, 0.5] H 0.2 0.02 0

0 £05, 011 .06 04| softmax g3 loss 0

0 [06,-0.3] 0.4 -0.4 0.02 0

0 05, 081 -0.1 0.03 0
[0.3,-0.5]

0 [0.1,-0.6] 0.1 0.02 0

0 0.7 0.05 0

0 -0.2 0.02 0

3.7.5 4. Implementation of Skip-gram in Chainer

There is an example of Word2vec in the official repository of Chainer, so we will explain how to implement Skip-gram
based on this: examples/word2vec

4.1 Preparation
First, let’s import necessary packages:

Listing 23: train_word2vec.py

import argparse
import collections
import os

import six

import warnings

import numpy as np

import chainer

from chainer.backends import cuda
import chainer.functions as F
import chainer.initializers as I
import chainer.links as L

import chainer.optimizers as O
from chainer import reporter

4.2 Define a Skip-gram model

Next, let’s define a network for Skip-gram.

3.7. Word2Vec: Obtain word embeddings 109

https://github.com/chainer/chainer/tree/v6.1.0/examples/word2vec

Chainer Documentation, Release 6.1.0

Listing 24: train_word2vec.py

class SkipGram(chainer.Chain):
"""Definition of Skip-gram Model"""

def _ init_ (self, n_vocab, n_units, loss_func):
super (SkipGram, self).__init__ ()

with self.init_scope():
self.embed = L.EmbedID (
n_vocab, n_units, initialW=I.Uniform(l. / n_units))
self.loss_func = loss_func

def forward(self, x, contexts):

e = self.embed(contexts)
batch_size, n_context, n_units = e.shape
x = F.broadcast_to(x[:, None], (batch_size, n_context))

e = F.reshape (e, (batch_size x n_context, n_units))
x = F.reshape (x, (batch_size * n_context,))

loss = self.loss_func(e, x)

reporter.report ({'loss': loss}, self)

return loss

Listing 25: train_word2vec.py

class SoftmaxCrossEntropyLoss (chainer.Chain):
"""Softmax cross entropy loss function preceded by linear transformation.

mmn

def _ init_ (self, n_in, n_out):
super (SoftmaxCrossEntropyLoss, self).__init__ ()
with self.init_scope():
self.out = L.Linear(n_in, n_out, initialW=0)

def forward(self, x, t):
return F.softmax_cross_entropy (self.out(x), t)

Note:
* The weight matrix self.embed.W is the embedding matrix for input vector x.

¢ The function call forward takes the word ID of a center word x and word IDs of context words contexts as
inputs, and outputs the error calculated by the loss function 1oss_funcs.t. SoftmaxCrossEntropyLoss.

* Note that the initial shape of x and contexts are (batch_size,) and (batch_size, n_context),
respectively.

¢ The batch_size means the size of mini-batch, and n_ context means the number of context words.

First, we obtain the embedding vectors of contexts by e = self.embed(contexts). Then F.
broadcast_to(x[:, None], (batch_size, n_context)) performs broadcasting of x (its shape is
(batch_size,)) to (batch_size, n_context) by copying the same value n_context time to fill the
second axis, and then the broadcasted x is reshaped into 1-D vector (batchsize x n_context,) while eisre-
shaped to (batch_size » n_context, n_units). In Skip-gram model, predicting a context word from the
center word is the same as predicting the center word from a context word because the center word is always a context

110 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

word when considering the context word as a center word. So, we create batch_size x n_context center word
predictions by applying self . out linear layer to the embedding vectors of context words. Then, calculate softmax
cross entropy between the broadcasted center word ID x and the predictions.

4.3 Prepare dataset and iterator

Let’s retrieve the Penn Tree Bank (PTB) dataset by using Chainer’s dataset utility get_ptb_words () method.

train, val, _ = chainer.datasets.get_ptb_words()
counts collections.Counter (train)

Then define an iterator to make mini-batches that contain a set of center words with their context words. train and
val means training data and validation data. Each data contains the list of Document IDs:

>>> train

array ([O, 1, 2, «.., 39, 26, 241, dtype=int32)
>>> val
array ([2211, 396, 1129, ..., 108, 27, 241, dtype=int32)

Listing 26: train_word2vec.py

class WindowIterator (chainer.dataset.Iterator):
"""Dataset iterator to create a batch of sequences at different positions.

This iterator returns a pair of the current words and the context words.

mmn

def _ _init__ (self, dataset, window, batch_size, repeat=True):
self.dataset = np.array(dataset, np.int32)
self.window = window # size of context window
self.batch_size = batch_size
self._repeat = repeat
order is the array which is shuffled "' [window, window + 1, ...,
len(dataset) - window — 1] °
self.order = np.random.permutation (

len(dataset) - window x 2) .astype(np.int32)
self.order += window
self.current_position = 0

Number of completed sweeps over the dataset. In this case, it 1is
incremented if every word 1s visited at least once after the last
increment.

self.epoch = 0

True 1f the epoch is incremented at the last iteration.
self.is_new_epoch = False

def _ next_ (self):
"""This iterator returns a list representing a mini-batch.

Each item indicates a different position in the original sequence.
mmn
if not self._repeat and self.epoch > 0:

raise StopIteration

i = self.current_position
i_end = i + self.batch_size
position = self.order[i:i_end]

(continues on next page)

3.7. Word2Vec: Obtain word embeddings 111

Chainer Documentation, Release 6.1.0

(continued from previous page)

w = np.random.randint (self.window - 1) + 1

offset = np.concatenate([np.arange(-w, 0), np.arange(l, w + 1)1])
pos = position[:, None] + offset[None, :]

contexts = self.dataset.take (pos)

center = self.dataset.take (position)

if i_end >= len(self.order):
np.random.shuffle(self.order)
self.epoch += 1
self.is_new_epoch = True

self.current_position = 0
else:

self.is_new_epoch = False

self.current_position = i_end

return center, contexts
@property
def epoch_detail (self):

return self.epoch + float (self.current_position) / len(self.order)

def serialize(self, serializer):

self.current_position = serializer ('current_position',
self.current_position)

self.epoch = serializer ('epoch', self.epoch)

self.is_new_epoch = serializer('is_new_epoch', self.is_new_epoch)

if self.order is not None:
serializer ('order', self.order)

* In the constructor, we create an array self.order which denotes shuffled indices of [window, window
+ 1, ..., len(dataset) - window - 1] in order to choose a center word randomly from dataset
in a mini-batch.

¢ The iterator definition ___next__ returns batch_size sets of center word and context words.

e The code self.order[i:1i_end] returns the indices for a set of center words from the random-ordered
array self.order. The center word IDs center at the random indices are retrieved by self.dataset.
take.

* np.concatenate ([np.arange (-w, 0), np.arange(l, w + 1)]) creates a set of offsets to re-
trieve context words from the dataset.

e Thecode position[:, None] + offset[None, :] generates the indices of context words for each
center word index in position. The context word IDs context are retrieved by self.dataset .take.

4.4 Prepare model, optimizer, and updater

Listing 27: train_word2vec.py

model = SkipGram(n_vocab, args.unit, loss_func)

Listing 28: train_word2vec.py

optimizer = O.Adam()
optimizer.setup (model)

112 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

Listing 29: train_word2vec.py

train_iter = WindowIterator (train, args.window, args.batchsize)
val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)

Set up an updater
updater = training.updaters.StandardUpdater (
train_iter, optimizer, converter=convert, device=device)

Listing 30: train_word2vec.py

trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)

trainer.extend (extensions.Evaluator (

val_iter, model, converter=convert, device=device))
trainer.extend (extensions.LogReport ())
trainer.extend (extensions.PrintReport (

['epoch', 'main/loss', 'validation/main/loss']))
trainer.extend (extensions.ProgressBar())

trainer.extend(
extensions.snapshot (filename="snapshot_epoch_{.updater.epoch}'),
trigger=(args.snapshot_interval, 'epoch'))

if args.resume is not None:
chainer.serializers.load_npz(args.resume, trainer)
trainer.run ()

4.5 Start training

$ pwd

/root2chainer/chainer/examples/word2vec

$ python train_word2vec.py —-test # run by test mode. If you want to use all data,
—remove "—--test".

GPU: -1
unit: 100
Window: 5

Minibatch-size: 1000

epoch: 20

Training model: skipgram
Output type: hsm

n_vocab: 10000
data length: 100

epoch main/loss validation/main/loss
1 4233.75 2495.33

2 1411.14 4990.66

3 4233.11 1247.66

4 2821.66 4990.65

5 4231.94 1247.66

6 5642.04 2495.3

7 5640.82 4990.64

8 5639.31 2495.28

(continues on next page)

3.7. Word2Vec: Obtain word embeddings 113

Chainer Documentation, Release 6.1.0

(continued from previous page)

9 2817.89 4990.62
10 1408.03 3742.94
11 5633.11 1247.62
12 4221.71 2495.21
13 4219.3 4990.56
14 4216.57 2495.16
15 4213.52 2495.12
16 5616.03 1247.55
17 5611.34 3742.78
18 2800.31 3742.74
19 1397.79 2494.95
20 2794.1 3742.66

4.5 Search the similar words

$ pwd
/root2chainer/chainer/examples/word2vec
$ python search.py

>> apple

query: apple

compaq: 0.6169619560241699
chip: 0.49579331278800964
retailer: 0.4904134273529053
maker: 0.4684058427810669
computer: 0.4652436673641205

>> animal

query: animal

beauty: 0.5680124759674072
human: 0.5404794216156006
insulin: 0.5365156531333923
cell: 0.5186758041381836
photographs: 0.5077002048492432

3.7.6 5. Reference

 [1] Mikolov, Tomas; et al. “Efficient Estimation of Word Representations in Vector Space”. arXiv:1301.3781

* [2] Distributional Hypothesis

3.8 Write a Sequence to Sequence (seq2seq) Model

3.8.1 0. Introduction

The sequence to sequence (seq2seq) model[1][2] is a learning model that converts an input sequence into an output
sequence. In this context, the sequence is a list of symbols, corresponding to the words in a sentence. The seq2seq
model has achieved great success in fields such as machine translation, dialogue systems, question answering, and text
summarization. All of these tasks can be regarded as the task to learn a model that converts an input sequence into an
output sequence.

114 Chapter 3. Neural Net Examples

https://arxiv.org/abs/1301.3781
https://aclweb.org/aclwiki/Distributional_Hypothesis

Chainer Documentation, Release 6.1.0

3.8.2 1. Basic Idea of Seq2seq Model

1.1 Overview of Seq2seq Model

The Notations of Sequence

The seq2seq model converts an input sequence into an output sequence. Let the input sequence and the output sequence
be X and Y. The ¢-th element of the input sequence is represented as x;, and the j-th element of the output sequence
is also represented as y;. Generally, each of the x; and the y; is the one-hot vector of the symbols. For example, in
natural language processing(NLP), the one-hot vector represents the word and its size becomes the vocabulary size.

Let’s think about the seq2seq model in the context of NLP. Let the vocabulary of the inputs and the outputs be V(*) and
V(®)_ all the elements x; and y; satisfy x; € RVl and yi € RV, The input sequence X and the output sequence
Y are represented as the following equations:

X = (%1, .., X1) = (%)
Y = (Y17«~7YJ) = (yJ)jzl

I and J are the length of the input sequence and the output sequence. Using the typical NLP notation, y is the one-hot
vector of BOS, which is the virtual word representing the beginning of the sentence, and y ;4 is that of EOS, which
is the virtual word representing the end of the sentence.

The Notations of Conditional Probability P(Y|X)

Next, let’s think about the conditional probability P(Y|X) generating the output sequence Y when the input sequence
X is given. The purpose of seq2seq model is modeling the probability P(Y |X). However, the seq2seq model does not
model the probability P(Y|X) directly. Actually, it models the probability P(y;|Y «;,X), which is the probability
of generating the j-th element of the output sequence y; given the Y .; and X. Y ; means the output sequence from
ltoj—1,o0r (yj)g;i. In this notation, you can write the model P (Y |X) with the product of Py(y;|Y <;, X):

J+1
Py(Y|X) = H Py(y;Y<;,X)

j=1

Processing Steps in Seqg2seq Model

Now, let’s think about the processing steps in seq2seq model. The feature of seq2seq model is that it consists of the
two processes:

1. The process that generates the fixed size vector z from the input sequence X
2. The process that generates the output sequence Y from z
In other words, the information of X is conveyed by z, and Py (y;|Y <;, X) is actually calculated by Py(y;|Y <;,2).

First, we represent the process which generating z from X by the function A:
z = A(X)
The function A may be the recurrent neural net such as LSTMs.

Second, we represent the process which generating Y from z by the following formula:

Py(y;[Y<;,X) = T(0{", ;)

b =w(h, y;)

3.8. Write a Sequence to Sequence (seq2seq) Model 115

Chainer Documentation, Release 6.1.0

¥ is the function to generate the hidden vectors h;t), and Y is the function to calculate the generative probability of

®)

the one-hot vector y;. When j = 1, h.”; or h(()t) is z generated by A(X), and y;_1 or yy is the one-hot vector of

BOS.

J

1.2 Model Architecture of Seq2seq Model
In this section, we describe the architecture of seq2seq model. To simplify the explanation, we use the most basic
architecture. The architecture of seq2seq model can be separated to the five major roles.

1. Encoder Embedding Layer

2. Encoder Recurrent Layer

3. Decoder Embedding Layer

4. Decoder Recurrent Layer

5. Decoder Output Layer

Encoder

 (5) [) [] [] []

h; [) 3)
Encod
Rgggur?ént Layer —>
Encod = 1 1
E:%Ck?edecging Layer T; : I ! : I .

L] Ll
xT; How are

One-hot Vector

One-hot Vector

""""""""""""""" ?"”””"”””””é”””””"”””"”%”””"””'”m"”””””Z"””bééédéF"”””””"
i

Output Layer
(t)
hj

Decoder
Reccurent Layer

| ‘T‘ X [T 1" y E f T ' «g Decoder
I I I : | J Embedding Layer
<BOS> +» | » am ‘o fine Yj-1
L] J L] L . One-hot Vector
Decoder

The encoder consists of two layers: the embedding layer and the recurrent layer, and the decoder consists of three
layers: the embedding layer, the recurrent layer, and the output layer.

In the explanation, we use the following symbols:

116 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

Symbol | Definition

H the size of the hidden vector

D the size of the embedding vector

X; the one-hot vector of i-th word in the input sentence

X; the embedding vector of i-th word in the input sentence
E®) Embedding matrix of the encoder

hgs) the i-th hidden vector of the encoder

Y the one-hot vector of j-th word in the output sentence
v the embedding vector of j-th word in the output sentence
E® Embedding matrix of the decoder

h;t) the j-th hidden vector of the decoder

1.2.1 Encoder Embedding Layer

The first layer, or the encoder embedding layer converts the each word in the input sentence to the embedding vector.
When processing the i-th word in the input sentence, the input and the output of the layer are the following:

* The input is x; : the one-hot vector which represents ¢-th word
* The output is X; : the embedding vector which represents ¢-th word

Each embedding vector is calculated by the following equation:
)_('i = E(S)Xi

E®) € RPXIVl is the embedding matrix of the encoder.

1.2.2 Encoder Recurrent Layer

The encoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the i-th
embedding vector, the input and the output of the layer are the following:

* The input is X; : the embedding vector which represents the ¢-th word
* The output is hgs) : the hidden vector of the i-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
VIO

b = ¥ (x;, h{"))

In this case, we use the tanh as the activation function.

1.2.3 Decoder Embedding Layer

The decoder embedding layer converts the each word in the output sentence to the embedding vector. When processing
the j-th word in the output sentence, the input and the output of the layer are the following:

* The input is y;_; : the one-hot vector which represents the (j — 1)-th word generated by the decoder output
layer

3.8. Write a Sequence to Sequence (seq2seq) Model 117

Chainer Documentation, Release 6.1.0

* The output is ¥, : the embedding vector which represents the (j — 1)-th word

Each embedding vector is calculated by the following equation:
v, =EWy; 4

E® € RP*IV"I is the embedding matrix of the encoder.

1.2.4 Decoder Recurrent Layer

The decoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the j-th
embedding vector, the input and the output of the layer are the following:

* The input is §; : the embedding vector

* The output is h§t) : the hidden vector of j-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
o)

t _ t
b = (3, b))
h("
= tanh (W(t) [j-1] +b(”)
yi
In this case, we use the tanh as the activation function. And we must use the encoder’s hidden vector of the last

position as the decoder’s hidden vector of first position as following:

h{ =z =n

1.2.5 Decoder Output Layer

The decoder output layer generates the probability of the j-th word of the output sentence from the hidden vector.
When processing the j-th embedding vector, the input and the output of the layer are the following:

)

* The input is hg-t : the hidden vector of j-th position

* The output is p; : the probability of generating the one-hot vector y; of the j-th word
p; = Pg(yj|Y<j) = softrnax(oj) 'y
= softmaX(W(o)h§t) +b)) .y,

Note: There are a lot of varieties of seq2seq models. We can use the different RNN models in terms of: (1) directional-
ity (unidirectional or bidirectional), (2) depth (single-layer or multi-layer), (3) type (a vanilla RNN, a Long Short-term
Memory (LSTM), or a gated recurrent unit (GRU)), and (4) additional functionality (s.t. Attention Mechanism).

3.8.3 2. Implementation of Seq2seq Model

The official Chainer repository includes a neural machine translation example using the seq2seq model. We
will now provide an overview of the example and explain its implementation in detail. chainer/examples/seq2seq

118 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/seq2seq

Chainer Documentation, Release 6.1.0

2.1 Model Overview

In this simple example, an input sequence is processed by a stacked LSTM-RNN (long short-term memory recurrent
neural networks) and it is encoded as a fixed-size vector. The output sequence is also processed by another stacked
LSTM-RNN. At decoding time, an output sequence is generated using argmax.

Encoder
}L(S) 0) I] [| [1
i f ; f
Encoder :: :: :
Reccurent Layer LSTMs_, LSTMs _, LSTMs _, LSTMs
- - -
Encoder T I 1 1 I 1 1 I 1]
Embedding Layer i I I [
x; ? you are
One-hot Vector L ! L ! L !
1T = 1 2 3
Com ___, allez-___, ? . <EOS>
ment "7l vous : One-hot Vector
P 4 4
| \ | i [" | 0. Decoder
e BE=y BE= = J Output Layer
e + O 4 O s e (t)
- - - h
R g g !
[LSTMs = LSTMs > LSTMs = LSTMs Recocrant Layer
> - >
[T 1] E [T] E [T] : [T] g DeCOder-
I : [: I ' I J Embedding Layer
<BOS> it G9M L, 3':';%23' e 7 Yo
. L 4 L ! L | L . One-hot Vector
J= 1 2 3 4
Decoder

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 31: seq2seq.py

import io

from nltk.translate import bleu_score
import numpy

import progressbar

import six

import chainer
import chainer.functions as F

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 119

Chainer Documentation, Release 6.1.0

(continued from previous page)

import chainer.links as L
from chainer import training

2.2.2 Define Training Settings

Define all training settings here.

Listing 32: seq2seq.py

parser.add_argument ('SOURCE', help='source sentence list')
parser.add_argument ('TARGET', help='target sentence list')
parser.add_argument ('SOURCE_VOCAB', help='source vocabulary file')
parser.add_argument ('TARGET_VOCAB', help='target vocabulary file')
parser.add_argument ('--validation-source',

help='source sentence list for validation')
parser.add_argument ('--validation-target',

help='target sentence list for validation')
parser.add_argument ('--batchsize', '-b', type=int, default=64,

help="'number of sentence pairs in each mini-batch')
parser.add_argument ('-—-epoch', '—-e', type=int, default=20,

help="number of sweeps over the dataset to train')
parser.add_argument ('-—-resume', '-r', type=str,

help='resume the training from snapshot')
parser.add_argument ('—--save', '—-s', type=str,

help='save a snapshot of the training')
parser.add_argument ('--unit', '-u', type=int, default=1024,

help="number of units"')
parser.add_argument ('--layer', '-1', type=int, default=3,

help="'number of layers')
parser.add_argument ('--use-dataset-api', default=False,

action='store_true',

help='use TextDataset API to reduce CPU memory usage')

parser.add_argument ('-—-min-source-sentence', type=int, default=1,
help="minimium length of source sentence')
parser.add_argument ('-—-max-source-sentence', type=int, default=50,
help="maximum length of source sentence')
parser.add_argument ('-—min-target-sentence', type=int, default=1,
help="minimium length of target sentence')
parser.add_argument ('-—-max-target-sentence', type=int, default=50,
help="maximum length of target sentence')
parser.add_argument ('-—log-interval', type=int, default=200,
help="number of iteration to show log')
parser.add_argument ('--validation—-interval', type=int, default=4000,

help="number of iteration to evlauate the model '
'with validation dataset')
parser.add_argument ('-—-device', '-d', type=str, default='-1",
help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer, '
'CuPy arrays with specified device id are used. If '
'negative integer, NumPy arrays are used')
parser.add_argument ('--out', '-o', default='result',
help='directory to output the result')
group = parser.add_argument_group ('deprecated arguments')
group.add_argument ('--gpu', '-g', dest='device',
type=int, nargs='?', const=0,

(continues on next page)

120 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

(continued from previous page)

help="'GPU ID (negative value indicates CPU) ')

2.2.3 Define Network Structure

The Chainer implementation of seq2seq is shown below. It implements the model depicted in the above figure.

Listing 33: seq2seq.py

class Seqg2seq(chainer.Chain) :

def _ init__ (self, n_layers, n_source_vocab, n_target_vocab,
super (Seg2seq, self).__init__ ()
with self.init_scope():
self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID (n_target_vocab, n_units)

self.encoder = L.NStepLSTM(n_layers, n_units, n_units,
self.decoder = L.NStepLSTM(n_layers, n_units, n_units,

self.W = L.Linear (n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat ([eos, y], axis=0) for y in ys]
ys_out = [F.concat ([y, eos], axis=0) for y in ys]

Both xs and ys_in are lists of arrays.
exs = sequence_embed (self.embed_x, xs)
eys = sequence_embed (self.embed_y, ys_in)

batch = len(xs)
None represents a zero vector in an encoder.
hx, cx, = self.encoder (None, None, exs)

_, _, 0s = self.decoder (hx, cx, eys)

It is faster to concatenate data before calculating loss

because only one matrix multiplication is called.
concat_os = F.concat (os, axis=0)

concat_ys_out = F.concat (ys_out, axis=0)

loss = F.sum(F.softmax_cross_entropy (

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report ({'loss': loss}, self)

n_words = concat_ys_out.shape[0]

perp = self.xp.exp(loss.array * batch / n_words)
chainer.report ({'perp': perp}, self)

return loss

def translate(self, xs, max_length=100) :
batch = len(xs)

n_units) :

0.1)
0.1)

with chainer.no_backprop_mode (), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model

121

Chainer Documentation, Release 6.1.0

(continued from previous page)

exs = sequence_embed(self.embed_x,
h, ¢, _ = self.encoder (None, None, exs)

ys = self.xp.full (batch, EOS, numpy.int32)
result = []

for i in range (max_length) :

XS)

eys = self.embed_y (ys)

eys = F.split_axis(eys, batch, 0)
h, ¢, ys = self.decoder(h, c, eys)
cys = F.concat (ys, axis=0)

wy = self.W(cys)

ys = self.xp.argmax(wy.array,
result.append(ys)

Using "xp.concatenate(...) 1instead of
support NumPy 1.9.
result = chainer.get_device ('@numpy') .send(

self.xp.concatenate ([x[None, :]

Remove EOS taggs

outs = []

for y in result:
inds = numpy.argwhere (y
if len(inds) > O:

y = yl:inds][O,

outs.append(y)

return outs

EOS)

011

‘xp.stack (result)

axis=1) .astype (numpy.int32)

here to

for x in result]) .T)

¢ In Seg2seq, three functions are defined: the constructor __init__ , the function call forward, and the

function for translation translate.

Listing 34: seq2seq.py

def _ _init__ (self, n_layers, n_source_vocab,
super (Seqg2seq, self).__init__ ()
with self.init_scope():

n_target_vocab,

n_units) :

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID (n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)

self.decoder =
self.W =

n_units,
n_target_vocab)

(
L.NStepLSTM(n_layers,
L.Linear (n_units,

self.n_layers =
self.n_units =

n_layers
n_units

n_units, 0.1)

* When we instantiate this class for making a model, we give the number of stacked Istms to n_layers, the
vocabulary size of the source language to n_source_vocab, the vocabulary size of the target language to

n_target_vocab, and the size of hidden vectors to n_units.

e This network uses chainer.links.NStepLSTM, chainer.links.EmbedID, and chainer.
links.Linear as its building blocks. All the layers are registered and initialized in the context with self.

init_scope().

* You can access all the parameters in those layers by calling self.params ().

* In the constructor, it initializes all parameters with values sampled from a uniform distribution U(—1, 1).

122

Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

Listing 35: seq2seq.py

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat ([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

Both xs and ys_in are lists of arrays.
exs = sequence_embed (self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)

None represents a zero vector in an encoder.
hx, cx, _ = self.encoder (None, None, exs)

_, _, o0s = self.decoder (hx, cx, eys)

It is faster to concatenate data before calculating loss
because only one matrix multiplication is called.
concat_os = F.concat (os, axis=0)
concat_ys_out = F.concat (ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy (

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report ({'loss': loss}, self)

n_words = concat_ys_out.shape[0]

perp = self.xp.exp(loss.array * batch / n_words)
chainer.report ({'perp': perp}, self)

return loss

* The forward method takes sequences of source language’s word IDs xs and sequences of target language’s
word IDs ys. Each sequence represents a sentence, and the size of xs is mini-batch size.

* Note that the sequences of word IDs xs and ys are converted to a vocabulary-size one-hot vectors and then
multiplied with the embedding matrix in sequence_embed to obtain embedding vectors exs and eys.

Listing 36: seq2seq.py

def sequence_embed (embed, xs):
x_len = [len(x) for x in xs]
x_section = numpy.cumsum(x_len[:-1])
ex = embed (F.concat (xs, axis=0))
exs = F.split_axis(ex, x_section, 0)
return exs

e self.encoder and self.decoder are the encoder and the decoder of the seq2seq model. Each element

of the decoder output os is hﬁ) J] in the figure above.

» After calculating the recurrent layer output, the loss 1oss and the perplexity perp are calculated, and the
values are logged by chainer. report.

Note: It is well known that the seq2seq model learns much better when the source sentences are reversed. The
paper[1] says that “While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not reversed). By doing
so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU scores of its decoded translations increased
from 25.9 to 30.6.” So, at the first line in the forward, the input sentences are reversed xs = [x[::-1] for x

3.8. Write a Sequence to Sequence (seq2seq) Model 123

Chainer Documentation, Release 6.1.0

in xs].

Listing 37: seq2seq.py

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode (), chainer.using_config('train', False):
xs = [x[::-1] for x in xs]
exs = sequence_embed(self.embed_x, xs)
h, ¢, _ = self.encoder (None, None, exs)
ys = self.xp.full (batch, EOS, numpy.int32)
result = []
for i in range (max_length) :
eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)

h, ¢, ys = self.decoder(h, c, eys)

cys = F.concat (ys, axis=0)

wy = self.W(cys)

ys = self.xp.argmax (wy.array, axis=1l).astype (numpy.int32)

result.append(ys)

Using "xp.concatenate(...) 1instead of 'xp.stack (result) ' here to
support NumPy 1.9.
result = chainer.get_device ('@numpy') .send(

self.xp.concatenate ([x[None, :] for x in result]).T)

Remove EOS taggs

outs = []

for y in result:
inds = numpy.argwhere(y == EOS)
if len(inds) > O:

y = yl:inds [0, 0]]

outs.append(y)

return outs

 After the model learned the parameters, the function t ranslate is called to generate the translated sentences
out s from the source sentences xs.

* So as not to change the parameters, the codes for the translation are nested in the scope chainer.
no_backprop_mode () and chainer.using_config('train', False).

2.2.4 Load French-English Corpus from WMT15 Dataset

In this tutorial, we use French-English corpus from WMT15 website that contains 10"9 documents. We must prepare
additional libraries, dataset, and parallel corpus. To understand the pre-processing, see 2.3./ Requirements.

After the pre-processing the dataset, let’s make dataset objects:

Listing 38: seq2seq.py

Load pre-processed dataset

print ('[{}] Loading dataset... (this may take several minutes)'.format (
datetime.datetime.now()))

source_ids = load_vocabulary (args.SOURCE_VOCAB)

target_ids = load_vocabulary (args.TARGET_VOCAB)

(continues on next page)

124 Chapter 3. Neural Net Examples

http://www.statmt.org/wmt15/translation-task.html

Chainer Documentation, Release 6.1.0

(continued from previous page)

if args.use_dataset_api:
By using TextDataset, you can avoid loading whole dataset on memory.
This significantly reduces the host memory usage.
def _filter func(s, t):

sl = len(s.strip() .split()) # number of words in source line
tl = len(t.strip() .split()) # number of words in target line
return (

args.min_source_sentence <= sl <= args.max_source_sentence and
args.min_target_sentence <= tl <= args.max_target_sentence)

train_data = load_data_using_dataset_api (
source_ids, args.SOURCE,
target_ids, args.TARGET,
_filter_func,

)

else:
Load all records on memory.
train_source = load_data (source_ids, args.SOURCE)
train_target = load_data(target_ids, args.TARGET)
assert len(train_source) == len(train_target)
train_data = [
(s, t)
for s, t in six.moves.zip(train_source, train_target)
if (args.min_source_sentence <= len(s) <= args.max_source_sentence
and
args.min_target_sentence <= len(t) <= args.max_target_sentence)
]
print ('[{}] Dataset loaded.'.format (datetime.datetime.now()))

if not args.use_dataset_api:
Skip printing statistics when using TextDataset API, as it is slow.

train_source_unknown = calculate_unknown_ratio(
[s for s, _ in train_datal)
train_target_unknown = calculate_unknown_ratio(

[t for _, t in train_datal)

print ('Source vocabulary size: %d' % len(source_ids))
print ('Target vocabulary size: 3d' % len(target_ids))
print ('Train data size: 2d' % len(train_data))
print ('Train source unknown ratio: $.2£%%' S (

train_source_unknown * 100))
print ('Train target unknown ratio: 2.2£%%' % (
train_target_unknown » 100))

target_words {i: w for w, i in target_ids.items() }
source_words = {i: w for w, 1 in source_ids.items ()}

* This code uses utility functions below:

Listing 39: seq2seq.py

def load_vocabulary (path):
with io.open (path, encoding='utf-8') as f:
+2 for UNK and EOS

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 125

Chainer Documentation, Release 6.1.0

(continued from previous page)

word_ids = {line.strip(): i + 2 for i, line in enumerate (f)}
word_ids ['<UNK>"'"] 0
word_ids['<EOS>"] 1
return word_ids

Listing 40: seq2seq.py

def load_data(vocabulary, path):

n_lines = count_lines (path)
bar = progressbar.ProgressBar ()
data = []
print ('loading...: ' % path)
with io.open(path, encoding='utf-8') as f:
for line in bar (f, max_value=n_lines):
words = line.strip() .split()
array = numpy.array ([vocabulary.get (w, UNK)

for w in words], numpy.int32)
data.append (array)
return data

Listing 41: seq2seq.py

def calculate_unknown_ratio(data):
unknown = sum((s == UNK) .sum() for s in data)
total = sum(s.size for s in data)
return unknown / total

2.2.5 Define Evaluation Function (Bleu Score)

BLEUJ3] (bilingual evaluation understudy) is the evaluation metric for the quality of text which has been machine-
translated from one natural language to another.

Listing 42: seq2seq.py

class CalculateBleu(chainer.training.Extension) :

trigger = 1, 'epoch'
priority = chainer.training.PRIORITY_WRITER

def _ init_ (
self, model, test_data, key, device, batch=100, max_length=100) :
self.model = model
self.test_data = test_data
self.key = key
self.batch = batch
self.device = device
self.max_length = max_length

def _ call (self, trainer):
device = self.device

with chainer.no_backprop_mode () :
references = []
hypotheses = []

(continues on next page)

126 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

(continued from previous page)

for i in range (0, len(self.test_data), self.batch):

sources, targets = zip(*xself.test_datal[i:i + self.batchl])
references.extend([[t.tolist ()] for t in targets])
sources = [device.send(x) for x in sources]

ys = [y.tolist ()

for y in self.model.translate(sources, self.max_length)]

hypotheses.extend(ys)

bleu = bleu_score.corpus_bleu(
references, hypotheses,
smoothing_function=bleu_score.SmoothingFunction () .methodl)
chainer.report ({self.key: bleu})

2.2.6 Create Iterator

Here, the code below just creates iterator objects.

Listing 43: seq2seq.py

train_iter = chainer.iterators.Seriallterator (train_data, args.batchsize)

2.2.7 Create RNN and Classification Model

Instantiate Seq2seq model.

Listing 44: seq2seq.py

model = Seg2seq(args.layer, len(source_ids), len(target_ids), args.unit)

2.2.8 Setup Optimizer

Prepare an optimizer. We use chainer.optimizers.Adam.

Listing 45: seq2seq.py

optimizer = chainer.optimizers.Adam()
optimizer.setup (model)

2.2.9 Setup and Run Trainer

Let’s make a trainer object.

Listing 46: seq2seq.py

updater = training.updaters.StandardUpdater (
train_iter, optimizer, converter=convert, device=device)

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model

127

Chainer Documentation, Release 6.1.0

(continued from previous page)

trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend (extensions.LogReport (
trigger=(args.log_interval, 'iteration')))
trainer.extend (extensions.PrintReport (
['epoch', 'iteration', 'main/loss', 'main/perp',
'validation/main/bleu', 'elapsed_time'l]),
trigger=(args.log_interval, 'iteration'))

trainer.extend/(
extensions.snapshot (filename="'snapshot_epoch_ {.updater.iteration}'),
trigger=(args.validation_interval, 'iteration'))

Setup the trainer’s extension to see the BLEU score on the test data.

Listing 47: seq2seq.py

test_source = load_data(source_ids, args.validation_source)
test_target = load_data(target_ids, args.validation_target)
assert len(test_source) == len(test_target)
test_data = list(six.moves.zip(test_source, test_target))
test_data = [(s, t) for s, t in test_data if 0 < len(s) and 0 < len(t)]
test_source_unknown = calculate_unknown_ratio(
[s for s, _ in test_datal)
test_target_unknown = calculate_unknown_ratio(

[t for _, t in test_datal)

print ('Validation data: %d' % len(test_data))

print ('Validation source unknown ratio: $.2f£%%' %
(test_source_unknown = 100))

print ('Validation target unknown ratio: %.21%%' %

(test_target_unknown = 100))

@chainer.training.make_extension ()

def translate(trainer):
source, target = test_datal[numpy.random.choice (len(test_data))]
result = model.translate([model.xp.array (source)]) [0]

source_sentence = ' '.join([source_words([x] for x in source])
target_sentence = ' '.Jjoin([target_words|[y] for y in target])
result_sentence = ' '.join([target_words[y] for y in result])

print ('# source + source_sentence)
print ('# result : ' + result_sentence)
print ('# expect : ' + target_sentence)

trainer.extend (
translate, trigger=(args.validation_interval, 'iteration'))
trainer.extend (
CalculateBleu (
model, test_data, 'validation/main/bleu', device),
trigger=(args.validation_interval, 'iteration'))

if args.resume is not None:
Resume from a snapshot
chainer.serializers.load_npz(args.resume, trainer)

Let’s start the training!

128 Chapter 3. Neural Net Examples

Chainer Documentation, Release 6.1.0

Listing 48: seq2seq.py

trainer.run()

if args.save is not None:
Save a snapshot
chainer.serializers.save_npz(args.save, trainer)

2.3 Run Example

2.3.1 Requirements

Before running the example, you must prepare additional libraries, dataset, and parallel corpus.

* See the detail description: chainer/examples/seq2seq/README.md

2.3.1 Training the model

You can train the model with the script: chainer/examples/seq2seq/seq2seq.py

$ pwd

/root2chainer/chainer/examples/seg2seq

$ python seg2seq.py —-—-gpu=0 giga-fren.preprocess.en giga—-fren.preprocess.fr \
vocab.en vocab.fr \

--validation-source newstest2013.preprocess.en \

--validation-target newstest2013.preprocess.fr > log

100% (22520376 of 22520376) |#############| Elapsed Time: 0:09:20 Time: 0:09:20

100% (22520376 of 22520376) |#############| Elapsed Time: 0:10:36 Time: 0:10:36

100% (3000 of 3000) |############4########] Elapsed Time: 0:00:00 Time: 0:00:00

100% (3000 of 3000) |#############4##44#4#4| Elapsed Time: 0:00:00 Time: 0:00:00

epoch iteration main/loss validation/main/loss main/perp validation/main/
—perp validation/main/bleu elapsed_time

0 200 171.449 991.556 o
o 85.6739

0 400 143.918 183.594 o
. 172.473

0 600 133.48 126.945 o
— 260.315

0 800 128.734 104.127 o
o 348.062

0 1000 124.741 91.5988 o
. 436.536

Note: Before running the script, be careful the locale and the python’s encoding. Please setup them to use utf-8
encoding.

3.8. Write a Sequence to Sequence (seq2seq) Model 129

https://github.com/chainer/chainer/tree/master/examples/seq2seq/README.md
https://github.com/chainer/chainer/tree/master/examples/seq2seq/seq2seq.py

Chainer Documentation, Release 6.1.0

2.3.1 Validate the model

While you are training the model, you can get the validation results:

source : We knew the Government had tried many things , like launching <UNK> with
—<UNK> or organising speed dating evenings .

result : Nous savions que le gouvernement avait <UNK> plusieurs fois , comme le
—<UNK> <UNK> , le <UNK> ou le <UNK> <UNK>

expect : Nous savions que le gouvernement avait tenté plusieurs choses comme lancer,
—des parfums aux <UNK> ou organiser des soirées de <UNK>

3.8.4 3. Reference

* [1] Sequence to Sequence Learning with Neural Networks

* [2] Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation

* [3] BLEU

130 Chapter 3. Neural Net Examples

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
https://en.wikipedia.org/wiki/BLEU

CHAPTER
FOUR

API REFERENCE

4.1 Variable and Parameter

4.1.1 Variable classes and utilities

chainer.Variable Array with a structure to keep track of computation.

chainer.as_variable Converts an array or a variable into Variable.

chainer.Parameter Parameter variable that can be registered to a link.

chainer.variable.VariableNode Node in the backward computational graph representing
a variable.

chainer.Variable

class chainer.Variable (data=None, *, name=None, grad=None, requires_grad=True)
Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy . ndarray or cupy .ndarray.

A variable object holds a data array and a VariableNode object of a computational graph. If the variable
is constructed by the user, the node is root and does not hold any parent. If the variable is constructed by a
FunctionNode object (i.e., by calling functions under chainer. functions or user-defined functions),
or by using operators (see the list below), the node holds a reference to its parent called creator_node. This
reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling no_backprop_mode () (resp.
force_backprop_mode ()). In the former context, a variable never creates a computational graph, whereas
in the latter context, it is forced to create.

Note: The following operators are defined for variable(s).
e Indexing: a[slices] (__getitem _ ())

e Addition: a + b(_add _(),__radd __())

e Subtraction: a — b (_sub__ (), _rsub__ ())
 Multiplication: a * b (_mul__ (), _rmul__())
e Division:a / b(_div__ (), rtruediv__ ())

¢ Floor Division: a // b (__floordiv.__ (),

rdiv___ (), truediv__ (),

rfloordiv._ ())

* Exponentiation: a »* b (_pow__ (),___rpow__())

131

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 6.1.0

e Matrix Multiplication: a @ b (__matmul__ (), __rmatmul__ ())
» Negation (Arithmetic): - a (__neg ())
* Absolute value: abs (a) (__abs__ ())

Parameters
* data (N-dimensional array) — Initial data array.
* name (str)— Name of the variable.
» grad (N-dimensional array) — Initial gradient array.

* requires_grad (bool) — Boolean indicating whether grad will be set in backward
calculation.

Methods
__getitem__ (slices)
Extract elements from array with specified shape, axes and offsets.
Parameters
e x (Variable or N-dimensional array) — A variable to be sliced.

e slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) — An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy . float32, numpy.int32, numpy.uint32, numpy.
uint 64 and numpy.ulonglong.

Note: It does not support s1ices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

>>> x = np.arange (12) .reshape((2, 2, 3))
>>> x
array ([[[O, 1, 21,

[3, 4, 511,
<BLANKLINE>

[t e, 7, 81,

[9, 10, 11111)
>>> F.get_item(x, 0)
variable ([[0, 1, 217,

[3, 4, 511)

(continues on next page)

132 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Chainer Documentation, Release 6.1.0

(continued from previous page)

>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable ([0, 11)
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],

[8, 1111)
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable ([9])

len_ ()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.
Return type int

_copy__ ()

addgrad (var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable)— Source variable.

backward (retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward () is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of datais () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

* retain_grad (bool) — If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to
False.

* enable_double_backprop (bool) — (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

* loss_scale (float)—Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16

4.1. Variable and Parameter 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad ()

Clears the gradient array.

copydata (var)

Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (sel1f). If both

are uninitialized, this method does nothing.
Parameters var (Variable)— Source variable.

debug_print ()
Display a summary of the stored data and location of the Variable

from_ chx ()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array

held by the Variable object is not a ChainerX array. The new array is a view of the original one.
Raises an error if such a conversion is not supported for the device.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.
Returns The element of the array.
Return type int or float

reshape (*shape)
Returns a variable of a different shape and the same content.

See also:
chainer. functions.reshape () for full documentation,

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator (gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) — Function object that creates this variable as one of its
outputs.

set_creator_node (fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) — Function node that has this variable as an output.

summary ()

134

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

to_chx ()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu ()
Copies the data and gradient arrays to CPU.

to_device (device)
Copies the data and gradient arrays to specified device.

Parameters device — Target device specifier. See get_device () for available values.

to_gpu (device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device — Target device specifier. If omitted, the current device is used.

to_intel64 ()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy . ndarray.

transpose (*axes)
Permute the dimensions of an input variable without copy.

See also:
chainer.functions.transpose () for full documentation.

unchain ()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward (), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_ backward ()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

zerograd ()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads () instead.

__eq__ (other)
This operator is not supported in Variables.

__ne___ (other)
This operator is not supported in Variables.

__1t_ (other)
This operator is not supported in Variables.

4.1. Variable and Parameter 135

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

__le (other)
This operator is not supported in Variables.

__gt__ (other)
This operator is not supported in Variables.

__ge__ (other)
This operator is not supported in Variables.

__nonzero__ ()
This operator is not supported in Variables.

__bool_ ()
This operator is not supported in Variables.

__neg__ ()
Element-wise negation.

Returns Output variable.
Return type Variable

__abs__ ()
Element-wise absolute.

Returns Output variable.
Return type Variable

__add__ ()
Element-wise addition.

Returns Output variable.
Return type Variable

__radd_ ()
Element-wise addition.

Returns Output variable.
Return type Variable

__sub__ (rhs)
Element-wise subtraction.

Returns Output variable.
Return type Variable

__rsub__ (rhs)
Element-wise subtraction.

Returns Output variable.
Return type Variable

__mul__ (rhs)
Element-wise multiplication.

Returns Output variable.
Return type Variable

_rmul__ (rhs)
Element-wise multiplication.

136 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Returns Output variable.
Return type Variable

_div__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

__truediv__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

_rdiv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

_ rtruediv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

_ floordiv__ (rhs)
Element-wise floor division.

Returns Output variable.
Return type Variable

_ rfloordiv__ (rhs)
Element-wise floor division.

Returns Output variable.
Return type Variable

pow___(rhs)
Element-wise power function.

Returns Output variable.
Return type Variable

__rpow___ (rhs)
Element-wise power function.

Returns Output variable.
Return type Variable

__matmul__ (rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

4.1. Variable and Parameter 137

Chainer Documentation, Release 6.1.0

__rmatmul__ (rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes
T
Transposition of this variable.

array
The underlying data array.

It is either numpy .ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.
If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Funct ion), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain (); it purges the variable from the function that created this variable.

The setter also accepts the original Funct ionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode () object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode () object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array, you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

device
Device on which the data array of this variable reside.

dtype

138 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

label
Short text that represents the variable.

name
ndim
node
rank

requires_grad
It indicates that grad will be set in backward calculation.

shape
size

Xp
Array module for the data array of this variable.

chainer.as_variable
chainer.as_variable (0bj)
Converts an array or a variable into Variable.
This is a convenient function to get a Variable object transparently from a raw array or a variable.

Note that this function should only be used for type consistency (i.e., to enforce the return value of an API
having type Variable). The requires_grad flag is kept as is; if obj is a raw array, the newly created
variable has requires_grad = False. In order to make a variable w.r.t. which you want to compute the
gradient, you should use Variable directly.

Parameters obj (N-dimensional array or ~chainer.Variable) — An array or a variable that you want
to convertto Variable.

Returns A variable converted from ob j. If obj is a raw array, this is a new Variable object that
wraps the array. If obj is already a Variable object, this function returns ob j as is.

Return type Variable

chainer.Parameter

class chainer.Parameter (initializer=None, shape=None, name=None)
Parameter variable that can be registered to a link.

Parameter is a subclass of Variable. It almost behaves as same as a usual variable except that a parameter
can be registered to a .1 nk object just by assigning it to an attribute of the link within an init_scope ()
context.

4.1. Variable and Parameter 139

Chainer Documentation, Release 6.1.0

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and
the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and
the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to an GradientMethod, an update rule is
set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient
array.

Parameters

* initializer (~chainer.Initializer or N-dimensional array) — Initializer of the data array.
If shape is given, this initializer is immediately used to initialize the data array. Otherwise,
if it is an array, it is immediately used as the data array, and otherwise the data array is left
uninitialized and will be initialized by this initializer in initialize (). It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

* shape (int or tuple of int or None)- Shape of the parameter. If it is None,
the initialization is deferred to the call of initialize ().

* name (str)— Name of the parameter.
Variables

* initializer — Initializer of the data array. It is used for initializing the data array of an
uninitialized variable.

* update_rule — UpdateRule instance that updates this variable as a parameter. This
argument is set to update_rule.

Methods
__getitem__ (slices)
Extract elements from array with specified shape, axes and offsets.
Parameters
e x (Variable or N-dimensional array) — A variable to be sliced.

e slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) — An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint 64 and numpy.ulonglong.

Note: It does not support s1ices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

140 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Chainer Documentation, Release 6.1.0

>>> x = np.arange(1l2) .reshape((2, 2, 3))
>>> x
array ([[[O, 1, 21,
[3, 4, 511,
<BLANKLINE>
[r e, 17, 8]

[9, 10, 11111)
>>> F.get_item(x, O0)

variable([[0, 1, 2],
[3, 4, 511)
>>> F.get_item(x, (0, 0, slice (0, 2, 1))) # equals x[0, 0, 0:2:1]
variable ([0, 171)
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],
[8 1111)
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]

variable ([9])

len_ ()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.
Return type int

__copy__ ()

addgrad (var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable)— Source variable.

backward (retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward () is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of datais () (i.e., itis scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

* retain_grad (bool) — If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to

4.1. Variable and Parameter 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

False.

* enable_double_backprop (bool) — (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

* loss_scale (float)— Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata (var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable)— Source variable.

debug_print ()
Display a summary of the stored data and location of the Variable

from_chx ()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a nat ive or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array
held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

initialize (shape)
Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and
initializes the data array. The shape of the variable can be left unknown until this method is called.

Parameters shape (tuple of int)-— Shape of the data array.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.
Returns The element of the array.
Return type int or float

reshape (*shape)
Returns a variable of a different shape and the same content.

See also:

chainer. functions.reshape () for full documentation,

142 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

retain data ()
Lets the corresponding variable node keep the underlying array.

set_creator (gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) — Function object that creates this variable as one of its
outputs.

set_creator_node (fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) — Function node that has this variable as an output.
summary ()

to_chx ()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu ()
Copies the data and gradient arrays to CPU.

to_device (device)
Copies the data and gradient arrays to specified device.

Parameters device — Target device specifier. See get_device () for available values.

to_gpu (device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device — Target device specifier. If omitted, the current device is used.

to_intel64 ()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy . ndarray.

transpose (*axes)
Permute the dimensions of an input variable without copy.

See also:
chainer. functions.transpose () for full documentation.

unchain ()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward (), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward ()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

4.1. Variable and Parameter 143

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

update ()

Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

zerograd ()

Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this

operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads () instead.

__eq__ (other)

This operator is not supported in Variables.

__ne__ (other)

This operator is not supported in Variables.

__1t__ (other)

This operator is not supported in Variables.

__le (other)

This operator is not supported in Variables.

__gt___ (other)

This operator is not supported in Variables.

__ge___ (other)

This operator is not supported in Variables.

nonzero ()

This operator is not supported in Variables.

__bool__ ()

This operator is not supported in Variables.

neg ()

Element-wise negation.
Returns Output variable.
Return type Variable

abs ()
Element-wise absolute.

Returns Output variable.

Return type Variable

_add__ ()

Element-wise addition.
Returns Output variable.

Return type Variable

__radd__ ()

Element-wise addition.
Returns Output variable.

Return type Variable

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

sub__ (rhs)
Element-wise subtraction.

Returns Output variable.
Return type Variable

__rsub__ (rhs)
Element-wise subtraction.

Returns Output variable.
Return type Variable

__mul__ (rhs)
Element-wise multiplication.

Returns Output variable.
Return type Variable

__rmul__ (rhs)
Element-wise multiplication.

Returns Output variable.
Return type Variable

__div__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

__truediv__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

__rdiv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

__rtruediv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

_ floordiv__ (rhs)
Element-wise floor division.

Returns Output variable.
Return type Variable

__rfloordiv__ (rhs)
Element-wise floor division.

Returns Output variable.

4.1. Variable and Parameter 145

Chainer Documentation, Release 6.1.0

Return type Variable

__pow___(rhs)
Element-wise power function.

Returns Output variable.
Return type Variable

__rpow___ (rhs)
Element-wise power function.

Returns Output variable.
Return type Variable

_ _matmul__ (rhs)
Matrix multiplication.

Returns Output variable.
Return type Variable

__rmatmul__ (rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes
T
Transposition of this variable.

array
The underlying data array.

It is either numpy .ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx_ array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.
If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Funct ion), this property returns that Funct i on object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain (); it purges the variable from the function that created this variable.

146 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

The setter also accepts the original Funct ionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode () object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode () object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array, you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has . data.

device
Device on which the data array of this variable reside.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

initializer = None

label
Short text that represents the variable.

name
ndim
node
rank

requires_grad
It indicates that grad will be set in backward calculation.

shape
size

Xp
Array module for the data array of this variable.

chainer.variable.VariableNode
class chainer.variable.VariableNode (variable, name, **kwargs)
Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation
(a.k.a. backprop) to determine which gradient to be passed to each function.

4.1. Variable and Parameter 147

Chainer Documentation, Release 6.1.0

A variable node is held by the corresponding Variahble object, which is managed by users. Funct ionNode
objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually
accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a
weak reference to the variable object, and thus the data array is accessible via the weak reference.

2. If retain_data () is called, the node holds a reference to the data array. It is mainly called by a
function that needs the input or output data array in its backprop procedure. See FunctionNode.
retain_inputs () and FunctionNode.retain_outputs () for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed
by Chainer, and any interface that is beneficial for users is also provided by Variable.

Parameters
* variable (Variable) - The corresponding variable object.
* name (st r)— Name of the variable node.
Variables
» dtype — Data type of the data array.
* shape — Shape of the data array.

* name (st r)— Name of the variable node.

Methods
get_variable ()
Returns the corresponding Variable object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by
this property. Otherwise, this property creates a new Variable object from this node object and returns
it.

Returns The variable object that refers this node.
Return type Variable

get_variable_or_none()
Returns the holding Variable object or None.

VariableNode object holds a weak reference of the variable object.If the reference is alive, it is returned by
this property. Otherwise, returns None.

Returns The variable object that refers this node.
Return type Variable

retain_data ()
Lets the node hold a reference to the underlying data array.

This method gets the data array of the corresponding variable and keeps it. If the weak reference to the
corresponding variable is dead, it raises an error.

set_creator (creator)
Sets a Funct ion object that created this node.

This method is equivalent to self.creator = creator. A FunctionNode object can also be
passed.

148 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Parameters creator (Function or FunctionNode) — Function that has created this
variable.

set_creator_node (creator_node)
Sets a Funct ionNode object that created this node.

This method is equivalent to self.creator_node = creator_node. A Function object can
also be passed, in which case the Function. node attribute is used.

Parameters creator_node (FunctionNode or Function) — Function node that has
this variable as an output.

unchain ()
Deletes the reference to the creator of this variable node.

This method is equivalent to self.creator_node = None.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

creator
Function object that created this variable node.

When the function is implemented with the old-style API (i.e., it uses Function class), this property
returns the Function object. The object is extracted from the FunctionAdapter object, so the
returned object is not the function node, but instead the actual implementation of forward and backward
procedures.

When the function is implemented with the new-style API (i.e., it uses Funct i onNode class), this prop-
erty returns the function node object. In this case, the returned object is same as creator._node.

Warning: As of v3.0.0, when the creator is an old-style function, the following code is invalid:

creator = v.creator
v.creator = None
v.creator = creator

The point is that FunctionNode objects are used as nodes in the computational graph instead
of Function, and each Function object only holds a weak reference to the corresponding
FunctionNode. Since creator returns the Function object, the FunctionNode object is
not kept by preserving creator.

4.1. Variable and Parameter 149

Chainer Documentation, Release 6.1.0

The above code should be fixed as follows.

creator_node = v.creator_node
v.creator_node = None
v.creator_node = creator_node

creator_node
Function node that has this variable as an output.

See FunctionNode for the definition of a function node.

data
Data array of the corresponding variable.

If the data is not available, it returns None.

grad
Gradient array of the corresponding variable.

If the variable is not available, it returns None.

grad_var
Gradient variable of the corresponding variable.

If the corresponding variable is not available, it return None.

label
Short text that represents the variable node.

rank

requires_grad
It indicates that grad will be set in backward calculation.

4.1.2 N-dimensional array

chainer.Variable holds its value as an n-dimensional array (ndarray). Chainer supports the following classes:
e numpy .ndarray, including ideep4py.mdarray
* cupy.ndarray

* chainerx.ndarray

Note: Python scalars (float, etc.) and NumPy scalars (numpy.floatl6, numpy.float32, etc.) cannot be
used as chainer.Variable.array. See also chainer.utils.force_array ().

4.2 Functions

Chainer provides variety of built-in function implementations in chainer. functions package. These functions
usually return a Variable object or a tuple of multiple Variable objects. For a Variable argument of a
function, an N-dimensional array can be passed if you do not need its gradient. Some functions additionally supports
scalar arguments.

150 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 6.1.0

Note: Functions implemented in Chainer consists of the following two parts:
* A class that inherits Funct ionNode, which defines forward/backward computation.
e A “wrapper” function around the class.

APIs listed in this page are “wrapper” of FunctionNode implementations. In most cases, you don’t have to use
FunctionNode classes directly.

For example, chainer.functions.sum() is a wrapper function defined as def sum(...): 1in
chainer/functions/math/sum.py, and it calls its corresponding FunctionNode implementation, Sum. Some func-
tions may not have the corresponding Funct ionNode implementation; one example is chainer. functions.
average (), which is defined in chainer/functions/math/average.py, which calls other wrapper functions to calculate
average.

If you are implementing your own functions, please see Define your own function.

4.2.1 Arithmetic functions
Basic arithmetic operations for Variables are implemented as operators. Refer to the Notes section of Variable
for details.

chainer. functions.add () provides better performance when accumulating three or more Variables at
once.

chainer. functions.add Element-wise addition.

chainer.functions.add

chainer.functions.add (*xs)
Element-wise addition.

Returns Output variable.

Return type Variable

4.2.2 Activation functions

chainer. functions.clipped_relu Clipped Rectifier Unit function.

chainer. functions.crelu Concatenated Rectified Linear Unit function.

chainer. functions.elu Exponential Linear Unit function.

chainer. functions.hard sigmoid Element-wise hard-sigmoid function.

chainer. functions.leaky_relu Leaky Rectified Linear Unit function.

chainer. functions.log softmax Channel-wise log-softmax function.

chainer. functions.lstm Long Short-Term Memory units as an activation func-
tion.

chainer. functions.maxout Maxout activation function.

chainer. functions.prelu Parametric ReLLU function.

chainer.functions.rrelu Randomized Leaky Rectified Liner Unit function.

chainer. functions.relu Rectified Linear Unit function.

chainer. functions.relué Rectifier Unit function clipped at 6.

Continued on next page

4.2. Functions 151

https://github.com/chainer/chainer/blob/master/chainer/functions/math/sum.py
https://github.com/chainer/chainer/blob/master/chainer/functions/math/average.py

Chainer Documentation, Release 6.1.0

Table 3 — continued from previous page

chainer. functions.selu Scaled Exponential Linear Unit function.
chainer. functions.sigmoid Element-wise sigmoid logistic function.
chainer. functions.slstm S-LSTM units as an activation function.
chainer. functions.softmax Softmax function.

chainer. functions.softplus Element-wise softplus function.
chainer. functions.swish Swish activation function.

chainer. functions.tanh Elementwise hyperbolic tangent function.
chainer.functions.tree lstm TreeLSTM unit as an activation function.

chainer.functions.clipped_relu
chainer.functions.clipped_relu (x, z=20.0)
Clipped Rectifier Unit function.

For a clipping value z(> 0), it computes
ClippedReLU(z, z) = min(max(0, z), z).

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, 2, ..., S,)-shaped float
array.

* z (float)— Clipping value. (default = 20.0)
Returns Output variable. A (s1, s9, ..., S,)-shaped float array.

Return type Variable

Example

>>> x = np.random.uniform(-100, 100, (10, 20)).astype(np.float32)
>>> z = 10.0

>>> np.any(x < 0)

True

>>> np.any(x > z)

True

>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.array < 0)

False

>>> np.any(y.array > z)

False

chainer.functions.crelu

chainer.functions.crelu (x, axis=1)
Concatenated Rectified Linear Unit function.

This function is expressed as follows

f(z) = (max(0, x), max(0, —z)).

152 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

Here, two output values are concatenated along an axis.
See: https://arxiv.org/abs/1603.05201
Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, Sa, ..., sy)-shaped float
array.

* axis (int)— Axis that the output values are concatenated along. Default is 1.

Returns Output variable of concatenated array. If the axis is 1, A (s1, 82 X 2, ..., sy)-shaped float
array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)

>>> x
array ([[-1., 0.1,

[2., =3.11, dtype=float32)
>>> y = F.crelu(x, axis=1)

>>> y.array
array([[0., O., 1., 0.],
[2., 0., 0., 3.]11, dtype=float32)

chainer.functions.elu
chainer.functions.elu (x, alpha=1.0)
Exponential Linear Unit function.

For a parameter «, it is expressed as

f(x):{x ifx>0

alexp(z) — 1) ifx <0,
See: https://arxiv.org/abs/1511.07289
Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., Sy)-shaped float
array.

* alpha (float)— Parameter o. Default is 1.0.
Returns Output variable. A (s1, S2, ..., S)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]1]1, np.float32)
>>> x
array ([[-1., 0.1,
[2., =-3.1]1, dtype=float32)
>>> y = F.elu(x, alpha=1.)
>>> y.array

(continues on next page)

4.2. Functions 153

https://arxiv.org/abs/1603.05201
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1511.07289
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

(continued from previous page)

array ([[-0.63212055, 0. 1,
[2. , —0.95021296]1]1, dtype=float32)

chainer.functions.hard_sigmoid

chainer.functions.hard_sigmoid (x)
Element-wise hard-sigmoid function.

This function is defined as

0 if x < =25
flz)=1< 02x+05 if —25<x<25
1 if 2.5 < z.

Parameters x (Variable or N-dimensional array) — Input variable. A (s1, S, ..., sy)-shaped
float array.

Returns Output variable. A (s1, So, ..., s)-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.array([-2.6, -1, 0, 1, 2.6])
>>> x

array([-2.6, -1. , 0. , 1. , 2.6])
>>> F.hard_sigmoid(x) .array

array ([0. , 0.3, 0.5, 0.7, 1. 1)

chainer.functions.leaky relu
chainer.functions.leaky_relu (x, slope=0.2)
Leaky Rectified Linear Unit function.
This function is expressed as
x ifx>0
f(x)—{ ax ifx <0,
where a is a configurable slope value.

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, S, ..., Sy)-shaped float
array.

* slope (float)— Slope value a.
Returns Output variable. A (s1, so, ..., sy)-shaped float array.

Return type Variable

Example

154 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

>>> x = np.array([[-1, 01, [2, -3]1, [-2, 111, np.float32)
>>> x
array ([[-1., 0.7,
[2., =-3.1,
[-2., 1.]], dtype=float32)
>>> F.leaky_relu(x, slope=0.2).array

array ([[-0.2, 0. 1,
[2., -0.671,
[-0.4, 1. 1], dtype=float32)

chainer.functions.log_softmax
chainer.functions.log_softmax (x, axis=1)
Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let ¢ = (¢1, ¢a, ..., cp) be the slice of
x along with the second axis. For each slice ¢, it computes the logarithm of the function f(c) defined as

e
€)= s explca)

This method is theoretically equivalent to 1og (softmax (x)) but is more stable.

Note: log(softmax (x)) may cause underflow when x is too small, because softmax (x) may returns
0. log_softmax method is more stable.

Parameters

* x (Variable or N-dimensional array) — Input variable. A n-dimensional (n > 2) float
array.

* axis (int)— The axis along which the softmax is to be computed.
Returns Output variable. A n-dimensional (n > 2) float array, which is the same shape with x.

Return type Variable

See also:

softmax ()

Example

>>> x = np.array ([[0, 1, 21, [0, 2, 411, np.float32)
>>> x
array ([[0., 1., 2.1,
[0., 2., 4.]1], dtype=float32)
>>> F.log_softmax (x) .array
array ([[-2.407606 , -1.4076059 , -0.4076059 7,
[-4.1429315 , -2.1429315 , -0.14293146]], dtype=float32)
>>> np.allclose (F.log_softmax (x) .data, F.log(F.softmax(x)) .data)
True

4.2. Functions 155

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.Istm

chainer. functions.lstm(c_prev, x)

Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state c_prev and the input array
X.

First, the input array x is split into four arrays a, 7, f, o of the same shapes along the second axis. It means that
x ‘s second axis must have 4 times the c_prev ‘s second axis.

The split input arrays are corresponding to:
e a : sources of cell input
* 4 : sources of input gate
e f: sources of forget gate
* o: sources of output gate
Second, it computes the updated cell state ¢ and the outgoing signal h as:
¢ = tanh(a)o (i) + cprevo (f),
h = tanh(c)o(0),
where o is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or
smaller than that of the previous one. When mini-batch size of x is smaller than that of c, this function only
updates c [0:1len (x)] and doesn’t change the rest of ¢, c[len (x) :]. So, please sort input sequences in
descending order of lengths before applying the function.

Parameters

* c_prev (Variable or N-dimensional array) — Variable that holds the previous cell state.
The cell state should be a zero array or the output of the previous call of LSTM.

* x (Variable or N-dimensional array)— Variable that holds the sources of cell input, input
gate, forget gate and output gate. It must have the second dimension whose size is four times
of that of the cell state.

Returns Two Variable objects ¢ and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.

See also:

LSTM

Example

Assuming v is the current incoming signal, c is the previous cell state, and h is the previous outgoing signal
from an 1stm function. Each of y, c and h has n_units channels. Most typical preparation of x is:

>>> n_units = 100
>>> y = chainer.Variable (np.zeros((l, n_units), np.float32))
>>> h = chainer.Variable (np.zeros((l, n_units), np.float32))

(continues on next page)

156

Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
http://www.felixgers.de/papers/phd.pdf
http://www.felixgers.de/papers/phd.pdf

Chainer Documentation, Release 6.1.0

(continued from previous page)

>>> ¢ = chainer.Variable (np.zeros((1l, n_units), np.float32))
>>> model = chainer.Chain()
>>> with model.init_scope() :
model.w = L.Linear (n_units, 4 * n_units)
model.v = L.Linear (n_units, 4 * n_units)
>>> x = model.w(y) + model.v(h)
>>> ¢, h = F.lstm(c, x)

It corresponds to calculate the input array x, or the input sources a, 7, f, o, from the current incoming signal y
and the previous outgoing signal h. Different parameters are used for different kind of input sources.

Note: We use the naming rule below.

* incoming signal The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of
lower RNN layer). The input of chainer. 1inks.LSTM is the incoming signal.

e input array The array which is linear transformed from incoming signal and the previous outgoing signal.
The input array contains four sources, the sources of cell input, input gate, forget gate and output gate.
The input of chainer. functions.activation.lstm.LSTM is the input array.

chainer.functions.maxout
chainer. functions.maxout (x, pool_size, axis=1)
Maxout activation function.

It accepts an input tensor x, reshapes the axis dimension (say the size being M * pool_size) into two
dimensions (M, pool_size), and takes maximum along the axis dimension.

Parameters

* x (Variable or N-dimensional array) — Input variable. A n-dimensional (n > axis)
float array. In general, its first dimension is assumed to be the minibatch dimension. The
other dimensions are treated as one concatenated dimension.

* pool_size (int)— The size used for downsampling of pooling layer.

* axis (int) — The axis dimension to be reshaped. The size of axis dimension should
beM *» pool_size.

Returns Output variable. The shape of the output is same as x except that axis dimension is
transformed fromM * pool_size toM.

Return type Variable
See also:

Maxout

Example

Typically, x is the output of a linear layer or a convolution layer. The following is the example where we use
maxout () in combination with a Linear link.

4.2. Functions 157

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

>>> in_size, out_size, pool_size = 10, 10, 10

>>> pbias = np.arange (out_size % pool_size) .astype(np.float32)
>>> 1 = L.Linear (in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((l, in_size), np.float32) # prepare data
>>> x = 1(x)

>>> y = F.maxout (x, pool_size)

>>> x.shape

(1, 100)

>>> y.shape

(1, 10)

>>> x.reshape ((out_size, pool_size)) .array

array ([[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.1,

]
10., 11., 12., 13., 14., 15., 16., 17., 18., 19.]
20., 21., 22., 23., 24., 25., 26., 27., 28., 29.]
30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]
40., 41., 42., 43., 44., 45., 46., 47., 48., 49.],
50., 51., 52., 53., 54., 55., 56., 57., 58., 59.]
60., 61., 62., 63., 64., 65., 66., 67., 68., 69.]
70., 71., 72., 73., 74., 5., 76., 7., 78., 79.]
80., 81., 82., 83., 84., 85., 86., 87., 88., 89.]
[90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]
>>> y.array

array ([[9., 19., 29., 39., 49., 59., 69., 79., 89., 99.1], dtype=float32)

r
], dtype=float32)

chainer.functions.prelu
chainer. functions.prelu(x, W)
Parametric ReLU function.
It accepts two arguments: an input x and a weight array W and computes the output as

PReLU (z;) =
eLU(:) Wi xx; (otherwise)

Parameters

* x (Variable or N-dimensional array) — Input variable. Its first axis is assumed to be the
minibatch dimension.

* W(Variable or N-dimensional array) — Weight variable.
Returns Output variable

Return type Variable

Example

>>> x = np.arange (-3, 3, dtype=np.float32) .reshape((2, 3))
>>> x
array ([[-3., -2., -1.1,
[0., 1., 2.11, dtype=float32)
>>> W = np.array([0.01, 0.1, 1], dtype=np.float32)
>>> W
array([0.01, 0.1 , 1.], dtype=float32)
>>> F.prelu(x, W)

(continues on next page)

158 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

(continued from previous page)

variable([[-0.03, -0.2 , -1. 1,
[o. , 1. , 2. 11)

Note: When the PReLU function is combined with two-dimensional convolution, the elements of parameter
W are typically shared across the same filter of different pixels. In order to support such usage, this func-
tion supports the shape of parameter array that indicates leading dimensions of input arrays except the batch
dimension.

For example, if W has the shape of (2,3, 4), « must have the shape of (B,2,3,4,51, ..., Sy) where B is the
batch size and the number of trailing S’s IV is an arbitrary non-negative integer.

See also:

chainer.links.PReLU

chainer.functions.rrelu

chainer.functions.rrelu (x,[=1./8, u=1./3, * r=None, return_r=False)

Randomized Leaky Rectified Liner Unit function.

This function is expressed as
f(z) = max(z, rz),

where r is a random number sampled from a uniform distribution U (I, u).

Note: The r corresponds to a in the original paper (https://arxiv.org/pdf/1505.00853.pdf).

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, sg, ..., sy)-shaped float
array.
e 1 (float) - The lower bound of the uniform distribution.

* u (float)— The upper bound of the uniform distribution.

* r (N-dimensional array or None) — The r to be used for rrelu. The shape and dtype must be
the same as x [0] and should be on the same device. If r is not specified or set to None, an
r will be generated randomly according to the given 1 and u. If r is specified, 1 and u will
be ignored.

* return_r (bool) — If True, the r used for rrelu is returned altogether with the output
variable. The returned r can latter be reused by passing it to r argument.

Returns When return_r is False (default), return the output variable. Otherwise returnes the
tuple of the output variable and r (N-dimensional array). The r will be on the same device as
the input. A (s, s2, ..., s)-shaped float array.

Return type Variable or tuple

Example

4.2. Functions 159

https://arxiv.org/pdf/1505.00853.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

>>> x = np.array([[-1, 01, [2, -3]1, [-2, 111, np.float32)
>>> x
array ([[-1., 0.7,
[2., =-3.1,
[-2., 1.]], dtype=float32)
>>> F.rrelu(x) .array # doctest: +SKIP

array ([[-0.24850948, 0. 1,
[2. , —0.50844127],
[-0.598535 , 1. 1], dtype=float32)

chainer.functions.relu

chainer.functions.relu (x)
Rectified Linear Unit function.

f(z) = max(0, z).

Parameters x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., s)-shaped
float array.
Returns Output variable. A (s1, s2, ..., S)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 01, [2, -3], [-2, 111, np.float32)
>>> np.any(x < 0)

True

>>> y = F.relu(x)

>>> np.any(y.array < 0)
False

>>> y.shape
(3, 2)

chainer.functions.relu6
chainer.functions.relu6 (x)
Rectifier Unit function clipped at 6.
It computes
ReLU6(x) = min(max(0,), 6).
Parameters x (Variable or N-dimensional array)—Input variable. A (s1, sa, ..., S,)-shaped float
array.
Returns Output variable. A (s1, s9, ..., S,)-shaped float array.
Return type Variable
See also:

chainer. functions.clipped_relu()

160 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Example

>>> X np.array([-20, -2, 0, 2, 4, 10, 100]).astype(np.float32)

>>> x

array ([-20., -2., 0., 2., 4., 10., 100.], dtype=float32)
>>> F.relub (x)

variable([0., 0., 0., 2., 4., 6., 6.1])

chainer.functions.selu
chainer.functions.selu (x, alpha=1.6732632423543772, scale=1.0507009873554805)
Scaled Exponential Linear Unit function.

For parameters « and)\, it is expressed as

T ifxz>0

@) =)\{ alexp(z) —1) ifx <0,
See: https://arxiv.org/abs/1706.02515
Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, S, ..., S)-shaped float
array.

* alpha (float)— Parameter a.
e scale (float)— Parameter \.
Returns Output variable. A (s1, S2, ..., S)-shaped float array.

Return type Variable

chainer.functions.sigmoid

chainer.functions.sigmoid (x)
Element-wise sigmoid logistic function.

f@) = (1 +exp(—=)) "
Parameters x (Variable or N-dimensional array) — Input variable. A (s1,Sa, ..., sy)-shaped
float array.
Returns Output variable. A (s1, sg, ..., sy)-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

4.2. Functions 161

https://arxiv.org/abs/1706.02515
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

>>> x = np.arange (-2, 3, 2).astype(np.float32)

>>> x

array([-2., 0., 2.1, dtype=float32)

>>> F.sigmoid(x) .array

array([0.11920291, 0.5 , 0.8807971], dtype=float32)

chainer.functions.slstm

chainer.functions.slstm(c_prevl, c_prev2, xl, x2)

S-LSTM units as an activation function.

This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function
is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states c_prevl
and c_prev2, and input arrays x1 and x2.

First both input arrays x1 and x2 are split into eight arrays a1, i1, f1, 01, and as, i2, f2, 02. They have the same
shape along the second axis. It means that x1 and x2 ‘s second axis must have 4 times the length of c_prevl
and c_prev2.

The split input arrays are corresponding to:
e a; : sources of cell input
* 4; : sources of input gate
 f; : sources of forget gate
* 0, : sources of output gate
It computes the updated cell state ¢ and the outgoing signal h as:
¢ = tanh(a; + a2)o (i1 + 92) + corevio (f1) + Cprevao (f2),
h = tanh(c)o (01 + 02),
where o is the elementwise sigmoid function. The function returns c and h as a tuple.
Parameters

* c_prevl (Variable or N-dimensional array)— Variable that holds the previous cell state
of the first child node. The cell state should be a zero array or the output of the previous call
of LSTM.

* c_prev2 (Variable or N-dimensional array) — Variable that holds the previous cell state
of the second child node.

* x1 (Variable or N-dimensional array) — Variable that holds the sources of cell input,
input gate, forget gate and output gate from the first child node. It must have the second
dimension whose size is four times of that of the cell state.

* x2 (Variable or N-dimensional array) — Variable that holds the input sources from the
second child node.

Returns Two Variable objects c and h. c is the cell state. h indicates the outgoing signal.
Return type tuple

See detail in paper: Long Short-Term Memory Over Tree Structures.

Example

162

Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1503.04881

Chainer Documentation, Release 6.1.0

Assuming c1, c2 is the previous cell state of children, and h1, h2 is the previous outgoing signal from children.
Each of c1, c2, h1l and h2 has n_units channels. Most typical preparation of x1, x2 is:

>>> n_units = 100
>>> hl = chainer.Variable(np.zeros((l, n_units), np.float32))
>>> h2 = chainer.Variable(np.zeros((l, n_units), np.float32))
>>> ¢l = chainer.Variable (np.zeros((l, n_units), np.float32))
>>> c2 = chainer.Variable(np.zeros((l, n_units), np.float32))
>>> modell = chainer.Chain ()
>>> with modell.init_scope () :

modell.w = L.Linear(n_units, 4 * n_units)

modell.v = L.Linear(n_units, 4 * n_units)
>>> model?2 = chainer.Chain()
>>> with model2.init_scope() :

model2.w = L.Linear(n_units, 4 * n_units)

model2.v = L.Linear(n_units, 4 * n_units)
>>> x1 = modell.w(cl) + modell.v(hl)
>>> x2 = model2.w(c2) + model2.v(h2)
>>> ¢, h = F.slstm(cl, c2, x1, x2)

It corresponds to calculate the input array x1, or the input sources a1, i1, f1, 01 from the previous cell state of
first child node c1, and the previous outgoing signal from first child node h1. Different parameters are used for
different kind of input sources.

chainer.functions.softmax
chainer.functions.softmax (x, axis=1)
Softmax function.
This function computes its softmax along an axis. Let ¢ = (¢1, o, . .., ¢p) be the slice of x along with the axis.
. . . _ _exp(o)
For each slice ¢, it computes the function f(c) defined as f(c) = S, oxplea)”

Parameters

* x (Variable or N-dimensional array) — Input variable. A n-dimensional (n > 2) float
array.

* axis (int)— The axis along which the softmax is to be computed.
Returns Output variable. A n-dimensional (n > 2) float array, which is the same shape with x.

Return type Variable

Example

>>> x = np.array ([[0, 1, 21, [0, 2, 411, np.float32)
>>> x
array ([[0., 1., 2.1,
[0., 2., 4.]1], dtype=float32)
>>> y = F.softmax (x, axis=1)
>>> y.array
array ([[0.09003057, 0.24472848, 0.66524094],
[0.01587624, 0.11731043, 0.86681336]], dtype=float32)
>>> F.sum(y, axis=1).array
array([1., 1.], dtype=float32)

4.2. Functions 163

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.softplus
chainer.functions.softplus (x, beta=1.0)
Element-wise softplus function.

The softplus function is the smooth approximation of ReL.U.

_1
B

where (3 is a parameter. The function becomes curved and akin to ReL.U as the f3 is increasing.

f(x) log(1 + exp(fz)),

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, Sa, ..., sy)-shaped float
array.

e beta (f1oat)— Parameter 3.
Returns Output variable. A (s1, so, ..., sy)-shaped float array.

Return type Variable

Example

>>> x = np.arange (-2, 3, 2).astype(np.float32)

>>> x

array([-2., 0., 2.1, dtype=float32)

>>> F.softplus(x, beta=1.0).array

array ([0.126928 , 0.6931472, 2.126928], dtype=float32)

chainer.functions.swish

chainer.functions.swish (x, beta)
Swish activation function.

f(xaﬂ) = U(ﬂl’),

where o (-) is the sigmoid function. It has the following properties:

f,0) =3,
511111 f(z, B) = max(0, x).

Parameters

* x (Variable or N-dimensional array)—Input variable of shape (sg, s1, 2, ..., SN), Where
sp 1s assumed to be the minibatch dimension.

* beta (Variable or N-dimensional array) — Parameter variable [of shape
(s1, 82, ..., 80), where M is an arbitrary integer between 0 < M < N. The number of
dimensions of beta will be matched with x by reshaping it as (1, s1, ..., sas, 1, ...1), then
beta and x are multiplied together in an element-wise manner.

Returns Output variable of the same shape as x.

Return type Variable

164 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

Warning: [is a trainable parameter in the original paper (https://arxiv.org/abs/1710.05941). To train 3,
use chainer.links.Swish instead.

See also:

chainer.links.Swish

chainer.functions.tanh

chainer.functions.tanh (x)
Elementwise hyperbolic tangent function.

f(z) = tanh(x).
Parameters x (Variable or N-dimensional array) — Input variable. A (s1, S, ..., Sy)-shaped
float array.
Returns Output variable. A (s1, so, ..., sy)-shaped float array.

Return type Variable

Example

>>> x = np.arange (-1, 4, 2).astype(np.float32)

>>> x

array([-1., 1., 3.], dtype=float32)

>>> F.tanh(x) .array

array ([-0.7615942, 0.7615942, 0.9950548], dtype=float32)

chainer.functions.tree_Istm
chainer.functions.tree_lstm (*inputs)
TreeLSTM unit as an activation function.

This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the chil-
dren cell states cy, c, . . ., cN, and the incoming signal x.

First, the incoming signal x is split into (3 + N) arrays a, ¢, 0, fi, f2, ..., fn of the same shapes along the second
axis. It means that = ‘s second axis must have (3 + N) times of the length of each c¢,,.

The splitted input signals are corresponding to:
* a : sources of cell input
* 7 : sources of input gate
* o: sources of output gate

e f, : sources of forget gate for n-th ary

4.2. Functions 165

https://arxiv.org/abs/1710.05941

Chainer Documentation, Release 6.1.0

Second, it computes outputs as:

¢ = tanh(a)sigmoid(7)
+ ¢ysigmoid(fy),
+ cpsigmoid(f,),
+ .
+ censigmoid(fn),
h = tanh(c)sigmoid(o).

These are returned as a tuple of (N + 1) variables.

Parameters inputs (list of Variable)— Variable arguments which include all cell vectors from
child-nodes, and an input vector. Each of the cell vectors and the input vector is Variable or
N-dimensional array. The input vector must have the second dimension whose size is (N + 3)
times of that of each cell, where N denotes the total number of cells.

Returns Two Variable objects ¢ and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. only has one W matrix to be applied to x, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

Example

Assuming vy is the current input signal, c is the previous cell state, and h is the previous output signal from an
tree_lstm () function. Each of y, ¢ and h has n_units channels. Using 2-ary (binary) TreeLSTM, most
typical preparation of x is:

>>> model = chainer.Chain ()

>>> with model.init_scope() :
model.w = L.Linear (10, 5 % 10)
model.vl = L.Linear (10, 5 * 10)
model.v2 = L.Linear (10, 5 * 10)

>>> y = np.random.uniform (-1, 1, (4, 10)).astype(np.float32)
>>> hl = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> ¢l = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> x = model.w(y) + model.vl(hl) + model.v2(h2)

>>> ¢, h = F.tree_lstm(cl, c2, x)

It corresponds to calculate the input sources a, , 0, fi, f from the current input y and the children’s outputs h1
and h2. Different parameters are used for different kind of input sources.

4.2.3 Array manipulations

166 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf

Chainer Documentation, Release 6.1.0

chainer. functions.

as_strided

Create a new view of array with the given shape, strides,
and offset.

chainer.functions.

broadcast

Broadcast given variables.

chainer.functions.

broadcast_to

Broadcast a given variable to a given shape.

chainer.functions.

cast

Cast an input variable to a given type.

chainer. functions.concat Concatenates given variables along an axis.

chainer. functions.copy Copies the input variable onto the specified device.

chainer.functions.depthZspace Computes the depth2space transformation for subpixel
calculations.

chainer. functions.diagonal Take diagonal

chainer. functions.dstack Concatenate variables along third axis (depth wise).

chainer. functions.expand_dims Expands dimensions of an input variable without copy.

chainer.functions.flatten Flatten a given array into one dimension.

chainer.functions.flip Flips an input variable in reverse order along the given
axis.

chainer.functions.fliplr Flip array in the left/right direction.

chainer. functions. flipud Flip array in the up/down direction.

chainer. functions.

get_item

Extract elements from array with specified shape, axes
and offsets.

chainer. functions.hstack Concatenate variables horizontally (column wise).
chainer. functions.im2col Extract patches from an image based on the filter.
chainer. functions.moveaxis Move the source axes to the destination.
chainer. functions.pad Pad an input variable.

chainer. functions.pad_sequence Pad given arrays to make a matrix.

chainer. functions.permutate Permutates a given variable along an axis.
chainer. functions.repeat Construct an array by repeating a given array.
chainer. functions.reshape Reshapes an input variable without copy.
chainer.functions.resize_images Resize images to the given shape.
chainer.functions.rollaxis Roll the axis backwards to the given position.

chainer. functions.

scatter_add

Adds given values to specified elements of an array.

chainer.functions.

select_item

Select elements stored in given indices.

chainer. functions.

separate

Separates an array along a given axis.

chainer.functions.

spaceZdepth

Computes the space2depth transformation for subpixel
calculations.

chainer. functions.

spatial transformer_grid

2D Spatial Transformer grid.

chainer. functions.

spatial_transformer_sampler

2D Spatial Transformer sampler.

chainer.functions.

split_axis

Splits given variables along an axis.

chainer. functions.squeeze Remove demensions of size one from the shape of a
ndarray.

chainer. functions.stack Concatenate variables along a new axis.

chainer.functions.swapaxes Swap two axes of a variable.

chainer.functions.tile Construct an array by tiling a given array.

chainer. functions.transpose Permute the dimensions of an input variable without

copy.

chainer.functions.

transpose_sequence

Transpose a list of Variables.

chainer.functions.

vstack

Concatenate variables vertically (row wise).

chainer.functions.

where

Choose elements depending on condition.

4.2. Functions

167

Chainer Documentation, Release 6.1.0

chainer.functions.as_strided

chainer.functions.as_strided (x, shape, strides, storage_offset=None)

Create a new view of array with the given shape, strides, and offset.
Parameters

* x (tuple of Variable or numpy.ndarray or cupy.ndarray)— The array pointing a
memory buffer. Its view is totally ignored.

* shape (tuple of int)- The shape of output.
* strides (tuple of int)- The strides of output, given in the unit of steps.

* storage_offset (int) — The offset between the head of allocated memory and the
pointer of first element, given in the unit of steps.

Returns The strided variable.

Return type Variable

Warning: Users should be aware that this function potentially causes unintended side effects. See
numpy.lib.stride_tricks.as_strided for the detail.

Note: The backward algorithm is borrowed from forch.Tensor.as_strided. Therefore, the returned gradient of
backward is layout-agnostic when x contains memory overlap. See notes in pytorch’s source code (as_strided
Backward and layout-aware/agnostic autograd) too.

Note: In this function strides and storage_offset are given in the unit of steps instead of bytes. This
specification differs from numpy . lib.stride_tricks.as_strided().

Example

>>> from chainer import functions as F, Variable
>>> x = Variable (np.arange (4, dtype=np.float32))
>>> x

variable ([0., 1., 2., 3.1)

>>> y = F.as_strided(x, (3, 2), (1, 1), 0)

>>> y

variable ([[0., 1.1,
(1., 2.1,
[2., 3.11)

>>> y.grad = np.ones((3, 2), dtype=np.float32)
>>> y.backward ()

>>> x.grad

array([1., 2., 2., 1.], dtype=float32)

chainer.functions.broadcast

chainer.functions.broadcast (*args)

Broadcast given variables.

168

Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided

Chainer Documentation, Release 6.1.0

Parameters args (Variable or N-dimensional array) — Input variables to be broadcasted. Each
dimension of the shapes of the input variables must have the same size.

Returns Variable ortuple of Variable objects which are broadcasted from given arguments.

Return type Variable

Example

>>> x = np.random.uniform (0, 1, (3, 2)).astype(np.float32)
>>> y = F.broadcast (x)

>>> np.all(x == y.array)

True

>>> z = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> vy, w = F.broadcast (x, z)

>>> np.all(x == y.array) & np.all(z == w.array)

True

chainer.functions.broadcast_to
chainer.functions.broadcast_to (x, shape)
Broadcast a given variable to a given shape.
Parameters

* x (Variable or N-dimensional array) — Input variable be broadcasted. A (s1, $2, ..., SN)-
shaped float array.

* shape (tuple)— Tuple of int of the shape of the output variable.
Returns Output variable broadcasted to the given shape.

Return type Variable

Example

>>> x = np.arange (0, 3)
>>> x
array ([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.array
array([[0, 1, 21,
[0, 1, 2]

chainer.functions.cast
chainer.functions.cast (x, fyp)
Cast an input variable to a given type.
Parameters

* x (Variable or N-dimensional array) — Input variable to be casted. A (s1, S2,..., SN)-
shaped array.

4.2. Functions 169

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* typ (str of dtype or numpy . dt ype) — Typecode or data type to cast.
Returns Variable holding a casted array.

Return type Variable

Example

>>> x = np.arange (0, 3, dtype=np.float64)
>>> x.dtype

dtype ('float64")

>>> y = F.cast(x, np.float32)

>>> y.dtype

dtype ('float32")

>>> y = F.cast(x, 'floatlé6')

>>> y.dtype

dtype ('floatl6")

chainer.functions.concat
chainer.functions.concat (xs, axis=1)
Concatenates given variables along an axis.
Parameters

* xs (tuple of Variable or N-dimensional array) — Input variables to be concatenated. The
variables must have the same shape, except in the dimension corresponding to axis.

* axis (int) - The axis along which the arrays will be joined. Default is 1.
Returns The concatenated variable.

Return type Variable

Example
>>> x = np.arange (0, 12).reshape (3, 4)
>>> x
array ([[O, 1, 2, 31,
[4, 5, 6, 71,
[8, 9, 10, 1111)
>>> y = np.arange (0, 3).reshape(3, 1)
>>> y
array ([[0],
[11,
[211)
>>> 7z = F.concat ((x, y), axis=1l)
>>> z.array
array ([[O, 1, 2, 3, 01,
[4, 5, 6, 7, 11,
[8, 9, 10, 11, 211)

170 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.copy
chainer.functions.copy (x, dst)
Copies the input variable onto the specified device.

If the input x already resides on the device specified by dst, no copy will actually take place and the returned
variable will hold a view of the input. In other cases, the input will be copied to dst. When dst == -1, the
array is copied to the host memory. This function supports copies from host to host, from host to device, from
device to device and from device to host.

Parameters
* x (Variable or N-dimensional array) — Variable to be copied.
* dst (int)— Target device specifier.

Returns Output variable.

Return type Variable

Example

>>> import chainer.backends.cuda as cuda

>>> x = np.random.uniform(-1, 1, (5, 10))
>>> cuda.get_device_from_array (x) .id
-1

>>> y = F.copy(x, 0) # from host to devicel
>>> cuda.get_device_from_array(y.array) .id

0

>>> z = F.copy(y, —-1) # from device0O to host
>>> cuda.get_device_from_array(z.array) .id
-1

chainer.functions.depth2space
chainer.functions.depth2space (X, r)
Computes the depth2space transformation for subpixel calculations.
Parameters

* X (Variable or N-dimensional array) — Variable holding a 4d array of shape (batch,
channel * r % r, diml, dim2).

* r (int) — the upscaling factor.

Returns A variable holding the upscaled array from interspersed depth layers. The shape is
(batch, channel, diml % r, dim2 % r).

Return type Variable

Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for
details.

See also:

spaceZdepth ()

4.2. Functions 171

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158

Chainer Documentation, Release 6.1.0

Example

>>> X = np.arange (24) .reshape (1, 4, 2, 3).astype(np.float32)
>>> X.shape

(1, 4, 2, 3)
>>> X
array ([[[[O., 1., 2.1,
[3., 4., 5.11,
<BLANKLINE>
([6., 7., 8.1,
[9., 10., 11.]11,
<BLANKLINE>

[[12., 13., 14.]1,
[15., 16., 17.]11,
<BLANKLINE>
(r(18., 19., 20.1,
[21., 22., 23.]111], dtype=float32)
>>> y = F.depth2space (X, 2)
>>> y.shape

(1, 1, 4, o)
>>> y.array
arfaY([[[[O-l 6-1 l-l 7-7 2-7 8]/

[12., 18., 13., 19., 14., 20.1,
[3., 9., 4., 10., 5., 11.7,
[15., 21., 16., 22., 17., 23.11]1]1, dtype=float32)

chainer.functions.diagonal
chainer.functions.diagonal (x, offset=0, axisI=0, axis2=1)
Take diagonal
Axes other than axis1 and axis?2 are regarded as batch dimensions.
Parameters
* x (Variable or N-dimensional array) — A variable to be sliced.

* offset (int) — Offset from the principal diagonal. An upper diagonal matrix can have
nonzero diagonals with nonnegative offsets.

e axisl (int)— First axis (that has row indices) of matrix
e axis2 (int)— Second axis (that has column indices) of matrix
Returns (Batched) diagonal vectors

Return type Variable

Example

>>> x = chainer.Variable (np.arange (9) .reshape (3, 3).astype(np.float32))

>>> x

variable ([[0., 1., 2.7,
[3., 4., 5.1,
[6., 7., 8.11)

>>> chainer.functions.diagonal (x, offset=1)
variable([1., 5.])

172 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.dstack

chainer.functions.dstack (xs)
Concatenate variables along third axis (depth wise).

Parameters xs (list of Variable or N-dimensional array) — Input variables to be concatenated.
The variables must have the same ndim. When the variables have the third axis (i.e. ndim > 3),
the variables must have the same shape along all but the third axis. When the variables do not
have the third axis(i.e. ndim < 3), the variables must have the same shape.

Returns Output variable. When the input variables have the third axis (i.e. ndim > 3), the shapes
of inputs and output are the same along all but the third axis. The length of third axis is the sum
of the lengths of inputs’ third axis. When the shape of variables are (N1, N2) (i.e. ndim = 2),
the shape of outputis (N1, N2, 2). When the shape of variablesare (N1,) (i.e. ndim = 1),
the shape of outputis (1, N1, 2). When the shape of variables are () (i.e. ndim = 0), the
shape of outputis (1, 1, 2).

Return type Variable

Example

>>> x1 = np.array((1l, 2, 3))
>>> x1.shape

(3,)

>>> x2 = np.array((2, 3, 4))
>>> x2.shape

(3,)

>>> y = F.dstack ((x1l, x2))
>>> y.shape

(1, 3, 2)
>>> y.array
array ([[[1, 21,
(2, 31,
(3, 4111)
>>> x1 = np.arange (0, 6) .reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array ([[0, 1],
(2, 31,
(4, 511)
>>> x2 = np.arange (6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array ([[6, 71,
[8, 91,
[10, 1111)

>>> y = F.dstack ([x1l, x21])
>>> y.shape

(3, 2, 2)

>>> y.array

array ([[[0, 61,

(continues on next page)

4.2. Functions 173

Chainer Documentation, Release 6.1.0

(continued from previous page)

(1, 711,
<BLANKLINE>
[r2, 8i,
[3, 911,
<BLANKLINE>
[[4, 107,
[5, 11110
>>> x1 = np.arange (0, 12).reshape(3, 2, 2)
>>> x2 = np.arange (12, 18).reshape(3, 2, 1)
>>> y = F.dstack ([x1l, x2])
>>> y.shape
(3, 2, 3)
>>> y.array
array ([[[O, 1, 127,
[2, 3, 1311,
<BLANKLINE>
[[4, 5, 1471,
[6, 7, 1511,
<BLANKLINE>
[[8, 9, 1leo],
(10, 11, 17111)

chainer.functions.expand_dims

chainer.functions.expand_dims (x, axis)

Expands dimensions of an input variable without copy.
Parameters
* x (Variable or N-dimensional array) — Input variable.

* axis (int)— Position where new axis is to be inserted. The axis parameter is acceptable
when —ndim — 1 < azis < ndim. (ndim is the dimension of input variables). When
axis < 0, the result is the same with ndim + 1 — |axis|.

Returns Variable that holds a expanded input. The ndim of output is one grater than that of x.

Return type Variable

Example

>>> x = np.array([1l, 2, 31])

>>> x.shape

(3,)

>>> y = F.expand_dims (x, axis=0)
>>> y.shape

(1, 3)

>>> y.array

array ([[1, 2, 311)

>>> y = F.expand_dims (x, axis=1)

>>> y.shape
(3, 1)
>>> y.array

(continues on next page)

174

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

(continued from previous page)

array ([[1],
[21,
[311)
>>> y = F.expand_dims (x, axis=-2)
>>> y.shape
(1, 3)
>>> y.array
array ([[1, 2, 311])

chainer.functions.flatten

chainer.functions.flatten (x)
Flatten a given array into one dimension.

Parameters x (Variable or N-dimensional array) — Input variable.

Returns Output variable flatten to one dimension.

Return type Variable

Note: When you input a scalar array (i.e. the shape is ()), you can also get the one dimension array whose

shape is (1,).

Example

>>> x = np.array ([[1l, 2], [3, 411])
>>> x.shape

(2, 2)

>>> y = F.flatten (x)

>>> y.shape

(4,)

>>> y.array

array ([1, 2, 3, 41)

>>> x = np.arange (8) .reshape (2, 2, 2)
>>> x.shape

(2, 2, 2)

>>> y = F.flatten (x)

>>> y.shape

(8,)

>>> y.array

array ([0, 1, 2, 3, 4, 5, 6, 71)

chainer.functions.flip

chainer.functions. £flip (x, axis)

Flips an input variable in reverse order along the given axis.

Parameters

* x (Variable or N-dimensional array) — Input variable.

4.2. Functions

175

Chainer Documentation, Release 6.1.0

* axis (int)— Axis along which the input variable is reversed.
Returns Output variable.

Return type Variable

chainer.functions.fliplr
chainer.functions.fliplr (a)
Flip array in the left/right direction.
Parameters a (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.flipud
chainer.functions. flipud(a)
Flip array in the up/down direction.
Parameters a (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.get_item
chainer.functions.get_item (x, slices)
Extract elements from array with specified shape, axes and offsets.
Parameters

* x (Variable or N-dimensional array) — A variable to be sliced.

* slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) — An object to specify the selection
of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy . float 32, numpy.int 32, numpy.uint32, numpy.uint64
and numpy .ulonglong.

Note: It does not support s1ices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

176 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Chainer Documentation, Release 6.1.0

variable ([0, 1]

variable([[2,
[8,

variable ([9])

>>> F.get_item(x,
5],
111)
>>> F.get_item(x,

>>> x = np.arange (12) .reshape((2, 2, 3))
>>> x
array ([[[O, 1, 2],
[3, 4, 511,
<BLANKLINE>
(r e, 7, 81,
[9, 10, 11111)
>>> F.get_item(x, 0)
variable([[0, 1, 21,
[3, 4, 511)
>>> F.get_item((0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]

(Ellipsis, 2)) # equals x[..., 2]

(1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]

chainer.functions.hstack

chainer.functions.hstack (xs)
Concatenate variables horizontally (column wise).

Parameters xs (list of Variable or N-dimensional array) — Input variables to be concatenated.
The variables must have the same ndim. When the variables have the second axis (i.e. ndim >
2), the variables must have the same shape along all but the second axis. When the variables do
not have the second axis(i.e. ndim < 2), the variables need not to have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. ndim > 2), the shapes
of inputs and output are the same along all but the second axis. The length of second axis is the
sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e.

ndim < 2), the shape of output is (N,

) (N is the sum of the input variables’ size).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape

(3,)

>>> x2 = np.array((2, 3, 4))

>>> x2.shape
(3,)

>>> y.shape
(6,)

>>> y.array
array ([1, 2, 3,

o, 1,
4

’ ’

[

>>> y = F.hstack ((x1,

>>> x1 = np.arange (0,
>>> x1.shape

(3, 4)

>>> x1

array ([[

2, 3, 41)

12) .reshape (3, 4)

(continues on next page)

4.2. Functions

177

Chainer Documentation, Release 6.1.0

(continued from previous page)

(8 9, 10, 1111)

>>> x2 = np.arange (12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],
[14, 15],
[16, 1711)

>>> y = F.hstack ([x1l, x21])
>>> y.shape

(3, 6)
>>> y.array
array([[O, 1, 2, 3, 12, 13],

[4, 5, 6, 7, 14, 157,
[8 9, 10, 11, 16, 1711)

chainer.functions.im2col
chainer.functions.im2col (x, ksize, stride=1, pad=0, cover_all=False, dilate=1)
Extract patches from an image based on the filter.
This function rearranges patches of an image and puts them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of st ride from the first position —pad for each spatial
axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.
* n is the batch size.
¢ cis the number of the input channels.
e h and w are the height and width of the input image, respectively.
* kp and kyy are the height and width of the filters, respectively.
* sy and sx are the strides of the filter.
* py and pyy are the spatial padding sizes.
* dy and dx are the dilation factors of filter application.
The output size (ho, wo) is determined by the following equations when cover_all = False:
ho = (h+2pg — kg — (kg — 1) x (dy — 1))/sy + 1,
wo = (w+2pw — kw — (kw — 1) % (dx — 1))/sx + 1.
When cover_all = True, the output size is determined by the following equations:
ho=(h+2pg — kg — (kg — 1) x (dy — 1)+ sy — 1)/sy + 1,
wo = (w+2pw —kw — (kw — 1) % (dx — 1) +sx —1)/sx + 1.
Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢, h, w).

e ksize (int or pair of ints) — Size of filters (a.k.a. Kkernels). ksize=k and
ksize=(k, k) areequivalent.

178 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of ints) - Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

* cover_all (bool)-If True, all spatial locations are rearranged into some output pixels.
It may make the output size larger.

* dilate (int or pair of ints) - Dilation factor of filter applications. dilate=d
and dilate=(d, d) areequivalent.

Returns Output variable whose shape is (n,c¢- ky - kw, ho, wo)

Return type Variable

chainer.functions.moveaxis
chainer.functions.moveaxis (x, source, destination)
Move the source axes to the destination.

This function transpose the input x by moving the axes source to the axes destination. Other axes remain
in their original order.

See also chainer. functions.transpose (), chainer. functions.swapaxes ().
Parameters
* x (Variable or N-dimensional array) — Input variable.

* source (int or tuple of int) — Original positions of the axes to move. These
must be unique.

* destination (int or tuple of int)- Destination positions for each of the orig-
inal axes. These must also be unique.

Returns Variable whose axis is moved.

Return type Variable

Example

>>> x = np.zeros((2, 3, 4, 5), np.float32)

>>> chainer.functions.moveaxis(x, 0, —1).shape

(3, 4, 5, 2)

>>> chainer.functions.moveaxis(x, (0, 3), (2, 0)).shape
(5, 3, 2, 4)

chainer.functions.pad
chainer. functions.pad (x, pad_width, mode, **keywords)
Pad an input variable.
Parameters
* x (Variable or N-dimensional array) — Input data.

* pad_width (int or array-like)— Number of values padded to the edges of each
axis.

4.2. Functions 179

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* mode (str) — Specifies how the function fills the periphery of the array. The mode is
passed to numpy . pad () or cupy.pad (). Ifitis 'constant', the input is padded by
a constant value specified by constant_values.

* constant_values (int or array-1like)- Constant values to fill the periphery in
the 'constant ' mode.

Returns Output variable.

Return type Variable

chainer.functions.pad_sequence
chainer.functions.pad_sequence (xs, length=None, padding=0)
Pad given arrays to make a matrix.
Parameters
* xs (list of ~chainer.Variable or N-dimensional array) — Variables you want to concatenate.

* length (None or int) — Size of the first dimension of a padded array. If it is None,
the longest size of the first dimension of xs is used.

* padding (int or float)- Value to fill.
Returns A padded matrix. Its shape is (n, length, ...),wheren == len(xs).

Return type Variable

chainer.functions.permutate

chainer.functions.permutate (x, indices, axis=0, inv=False)
Permutates a given variable along an axis.

This function permutate x with given indices. That means y[i] = x[indices[i]] for all i. Note
that this result is same as y = x.take (indices). indices must be a permutation of [0, 1,
len(x) — 117.

-7

When invis True, indices is treated as its inverse. That means y [indices[i]] = x[i].

Parameters

* x (Variable or N-dimensional array) — Variable to permutate. A (s1, $2, ..., S5) -shaped
float array.

* indices (Variable or N-dimensional array) — Indices to extract from the variable. A
one-dimensional int array.

* axis (int)— Axis that the input array is permutate along.
e inv (bool)-1If True, indices is treated as its inverse.
Returns Output variable.

Return type Variable

Example

180 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html#numpy.pad
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.pad.html#cupy.pad
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

>>> x = np.arange (6) .reshape ((3, 2)) .astype(np.float32)

>>> x
array ([[0., 1.7,
[2., 3.1,
[4., 5.]1]1, dtype=float32)
>>> indices = np.array([2, 0, 1], np.int32)
>>> y = F.permutate(x, indices)

>>> y.array
array ([[4., 5.7,

[0., 1.1,

[2., 3.]11, dtype=float32)
>>> y = F.permutate(x, indices, inv=True)
>>> y.array
array ([[2., 3.7,
[4., 5.1,
[0., 1.]], dtype=float32)
>>> indices np.array([1l, 0], np.int32)
>>> y = F.permutate(x, indices, axis=1)

>>> y.array
array ([[1., 0.],

[5., 4.]], dtype=float32)

chainer.functions.repeat
chainer. functions.repeat (x, repeats, axis=None)
Construct an array by repeating a given array.
Parameters
* x (Variable or N-dimensional array) — Input variable.

* repeats (int or tuple of int s) — The number of times which each element of x is
repeated.

* axis (int) - The axis along which to repeat values.
Returns The repeated output Variable.

Return type Variable

Example

>>> x = np.array ([0, 1, 21])
>>> x.shape

(3,)

>>> y = F.repeat (x, 2)

>>> y.shape

(6,)

>>> y.array

array ([0, O, 1, 1, 2, 2])

>>> x = np.array ([[1,2], [3,4]1])
>>> x.shape

(2, 2)

>>> y = F.repeat (x, 3, axis=1)
>>> y.shape

(continues on next page)

4.2. Functions

181

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

(continued from previous page)

(2, 6)

>>> y.array

array ([[1, 1, 1, 2, 2, 2
[3, 3, 3, 4, 4, 4

>>> y = F.repeat (x, (1,

>>> y.shape

(3, 2)

>>> y.array

array ([[1, 2],
[3, 41,
[3, 411)

chainer.functions.reshape

chainer.functions.reshape (x, shape)

Reshapes an input variable without copy.
Parameters
* x (Variable or N-dimensional array) — Input variable.

* shape (tuple of int s) — Expected shape of the output array. The number of elements
which the array of shape contains must be equal to that of input array. One shape dimen-
sion can be -1. In this case, the value is inferred from the length of the array and remaining
dimensions.

Returns Variable that holds a reshaped version of the input variable.
Return type Variable
See also:

numpy .reshape (), cupy.reshape ()

Example

>>> x = np.array([[1, 2, 3, 41, [5, 6, 7, 811)
>>> y = F.reshape(x, (8,))

>>> y.shape

(8,)

>>> y.array

array ([1, 2, 3, 4, 5, 6, 7, 81)

>>> y = F.reshape(x, (4, -1)) # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.array
array ([[1, 21,
[3, 41,
[5, 61,
(7, 811)
>>> y = F.reshape(x, (4, 3)) # the shape of input and output are not consistent

Traceback (most recent call last):

chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Reshape (Forward)

(continues on next page)

182

Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.reshape.html#cupy.reshape

Chainer Documentation, Release 6.1.0

(continued from previous page)

<BLANKLINE>
Expect: prod(in_types[0].shape) == prod((4, 3))
Actual: 8 != 12

chainer.functions.resize_images
chainer.functions.resize_images (x, output_shape)
Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the
sampling method.

Notation: here is a notation for dimensionalities.
* n is the batch size.
* ¢y is the number of the input channels.
¢ h and w are the height and width of the input image, respectively.

* ho and wo are the height and width of the output image.

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, h, w).

* output_shape (tuple) — This is a tuple of length 2 whose values are (h_0O, w_0O).
Note that the order of height and width is opposite of the one in OpenCV.

Returns Resized image whose shape is (n, cr, ho, wo).

Return type Variable

chainer.functions.rollaxis
chainer.functions.rollaxis (x, axis, start=0)
Roll the axis backwards to the given position.

This function continues to be supported for backward compatibility, but you should prefer chainer.
functions.moveaxis (x, source, destination).See chainer.functions.moveaxis ().

Parameters
* x (Variable or N-dimensional array) — Input variable.
* axis (int) - The axis to roll backwards.
* start (int) - The place to which the axis is moved.
Returns Variable whose axis is rolled.

Return type Variable

chainer.functions.scatter_add

chainer.functions.scatter_add (q, slices, b)
Adds given values to specified elements of an array.

4.2. Functions 183

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

This function adds b to the specified elements of the copy of a, and returns the copy. The value of the original
a is not changed.

Parameters
* a(Variable or N-dimensional array) — A variable.

* slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) — It is an integer, a slice, an
ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

* b (Variable or N-dimensional array) — A variable that is scatter added to a. Its shape has
to equal a [slices] because broadcasting of variables is not supported.

Returns A Variable object which is the result of scatter addition.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy . float 32, numpy.int 32, numpy.uint32, numpy.uint64
and numpy .ulonglong.

Note: It does not support s1ices that contains multiple boolean arrays.

See also:

numpy .add.at () and cupyx.scatter_add/().

chainer.functions.select_item
chainer.functions.select_item (x,?)
Select elements stored in given indices.
This function returns t . choose (x.T),thatmeans y[i] == x[1, t[i]] foralli.
Parameters

* x (Variable or N-dimensional array) — Variable storing arrays. A two-dimensional float
array.

* t (Variable or N-dimensional array) — Variable storing index numbers. A one-
dimensional int array. Length of the t should be equal to x. shape [0].

Returns Variable that holds t-th element of x.

Return type Variable

Example

>>> x = np.array ([[0, 1, 21, [3, 4, 511, np.float32)
t = np.array ([0, 2], np.int32)

>>> y = F.select_item(x, t)

>>> y.shape

(2,)

>>> y.array

array ([0., 5.], dtype=float32)

>>>

184 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs-cupy.chainer.org/en/stable/reference/generated/cupyx.scatter_add.html#cupyx.scatter_add

Chainer Documentation, Release 6.1.0

chainer.functions.separate
chainer.functions.separate (x, axis=0)
Separates an array along a given axis.

This function separates an array along a given axis. For example, shape of an array is (2, 3, 4). When it
separates the array with axis=1, it returns three (2, 4) arrays.

This function is an inverse of chainer. functions.stack ().
Parameters

* x (Variable or N-dimensional array) — Variable to be separated. A (s1,S2,...,SN) -
shaped float array.

* axis (int)— Axis along which variables are separated.
Returns Output variables.
Return type tuple of chainer. Variable
See also:

chainer. functions.stack ()

Example

>>> x = np.arange (6) .reshape ((2, 3)).astype(np.float32)
>>> x
array ([[0., 1., 2.1,
[3., 4., 5.1], dtype=float32)
>>> x.shape
(2, 3)
>>> y = F.separate(x) # split along axis=0
>>> isinstance(y, tuple)

True

>>> len(y)

2

>>> y[0].shape

(3,)

>>> y[0].array

array ([0., 1., 2.], dtype=float32)
>>> y = F.separate(x, axis=1)
>>> len(y)

3

>>> y[0].shape

(2,)

>>> y[0].array
array ([0., 3.], dtype=float32)

chainer.functions.space2depth
chainer.functions.space2depth (X, r)
Computes the space2depth transformation for subpixel calculations.
Parameters

* X (Variable or N-dimensional array) — Variable holding a 4d array of shape (batch,
channel, diml % r, dim2 * r).

4.2. Functions 185

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* r (int) - the downscaling factor.

Returns A variable holding the downscaled layer array from subpixel array sampling. The shape is
(batch, channel » r » r, diml, dim2).

Return type Variable

Note: This can be used to compute inverse super-resolution transformations. See https://arxiv.org/abs/1609.
05158 for details.

See also:

depthZspace ()

Example

>>> X = np.arange (24) .reshape (1, 1, 4, 6).astype(np.float32)
>>> X.shape
(1, 1, 4, o)

o., 1., 2., 3., 4., 5.1,

6., 7., 8., 9., 10., 11.],

2., 13., 14., 15., 1le6., 17.1,

8., 19., 20., 21., 22., 23.1111, dtype=float32)
>>> y = F.space2depth (X, 2)

>>> y.shape

(1, 4, 2, 3)

>>> y.array

array ([[[[O., 2., 4.7,
[12., 14., 16.11,

<BLANKLINE>

(r 2., 3., 5.1,
[13., 15., 17.]11,

<BLANKLINE>
([6., 8., 10.1,
[18., 20., 22.11,
<BLANKLINE>

(r 7., 9., 11.1,
[19., 21., 23.]1]1]]1, dtype=float32)

chainer.functions.spatial_transformer_grid
chainer.functions.spatial_transformer_grid (theta, output_shape, **kwargs)
2D Spatial Transformer grid.

This function generates coordinates of the points sampled from an image to perform warping described in Spatial
Transformer Networks.

Given a coordinate in the warped image (%, y!), the point sampled from the source image (5, y{) are calculated
by the following equation.

Note: cuDNN supports Spatial TransformerGrid from version 5.0.0.

186 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1506.02025

Chainer Documentation, Release 6.1.0

ST e

1:.
7\ _ (b b2 O3 .
y; 021 22 O3 1
Notation: here is a notation for dimensionalities.

¢ n is the batch size.

* ho and wo are the height and the width of the output image.

Parameters

* theta (Variable or N-dimensional array) — An array of shape (n, 2, 3). This is a batch
of 2 x 3 matrix used for the warping described above.

* output_shape (tuple)— A tuple of 2 elements: hp, wo.

Returns A variable of shape (n, 2, ho, wo). In the 2nd dimension, the first element is the coordinate
along the x axis, and the second element is the coordinate along the y axis. All the coordinates in
the image are scaled to fit range [—1, 1]. This means that the coordinate (—1, —1) corresponds
to the upper-left corner of the input image.

Return type Variable

chainer.functions.spatial_transformer_sampler
chainer.functions.spatial_transformer_sampler (x, grid, **kwargs)
2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points grid and an input feature map x, this
produces a sampled output feature map.

This function currently only supports bilinear interpolation as a sampling kernel.
When coordinates in grid is outside range [—1, 1], values are sampled from a zero padded input image.
Notation: here is a notation for dimensionalities.

* n is the batch size.

e ¢y is the number of the input channels.

* h and w are the height and width of the input image, respectively.

¢ ho and wo are the height and width of the output image.

See detail in the following paper: Spatial Transformer Networks.

Note: cuDNN supports Spatial TransformerSampler from version 5.0.0.

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, cy, h, w).

* grid (Variable) - Coordinate variable of shape (n, 2, ho, wo). Each coordinate defines
the spatial location in the input where a sampling kernel is applied to get the value at a
particular pixel in the output. grid[idx, :, i, 3] corresponds to the coordinate
that is used to sample the values for an output pixel at location (%, j).

4.2. Functions 187

https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1506.02025

Chainer Documentation, Release 6.1.0

In the second dimension, the first coordinate corresponds to the location along the horizontal
axis, and the second coordinate corresponds to the location along the vertical axis.

The coordinate (—1, —1) corresponds to the upper-left corner of the input image.
Returns Output feature map of shape (n, cr, ho,wo).

Return type Variable

chainer.functions.split_axis
chainer.functions.split_axis (x, indices_or_sections, axis, force_tuple=True)
Splits given variables along an axis.
Parameters
* x (Variable or N-dimensional array) — A variable to be split.

* indices_or_sections (int or 1-D array) - If this argument is an integer, N,
the array will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers,
it indicates the positions where the array is split.

* axis (int)— Axis that the input array is split along.

* force_tuple (bool) —If True (the default) this method returns a tuple even when the
number of outputs is one. Otherwise, if False a Variable will be returned when the number
of outputs is one.

Returns Tuple of Variable objects if the number of outputs is more than 1 or Variable other-
wise. When force_tuple is True, returned value is always a tuple regardless of the number
of outputs.

Return type tuple or Variable

chainer.functions.squeeze
chainer. functions.squeeze (x, axis=None)
Remove demensions of size one from the shape of a ndarray.
Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., sy) -shaped float
array.

* axis (None or int or tuple of ints)-— A subset of the single-dimensional en-
tries in the shape to remove. If None is supplied, all of them are removed. The dimension
index starts at zero. If an axis with dimension greater than one is selected, an error is raised.

Returns Variable whose dimensions of size 1 are removed.

Return type Variable

Example

>>> x = np.array ([[[[0, 1, 2111, [[[3, 4, 51111, np.float32)
>>> x.shape

(2, 1, 1, 3)

>>> y = F.squeeze (x)

>>> y.shape

(continues on next page)

188 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

(continued from previous page)

(2, 3)
>>> y.array
array ([[0., 1., 2.1,
[3., 4., 5.]1], dtype=float32)
>>> y = F.squeeze (x, axis=1)
>>> y.shape
(2, 1, 3)
>>> y.array
array ([[[0., 1., 2.11,
<BLANKLINE>
[[3., 4., 5.]11]1, dtype=float32)
>>> y = F.squeeze(x, axis= (1, 2))
>>> y.shape
(2, 3)
>>> y.array
array ([[0., 1., 2.1,
[3., 4., 5.]1], dtype=float32)

chainer.functions.stack
chainer. functions.stack (xs, axis=0)
Concatenate variables along a new axis.
Parameters

* xs (list of Variable or N-dimensional array) — Input variables to be concatenated. The
variables must have the same shape.

* axis (int) — The axis along which the arrays will be stacked. The axis parameter is
acceptable when —ndim — 1 < axis < ndim. (ndim is the dimension of input variables).
When axis < 0, the result is the same with ndim + 1 — |axis|.

Returns Output variable. Letx_1, x_2, ..., x_nandy be theinput variables and the output
variable, y [:, ey, 0, oL, lisx_1,v1[:, ee., 1, ..., :lisx_2and
vi:, ..., n-1, ..., :11isx_n (The indexed axis indicates the axis).

Return type Variable

Example

>>> x1 = np.arange (0, 12).reshape(3, 4)
>>> x1.shape

(3, 4)
>>> x1
array ([[0, 1, 2, 31,
[4, 5, 6, 11,
[8, 9, 10, 1111)
>>> x2 = np.arange (12, 24).reshape(3, 4)
>>> x2.shape
(3, 4)
>>> x2

array([[12, 13, 14, 15
[16, 17, 18, 19
[20, 21, 22, 23
>>> y = F.stack ([x1l, x

’

]
]I
D)
2]

, axis=0)

(continues on next page)

4.2. Functions 189

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

(continued from previous page)

>>> y.shape

(2, 3, 4)
>>> y.array
array((([O, 1, 2, 3],

[4, 5, 6, 71,

[8, 9, 10, 1111,
<BLANKLINE>

[[12, 13, 14, 15

(16, 17, 18, 19

[20, 21, 22, 23

>>> y = F.stack ([x1l, x2
>>> y.shape

(3, 2, 4)

>>> y.array

array ([[[O, 1, 2, 37,
(12, 13, 14, 1517,

<BLANKLINE>

([4, 5, 6, 171,
(16, 17, 18, 1911,
<BLANKLINE>
[r 8, 9, 10, 111,
[20, 21, 22, 23111)
>>> y = F.stack([x1l, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.array
array ([[[0, 12]
[1, 1371,
[2, 14],
[3, 1511,
<BLANKLINE>
[[4, 16]
[5, 171,
[6, 18],
[7, 1911,
<BLANKLINE>
[[8, 20]
[9, 211,
[10, 227,
(11, 23111)
>>> y = F.stack([x1l, x2], axis=-1)
>>> y.shape
(3, 4, 2)

chainer.functions.swapaxes
chainer.functions.swapaxes (x, axisl, axis2)
Swap two axes of a variable.
Parameters

* x (Variable or N-dimensional array) — Input variable. A (s, S2, ..., Sn7) -shaped float
array.

* axisl (int) - The first axis to swap.

190 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* axis2 (int)— The second axis to swap.
Returns Variable whose axes are swapped.

Return type Variable

Example

>>> x = np.array ([[[0, 1, 21, [3, 4, 5111, np.float32)
>>> x.shape

(1, 2, 3)

>>> y = F.swapaxes (x, axisl=0, axis2=1)
>>> y.shape

(2, 1, 3)

>>> y.array

array ([[[0., 1., 2.11,

<BLANKLINE>

[[3., 4., 5.]11], dtype=float32)

chainer.functions.tile

chainer.functions.tile (x, reps)
Construct an array by tiling a given array.

Parameters

* x (Variable or N-dimensional array) — Input variable. Let the length of reps be d. If
x.ndim < d, x is treated as d-dimensional array by prepending new axes. For example,
when the shape of x is (2,) and tiled with 2-dim repetitions, x is treated as the shape (1,
2). If x.ndim > d, reps is treated as x . ndim-dimensional by pre-pending 1’s. For
example, when the shape of x is (2, 3, 2, 3),the2-dim reps of (2, 2) is treated
as (1, 1, 2, 2).

* reps (int or tuple of int s) — The number of times which x is replicated along each
axis.

Returns The tiled output Variable. Let the length of reps be d, the output has the dimension of
max (d, x.ndim).

Return type Variable

Example

>>> x = np.array ([0, 1, 2])
>>> x.shape

(3,)

>>> y = F.tile(x, 2)

>>> y.shape

(6,)

>>> y.array

array ([0, 1, 2, 0, 1, 2])
>>> y = F.tile(x, (2, 2))
>>> y.shape

(2, 6)

>>> y.array

array([([0, 1, 2, 0, 1, 21,

(continues on next page)

4.2. Functions

191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

(continued from previous page)

(o, 1, 2, 0, 1, 21]
>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 1, 6)
>>> y.array
array ([[[0, 1, 2, 0, 1, 211,
<BLANKLINE>

[fo, 1, 2, 0, 1, 2111

>>> x = np.array ([[1, 21, [3, 411)
>>> x.shape
(2, 2)
>>> y = F.tile(x, 2)
>>> y.shape
(2, 4)
>>> y.array
array ([[1, 2, 1, 2],
[3, 4, 3, 411)
>>> y = F.tile(x, (2, 2))
>>> y.shape

(4, 4)
>>> y.array
array ([[1, 2, 1, 2],
[3, 4, 3, 41,
[1, 2, 1, 2]
[3, 4, 3, 411)
(

>>> y = F.tile
>>> y.shape
(2, 2, 4)
>>> y.array
array ([[[1, 2, 1, 2],
(3, 4, 3, 411,
<BLANKLINE>
[y, 2, 1, 21,
(3, 4, 3, 4111])

chainer.functions.transpose
chainer.functions.transpose (x, axes=None)
Permute the dimensions of an input variable without copy.
Parameters

* x (Variable or N-dimensional array) — Input variable to be transposed. A (s, $2, .., SN)
-shaped float array.

* axes (tuple of ints) — By default, reverse the dimensions, otherwise permute the
axes according to the values given.

Returns Variable whose axes are permuted.

Return type Variable

Example

192 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

>>> x = np.array([[[0, 1, 2], [3, 4, 51]], np.float32)
>>> x.shape

(1, 2, 3)

>>> y = F.transpose (x) # reverse the dimensions

>>> y.shape

(3, 2, 1)

>>> y.array

array ([[[0.]

’
[3.11,
<BLANKLINE>
(1.1,
(4.11,
<BLANKLINE>
(2.1,
[5.]]1]1, dtype=float32)
>>> y = F.transpose(x, axes=(l, 0, 2)) # swap lIst and Znd axis
>>> y.shape
(2, 1, 3)
>>> y.array
array ([[[0., 1., 2.11,
<BLANKLINE>
[[3., 4., 5.]1]], dtype=float32)

chainer.functions.transpose_sequence

chainer.functions.transpose_sequence (xs)

Transpose a list of Variables.

This function transposes a list of Variables and returns a list of Variables. For example a user gives [(0,
1, 2, 3), (4, 5), (6)]1], thefunctionreturns [(0, 4, 6), (1, 5), (2), (3)]. Note that a
given list needs to be sorted by each length of Variable.

Parameters xs (list of Variable or N-dimensional array) — Variables to transpose.
Returns Transposed list.

Return type tuple of Variable

Example

>>> 1st = [chainer.Variable (np.array([1l, 1, 11)),
chainer.Variable (np.array([2, 21)),
... chainer.Variable (np.array([3]))]

>>> 1st
[variable([1, 1, 1]), variable([2, 2]), variable([3])]
>>> transposed = F.transpose_sequence (1lst)

>>> transposed

(variable ([1, 2, 3]), variable([1l, 2]), variable([1]))

chainer.functions.vstack

chainer.functions.vstack (xs)

Concatenate variables vertically (row wise).

4.2. Functions 193

Chainer Documentation, Release 6.1.0

Parameters xs (list of Variable or N-dimensional array) — Input variables to be concatenated.
The variables must have the same ndim. When the variables have the second axis (i.e. ndim >
2), the variables must have the same shape along all but the first axis. When the variables do not
have the second axis(i.e. ndim < 2), the variables must have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. ndim > 2), the shapes
of inputs and output are the same along all but the first axis. The length of first axis is the sum of
the lengths of inputs’ first axis. When the variables do not have the second axis (i.e. ndim < 2),
the shape of outputis (2, N) (N is the size of the input variable).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape

(3,)

>>> x2 = np.array((2, 3, 4))
>>> x2.shape

(3,)

>>> y = F.vstack ((x1l, x2))
>>> y.shape

(2, 3)

>>> y.array
array ([[1, 2, 3],

(2, 3, 411)
>>> x1 = np.arange (0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array ([[0, 1, 2, 31,
[4, 5, 6, 711,
[8, 9, 10, 1111)
>>> x2 = np.arange (12, 20).reshape(2, 4)

>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],
[16, 17, 18, 1911])
>>> y = F.vstack ([x1l, x2])
>>> y.shape
(5, 4)
>>> y.array
array ([[O, 1, 2,
[4, 5, 6,
[8, 9, 10, 1
[12, 13, 14, 1
[16, 17, 18, 1

chainer.functions.where
chainer.functions.where (condition, x, y)
Choose elements depending on condition.

This function choose values depending on a given condition. All condition, x, and y must have the same
shape.

194 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Parameters

* condition (Variable or N-dimensional array) — Input variable containing the condi-
tion. A (s, S2, ..., $n) -shaped boolean array. Only boolean array is permitted.

* x (Variable or N-dimensional array) — Input variable chosen when condition is
True. A (s, 82, ..., S) -shaped float array.

e y (Variable or N-dimensional array) — Input variable chosen when condition is
False. A (s1, Sa, ..., Sy) -shaped float array.

Returns Variable containing chosen values.

Return type Variable

Example
>>> cond = np.array([[1l, 0], [0, 1]], dtype=np.bool)
>>> cond
array ([[True, False],
[False, Truel])
>>> x = np.array ([[1l, 2], [3, 4]], np.float32)

>>> F.where(cond, x, y).array
array ([[1., 0.],
[0., 4.]1]1, dtype=float32)

>>> y = np.zeros((2, 2), np.float32)

4.2.4 Neural network connections

chainer.functions.bilinear

Applies a bilinear function based on given parameters.

chainer.functions.convolution 1d

1-dimensional convolution function.

chainer. functions.convolution_2d

Two-dimensional convolution function.

chainer.functions.convolution 3d

3-dimensional convolution function.

chainer. functions.convolution_nd

N-dimensional convolution function.

chainer.functions.deconvolution 1d

1-dimensional deconvolution function.

chainer. functions.deconvolution_ 2d

Two dimensional deconvolution function.

chainer.functions.deconvolution 3d

3-dimensional deconvolution function.

chainer. functions.deconvolution_ nd

N-dimensional deconvolution function.

chainer.functions.
depthwise convolution_2d

Two-dimensional depthwise convolution function.

chainer. functions.
deformable convolution_ 2d_sampler

Two-dimensional deformable convolution function us-
ing computed offset.

chainer. functions.
dilated convolution 2d

Two-dimensional dilated convolution function.

chainer. functions.embed_ 1id

Efficient linear function for one-hot input.

chainer.functions.linear

Linear function, or affine transformation.

chainer.functions.
local convolution_2d

Two-dimensional local convolution function.

chainer. functions.n_step _bigru

Stacked Bi-directional Gated Recurrent Unit function.

chainer. functions.n_step_bilstm

Stacked Bi-directional Long Short-Term Memory func-
tion.

Continued on next page

4.2. Functions

195

Chainer Documentation, Release 6.1.0

Table 5 — continued from previous page

chainer.functions.n_step_birnn Stacked Bi-directional RNN function for sequence in-
puts.

chainer. functions.n_step_gru Stacked Uni-directional Gated Recurrent Unit function.

chainer.functions.n_step_lstm Stacked Uni-directional Long Short-Term Memory
function.

chainer. functions.n_step_rnn Stacked Uni-directional RNN function for sequence in-
puts.

chainer. functions.shift Shift function.

chainer.functions.bilinear
chainer.functions.bilinear (el, e2, W, VI=None, V2=None, b=None)
Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables
and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by e! € RI/, 2 ¢ RI'-E W ¢ R/ KL vl ¢ R/,
V2 € REL and b € RE, where I is mini-batch size. In this document, we call V!, V2, and b linear parameters.

The output of forward propagation is calculated as
Yil = Z egjengjk;l + Z egj‘/‘]ll + Z eka,fl + bl~
ik J k

Note that V1, V2, b are optional. If these are not given, then this function omits the last three terms in the above
equation.

Note: This function accepts an input variable el or e2 of a non-matrix array. In this case, the leading
dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

Note: In the original paper, J and K must be equal and the author denotes [V} V2] (concatenation of matrices)
by V.

Parameters
* el (Variable or N-dimensional array) — Left input variable.
* e2 (Variable or N-dimensional array) — Right input variable.
* W(Variable or N-dimensional array) — Quadratic weight variable.
* V1 (Variable or N-dimensional array) — Left coefficient variable.
* V2 (Variable or N-dimensional array) — Right coefficient variable.
* b (Variable or N-dimensional array) — Bias variable.

Returns Output variable.

Return type Variable

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

196 Chapter 4. API Reference

https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion

Chainer Documentation, Release 6.1.0

chainer.functions.convolution_1d

chainer.functions.convolution_1d (x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)
1-dimensional convolution function.

Note: This function calls convolution_nd () internally, so see the details of the behavior in the documen-
tation of convolution nd().

chainer.functions.convolution_2d

chainer.functions.convolution_2d (x, W, b=None, stride=1, pad=0, cover_all=False, *, dilate=1,
groups=1)
Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image
x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.
* n is the batch size.
* ¢y and cp are the number of the input and output channels, respectively.
e h; and wy are the height and width of the input image, respectively.
* hx and wg are the height and width of the filters, respectively.
e hp and wp are the height and width of the spatial padding size, respectively.

Then the Convolution2D function computes correlations between filters and patches of size (hx, wg) in x.
Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at
positions shifted by multiples of stride from the first position (-h_P, -w_P) for each spatial axis. The
right-most (or bottom-most) patches do not run over the padded spatial size.

Let (sy, sx) be the stride of filter application. Then, the output size (ho,wo) is determined by the following
equations:
ho = (h[+ th — hK)/SY + 1,
wo = (wr + 2wp —wk)/sx + 1.
If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In
this case, the output size (ho,we) is determined by the following equations:
ho = (h1+2hp —hg + sy — 1)/Sy+1,
wo = (wr + 2wp —wr +sx —1)/sx + 1.
If the bias vector is given, then it is added to all spatial locations of the output of convolution.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-
ministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

When the dilation factor is greater than one, cuDNN is not used unless the version is 6.0 or higher.

4.2. Functions 197

Chainer Documentation, Release 6.1.0

Parameters
» x (Variable or N-dimensional array) — Input variable of shape (n, cr, hr, wr).
* W(Variable or N-dimensional array) — Weight variable of shape (co, ¢r, hi, wi).
* b (None or Variable or N-dimensional array) — Bias variable of length co (optional).

* stride (int or pair of int s) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of int s)— Spatial padding width for input arrays. pad=p and pad= (p,
p) are equivalent.

* cover_all (bool)—If True, all spatial locations are convoluted into some output pixels.

* dilate (int or pair of int s) — Dilation factor of filter applications. dilate=d and
dilate=(d, d) areequivalent.

* groups (int) — Number of groups of channels. If the number is greater than 1, input
tensor W is divided into some blocks by this value. For each tensor blocks, convolution
operation will be executed independently. Input channel size c; and output channel size co
must be exactly divisible by this value.

Returns Output variable of shape (n, co, ho,wo).
Return type Variable
See also:

Convolution2D

Example

>>> n = 10

>>> c_1i, c_o = 3, 1
>>> h_1i, w_i = 30, 40
>>> h_k, w_k = 10, 10
>>> h p, w.p = 5, 5

>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)) .astype(np.float32)
>>> x.shape

(10, 3, 30, 40)

>>> W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype(np.float32)
>>> W.shape

(1, 3, 10, 10)

>>> b = np.random.uniform(0, 1, (c_o,)).astype(np.float32)

>>> Db.shape

(1,)

>>> s_vy, s_x =5, 7

>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape

(10, 1, 7, 6)

>>> h_o = int((h_i + 2 = h_p — h_k) / s_y + 1)

>>> w_o = int((w_i + 2 « w_p — w_k) / s_x + 1)

>>> y.shape == (n, c_o, h_o, w_o)

True

>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p), cover_
—all=True)

>>> y.shape == (n, c_o, h_o, w_o + 1)

True

198 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.convolution_3d

chainer.functions.convolution_3d (x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)
3-dimensional convolution function.

Note: This function calls convolution_nd () internally, so see the details of the behavior in the documen-
tation of convolution nd().

chainer.functions.convolution_nd

chainer.functions.convolution_nd (x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)
N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in
ConvNets. It takes three variables: the input x, the filter weight W and the bias vector b.

Notation: here is a notation for dimensionalities.
e N is the number of spatial dimensions.
* n is the batch size.
* ¢y and cp are the number of the input and output channels, respectively.
* dy,ds,...,dn are the size of each axis of the input’s spatial dimensions, respectively.
* ki, ko, ..., kn are the size of each axis of the filters, respectively.
e l1,lo, ...,y are the size of each axis of the output’s spatial dimensions, respectively.
* p1,p2,...,pN are the size of each axis of the spatial padding size, respectively.

Then the convolution_nd function computes correlations between filters and patches of size (k1, ko, ..., k)
in x. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are
extracted at positions shifted by multiples of st ride from the first position (-p_1, -p_2, ..., —-p_N)
for each spatial axis.

Let (s1, s2, ..., sn) be the stride of filter application. Then, the output size (I1,ls, ...,Ix) is determined by the
following equations:

ln=(dn+2pn —kn)/sn+1 (n=1,....N)

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In
this case, the output size is determined by the following equations:

ln=(dn+2pn —kn+s,—1)/sn+1 (n=1,..,N)

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, dy, ds, ..., dN).
* W(Variable or N-dimensional array) — Weight variable of shape (co, ¢r, k1, k2, ..., kN).

* b (None or Variable or N-dimensional array) — One-dimensional bias variable with
length co (optional).

4.2. Functions 199

Chainer Documentation, Release 6.1.0

* stride (int or tuple of int s) — Stride of filter applications (si,S2,...,SN).
stride=sisequivalentto (s, s, ..., s).

* pad (int or tuple of int s) — Spatial padding width for input arrays (p1, p2, ..., PN)-
pad=p is equivalentto (p, p, ..., P).

* cover_all (bool)-If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use cuDNN.

* dilate (int or tuple of int s)— Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) areequivalent.

groups (int) — The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

Returns Output variable of shape (n, co, 1,12, ..., IN).

Return type Variable

Note: This function uses cuDNN implementation for its forward and backward computation if ALL of the
following conditions are satisfied:

e cuda.cudnn_enabledis True

e chainer.config.use_cudnnis 'always' or 'auto'

* The number of spatial dimensions is more than one.

* cover_allisFalse

» The input’s dtype is equal to the filter weight’s.

* The dtype is FP16, FP32 or FP64. (FP16 is only available when cuDNN version > v3.)

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

See also:

ConvolutionND, convolution_2d()

Example
>> n = 10
>>> c_1i, c_o = 3, 1

>>> d1, d2, d3 = 30, 40, 50

>>> k1, k2, k3 = 10, 10, 10

>>> pl, p2, p3 = 5, 5, 5

>>> x = np.random.uniform(0, 1, (n, c_i, dl, d2, d3)).astype(np.float32)
>>> x.shape

(1o, 3, 30, 40, 50)

>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype(np.float32)
>>> W.shape

(1, 3, 10, 10, 10)

>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> Db.shape
(1,)

>>> sl, s2, s3 =2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(sl, s2, s3), pad=(pl, p2, p3))

(continues on next page)

200

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

(continued from previous page)

>>> y.shape

(10, 1, 16, 11, 9)

>>> 11 = int((dl + 2 % pl — k1) / sl + 1)
>>> 12 = int((d2 + 2 % p2 - k2) / s2 + 1)
>>> 13 = int ((d3 + 2 » p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, 11, 12, 13)

True

>>> y = F.convolution_nd(x, W, b, stride=(sl, s2, s3), pad=(pl, p2, p3), cover_
—~all=True)

>>> y.shape == (n, c_o, 11, 12, 13 + 1)

True

chainer.functions.deconvolution_1d

chainer.functions.deconvolution_1d (x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)
1-dimensional deconvolution function.

Note: This function calls deconvolution nd () internally, so see the details of the behavior in the docu-
mentation of deconvolution _nd().

chainer.functions.deconvolution_2d

chainer.functions.deconvolution_2d (x, W, b=None, stride=1, pad=0, outsize=None, *, di-
late=1, groups=1)
Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep learning frameworks and pa-
pers, this function is called transposed convolution. But because of historical reasons (e.g. paper by Ziller
Deconvolutional Networks) and backward compatibility, this function is called deconvolution in Chainer.

It takes three variables: input image x, the filter weight W, and the bias vector b.
Notation: here is a notation for dimensionalities.

* n is the batch size.

* ¢y and cp are the number of the input and output channels, respectively.

e h; and wy are the height and width of the input image, respectively.

* hx and wg are the height and width of the filters, respectively.

* hp and wp are the height and width of the spatial padding size, respectively.

Let (sy, sx) be the stride of filter application. Then, the output size (ho,wo) is estimated by the following
equations:

ho = Sy(h] — 1) + hx — 2hp,

wo = sx(wr — 1) + wg — 2wp.
The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.

config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

4.2. Functions 201

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf

Chainer Documentation, Release 6.1.0

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, hy,wy).
* W(Variable or N-dimensional array) — Weight variable of shape (cr, co, hi, Wk).
* b (None or Variable or N-dimensional array) — Bias variable of length co (optional).

* stride (int or pair of int s) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of int s)— Spatial padding width for input arrays. pad=p and pad= (p,
p) are equivalent.

* outsize (Noneor tuple of int s)— Expected output size of deconvolutional operation.
It should be pair of height and width (ho,wo). Default value is None and the outsize is
estimated by input size, stride and pad.

* dilate (int or pair of int s) — Dilation factor of filter applications. dilate=d and
dilate=(d, d) areequivalent.

* groups (int) — The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

Returns Output variable of shape (n, co, ho, wo).

Return type Variable

Example

>>> n = 10

>>> c_1i, c_o =1, 3
>>> h i, w_1i =5, 10

>>> h_k, w_k = 10, 10

>>> h p, w.p = 5, 5

>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)) .astype(np.float32)
>>> x.shape

(10, 1, 5, 10)

>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype(np.float32)
>>> W.shape

(1, 3, 10, 10)

>>> b = np.random.uniform(0, 1, c_o).astype(np.float32)

>>> b.shape

(3,)

>>> s_y, s_x =5, 5

>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape

(10, 3, 20, 45)

>>> h_ o = s_y * (h_i - 1) + h.k - 2 %« h_p

>>> w_o = s_xX * (w_i - 1) + w.k - 2 x w_p
>>> y.shape == (n, c_o, h_o, w_o)
True

202 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.deconvolution_3d

chainer.functions.deconvolution_3d (x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)
3-dimensional deconvolution function.

Note: This function calls deconvolution nd () internally, so see the details of the behavior in the docu-
mentation of deconvolution nd().

chainer.functions.deconvolution_nd

chainer.functions.deconvolution_nd (x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)
N-dimensional deconvolution function.

This is an implementation of N-dimensional deconvolution which generalizes two-dimensional one. In most of
deep learning frameworks and papers, this function is called transposed convolution. But because of historical
reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called
deconvolution in Chainer.

It takes three variables: the input x, the filter weight W, and the bias vector b.
Notation: here is a notation for dimensionalities.
* N is the number of spatial dimensions.
¢ n is the batch size.
* ¢y and co are the number of the input and output channels, respectively.
* dy,ds, ..., dy are the size of each axis of the input’s spatial dimensions, respectively.
e ki, ko, ..., ky are the size of each axis of the filters, respectively.
* p1,p2, ..., pN are the size of each axis of the spatial padding size, respectively.
* 51,89, ..., 5N are the stride of each axis of filter application, respectively.
If outsize option is None, the output size (l1, 2, ...,) is determined by the following equations with the
items in the above list:

ln=s8n(dn—1)+ky,—2p, (n=1,..,N)

If outsize option is given, the output size is determined by outsize. In this case, the outsize
(I1,1a, ..., Iy) must satisfy the following equations:

dp, = |(ln +2pp — kn)/sn] +1 (n=1,..,N)

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, dy, da, ..., dN).
* W(Variable or N-dimensional array) — Weight variable of shape (cr, co, k1, k2, ..., kn).

* b (None or Variable or N-dimensional array) — One-dimensional bias variable with
length co (optional).

4.2. Functions 203

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf

Chainer Documentation, Release 6.1.0

* stride (int or tuple of int s) — Stride of filter applications (si,S2,...,SN).
stride=sisequivalentto (s, s, ..., s).

* pad (int or tuple of int s) — Spatial padding width for input arrays (p1, p2, ..., PN)-
pad=p is equivalentto (p, p, ..., P).

* outsize (Noneor tuple of int s) — Expected output size of deconvolutional operation.
It should be a tuple of ints (I1, l2, ..., I). Default value is None and the outsize is estimated
by input size, stride and pad.

* dilate (int or tuple of int s)— Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) areequivalent.

* groups (int) — The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

Returns Output variable of shape (n, co, 1,12, ..., IN).
Return type Variable
See also:

links.DeconvolutionND, deconvolution 2d()

Example

Examplel: the case when outsize is not given.

>> n = 10

>>> c_1i, c_o = 3, 1

>>> d1, d2, d3 =5, 10, 15

>>> k1, k2, k3 = 10, 10, 10

>>> pl, p2, p3 = 5, 5, 5

>>> x = np.random.uniform(0, 1, (n, c_i, dl, d2, d3)) .astype(np.float32)
>>> x.shape

(10, 3, 5, 10, 15)

>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape

(3, 1, 10, 10, 10)

>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)

>>> sl, s2, s3 =2, 4, 6

>>> y = F.deconvolution_nd(x, W, b, stride=(sl, s2, s3), pad=(pl, p2, p3))
>>> y.shape

(10, 1, 8, 36, 84)

>>> 11 = s1 » (dl - 1) + k1 - 2 * pl

>>> 12 = s2 » (d2 - 1) + k2 — 2 % p2

>>> 13 = s3 » (d3 - 1) + k3 - 2 * p3

>>> y.shape == (n, c_o, 11, 12, 13)

True

Example2: the case when outsize is given.

>>> n = 10

>>> c_1i, c_o = 3, 1

>>> d1, d2, d3 =5, 10, 15

>>> k1, k2, k3 = 10, 10, 10

>>> pl, p2, p3 = 5, 5, 5

>>> x = np.random.uniform(0, 1, (n, c_i, dl, d2, d3)) .astype(np.float32)

(continues on next page)

204 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

(continued from previous page)

>>> x.shape

(10, 3, 5, 10, 15)

>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape

(3, 1, 10, 10, 10)

>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)

>>> gsl, s2, s3 =2, 4, 06
>>> 11, 12, 13 = 9, 38, 87

>>> dl == int((11 + 2 » pl - k1) / sl) + 1
True
>>> d2 == int((12 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int ((13 + 2 » p3 - k3) / s3) + 1
True

>>> y = F.deconvolution_nd(x, W, b, stride=(sl, s2, s3), pad=(pl, p2, p3),.
—outsize=(11, 12, 13))

>>> y.shape

(10, 1, 9, 38, 87)

>>> y.shape == (n, c_o, 11, 12, 13)

True

chainer.functions.depthwise_convolution_2d
chainer.functions.depthwise_convolution_2d (x, W, b=None, stride=1, pad=0)
Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution. It takes two or three variables: the input
image x, the filter weight W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.
* n is the batch size.
e ¢y is the number of the input.
* ¢y is the channel multiplier.
¢ h and w are the height and width of the input image, respectively.
* ho and wo are the height and width of the output image, respectively.

e kp and kyy are the height and width of the filters, respectively.

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, h, w).
* W(Variable or N-dimensional array) — Weight variable of shape (car, cr, ku, kw).
* b (Variable or N-dimensional array) — Bias variable of length cjs * ¢y (optional).

* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of ints) - Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

4.2. Functions 205

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Returns Output variable. Its shape is (n, ¢y * car, ho, wo).

Return type Variable
Like Convolution2D, DepthwiseConvolution2D function computes correlations between filters and
patches of size (kg , kw) in x. But unlike Convolution2D, DepthwiseConvolution2D does not add up

input channels of filters but concatenates them. For that reason, the shape of outputs of depthwise convolution
are (n, cr * cpr, ho, we), cpr is called channel_multiplier.

(ho,we) is determined by the equivalent equation of Convolution2D.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.
See: L. Sifre. Rigid-motion scattering for image classification

See also:

DepthwiseConvolution2D

Example

>>> = np.random.uniform(0, 1, (2

= np.random.uniform(0, 1, (2

= np.random.uniform(0, 1, (6,))
2d

x
>>> W
b
>>> y = F.depthwise_convolution_.
y.
6,

>>>

>>> shape
(2, 2, 95)

chainer.functions.deformable_convolution_2d_sampler

chainer.functions.deformable_convolution_2d_sampler (x, offset, W, b=None, stride=1,
pad=0)
Two-dimensional deformable convolution function using computed offset.

This is an implementation of two-dimensional deformable convolution from Deformable Convolutional Net-
works.

It takes four variables: the input image x, the offset image of fset, the filter weight W, and the bias vector b.
Notation: here is the notation for the dimensionalities.
* n is the batch size.
e ¢y and cp are the number of the input and output, respectively.
e h and w are the height and width of the input image, respectively.
* kp and kyy are the height and width of the filters, respectively.
¢ sy and sx are the strides of the filter.
* py and pyy are the spatial padding sizes.
The output size (ho,wp) is determined by the following equations:
ho = (h+2py — ku)/sy + 1,
wo = (w+ 2pw — kw)/sx + 1.
Parameters

* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, h, w).

206 Chapter 4. API Reference

https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf
https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/1703.06211

Chainer Documentation, Release 6.1.0

» offset (Variable or N-dimensional array) — Offset variable of shape (n,2 - kg -
kw,ho,wo). The first kg - ky index of the second axis corresponds to the offsets in the
horizontal direction. The last kg - ky index of the second axis corresponds to the offsets in
the vertical direction.

* W(Variable or N-dimensional array) — Weight variable of shape (co, cr, ki, kw).
* b (Variable or N-dimensional array) — Bias variable of length co (optional).

* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of ints) - Spatial padding width for input arrays. pad=p and
pad=(p, p) areequivalent.

Returns Output variable.
Return type Variable

Deformable convolution adds 2D offsets to the regular grid sampling locations in the standard convolution. It
enables free form deformation of the sampling grid.

See Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei. Deformable Convolu-
tional Networks

If the bias vector is given, then it is added to all spatial locations of the output of convolution.
See also:

DeformableConvolution2D

Example

>>> x = np.random.uniform(0, 1, (2, 3, 4, 7)) .astype(np.float32)
>>> offset = np.random.uniform(
0o, 1, (2, 2 = 3 = 3, 2, 5)).astype(np.float32)
>>> (
(

= np.random.uniform(0, 1, 3, 3, 3)).astype(np.float32)

W 4,
>>> b = np.random.uniform(0, 1, 4,)) .astype(np.float32)
>>> y = F.deformable_convolution_2d_sampler (x, offset, W, b)
>>> y.shape
4

r 2, 05)

chainer.functions.dilated_convolution_2d

chainer.functions.dilated_convolution_2d (x, W, b=None, stride=1, pad=0, dilate=1I,

cover_all=False)
Two-dimensional dilated convolution function.

This is an implementation of two-dimensional dilated convolution in ConvNets. It takes three variables: the
input image x, the filter weight W, and the bias vector b.

Note: You can also perform dilated convolution by passing dilate argument to chainer. functions.
convolution_2d. The functionality is the same.

Notation: here is a notation for dimensionalities.

¢ n is the batch size.

4.2. Functions 207

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/1703.06211

Chainer Documentation, Release 6.1.0

* ¢y and cp are the number of the input and output, respectively.
e h and w are the height and width of the input image, respectively.

e kp and kyy are the height and width of the filters, respectively.

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, cr, h, w).
* W(Variable or N-dimensional array) — Weight variable of shape (co, cr, kg, kw).
* b (Variable or N-dimensional array) — Bias variable of length co (optional).

* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of ints) - Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

* dilate (int or pair of ints)-— Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

* cover_all (bool)-If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger.

Returns Output variable.

Return type Variable
The two-dimensional dilated convolution function is defined as follows. Then the DilatedConvolution2D
function computes correlations between filters and patches of size (kg ky) in x. Patches here are extracted at
intervals of the dilation factor. Note that correlation here is equivalent to the inner product between expanded
vectors. Patches are extracted at intervals of the dilation factor and at positions shifted by multiples of stride

from the first position —pad for each spatial axis. The right-most (or bottom-most) patches do not run over the
padded spatial size.

Let (sy, sx) be the stride of filter application, (pg,pw) the spatial padding size, and (dy,dx) the dilation
factor of filter application. Then, the output size (ho, wo) is determined by the following equations:

ho = (h+2pu —kn — (ky — 1) x (dy — 1))/sy + 1,
wo = (w+2pw — kw — (kw — 1) x (dx —1))/sx + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

chainer.functions.embed _id
chainer.functions.embed_id (x, W, ignore_label=None)
Efficient linear function for one-hot input.

This function implements so called word embeddings. It takes two arguments: a set of IDs (words) x in B
dimensional integer vector, and a set of all ID (word) embeddings W in V' x d float matrix. It outputs B x d
matrix whose i-th column is the x [1]-th column of W.

This function is only differentiable on the input W.
Parameters

* x (Variable or N-dimensional array) — Batch vectors of IDs. Each element must be
signed integer.

208 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

* W(Variable or N-dimensional array)— Distributed representation of each ID (a.k.a. word
embeddings).

* ignore_label (int or None) — If ignore_label is an int value, i-th column of
return value is filled with 0.

Returns Output variable.
Return type Variable
See also:

EmbedID

Example

>>> x = np.array([2, 1]).astype(np.int32)

>>> x

array ([2, 1], dtype=int32)

>>> W = np.array([[0, O, 0],

(1, 1, 11,

A [2, 2, 2]1]1) .astype(np.float32)
>>> W

array ([[0., 0., 0.1,
(1., 1., 1.
2., 2., 2

]
1,
11, dtype=float32)
>>> F.embed_id(x, W) .array
array ([[2., 2., 2.1,
11, dtype=float32)
W
]
]

, ignore_label=1) .array

(1., 1., 1.
>>> F.embed_id(x,
array ([[2., 2., 2.

[0., 0., 0.]], dtype=float32)

chainer.functions.linear

chainer.functions.linear (x, W, b=None, n_batch_axes=1)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It
computes

yi = Wax; +0b.

Parameters

* x (Variable or N-dimensional array) — Input variable, which is a (s1, s2, ..., 8,)-shaped
float array. Its first n_batch_axes dimensions are handled as minibatch dimensions.
The other dimensions are handled as concatenated one dimension whose size must be
(Snfbatchfaxes *k Sy = N)

* W(Variable or N-dimensional array) — Weight variable of shape (M, N), where (N =
Sn_batch_axes ¥ ... * 5n)~

* b (Variable or N-dimensional array) — Bias variable (optional) of shape (M,).

* n_batch_axes (int)— The number of batch axes. The default is 1. The input variable
is reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output variable. A float array with shape of (s1, ..., Sn_batch_axes, M)-

4.2. Functions 209

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Return type Variable
See also:

Linear

Example

>>> x = np.random.uniform(0, 1, (3, 4)).astype(np.float32)
>>> W = np.random.uniform (0, 1, (5, 4)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (5,)).astype(np.float32)
>>> y = F.linear(x, W, b)
vy .shape

5

)

>>>
(3,

chainer.functions.local_convolution_2d

chainer.functions.local_convolution_2d (x, W, b=None, stride=1)
Two-dimensional local convolution function.

Locally-connected function for 2D inputs. Works similarly to convolution_2d, except that weights are unshared,
that is, a different set of filters is applied at each different patch of the input. It takes two or three variables: the

input image x, the filter weight W, and optionally, the bias vector b.
Notation: here is a notation for dimensionalities.

* n is the batch size.

* ¢y is the number of the input.

* co is the number of output channels.

e h and w are the height and width of the input image, respectively.

* ho and wo are the height and width of the output image, respectively.

e Lk and kyy are the height and width of the filters, respectively.

Parameters

* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, h, w).

*W (Variable or N-dimensional array) — Weight variable of

(co,ho,wo,cr, ki, kw).

shape

* b (Variable or N-dimensional array) — Bias variable of shape (co, ho,wo) (optional).

* stride (int or pair of ints) — Stride of filter applications. stride=s and

stride= (s, s) areequivalent.
Returns Output variable. Its shape is (n, ¢y * co, ho, wo).

Return type Variable

Like Convolution2D, LocalConvolution2D function computes correlations between filters and patches
of size (kg , kw) in x. But unlike Convolution2D, LocalConvolution2D has a separate filter for each

patch of the input
(ho,we) is determined by the equivalent equation of Convolution2D, without any padding

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

210 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

See also:

LocalConvolutionZ2D

Example

>>> x = np.random.uniform(0, 1, (2, 3, 7, 7))

>>> W = np.random.uniform(0, 1, (2, 5, 5, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (2, 5, 5))

>>> y = F.local_convolution_2d(x, W, Db)

>>> y.shape

(2, 2, 5, 5)

chainer.functions.n_step_bigru
chainer.functions.n_step_bigru (n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Bi-directional Gated Recurrent Unit function.

This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state
ho, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h; for
each time ¢ from input ;.
] = o(Wiay + Wi he_y + b +b])
2l = oWz, + Wihi_y +b] +b])
hi = tanh(Wi @, + b5 +rf - (Wih_1 +81))
W= -2y nl +4 hiy
0 =o(Wlzy + Wihe_1 + bl + b})
2 = o(Wizy + Wihe_y + b +b})
WY = tanh(Woz, + b4+ rl - (Wehy_y +b2))
hy=(1=z)-h +2 hi
he = [h{; h?]

where W7 is weight matrices for forward-GRU, W is weight matrices for backward-GRU.

As the function accepts a sequence, it calculates h; for all ¢ with one call. Six weight matrices and six bias
vectors are required for each layers. So, when S layers exists, you need to prepare 65 weight matrices and 6.5
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k—1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters
* n_layers (int)— Number of layers.
* dropout_ratio (f1oat) - Dropout ratio.

* hx (Variable)- Variable holding stacked hidden states. Its shapeis (2S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

* ws (list of list of Variable)— Weight matrices. ws [1] represents weights for i-th layer.
Each ws [1] is alist containing six matrices. ws [1] [] is corresponding with W__7 in the

4.2. Functions 211

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

equation. Only ws [0] [J] where 0 <= j < 3is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

* bs (list of list of Variable) — Bias vectors. bs[i] represnents biases for i-th layer.
Each bs [1] is a list containing six vectors. bs [1] [J] is corresponding with b__j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

* xs (list of Variable)— Alist of Variable holding input values. Each element xs [t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. t ranspose_sequence () transpose a list of
Variable () holding sequence. So xs needs to satisfy xs [t] .shape[0] >= xs[t
+ 1] .shape[0].

* use_bi_direction (bool) - If True, this function uses Bi-direction GRU.
Returns
This function returns a tuple containing three elements, hy and ys.
* hy is an updated hidden states whose shape is same as hx.

e ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs [t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs [t].

Return type tuple

chainer.functions.n_step_bilstm
chainer.functions.n_step_bilstm (n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state
ho, an initial cell state ¢y, an input sequence x, weight matrices W, and bias vectors b. This function calculates

212 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

hidden states h; and c¢; for each time ¢ from input ;.

il

oWz, +Wlh, 1+ b} +b}),

S
S
I

eyl af,

o(Woay + Wohy_y + 04 +bY),

fi =

o(Wbay + Wehy_y + 08 +b2),

b _
0y =

o(Whay + Wehy_1 + 5 +bY),

b _
a; =

tanh(Wea, + Woh,_1 + b5 + b5),

b _
C; =

b b b b
To ¢y i - ay,

h =

o? - tanh(c?),

ht:
[h]; hY)

where W7 is the weight matrices for forward-LSTM, W is weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates h, for all ¢ with one call. Eight weight matrices and eight bias
vectors are required for each layer of each direction. So, when .S layers exist, you need to prepare 165 weight

matrices and 165 bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the
k—1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters
* n_layers (int)— The number of layers.

* dropout_ratio (float) - Dropout ratio.

* hx (Variable)—- Variable holding stacked hidden states. Its shapeis (2S, B, N) where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units. Because of bi-direction, the first dimension length is 2S.

4.2,

Functions

213

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

* cx (Variable)— Variable holding stacked cell states. It has the same shape as hx.

* ws (listof list of Variable)— Weight matrices. ws [2 * 1 + m] represents the weights
for the I-th layer of the m-th direction. (m == 0 means the forward directionandm == 1
means the backward direction.) Each ws [1] is a list containing eight matrices. ws [1] [J]
corresponds to W; in the equation. ws [0] [J] and ws [1] [J] where 0 <= j < 4 are
(I, N)-shaped because they are multiplied with input variables, where I is the size of the
input. ws [1] [J] where 2 <= 1and 0 <= j < 4are (N, 2N)-shaped because they
are multiplied with two hidden layers h; = [h{ ; h?]. All other matrices are (N, N)-shaped.

* bs (list of list of Variable) — Bias vectors. bs[2 » 1 + m] represents the weights
for the 1-th layer of m-th direction. (m == 0 means the forward direction and m == 1
means the backward direction.) Each bs [1] is a list containing eight vectors. bs [1] []]

corresponds to b; in the equation. The shape of each matrix is (N,).

* xs (listof Variable)— Alist of Variable holding input values. Each element xs [t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose sequence () can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs

needs to satisfy xs [t] .shape[0] >= xs[t + 1].shape[O0].
Returns
This function returns a tuple containing three elements, hy, cy and ys.
* hy is an updated hidden states whose shape is the same as hx.

* cy is an updated cell states whose shape is the same as cx.

e ys is alist of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs [t]. Its shape is (B_t, 2N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs [t].

Return type tuple

Example

>>> batchs = [3, 2, 1] # support variable length sequences

>>> in_size, out_size, n_layers = 3, 2, 2

>>> dropout_ratio = 0.0

>>> xs = [np.ones((b, in_size)) .astype(np.float32) for b in batchs]

>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers * 2, batchs[0], out_size)
>>> hx = np.ones (h_shape) .astype (np.float32)
>>> cx = np.ones (h_shape) .astype (np.float32)
>>> def w_in(i, 3j):
if i == 0 and j < 4:
return in_size
elif i > 0 and j < 4:
return out_size * 2
else:
return out_size
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
for direction in (0, 1):

(continues on next page)

214

Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

(continued from previous page)

. ws.append ([np.ones ((out_size, w_in(n, 1i))).astype(np.float32) for i
—in range(8)1])
bs.append([np.ones ((out_size,)) .astype(np.float32) for _ in range(8)])

>>> ws[0][0].shape # ws[0:2][:4].shape are (out_size, 1in_size)
(2, 3)

>>> ws[2][0].shape # ws[2:][:4].shape are (out_size, 2 % out_size)
(2, 4)

>>> ws[0] [4].shape # others are (out_size, out_size)

(2, 2)

>>> pbs[0] [0].shape

(2,)

>>> hy, cy, ys = F.n_step_bilstm(

C n_layers, dropout_ratio, hx, cx, ws, bs, xs)

>>> hy.shape

(4, 3, 2)

>>> cy.shape

(4, 3, 2)

>>> [y.shape for y in ys]

[(3, 4), (2, 4), (1, 4)]

chainer.functions.n_step_birnn

chainer.functions.n_step_birnn (n_layers, dropout_ratio, hx, ws, bs, xs, activation="tanh’)

Stacked Bi-directional RNN function for sequence inputs.

This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state
ho, an initial cell state ¢y, an input sequence x, weight matrices W, and bias vectors b. This function calculates
hidden states h; and c¢; for each time ¢ from input x;.

hi
FOWlzy+Wlhe) +0)),
hy =

FWgay + Whhy_1 + b} +b3),
hy =

(hf;nf),

where f is an activation function.

Weight matrices T contains two matrices W/ and W°. W/ is weight matrices for forward directional RNN.
W is weight matrices for backward directional RNN.

W contains W({ for an input sequence and Wlf for a hidden state. W contains W for an input sequence and
W} for a hidden state.

Bias matrices b contains two matrices b/ and b/. b¥ contains bg for an input sequence and b{ for a hidden state.
b® contains bY for an input sequence and b% for a hidden state.

As the function accepts a sequence, it calculates h; for all ¢ with one call. Two weight matrices and two bias
vectors are required for each layer. So, when S layers exist, you need to prepare 25 weight matrices and 2.5
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k—1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

4.2. Functions 215

Chainer Documentation, Release 6.1.0

Parameters
* n_layers (int)— Number of layers.
* dropout_ratio (f1oat) - Dropout ratio.

* hx (Variable)—- Variable holding stacked hidden states. Its shapeis (2S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units. Because of bi-direction, the first dimension length is 2S.

* ws (list of list of Variable) — Weight matrices. ws[1 + di] represents weights for
i-th layer. Note that di = 0 for forward-RNN and di = 1 for backward-RNN. Each
ws[1 + di] is a list containing two matrices. ws [1 + di] [J] is corresponding with
Wh{f}_7jifdi = 0 and corresponding with W {b}_7jif di = 1 in the equation. Only
ws[0][j] and ws[1][Jj] where 0 <= j < 1 are (I, N) shape as they are multi-
plied with input variables. All other matrices has (N, N) shape.

* bs (list of list of Variable) — Bias vectors. bs[i + di] represnents biases for i-
th layer. Note that di = 0 for forward-RNN and di = 1 for backward-RNN. Each
bs[i + di] is a list containing two vectors. bs[1i + di] [j] is corresponding with
br{f}_7jifdi = 0 andcorresponding withb” {b}_7jifdi = 1 inthe equation. Shape
of each matrix is (N,) where N is dimension of hidden units.

* xs (listof Variable)— Alist of Variable holding input values. Each element xs [t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. t ranspose_sequence () transpose a list of
Variable () holding sequence. So xs needs to satisfy xs [t] .shape[0] >= xs[t
+ 1] .shape[0].

* activation (str)— Activation function name. Please select tanh or relu.
Returns
This function returns a tuple containing three elements, hy and ys.
* hy is an updated hidden states whose shape is same as hx.

* ysis alist of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs [t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs [t].

Return type tuple

chainer.functions.n_step_gru

chainer. functions.n_step_gru (n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Uni-directional Gated Recurrent Unit function.

This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state
ho, an input sequence x, weight matrices W, and bias vectors b. This function calculates hidden states h; for
each time ¢ from input x;.

ry = o(Woxy + Wshe_1 + bo + b3)

2zt = o(Wiay + Wahe—q1 + by + bg)

hy = tanh(Wazy + by + 1y - (Wshi—1 + bs))
he=(1—2z) -hy+z - hiq

216 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

As the function accepts a sequence, it calculates h; for all ¢ with one call. Six weight matrices and six bias
vectors are required for each layers. So, when S layers exists, you need to prepare 65 weight matrices and 6.5

bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k—1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

Returns

n_layers (int)— Number of layers.
dropout_ratio (f1oat)— Dropout ratio.

hx (Variable) — Variable holding stacked hidden states. Its shape is (S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

ws (list of list of Variable)— Weight matrices. ws [1] represents weights for i-th layer.
Each ws [1] is alist containing six matrices. ws [1] [j] is corresponding with W_7 in the
equation. Only ws [0] [J] where 0 <= j < 3is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

bs (list of list of Variable) — Bias vectors. bs[i] represnents biases for i-th layer.
Each bs[1i] is a list containing six vectors. bs [1] [j] is corresponding with b__j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

xs (list of Variable)— Alist of Variable holding input values. Each element xs [t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. t ranspose_sequence () transpose a list of
Variable () holding sequence. So xs needs to satisfy xs [t] .shape[0] >= xs[t
+ 1] .shape[0].

This function returns a tuple containing three elements, hy and ys.

hy is an updated hidden states whose shape is same as hx.

ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs [t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_ t is the same value as xs [t].

Return type tuple

chainer.functions.n_step_Istm

chainer.functions.n_step_1lstm (n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state
ho, an initial cell state cg, an input sequence x, weight matrices W, and bias vectors b. This function calculates

4.2. Functions

217

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

hidden states h; and c¢; for each time ¢ from input ;.

As the function accepts a sequence, it calculates h, for all ¢ with one call. Eight weight matrices and eight bias
vectors are required for each layer. So, when S layers exist, you need to prepare 85 weight matrices and 85

bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the

o(Woxe + Wahi—1 + bo + by)
fi = oc(Wizy + Wshy—1 + b1 + bs)
oy = o(Wazy + Wehi—1 + ba + bg)
a; = tanh(Wsaxy + Wrhy_q1 + bs + br)
et = frrcpo1t+ip-ay
ht = o - tanh(c;)

iy =

k—-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

Returns

n_layers (int)— The number of layers.
dropout_ratio (f1oat)— Dropout ratio.

hx (Variahble) - Variable holding stacked hidden states. Its shape is (S, B, N) where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units.

cx (Variable) — Variable holding stacked cell states. It has the same shape as hx.

ws (list of list of Variable) — Weight matrices. ws [1] represents the weights for the
i-th layer. Each ws [1] is a list containing eight matrices. ws [1] [J] corresponds to W
in the equation. Only ws[0] [J] where 0 <= j < 4 are (I, N)-shaped as they are
multiplied with input variables, where I is the size of the input and N is the dimension of
the hidden units. All other matrices are (N, N) -shaped.

bs (list of list of Variable) — Bias vectors. bs[i] represents the biases for the i-th
layer. Each bs [1i] is a list containing eight vectors. bs [1] [j] corresponds to b; in the
equation. The shape of each matrix is (N,) where N is the dimension of the hidden units.

xs (list of Variable)— Alist of Variable holding input values. Each element xs [t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose_sequence () can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs
needs to satisfy xs [t] .shape[0] >= xs[t + 1].shape[O0].

This function returns a tuple containing three elements, hy, cy and ys.

hy is an updated hidden states whose shape is the same as hx.
cy is an updated cell states whose shape is the same as cx.

ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs [t]. Its shape is (B_t, N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs [t].

Return type tuple

218

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

Note: The dimension of hidden units is limited to only one size N. If you want to use variable dimension of
hidden units, please use chainer. functions.lstm.

See also:

chainer.functions.lstm()

Example

>>> batchs = [3, 2, 1] # support variable length sequences

>>> in_size, out_size, n_layers = 3, 2, 2

>>> dropout_ratio = 0.0

>>> xs = [np.ones((b, in_size)) .astype(np.float32) for b in batchs]

>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers, batchs[0], out_size)
>>> hx = np.ones (h_shape) .astype (np.float32)
>>> cx = np.ones (h_shape) .astype (np.float32)
>>> w_in = lambda i, j: in_size if 1 == 0 and j < 4 else out_size
>>> ws = []
>>> bs = []
>>> for n in range (n_layers):
c ws.append ([np.ones ((out_size, w_in(n, 1))).astype(np.float32) for i in_
—range (8)1])

bs.append([np.ones ((out_size,)) .astype(np.float32) for _ in range(8)])

>>> ws[0] [0] .shape # ws[0][:4].shape are (out_size, in_size)

(2, 3)

>>> ws[1][0].shape # others are (out_size, out_size)
(2, 2)

>>> pbs[0] [0].shape

(2,)

>>> hy, cy, ys = F.n_step_lstm(

.. n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape

(2, 3, 2)

>>> cy.shape

(2, 3, 2)

>>> [y.shape for y in ys]

L3, 2), (2, 2), (1, 2)]

chainer.functions.n_step_rnn

chainer.functions.n_step_rnn (n_layers, dropout_ratio, hx, ws, bs, xs, activation="tanh’)
Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state
ho, an initial cell state ¢y, an input sequence x, weight matrices W, and bias vectors b. This function calculates
hidden states h; and c; for each time ¢ from input ;.

hy = f(Woxy + Wihi—1 +bo + 1)

where f is an activation function.

4.2. Functions 219

Chainer Documentation, Release 6.1.0

Weight matric
parameter for

es W contains two matrices Wy and W;. Wy is a parameter for an input sequence. Wj is a
a hidden state. Bias matrices b contains two matrices by and b;. by is a parameter for an input

sequence. by is a parameter for a hidden state.

As the functio

bias vectors.

If the number

n accepts a sequence, it calculates h; for all ¢ with one call. Two weight matrices and two bias
vectors are required for each layer. So, when S layers exist, you need to prepare 25 weight matrices and 2.5

of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k—1-th layer.

Note that all input variables except first layer may have different shape from the first layer.

Parameters

Returns

n_layers (int)— Number of layers.
dropout_ratio (f1oat)— Dropout ratio.

hx (Variable)— Variable holding stacked hidden states. Its shapeis (S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

ws (list of list of Variable)— Weight matrices. ws [1] represents weights for i-th layer.
Eachws [1] is alist containing two matrices. ws [1] [j] is corresponding with W_7 in the
equation. Only ws [0] [j] where 0 <= j < 1lis (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

bs (list of list of Variable) — Bias vectors. bs[i] represnents biases for i-th layer.
Each bs [1i] is a list containing two vectors. bs [i] [j] is corresponding with b__j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

xs (listof Variable)— Alist of Variable holding input values. Each element xs [t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. t ranspose_sequence () transpose a list of
Variable () holding sequence. So xs needs to satisfy xs [t] .shape[0] >= xs[t
+ 1] .shape[0].

activation (str)— Activation function name. Please select tanh or relu.

This function returns a tuple containing three elements, hy and ys.

hy is an updated hidden states whose shape is same as hx.

ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs [t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs [t].

Return type tuple

chainer.functions.shift

chainer.functions.shift (x, ksize=3, dilate=1)

Shift function.

See: Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions

Parameters

x (Variable or N-dimensional array) — Input variable of shape (n, ¢, h, w).

220

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1711.08141

Chainer Documentation, Release 6.1.0

e ksize (int or pair of ints) — Size of filters (a.k.a. Kkernels). ksize=k and
ksize=(k, k) areequivalent.

* dilate (int or pair of ints) - Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

Returns Output variable of same shape as x.

Return type Variable

4.2.5 Evaluation functions

chainer. functions.accuracy

Computes multiclass classification accuracy of the
minibatch.

chainer. functions.binary_accuracy

Computes binary classification accuracy of the mini-
batch.

chainer.functions.
classification_summary

Calculates Precision, Recall, F beta Score, and support.

chainer.functions.fl_score

chainer. functions.precision

chainer.functions.r2 _score

Computes R"2(coefficient of determination) regression
score function.

chainer. functions.recall

chainer.functions.accuracy

chainer.functions.accuracy (y, t, ignore_label=None)
Computes multiclass classification accuracy of the minibatch.

Parameters

* y(Variable or N-dimensional array) — Array whose (i, j, k, ...)-th element indicates the
score of the class j at the (i, k, ...)-th sample. The prediction label ¢ is calculated by the

formula £(4, &, ...) = argmax; y(i, j, k, ..

).

* t (Variable or N-dimensional array) — Array of ground truth labels.

* ignore_label (int or None) — Skip calculating accuracy if the true label is

ignore_label.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when vy is the two dimensional array.

>>> y = np.array ([

, 0.7, 0.21,

prediction label is 1

>>> t = np.array ([

[0.1

[8.0, 1.0, 2.0], # prediction label is 0
[-8.0, 1.0, 2.0], # prediction label is 2
[-8.0, -1.0, -2.0]]) # prediction label is 1
1, 0, 2, 11, np.int32)

(continues on next page)

4.2. Functions 221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 6.1.0

(continued from previous page)

>>> F.accuracy(y, t).array # 100% accuracy because all samples are correct

array (1.)

>>> t = np.array([1l, 0, 0, 0], np.int32)

>>> F.accuracy(y, t).array # 50% accuracy because lst and 2nd samples are correct.
array (0.5)

>>> F.accuracy(y, t, ignore_label=0).array # 100% accuracy because of ignoring,
—~the 2nd, 3rd and 4th samples.

array (1.)

chainer.functions.binary_accuracy
chainer.functions.binary_ accuracy (y,?)
Computes binary classification accuracy of the minibatch.
Parameters

* y (Variable or N-dimensional array) — Array whose i-th element indicates the score of
positive at the i-th sample. The prediction label ¢[i] is 1 if y[i] >= 0, otherwise 0.

* t (Variable or N-dimensional array) — Array holding a signed integer vector of ground
truth labels. If t [1] == 1, it indicates that i-th sample is positive. If t [1] == 0, it
indicates that i-th sample is negative. If t [i] == -1, corresponding y [1] is ignored.
Accuracy is zero if all ground truth labels are —1.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when vy is the two dimensional array.

>>> y = np.array([[-2.0, 0.0], # prediction labels are [0, 1]
. [3.0, =-5.011) # prediction labels are [1, 0]
>>> t = np.array([[0, 17,
. [1, 011, np.int32)
>>> F.binary_accuracy(y, t).array # 100% accuracy because all samples are correct.
array (1.)
>>> t = np.array([[0, 0],
.. [1, 111, np.int32)
>>> F.binary_accuracy(y, t).array # 50% accuracy because y[0][0] and y[1][0] are,
—correct.
array (0.5)
>>> t = np.array([[0, -17,
. [1, =111, np.int32)
>>> F.binary_accuracy(y, t).array # 100% accuracy because of ignoring y[0][1] and_
—y[1][1].
array (1l.)

222 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

chainer.functions.classification_summary

chainer.functions.classification_summary (y, t, label_num=None, beta=1.0, ignore_label=-

1)
Calculates Precision, Recall, F beta Score, and support.

This function calculates the following quantities for each class.

tp
tp+fp

e Recall: tpt}:fn

¢ Precision:

* F beta Score: The weighted harmonic average of Precision and Recall.
» Support: The number of instances of each ground truth label.

Here, tp, fp, tn, and fn stand for the number of true positives, false positives, true negatives, and false
negatives, respectively.

label_num specifies the number of classes, that is, each value in t must be an integer in the range of [0,
label_num). If label_numis None, this function regards 1abel_num as a maximum of in t plus one.

ignore_label determines which instances should be ignored. Specifically, instances with the given label
are not taken into account for calculating the above quantities. By default, it is set to -1 so that all instances are
taken into consideration, as labels are supposed to be non-negative integers. Setting ignore_label to a non-
negative integer less than 1abel_num is illegal and yields undefined behavior. In the current implementation,
itarises Runt imeWarning and ignore_label-th entries in output arrays do not contain correct quantities.

Parameters
* y(Variable or N-dimensional array) — Variable holding a vector of scores.
* t (Variable or N-dimensional array) — Variable holding a vector of ground truth labels.
* label_ num (int) - The number of classes.

* beta (float) — The parameter which determines the weight of precision in the F-beta
score.

* ignore_label (int) - Instances with this label are ignored.

Returns 4-tuple of ~chainer.Variable of size (1abel_num,). Each element represents precision,
recall, F beta score, and support of this minibatch.

chainer.functions.f1_score

chainer.functions.fl_score (y, t, label_num=None, ignore_label=-1)

chainer.functions.precision

chainer.functions.precision (y,t, label_num=None, ignore_label=-1)

chainer.functions.r2_score

chainer.functions.r2_score (pred, true, sample_weight=None, multioutput="uniform_average’)
Computes R*2(coefficient of determination) regression score function.

Parameters

4.2. Functions 223

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* pred (Variable or N-dimensional array) — Variable holding a vector, matrix or tensor of

estimated target values.

* true (Variable or N-dimensional array)— Variable holding a vector, matrix or tensor of

correct target values.

* sample_weight — This argument is for compatibility with scikit-learn’s implementation
of r2_score. Current implementation admits None only.

* multioutput (string)—[‘uniform_average’, ‘raw_values’]. if ‘uniform_average’, this
function returns an average of R"2 score of multiple output. If ‘raw_average’, this function
return a set of R"2 score of multiple output.

Returns A Variable holding a scalar array of the R*2 score if ‘multioutput’ is ‘uniform_average’ or
a vector of R"2 scores if ‘multioutput’ is ‘raw_values’.

Return type Variable

Note: This function is non-differentiable.

chainer.functions.recall

chainer.functions.recall (y,t, label_num=None, ignore_label=-1)

4.2.6 Loss functions

chainer. functions.absolute_ error

Element-wise absolute error function.

chainer.functions.bernoulli_nll

Computes the negative log-likelihood of a Bernoulli dis-
tribution.

chainer. functions.black_out

BlackOut loss function.

chainer.functions.
connectionist_temporal_ classification

Connectionist Temporal Classification loss function.

chainer.functions.contrastive

Computes contrastive loss.

chainer.functions.crfld

Calculates negative log-likelihood of linear-chain CRF.

chainer. functions.argmax_crfld

Computes a state that maximizes a joint probability of
the given CRF.

chainer. functions.cross_covariance

Computes the sum-squared cross-covariance penalty
between y and z

chainer.functions.decov

Computes the DeCov loss of h

chainer.functions.

Discriminative margin-based clustering loss function

discriminative_margin_based_clustering_loss

chainer.functions.
gaussian_kl_divergence

Computes the KL-divergence of Gaussian variables
from the standard one.

chainer.functions.gaussian _nll

Computes the negative log-likelihood of a Gaussian dis-
tribution.

chainer. functions.hinge

Computes the hinge loss for a one-of-many classifica-
tion task.

chainer. functions.huber_loss

Computes the Huber loss.

chainer.functions.
mean_absolute error

Mean absolute error function.

chainer. functions.mean_squared_error

Mean squared error function.

Continued on next page

224

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Table 7 — continued from previous page

chainer. functions.negative_ sampling Negative sampling loss function.

chainer. functions. Computes cross entropy loss for pre-sigmoid activa-
sigmoid _cross_entropy tions.

chainer. functions. Computes cross entropy loss for pre-softmax activa-
softmax_cross_entropy tions.

chainer. functions.squared_error Squared error function.

chainer. functions.triplet Computes triplet loss.

chainer.functions.absolute_error
chainer.functions.absolute error (x0, x/)
Element-wise absolute error function.

Computes the element-wise absolute error L between two inputs xg and x; defined as follows.
L= |$0 — $1|

Parameters
* %0 (Variable or N-dimensional array) — First input variable.
* x1 (Variable or N-dimensional array) — Second input variable.
Returns An array representing the element-wise absolute error between the two inputs.

Return type Variable

chainer.functions.bernoulli_nll

chainer.functions.bernoulli_nll (x, Yy, reduce="sum’)
Computes the negative log-likelihood of a Bernoulli distribution.

This function calculates the negative log-likelihood of a Bernoulli distribution.

—log B(w;p) = — Z{xi log(pi) + (1 — ;) log(1 — ps)},

where p = o(y), o(+) is a sigmoid function, and B(x; p) is a Bernoulli distribution.

The output is a variable whose value depends on the value of the option reduce. If itis 'no"', it holds the
elementwise loss values. Ifitis 'sum' or 'mean', loss values are summed up or averaged respectively.

Note: As this function uses a sigmoid function, you can pass a result of fully-connected layer (that means
Linear) to this function directly.

Parameters
* x (Variable or N-dimensional array) — Input variable.

* y(Variable or N-dimensional array) — A variable representing the parameter of Bernoulli
distribution.

* reduce (str) — Reduction option. Its value must be either 'sum', 'mean' or 'no’.
Otherwise, ValueError is raised.

4.2. Functions 225

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

Returns A variable representing the negative log-likelihood. If reduce is 'no"', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If itis 'sum'
or 'mean', the output variable holds a scalar value.

Return type Variable

chainer.functions.black out
chainer.functions.black_out (x,t, W, samples, reduce="mean’)
BlackOut loss function.
BlackOut loss function is defined as
—log(p(t)) = > log(1 — p(s)),
ses

where ¢ is the correct label, S is a set of negative examples and p(-) is likelihood of a given label. And, p is
defined as

exp(WJw)
exp(W/ z)’

p(y) = 5

s€samples

The output is a variable whose value depends on the value of the option reduce. If itis 'no", it holds the no
loss values. If it is "mean', this function takes a mean of loss values.

Parameters

* x (Variable or N-dimensional array) — Batch of input vectors. Its shape should be
(N, D).

* t (Variable or N-dimensional array) — Vector of ground truth labels. Its shape should be
(N,). Each elements v should satisfy 0 > v > V or —1 where V is the number of label
types.

* W(Variable or N-dimensional array) — Weight matrix. Its shape should be (V, D)

* samples (Variable) — Negative samples. Its shape should be (N, S) where S is the
number of negative samples.

* reduce (str)— Reduction option. Its value must be either 'no' or 'mean’'. Otherwise,
ValueError is raised.

Returns A variable object holding loss value(s). If reduce is 'no"', the output variable holds an
array whose shape is (N,) . If itis 'mean', it holds a scalar.

Return type Variable
See: BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies
See also:

BlackOut.

chainer.functions.connectionist_temporal_classification

chainer.functions.connectionist_temporal_classification (x, t, blank_symbol,
input_length=None,
label_length=None, re-

.. . . . duce="mean’)
Connectionist Temporal Classification loss function.

226 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1511.06909

Chainer Documentation, Release 6.1.0

Connectionist Temporal Classification(CTC) [Graves2006] is a loss function of sequence labeling where the
alignment between the inputs and target is unknown. See also [Graves2012]

The output is a variable whose value depends on the value of the option reduce. If itis 'no', it holds the
samplewise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

* x (list or tuple of Variable)— A list of unnormalized probabilities for labels. Each ele-
ment of x, x[1] is a Variable object, which has shape (B, V), where B is the batch
size and V is the number of labels. The softmax of x [1] represents the probabilities of the
labels at time 1.

* t (Variable or N-dimensional array) — A matrix including expected label sequences.
Its shape is (B, M), where B is the batch size and M is the maximum length of the label
sequences. All elements in t must be less than v, the number of labels.

* blank_symbol (int)— Index of blank_symbol. This value must be non-negative.

* input_length (Variable or N-dimensional array) — Length of sequence for each of
mini batch x (optional). Its shape must be (B,). If the input_length is omitted or
None, it assumes that all of x is valid input.

* label length (Variable or N-dimensional array) — Length of sequence for each of
mini batch t (optional). Its shape must be (B,). If the 1abel_length is omitted or
None, it assumes that all of t is valid input.

* reduce (str)— Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar value of the CTC loss. If reduce is 'no', the output variable
holds array whose shape is (B,) where B is the number of samples. If it is 'mean', it holds a
scalar.

Return type Variable

Note: You need to input x without applying to activation functions(e.g. softmax function), because this
function applies softmax functions to x before calculating CTC loss to avoid numerical limitations. You also
need to apply softmax function to forwarded values before you decode it.

Note: This function is differentiable only by x.

Note: This function supports (batch, sequence, 1-dimensional input)-data.

chainer.functions.contrastive
chainer.functions.contrastive (x0, x1,y, margin=1, reduce="mean’)
Computes contrastive loss.

It takes a pair of samples and a label as inputs. The label is 1 when those samples are similar, or 0 when they
are dissimilar.

4.2. Functions 227

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

Let N and K denote mini-batch size and the dimension of input variables, respectively. The shape of both input
variables x0 and x1 should be (N, K). The loss value of the n-th sample pair L, is

1
Ly = 5 (ynd;, + (1 = y,) max(margin — d,,, 0)?)

2

where d,, = ||X0,, — X1,/|2, X0, and x1,, are n-th K-dimensional vectors of x0 and x1.

The output is a variable whose value depends on the value of the option reduce. If itis 'no"', it holds the
elementwise loss values. If itis 'mean', this function takes a mean of loss values.

Parameters

* x0 (Variable or N-dimensional array) — The first input variable. The shape should be
(N, K), where N denotes the mini-batch size, and K denotes the dimension of x0.

* x1 (Variable or N-dimensional array) — The second input variable. The shape should be

the same as x0.

* y (Variable or N-dimensional array) — Labels. All values should be 0 or 1. The shape

should be (N,), where N denotes the mini-batch size.

* margin (float)— A parameter for contrastive loss. It should be positive value.

* reduce (str)— Reduction option. Its value must be either 'mean' or 'no'. Otherwise,

ValueError is raised.

Returns A variable holding the loss value(s) calculated by the above equation. If reduceis 'no"’,
the output variable holds array whose shape is same as one of (hence both of) input variables. If

itis "mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train siamese networks. See Learning a Similarity Metric Discriminatively, with

Application to Face Verification for details.

Example

>>> x0 = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]1) .astype(np.float3?2)
>>> x1 = np.array([[-1.0, 3.0, 1.0], [3.5, 0.5, =2.0]11) .astype(np.float3?2)
>>> y = np.array([1l, 0]).astype(np.int32)

>>> F.contrastive (x0, x1, y)

variable (0.3125)
>>> F.contrastive (x0, x1, y, margin=3.0) # harder penalty
variable (0.3528857)

>>> 7z = F.contrastive(x0, x1, y, reduce='no'")
>>> z.shape

(2,)

>>> z.array

array ([0.625, O.], dtype=float32)

chainer.functions.crfid

chainer.functions.crfld (cost, xs, ys, reduce="mean’)
Calculates negative log-likelihood of linear-chain CRF.

228

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

Chainer Documentation, Release 6.1.0

It takes a transition cost matrix, a sequence of costs, and a sequence of labels. Let c,; be a transition cost from a
label s to a label ¢, z;; be a cost of a label ¢ at position 7, and y; be an expected label at position ¢. The negative

log-likelihood of linear-chain CRF is defined as

l -1
L=- Zny’L + chwiﬂ —log(2) |,
i=1 i=1

where [is the length of the input sequence and Z is the normalizing constant called partition function.

Note: When you want to calculate the negative log-likelihood of sequences which have different lengths, sort
the sequences in descending order of lengths and transpose the sequences. For example, you have three input

sequences:

>>> al = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> bl = b2 = b3 = np.random.uniform(-1, 1, 3).astype(np.float32)

>>> ¢l = ¢c2 = np.random.uniform(-1, 1, 3).astype(np.float32)

>>> a = [al, a2, a3, ad]

>>> b = [bl, b2, b3]

>>> ¢ = [cl, c2]

where a1l and all other variables are arrays with (K,) shape. Make a transpose of the sequences:

>>> x1 = np.stack([al, bl, cl])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])

>>> x4 = np.stack([a4d])

and make a list of the arrays:

>>> xs = [x1, x2, x3, x4]

You need to make label sequences in the same fashion. And then, call the function:

>>> cost = chainer.Variable (

. np.random.uniform (-1, 1, (3, 3)).astype(np.float32))
>>> ys = [np.zeros(x.shape[0:1], dtype=np.int32) for x in xs]
>>> loss = F.crfld(cost, xs, ys)

It calculates mean of the negative log-likelihood of the three sequences.

The output is a variable whose value depends on the value of the option reduce. If itis 'no', it holds the

elementwise loss values. If it is "mean ', it holds mean of the loss values.

Parameters

* cost (Variable or N-dimensional array) — A K x K matrix which holds transition cost
between two labels, where K is the number of labels.

* xs(list of Variable)- Input vector for each label. 1en (xs) denotes the length of
the sequence, and each Variable holds a B x K matrix, where B is mini-batch size, K
is the number of labels. Note that Bs in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

* ys(1ist of Variable) - Expected output labels. It needs to have the same length as
xs. Each Variable holds a B integer vector. When x in xs has the different B, corre-

4.2. Functions

229

Chainer Documentation, Release 6.1.0

spoding v has the same B. In other words, ys must satisfy ys [1] . shape == xs[i].
shape[0:1] forall i.

* reduce (str)—Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the average negative log-likelihood of the input sequences.

Return type Variable

Note: See detail in the original paper: Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data.

chainer.functions.argmax_crf1d

chainer.functions.argmax_crfld (cost, xs)
Computes a state that maximizes a joint probability of the given CRF.

Parameters

* cost (Variable or N-dimensional array) — A K x K matrix which holds transition cost
between two labels, where K is the number of labels.

* xs(list of Variable)- Input vector for each label. 1en (xs) denotes the length of
the sequence, and each Variable holds a B x K matrix, where B is mini-batch size, K
is the number of labels. Note that Bs in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

Returns A tuple of Variable object s and a 1ist ps. The shape of s is (B,), where B is the
mini-batch size. i-th element of s, s[1], represents log-likelihood of i-th data. ps is a list
of N-dimensional array, and denotes the state that maximizes the point probability. len (ps)
is equal to len (xs), and shape of each ps[i] is the mini-batch size of the corresponding
xs[i]. That means, ps[i] .shape == xs[i].shape[0:1].

Return type tuple

chainer.functions.cross_covariance

chainer.functions.cross_covariance (y, z, reduce="half_squared_sum’)
Computes the sum-squared cross-covariance penalty between y and z

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the covariant matrix that has as many rows (resp. columns) as the dimension of y (resp.z). If it is
'half_squared_sum', it holds the half of the Frobenius norm (i.e. L2 norm of a matrix flattened to a
vector) of the covarianct matrix.

Parameters

* y (Variable or N-dimensional array) — Variable holding a matrix where the first dimen-
sion corresponds to the batches.

* z (Variable or N-dimensional array) — Variable holding a matrix where the first dimen-
sion corresponds to the batches.

* reduce (str)— Reduction option. Its value must be either 'half_squared_sum' or
'no'. Otherwise, ValueError is raised.

230 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://repository.upenn.edu/cis_papers/159/
https://repository.upenn.edu/cis_papers/159/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

Returns A variable holding the cross covariance loss. If reduce is 'no', the output variable holds
2-dimensional array matrix of shape (M, N) where M (resp. N) is the number of columns of y
(resp. z). If itis 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to disentangle variables. See https://arxiv.org/abs/1412.6583v3 for details.

chainer.functions.decov
chainer.functions.decov (h, reduce="half_squared_sum’)
Computes the DeCov loss of h

The output is a variable whose value depends on the value of the option reduce. Ifitis 'no"', it holds a matrix
whose size is same as the number of columns of y. Ifitis "half_squared_sum', it holds the half of the
squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix.

Parameters

* h (Variable or N-dimensional array) — Variable holding a matrix where the first dimen-
sion corresponds to the batches.

* recude (str)— Reduction option. Its value must be either 'half_ squared_sum' or
'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar of the DeCov loss. If reduce is 'no"', the output variable
holds 2-dimensional array matrix of shape (N, N) where N is the number of columns of y. If
itis "half_ squared_sum', the output variable holds a scalar value.

Return type Variable

Note: See https://arxiv.org/abs/1511.06068 for details.

chainer.functions.discriminative_margin_based_clustering_loss

chainer.functions.discriminative_margin_based_clustering_loss (embeddings, la-
bels, delta_v,
delta_d,
max_embedding_dim,
norm=1, al-
pha=1.0,
beta=1.0,

gamma=0.001)
Discriminative margin-based clustering loss function

This is the implementation of the following paper: https://arxiv.org/abs/1708.02551 This method is a semi-
supervised solution to instance segmentation. It calculates pixel embeddings, and calculates three different
terms based on those embeddings and applies them as loss. The main idea is that the pixel embeddings for same
instances have to be closer to each other (pull force), for different instances, they have to be further away (push
force). The loss also brings a weak regularization term to prevent overfitting. This loss function calculates the
following three parameters:

Variance Loss Loss to penalize distances between pixels which are belonging to the same instance. (Pull force)

Distance loss Loss to penalize distances between the centers of instances. (Push force)

4.2. Functions 231

https://arxiv.org/abs/1412.6583v3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1511.06068
https://arxiv.org/abs/1708.02551

Chainer Documentation, Release 6.1.0

Regularization loss Small regularization loss to penalize weights against overfitting.

Parameters

* embeddings (Variable or N-dimensional array) — predicted embedding vectors (batch
size, max embedding dimensions, height, width)

* labels (N-dimensional array) —instance segmentation ground truth each unique value has
to be denoting one instance (batch size, height, width)

* delta_v (float) - Minimum distance to start penalizing variance
* delta_d (float)—Maximum distance to stop penalizing distance
* max_embedding_dim (int)— Maximum number of embedding dimensions
* norm (int)— Norm to calculate pixels and cluster center distances
* alpha (float)— Weight for variance loss
* beta (f1loat)— Weight for distance loss
* gamma (f1oat)— Weight for regularization loss
Returns
* Variance loss: Variance loss multiplied by alpha
* Distance loss: Distance loss multiplied by beta
* Regularization loss: Regularization loss multiplied by gamma

Return type tuple of chainer.Variable

chainer.functions.gaussian_kl_divergence
chainer.functions.gaussian_kl_divergence (mean, In_var, reduce="sum’)
Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable mean representing 1 and 1n_var representing log(c2), this function calculates the KL-
divergence in elementwise manner between the given multi-dimensional Gaussian N (u, S) and the standard
Gaussian N (0, I)

Dxr(N(p, S)IN(0,1)),

where S is a diagonal matrix such that S;; = o2 and I is an identity matrix.

The output is a variable whose value depends on the value of the option reduce. If itis 'no', it holds the
elementwise loss values. Ifitis 'sum' or 'mean', loss values are summed up or averaged respectively.

Parameters

* mean (Variable or N-dimensional array) — A variable representing mean of given gaus-
sian distribution, .

* 1n var (Variable or N-dimensional array) — A variable representing logarithm of vari-
ance of given gaussian distribution, log(c?).

* reduce (str)— Reduction option. Its value must be either 'sum', 'mean' or 'no'.
Otherwise, ValueError is raised.

232 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

Returns A variable representing KL-divergence between given gaussian distribution and the stan-
dard gaussian. If reduce is 'no', the output variable holds array whose shape is same as one

of (hence both of) input variables. If itis ' sum' or 'mean', the output variable holds a scalar
value.

Return type Variable

chainer.functions.gaussian_nll
chainer.functions.gaussian_nll (x, mean, In_var, reduce="sum’)
Computes the negative log-likelihood of a Gaussian distribution.

Given two variable mean representing p and 1n_var representing log(c?), this function computes in elemen-
twise manner the negative log-likelihood of 2 on a Gaussian distribution N (i, S),

~log N(z: 1,0%) = log ((27r>D|S|) F e TS e,

where D is a dimension of = and S is a diagonal matrix where S;; = 012.

The output is a variable whose value depends on the value of the option reduce. If itis 'no', it holds the
elementwise loss values. If itis 'sum' or "mean"', loss values are summed up or averaged respectively.

Parameters
* x (Variable or N-dimensional array) — Input variable.

* mean (Variable or N-dimensional array) — A variable representing mean of a Gaussian
distribution, .

* 1n_var (Variable or N-dimensional array) — A variable representing logarithm of vari-
ance of a Gaussian distribution, log(c?).

* reduce (str) — Reduction option. Its value must be either 'sum', 'mean' or 'no’.
Otherwise, ValueError is raised.

Returns A variable representing the negative log-likelihood. If reduce is 'no"', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If itis 'sum'
or 'mean’', the output variable holds a scalar value.

Return type Variable

chainer.functions.hinge

chainer.functions.hinge (x, t, norm="L1’, reduce="mean’)
Computes the hinge loss for a one-of-many classification task.

N K
Z Z max (0,1 — 8{t,, = k}x.i)]"

n=1k=1
where N denotes the batch size and K is the number of classes of interest,
.. 1 if condition is true
0{condition} = { -1 otherwise,

and

_ 1 ifnorm=1L1
P=13 2 ifnorm =12

4.2. Functions 233

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

Let the hinge loss function [(z, §) be [max(0, 1 — §z)]”. When x and § have the same sign (meaning
x predicts the proper score for classification) and |z| > 1, the hinge loss [(x, d) = 0, but when they
have opposite sign, I(x, 0) increases linearly with .

The output is a variable whose value depends on the value of the option reduce. Ifitis 'no', it
holds the elementwise loss values. If it is 'mean’', it takes the mean of loss values.
Parameters

* x (Variable or N-dimensional array) — Input variable. The shape of x should be (/V, K).

e t (Variable or N-dimensional array) — The N-dimensional label vector with values ¢,, €
{0,1,2,..., K — 1}. The shape of t should be (N,).

* norm (string) - Specifies norm type. Either 'L1"' or 'L2"' is acceptable.

* reduce (str)—Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable object holding a scalar array of the hinge loss L. If reduce is 'no"', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it
is 'mean', the output variable holds a scalar value.

Return type Variable

Example

In this case, the batch size N is 2 and the number of classes K is 3.

>>> x = np.array([[-2.0, 3.0, 0.5],

. [5.0, 2.0, -0.5]]) .astype(np.float32)
>>> x

array ([[-2. , 3., 0.57,

[5., 2., -0.5]], dtype=float32)
>>> t = np.array([1l, 0]).astype(np.int32)
>>> t
array ([1, 0], dtype=int32)
>>> F.hinge(x, t)
variable (2.5)
>>> F.hinge(x, t, reduce='no'")
variable([[0. , 0. , 1.5],

[0. , 3., 0.511)
>>> F.hinge(x, t, norm='L2")
variable (5.75)

chainer.functions.huber_loss

chainer.functions.huber_loss (x, t, delta, reduce="sum_along_second_axis’)
Computes the Huber loss.

The Huber loss is similar to the mean squared error () butis less sensitive to outliers in the data. It is
defined as

1,2 :
_ iaj if |a\ S)
Ls(a) = { 5(|a] — %6) otherwise,

where a = x — t is the difference between the input = and the target t.

234 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

The loss is a variable whose value depends on the value of the option reduce. If itis 'no', it holds the
elementwise loss values. If itis 'sum_along_second_axis"', loss values are summed up along the second
axis (i.e. axis=1).

See: Huber loss - Wikipedia.
Parameters

* x (Variable or N-dimensional array) — Input variable. The shape of x should be (N, K,
...)if reduce="sum_along_second_axis".

* t (Variable or N-dimensional array) — Target variable for regression. The shape of t
should be (V, K, ...) if reduce="sum_along_second_axis"'.

* delta (float)— Constant variable for Huber loss function as used in definition.

e reduce (str) - Reduction option. Its value must be either
'sum_along_second_axis"' or 'no'. Otherwise, ValueError is raised.

Returns A variable object holding a scalar array of the Huber loss Ls. If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it is
'sum_along_second_axis', the shape of the array is same as the input variables, except
the second axis is removed.

Return type Variable

Example

Example without reduction, in which case the output y will have the same shape as the inputs x and t.

>>> import numpy as np
>>> from chainer import functions as F

>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]11) .astype(np.float32)
>>> x.shape
(2, 3)
>>> t = np.array([[-2.0, 3.0, 0.0], [10.0, 2.0, —-0.5]11) .astype(np.float32)
>>> t.shape
(2, 3)
>>> y = F.huber_loss(x, t, delta=1.0, reduce='no')
>>> y.shape
(2, 3)
>>> y
variable ([[O0. , 0. , 0.1257,
[4.5 , 0. , O. 11)

Example with reduction along the second axis.

>>> y = F.huber_loss(x, t, delta=1.0, reduce='sum_along_second_axis'")
>>> y.shape

(2,)

>>> y

variable ([0.125, 4.5 1)

chainer.functions.mean_absolute_error

chainer.functions.mean_absolute_error (x0, xI)
Mean absolute error function.

4.2. Functions 235

https://en.wikipedia.org/wiki/Huber_loss
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 6.1.0

This function computes mean absolute error between two variables. The mean is taken over the minibatch.
Parameters
* %0 (Variable or N-dimensional array) — Input variable.
* x1 (Variable or N-dimensional array) — Input variable.
Returns A variable holding an array representing the mean absolute error of two inputs.

Return type Variable

chainer.functions.mean_squared_error

chainer.functions.mean_squared_error (x0, xI)

Mean squared error function.

This function computes mean squared error between two variables. The mean is taken over the minibatch. Note
that the error is not scaled by 1/2.

Parameters
* %0 (Variable or N-dimensional array) — Input variable.
* x1 (Variable or N-dimensional array) — Input variable.
Returns A variable holding an array representing the mean squared error of two inputs.

Return type Variable

chainer.functions.negative_sampling

chainer.functions.negative_sampling (x, t, W, sampler, sample_size, reduce=’sum’, *, re-

turn_samples="False)
Negative sampling loss function.

In natural language processing, especially language modeling, the number of words in a vocabulary can be very
large. Therefore, you need to spend a lot of time calculating the gradient of the embedding matrix.

By using the negative sampling trick you only need to calculate the gradient for a few sampled negative exam-
ples.

The loss is defined as follows.

f(x,p) = —log U(ZCTUW - kEin(i) [log 0(—$Twi)]

where o(-) is a sigmoid function, w; is the weight vector for the word 7, and p is a positive example. It is
approximated with k examples N sampled from probability P (7).

f(z,p) ~ —log U(CUTwp) — Z log o(—z "w,)
neN

Each sample of NV is drawn from the word distribution P(w) = +£¢(w)®, where c(w) is the unigram count of

the word w, « is a hyper-parameter, and Z is the normalization constant.
Parameters
* x (Variable or N-dimensional array) — Batch of input vectors.
* t (Variable or N-dimensional array) — Vector of ground truth labels.

* W(Variable or N-dimensional array) — Weight matrix.

236

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

* sampler (FunctionType)— Sampling function. It takes a shape and returns an integer
array of the shape. Each element of this array is a sample from the word distribution. A
WalkerAlias objectbuilt with the power distribution of word frequency is recommended.

* sample_size (int)— Number of samples.

* reduce (str)— Reduction option. Its value must be either ' sum' or 'no'. Otherwise,
ValueError is raised.

* return_samples (bool) —If True, the sample array is also returned. The sample array is
a(
Returns

If return_samples is False (default), the output variable holding the loss value(s) calcu-
lated by the above equation is returned. Otherwise, a tuple of the output variable and the sample
array is returned.

If reduce is "no"', the output variable holds array whose shape is same as one of (hence both
of) input variables. If itis ' sum', the output variable holds a scalar value.

Return type Variable or tuple
See: Distributed Representations of Words and Phrases and their Compositionality
See also:

NegativeSampling.

chainer.functions.sigmoid_cross_entropy

chainer.functions.sigmoid_cross_entropy (x, f, normalize=True, reduce="mean’)
Computes cross entropy loss for pre-sigmoid activations.

Parameters

* x (Variable or N-dimensional array) — A variable object holding a matrix whose (i, j)-th
element indicates the unnormalized log probability of the j-th unit at the i-th example.

* t (Variable or N-dimensional array) — A variable object holding a matrix whose (i, j)-th
element indicates a signed integer vector of ground truth labels O or 1. If £t [i, J] ==
-1, corresponding x [1, 7] isignored. Loss is zero if all ground truth labels are - 1.

* normalize (bool) — Variable holding a boolean value which determines the normaliza-
tion constant. If true, this function normalizes the cross entropy loss across all instances. If
else, it only normalizes along a batch size.

* reduce (str) - Variable holding a st r which determines whether to reduce the shape of
the input. If it is 'mean', it computes the sum of cross entropy and normalize it according
tonormalize option. Ifisis 'no "', this function computes cross entropy for each instance
and does not normalize it (normalize option is ignored). In this case, the loss value of
the ignored instance, which has —1 as its target value, is set to 0.

Returns A variable object holding an array of the cross entropy. If reduce is 'mean', it is a
scalar array. If reduce is 'no"', the shape is same as those of x and t.

Return type Variable

Note: This function is differentiable only by x.

4.2. Functions 237

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1310.4546
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Example

>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]1) .astype(np.float32)
>>> x

array ([[-2. , 3., 0.571,

[5., 2., -0.5]], dtype=float32)
>>> t = np.array([[0, 1, 0], [1, 1, —-111).astype(np.int32)
>>> t
array ([[O, 1, 01,
[1, 1, -111, dtype=int32)
>>> F.sigmoid_cross_entropy(x, t)
variable (0.25664714)
>>> F.sigmoid_cross_entropy(x, t, normalize=False)
variable (0.64161783)

>>> y = F.sigmoid_cross_entropy(x, t, reduce='no')
>>> y.shape
(2, 3)

>>> y.array
array ([[0.126928 , 0.04858735, 0.974077 1,
[0.00671535, 0.126928 , -0. 11, dtype=float32)

chainer.functions.softmax_cross_entropy

chainer.functions.softmax_cross_entropy (x, 1, normalize=True, cache_score=True,
class_weight=None, ignore_label=-1, re-

duce="mean’, enable_double_backprop=False)
Computes cross entropy loss for pre-softmax activations.

Parameters

* x (Variable or N-dimensional array) — Variable holding a multidimensional array whose
element indicates unnormalized log probability: the first axis of the variable represents the
number of samples, and the second axis represents the number of classes. While this func-
tion computes a usual softmax cross entropy if the number of dimensions is equal to 2, it
computes a cross entropy of the replicated softmax if the number of dimensions is greater
than 2.

* t (Variable or N-dimensional array)— Variable holding a signed integer vector of ground
truth labels. If t [1] == ignore_label, corresponding x [1] is ignored.

* normalize (bool) - If True, this function normalizes the cross entropy loss across all
instances. If False, it only normalizes along a batch size.

* cache_score (bool) — When it is True, the function stores result of forward compu-
tation to use it on backward computation. It reduces computational cost though consumes
more memory. If enable_double_backprop option is True, this option is forcibly
turned off and the function does not cache the intermediate value.

* class_weight (N-dimensional array) — An array that contains constant weights that will
be multiplied with the loss values along with the second dimension. The shape of this array
should be (x.shape[1],). Ifthisis not None, each class weight class_weight [1i]
is actually multiplied to y [:, 1] that is the corresponding log-softmax output of x and
has the same shape as x before calculating the actual loss value.

* ignore_label (int) — Label value you want to ignore. Its default value is —~1. See
description of the argument ¢.

238 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* reduce (str) — A string that determines whether to reduce the loss values. If it is
'mean’', it computes the sum of the individual cross entropy and normalize it according
to normalize option. If it is 'no", this function computes cross entropy for each in-
stance and does not normalize it (normalize option is ignored). In this case, the loss
value of the ignored instance, which has ignore_1label as its target value, is set to 0.

* enable_double_backprop (bool)—If True, this function uses implementation that
supports higher order differentiation. If False, it uses single-backprop implementation.
This function use the single-backprop version because we expect it is faster. So, if you need
second or higher derivatives, you need to turn it on explicitly.

Returns A variable holding a scalar array of the cross entropy loss. If reduce is 'mean’,itis a
scalar array. If reduce is 'no"', the shape is same as that of t.

Return type Variable

Note: This function is differentiable only by x.

Example

>>> x = np.array([([-1, O, 1, 21, [2, O, 1, -111).astype(np.float32)
>>> x
array ([[-1., 0., 1., 2.1,
[2., 0., 1., -1.]11, dtype=float32)
>>> t = np.array([3, 0]).astype(np.int32)
>>> t
array ([3, 0], dtype=int32)
>>> y = F.softmax_cross_entropy(x, t)

>>> y

variable (0.44018972)

>>> log_softmax = -F.log_softmax (x)

>>> expected_loss = np.mean([log_softmax[row, column].data for row, column in_
—enumerate (t)])

>>> y.array == expected_loss

True

chainer.functions.squared_error
chainer.functions.squared_error (x0, xI)
Squared error function.

This function computes the squared error between two variables:
(x0 — x1)?

where operation is done in elementwise manner. Note that the error is not scaled by 1/2:
Parameters
* x0 (Variable or N-dimensional array) — Input variable.
* x1 (Variable or N-dimensional array) — Input variable.
Returns A variable holding an array representing the squared error of two inputs.

Return type Variable

4.2. Functions 239

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

chainer.functions.triplet
chainer.functions.triplet (anchor, positive, negative, margin=0.2, reduce="mean’)
Computes triplet loss.

It takes a triplet of variables as inputs, a, p and n: anchor, positive example and negative example respectively.
The triplet defines a relative similarity between samples. Let N and K denote mini-batch size and the dimension
of input variables, respectively. The shape of all input variables should be (N, K).

N
1
L(a7p, n) = N (Z ma‘X{d<ai7pi) - d(aia ni) + margina O})
i=1

where d(z;,y;) = ||x; — yill3.
The output is a variable whose value depends on the value of the option reduce. If itis 'no', it holds the
elementwise loss values. If it is 'mean ', this function takes a mean of loss values.

Parameters

* anchor (Variable or N-dimensional array) — The anchor example variable. The shape
should be (N, K'), where N denotes the minibatch size, and K denotes the dimension of the
anchor.

* positive (Variable or N-dimensional array) — The positive example variable. The
shape should be the same as anchor.

* negative (Variable or N-dimensional array) — The negative example variable. The
shape should be the same as anchor.

margin (float)— A parameter for triplet loss. It should be a positive value.

reduce (st r)— Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar that is the loss value calculated by the above equation. If
reduce is 'no', the output variable holds array whose shape is same as one of (hence both
of) input variables. If itis 'mean ', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train triplet networks. See Learning Fine-grained Image Similarity with Deep
Ranking for details.

Example

>>> anchor = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]) .astype(np.float32)
>>> pos = np.array([[-2.1, 2.8, 0.5], [4.9, 2.0, -0.4]1]1) .astype(np.float32)
>>> neg = np.array([[-2.1, 2.7, 0.7], [4.9, 2.0, -0.7]1]) .astype(np.float32)

>>> F.triplet (anchor, pos, neqg)

variable (0.14000003)

>>> y = F.triplet (anchor, pos, neg, reduce='no')
>>> y.shape

(2,)

>>> y.array

array ([0.11000005, 0.17], dtype=float32)

>>> F.triplet (anchor, pos, neg, margin=0.5) # harder penalty

variable (0.44000003)

240 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1404.4661
https://arxiv.org/abs/1404.4661

Chainer Documentation, Release 6.1.0

4.2.7 Mathematical functions

chainer. functions.absolute Element-wise absolute.

chainer.functions.arccos Elementwise arccosine function.

chainer.functions.arcsin Elementwise arcsine function.

chainer.functions.arctan Elementwise arctangent function.

chainer.functions.arctan2 Elementwise arctangent function with two arguments.

chainer. functions.argmax Returns index which holds maximum of array elements
over a given axis.

chainer. functions.argmin Returns index which holds minimum of array elements
over a given axis.

chainer.functions.average Calculate weighted average of array elements over a

given axis.

chainer.

functions

.batch_inv

Computes the inverse of a batch of square matrices.

chainer. functions.
batch_12 _norm_squared

L2 norm (a.k.a. Euclidean norm) squared.

chainer. functions.

batch_matmul

Computes the batch matrix multiplications of two sets
of arrays.

chainer. functions.bias Elementwise summation with broadcasting.

chainer.functions.ceil Elementwise ceil function.

chainer. functions.clip Clips (limits) elements of input variable.

chainer.functions.cos Elementwise cos function.

chainer. functions.cosh Elementwise hyperbolic cosine function.

chainer. functions.cumprod Cumulative prod of array elements over a given axis.

chainer. functions.cumsum Cumulative sum of array elements over a given axis.

chainer. functions.det Computes the determinant of a single square matrix.

chainer. functions.batch_det Computes the determinant of a batch of square matrices.

chainer. functions.digamma Digamma function.

chainer. functions.einsum Einstein summation

chainer.functions.erf Elementwise error function.

chainer. functions.erfc Elementwise complementary error function.

chainer. functions.erfcinv Elementwise inverse function of complementary error
function.

chainer. functions.erfcx Elementwise scaled complementary error function.

chainer. functions.erfinv Elementwise inverse function of error function.

chainer. functions.exp Elementwise exponential function.

chainer. functions.expml Elementwise exponential minus one function.

chainer.functions.fft Fast Fourier transform.

chainer. functions.fix Elementwise fix function.

chainer.functions. fmod Elementwise mod function.

chainer. functions.floor Elementwise floor function.

chainer. functions.identity Just returns input variables.

chainer.functions.ifft Inverse fast Fourier transform.

chainer.functions.inv Computes the inverse of square matrix.

chainer. functions.lgamma logarithm of gamma function.

chainer. functions.linear_interpolate Elementwise linear-interpolation function.

chainer.functions. log Elementwise natural logarithm function.

chainer. functions.logl0 Elementwise logarithm function to the base 10.

chainer. functions.loglp Elementwise natural logarithm plus one function.

chainer. functions.log2 Elementwise logarithm function to the base 2.

Continued on next page

4.2. Functions

241

Chainer Documentation, Release 6.1.0

Table 8 — continued from previous page

chainer. functions.log_ndtr Logarithm of cumulative distribution function of normal
distribution.

chainer. functions.logsumexp Log-sum-exp of array elements over a given axis.

chainer. functions.matmul Computes the matrix multiplication of two arrays.

chainer.functions.max Maximum of array elements over a given axis.

chainer. functions.maximum Element-wise maximum of input variables.

chainer. functions.mean Calculate weighted average of array elements over a
given axis.

chainer. functions.min Minimum of array elements over a given axis.

chainer. functions.minimum Element-wise minimum of input variables.

chainer. functions.ndtr Elementwise cumulative distribution function of normal
distribution.

chainer.functions.ndtri Elementwise inverse function of ndtr.

chainer. functions.prod Product of array elements over a given axis.

chainer. functions.polygamma Polygamma function.

chainer.functions.rsqrt Computes elementwise reciprocal of square root of in-
put x;.

chainer.functions.scale Elementwise product with broadcasting.

chainer.functions.sin Elementwise sin function.

chainer. functions.sinh Elementwise hyperbolic sine function.

chainer. functions.sign Elementwise sign function.

chainer. functions.sparse_matmul Computes the batched multiplication of sparse and
dense matrix.

chainer. functions.sqrt Elementwise square root function.

chainer. functions.square Elementwise square function.

chainer.functions.squared difference Squared difference of input variables.

chainer. functions.sum Sum of array elements over a given axis.

chainer. functions.sum_to Sum elements along axes to output an array of a given
shape.

chainer. functions.tanh Elementwise hyperbolic tangent function.

chainer. functions.tan Elementwise tan function.

chainer. functions.tensordot Returns the tensor dot product of two arrays along spec-

ified axes.

chainer.functions.absolute

chainer.functions.absolute (self)

Element-wise absolute.

Returns Output variable.

Return type Variable

chainer.functions.arccos

chainer.functions.arccos (x)
Elementwise arccosine function.

Y; = arccos rj.

Parameters x (Variable or N-dimensional array) — Input variable.

Returns Output variable.

242

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Return type Variable

chainer.functions.arcsin

chainer.functions.arcsin (x)
Elementwise arcsine function.

Y; = arcsin x;.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.arctan

chainer.functions.arctan (x)
Elementwise arctangent function.

y; = arctan x;.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.arctan2
chainer.functions.arctan2 (x/, x2)
Elementwise arctangent function with two arguments.
Parameters
* x1 (Variable or N-dimensional array) — Y-coordinates.
* x2 (Variable or N-dimensional array) — X-coordinates.
Returns Angles in radians, in the range [-pi, pi].

Return type Variable

chainer.functions.argmax
chainer. functions.argmax (x, axis=None)
Returns index which holds maximum of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Array to find maximum elements.

* axis (None or int)-— Axis over which a max is performed. The default (axis = None)
is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

4.2. Functions 243

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.argmin
chainer.functions.argmin (x, axis=None)
Returns index which holds minimum of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Array to find minimum elements.

* axis (None or int)— Axis over which a min is performed. The default (axis = None)
is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.average
chainer.functions.average (x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Elements to sum.

* axis (None or int or tuple of int) — Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

* weights (None or Variable or N-dimensional array) — An array holding weights to
calculate weighted average. If it is None, all weights are assumed to be one. When axis is
None, weights must have the same shape of x. And when axis is int, it must be 1-D
array satisfing weights.shape == (x.shapelaxis],).

* keepdims (bool)—If True, the specified axes are remained as axes of length one.
Returns Output variable.

Return type Variable

chainer.functions.batch_inv
chainer.functions.batch_inv (a)
Computes the inverse of a batch of square matrices.

Parameters a (Variable or N-dimensional array)—Input array to compute the inverse for. Shape
of the array shouldbe (m, n, n) where m is the number of matrices in the batch, and n is the
dimensionality of a square matrix.

Returns Inverse of every matrix in the batch of matrices.

Return type Variable

chainer.functions.batch_I2_norm_squared

chainer.functions.batch_12 norm squared (x)
L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

244 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

Parameters x (Variable or N-dimensional array) — Input variable. The first dimension is as-
sumed to be the minibatch dimension. If x has more than two dimensions all but the first dimen-
sion are flattened to one dimension.

Returns Two dimensional output variable.

Return type Variable

chainer.functions.batch_matmul

chainer. functions.batch_matmul (a, b, transa=False, transb=False)

Computes the batch matrix multiplications of two sets of arrays.
Parameters

* a (Variable or N-dimensional array) — The left operand of the batch matrix multiplica-
tions. A 2-D array of shape (B, N) is considered as B /N x 1 matrices. A 3-D array of
shape (B, M, N) is considered as B M x N matrices.

* b (Variable or N-dimensional array) — The right operand of the batch matrix multiplica-
tions. Its array is treated as matrices in the same way as a’s array.

* transa (bool)-If True, transpose each matrix in a.

* transb (bool)—If True, transpose each matrix in b.
Returns The result of the batch matrix multiplications as a 3-D array.
Return type Variable

Deprecated since version v3.0.0: batch_matmul is deprecated. Use matmul instead.

chainer.functions.bias

chainer.functions.bias (x,y, axis=1)

Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s bias layer so the “broadcasting” with the following arguments:

x : 100 x 3 x 40 x 5 x 6
y : 3 x 40
axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply v is specified by the argument axis, whose meaning is different from
numpy’s axis.

Parameters
* x (Variable or N-dimensional array) — Input variable to be summed.

* y(Variable or N-dimensional array) — Input variable to sum, broadcasted.

4.2. Functions 245

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

* axis (int)— The first axis of x along which y is applied.
Returns Output variable.

Return type Variable

chainer.functions.ceil

chainer.functions.ceil (x)
Elementwise ceil function.
yi = [z;]
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.clip
chainer.functions.eclip (x, x_min, x_max)
Clips (limits) elements of input variable.
Given an interval [x_min, xmax],elements outside the interval are clipped to the interval edges.
Its gradients at x_min and x_max are regarded as 1.
Parameters
* x (Variable or N-dimensional array) — Input variable to be clipped.
e x_min (f1oat)— Minimum value.
* x_max (float) - Maximum value.
Returns Output variable.

Return type Variable

chainer.functions.cos

chainer.functions.cos (x)
Elementwise cos function.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.cosh

chainer.functions.cosh (x)
Elementwise hyperbolic cosine function.

y; = cosh x;.

Parameters x (Variable or N-dimensional array) — Input variable.

246 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

Returns Output variable.

Return type Variable

chainer.functions.cumprod
chainer. functions.cumprod (x, axis=None)
Cumulative prod of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Elements to calculate the cuamulative prod.

* axis (int or None)— Axis along which the cumulative prod is taken. If it is not spec-
ified, the input is flattened.

Returns Output variable.

Return type Variable

chainer.functions.cumsum
chainer.functions.cumsum (x, axis=None)
Cumulative sum of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Elements to calculate the cumulative sum.

* axis (int or None) - Axis along which the cumulative sum is taken. If it is not speci-
fied, the input is flattened.

Returns Output variable.

Return type Variable

chainer.functions.det
chainer. functions.det (a)
Computes the determinant of a single square matrix.
Parameters a (Variable or N-dimensional array) — Input array to compute the determinant for.
Returns Scalar determinant of the matrix a.

Return type Variable

chainer.functions.batch_det
chainer.functions.batch_det (a)
Computes the determinant of a batch of square matrices.

Parameters a (Variable or N-dimensional array) — Input array to compute the determinant for.
The first dimension should iterate over each matrix and be of the batchsize.

Returns vector of determinants for every matrix in the batch.

Return type Variable

4.2. Functions 247

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 6.1.0

chainer.functions.digamma

chainer.functions.digamma (x)
Digamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.einsum
chainer.functions.einsum (*operands)
Einstein summation
This function supports two formats of inputs:

* einsum(subscripts, op0O, opl, ...)

* einsum (op0, sublistO, opl, sublistl, ..., [sublistout])

See also numpy.einsum ()

Example

The following example computes a batched application of a bilinear function with weight w.

>>> x1 = np.arange (l2) .reshape (3, 4).astype(np.float32)
>>> x2 = np.arange (15) .reshape (3, 5).astype(np.float32)
>>> w = np.arange (120) .reshape (4, 5, 6).astype(np.float32)
y = F.einsum('i7j, ik, jkl1->i1", x1, x2, w)
>>> y.shape
(3, 6)

>>>

The batch axes can be denoted by If the string of output subscripts is omitted, the summation is taken over

the subscript alphabets with two (or more) occurrences.

>>> np.allclose(y.array, F.einsum('...7j,...k,Jjkl', x1, x2,
True

W) .array)

In the other format:

>>> y = F.einsum(x1, [O, 1], x2, [0, 2], w, [1, 2, 31, 1[0,
>>> y.shape

(3, 6)

>>> y = F.einsum(x1l, [Ellipsis, 1], x2, [Ellipsis, 2], w,
>>> y.shape

(3, 6)

248

Chapter 4. API Reference

https://www.scipy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum

Chainer Documentation, Release 6.1.0

chainer.functions.erf

chainer.functions.erf (x)
Elementwise error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.erfc

chainer.functions.erfec (x)
Elementwise complementary error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.erfcinv

chainer.functions.erfecinv (x)
Elementwise inverse function of complementary error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.erfcx

chainer.functions.erfex (x)
Elementwise scaled complementary error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.

Returns Output variable.

4.2. Functions

249

https://www.scipy.org/
https://www.scipy.org/
https://www.scipy.org/
https://www.scipy.org/

Chainer Documentation, Release 6.1.0

Return type Variable

chainer.functions.erfinv

chainer.functions.erfinv (x)
Elementwise inverse function of error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.exp
chainer.functions.exp (x)
Elementwise exponential function.
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.expm1
chainer.functions.expml (x)
Elementwise exponential minus one function.
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.fft
chainer.functions.fft (x)
Fast Fourier transform.

Parameters x (tuple) — (real, imag) where real is a Variable or an N-dimensional
array storing the real part and imag is a Variable or an N-dimensional array storing the
imaginary part.

Returns Returns (ry, iy) where ry is the real part of the result and iy is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.

250 Chapter 4. API Reference

https://www.scipy.org/
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

chainer.functions.fix

chainer.functions. fix (x)
Elementwise fix function.
Yi = Ty
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.fmod

chainer.functions. fmod (x, divisor)
Elementwise mod function.

y; = x; mod divisor.

Parameters

* x (Variable or N-dimensional array) — Input variable.

* divisor (Variable or N-dimensional array) — Input divisor.
Returns Output variable.

Return type Variable

chainer.functions.floor

chainer.functions.floor (x)
Elementwise floor function.
Yi = _%J
Parameters x (Variable or N-dimensional array) — Input variable.

Returns Output variable.

Return type Variable

chainer.functions.identity

chainer.functions.identity (*inputs)
Just returns input variables.

chainer.functions.ifft

chainer.functions.ifft (x)
Inverse fast Fourier transform.

Parameters x (tuple) — (real, imag) where real is a Variable or an N-dimensional
array storing the real part and imag is a Variable or an N-dimensional array storing the
imaginary part.

4.2. Functions 251

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

Returns Returns (ry, iy) where ry is the real part of the result and iy is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.

chainer.functions.inv

chainer.functions.inv (a)
Computes the inverse of square matrix.
a (Variable or N-dimensional array): Input array to compute the inverse for. Shape of the array
should be (n, n) where n is the dimensionality of a square matrix.

Returns Matrix inverse of a.

Return type Variable

chainer.functions.lgamma

chainer.functions.lgamma (x)
logarithm of gamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.linear_interpolate
chainer.functions.linear_interpolate (p,x,y)
Elementwise linear-interpolation function.

This function is defined as

f(p,z,y) =px+ (1 - p)y.

Parameters
* p(Variable or N-dimensional array) — Input variable.
* x (Variable or N-dimensional array) — Input variable.
* y (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

252 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://www.scipy.org/

Chainer Documentation, Release 6.1.0

chainer.functions.log
chainer.functions.log (x)
Elementwise natural logarithm function.
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.log10

chainer.functions.logl0 (x)
Elementwise logarithm function to the base 10.

yi = logg .

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.log1p

chainer.functions.loglp (x)
Elementwise natural logarithm plus one function.
Parameters x (Variable or N-dimensional array) — Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log2

chainer.functions.log2 (x)
Elementwise logarithm function to the base 2.

y; = logy ;.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.log_ndtr

chainer.functions.log_ndtr (x)
Logarithm of cumulative distribution function of normal distribution.

Note: Forward computation in CPU can not be done if SciPy is not available.

4.2. Functions 253

https://www.scipy.org/

Chainer Documentation, Release 6.1.0

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.logsumexp
chainer. functions.logsumexp (x, axis=None)
Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.

y; = log Zexp(xij)
J

Parameters
* x (Variable or N-dimensional array) — Elements to log-sum-exp.

* axis (None, int, or tuple of int)- Axis which a sum is performed. The de-
fault (axis = None) is perform a sum over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.matmul

chainer. functions.matmul (a, b, transa=False, transb=False)
Computes the matrix multiplication of two arrays.

Parameters

* a (Variable or N-dimensional array) — The left operand of the matrix multiplication. If
a and b are both 1-D arrays, matmul returns a dot product of vector a and vector b. If 2-D
arrays, matmul returns matrix product of a and b. If either’s dimension is larger than 2,
they are treated as a stack of matrices residing in the last two indexes. matmul returns a
stack of each two arrays. In this case, a and b are broadcasted along axes except the last
two.

* b (Variable or N-dimensional array) — The right operand of the matrix multiplication.
Its array is treated as a matrix in the same way as a’s array.

* transa (bool)—If True, each matrices in a will be transposed. If a.ndim == 1, do
nothing.

* transb (bool) —If True, each matrices in b will be transposed. If b.ndim == 1, do
nothing.

Returns The result of the matrix multiplication.

Return type Variable

Example

254 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

>>> a = np.array ([[1l, 0], [0, 1]], np.float32)
>>> b = np.array ([[4, 1], [2, 2]], np.float32)
>>> F.matmul (a, b).array
array ([[4., 1.7,

[2., 2.]1]1, dtype=float32)

chainer.functions.max
chainer. functions.max (x, axis=None, keepdims=False)
Maximum of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Array to be maximized.

* axis (None, int, or tuple of int)-— Axisover which a max is performed. The
default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.maximum
chainer.functions.maximum (x/, x2)
Element-wise maximum of input variables.
Parameters
* x1 (Variable or N-dimensional array) — Input variables to be compared.

* x2 (Variable or N-dimensional array) — Input variables to be compared.

Returns Output variable.

Return type Variable

chainer.functions.mean

chainer.functions.mean (x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters
* x (Variable or N-dimensional array) — Elements to sum.

* axis (None or int or tuple of int) — Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

* weights (None or Variable or N-dimensional array) — An array holding weights to
calculate weighted average. If it is None, all weights are assumed to be one. When axis is
None, weights must have the same shape of x. And when axis is int, it must be 1-D
array satisfing weights.shape == (x.shapelaxis],).

* keepdims (bool)—If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

4.2. Functions 255

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

chainer.functions.min
chainer.functions.min (x, axis=None, keepdims=False)
Minimum of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Array to be minimized.

* axis (None, int, or tuple of int)- Axisover which a min is performed. The
default (axis = None) is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.minimum
chainer.functions.minimum (x/, x2)
Element-wise minimum of input variables.
Parameters
* x1 (Variable or N-dimensional array) — Input variables to be compared.
* x2 (Variable or N-dimensional array) — Input variables to be compared.
Returns Output variable.

Return type Variable

chainer.functions.ndtr

chainer.functions.ndtr (x)
Elementwise cumulative distribution function of normal distribution.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.ndtri

chainer.functions.ndtri (x)
Elementwise inverse function of ndtr.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

256 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://www.scipy.org/
https://www.scipy.org/

Chainer Documentation, Release 6.1.0

chainer.functions.prod
chainer. functions.prod (x, axis=None, keepdims=False)
Product of array elements over a given axis.
Parameters
* x (Variable or N-dimensional array) — Elements to calculate the product.

* axis (None, int, or tuple of int)— Axis which a product is performed. The
default (axis = None) is perform a product over all the dimensions of the input array.

* keepdims (bool)—If True, the specified axes are remained as axes of length one.
Returns Output variable.

Return type Variable

chainer.functions.polygamma

chainer.functions.polygamma (7, x)
Polygamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters
* n(Variable or N-dimensional array) — Input variable.
* x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.rsqrt

chainer.functions.rsqgrt (x)
Computes elementwise reciprocal of square root of input x;.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.
Return type Variable

See also:

sqrt ()

4.2. Functions 257

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://www.scipy.org/

Chainer Documentation, Release 6.1.0

chainer.functions.scale

chainer.functions.scale (x,y, axis=1)
Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s scale layer so the “broadcasting” with the following argu-
ments:

x : 100 x 3 x 40 x 5 x 6
y ¢ 3 x 40
axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y @ (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply v is specified by the argument ax i s, whose meaning is different from
numpy’s axis.

Parameters
* x (Variable or N-dimensional array) — Input variable to be scaled.
* y(Variable or N-dimensional array) — Input variable to scale, broadcasted.
* axis (int)— The first axis of x along which v is applied.

Returns Output variable.

Return type Variable

chainer.functions.sin
chainer.functions.sin (x)
Elementwise sin function.
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.sinh

chainer.functions.sinh (x)
Elementwise hyperbolic sine function.

y; = sinh x;.

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

258 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.sign

chainer.functions.sign (x)
Elementwise sign function.

For a given input z, this function returns sgn(z) defined as

-1 ifx<0
sgn(z) = 0 ifx=0
1 ifx>0

Note: The gradient of this function is None everywhere and therefore unchains the computational graph.

Parameters x (Variable or N-dimensional array)—Input variable for which the sign is computed.
Returns Output variable.

Return type Variable

chainer.functions.sparse_matmul
chainer.functions.sparse_matmul (a, b, transa=False, transb=False)
Computes the batched multiplication of sparse and dense matrix.
The following use cases are supported:
1. C (dense) = A (sparse) * B (dense)
2. C (dense) = A (dense) * B (sparse)

Parameters
* a(Variable or CooMatrix)— The left operand of matrix multiplication.
* b(Variable or CooMatrix)— The right operand of matrix multiplication.
* transa (bool)—If True, each matrix in a will be transposed.
* transb (bool) - If True, each matrix in b will be transposed.

Returns Result of batched mat-mul.

Return type Variable

See also:

See to_coo () for how to construct a COO matrix from an array.

Note: Performance of this function on GPU can be improved by using the order argument of CooMatrix

when the sparse matrix is created.

4.2. Functions

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

chainer.functions.sqrt

chainer.functions.sqgrt (x)
Elementwise square root function.

Yi =\,

If the value of z; is negative, it returns Nan for y; respect to underlying numpy and cupy specification.
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.square
chainer.functions.square (x)
Elementwise square function.

2

Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable.

Return type Variable

chainer.functions.squared_difference
chainer.functions.squared difference (x/, x2)
Squared difference of input variables.
Parameters
* x1 (Variable or N-dimensional array) — Input variables to be compared.
* x2 (Variable or N-dimensional array) — Input variables to be compared.
Returns (x1 - x2) =% 2 element-wise.

Return type Variable

chainer.functions.sum
chainer.functions.sum (x, axis=None, keepdims=False)
Sum of array elements over a given axis.
Parameters

* x (Variable or N-dimensional array) — Elements to sum. A (sy, Sa, ..., Siy) -shaped float
array.

* axis (None, int, or tuple of int) — Axis along which a sum is performed.
The default (axis = None) is perform a sum over all the dimensions of the input array.

* keepdims (bool)—If True, the specified axes are remained as axes of length one.

Returns Output variable.

260 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

Return type Variable

Example

>>> x = np.arange (6) .reshape (2, 3) .astype (np.float32)

>>> x
array ([[0., 1., 2.1,

[3., 4., 5.1], dtype=float32)
>>> y = F.sum(x)

>>> y.shape

0

>>> y.array

array (15., dtype=float32)

>>> y = F.sum(x, axis=1)
>>> y.shape
(2,)

>>> y.array
array ([3., 12.]1, dtype=float32)

>>> y = F.sum(x, keepdims=True)
>>> y.shape
(1, 1)

>>> y.array
array ([[15.]], dtype=float32)

chainer.functions.sum_to
chainer.functions.sum_to (x, shape)
Sum elements along axes to output an array of a given shape.
Parameters
* x (Variable or N-dimensional array) — Input variable.
* shape (tuple of int)- The target shape.
Returns Output variable of shape shape.

Return type Variable

Example

>>> x = np.array([[1l., 2., 3.1, [4., 5., 6.11)
>>> x
array ([[1., 2., 3.1,
[4., 5., 6.11)
>>> y = F.sum_to(x, (1, 3))

>>> y
variable([[5., 7., 9.11)
>>> z = F.sum_to(x, (2, 1))
>>> 7

variable ([[6.1,

[15.11)

4.2. Functions 261

Chainer Documentation, Release 6.1.0

chainer.functions.tan

chainer.functions.tan (x)
Elementwise tan function.

Parameters x (Variable or N-dimensional array) — Input variable.

Returns Output variable.

Return type Variable

chainer.functions.tensordot

chainer.functions.tensordot (a, b, axes=2)

Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping.

Parameters

* a(Variable or N-dimensional array) — The first argument.

* b (Variable or N-dimensional array) — The second argument.

¢ axes —

— Ifitis an integer, then axes axes at the last of a and the first of b are used.

— Ifitis a pair of sequences of integers, then these two sequences specify the list of axes for
a and b. The corresponding axes are paired for sum-product.

Returns The tensor dot product of a and b along the axes specified by axes.

Return type Variable

Example

>>> a = np.random.rand (5,
>>> b = np.random.rand(3,
>>> ¢ = F.tensordot (a,
>>> c.shape

(5, 4)

See also:

numpy .tensordot ()

4.2.8 Noise injections

chainer. functions.dropout Drops elements of input variable randomly.
chainer. functions.gaussian Gaussian sampling function.
chainer.functions.gumbel_softmax Gumbel-Softmax sampling function.

chainer. functions. Linear unit regularized by simplified dropconnect.

simplified dropconnect

chainer.

functions.zoneout

Drops elements of input variable and sets to previous
variable randomly.

262

Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot

Chainer Documentation, Release 6.1.0

chainer.functions.dropout

chainer.functions.dropout (x, ratio=.5, * mask=None, return_mask=False)
Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and scales the remaining elements by
factor 1 / (1 - ratio). In testing mode (i.e., chainer.config.train is set to False), it does
nothing and just returns x.

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, 2, ..., sy) -shaped float
array.

* ratio (float)— Dropoutratio. The ratiomustbe 0.0 <= ratio < 1.0.

* mask (N-dimensional array or None) — The mask to be used for dropout. You do not have
to specify this value, unless you need to make results deterministic. If ma sk is not specified
or set to None, a mask will be generated randomly according to the given ratio. If mask
is specified, rat i o will be ignored. The shape and dtype must be the same as x and should
be on the same device. Note that iDeep and cuDNN will not be used for this function if
mask is specified, as iDeep and cuDNN do not support it.

* return_mask (bool) - If True, the mask used for dropout is returned together with the
output variable. The returned mask can later be reused by passing it to mask argument.

Returns When return_mask is False (default), returns the output variable. When True, re-
turns the tuple of the output variable and mask (N-dimensional array). The mask will be on the
same device as the input. The mask will become None when chainer.config.trainis
setto False.

Return type Variable or tuple

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

Example

>>> x = np.array([[-1, 01, [2, -3], [-2, 111, np.float32)
>>> with chainer.using_config('train', True):
y = F.dropout (x)
>>> y.array
array([[-2., 0.1,
[4., -6.1,
[-0., 2.]11, dtype=float32)
>>> with chainer.using_config('train', True):
y = F.dropout (x, ratio=0.0) # dropout returns original input if ratio=0.0

>>> (x == y.array) .all()
True
>>> with chainer.using_config('train', False):
y = F.dropout (x) # dropout in test mode returns original input
>>> (x == y.array) .all()
True

chainer.functions.gaussian

chainer.functions.gaussian (mean, In_var, *, eps=None, return_eps=False)
Gaussian sampling function.

4.2. Functions 263

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1207.0580

Chainer Documentation, Release 6.1.0

This function takes a mean y and the logarithm of a variance log(o?) as inputs and outputs a sample drawn from
a Gaussian distribution N (u, o).

The inputs must have the same shape.
Parameters
* mean (Variable or N-dimensional array) — Input variable representing the mean p.

* In_var (Variable or N-dimensional array) — Input variable representing the logarithm
of a variance log(o?).

* eps (N-dimensional array or None) — The eps value to be used. You do not have to specify
this value, unless you need to make results deterministic. If eps is not specified or set to
None, an eps value will be generated randomly. The shape and dtype must be the same as
1n_var and should be on the same device.

* return_eps (bool) — If True, the eps value used in this function is returned together
with the output variable. The returned eps can later be reused by passing it to the eps
argument.

Returns When return_eps is False (default), returns the output variable with the shape of
mean and/or 1n_var. When True, returns the tuple of the output variable and eps (V-
dimensional array). The eps will be on the same device as the input (1n_var).

Return type Variable or tuple

chainer.functions.gumbel_softmax
chainer.functions.gumbel_softmax (log_pi, tau=0.1, axis=1)
Gumbel-Softmax sampling function.

This function draws samples y; from Gumbel-Softmax distribution,

exp((g; + logm;)/7)
> exp((g; +logm;)/T)’

where 7 is a temperature parameter and g; s are samples drawn from Gumbel distribution Gumbel (0, 1)

P =

See Categorical Reparameterization with Gumbel-Softmax.

Parameters

* log_pi (Variable or N-dimensional array) — Input variable representing pre-
normalized log-probability log 7.

* tau(float or Variable or N-dimensional array) — Input variable representing temper-
ature 7.

Returns Output variable.

Return type Variable

chainer.functions.simplified_dropconnect

chainer.functions.simplified_ dropconnect (x, W, b=None, ratio=0.5, train=True,

mask=None, use_batchwise_mask=True)
Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with probability ratio and scales the remain-
ing elements by factor 1 / (1 - ratio). Itaccepts two or three arguments: an input minibatch x, a weight
matrix W, and optionally a bias vector b. It computes Y = zW T + b.

264 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1611.01144
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

In testing mode, zero will be used as simplified dropconnect ratio instead of ratio.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

* x (Variable or N-dimensional array) — Input variable. Its first dimension n is assumed to
be the minibatch dimension. The other dimensions are treated as concatenated one dimen-
sion whose size must be N.

* W(Variable or N-dimensional array) — Weight variable of shape (M, N).
* b (Variable or N-dimensional array) — Bias variable (optional) of shape (M,).
* ratio (float)— Dropconnect ratio.

* train (bool) — If True, executes simplified dropconnect. Otherwise, simplified drop-
connect function works as a linear function.

* mask (None or Variable or N-dimensional array) — If None, randomized dropconnect
mask is generated. Otherwise, The mask must be (n, M, N) or (M, N) shaped array,
and use_batchwise_mask is ignored. Main purpose of this option is debugging. mask array
will be used as a dropconnect mask.

* use_batchwise_mask (bool)—If True, dropped connections depend on each sample
in mini-batch.

Returns Output variable.
Return type Variable
See also:
Dropconnect
See also:

Li, W,, Matthew Z., Sixin Z., Yann L., Rob F. (2013). Regularization of Neural Network using DropConnect.
International Conference on Machine Learning. URL

chainer.functions.zoneout

chainer.functions.zoneout (4, x, ratio=.5)

Drops elements of input variable and sets to previous variable randomly.

This function drops input elements randomly with probability rat i o and instead sets dropping element to their
previous variable. In testing mode , it does nothing and just returns x.

Parameters
* h (Variable or N-dimensional array) — Previous variable.
* x (Variable or N-dimensional array) — Input variable.
e ratio (float)— Zoneout ratio.

Returns Output variable.

Return type Variable

See the paper: Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations.

4.2,

Functions 265

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://cs.nyu.edu/~wanli/dropc/
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1606.01305

Chainer Documentation, Release 6.1.0

4.2.9 Normalization functions

chainer.functions.batch normalization

Batch normalization function.

chainer.functions.
batch_renormalization

Batch renormalization function.

chainer. functions.
decorrelated batch _normalization

Decorrelated batch normalization function.

chainer.functions.
fixed batch _normalization

Batch normalization function with fixed statistics.

chainer.functions.
fixed batch _renormalization

chainer.functions.

fixed decorrelated batch _normalization

Decorrelated batch normalization function with fixed
statistics.

chainer.functions.group_normalization

Group normalization function.

chainer. functions.layer._normalization

Layer normalization.

chainer. functions.
local_response_normalization

Local response normalization across neighboring chan-
nels.

chainer.functions.normalize

Normalize input by L2 norm.

chainer.functions.batch_normalization

chainer.functions.batch_normalization (x, gamma, beta, eps=2e-5, running_mean=None, run-

ning_var=None, decay=0.9, axis=None)
Batch normalization function.

It takes the input variable x and two parameter variables gamma and beta. The parameter variables must both
have the same dimensionality, which is referred to as the channel shape. This channel shape corresponds to
the dimensions in the input which are not averaged over. Since the first dimension of the input corresponds
to the batch size, the second dimension of x will correspond to the first dimension of the channel shape, the
third dimension of x will correspond to the second channel dimension (if it exists) and so on. Therefore, the
dimensionality of the input must be at least one plus the number of channel dimensions. The total effective
“batch size” will then be considered to be the product of all dimensions in x except for the channel dimensions.

As an example, if the input is four dimensional and the parameter variables are one dimensional, then it is
assumed that the first dimension of the input is the batch size, the second dimension is the channel size, and
the remaining two dimensions are considered to be spatial dimensions that will be averaged over along with the
batch size in the batch normalization computations. That is, the total batch size will be considered to be the
product of all input dimensions except the second dimension.

Parameters
* x (Variable or N-dimensional array) — Input variable.
* gamma (Variable or N-dimensional array) — Scaling parameter of normalized data.
* beta (Variable or N-dimensional array)— Shifting parameter of scaled normalized data.
* eps (float) — Epsilon value for numerical stability.

* running_mean (N-dimensional array) — Running average of the mean. This is a running
average of the mean over several mini-batches using the decay parameter. The function takes
a previous running average, and updates the array in-place by the new running average. If
None, the running average is not computed. If this is None, then runnng_var must also
be None.

* running_var (N-dimensional array) — Running average of the variance. This is a running
average of the variance over several mini-batches using the decay parameter. The function

266

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

takes a previous running average, and updates the array in-place by the new running average.
If None, the running average is not computed. If this is None, then running_mean must
also be None.

* decay (float)— Decay rate of moving average. It is used during training.

* axis (int, tuple of int or None) — Axis over which normalization is per-
formed. When axis is None, it is determined from input dimensions. For example, if
x .ndim is 4, axis becomes (0, 2, 3) and normalization is performed over Oth, 2nd and 3rd
axis of input. If it is 2, axis becomes (0) and normalization is performed over Oth axis of
input. When a tuple of int is given to this option, numbers in the tuple must be being sorted
in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
See also:

BatchNormalization

chainer.functions.batch_renormalization

chainer.functions.batch_renormalization (x, gamma, beta, rmax, dmax, eps=2e-05, run-
ning_mean=None, running_var=None, decay=0.9,

update_statistics=False)
Batch renormalization function.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

Note: This function does not perform in-place update to running_mean and running_var by de-
fault, contrary to batch_normalization (). If the function is called, it will not be possible to access
the updated running mean and variance statistics, because they are members of the function object, which
cannot be accessed by the caller. If it is desired to update the running statistics, call the function with
update_statistics=True option.

Note: For the consistency with Batch Normalization, this function intentionally ignores some of the theoretical
flaws in Algorithm 1 of the Batch Renormalization paper:

* F.batch_renormalization maintains the moving average of variances o2, while the original paper
maintains the moving average of standard deviations o.

* F.batch_renormalization applies Bessel’s correction to update the moving average of variances.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
See also:

BatchRenormalization

4.2. Functions 267

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1702.03275

Chainer Documentation, Release 6.1.0

chainer.functions.decorrelated_batch_normalization

chainer.functions.decorrelated batch_normalization (x, * groups=16, eps=2e-5,

running_mean=None, run-
ning_projection=None, de-
cay=0.9)

Decorrelated batch normalization function.

It takes the input variable x and normalizes it using batch statistics to make the output zero-mean and decorre-
lated.

Parameters
* x (Variable)— Input variable.
* groups (int)— Number of groups to use for group whitening.
* eps (float)— Epsilon value for numerical stability.

* running_mean (N-dimensional array) — Expected value of the mean. This is a running
average of the mean over several mini-batches using the decay parameter. If None, the
expected mean is initialized to zero.

* running_projection (N-dimensional array) — Expected value of the project matrix.
This is a running average of the projection over several mini-batches using the decay param-
eter. If None, the expected projected is initialized to the identity matrix.

* decay (f1oat) — Decay rate of moving average. It is used during training.
Returns The output variable which has the same shape as z.
Return type Variable
See: Decorrelated Batch Normalization
See also:

DecorrelatedBatchNormalization

chainer.functions.fixed_batch_normalization

chainer.functions.fixed_batch_normalization (x, gamma, beta, mean, var, eps=2e-05,

o)) o axis=None)
Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as fixed
variables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used
for prediction consistency.

Parameters
* x (Variable or N-dimensional array) — Input variable.
* gamma (Variable or N-dimensional array) — Scaling parameter of normalized data.
* beta (Variable or N-dimensional array)— Shifting parameter of scaled normalized data.
* mean (Variable or N-dimensional array) — Shifting parameter of input.
* var (Variable or N-dimensional array) — Square of scaling parameter of input.

* eps (float)— Epsilon value for numerical stability.

268 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1804.08450
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

* axis (int, tuple of int or None) — Axis over which normalization is per-
formed. When axis is None, it is determined from input dimensions. For example, if
x.ndim is 4, axis becomes (0, 2, 3) and normalization is performed over Oth, 2nd and
3rd axis of input. If it is 2, axis becomes (0) and normalization is performed over Oth axis of
input. When a tuple of int is given to this option, numbers in the tuple must be being sorted
in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See also:

batch _normalization (), BatchNormalization

chainer.functions.fixed_batch_renormalization

chainer.functions.fixed_batch_renormalization (x, gamma, beta, mean, var, eps=2e-05)

chainer.functions.fixed_decorrelated_batch_normalization

chainer.functions.fixed decorrelated batch_normalization (x, mean, projection,

groups=16)
Decorrelated batch normalization function with fixed statistics.

This is a variant of decorrelated batch normalization, where the mean and projection statistics are given by the
caller as fixed variables. This is used in testing mode of the decorrelated batch normalization layer, where batch
statistics cannot be used for prediction consistency.

Parameters
* x (Variable)— Input variable.
* mean (Variable or N-dimensional array) — Shifting parameter of input.

* projection (Variable or N-dimensional array) — Projection matrix for decorrelation
of input.

* groups (int)— Number of groups to use for group whitening.
Returns The output variable which has the same shape as z.
Return type Variable
See also:

decorrelated batch normalization(),DecorrelatedBatchNormalization

chainer.functions.group_normalization

chainer.functions.group_normalization (x, groups, gamma, beta, eps=1e-05)
Group normalization function.

This function implements a “group normalization” which divides the channels into groups and computes within
each group the mean and variance, then normalize by these statistics, scales and shifts them.

Parameters

* x (Variable or N-dimensional array) — Batch tensors. First dimension of this value must
be the size of minibatch and second dimension must be the number of channels. Moreover,
this value must have one or more following dimensions, such as height and width.

* groups (int)—The number of channel groups. This value must be a divisor of the number
of channels.

4.2. Functions 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* gamma (Variable or N-dimensional array) — Scaling parameter.

* beta (Variable or N-dimensional array) — Shifting parameter.

* eps (float)— Epsilon value for numerical stability of normalization.
Returns The output variable which has the same shape as z.
Return type Variable

See: Group Normalization

chainer.functions.layer_normalization
chainer.functions.layer_normalization (x, gamma, beta, eps=1e-05)
Layer normalization.

This function implements a “layer normalization” which normalizes the input units by statistics that are com-
puted along the second axis, scales and shifts them.

Parameters

* x (Variable or N-dimensional array) — Batch vectors. Shape of this value must be
(batch_size, unit_size), e.g., the output of I1inear ().

* gamma (Variable or N-dimensional array) — Scaling vectors.
* beta (Variable or N-dimensional array) — Shifting vectors.
Returns The output variable which has the same shape as x.
Return type Variable

See: Layer Normalization

chainer.functions.local_response_normalization
chainer.functions.local_response_normalization (x, n=5, k=2, alpha=0.0001, beta=0.75)
Local response normalization across neighboring channels.

This function implements normalization across channels. Let x an input image with N channels. Then, this
function computes an output image y by following formula:

Xq

(k+ azmlnN,z-i-n/Q 1’2)

j=max1l,5—n/2 7j

Yi =

Parameters
* x (Variable or N-dimensional array) — Input variable.
e n (int)— Normalization window width.
* k (float)— Smoothing parameter.
* alpha (float)— Normalizer scaling parameter.
* beta (f1oat)— Normalizer power parameter.
Returns Output variable.
Return type Variable

See: Section 3.3 of ImageNet Classification with Deep Convolutional Neural Networks

270 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1607.06450
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Chainer Documentation, Release 6.1.0

chainer.functions.normalize
chainer.functions.normalize (x, eps=Ie-05, axis=1)
Normalize input by L2 norm.

This function implements L2 normalization on a sample along the given axis/axes. No reduction is done along
the normalization axis.

In the case when axis=1 and x is a matrix of dimension (N, K), where N and K denote mini-batch size
and the dimension of the input vectors, this function computes an output matrix y of dimension (N, K) by the
following equation:

— Xi
Y Talla + e
eps is used to avoid division by zero when norm of x along the given axis is zero.
The default value of axis is determined for backward compatibility.
Parameters

* x (Variable or N-dimensional array) — multi-dimensional output variable. The first di-
mension is assumed to be the mini-batch dimension.

* eps (float) - Epsilon value for numerical stability.
* axis (int or tuple of ints)-— Axisalong which to normalize.
Returns The output variable which has the same shape as z.

Return type Variable

4.2.10 Spatial pooling

chainer. functions.average_pooling_1d 1-dimensional spatial average pooling function.
chainer.functions.average_pooling 2d Spatial average pooling function.
chainer.functions.average_pooling_3d 3-dimensional spatial average pooling function.
chainer.functions.average_pooling nd N-dimensionally spatial average pooling function.

chainer.functions.max_pooling_1d 1-dimensional spatial max pooling function.
chainer. functions.max_pooling 2d Spatial max pooling function.

chainer. functions.max_pooling_3d 3-dimensional spatial max pooling function.
chainer. functions.max_pooling_nd N-dimensionally spatial max pooling function.
chainer.functions. Spatial Region of Interest (ROI) average align function.
roi_average_align_2d

chainer.functions. Spatial Region of Interest (ROI) average pooling func-
roi_average_pooling_2d tion.

chainer. functions.roi_max_align_2d Spatial Region of Interest (ROI) max align function.
chainer. functions.roi_max_pooling_2d Spatial Region of Interest (ROI) max pooling function.
chainer.functions.roi_pooling 2d Spatial Region of Interest (ROI) pooling function.
chainer. functions. Spatial pyramid pooling function.
spatial_pyramid_pooling_2d

chainer. functions.unpooling_1ld Inverse operation of 1-dimensional spatial pooling.
chainer. functions.unpooling_ 2d Inverse operation of pooling for 2d array.

chainer. functions.unpooling_3d Inverse operation of 3-dimensional spatial pooling.
chainer. functions.unpooling_nd Inverse operation of N-dimensional spatial pooling.
chainer. functions.upsampling_2d Upsampling using pooling indices.

4.2. Functions 271

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

chainer.functions.average_pooling_1d

chainer.functions.average_pooling_1d (x, ksize, stride=None, pad=0, pad_value=0)
1-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls average _pooling _nd () internally, so see the details of the behavior in the
documentation of average pooling nd().

chainer.functions.average_pooling_2d
chainer.functions.average_pooling_ 2d (x, ksize, stride=None, pad=0)
Spatial average pooling function.

This function acts similarly to convolution_2d (), but it computes the average of input spatial patch for
each channel without any parameter instead of computing the inner products.

Parameters
* x (Variable) — Input variable.

* ksize (int or pair of ints) — Size of pooling window. ksize=k and
ksize=(k, k) areequivalent.

* stride (int or pair of ints or None) — Stride of pooling applications.
stride=s and stride= (s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

* pad(int or pair of ints)-— Spatial padding width for the input array. pad=p and
pad=(p, p) areequivalent.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_ 2d (). Average pool-
ing runs in non-cover-all mode.

Note: The values in the padded region is treated as 0, leading the averages biased towards zero. To obtain
unbiased averages, use average_pooling nd () with pad_value=None.

chainer.functions.average_pooling_3d

chainer.functions.average_pooling 3d (x, ksize, stride=None, pad=0, pad_value=0)
3-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

272 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Note: This function calls average pooling nd () internally, so see the details of the behavior in the
documentation of average pooling nd().

chainer.functions.average_pooling_nd

chainer.functions.average_pooling_ nd (x, ksize, stride=None, pad=0, pad_value=0)
N-dimensionally spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of average pooling_2d (). This acts simi-
larly to convolution_nd (), butit computes the average of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters
* x (Variable) — Input variable.

* ksize (int or tuple of ints) — Size of pooling window. ksize=k and
ksize=(k, k, ..., k) areequivalent.

* stride (int or tuple of ints or None) — Stride of pooling applications.
stride=s and stride=(s, s, ..., s) areequivalent. If None is specified, then
it uses same stride as the pooling window size.

* pad (int or tuple of ints) — Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) areequivalent.

* pad_value (0 or None)- Value to fill the padded region when calculating average. If

None is specified, such region is ignored. The default value is 0, therefore the averages are
biased towards zero.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling nd (). Average pool-
ing runs in non-cover-all mode.

chainer.functions.max_pooling_1d

chainer.functions.max_pooling_1d(x, ksize, stride=None, pad=0, cover_all=True, re-

]))) _ turn_indices=False)
1-dimensional spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls max_pooling_nd () internally, so see the details of the behavior in the documen-
tation of max_pooling nd().

4.2. Functions 273

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 6.1.0

chainer.functions.max_pooling_2d

chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True, re-

turn_indices=False)
Spatial max pooling function.

This function acts similarly to convolution_2d (), but it computes the maximum of input spatial patch for
each channel without any parameter instead of computing the inner products.

Parameters
* x (Variable)— Input variable.

* ksize (int or pair of ints) — Size of pooling window. ksize=k and
ksize=(k, k) areequivalent.

* stride (int or pair of ints or None) — Stride of pooling applications.
stride=s and stride= (s, s) areequivalent. If None is specified, then it uses same
stride as the pooling window size.

* pad(int or pair of ints)- Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

* cover_all (bool)-1If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

* return_indices (bool) — If True, pooling indices array is returned together
with the output variable. The returned indices are expected for use by chainer.
functions.upsampling_2d (). Note that cuDNN will not be used for this function
if return_indices is set to True, as cuDNN does not return indices information.

Returns When return_indices is False (default), returns the output variable. When True,
returns the tuple of the output variable and pooling indices (N-dimensional array). Pooling
indices will be on the same device as the input.

Return type Variable or tuple

chainer.functions.max_pooling_3d

chainer.functions.max_pooling_3d(x, ksize, stride=None, pad=0, cover_all=True, re-

)))) turn_indices=False)
3-dimensional spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls max_pooling nd () internally, so see the details of the behavior in the documen-
tation of max_pooling nd().

chainer.functions.max_pooling_nd

chainer.functions.max_pooling_nd (x, ksize, stride=None, pad=0, cover_all=True, re-

turn_indices=False)
N-dimensionally spatial max pooling function.

274 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of max_pooling 2d (). This acts similarly
to convolution_nd (), but it computes the maximum of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

x (Variable) — Input variable.

ksize (int or tuple of ints) — Size of pooling window. ksize=k and
ksize=(k, k, ..., k) areequivalent.

stride (int or tuple of ints or None) — Stride of pooling applications.
stride=s and stride=(s,s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

pad (int or tuple of ints) - Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) areequivalent.

cover_all (bool)—If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

return_indices (bool) — If True, pooling indices array is returned together
with the output variable. The returned indices are expected for use by chainer.
functions.upsampling_nd (). Note that cuDNN will not be used for this function
if return_indices is setto True, as cuDNN does not return indices information.

Returns When return_indices is False (default), returns the output variable. When True,
returns the tuple of the output variable and pooling indices (N-dimensional array). Pooling
indices will be on the same device as the input.

Return type Variable or tuple

chainer.functions.roi_average_align_2d

chainer.functions.roi_average_align_2d (x, rois, roi_indices, outsize, spatial_scale, sam-

pling_ratio=None)

Spatial Region of Interest (ROI) average align function.

This function acts similarly to roi_average pooling 2d(), but it computes average of input spatial
patch with bilinear interpolation for each channel with the region of interest.

Parameters

x (Variable) — Input variable. The shape is expected to be 4 dimentional: (n:
batch, c: channel, h, height, w: width).

rois (Variable)—Inputroi variable. The shape is expectedtobe (n: data size,
4), and each datum is set as below: (y_min, x_min, y_max, x_max).

roi_indices (Variable) — Input roi variable. The shape is expected to be (n:
data size,).

outsize ((int, int) or int) - Expected output size after pooled (height, width).
outsize=o and outsize= (o, o) areequivalent.

spatial_scale (float) - Scale of the roi is resized.

4.2. Functions

275

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

* sampling_ratio ((int, int) or int) — Sampling step for the alignment. It
must be an integer over 1 or None, and the value is automatically decided when None
is passed. Use of different ratio in height and width axis is also supported by passing tu-
pleofintas (sampling_ratio_h, sampling_ratio_w). sampling_ratio=s
and sampling_ratio= (s, s) areequivalent.

Returns Output variable.
Return type Variable
See the original paper proposing ROIAlign: Mask R-CNN.

chainer.functions.roi_average_pooling_2d
chainer.functions.roi_average_pooling_2d (x, rois, roi_indices, outsize, spatial_scale)
Spatial Region of Interest (ROI) average pooling function.

This function acts similarly to average_pooling_2d (), but it computes the average of input spatial patch
for each channel with the region of interest.

Parameters

* x (Variable) — Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

* rois (Variable) — Input roi variable. The shape is expected to be (n: data size, 4), and
each datum is set as below: (y_min, X_min, y_max, X_max).

* roi_indices (Variable) — Input roi variable. The shape is expected to be (n: data
size,).

* outsize ((int, int) or int)— Expected output size after pooled (height, width).
outsize=oand outsize= (o, o) areequivalent.

* spatial_scale (float)— Scale of the roi is resized.
Returns Output variable.
Return type Variable
See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.roi_max_align_2d

chainer.functions.roi_max_align_2d(x, rois, roi_indices, outsize, spatial_scale, sam-
pling_ratio=None)
Spatial Region of Interest (ROI) max align function.

This function acts similarly to roi_max_pooling_ 2d (), but it computes maximum of input spatial patch
with bilinear interpolation for each channel with the region of interest.

Parameters

* x (Variable) — Input variable. The shape is expected to be 4 dimentional: (n:
batch, c: channel, h, height, w: width).

* rois (Variable)—Inputroi variable. The shape is expectedtobe (n: data size,
4), and each datum is set as below: (y_min, x_min, y_max, x_max).

* roi_indices (Variable) — Input roi variable. The shape is expected to be (n:
data size,).

276 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1703.06870
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083

Chainer Documentation, Release 6.1.0

* outsize ((int, int) or int)— Expected output size after pooled (height, width).
outsize=o and outsize= (o, o) areequivalent.

* spatial_scale (float)— Scale of the roi is resized.

* sampling_ratio ((int, int) or int) — Sampling step for the alignment. It
must be an integer over 1 or None, and the value is automatically decided when None
is passed. Use of different ratio in height and width axis is also supported by passing tu-
pleofintas (sampling_ratio_h, sampling_ratio_w).sampling_ratio=s
and sampling_ratio= (s, s) areequivalent.

Returns Output variable.
Return type Variable
See the original paper proposing ROIAlign: Mask R-CNN.

chainer.functions.roi_max_pooling_2d
chainer.functions.roi_max_pooling_2d (x, rois, roi_indices, outsize, spatial_scale)
Spatial Region of Interest (ROI) max pooling function.

This function acts similarly to max_pooling 2d (), butit computes the maximum of input spatial patch for
each channel with the region of interest.

Parameters

* x (Variable) — Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

* rois (Variable) — Input roi variable. The shape is expected to be (n: data size, 4), and
each datum is set as below: (y_min, X_min, y_max, X_max).

* roi_indices (Variable) — Input roi variable. The shape is expected to be (n: data
size,).

* outsize ((int, int) or int)— Expected output size after pooled (height, width).
outsize=oand outsize= (o, o) areequivalent.

* spatial_scale (float)— Scale of the roi is resized.
Returns Output variable.
Return type Variable
See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.roi_pooling_2d
chainer.functions.roi_pooling_2d (x, rois, outh, outw, spatial_scale)
Spatial Region of Interest (ROI) pooling function.

This function acts similarly to max_pooling_2d (), butit computes the maximum of input spatial patch for
each channel with the region of interest.

Parameters

* x (Variable) — Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

* rois (Variable) — Input roi variable. The shape is expected to be (n: data size, 5), and
each datum is set as below: (batch_index, x_min, y_min, X_max, y_max).

4.2. Functions 277

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1703.06870
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083

Chainer Documentation, Release 6.1.0

* outh (int)— Height of output image after pooled.
* outw (int)— Width of output image after pooled.
* spatial_scale (float)— Scale of the roi is resized.
Returns Output variable.
Return type Variable
See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.spatial_pyramid_pooling_2d

chainer.functions.spatial_pyramid_pooling_2d (x, pyramid_height, pooling=None)
Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array x with different kernel sizes and padding sizes, and then
flattens all dimensions except first dimension of all pooling results, and finally concatenates them along second
dimension.

At i-th pyramid level, the kernel size (k,(f), kS)) and padding size (pgj) , pg)) of pooling operation are calculated

as below:
kY = Ton /27,
kS = by /277,
i) = (2K — bn)/2,
Pl = (2K = by) /2,

where [-] denotes the ceiling function, and by, b,, are height and width of input variable x, respectively. Note
that index of pyramid level 7 is zero-based.

See detail in paper: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
Parameters

* x (Variable) — Input variable. The shape of x should be (batchsize, # of
channels, height, width).

e pyramid_height (int)— Number of pyramid levels

* pooling (str) — Currently, only max is supported, which performs a 2d max pooling
operation.

Returns Output variable. The shape of the output variable will be (batchsize, c ZhH;()l 22k 1,1),
where c is the number of channels of input variable x and H is the number of pyramid levels.

Return type Variable
chainer.functions.unpooling_1d

chainer.functions.unpooling 1d (x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of 1-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

278 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1406.4729
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Note: This function calls unpooling_ nd () internally, so see the details of the behavior in the documentation
of unpooling nd().

chainer.functions.unpooling_2d
chainer.functions.unpooling_ 2d (x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2DFunction, but it spreads input 2d array’s value without
any parameter instead of computing the inner products.

Parameters
* x (Variable) — Input variable.

* ksize (int or pair of ints) — Size of pooling window. ksize=k and
ksize=(k, k) areequivalent.

* stride (int, pair of ints or None) — Stride of pooling applications.
stride=s and stride= (s, s) areequivalent. If None is specified, then it uses same
stride as the pooling window size.

* pad(int or pair of ints)-— Spatial padding width for the input array. pad=p and
pad=(p, p) areequivalent.

* outsize (None or pair of ints)— Expected output size (height, width) of array
after the operation. If None, the size (height or width) is estimated from the size of input
array in first batch with get_deconv_outsize (). If outsize is not None, the result of
outsize applied to get_conv_outsize () must be equal to the shape of the 2d array in
the input batch x.

* cover_all (bool) — If True, the output size may be smaller than the size if
cover_all is False. This flag serves to align behavior to the pooling functions which
can cover all input locations, see max_pooling_2d () and convolution_2d ().

Returns Output variable.

Return type Variable

chainer.functions.unpooling_3d

chainer.functions.unpooling_ 3d (x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of 3-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls unpooling nd () internally, so see the details of the behavior in the documentation
of unpooling nd().

4.2. Functions 279

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

chainer.functions.unpooling_nd

chainer.functions.unpooling nd (x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of N-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

This function acts similarly to DeconvolutionND, but it spreads input N-dimensional array’s value without
any parameter instead of computing the inner products.

Parameters

* x (Variable) — Input variable.

* ksize (int or pair of ints) — Size of pooling window (ki,ka,...,kN).
ksize=k isequivalentto (k, k, ..., k).

* stride (int, pair of ints or None) - Stride of pooling applications
(s1,82,...,8N). stride=s is equivalent to (s, s, ..., s). If None is speci-

fied, then it uses same stride as the pooling window size.

* pad (int or pair of ints) — Spatial padding width for the input array
(p1,p2,...,pN). pad=p is equivalentto (p, p, ..., P).

* outsize (None or pair of ints) - Expected output size of unpooling operation
(outy, outs, ..., out N). If None, the size is estimated from input size, stride and padding.

* cover_all (bool)-If True, the pooling window is assumed to cover all of the output
array, eventually the output size may be smaller than that in the case cover_allisFalse.

Returns Output variable.

Return type Variable

chainer.functions.upsampling_2d

chainer.functions.upsampling_2d(x, indexes, ksize, stride=None, pad=0, outsize=None,

cover_all=True)
Upsampling using pooling indices.

This function produces an upsampled image using pooling indices.

Example
>>> x = np.arange(l, 37).reshape(l, 1, 6, 6).astype(np.float32)
>>> x = chainer.Variable (x)
>>> x.array
array ([[[[1., 2., 3., 4., 5., 6.1,
[7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.]1,
[25., 26., 27., 28., 29., 30.],
[31., 32., 33., 34., 35., 36.]1111, dtype=float32)

This is the original x before max pooling.

280 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

>>> pooled_x, indexes = F.max_pooling_2d(
C x, ksize=2, stride=2, return_indices=True)
>>> pooled_x.array
array ([[[[8., 10., 12.7,
[20., 22., 24.]7,
[32., 34., 36.]111]1, dtype=float32)
>>> indexes
array ([[[[3, 3, 31,
[3, 3, 31

These are the outputs from the max pooling operation including the resulting indices that will be used to upsam-
ple pooled_x. Note that the indices all point to the largest, in the case the last, elements in each window.

>>> ypsampled_x = F.upsampling_2d(
pooled_x, indexes, ksize=2, stride=2, outsize=x.shape[2:])

>>> ypsampled_x.shape
(1, 1, 6, 06)
>>> upsampled_x.array
array([[r[r 0., 0., 0., 0., 0., 0.1,

r o., 8., 0., 10., 0., 12.71,

r o., 0., 0., 0., 0., 0.7,

[o., 20., 0., 22., 0., 24.7,

r o., 0., 0., 0., 0., 0.7,

[0., 32., 0., 34., 0., 36.1111, dtype=float32)

Parameters

* x (Variable) — Input variable.

* indexes (N-dimensional array) — Index array returned from preceding call to
max_pooling_2d().

* ksize (int or pair of ints) — Size of pooling window. ksize=k and
ksize=(k, k) areequivalent.

* stride (int or pair of ints or None) — Stride of pooling applications.
stride=s and stride= (s, s) areequivalent. If None is specified, then it uses same
stride as the pooling window size.

* pad(int or pair of ints)- Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

* outsize ((int, int))- Expected output size (height, width).

* cover_all (bool) — Should be set to True if all spatial locations were pooled into
some output pixels during the preceding pooling operation. False otherwise. See
max_pooling 2d().

Returns Output variable.

Return type Variable

4.2.11 Utility functions

4.2. Functions 281

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

chainer. functions.forget Calls a function without storing intermediate results.

chainer.functions.forget

chainer.functions. forget (func, *xs)

Calls a function without storing intermediate results.

On a forward propagation, Chainer normally stores all intermediate results of VariableNodes on a computa-
tional graph as they are required on backward propagation. Sometimes these results consume too much memory.
F.forget forgets such intermediate results on forward propagation, and still supports backpropagation with
recalculation.

On a forward propagation, F . forget calls a given function with given variables without creating a computa-
tional graph. That means, no intermediate results are stored. On a backward propagation, F . forget calls the
given function again to create a computational graph for backpropagation.

F.forget reduces internal memory usage, whereas it requires more calculation time as it calls the function
twice.

Example

Let £ be a function defined as:

>>> def f(a, b):
return (a + b) » a

and, x and y be Variables:

>>> x = chainer.Variable (np.random.uniform (-1, 1, 5).astype(np.float32))
>>> y = chainer.Variable (np.random.uniform (-1, 1, 5).astype(np.float32))

When z is calculated as z = f (x, y), its intermediate result x + vy is stored in memory. Instead, if you
call f with F.forget:

>>> z = F.forget (f, x, V)

intermediate x + vy is forgotten.

Note: F.forget does not support functions which behave differently in multiple calls with the same inputs,
such as F'. dropout () and F. negative sampling/().

Note: In case input argument variables are of N-dimensional array objects, arguments will automatically be
converted to Variables. This conversion takes place to ensure that this function is included in the computa-
tional graph to enable backward computations.

Note: F.forget does not support double backpropagation.

Note: If you want to use F. forget to a link which updates the link’s internal information every time the
forward computation is called, please ensure that the information is updated just once in a single iteration. You

282

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

may use the chainer.config.in_recomputing flag to check if the forward computation is the first call
in an iteration. Please see the implementation of Bat chNormalization for detail.

Parameters

* func (callable)— A function to call. It needs to be called with Variable object(s)
and to return a Variable object or a tuple of Variable objects.

* xs (tuple of Variable or N-dimensional array) — Argument variables of the function.

Returns A variable func returns. If it returns a tuple, the method returns a tuple too.

Return type Variable

4.2.12 Function base

chainer.Function Old-style interface of a differentiable function.

chainer.FunctionAdapter Adapter class to wrap Function with FunctionNode.

chainer.FunctionNode Function node of the computational graph.

chainer. force_backprop_mode Make a context manager which enables back-
propagation.

chainer.no_backprop_mode Make a context manager which disables back-
propagation.

chainer.grad Computes the gradient of output variables w.r.t. the in-

put variables.

chainer.Function

class chainer.Function

Old-style interface of a differentiable function.

This class provides an interface to implement an old-style differentiable function (i.e., the function applica-
tion is recorded to the computational graph). The subclass of Function that implement forward () and
backward () can be used to run the forward computation and automatically induce the backpropagation pro-
cedure.

There is another way to implement such a function: subclassing FunctionNode. There are mainly two
differences between them.

1. The differentiable backprop is available for FunctionNode, while it is not for Funct i on because the
backward () of the latter directly operates on the arrays instead of Variable objects so that it cannot
record the history of the computation.

2. The information passed to backward () is different. In FunctionNode, which inputs the function
node has to compute the gradients w.r.t. is passed so that it can omit unnecessary computations, while
Funct ion always has to compute gradients w.r.t. all the input nodes. The Funct ionNode also accepts
the current gradient values of the input nodes so that the accumulation work can be merged with the
gradient computation if an efficient kernel is available.

This class uses FunctionAdapter to convert the interface to that of FunctionNode and adds the
FunctionNode object to the computational graph.

See FunctionNode for the details of building the computational graph in Chainer.

4.2. Functions 283

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

Methods

__call__ (*inputs)
Applies forward propagation with chaining backward references.
This method creates a new FunctionAdapter object and runs the forward propagation using it.
See FunctionNode for the detailed behavior of building the computational graph.

Parameters inputs — Tuple of input Variable or N-dimensional array objects. If the input
is N-dimensional array, it is automatically wrapped with Variable.

Returns One Variable object or a tuple of multiple Variable objects.

add_hook (hook, name=None)
Registers a function hook.

See FunctionNode.add hook () for the detail.
Parameters
* hook (FunctionHook) — Function hook to be registered.

* name (str)— Name of the function hook. name must be unique among function hooks
registered to the function. If None, default name of the function hook is used.

backward (inputs, grad_outputs)
Applies backprop to output gradient arrays.

It delegates the procedure to backward _cpu () or backward_gpu () by default. Which it selects is
determined by the type of input arrays and output gradient arrays. Implementations of Funct ion must
implement either CPU/GPU methods or this method, if the function is intended to be backprop-ed.

Parameters
* inputs — Tuple of input arrays.
* grad_outputs — Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be None, if the function is not
differentiable on inputs.

Return type tuple

Warning: Implementations of Funct ion must take care that the return value must be a tuple even
if it returns only one array.

backward_cpu (inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters
e inputs — Tuple of input numpy . ndarray object(s).
* grad_outputs — Tuple of output gradient numpy . ndarray object(s).

Returns Tuple of input gradient numpy . ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

284 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

Warning: Implementations of Funct ion must take care that the return value must be a tuple even
if it returns only one array.

backward_gpu (inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters
e inputs — Tuple of input cupy . ndarray object(s).
* grad_outputs — Tuple of output gradient cupy . ndarray object(s).

Returns Tuple of input gradient cupy . ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

check_type_forward (in_types)
Checks types of input data before forward propagation.

Before forward () is called, this function is called. You need to validate types of input data in this
function using the type checking utilities.

Parameters in_types (TypeInfoTuple) — The type information of input data for
forward().

delete_hook (name)
Unregisters the specified function hook.

Parameters name (st r) — the name of the function hook to be unregistered.

forward (inputs)
Applies forward propagation to input arrays.

It delegates the procedure to forward cpu () or forward _gpu () by default. Which it selects is
determined by the type of input arrays. Implementations of Funct i on must implement either CPU/GPU
methods or this method.

Parameters inputs — Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_cpu (inputs)
Applies forward propagation to input arrays on CPU.

Parameters inputs — Tuple of numpy . ndarray object(s).
Returns Tuple of numpy . ndarray object(s).

Return type tuple

4.2,

Functions 285

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 6.1.0

Warning: Implementations of Funct ion must take care that the return value must be a tuple even
if it returns only one array.

forward_gpu (inputs)
Applies forward propagation to input arrays on GPU.

Parameters inputs — Tuple of cupy.ndarray object(s).
Returns Tuple of cupy .ndarray object(s).

Return type tuple

Warning: Implementations of Funct ion must take care that the return value must be a tuple even
if it returns only one array.

retain_inputs (indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward (), the function can specify which inputs are required for backprop.

If this method is not called, the function keeps all input arrays. If you want to release all input ar-
rays, call this method by passing an empty sequence. Note that this behavior is different from that of
FunctionNode.retain_inputs ().

Note that this method must not be called from the outside of forward ().

Parameters indexes (iterable of int) — Indexes of input variables that the function
will require for backprop.

retain_outputs (indexes, retain_after_backward=False)
Lets specified output variable nodes keep data arrays.

By calling this method from forward (), the function can specify which outputs are required for back-
prop. If this method is not called, any output variables are not marked to keep the data array at the point of
returning from ___call__ (). The retained arrays are stored to output_data.

Note: It is STRONGLY RECOMMENDED that you use this method if the function requires some
or all output arrays in backprop. The function can also use output arrays just by keeping references to
them directly, whereas it might influence on the performance of later function applications to the output
variables.

Note that this method must not be called from the outside of forward ().
Parameters

* indexes (iterable of int) - Indexes of input variables that the function will re-
quire for backprop.

* retain_after backward (bool) — This option has no effect. It is left only for the
backward compatibility.

unchain ()
Purges in/out nodes and this function itself from the graph.

See FunctionNode.unchain () for the detail.

_eq ()
Return self==value.

286 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

ne__ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes
inputs
The input nodes of the function.

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

local_ function_hooks
Ordered Dictionary of registered function hooks.

See FunctionNode.local_function_hooks for the detail.

node
The FunctionAdapter object that wraps this Function.

If the Function does not have a node object, this property automatically creates a new one.

output_data
A tuple of the retained output arrays.

It has the same length as the outputs. Elements that are not retained are set to None.

outputs
Weak references to the output nodes of the function.

rank
The topological ordinal of the corresponding function node.

stack

chainer.FunctionAdapter

class chainer.FunctionAdapter (function)
Adapter class to wrap Function with FunctionNode.

While FunctionNode provides the interface of new-style differentiable functions, the old-style Function
can still be used for the backward compatibility. This class provides an adapter of there interface; it adds
FunctionNode interface to any Function object by delegation.

4.2. Functions 287

Chainer Documentation, Release 6.1.0

Note: The ownership of FunctionAdapter and Function is a bit tricky. At the initialization,
FunctionAdapter is owned by the Function object. Once the function is applied to variables, the own-
ership is reversed; the adapter becomes the owner of the Funct ion object and the Funct i on object changes
the reference to a weak one.

Parameters function (Function)— The function object to wrap.

New in version 3.0.0.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a function hook.

Parameters
* hook (FunctionHook) — Function hook to be registered.

* name (str) — Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply (inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attribute of input variables exist on a GPU device, that device is made current before
calling forward (), so implementors do not need to take care of device selection in most cases.

Parameters inputs — Tuple of input variables. Each element can be either Variable or N-
dimensional array. If the element is an ndarray, it is automatically wrapped with Variable.

Returns A tuple of output Variable objects.

backward (target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward (), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

288 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

* target_input_indexes (tuple of int)— Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

* grad_outputs (tuple of Variables) — Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len (target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate () provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate (target_input_indexes, grad_outputs, grad_inputs)

Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward (). It is often simpler to implement
backward () and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

* target_input_indexes (tuple of int) - Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

* grad_outputs (tuple of Variable)— Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

* grad_inputs (tuple of Variable) - Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward (), the length of the tuple must be same as that of
target_input_indices.

Note: Gradient variables in grad_outputs are distinct, even if a variable is passed to multiple in-
put arguments of the function. This is an implementation-detail convention to avoid the complication of
correctly accumulating gradients in such a case.

Usually, only the first position of grad_input s corresponding to these input arguments may contain the
gradient variable corresponding to that input variable, and other entries are set to None. This is not the
case with the 1azy_grad_sum feature. This behavior might be changed in a future version.

check_type_forward (in_types)

Checks types of input data before forward propagation.

This method is called before forward () and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) — The type information of input variables for
forward().

4.2,

Functions 289

Chainer Documentation, Release 6.1.0

delete_hook (name)
Unregisters the function hook.

Parameters name (st r)— The name of the function hook to be unregistered.

forward (inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward cpu () or forward_gpu () by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs — Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_chainerx (inputs)
Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using
ChainerX implementation. If it’s not supported, chainer.Fallback should be returned instead of
output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters inputs — Tuple of input array(s).
Returns Tuple of output array(s) or chainer.Fallback.

forward_cpu (inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs — Tuple of input numpy . ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of Funct ionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu (inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs — Tuple of input cupy . ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs ()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward ().

Returns A tuple of retained input variables, if available. Otherwise return None.

290 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 6.1.0

get_retained_outputs ()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward ().

Returns A tuple of retained output variables, if available. Otherwise return None.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs (indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained inputs () frominside backward ().

Unlike Funct ion, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward ().

Parameters indexes (iterable of int) — Indexes of input variables that the function
will require for backprop.

retain_outputs (indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward (), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from apply (). The output variables with retained arrays can then be obtained by
calling get_retained outputs () from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward ().

Parameters indexes (iterable of int) - Indexes of output variables that the function
will require for backprop.

unchain ()
Purges in/out nodes and this function node itself from the graph.

_eq ()
Return self==value.

__ne__ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

4.2. Functions 291

Chainer Documentation, Release 6.1.0

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

chainerx_device = None

function
The Funct ion object that this adapter is wrapping.

inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy grad sum = False

local function_hooks
Ordered dictionary of registered function hooks.

Contrary to chainer.thread_local. function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained outputs () instead.

outputs = None
rank = 0

stack = None

chainer.FunctionNode
class chainer.FunctionNode
Function node of the computational graph.

FunctionNode is a class representing a node in a computational graph. The node corresponds to an application
of a differentiable function to input variables.

When a differentiable function is applied to Variable objects, it creates an instance of FunctionNode imple-
mentation and calls its app 1y () method. The apply () method basically does the following three things.

1. Adding an edge from the function node to the variable node corresponding to each input. The node of each
input is extracted by Variable. node.

2. Computing the output arrays of the function.

3. Creating a Variable object for each output array and adding an edge from the node of the variable to
the function node.

292 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

The output variables are then returned.

Example

Let x be an instance of Variable and £ be an instance of Funct ionNode taking only one argument. Then
the following code

>>> import numpy, chainer

>>> x = chainer.Variable (numpy.zeros (10))

>>> f = chainer.functions.math.identity.Identity ()
>>> vy = f.apply((x,)) [0]

computes a new variable y and creates backward references. The backward references are actually set as per the
following diagram:

x.node <-—-—- f <-—— y.node

If an application of another function g occurs as

>>> g = chainer.functions.math.identity.Identity ()
>>> z = g.apply ((x,))[0]

then the graph grows with a branch:

|-——— f <-——= y.node
x.node <—+
|-—— g <-—— z.node

Note that the branching is correctly managed on backward computation, i.e. the gradients from f and g are
accumulated to the gradient of x.

Every function-node implementation should provide forward () and backward (). Instead of overriding
forward (), one can also implement forward_cpu () and forward_gpu () when the implementations
for CPU and GPU arrays are totally different.

Note that the input and output variables are inaccessible from backward () by default. If it needs accesses
to these variables, the forward () method (or its CPU/GPU variants) has to call retain inputs () and
retain_outputs () appropriately. The retained input/output variables can be accessed from backward ()
by calling get_retained_inputs () and get_retained_outputs ().

Note: There are two types of differentiable functions in Chainer (since v3). The first type is of a function using
a subclass of Function, which is called old-style differentiable function. The second type is of a function
using a subclass of FunctionNode, which is called new-style differentiable function. There are several
advantages on using the new-style differentiable function.

* The new-style differentiable function supports differentiable backpropagation. The backpropagated gradi-
ents computed through the new-style differentiable functions themselves support further backpropagations
so that the automatic higher-order differentiation is available.

* The backpropagation of the new-style differentiable function can be more computationally efficient be-
cause the interface allows an implementation to omit the computation of unneeded input gradients.

Note that the new-style differentiable function is the standard way of defining a function node of the compu-
tational graph in Chainer; old- style differentiable functions are implemented as wrappers of the new- style
differentiable functions.

4.2. Functions 293

Chainer Documentation, Release 6.1.0

Variables
* inputs — A tuple of the input VariableNode objects.
* outputs — A tuple of weak references to the output VariableNode objects.
* rank (int)— An ordinal following the topological order of the computational graph.
* stack — Stack trace retrieved at the forward computation. The stack trace is available only

in the debug mode.

New in version 3.0.0.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a function hook.

Parameters
* hook (FunctionHook) — Function hook to be registered.

* name (str) — Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply (inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attribute of input variables exist on a GPU device, that device is made current before
calling forward (), so implementors do not need to take care of device selection in most cases.

Parameters inputs — Tuple of input variables. Each element can be either Variable or N-
dimensional array. If the element is an ndarray, it is automatically wrapped with Variable.

Returns A tuple of output Variable objects.

backward (target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward (), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

294 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

* target_input_indexes (tuple of int)— Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

* grad_outputs (tuple of Variables) — Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len (target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate () provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate (target_input_indexes, grad_outputs, grad_inputs)

Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward (). It is often simpler to implement
backward () and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

* target_input_indexes (tuple of int) - Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

* grad_outputs (tuple of Variable)— Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

* grad_inputs (tuple of Variable) - Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward (), the length of the tuple must be same as that of
target_input_indices.

Note: Gradient variables in grad_outputs are distinct, even if a variable is passed to multiple in-
put arguments of the function. This is an implementation-detail convention to avoid the complication of
correctly accumulating gradients in such a case.

Usually, only the first position of grad_input s corresponding to these input arguments may contain the
gradient variable corresponding to that input variable, and other entries are set to None. This is not the
case with the 1azy_grad_sum feature. This behavior might be changed in a future version.

check_type_forward (in_types)

Checks types of input data before forward propagation.

This method is called before forward () and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) — The type information of input variables for
forward().

4.2,

Functions 295

Chainer Documentation, Release 6.1.0

delete_hook (name)
Unregisters the function hook.

Parameters name (st r)— The name of the function hook to be unregistered.

forward (inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward cpu () or forward_gpu () by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs — Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_chainerx (inputs)
Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using
ChainerX implementation. If it’s not supported, chainer.Fallback should be returned instead of
output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters inputs — Tuple of input array(s).
Returns Tuple of output array(s) or chainer.Fallback.

forward_cpu (inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs — Tuple of input numpy . ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of Funct ionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu (inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs — Tuple of input cupy . ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs ()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward ().

Returns A tuple of retained input variables, if available. Otherwise return None.

296 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 6.1.0

get_retained_outputs ()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward ().

Returns A tuple of retained output variables, if available. Otherwise return None.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs (indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained inputs () frominside backward ().

Unlike Funct ion, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward ().

Parameters indexes (iterable of int) — Indexes of input variables that the function
will require for backprop.

retain_outputs (indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward (), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from apply (). The output variables with retained arrays can then be obtained by
calling get_retained outputs () from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward ().

Parameters indexes (iterable of int) - Indexes of output variables that the function
will require for backprop.

unchain ()
Purges in/out nodes and this function node itself from the graph.

_eq ()
Return self==value.

__ne__ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

4.2. Functions 297

Chainer Documentation, Release 6.1.0

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

chainerx _device = None
inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy_grad sum = False

local_ function_hooks
Ordered dictionary of registered function hooks.

Contrary to chainer.thread_local.function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained outputs () instead.

outputs = None
rank = 0

stack = None

chainer.force_backprop_mode

chainer.force_backprop_mode ()

Make a context manager which enables back-propagation.

When you want to enable back-propagation in no_backprop_mode (), call this method. A Variable
created in this context always has a computational graph unless overridden by deeper contexts. If you call this
method outside of no_backprop_mode () context, it changes nothing.

In the following example, v has a computational graph and calling backward () on y will compute and
accumulate the gradients of the variables in the graph, in this case only x.

>>> x = chainer.Variable(np.array([1l,], np.float32))
>>> with chainer.no_backprop_mode () :
with chainer.force_backprop_mode () :
y = x + 1
>>> y.backward ()
>>> x.grad
array ([1.], dtype=float32)

298

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Note: chainer.force_backprop_mode () implicitly applies ChainerX’s counterpart chainerx.
force_backprop_mode (), but not vice versa. Also, setting enable_backprop configuration does not
affect ChainerX.

See also:

See chainer.no_backprop_mode () for details on disabled back-propagation mode.

chainer.no_backprop_mode

chainer.no_backprop_mode ()
Make a context manager which disables back-propagation.

In this context, Chainer does not make a computational graph. It has the benefit of reducing memory consump-
tion. However, a Variable created in this context does not hold a reference to the FunctionNode that
created itself so no gradients are accumulated by backward ().

In the following example, y is created in this context, which means that calling backward () on y has no
effect on the gradients of x.

>>> x = chainer.Variable (np.array([1l,], np.float32))
>>> with chainer.no_backprop_mode () :

. y = x + 1

>>> y.backward ()

>>> x.grad is None

True

Note: chainer.no_backprop_mode () implicitly applies ChainerX’s counterpart chainerx.
no_backprop_mode (), butnot vice versa. Also, setting enable_backprop configuration does not affect
ChainerX.

See also:

See chainer. force backprop_mode () for details on how to override this context.

chainer.grad

chainer.grad (outputs, inputs, grad_outputs=None, grad_inputs=None, set_grad=False, re-

tain_grad=False, enable_double_backprop=False, loss_scale=None)
Computes the gradient of output variables w.r.t. the input variables.

This function implements the backpropagation algorithm. While Variable.backward () also implements
backprop, this function selects the smallest paths in the computational graph needed to compute the gradients
w.r.t. inputs. The error is backpropagated only through these selected paths, which may reduce the overall
computational cost.

This function also differs from Variable.backward () in the way to return the gradients; it directly returns
the gradient variables as a list instead of setting gradients to the Variable.grad_var attribute of the original
variable. It means users do not need to clear the gradient w.r.t. each variable before computing the gradient using
this function. If set_grad option is set to True, the computed gradient is also stored in the Variable.
grad_var attribute of each variable, in which case any original value of Variable.grad var will be
updated even if it had already been set.

Parameters

4.2. Functions 299

Chainer Documentation, Release 6.1.0

* outputs (tuple or list of Variable)— A sequence of output variables from which back-
prop starts.

* inputs (tuple or list of Variable) — A sequence of input variables each of which this
function computes the gradient w.r.t.

* grad_outputs (tuple or list of Variable or None) — A sequence of variables that gives
the initial value of each output gradient. If an element is set to None, an array filled with 1
is used. If this argument itself is None, it is treated as a sequence of Nones.

* grad_inputs (tuple or list of Variable or None) — A sequence of variables that gives
the initial value of each input gradient. The gradients computed by the backprop algorithm
are accumulated to them (not in-place). If an element is set to None, the gradient is not
accumulated to this value. If this argument itself is None, it is treated as a sequence of
Nones.

* set_grad (bool) —Ifitis True, the Variable.grad var attribute of each input
variable is set to the corresponding computed gradient variable.

* retain_grad (bool) —If it is True, the gradients w.r.t. all the intermediate variables
are stored in the Variable.grad var attribute. In this case, the set_grad option is
ignored.

* enable_double_backprop (bool) — If it is True, the computed gradients can be
further backpropagated. Enabling it may increase the memory consumption (and possibly
the computational time) to remember the intermediate gradient values for the second back-
propagation.

* loss_scale(float)-Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

Returns A list of gradient variables w.r.t. the inputs.

4.2.13 Function hooks

Chainer provides a function-hook mechanism that enriches the behavior of forward and backward propagation of
FunctionNode and Function.

chainer. function_hooks.

CUDAProfileHook

chainer. function_hooks. Function hook for measuring memory usage of func-
CupyMemoryProfileHook tions in cupy memory pool.

chainer. function_hooks.PrintHook Function hook that prints debug information.
chainer.function_hooks.TimerHook Function hook for measuring elapsed time of functions.

chainer.function_hooks.CUDAProfileHook

class chainer.function_hooks.CUDAProfileHook

300 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 6.1.0

Methods
__enter_ ()
__exit (*)
added (function)

Callback function invoked when the function hook is registered

Parameters function (FunctionNode) — Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

* function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

deleted (function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode)— Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.

forward_preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

e in_data (tuple of N-dimensional array) — Input data of forward propagation.

_eq ()
Return self==value.

4.2. Functions 301

Chainer Documentation, Release 6.1.0

ne__ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

name = 'CUDAProfileHook'

chainer.function_hooks.CupyMemoryProfileHook

class chainer.function_hooks.CupyMemoryProfileHook

Function hook for measuring memory usage of functions in cupy memory pool.

Example

Code example:

from chainer.function_hooks import CupyMemoryProfileHook
hook = CupyMemoryProfileHook ()
with hook:
trainer.run ()
hook.print_report ()

Output example:

FunctionName UsedBytes AcquiredBytes Occurrence

LinearFunction 5.16GB 179.98MB 3900

ReLU 0.99GB 458.97MB 2600
SoftmaxCrossEntropy 0.01GB 5.08MB 1300
Accuracy 0.00GB 0.35MB 700

where FunctionName is the name of function that calls the hook, and UsedBytes is the memory bytes the function
used from cupy memory pool, and AcquiredBytes is the actual memory bytes the cupy memory pool acquired
from GPU device on the function call, and Occurrence is the number of calls.

Variables call_history — List of measurement results. It consists of the name of the func-
tion that calls this hook, the memory bytes the function used from cupy memory pool, and the
memory bytes the cupy memory pool acquired from GPU device on the function call.

Methods

__enter_ ()

__exit_ (*)

302

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

added (function=None)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) — Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

* function (FunctionNode) — Function object to which the function hook is regis-
tered.

e in_data (tuple of N-dimensional array) — Input of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

* function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

deleted (function=None)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode)— Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.

forward_preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

e in_data (tuple of N-dimensional array) — Input data of forward propagation.

print_report (unit="auto’, file=<_io.TextlIOWrapper name="<stdout>" mode="w’ encoding="UTF-
8’>)
Prints a summary report of memory profiling in functions.
Parameters unit (st r)— Supplementary units used for used memories. B, KB, MB, GB, TB,
PB, EB, ZB, auto ‘(default) and ‘auto_foreach are supported. If auto, units of memories are
aligned to the largest values of ‘used_bytes’ and ‘acquired_bytes’. If auto_foreach, units of
memories are adjusted for each element.

. Functions 303

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

summary ()
Returns a summary of memory profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
used_bytes, acquired_bytes, and occurrrence.

total_acquired bytes ()
Returns total bytes that cupy memory pool acquired from GPU.

total_used bytes ()
Returns total bytes that functions used from cupy memory pool.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

name = 'CupyMemoryProfileHook'

chainer.function_hooks.PrintHook

class chainer.function_hooks.PrintHook (sep=None, end='n’, file=<_io.TexttOWrapper
name=’"<stdout>" mode="w’ encoding="UTF-8">,

Sflush=True)
Function hook that prints debug information.

This function hook outputs the debug information of input arguments of forward and backward methods
involved in the hooked functions at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions at every function to be inspected, we
can show the information of all functions involved with single with statement.

Further, this hook enables us to show the information of backward methods without inserting print functions
into Chainer’s library code.

Parameters
* sep — (deprecated since v4.0.0) Ignored.
* end - Character to be added at the end of print function.
» file — Output file_like object that that redirect to.

e flush - If True, this hook forcibly flushes the text stream at the end of preprocessing.

304 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Example

The basic usage is to use it with with statement.

>>> from chainer import function_hooks
>>> 1 = L.Linear (10, 10)

>>> x = chainer.Variable (np.zeros((1l, 10), np.float32))
>>> with chainer.function_hooks.PrintHook () :

y = 1(x)

z = F.sum/(y)

z .backward () # doctest:+SKIP

In this example, PrintHook shows the debug information of forward propagation of LinearFunction
(which is implicitly called by 1) and Sum (called by F . sum) and backward propagation of z and y.

Methods
__enter__ ()
exit (*)
added (function)

Callback function invoked when the function hook is registered

Parameters function (FunctionNode) — Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

* function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

deleted (function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode)— Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

. Functions 305

Chainer Documentation, Release 6.1.0

e function (FunctionNode) — Function object to which the function hook is regis-

tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.

forward_ preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters

* function (FunctionNode) — Function object to which the function hook is regis-

tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

name = 'PrintHook'

chainer.function_hooks.TimerHook

class chainer.function_hooks.TimerHook
Function hook for measuring elapsed time of functions.

Example

Code example:

from chainer.function_hooks import TimerHook
hook = TimerHook ()
with hook:
trainer.run()
hook.print_report ()

Output example:

FunctionName ElapsedTime Occurrence
LinearFunction 1.24sec 3900
ReLU 0.59sec 2600

(continues on next page)

306

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

(continued from previous page)

SoftmaxCrossEntropy 0.82sec 1300
Accuracy 0.18sec 700

where FunctionName is the name of function that calls the hook, and ElapsedTime is the elapsed time the
function consumed, and Occurrence is the number of calls.

Variables call_history — List of measurement results. It consists of pairs of the name of the
function that calls this hook and the elapsed time the function consumes.

Methods

__enter__ ()
exit (*)

added (function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) — Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

e in_data (tuple of N-dimensional array) — Input of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

deleted (function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) - Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.

forward_preprocess (function, in_data)
Callback function invoked before forward propagation.

4.2,

Functions 307

Chainer Documentation, Release 6.1.0

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

e in_data (tuple of N-dimensional array) — Input data of forward propagation.

print_report (unit="auto’, file=<_io.TextIOWrapper name="<stdout>" mode="w’ encoding="UTF-
8>)
Prints a summary report of time profiling in functions.
Parameters unit (st r)— Supplementary units used for computational times. sec, ms, us, ns,
auto ‘(default) and ‘auto_foreach are supported. If auto, units of times are aligned to the
largest, and if auto_foreach, units of times are adjusted for each element.

summary ()
Returns a summary of time profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
elapsed_time and occurrence.

total_time ()
Returns total elapsed time in seconds.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

_gt__ ()
Return self>value.

ge ()
Return self>=value.

Attributes

name = 'TimerHook'
table = {'ms': 1000, 'ns': 1000000000, 'sec': 1, 'us': 1000000}

You can also implement your own function-hook to inject arbitrary code before/after the forward/backward propaga-
tion.

chainer.FunctionHook Base class of hooks for Functions.

chainer.FunctionHook
class chainer.FunctionHook
Base class of hooks for Functions.

FunctionHook is a callback object that is registered to FunctionNode. Registered function hooks are
invoked before and after forward and backward operations of each function.

308 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Function hooks that derive from FunctionHook may override the following methods:
* added ()
e deleted()
e forward_preprocess ()
e forward _postprocess ()
* backward_preprocess ()
* backward postprocess ()
By default, these methods do nothing.

Specifically, whenthe _call () method of some function is invoked, forward preprocess () (resp.
forward _postprocess ()) of all function hooks registered to this function are called before (resp. after)
forward propagation.

Likewise, when backward() of some Variable is invoked, backward preprocess () (resp.
backward_postprocess ()) of all function hooks registered to the function which holds this variable as a
gradient are called before (resp. after) backward propagation.

added () and deleted () are called when the hook is registered or unregistered, respectively.
There are two ways to register FunctionHook objects to Funct ionNode objects.

The first one is to use with statement. Function hooks hooked in this way are registered to all functions within
with statement and are unregistered at the end of with statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation
procedure with TimerHook, which is a subclass of FunctionHook.

>>> class Model (chainer.Chain) :
def _ init_ (self):
super (Model, self).__init__ ()
with self.init_scope():
self.l = L.Linear (10, 10)
def _ call_ (self, x1):
C. return F.exp(self.1l(x1l))
>>> modell = Model ()
>>> model2 = Model ()

>>> x = chainer.Variable (np.zeros((1l, 10), np.float32))
>>> with chainer.function_hooks.TimerHook () as m:
= modell (x)

L. y = model2 (x)

>>> model3 = Model ()

>>> z = model3 (y)

>>> print ('Total time : '.format (m.total_time()))
doctest:+ELLIPSIS

Total time

In this example, we measure the elapsed times for each forward propagation of all functions in modell and
model2. Note that model3 is not a target of measurement as TimerHook is unregistered before forward
propagation of mode13.

4.2. Functions 309

Chainer Documentation, Release 6.1.0

Note: Chainer stores the dictionary of registered function hooks as a thread local object. So, function hooks
registered are different depending on threads.

The other one is to register it directly to a Funct ionNode object by calling its add_hook () method. Func-
tion hooks registered in this way can be removed by delete hook () method. Contrary to the former regis-
tration method, function hooks are registered only to the function whose add_hook () method is called.

If the hook is registered globally using with statement, None is passed as the function argument of
added () and deleted().

If the hook is registered in a specific function using add_hook (), the FunctionNode instance is passed as
the function argument of added () and deleted ().

Parameters name (st r)— Name of this function hook.

Methods
__enter__ ()
exit (*)
added (function)

Callback function invoked when the function hook is registered

Parameters function (FunctionNode) — Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess (function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

* function (FunctionNode) — Function object to which the function hook is regis-
tered.

e in_data (tuple of N-dimensional array) — Input of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

backward_preprocess (function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.
* out_grad (tuple of N-dimensional array) — Gradient data of backward propagation.

deleted (function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) - Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess (function, in_data)
Callback function invoked after forward propagation.

Parameters

310

Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

e function (FunctionNode) — Function object to which the function hook is regis-
tered.

e in_data (tuple of N-dimensional array) — Input data of forward propagation.

forward_ preprocess (function, in_data)
Callback function invoked before forward propagation.

Parameters

* function (FunctionNode) — Function object to which the function hook is regis-
tered.

* in_data (tuple of N-dimensional array) — Input data of forward propagation.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.
Attributes

name = 'FunctionHook'

4.3 Link and Chains

Chainer provides many Link implementations in the chainer. 1inks package.

Note: Some of the links are originally defined in the chainer. functions namespace. They are still left in
the namespace for backward compatibility, though it is strongly recommended that you use them via the chainer.
1inks package.

4.3.1 Learnable connections

chainer.links.Bias Broadcasted elementwise summation with learnable pa-
rameters.

chainer.links.Bilinear Bilinear layer that performs tensor multiplication.

chainer.links.ChildSumTreeLSTM Child-Sum TreeLSTM unit.

chainer.links.ConvolutionlD 1-dimensional convolution layer.

chainer.links.ConvolutionZ2D Two-dimensional convolutional layer.

Continued on next page

4.3. Link and Chains 311

Chainer Documentation, Release 6.1.0

Table 16 — continued from previous page

chainer.links.Convolution3D 3-dimensional convolution layer.
chainer.links.ConvolutionND N-dimensional convolution layer.
chainer.links.DeconvolutionlD 1-dimensional deconvolution layer.
chainer.links.Deconvolution2D Two dimensional deconvolution function.
chainer.links.Deconvolution3D 3-dimensional deconvolution layer.
chainer.links.DeconvolutionND N-dimensional deconvolution function.
chainer.links.DeformableConvolution2D Two-dimensional deformable convolutional layer.
chainer.links.DepthwiseConvolution2D Two-dimensional depthwise convolutional layer.
chainer.links.DilatedConvolution2D Two-dimensional dilated convolutional layer.
chainer.links.EmbedID Efficient linear layer for one-hot input.
chainer.links.GRU Stateful Gated Recurrent Unit function (GRU)
chainer.links.Highway Highway module.
chainer.links.Inception Inception module of GoogLeNet.
chainer.links.InceptionBN Inception module of the new GoogleNet with Batch-
Normalization.
chainer.links.Linear Linear layer (a.k.a. fully-connected layer).
chainer.links.LocalConvolution2D Two-dimensional local convolutional layer.
chainer.links.LSTM Fully-connected LSTM layer.
chainer.links.MLPConvolutionZD Two-dimensional MLP convolution layer of Network in
Network.
chainer.links.NaryTreeLSTM N-ary TreeLSTM unit.
chainer.links.NStepBiGRU Stacked Bi-directional GRU for sequences.
chainer.links.NStepBiLSTM Stacked Bi-directional LSTM for sequences.
chainer.links.NStepBiRNNReLU Stacked Bi-directional RNN for sequences.
chainer.links.NStepBiRNNTanh Stacked Bi-directional RNN for sequences.
chainer.links.NStepGRU Stacked Uni-directional GRU for sequences.
chainer.links.NStepLSTM Stacked Uni-directional LSTM for sequences.
chainer.links.NStepRNNReLU Stacked Uni-directional RNN for sequences.
chainer.links.NStepRNNTanh Stacked Uni-directional RNN for sequences.
chainer.links.Parameter Link that just holds a parameter and returns it.
chainer.links.Scale Broadcasted elementwise product with learnable param-
eters.
chainer.links.StatefulGRU Stateful Gated Recurrent Unit function (GRU).
chainer.links.StatelessGRU Stateless Gated Recurrent Unit function (GRU).
chainer.links.StatefulMGU
chainer.links.StatelessMGU
chainer.links.StatefulPeepholeLSTM Fully-connected LSTM layer with peephole connec-
tions.
chainer.links.StatefulZoneoutLSTM
chainer.links.StatelessLSTM Stateless LSTM layer.

chainer.links.Bias

class chainer.links.Bias (axis=1, shape=None)

Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as bias () function does except that its second input is a learnable bias
parameter b the link has.

Parameters

* axis (int) — The first axis of the first input of hias () function along which its second
input is applied.

312

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* shape (tuple of ints) — Shape of the learnable bias parameter. If None, this link
does not have learnable parameters so an explicit bias needs to be given to its forward
method’s second input.

See also:

See bias () for details.

Variables b (Variable)— Bias parameter if shape is given. Otherwise, no attributes.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

e dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value - Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link)— Source link object.

4.3.

Link and Chains 313

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link) - Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

314 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (*xs)
Applies broadcasted elementwise summation.

Parameters xs (1ist of Variables) - Input variables whose length should be one if the
link has a learnable bias parameter, otherwise should be two.

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link):
def _ init_ (self):

super () .__init__ ()

with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

4.3.

Link and Chains 315

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequent ial object which has the same I.ink multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, Xx):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all

316 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

1t ()
Return self<value.

4.3. Link and Chains 317

Chainer Documentation, Release 6.1.0

le_ ()
Return self<=value.

_gt__ ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Bilinear

class chainer.links.Bilinear (left_size, right_size, out_size, nobias=False, initialW=None, ini-

- tial_bias=None)
Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the bilinear () functions. It holds parameters W, V1, V2, and b
corresponding to the arguments of bilinear ().

Parameters
» left_size (int)— Dimension of input vector e' (J)
» right_size (int)— Dimension of input vector e? (K)
* out_size (int)— Dimension of output vector y (L)
* nobias (bool)—If True, parameters V1, V2, and b are omitted.

* initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be 3.

318 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

» initial_bias (tuple of initializer) — Initial values of V!, V2 and b. The length of this
argument must be 3. Each element of this tuple must have the shapes of (left_size,
out_size), (right_size, out_size), and (out_size,), respectively if they
are numpy .ndarray. If None, V! and V2 are initialized by the default initializer and b
is set to 0.

See also:

See chainer. functions.bilinear () for details.

Variables
* W(Variable) — Bilinear weight parameter.
* V1 (Variable) — Linear weight parameter for the first argument.
* V2 (Variable) — Linear weight parameter for the second argument.

* b (Variable) — Bias parameter.

Methods

__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

* name (st r)—Name of the persistent value. This name is also used for the attribute name.

4.3.

Link and Chains 319

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (1Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

320 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (el, e2)
Applies the bilinear function to inputs and the internal parameters.

Parameters

e el (Variable)— Left input.

* e2 (Variable)— Right input.
Returns Output variable.
Return type Variable

from_ chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

4.3.

Link and Chains 321

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNRelLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, Xx):
return F.relu(self.bn(self.conv(x)))

(continues on next page)

322

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

(continued from previous page)

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.

4.3. Link and Chains 323

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zero_grads ()

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient c1eargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

_ge__ ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

324 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

chainer.links.ChildSumTreeLSTM

class chainer.links.ChildSumTreeLSTM (in_size, out_size)
Child-Sum TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a Child-Sum TreeLSTM unit as a chain. This link is a variable arguments function, which compounds
the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, ¢, and
the output, i, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as func (cl, c2, hl, h2, x) if the number of children nodes is
2, while func (c1, c¢2, c¢3, hl, h2, h3, x) ifthatis 3. This function is independent from an order
of children nodes. Thus, the returns of func (cl, c2, hl, h2, x) equalto those of func(c2, cl1,
h2, hl, x).

Parameters
* in_size (int) - Dimension of input vectors.
* out_size (int)— Dimensionality of cell and output vectors.
Variables
* W_x(chainer.links.Linear)— Linear layer of connections from input vectors.

* W_h_aio (chainer.links.Linear) — Linear layer of connections between (a, ¢, 0)
and summation of children’s output vectors. a, ¢ and o denotes input compound, input gate
and output gate, respectively. a, input compound, equals to « in the paper by Tai et al.

* W_h_f (chainer.links.Linear) — Linear layer of connections between forget gate
f and the output of each child.

See the paper for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks.

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem_ _ (name)
Equivalent to getattr.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters

4.3. Link and Chains 325

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

¢ name (st r)— Name of the child link. This name is also used as the attribute name.
e link (Link) - The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters 1link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized

326 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (*cshsx)
Returns new cell state and output of Child-Sum TreeLSTM.

Parameters cshsx (list of Variable) — Variable arguments which include all cell vectors
and all output vectors of variable children, and an input vector.

4.3. Link and Chains 327

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Returns Returns (Cpew, Anew), Where cpeq, represents new cell state vector, and Aypeq, is new
output vector.

Return type tuple of ~chainer.Variable

from chx ()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute

under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope

method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

328

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same L ink multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):
super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU () .repeat (16, mode="init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer) — Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Link and Chains 329

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.

Returns: self

to_gpu (device=None)

Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64 ()

Copies parameter variables and persistent values to CPU.

zerograds ()

Initializes all gradient arrays by zero.
Deprecated since version v1.15: Use the more efficient cleargrads () instead.

eq_ ()
Return self==value.

ne__ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

_gt__ ()
Return self>value.

—ge__ ()

Return self>=value.

Attributes

device
Device instance.

local_link_hooks

Ordered dictionary of registered link hooks.

330

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution1D

class chainer.links.ConvolutionlD (in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)
1-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 1 to the first argument ndim, so see the details of the
behavior in the documentation of ConvolutionND.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

4.3. Link and Chains 331

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters 1ink (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

332 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
* link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Applies N-dimensional convolution layer.

Parameters x (Variable) - Input image.
Returns Output of convolution.
Return type Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

4.3. Link and Chains 333

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequent ial object which has the same I.ink multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

334 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode="init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer) — Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

4.3. Link and Chains 335

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local_ link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

336 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution2D

class chainer.links.Convolution2D (self, in_channels, out_channels, ksize=None, stride=1,

pad=0, nobias=False, initialW=None, initial_bias=None, *,
dilate=1, groups=1)
Two-dimensional convolutional layer.

This link wraps the convolution_2d () function and holds the filter weight and bias vector as parameters.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

* in_channels (int or None)— Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

* out_channels (int)— Number of channels of output arrays.

* ksize (int or pair of ints) — Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) areequivalent.

* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of ints) - Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

* nobias (bool) - If True, then this link does not use the bias term.

* initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be 4.

e initial_ bias (initializer) — Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy . ndarray, its ndim should be 1.

* dilate (int or pair of ints) - Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

* groups (int) — Number of groups of channels. If the number is greater than 1, input
tensor W is divided into some blocks by this value channel-wise. For each tensor blocks,
convolution operation will be executed independently. Input channel size in_channels
and output channel size out__channels must be exactly divisible by this value.

See also:

See chainer. functions.convolution_ 2d () for the definition of two-dimensional convolution.

4.3. Link and Chains 337

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Variables
* W(Variable)— Weight parameter.

* b (Variable) — Bias parameter.

Example
There are several ways to make a Convolution2D link.

Let an input vector x be:

>>> x = np.arange(l « 3 x 10 % 10, dtype=np.float32).reshape(
1, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> 1 = L.Convolution2D (3, 7, 5)
>>> y = 1(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> 1 L.Convolution2D (7, 5)

>>> y = 1(x)

>>> y.shape

(1, 7, 6, 6)

>>> 1 L.Convolution2D (None, 7, 5)
>>> y = 1(x)

>>> y.shape

(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> 1 L.Convolution2D (7, 5, stride=1, pad=0)
>>> y = 1(x)

>>> y.shape

(1, 7, 6, 6)

>>> 1 L.Convolution2D (None, 7, 5, 1, 0)

>>> y = 1(x)

>>> y.shape

(L, 7, 6, 6)

Methods

__call__ (*args, **kwargs)
Call self as a function.

338 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

4.3.

Link and Chains 339

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link) — Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) — Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

340

Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

forward (x)
Applies the convolution layer.

Parameters x (Variable) - Input image.
Returns Output of the convolution.
Return type Variable

from_chx ()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute

under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope

method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):

super () .__init__ ()

with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

4.3.

Link and Chains

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

342 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

4.3.

Link and Chains 343

Chainer Documentation, Release 6.1.0

local_link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution3D

class chainer.links.Convolution3D (in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)
3-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 3 to the first argument ndim, so see the details of the
behavior in the documentation of ConvolutionND.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

* name (str)— Name of the parameter. This name is also used as the attribute name.

344 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

4.3.

Link and Chains 345

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Applies N-dimensional convolution layer.

Parameters x (Variable)— Input image.
Returns Output of convolution.
Return type Variable

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

346

Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 347

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):

super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

348

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

_ 1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

4.3.

Link and Chains 349

Chainer Documentation, Release 6.1.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ConvolutionND

class chainer

.links.ConvolutionND (ndim, in_channels, out_channels, ksize=None, stride=1,

pad=0, nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)

N-dimensional convolution layer.

This link wraps the convolution_nd () function and holds the filter weight and bias vector as parameters.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set

chainer.using_config(‘autotune’, True)

Parameters

See also:

ndim (int)— Number of spatial dimensions.

in_channels (int) — Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

out_channels (int)— Number of channels of output arrays.

ksize (int or tuple of ints) — Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) areequivalent.

stride (int or tuple of ints) — Stride of filter application. stride=s and
stride=(s, s, ..., s) areequivalent.

pad (int or tuple of ints)-— Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) areequivalent.

nobias (bool)—If True, then this function does not use the bias.

initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be n 4+ 2 where n is the number of spatial dimensions.

initial_bias (initializer) — Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy . ndarray, its ndim should 1.

cover_all (bool)-If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use
cuDNN.

dilate (int or tuple of int s)— Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) areequivalent.

groups (int) — The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

350

Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

See convolution nd () for the definition of N-dimensional convolution. See convolution 2d () for
the definition of two-dimensional convolution.
Variables
* W(Variable)— Weight parameter.

* b(Variable)— Bias parameter. If initial_lbias is None, set to None.

Example
There are several ways to make a ConvolutionND link.

Let an input vector x be:

>>> x = np.arange(2 « 5 x 5 x 5, dtype=np.float32) .reshape (
17 2’ 5/ 5/ 5)

1. Give the first four arguments explicitly:

>>> 1 = L.ConvolutionND (3, 2, 7, 4)
>>> y = 1(x)

>>> y.shape

(1, 7, 2, 2, 2)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> 1 = L.ConvolutionND (3, 7, 4)

>>> y = 1(x)

>>> y.shape

(1, 7, 2, 2, 2)

>>> 1 = L.ConvolutionND (3, None, 7, 4)
>>> y = 1(x)

>>> y.shape

(1, 7, 2, 2, 2)

When you omit the second argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> 1 = L.ConvolutionND (3, 7, 4, stride=1, pad=0)

>>> y = 1(x)

>>> y.shape
7

(1, 7, 2, 2, 2)

>>> 1 = L.ConvolutionND (3, None, 7, 4, 1, 0)

>>> y = 1(x)

>>> y.shape
7

4 2/ 2’ 2)

4.3. Link and Chains 351

Chainer Documentation, Release 6.1.0

Methods

__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

e dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (1Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

352 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
* link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 353

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Applies N-dimensional convolution layer.

Parameters x (Variable) - Input image.
Returns Output of convolution.
Return type Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):

super () .__init__ ()

with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

354

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNRelLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 355

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

356 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Attributes

device
Device instance.

local_ link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution1D

class chainer.links.DeconvolutionlD (in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, outsize=None, initialW=None, ini-
tial_bias=None, dilate=1, groups=1)
1-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 1 to the first argument ndim, so see the details of the
behavior in the documentation of Deconvolut ionND.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 357

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

358 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
* link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
forward (x)

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

4.3.

Link and Chains 359

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

360 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):

super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

4.3. Link and Chains 361

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

_ 1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

362

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution2D

class chainer.links.Deconvolution2D (self, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None, *, dilate=1, groups=1)
Two dimensional deconvolution function.

This link wraps the deconvolution_2d () function and holds the filter weight and bias vector as parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

* in_channels (int or None)-—Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

* out_channels (int)— Number of channels of output arrays.

e ksize (int or pair of ints) — Size of filters (a.k.a. Kkernels). ksize=k and
ksize=(k, k) areequivalent.

* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of ints) - Spatial padding width for input arrays. pad=p and
pad=(p, p) areequivalent.

* nobias (bool) - If True, then this function does not use the bias term.

* outsize (tuple)— Expected output size of deconvolutional operation. It should be pair
of height and width (outy, outy). Default value is None and the outsize is estimated by
input size, stride and pad.

* initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be 4.

e initial_ bias (initializer) — Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy .ndarray, its ndim should be 1.

* dilate (int or tuple of int s)— Dilation factor of filter applications. dilate=d and
dilate=(d, d) areequivalent.

* groups (1nt)— The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

The filter weight has four dimensions (cy, co, km, kw) which indicate the number of input channels, output
channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d. Gaussian
random samples, each of which has zero mean and deviation /1/(crkgkyw) by default.

4.3. Link and Chains 363

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

The bias vector is of size cp. Its elements are initialized by bias argument.
True, then this function does not hold the bias parameter.

If nobias argument is set to

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-

ministic algorithm.

See also:

See chainer. functions.deconvolution_ 2d () for the definition of two-dimensional convolution.

See also:

See chainer.links.ConvolutionZ2D () for the examples of ways to give arguments to this link.

Example
There are several ways to make a Deconvolution2D link.

Let an input vector x be:

>>> X

np.arange(l = 3 %= 10 = 10,
1, 3, 10, 10)

dtype=np.float32) .reshape (

1. Give the first three arguments explicitly:

In this case, all the other arguments are set to the default values.

>>> 1 = L.Deconvolution2D (3, 7, 4)
>>> y = 1(x)
>>> y.shape
(r, 7, 13, 13)
2. Omit in_channels or fill it with None:
The below two cases are the same.
>>> 1 = L.Deconvolution2D (7, 4)
>>> y = 1(x)
>>> y.shape
(1, 7, 13, 13)
>>> 1 = L.Deconvolution2D (None, 7, 4)
>>> y = 1(x)
>>> y.shape
(1, 7, 13, 13)

When you omit the first argument, you need to specify the other subsequent arguments from

stride as keyword arguments. So the below two cases are the same.

>>> 1 = L.Deconvolution2D (None, 7, 4, 2, 1)

>>> y = 1(x)

>>> y.shape

(1, 7, 20, 20)

>>> 1 = L.Deconvolution2D (7, 4, stride=2, pad=1l)
>>> y = 1(x)

>>> y.shape

(1, 7, 20, 20)

364

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value - Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3.

Link and Chains 365

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy . deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link) - Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.

366 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
forward (x)

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.
init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3.

Link and Chains 367

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNRelLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

368 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

4.3.

Link and Chains 369

Chainer Documentation, Release 6.1.0

Attributes

device
Device instance.

local_ link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution3D

class chainer.links.Deconvolution3D (in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, outsize=None, initialW=None, ini-
tial_bias=None, dilate=1, groups=1)
3-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 3 to the first argument ndim, so see the details of the
behavior in the documentation of Deconvolut ionND.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

370 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3.

Link and Chains 371

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
* link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
forward (x)

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

372 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 373

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):

super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

374

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

_ 1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

4.3.

Link and Chains 375

Chainer Documentation, Release 6.1.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DeconvolutionND

class chainer.links.DeconvolutionND (ndim, in_channels, out_channels, ksize=None, stride=1,

pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None, dilate=1, groups=1)
N-dimensional deconvolution function.

This link wraps deconvolution nd () function and holds the filter weight and bias vector as its parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters
* ndim (int)— Number of spatial dimensions.

* in_channels (int) — Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

* out_channels (int)— Number of channels of output arrays.

* ksize (int or tuple of ints) — Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) areequivalent.

* stride (int or tuple of ints) — Stride of filter application. stride=s and
stride=(s, s, ..., s) areequivalent.

* pad (int or tuple of ints)-— Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) areequivalent.

* nobias (boo1l) - If True, then this function does not use the bias.

* outsize (tuple of ints) — Expected output size of deconvolutional operation. It
should be a tuple of ints that represents the output size of each dimension. Default value is
None and the outsize is estimated with input size, stride and pad.

* initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be n + 2 where n is the number of spatial dimensions.

e initial_bias (initializer) — Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy .ndarray, its ndim should 1.

* dilate (int or tuple of int s)— Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) areequivalent.

* groups (int) — The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

See also:

deconvolution _nd()

376

Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Variables

* W(Variable)— Weight parameter.

* b(Variable)— Bias parameter. If initial_bias is None, set to None.

Example

There are several ways to make a DeconvolutionND link.

Let an input vector x be:

>>> x = np.arange (2

* 5 % 5 x5,
1, 2, 5, 5, 5)

dtype=np.float32) .reshape (

1. Give the first four arguments explicitly:

>>> 1 = L.DeconvolutionND (3, 2, 7, 4)
>>> y = 1(x)
>>> y.shape
(1, 7, 8, 8, 8)
2. Omit in_channels or fill it with None:
The below two cases are the same.
>>> 1 = L.DeconvolutionND (3, 7, 4)
>>> y = 1(x)
>>> y.shape
(L, 7, 8, 8, 8)
>>> 1 = L.DeconvolutionND (3, None, 7, 4)
>>> y = 1(x)
>>> y.shape
(L, 7, 8, 8, 8)

When you omit the second argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> 1 = L.DeconvolutionND (3, 7, 4, stride=2, pad=1)
>>> y = 1(x)
>>> y.shape
(1, 7, 10, 10, 10)
>>> 1 = L.DeconvolutionND (3, None, 7, 4, 2, 1)
>>> y = 1(x)
>>> y.shape
(r, 7, 10, 10, 10)
Methods

__call__ (*args, **kwargs)

Call self as a function.

4.3.

Link and Chains

377

Chainer Documentation, Release 6.1.0

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

378 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link) — Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) — Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

4.3. Link and Chains 379

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

forward (x)

from_chx ()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute

under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope

method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

380

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 381

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

382 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for

representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DeformableConvolution2D

class chainer.

links.DeformableConvolution2D (in_channels, out_channels,
ksize, stride=1, pad=0, off-
set_nobias=Fualse, offset_initialW=None,
offset_initial_bias=None, de-

form_nobias=False, deform_initial W=None,
deform_initial_bias=None)

Two-dimensional deformable convolutional layer.

This link

deformable convolution 2d_sampler () function.

wraps the convolution layer for offset prediction and

vectors of two convolution layers as parameters.

Parameters

in_channels (int) — Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

out_channels (int)— Number of channels of output arrays.

ksize (int or pair of ints) — Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) areequivalent.

stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

pad (int or pair of ints)— Spatial padding width for input arrays. pad=p and
pad=(p, p) areequivalent.

offset_nobias (bool) - If True, then this link does not use the bias term for the first
convolution layer.

offset_initialW (initializer) — Initializer to initialize the weight of the first convolu-
tion layer. When it is numpy . ndarray, its ndim should be 4.

offset_initial bias (initializer) — Initializer to initialize the bias of the first convo-
lution layer. If None, the bias will be initialized to zero. When it is numpy . ndarray, its
ndim should be 1.

deform_nobias (bool) — If True, then this link does not use the bias term for the
second convolution layer.

the

This also holds the filter weights and bias

4.3. Link and Chains

383

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

* deform_initialW (initializer) — Initializer to initialize the weight for the second con-
volution layer. When it is numpy . ndarray, its ndim should be 4.

e deform_initial bias (initializer) — Initializer to initialize the bias for the second
convolution layer. If None, the bias will be initialized to zero. When it is numpy .
ndarray, its ndim should be 1.

See also:

See chainer. functions.deformable_ convolution 2d_sampler ().

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem _ (name)
Equivalent to getattr.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters
* name (st r)— Name of the child link. This name is also used as the attribute name.
e link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (st r)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

384 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link)— Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

4.3. Link and Chains 385

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Applies the deformable convolution.

Parameters x (Variable)— Input image.
Returns Output of the deformable convolution.
Return type Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

386 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) - If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_ persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):

super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

4.3. Link and Chains 387

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

388 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient c1eargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

_gt__ ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DepthwiseConvolution2D

class chainer.links.DepthwiseConvolution2D (in_channels, channel_multiplier, ksize,
stride=1, pad=0, nobias=False, ini-

tialW=None, initial_bias=None)
Two-dimensional depthwise convolutional layer.

4.3. Link and Chains 389

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

This link wraps the depthwise_convolution_2d () function and holds the filter weight and bias vector
as parameters.

Parameters

* in_channels (int) — Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

* channel_multiplier (int) — Channel multiplier number. Number of output arrays
equal in_channels % channel multiplier.

e ksize (int or pair of ints) — Size of filters (a.k.a. Kkernels). ksize=k and
ksize=(k, k) areequivalent.

* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

* pad (int or pair of ints) — Spatial padding width for input arrays. pad=p and
pad=(p, p) areequivalent.

* nobias (bool) - If True, then this link does not use the bias term.

* initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be 4.

e initial_ bias (initializer) — Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy .ndarray, its ndim should be 1.

See also:

See chainer. functions.depthwise_convolution 2d().

Variables
* W(Variable)— Weight parameter.

* b (Variable)— Bias parameter.

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

* name (str)— Name of the parameter. This name is also used as the attribute name.

390 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

4.3.

Link and Chains 391

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Applies the depthwise convolution layer.

Parameters x (chainer.Variable or numpy . ndarray or cupy.ndarray) — Input image.
Returns Output of the depthwise convolution.
Return type Variable

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

392

Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 393

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):

super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

394

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

_ 1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

4.3.

Link and Chains 395

Chainer Documentation, Release 6.1.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp

Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DilatedConvolution2D

class chainer

.links.DilatedConvolution2D (in_channels, out_channels, ksize=None,

stride=1, pad=0, dilate=1, nobias=False,
initialW=None, initial_bias=None)

Two-dimensional dilated convolutional layer.

This link wraps the dilated convolution_2d () function and holds the filter weight and bias vector as

parameters.

Note: You can also define a dilated convolutional layer by passing dilate argumentto chainer.links.

Convolution2D. The functionality is the same.

Parameters

See also:

See chainer. functions.dilated convolution_2d () forthe definition of two-dimensional dilated

convolution.

in_channels (int or None)- Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

out_channels (int)— Number of channels of output arrays.

ksize (int or pair of ints) — Size of filters (ak.a. kernels). ksize=k and
ksize=(k, k) areequivalent.

stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.

pad (int or pair of ints) — Spatial padding width for input arrays. pad=p and
pad=(p, p) areequivalent.

dilate (int or pair of ints)- Dilation factor of filter applications. dilate=d
and dilate=(d, d) areequivalent.

nobias (bool) —If True, then this link does not use the bias term.

initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be 4.

initial_bias (initializer) — Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy . ndarray, its ndim should be 1.

Variables

W (Variable) — Weight parameter.

396

Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

* b (Variable) — Bias parameter.

Example
There are several ways to make a DilatedConvolution2D link.

Let an input vector x be:

>>> x = np.arange(l 3 x 10 % 10, dtype=np.float32).reshape(l, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> 1 = L.DilatedConvolution2D (3, 7, 5)

>>> y = 1(x)
>>> y.shape
(L, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> 1 = L.DilatedConvolution2D (7, 5)

>>> vy = 1(x)

>>> y.shape

(1, 7, 6, 6)

>>> 1 = L.DilatedConvolution2D (None, 7, 5)
>>> y = 1(x)

>>> y.shape

(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> 1 = L.DilatedConvolution2D (None, 7, 5, 1, 0, 2)
>>> vy = 1(x)
>>> y.shape
(1, 7, 2, 2)

>>> 1 = L.DilatedConvolution2D(7, 5, stride=1, pad=0, dilate=2)

>>> y = 1(x)

>>> y.shape
7

r 2, 2)

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters

* hook (LinkHook) — Link hook to be registered.

4.3. Link and Chains 397

Chainer Documentation, Release 6.1.0

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.

398 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link) - Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) — Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Applies the convolution layer.

Parameters x (Variable) - Input image.

Returns Output of the convolution.

4.3. Link and Chains 399

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Return type Variable

from_chx ()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute

under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope

method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

400

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 401

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

402 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.EmbedID

class chainer.links.EmbedID (in_size, out_size, initial W=None, ignore_label=None)
Efficient linear layer for one-hot input.

This is a link that wraps the embed_id () function. This link holds the ID (word) embedding matrix W
parameter.
Parameters
* in_size (int)— Number of different identifiers (a.k.a. vocabulary size).
* out_size (int) - Size of embedding vector.
* initialW (inifializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be 2.
* ignore_label (int or None)-If ignore_label is an int value, i-th column of
return value is filled with 0.
See also:
embed_1id ()

Variables W (Variable) - Embedding parameter matrix.

as a

Example
>>> W = np.array ([[0, O, 017,
(1, 1, 11,

ce [2, 2, 2]1]1).astype(np.float32)
>>> W
array ([[0., 0., 0.1,

(r., 1., 1.1,

[2., 2., 2.]1], dtype=float32)
>>> 1 = L.EmbedID (W.shape[0], W.shape[l], initialW=W)
>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> y = 1(x)

>>> y.array
array([[2., 2., 2.],
[1., 1., 1.]], dtype=float32)

4.3. Link and Chains

403

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 6.1.0

Methods
__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value - Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

404 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy . deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link) - Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.

4.3. Link and Chains 405

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Extracts the word embedding of given IDs.

Parameters x (Variable) - Batch vectors of IDs.
Returns Batch of corresponding embeddings.
Return type Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope ()

Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

406 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):

super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

Link and Chains 407

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer) — Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

_ 1t ()
Return self<value.

le_ ()
Return self<=value.

408 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

ignore_label = None

local_1link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.GRU

class chainer.links.GRU (in_size, out_size, init=None, inner_init=None, bias_init=0)

Stateful Gated Recurrent Unit function (GRU)

This is an alias of StatefulGRU.

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (name)
Equivalent to getattr.

add_hook (hook, name=None)
Registers a link hook.

Parameters

* hook (LinkHook) — Link hook to be registered.

4.3. Link and Chains 409

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters
* name (st r)— Name of the child link. This name is also used as the attribute name.
e link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
e value - Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

410 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 411

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (self, x)
Does forward propagation.

from_chx ()

Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute

under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope

method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

412

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state ()

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

set_state (h)

4.3. Link and Chains 413

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

414 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Attributes
device
Device instance.

local_ link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Highway

class chainer.links.Highway (in_out_size, nobias=False, activate=<function relu>,

init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1)
Highway module.

In highway network, two gates are added to the ordinal non-linear transformation (H (z) = activate(Wrpx +
br)). One gate is the transform gate T'(x) = o(W,x + b;), and the other is the carry gate C'(z). For simplicity,
the author defined C' = 1 — 7. Highway module returns y defined as

y = activate(Wrpx + bp) © c(Wex + b)) + 2 © (1 — o(Wix + by))
The output array has the same spatial size as the input. In order to satisfy this, W and W, must be square
matrices.
Parameters
* in_out_size (int)- Dimension of input and output vectors.
* nobias (bool) - If True, then this function does not use the bias.
* activate — Activation function of plain array. tanh is also available.

* init_Wh (initializer) — Initializer to initialize the weight. When it is numpy .ndarray,
its ndim should be 2.

e init_bh (initializer) — Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy . ndarray, its ndim should be 1.

* init_Wt (initializer) — Initializer to initialize the weight. When it is numpy .ndarray,
its ndim should be 2.

4.3. Link and Chains 415

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

e init_bt (initializer) — Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy .ndarray, its ndim should be 1. Negative value is recom-
mended by the author of the paper. (e.g. -1, -3, ...).

See: Highway Networks.

Methods

__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (name)
Equivalent to getattr.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters
¢ name (str)— Name of the child link. This name is also used as the attribute name.
e link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.

* value — Value to be registered.

416 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arxiv.org/abs/1505.00387
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters 1link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy . deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

4.3. Link and Chains 417

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Computes the output of the Highway module.

Parameters x (Variable)— Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array.

Return type Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):

super () .__init__ ()

with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

418 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same

4.3. Link and Chains 419

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

420 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local_ link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Inception

class chainer.links.Inception (in_channels, outl, proj3, out3, proj5, out5, proj_pool,

conv_init=None, bias_init=None)
Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension.
Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1
convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and
3x3 max pooling.

4.3. Link and Chains 421

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate
padding for each convolution and pooling.

See: Going Deeper with Convolutions.
Parameters

* in_channels (int or None)— Number of channels of input arrays.
* outl (int)— Output size of 1x1 convolution path.
* proj3 (int) - Projection size of 3x3 convolution path.
* out3 (int)— Output size of 3x3 convolution path.
* proj5 (int)— Projection size of 5x5 convolution path.
* out5 (int)— Output size of 5x5 convolution path.
* proj_pool (int)— Projection size of max pooling path.

* conv_init (initializer) — Initializer to initialize the convolution matrix weights. When it
is numpy .ndarray, its ndim should be 4.

* bias_init (initializer) — Initializer to initialize the convolution matrix weights. When it
is numpy .ndarray, its ndim should be 1.

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (name)
Equivalent to getattr.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters
¢ name (str)— Name of the child link. This name is also used as the attribute name.
* link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

422 Chapter 4. API Reference

https://arxiv.org/abs/1409.4842
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters 1ink (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

4.3.

Link and Chains 423

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
* link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Computes the output of the Inception module.

Parameters x (Variable)— Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array. The channel dimension has size outl + out3 + out5 + proj_pool.

Return type Variable

from_ chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

424

Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 425

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):

super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)

Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()

Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()

Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)

Copies parameter variables and persistent values to the specified device.

426

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

_ 1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

4.3.

Link and Chains 427

Chainer Documentation, Release 6.1.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.InceptionBN

class chainer.links.InceptionBN (in_channels, outl, proj3, out3, proj33, out33, pooltype,

proj_pool=None, stride=1, conv_init=None, dtype=None)
Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Tncept ion, while InceptionBN uses the Bat chNormalization on top of each con-
volution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling
method is configurable.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.
Parameters
* in_channels (int or None)-— Number of channels of input arrays.
* outl (int)— Output size of the 1x1 convolution path.
* proj3 (int)— Projection size of the single 3x3 convolution path.
* out3 (int)— Output size of the single 3x3 convolution path.
* proj33 (int)— Projection size of the double 3x3 convolutions path.
* out33 (int)— Output size of the double 3x3 convolutions path.
* pooltype (str)—Pooling type. It must be either 'max' or 'avg'.

* proj_pool (int or None) - Projection size in the pooling path. If None, no projec-
tion is done.

* stride (int)— Stride parameter of the last convolution of each path.

* conv_init (initializer) — Initializer to initialize the convolution matrix weights. When it
is numpy .ndarray, its ndim should be 4.

* dtype (numpy . dtype) —Type to use in Bat chNormalization.
See also:

Inception

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (name)
Equivalent to getattr.

add_hook (hook, name=None)
Registers a link hook.

Parameters

428 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://arxiv.org/abs/1502.03167
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Chainer Documentation, Release 6.1.0

* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters
¢ name (str)— Name of the child link. This name is also used as the attribute name.
e link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters 1link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3.

Link and Chains 429

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)

Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)

Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
* link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()

Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_ hook (name)

Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)

Applies the visitor to all the device objects in this instance.
Parameters visitor (DeviceResidentsVisitor)— Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()

Disables update rules of all parameters under the link hierarchy.

430

Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.
forward (x)

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):

super () .__init__ ()

with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

4.3. Link and Chains 431

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

432 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

4.3.

Link and Chains 433

Chainer Documentation, Release 6.1.0

local_link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Linear

class chainer.links.Linear (in_size, out_size=None, nobias=False, initialW=None, ini-

tial_bias=None)
Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the 1inear () function, and holds a weight matrix W and optionally a bias vector b as
parameters.

If initialwis left to the default value of None, the weight matrix W is initialized with i.i.d. Gaussian samples,
each of which has zero mean and deviation y/1/

Parameters
* in_size (int or None)-Dimension of input vectors. If unspecified or None, parameter initialization
will be deferred until the first forward data pass at which time the size will be determined.
* out_size (int) — Dimension of output vectors. If only one value is passed for in_size and
out_size, that value will be used for the out__size dimension.
* nobias (bool) - If True, then this function does not use the bias.
e initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray, its ndim should be
2. If initialWis None, then the weights are initialized with i.i.d. Gaussian samples, each of which has zero
mean and deviation \m

See also:
linear ()
- Variables
* W(Variable)— Weight parameter.

* b (Variable)— Bias parameter.

Example

There are several ways to make a Linear link.

434 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

Define an input vector x as:

>>> x = np.array ([[0, 1, 2, 3, 4]], np.float32)

1. Give the first two arguments explicitly:

Those numbers are considered as the input size and the output size.

>>> 1 = L.Linear (5, 10)
>>> y = 1(x)

>>> y.shape

(1, 10)

2. Omit in_size (give the output size only as the first argument) or fill it with None:

In this case, the size of second axis of x is used as the input size. So the below two cases are the same.

>>> 1 = L.Linear (10)

>>> vy = 1(x)

>>> y.shape

(1, 10)

>>> 1 = L.Linear (None, 10)
>>> y = 1(x)

>>> y.shape

(1, 10)

When you omit the first argument, you need to specify the other subsequent arguments from nobias
as keyword arguments. So the below two cases are the same.

>>> 1 = L.Linear (None, 10, False, None, 0)
>>> vy = 1(x)
>>> y.shape
(1, 10)
>>> 1 = L.Linear (10, nobias=False, initialW=None, initial_bias=0)
>>> y = 1(x)
>>> y.shape
(1, 10)
Methods
__call__ (*args, **kwargs)

Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str)— Name of the link hook. The name must be unique among link hooks registered
to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 435

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (st r)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) — Shape of the parameter array. If it is omitted, the
parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) —If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer.
Note that in these cases, dt ype argument is ignored. It can also be a scalar, in which case the
data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of
the link.

Parameters
* name (str)— Name of the persistent value. This name is also used for the attribute name.
¢ value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumu-
lation is even done across host and different devices.

Parameters link (Link) - Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain
(even if exists).

Parameters mode (str) — It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize () method,
so that all the parameters may have different initial values from the original link. copy means
that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply
copied. Thus, all parameters have same initial values but can be changed independently. share
means that the link is shallowly copied, so that its parameters’ arrays are shared with the original
one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

436 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and
devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is
copied using copy .deepcopy (). The old behavior (not copying persistent values) can be reproduced with
copy_persistent=False.

Parameters
e link (Link)— Source link object.
* copy_persistent (bool)-If True, persistent values are also copied. True by default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its
descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x, n_batch_axes=1)
Applies the linear layer.

Parameters
* x (Variable)— Batch of input vectors.

* n_batch_axes (int) — The number of batch axes. The default is 1. The input variable is
reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output of the linear layer.
Return type Variable

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

4.3. Link and Chains 437

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by
an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this
context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we
can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link):
def _ init__ (self):

super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))

self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this
link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent
value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

438 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method returns a Sequent ial object which has the same Link multiple times repeatedly. The mode
argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init'")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block
is re-initialized with different parameters. If you give copy to this argument, each block has same values for
its parameters but its object ID is different from others. If it is share, each block is same to others in terms of
not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one
block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters of each
repeated element in the returned Sequent ial will be re-initialized, so that all elements have
different initial parameters. copy means that the parameters will not be re-initialized but object
itself will be deep-copied, so that all elements have same initial parameters but can be changed
independently. share means all the elements which consist the resulting Sequential object
are same object because they are shallow-copied, so that all parameters of elements are shared
with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX,
the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the
link implementation should override device_resident_accept () to do so.

Returns: self

4.3. Link and Chains 439

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device,
the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the
link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64d ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local link hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link
hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword and value)
that are passed tothe __init__ (). This pair of key and value is used for representing this class
or subclass with __str__ ().

440 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LocalConvolution2D

class chainer.links.LocalConvolution2D (in_channels, out_channels, in_size=None,
ksize=None, stride=1, nobias=False, ini-
tialW=None, initial_bias=None, **kwargs)
Two-dimensional local convolutional layer.

This link wraps the 1ocal_convolution_2d () function and holds the filter weight and bias array as pa-

rameters.
Parameters
* in_channels (int) — Number of channels of input arrays. If either in_channels or
in_size is None, parameter initialization will be deferred until the first forward data pass
at which time the size will be determined.
* out_channels (int)— Number of channels of output arrays
* in_size (int or pair of ints) — Size of each image channel in_size=k and
in_size=(k, k) are equivalent. If either in_channels or in_size is None, parameter ini-
tialization will be deferred until the first forward data pass when the size will be determined.
* ksize (int or pair of ints) — Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) areequivalent.
* stride (int or pair of ints) — Stride of filter applications. stride=s and
stride= (s, s) areequivalent.
* nobias (bool) - If True, then this link does not use the bias term.
* initialW (initializer) — Initializer to initialize the weight. When it is numpy . ndarray,
its ndim should be 6.
e initial_bias (initializer) — Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy . ndarray, its ndim should be 3.
See also:

See chainer. functions.local_ convolution_2d().

Variables
* W(Variable) — Weight parameter.

* b (Variable) — Bias parameter.

4.3. Link and Chains 441

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 6.1.0

Methods

__call__ (*args, **kwargs)
Call self as a function.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

e dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (1Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

442 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
* link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 443

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Applies the local convolution layer.

Parameters x (Variable) - Input image.
Returns Output of the convolution.
Return type Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):

super () .__init__ ()

with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

444

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNRelLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 445

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

446 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

Attributes

device
Device instance.

local_ link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LSTM

class chainer.links.LSTM (in_size, out_size=None, lateral_init=None, upward_init=None,
bias_init=None, forget_bias_init=None)
Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the Istm () function, which is defined as a stateless
activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be
used as a stateful LSTM.

This link supports variable length inputs. The mini-batch size of the current input must be equal to or smaller
than that of the previous one. The mini-batch size of ¢ and h is determined as that of the first input x. When
mini-batch size of i-th input is smaller than that of the previous input, this link only updates c [0: 1len (x)]
andh[0:1len (x)] and doesn’t change the rest of ¢ and h. So, please sort input sequences in descending order
of lengths before applying the function.

Parameters

* in_size (int) — Dimension of input vectors. If it is None or omitted, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

* out_size (int)— Dimensionality of output vectors.

* lateral_init — A callable that takes N-dimensional array and edits its value. It is used
for initialization of the lateral connections. May be None to use default initialization.

* upward_init — A callable that takes N-dimensional array and edits its value. It is used
for initialization of the upward connections. May be None to use default initialization.

4.3. Link and Chains 447

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* bias_init — A callable that takes N-dimensional array and edits its value It is used for
initialization of the biases of cell input, input gate and output gate.and gates of the upward
connection. May be a scalar, in that case, the bias is initialized by this value. If it is None,

the cell-input bias is initialized to zero.

* forget_bias_init — A callable that takes N-dimensional array and edits its value. It
is used for initialization of the biases of the forget gate of the upward connection. May be
a scalar, in that case, the bias is initialized by this value. If it is None, the forget bias is

initialized to one.

Variables

* upward (Linear) — Linear layer of upward connections.

* lateral (Linear) — Linear layer of lateral connections.

* ¢ (Variable) — Cell states of LSTM units.

* h (Variable) - Output at the previous time step.

Example
There are several ways to make a LSTM link.

Let a two-dimensional input array x be:

>>> x = np.zeros((l, 10), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> 1 = L.LSTM(10, 20)

>>> h_new = 1 (x)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

The below two cases are the same.

>>> 1 = L.LSTM(20)

>>> h_new = 1(x)
>>> h_new.shape
(1, 20)

>>> 1 = L.LSTM(None, 20)

>>> h_new = 1 (X)
>>> h_new.shape
(1, 20)

Methods

__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (name)
Equivalent to getattr.

448

Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters
* name (st r)— Name of the child link. This name is also used as the attribute name.
e link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3.

Link and Chains 449

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)— It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy . deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link) - Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.

450 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable)— A new batch from the input sequence.
Returns Outputs of updated LSTM units.
Return type Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

4.3. Link and Chains 451

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):

super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

452 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal state.
It sets None to the c and h attributes.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

set_state(c, h)
Sets the internal state.

It sets the c and h attributes.
Parameters
e ¢ (Variable)— A new cell states of LSTM units.
* h (Variable)— A new output at the previous time step.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

4.3.

Link and Chains 453

Chainer Documentation, Release 6.1.0

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient c1eargrads () instead.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

_gt__ ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

Xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.MLPConvolution2D

class chainer.links.MLPConvolution2D (self, in_channels, out_channels, ksize=None, stride=1,
pad=0, activation=relu.relu, conv_init=None,

bias_init=None)
Two-dimensional MLP convolution layer of Network in Network.

454 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

This is an “mlpconv” layer from the Network in Network paper. This layer is a two-dimensional convolution

layer followed by 1x1 convolution layers and interleaved activation functions.
Note that it does not apply the activation function to the output of the last 1x1 convolution layer.
Parameters

* in_channels (int or None)— Number of channels of input arrays. If it is None or
omitted, parameter initialization will be deferred until the first forward data pass at which
time the size will be determined.

* out_channels (tuple of ints) — Tuple of number of channels. The i-th integer
indicates the number of filters of the i-th convolution.

* ksize (int or pair of ints)— Size of filters (a.k.a. kernels) of the first convolu-
tion layer. ksize=k and ksize= (k, k) are equivalent.

* stride(int or pair of ints)- Stride of filter applications at the first convolution
layer. stride=s and stride= (s, s) are equivalent.

* pad(int or pair of ints)— Spatial padding width for input arrays at the first con-
volution layer. pad=p and pad= (p, p) are equivalent.

* activation (callable)— Activation function for internal hidden units. You can spec-
ify one of activation functions from built-in activation functions or your own function. It
should not be an activation functions with parameters (i.e., Link instance). The function
must accept one argument (the output from each child link), and return a value. Returned
value must be a Variable derived from the input Variable to perform backpropagation on the
variable. Note that this function is not applied to the output of this link.

* conv_init — An initializer of weight matrices passed to the convolution layers. This
option must be specified as a keyword argument.

* bias_init — An initializer of bias vectors passed to the convolution layers. This option
must be specified as a keyword argument.

See: Network in Network.

Variables activation (callable)— Activation function. See the description in the arguments
for details.

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int) — Index of the child in the list.
Returns The index-th child link.
Return type Link

_ _setitem_ (index, value)

len_ ()
Returns the number of children.

__iter_ ()

4.3. Link and Chains

455

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1312.4400v3
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (1Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)— Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters 1ink (Link) — Source link object.

append (value)
S.append(value) — append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear () — None —remove all items from S

456 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy . deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count (value) — integer — return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
S.extend(iterable) — extend sequence by appending elements from the iterable

forward (x)
Computes the output of the mlpconv layer.

4.3.

Link and Chains 457

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Parameters x (Variable)— Input image.
Returns Output of the mlpconv layer.
Return type Variable

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):

super () .__init__ ()

with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

insert (index, link)
Insert a child link at the given index.

Parameters
* index (int) - The position of the list where the new
* is inserted. (1ink)-—
e 1link (Link) - The link to be inserted.

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

458 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 6.1.0

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

Pop ([index]) — item — remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

remove (value)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same I ink multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNRelLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

* n_repeat (int)— Number of times to repeat.

Link and Chains 459

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse ()
S.reverse() — reverse IN PLACE

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

460 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

ne__ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NaryTreeLSTM

class chainer.links.NaryTreeLSTM (in_size, out_size, n_ary=2)

N-ary TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a N-ary TreeLSTM unit as a chain. This link is a fixed-length arguments function, which compounds the
states of all children nodes into the new states of a current (parent) node. states denotes the cell state, c, and the
output, i, which are produced by this link. This link doesn’t keep cell and hidden states internally.

4.3. Link and Chains 461

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy

Chainer Documentation, Release 6.1.0

For example, this link is called such as func(cl, c2, hl, h2, x) if the number of children nodes
was set 2 (n_ary = 2), while func(cl, c¢2, c3, hl, h2, h3, x) if that was 3 (n_ary = 3).
This function is dependent from an order of children nodes unlike Child-Sum TreeLSTM. Thus, the returns of
func(cl, c2, hl, h2, x) aredifferent from those of func(c2, c¢l1, h2, hl, x).

Parameters
* in_size (int)— Dimension of input vectors.
* out_size (int) - Dimensionality of cell and output vectors.
* n_ary (int)— The number of children nodes in a tree structure.
Variables
* W_x (chainer.links.Linear)— Linear layer of connections from input vectors.

* W_h (chainer.links.Linear) — Linear layer of connections between (a, i, o, all f)
and the output of each child. a, ¢, 0 and f denotes input compound, input gate, output gate
and forget gate, respectively. a, input compound, equals to u in the paper by Tai et al.

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks, and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. has only one W matrix to be applied to x, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem _ (name)
Equivalent to getattr.

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (name, link)
Registers a child link to this chain.

Parameters
¢ name (st r)— Name of the child link. This name is also used as the attribute name.
e link (Link) - The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

* name (str)— Name of the parameter. This name is also used as the attribute name.

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (st r)—Itshould be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize ()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.
Return type Link

4.3.

Link and Chains 463

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward (*cshsx)
Returns new cell state and output of N-ary TreeLSTM.

Parameters cshsx (list of Variable) — Arguments which include all cell vectors and all
output vectors of fixed-length children, and an input vector. The number of arguments must
be same asn_ary * 2 + 1.

Returns Returns (Cpew, Anew), Where cpe,, represents new cell state vector, and fy,eq, is new
output vector.

Return type tuple of ~chainer.Variable

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.

464 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute

under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope

method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):

super () .__init__ ()

with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a

persistent value.
Parameters name (st r)— Name of the attribute to be registered.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

4.3.

Link and Chains

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequent ial block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope():
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize (serializer)
Serializes the link object.
Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

466 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes

device
Device instance.

local link hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

4.3. Link and Chains 467

Chainer Documentation, Release 6.1.0

update_enabled
True if at least one parameter has an update rule enabled.

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiGRU
class chainer.links.NStepBiGRU (self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional GRU for sequences.

This link is stacked version of Bi-directional GRU for sequences. It calculates hidden and cell states of all layer
at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer. functions.n _step_bigru (), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with alistof chainer.Variable
holding sequences.

Parameters
* n_layers (int)— Number of layers.
* in_ size (int)- Dimensionality of input vectors.
* out_size (int)— Dimensionality of hidden states and output vectors.
* dropout (f1oat)— Dropout ratio.
See also:

chainer. functions.n_step_bigru/()

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int) - Index of the child in the list.
Returns The index-th child link.
Return type Link

___setitem_ _ (index, value)

_len ()
Returns the number of children.

__iter ()

add_hook (hook, name=None)
Registers a link hook.

Parameters

468 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

e dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

append (value)
S.append(value) — append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.
clear () — None —remove all items from S

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3.

Link and Chains 469

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count (value) — integer — return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
S.extend(iterable) — extend sequence by appending elements from the iterable

forward (self, hx, xs)
Calculate all hidden states and cell states.

Parameters

* hx (Variable or None) — Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional

470 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

* xs (list of Variable) — List of input sequences. Each element xs [1] isa chainer.
Variable holding a sequence. Its shape is (L_i, I), where I_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns
This function returns a tuple containing three elements, hy and ys.
* hy is an updated hidden states whose shape is same as hx.

e ysisalist of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs [1]. Its shape is (IL_1i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where I_t is the length of a sequence for batch 1,
and N is size of hidden units.

Return type tuple

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.
index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

init_ hx (xs)

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

insert (index, link)
Insert a child link at the given index.

Parameters
* index (int)— The position of the list where the new
e is inserted. (1ink)-—
e 1link (Link)— The link to be inserted.

links (skipself=False)
Returns a generator of all links under the hierarchy.

4.3.

Link and Chains 471

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

Pop ([index]) — item — remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_ persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

remove (value)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):

(continues on next page)

472 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

(continued from previous page)

return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse ()
S.reverse() — reverse IN PLACE

rnn (*args)
Calls RNN function.

This function must be implemented in a child class.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) — Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.

Returns: self

4.3. Link and Chains 473

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient c1eargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

_gt__ ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.
n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

474 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiLSTM
class chainer.links.NStepBiLSTM (self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional LSTM for sequences.

This link is stacked version of Bi-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer. functions.n_step bilstm(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with alistof chainer.Variable
holding sequences.

Parameters
* n_layers (int)— Number of layers.
* in_size (int) - Dimensionality of input vectors.
* out_size (int) - Dimensionality of hidden states and output vectors.
* dropout (float)— Dropout ratio.
See also:

chainer.functions.n_step_bilstm()

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int)— Index of the child in the list.
Returns The index-th child link.
Return type Link

___setitem_ _ (index, value)

len ()
Returns the number of children.

__iter_ ()

add_hook (hook, name=None)
Registers a link hook.

Parameters

4.3. Link and Chains 475

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

e dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

append (value)
S.append(value) — append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.
clear () — None —remove all items from S

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

476 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count (value) — integer — return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
S.extend(iterable) — extend sequence by appending elements from the iterable

forward (self, hx, cx, xs)
Calculate all hidden states and cell states.

Parameters

* hx (Variable or None) — Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional

4.3.

Link and Chains 477

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

LSTM where S is the number of layers and is equal to n_layers, B is the mini-batch
size, and N is the dimension of the hidden units.

* cx (Variable or None) — Initial cell states. If None is specified zero-vector is used. It
has the same shape as hx.

* xs (list of Variable) — List of input sequences. Each element xs [1] isa chainer.
Variable holding a sequence. Its shape is (I._i, I), where IL_1i is the length of a
sequence for batch 1, and T is the size of the input and is equal to in_size.

Returns
This function returns a tuple containing three elements, hy, cy and ys.
* hy is an updated hidden states whose shape is the same as hx.
* cy is an updated cell states whose shape is the same as cx.

e ysisalist of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs [1]. Its shapeis (L_1i, N) for uni-directional LSTM and
(L_1i, 2N) for bi-directional LSTM where L_i is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

init_ hx (xs)

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):
super () .__init__ ()
with self.init_scope () :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

insert (index, link)
Insert a child link at the given index.

Parameters
e index (int)— The position of the list where the new

* is inserted. (1ink)-

478 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

e 1link (Link)— The link to be inserted.

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

pop ([index]) — item — remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

remove (value)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def init__ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :

(continues on next page)

4.3. Link and Chains 479

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

(continued from previous page)

self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse ()
S.reverse() —reverse IN PLACE

rnn (*args)
Calls RNN function.

This function must be implemented in a child class.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

480

Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

ne__ ()
Return self!=value.

_ 1t ()
Return self<value.

le_ ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.
n_weights = 8

printable_specs
Generator of printable specs of this link.

4.3.

Link and Chains 481

Chainer Documentation, Release 6.1.0

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNReLU
class chainer.links.NStepBiRNNReLU (self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is relu. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer. functions.n _step_birnn (), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with alistof chainer.Variable
holding sequences.

Parameters
* n_layers (int)— Number of layers.
* in_size (int) - Dimensionality of input vectors.
* out_size (int)— Dimensionality of hidden states and output vectors.
* dropout (f1oat)— Dropout ratio.
See also:

chainer. functions.n_step_birnn/()

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int) - Index of the child in the list.
Returns The index-th child link.
Return type Link

___setitem_ _ (index, value)

len ()
Returns the number of children.

482 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

__iter ()

add_hook (hook, name=None)
Registers a link hook.

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints) - Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value - Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

append (value)
S.append(value) — append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear () — None —remove all items from S

4.3.

Link and Chains 483

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy (mode="share’)
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy . deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count (value) — integer — return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_ hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
S.extend(iterable) — extend sequence by appending elements from the iterable

forward (self, hx, xs)
Calculate all hidden states and cell states.

484 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Parameters

* hx (Variable or None) — Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (25, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

* xs (list of Variable) — List of input sequences. Each element xs[1] isa chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch 1, and T is the size of the input and is equal to in_size.

Returns
This function returns a tuple containing three elements, hy and ys.
* hy is an updated hidden states whose shape is same as hx.

e ysis alist of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs [1]. Its shape is (L_1i, N) for uni-directional RNN and
(L_1i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.
index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

init hx (xs)

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha i n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link):
def _ init_ (self):

super () .__init__ ()

with self.init_scope() :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

insert (index, link)
Insert a child link at the given index.

Parameters
* index (int) — The position of the list where the new
* is inserted. (1ink)-

e link (Link)— The link to be inserted.

4.3.

Link and Chains 485

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

pop ([index]) — item — remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

remove (value)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init__ (self):

super (ConvBNReLU, self)._ _init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (

None, 64, 3, 1, 1, nobias=True)

(continues on next page)

486 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

(continued from previous page)

self.bn = L.BatchNormalization (64)

def forward(self, Xx):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse ()
S.reverse() — reverse IN PLACE

rnn (*args)
Calls RNN function.

This function must be implemented in a child class.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer)— Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

4.3. Link and Chains 487

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

Parameters device — Target device specifier. See get_device () for available values.
Returns: self

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

gt ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_ link_ hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.
n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

488 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNTanh
class chainer.links.NStepBiRNNTanh (self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is tanh. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer. functions.n_step_birnn (), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with alist of chainer.Variable
holding sequences.

Parameters
* n_layers (int)— Number of layers.
* in_size (int) - Dimensionality of input vectors.
* out_size (int)— Dimensionality of hidden states and output vectors.
* dropout (float)— Dropout ratio.
See also:

chainer. functions.n_step_birnn()

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int) — Index of the child in the list.
Returns The index-th child link.
Return type Link

__setitem_ _ (index, value)

_len ()
Returns the number of children.

__iter ()

add_hook (hook, name=None)
Registers a link hook.

4.3. Link and Chains 489

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Parameters
* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link)— The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

* dtype - Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
e value - Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

append (value)
S.append(value) — append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.
clear () — None —remove all items from S

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

490 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count (value) — integer — return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
S.extend(iterable) — extend sequence by appending elements from the iterable

forward (self, hx, xs)
Calculate all hidden states and cell states.

Parameters

* hx (Variable or None) — Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional

4.3.

Link and Chains 491

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

* xs (list of Variable) — List of input sequences. Each element xs [1] isa chainer.
Variable holding a sequence. Its shape is (L_i, I), where I_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns
This function returns a tuple containing three elements, hy and ys.
* hy is an updated hidden states whose shape is same as hx.

e ysisalist of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs [1]. Its shape is (IL_1i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where I_t is the length of a sequence for batch 1,
and N is size of hidden units.

Return type tuple

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.
index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

init_ hx (xs)

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

insert (index, link)
Insert a child link at the given index.

Parameters
* index (int)— The position of the list where the new
e is inserted. (1ink)-—
e 1link (Link)— The link to be inserted.

links (skipself=False)
Returns a generator of all links under the hierarchy.

492 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

Pop ([index]) — item — remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_ persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

remove (value)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):

(continues on next page)

4.3. Link and Chains 493

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

(continued from previous page)

return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse ()
S.reverse() — reverse IN PLACE

rnn (*args)
Calls RNN function.

This function must be implemented in a child class.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) — Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.

Returns: self

494 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient c1eargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

_gt__ ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.
n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

4.3.

Link and Chains 495

Chainer Documentation, Release 6.1.0

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepGRU
class chainer.links.NStepGRU (self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional GRU for sequences.

This link is stacked version of Uni-directional GRU for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer. functions.n_step_gru (), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters
* n_layers (int)— Number of layers.
* in_size (int) - Dimensionality of input vectors.
* out_size (int) - Dimensionality of hidden states and output vectors.
* dropout (float)— Dropout ratio.
See also:

chainer.functions.n_step_gru()

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int)— Index of the child in the list.
Returns The index-th child link.
Return type Link

___setitem_ _ (index, value)

len ()
Returns the number of children.

__iter_ ()

add_hook (hook, name=None)
Registers a link hook.

Parameters

496 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

e dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

append (value)
S.append(value) — append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.
clear () — None —remove all items from S

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3.

Link and Chains 497

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count (value) — integer — return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
S.extend(iterable) — extend sequence by appending elements from the iterable

forward (self, hx, xs)
Calculate all hidden states and cell states.

Parameters

* hx (Variable or None) — Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional

498 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

* xs (list of Variable) — List of input sequences. Each element xs [1] isa chainer.
Variable holding a sequence. Its shape is (L_i, I), where I_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns
This function returns a tuple containing three elements, hy and ys.
* hy is an updated hidden states whose shape is same as hx.

e ysisalist of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs [1]. Its shape is (IL_1i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where I_t is the length of a sequence for batch 1,
and N is size of hidden units.

Return type tuple

from_chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any

copy.
index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

init_ hx (xs)

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init_ (self):
super () .__init__ ()
with self.init_scope():
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

insert (index, link)
Insert a child link at the given index.

Parameters
* index (int)— The position of the list where the new
e is inserted. (1ink)-—
e 1link (Link)— The link to be inserted.

links (skipself=False)
Returns a generator of all links under the hierarchy.

4.3.

Link and Chains 499

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)-If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

Pop ([index]) — item — remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_ persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

remove (value)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def _ init_ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :
self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):

(continues on next page)

500 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

(continued from previous page)

return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters
* n_repeat (int)— Number of times to repeat.

* mode (str) — It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequent ial object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse ()
S.reverse() — reverse IN PLACE

rnn (*args)
Calls RNN function.

This function must be implemented in a child class.

serialize (serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) — Serializer object.

to_chx ()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu ()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept () to do so.

Returns: self

to_device (device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device — Target device specifier. See get__device () for available values.

Returns: self

4.3. Link and Chains 501

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

to_gpu (device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept () to do so.

Parameters device — Target device specifier. If omitted, the current device is used.
Returns: self

to_intel64 ()
Copies parameter variables and persistent values to CPU.

zerograds ()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient c1eargrads () instead.

_eq ()
Return self==value.

__ne_ ()
Return self!=value.

1t ()
Return self<value.

le ()
Return self<=value.

_gt__ ()
Return self>value.

ge ()
Return self>=value.

Attributes
device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.
n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) — Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__ (). This pair of key and value is used for
representing this class or subclass with __str__ ().

update_enabled
True if at least one parameter has an update rule enabled.

502 Chapter 4. API Reference

Chainer Documentation, Release 6.1.0

use_bi direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope () for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepLSTM
class chainer.links.NStepLSTM (self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional LSTM for sequences.

This link is stacked version of Uni-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer. functions.n_step_lstm (), this function automatically sort inputs in descending or-
der by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters
* n_layers (int)— Number of layers.
* in_size (int) - Dimensionality of input vectors.
* out_size (int) - Dimensionality of hidden states and output vectors.
* dropout (f1oat)— Dropout ratio.
See also:

chainer. functions.n_step_lstm()

Methods
__call__ (*args, **kwargs)
Call self as a function.

__getitem__ (index)
Returns the child at given index.

Parameters index (int)— Index of the child in the list.
Returns The index-th child link.
Return type Link

___setitem_ (index, value)

len ()
Returns the number of children.

__iter_ ()

add_hook (hook, name=None)
Registers a link hook.

Parameters

4.3. Link and Chains 503

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

* hook (LinkHook) — Link hook to be registered.

* name (str) — Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_1link (link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) — The link object to be registered.

add_param (name, shape=None, dtype=<class 'numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters
* name (str)— Name of the parameter. This name is also used as the attribute name.

* shape (int or tuple of ints)— Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

e dtype — Data type of the parameter array.

e initializer (initializer) — If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dt ype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent (name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters
* name (st r)—Name of the persistent value. This name is also used for the attribute name.
* value — Value to be registered.

addgrads (link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) — Source link object.

append (value)
S.append(value) — append value to the end of the sequence

children ()
Returns a generator of all child links.

Returns A generator object that generates all child links.
clear () — None —remove all items from S

cleargrads ()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

504 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

copy (mode="share’)
Returns a deep copy of the chainlist.

copyparams (link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy .deepcopy (). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters
e link (Link)— Source link object.

* copy_persistent (bool) — If True, persistent values are also copied. True by
default.

count (value) — integer — return number of occurrences of value

count_params ()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.
Returns The total size of parameters (int)

delete_hook (name)
Unregisters the link hook.

Parameters name (st r)— The name of the link hook to be unregistered.

device_resident_accept (visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor)— Visitor.
This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update ()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update ()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend (values)
S.extend(iterable) — extend sequence by appending elements from the iterable

forward (self, hx, cx, xs)
Calculate all hidden states and cell states.

Parameters

* hx (Variable or None) — Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional

4.3.

Link and Chains 505

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

LSTM where S is the number of layers and is equal to n_layers, B is the mini-batch
size, and N is the dimension of the hidden units.

* cx (Variable or None) — Initial cell states. If None is specified zero-vector is used. It
has the same shape as hx.

* xs (list of Variable) — List of input sequences. Each element xs [1] isa chainer.
Variable holding a sequence. Its shape is (I._i, I), where IL_1i is the length of a
sequence for batch 1, and T is the size of the input and is equal to in_size.

Returns
This function returns a tuple containing three elements, hy, cy and ys.
* hy is an updated hidden states whose shape is the same as hx.
* cy is an updated cell states whose shape is the same as cx.

e ysisalist of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs [1]. Its shapeis (L_1i, N) for uni-directional LSTM and
(L_1i, 2N) for bi-directional LSTM where L_i is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from chx ()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

init_ hx (xs)

init_scope ()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Cha 1 n)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink (chainer.Link) :
def _ init__ (self):
super () .__init__ ()
with self.init_scope () :
self.W = chainer.Parameter (0, (10, 5))
self.b = chainer.Parameter (0, (5,))

insert (index, link)
Insert a child link at the given index.

Parameters
e index (int)— The position of the list where the new

* is inserted. (1ink)-

506 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 6.1.0

e 1link (Link)— The link to be inserted.

links (skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool)—If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks (skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool)-If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams (include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params (include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool)—If True, it also generates uninitialized parameters.
Returns A generator object that generates all parameters.

pop ([index]) — item — remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent (name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (st r)— Name of the attribute to be registered.

remove (value)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

repeat (n_repeat, mode="init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU (chainer.Chain) :

def init__ (self):
super (ConvBNReLU, self).__init__ ()
with self.init_scope() :

(continues on next page)

4.3. Link and Chains 507

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 6.1.0

(continued from previous page)

self.conv = L.Convolution2D (
None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization (64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNRelLU() .repeat (16, mode='init")

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are