
Chainer Documentation
Release 6.5.0

Preferred Networks, inc. and Preferred Infrastructure, inc.

Oct 25, 2019





TUTORIALS

1 Chainer at a Glance 3
1.1 Mushrooms – tasty or deadly? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Code Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Concepts Walkthrough 13
2.1 Define-by-Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Variables and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Define your own function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Creating Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8 Trainer Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Using GPU(s) in Chainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 Type Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.11 Serializers – saving and loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.12 Customize your own logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Neural Net Examples 57
3.1 MNIST using Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 MNIST with a Manual Training Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Convolutional Network for Visual Recognition Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 DCGAN: Generate images with Deep Convolutional GAN . . . . . . . . . . . . . . . . . . . . . . . 80
3.5 Recurrent Nets and their Computational Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6 RNN Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.7 Word2Vec: Obtain word embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.8 Write a Sequence to Sequence (seq2seq) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 API Reference 131
4.1 Variable and Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.3 Link and Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
4.4 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
4.5 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
4.6 Weight Initializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
4.7 Snapshot Writers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
4.8 Training Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
4.9 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
4.10 Iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010

i



4.11 Serializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
4.12 Backends and Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
4.13 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
4.14 Configuring Chainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
4.15 Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
4.16 Visualization of Computational Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066
4.17 Static Subgraph Optimizations: Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
4.18 Static Subgraph Optimizations: Design Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
4.19 Caffe Model Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
4.20 Assertion and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079

5 Installation 1119
5.1 Recommended Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
5.3 Install Chainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120
5.4 Uninstall Chainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121
5.5 Upgrade Chainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121
5.6 Reinstall Chainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121
5.7 Run Chainer with Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
5.8 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122

6 ChainerX Documentation 1123
6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123
6.2 ChainerX Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
6.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128
6.5 Contribution Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
6.6 Tips and FAQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180

7 Distributed Deep Learning with ChainerMN 1181
7.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
7.2 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190
7.3 Model Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196
7.4 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215

8 API Compatibility Policy 1233
8.1 Versioning and Backward Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233
8.2 Breaking the Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233
8.3 Experimental APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234
8.4 Supported Backward Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234
8.5 Model Format Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235
8.6 Installation Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235

9 Contribution Guide 1237
9.1 Classification of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
9.2 Development Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
9.3 Issues and Pull Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
9.4 Coding Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
9.5 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
9.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244

10 Tips and FAQs 1245
10.1 It takes too long time to compile a computational graph. Can I skip it? . . . . . . . . . . . . . . . . . 1245
10.2 MNIST example does not converge in CPU mode on Mac OS X . . . . . . . . . . . . . . . . . . . . 1245
10.3 How do I fix InvalidType error? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246

ii



10.4 How do I accelerate my model using Chainer Backend for Intel Architecture? . . . . . . . . . . . . . 1247
10.5 My training process gets stuck when using MultiprocessIterator . . . . . . . . . . . . . . . . . . . . 1248

11 Performance Best Practices 1249
11.1 Use the Latest Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
11.2 Enable Hardware Accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
11.3 Migrate Data Preprocessing Code from NumPy to CuPy . . . . . . . . . . . . . . . . . . . . . . . . 1250
11.4 Avoid Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
11.5 Optimize cuDNN Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
11.6 Fine-Tune Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
11.7 Load Datasets Concurrently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
11.8 Use Multiple GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252
11.9 Use Multiple Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252

12 Upgrade Guide 1253
12.1 Chainer v6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
12.2 Chainer v5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
12.3 Chainer v4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
12.4 Chainer v3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
12.5 Chainer v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258

13 License 1275

14 Indices and tables 1277

Bibliography 1279

Python Module Index 1281

Index 1283

iii



iv



Chainer Documentation, Release 6.5.0

Chainer is a powerful, flexible and intuitive deep learning framework.

• Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on
multiple GPUs with little effort.

• Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recur-
sive nets. It also supports per-batch architectures.

• Forward computation can include any control flow statements of Python without lacking the ability of back-
propagation. It makes code intuitive and easy to debug.

TUTORIALS 1

https://chainer.org


Chainer Documentation, Release 6.5.0

2 TUTORIALS



CHAPTER

ONE

CHAINER AT A GLANCE

Welcome to Chainer!

Chainer is a rapidly growing neural network platform. The strengths of Chainer are:

• Python-based – Chainer is developed in Python, allowing for inspection and customization of all code in python
and understandable python messages at run time

• Define by Run – neural networks definitions are defined on-the-fly at run time, allowing for dynamic network
changes

• NumPy based syntax for working with arrays, thanks to CuPy implementation

• Fully customizable – since Chainer is pure python, all classes and methods can be adapted to allow for the latest
cutting edge or specialized approaches

• Broad and deep support – Chainer is actively used for most of the current approaches for neural nets (CNN,
RNN, RL, etc.), aggressively adds new approaches as they’re developed, and provides support for many kinds
of hardware as well as parallelization for multiple GPUs

1.1 Mushrooms – tasty or deadly?

Let’s take a look at a basic program of Chainer to see how it works. For a dataset, we’ll work with Kaggle’s edible
vs. poisonous mushroom dataset, which has over 8,000 examples of mushrooms, labelled by 22 categories including
odor, cap color, habitat, etc., in a mushrooms.csv file.

How will Chainer learn which mushrooms are edible and which mushrooms will kill you? Let’s see!

The code below is from the glance example in the examples/glance directory.

1.2 Code Breakdown

1.2.1 Initialization

Let’s start the program. Here are the typical imports for a Chainer program. chainer.links contain trainable
parameters and chainer.functions do not.

6 import chainer as ch
7 from chainer import datasets
8 import chainer.functions as F
9 import chainer.links as L

10 from chainer import training

(continues on next page)

3

https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/uciml/mushroom-classification
https://raw.githubusercontent.com/chainer/chainer/master/examples/glance/mushrooms.csv
https://github.com/chainer/chainer/tree/v6.5.0/examples/glance


Chainer Documentation, Release 6.5.0

(continued from previous page)

11 from chainer.training import extensions
12

13 import numpy as np

We’ll use Matplotlib for the graphs to show training progress.

15 import matplotlib
16 matplotlib.use('Agg')

1.2.2 Trainer Structure

A trainer is used to set up our neural network and data for training. The components of the trainer are generally
hierarchical, and are organized as follows:

Each of the components is fed information from the components within it. Setting up the trainer starts at the inner
components, and moves outward, with the exception of extensions, which are added after the trainer is defined.

1.2.3 Dataset

Our first step is to format the dataset. From the raw mushrooms.csv, we format the data into a Chainer
TupleDataset.

4 Chapter 1. Chainer at a Glance



Chainer Documentation, Release 6.5.0

18 mushroomsfile = 'mushrooms.csv'
19 data_array = np.genfromtxt(
20 mushroomsfile, delimiter=',', dtype=str, skip_header=1)
21 for col in range(data_array.shape[1]):
22 data_array[:, col] = np.unique(data_array[:, col], return_inverse=True)[1]
23

24 X = data_array[:, 1:].astype(np.float32)
25 Y = data_array[:, 0].astype(np.int32)[:, None]
26 train, test = datasets.split_dataset_random(
27 datasets.TupleDataset(X, Y), int(data_array.shape[0] * .7))

1.2.4 Iterator

Configure iterators to step through batches of the data for training and for testing validation. In this case, we’ll
use a batch size of 100. For the training iterator, repeating and shuffling are implicitly enabled, while they are explicitly
disabled for the testing iterator.

29 train_iter = ch.iterators.SerialIterator(train, 100)
30 test_iter = ch.iterators.SerialIterator(
31 test, 100, repeat=False, shuffle=False)

1.2.5 Model

Next, we need to define the neural network for inclusion in our model. For our mushrooms, we’ll chain together two
fully-connected, Linear, hidden layers between the input and output layers.

As an activation function, we’ll use standard Rectified Linear Units (relu()).

Using Sequential allows us to define the neural network model in a compact format.

1.2. Code Breakdown 5



Chainer Documentation, Release 6.5.0

34 # Network definition
35 def MLP(n_units, n_out):
36 layer = ch.Sequential(L.Linear(n_units), F.relu)
37 model = layer.repeat(2)
38 model.append(L.Linear(n_out))
39

40 return model

Since mushrooms are either edible or poisonous (no information on psychedelic effects!) in the dataset, we’ll use a
Link Classifier for the output, with 44 units (double the features of the data) in the hidden layers and a single
edible/poisonous category for classification.

43 model = L.Classifier(
44 MLP(44, 1), lossfun=F.sigmoid_cross_entropy, accfun=F.binary_accuracy)

Note that in the two code snippets above we have not specified the size of the input layer. Once we start feeding the
neural network with samples, Chainer will recognize the dimensionality of the input automatically and initialize the
matrix for each layer with the appropriate shape. In the example above, that is 44×22 for the first hidden layer, 44×44
for the second hidden layer, and 1×44 for the output layer.

1.2.6 Optimizer

Pick an optimizer, and set up the model to use it.

46 # Setup an optimizer
47 optimizer = ch.optimizers.SGD().setup(model)

1.2.7 Updater

6 Chapter 1. Chainer at a Glance



Chainer Documentation, Release 6.5.0

Now that we have the training iterator and optimizer set up, we link them both together into the updater.
The updater uses the minibatches from the iterator, does the forward and backward processing of the model,
and updates the parameters of the model according to the optimizer. Setting the device=-1 sets the device as
the CPU. To use a GPU, set device equal to the number of the GPU, usually device=0.

49 # Create the updater, using the optimizer
50 updater = training.StandardUpdater(train_iter, optimizer, device=-1)

Finally we create a Trainer object. The trainer processes minibatches using the updater defined above until
a certain stop condition is met and allows the use of extensions during the training. We set it to run for 50 epochs and
store all files created by the extensions (see below) in the result directory.

52 # Set up a trainer
53 trainer = training.Trainer(updater, (50, 'epoch'), out='result')

1.2.8 Extensions

Extensions can be used to execute code at certain events during the training, such as every epoch or every 1000
iterations. This mechanism is used in Chainer to evaluate models during training, print progress messages, or dump
intermediate model files.

First, use the testing iterator defined above for an Evaluator extension to the trainer to provide test scores. If
using a GPU instead of the CPU, set device to the ID of the GPU, usually 0.

54 # Evaluate the model with the test dataset for each epoch
55 trainer.extend(extensions.Evaluator(test_iter, model, device=-1))

Save a computational graph from loss variable at the first iteration. main refers to the target link of the main
optimizer. The graph is saved in the Graphviz’s dot format. The output location (directory) to save the graph is set
by the out argument of trainer.

57 # Dump a computational graph from 'loss' variable at the first iteration
58 # The "main" refers to the target link of the "main" optimizer.
59 trainer.extend(extensions.DumpGraph('main/loss'))

Take a snapshot of the trainer object every 20 epochs.

61 trainer.extend(extensions.snapshot(), trigger=(20, 'epoch'))

Write a log of evaluation statistics for each epoch.

63 # Write a log of evaluation statistics for each epoch
64 trainer.extend(extensions.LogReport())

1.2. Code Breakdown 7

https://www.graphviz.org/


Chainer Documentation, Release 6.5.0

Save two plot images to the result directory.

66 # Save two plot images to the result dir
67 if extensions.PlotReport.available():
68 trainer.extend(
69 extensions.PlotReport(['main/loss', 'validation/main/loss'],
70 'epoch', file_name='loss.png'))
71 trainer.extend(
72 extensions.PlotReport(
73 ['main/accuracy', 'validation/main/accuracy'],
74 'epoch', file_name='accuracy.png'))

Print selected entries of the log to standard output.

76 # Print selected entries of the log to stdout
77 trainer.extend(extensions.PrintReport(
78 ['epoch', 'main/loss', 'validation/main/loss',
79 'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

1.2.9 Main Loop

Finally, with the trainer and all the extensions set up, we can add the line that actually starts the main loop:

81 # Run the training
82 trainer.run()

1.2.10 Inference

Once the training is complete, only the model is necessary to make predictions. Let’s check that a random line from
the test data set and see if the inference is correct:

84 x, t = test[np.random.randint(len(test))]
85

86 predict = model.predictor(x[None]).array
87 predict = predict[0][0]
88

89 if predict >= 0:
90 print('Predicted Poisonous, Actual ' + ['Edible', 'Poisonous'][t[0]])
91 else:
92 print('Predicted Edible, Actual ' + ['Edible', 'Poisonous'][t[0]])

1.3 Output

Output for this instance will look like:

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy
→˓ elapsed_time
1 0.550724 0.502818 0.733509 0.752821
→˓ 0.215426
2 0.454206 0.446234 0.805439 0.786926
→˓ 0.902108
3 0.402783 0.395893 0.838421 0.835979
→˓ 1.50414

(continues on next page)

8 Chapter 1. Chainer at a Glance



Chainer Documentation, Release 6.5.0

(continued from previous page)

4 0.362979 0.359988 0.862807 0.852632
→˓ 2.24171
5 0.32713 0.329881 0.88 0.874232
→˓ 2.83247
6 0.303469 0.31104 0.892456 0.887284
→˓ 3.45173
7 0.284755 0.288553 0.901754 0.903284
→˓ 3.9877
8 0.26801 0.272033 0.9125 0.907137
→˓ 4.54794
9 0.25669 0.261355 0.920175 0.917937
→˓ 5.21672
10 0.241789 0.251821 0.927193 0.917937
→˓ 5.79541
11 0.232291 0.238022 0.93 0.925389
→˓ 6.3055
12 0.222805 0.22895 0.934035 0.923389
→˓ 6.87083
13 0.21276 0.219291 0.93614 0.928189
→˓ 7.54113
14 0.204822 0.220736 0.938596 0.922589
→˓ 8.12495
15 0.197671 0.207017 0.938393 0.936042
→˓ 8.69219
16 0.190285 0.199129 0.941053 0.934842
→˓ 9.24302
17 0.182827 0.193303 0.944386 0.942695
→˓ 9.80991
18 0.176776 0.194284 0.94614 0.934042
→˓ 10.3603
19 0.16964 0.177684 0.945789 0.945242
→˓ 10.8531
20 0.164831 0.171988 0.949825 0.947347
→˓ 11.3876
21 0.158394 0.167459 0.952982 0.949747
→˓ 11.9866
22 0.153353 0.161774 0.956964 0.949347
→˓ 12.6433
23 0.148209 0.156644 0.957368 0.951747
→˓ 13.3825
24 0.144814 0.15322 0.957018 0.955495
→˓ 13.962
25 0.138782 0.148277 0.958947 0.954147
→˓ 14.6
26 0.135333 0.145225 0.961228 0.956695
→˓ 15.2284
27 0.129593 0.141141 0.964561 0.958295
→˓ 15.7413
28 0.128265 0.136866 0.962632 0.960547
→˓ 16.2711
29 0.123848 0.133444 0.966071 0.961347
→˓ 16.7772
30 0.119687 0.129579 0.967193 0.964547
→˓ 17.3311
31 0.115857 0.126606 0.968596 0.966547
→˓ 17.8252
32 0.113911 0.124272 0.968772 0.962547
→˓ 18.3121 (continues on next page)

1.3. Output 9



Chainer Documentation, Release 6.5.0

(continued from previous page)

33 0.111502 0.122548 0.968596 0.965095
→˓ 18.8973
34 0.107427 0.116724 0.970526 0.969747
→˓ 19.4723
35 0.104536 0.114517 0.970877 0.969095
→˓ 20.0804
36 0.099408 0.112128 0.971786 0.970547
→˓ 20.6509
37 0.0972982 0.107618 0.973158 0.970947
→˓ 21.2467
38 0.0927064 0.104918 0.973158 0.969347
→˓ 21.7978
39 0.0904702 0.101141 0.973333 0.969747
→˓ 22.3328
40 0.0860733 0.0984015 0.975263 0.971747
→˓ 22.8447
41 0.0829282 0.0942095 0.977544 0.974947
→˓ 23.5113
42 0.082219 0.0947418 0.975965 0.969347
→˓ 24.0427
43 0.0773362 0.0906804 0.977857 0.977747
→˓ 24.5252
44 0.0751769 0.0886449 0.977895 0.972147
→˓ 25.1722
45 0.072056 0.0916797 0.978246 0.977495
→˓ 26.0778
46 0.0708111 0.0811359 0.98 0.979347
→˓ 26.6648
47 0.0671919 0.0783265 0.982456 0.978947
→˓ 27.2929
48 0.0658817 0.0772342 0.981754 0.977747
→˓ 27.8119
49 0.0634615 0.0762576 0.983333 0.974947
→˓ 28.3876
50 0.0622394 0.0710278 0.982321 0.981747
→˓ 28.9067
Predicted Edible Actual Edible

Our prediction was correct. Success!

The loss function:

10 Chapter 1. Chainer at a Glance



Chainer Documentation, Release 6.5.0

And the accuracy

1.3. Output 11



Chainer Documentation, Release 6.5.0

12 Chapter 1. Chainer at a Glance



CHAPTER

TWO

CONCEPTS WALKTHROUGH

2.1 Define-by-Run

As mentioned on the top page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it
must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined
and fixed, and then the user periodically feeds it with mini-batches of training data. Since the network is statically
defined before any forward/backward computation, all the logic must be embedded into the network architecture as
data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note
that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based
frameworks, and TensorFlow).

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined dynamically via the actual forward
computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy
enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic
to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of
Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.

2.2 Variables and Derivatives

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

13



Chainer Documentation, Release 6.5.0

As described previously, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network.
In order to start forward computation, we have to set the input array to a chainer.Variable object. Here we start
with a simple ndarray with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)

A Variable object supports basic arithmetic operators. In order to compute 𝑦 = 𝑥2 − 2𝑥+ 1, just write:

>>> y = x**2 - 2 * x + 1

The resulting y is also a Variable object, whose value can be extracted by accessing the array attribute:

>>> y.array
array([16.], dtype=float32)

Note: Variable has two attributes to represent the underlying array: array and data. There is no difference
between the two; both refer to exactly the same object. However it is not recommended that you use .data because
it might be confused with numpy.ndarray.data attribute.

What y holds is not only the result value. It also holds the history of computation (or computational graph), which
enables us to compute its derivative. This is done by calling its backward() method:

>>> y.backward()

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is
computed and stored in the grad attribute of the input variable x:

>>> x.grad
array([8.], dtype=float32)

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays
of intermediate variables for memory efficiency. In order to preserve gradient information, pass the retain_grad
argument to the backward method:

>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward(retain_grad=True)
>>> z.grad
array([-1.], dtype=float32)

All these computations can be generalized to a multi-element array input. While single-element arrays are automati-
cally initialized to [1], to start backward computation from a variable holding a multi-element array, we must set the
initial error manually. This is done simply by setting the grad attribute of the output variable:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([[ 0., 2., 4.],

[ 6., 8., 10.]], dtype=float32)

Note: Many functions taking Variable object(s) are defined in the chainer.functions module. You can

14 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.data.html#numpy.ndarray.data


Chainer Documentation, Release 6.5.0

combine them to realize complicated functions with automatic backward computation.

Note: Instead of using backward(), you can also calculate gradients of any variables in a computational graph
w.r.t. any other variables in the graph using the chainer.grad() function.

2.2.1 Higher-Order Derivatives

Variable also supports higher-order derivatives (a.k.a. double backpropagation).

Let’s see a simple example. First calculate the first-order derivative. Note that enable_double_backprop=True
is passed to y.backward().

>>> x = chainer.Variable(np.array([[0, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x ** 3
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward(enable_double_backprop=True)
>>> x.grad_var
variable([[ 0., 12., 27.],

[ 48., 75., 108.]])
>>> assert x.grad_var.array is x.grad
>>> assert (x.grad == (3 * x**2).array).all()

chainer.Variable.grad_var is a Variable for chainer.Variable.grad (which is an ndarray).
By passing enable_double_backprop=True to backward(), a computational graph for the backward cal-
culation is recorded. So, you can start backpropagation from x.grad_var to calculate the second-order derivative.

>>> gx = x.grad_var
>>> x.cleargrad()
>>> gx.grad = np.ones((2, 3), dtype=np.float32)
>>> gx.backward()
>>> x.grad
array([[ 0., 12., 18.],

[24., 30., 36.]], dtype=float32)
>>> assert (x.grad == (6 * x).array).all()

2.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You
can use the class Link to do this. A Link is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their
parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the Linear link (a.k.a. fully-connected layer or affine transformation).
It represents a mathematical function 𝑓(𝑥) = 𝑊𝑥 + 𝑏, where the matrix 𝑊 and the vector 𝑏 are parameters. This
link corresponds to its pure counterpart linear(), which accepts 𝑥,𝑊, 𝑏 as arguments. A linear link from three-
dimensional space to two-dimensional space is defined by the following line:

>>> f = L.Linear(3, 2)

2.3. Links 15

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

Note: Most functions and links only accept mini-batch input, where the first dimension of the input array is considered
as the batch dimension. In the above Linear link case, input must have shape of (𝑁, 3), where 𝑁 is the mini-batch
size.

The parameters of a link are stored as attributes. Each parameter is an instance of Variable. In the case of the
Linear link, two parameters, W and b, are stored. By default, the matrix W is initialized randomly, while the vector b is
initialized with zeros. This is the preferred way to initialize these parameters.

>>> f.W.array
array([[ 1.0184761 , 0.23103087, 0.5650746 ],

[ 1.2937803 , 1.0782351 , -0.56423163]], dtype=float32)
>>> f.b.array
array([0., 0.], dtype=float32)

An instance of the Linear link acts like a usual function:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.array
array([[3.1757617, 1.7575557],

[8.619507 , 7.1809077]], dtype=float32)

Note: Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of
(de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch.

For example, the following line creates a linear link whose output dimension is two:

>>> f = L.Linear(2)

If we feed a mini-batch of shape (2,𝑀), the input dimension will be inferred as M, which means l.W will be a 2 x M
matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, l does not have W
attribute if no data is put to the link.

Gradients of parameters are computed by the backward() method. Note that gradients are accumulated by the
method rather than overwritten. So first you must clear the gradients to renew the computation. It can be done by
calling the cleargrads() method.

>>> f.cleargrads()

Now we can compute the gradients of parameters by simply calling the backward method and access them via the
grad property.

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[5., 7., 9.],

[5., 7., 9.]], dtype=float32)
>>> f.b.grad
array([2., 2.], dtype=float32)

16 Chapter 2. Concepts Walkthrough



Chainer Documentation, Release 6.5.0

2.4 Define your own function

In this section, you will learn about the following things:

• How to define a function on variables

• Useful tools to write a function using a GPU

• How to test the function definition

After reading this section, you will be able to:

• Write your own functions

• Define simple kernels in the function definition

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

2.4.1 Differentiable Functions

Chainer provides a collection of functions in the chainer.functions module. It covers typical use cases in deep
learning, so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly
and we cannot cover all possible functions to define unseen architectures. So it is important to learn how to define
your own functions.

2.4.2 New-Style v.s. Old-Style Functions

In Chainer, you can define a function in two ways: new-style and old-style.

• New-style functions inherit from chainer.FunctionNode class (introduced in Chainer v3). Forward com-
putation can be implemented using NumPy/CuPy. Backward computation needs to be implemented by using
(possibly a composition of) other new-style functions.

• Old-style functions inherit from chainer.Function class. Forward and backward computation can be
implemented using NumPy/CuPy.

The primary advantage of using new-style functions is that they support computation of higher-order gradients (a.k.a.
higher-order derivative or double backpropagation). Higher-order gradients are used in some models e.g., recently-
proposed GAN architectures. New-style functions are also better in terms of performance of backward, as the interface
allows an implementation to skip the computation of unneeded input gradients.

2.4. Define your own function 17



Chainer Documentation, Release 6.5.0

Currently, most of built-in functions are implemented in new-style (with a few exceptions listed in #4449). Basically,
we recommend you use new-style when implementing new functions. However, you can still continue to use existing
old-style functions for the foreseeable future.

In the following sections, we describe steps to implenent user-defiend functions in new-style. You can also refer
to Implementing Old-Style Functions and Migrating From Old-Style Functions To New-Style Functions if you have
interest.

2.4.3 Implementing New-Style Functions

First, suppose we want to define an elementwise function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 * 𝑦 + 𝑧. While it is possible to implement
this equation using a combination of the * and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. New-style functions must inherit the chainer.
FunctionNode class. The skeleton of a function looks like:

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

# do forward computation on CPU
return some_tuple

def backward(self, target_input_indexes, grad_outputs):
# do backward computation
return some_tuple

We must implement forward_cpu() and backward() methods.

• In forward_cpu() function, inputs is a tuple of array(s). You need to return a tuple of array(s), which is
a result of forward computation.

• In backward() function, grad_outputs is a tuple of Variable(s) which are gradients with regard
to each output(s), i.e., the length of grad_outputs tuple equals to the number of outputs returned by
forward_cpu). You need to return a tuple of Variable(s) which are gradients with regard to each input(s),
i.e., the length of returned tuple equals to the number of inputs to forward_cpu. You can optionally use
target_input_indexes (a tuple of indices required to compute gradients) to omit computing unnecessary
gradients. We will show you the usage of target_input_indexes later.

Warning: Be careful to return a tuple even if you have just one array or Variable to return.

Note: Unlike old-style functions, inputs and outputs of backward method in new-style functions are Variables.
In other words, the backward method is device agnostic; there are no backward_cpu or backward_gpu in
FunctionNode.

MulAdd is simple and can be implemented as follows:

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

# Unpack input arrays (``numpy.ndarray``).
x, y, z = inputs

# Mark inputs (``x`` and ``y``) as retained so that it can be
# accessed during the backward process.

(continues on next page)

18 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/issues/4449


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.retain_inputs((0, 1))

# Compute results.
w = x * y + z

# Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):
# Unpack inputs retained in the forward process (``Variable``).
x, y = self.get_retained_inputs()

# Get gradients w.r.t. the output (Variable).
gw, = grad_outputs

# Compute gradients w.r.t the inputs.
gx = y * gw
gy = x * gw
gz = gw

# Return the result as a tuple.
return gx, gy, gz

As per the warning above, the forward_cpu() method returns a tuple of single element. Note that all arrays
appearing in forward_cpu are numpy.ndarray. The forward function is straightforward; it unpacks the input
tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule
of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, FunctionNode class provides a chaining logic on
it (i.e., storing the history of computation, etc.).

Note: Assuming we implement a (forward) function 𝑦 = 𝑓(𝑥) which takes as input the vector 𝑥 ∈ R𝑛 and produces
as output a vector 𝑦 ∈ R𝑚. Then the backward method has to compute

𝜆𝑖 =

𝑚∑︁
𝑗=1

𝜕𝑦𝑗
𝜕𝑥𝑖

𝛾𝑗 for 𝑖 = 1 . . . 𝑛

where 𝛾 is the grad_outputs. Note, that the resulting vector 𝜆 must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU method. You can easily predict that the method we have to write is named
forward_gpu():

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

...

def forward_gpu(self, inputs):
# Unpack input arrays (``cupy.ndarray``).
x, y, z = inputs

# Mark inputs (``x`` and ``y``) as retained so that it can be
# accessed during the backward process.

(continues on next page)

2.4. Define your own function 19

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.retain_inputs((0, 1))

# Compute results.
w = x * y + z

# Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):
...

In forward_gpu method, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class.
These operators implement the basic elementwise arithmetics.

You may find that the definitions of forward_gpu is exactly same as forward_cpu. In that case, we can reduce
them io forward().

class MulAdd(FunctionNode):
def forward(self, inputs):

# Unpack input arrays (``numpy.ndarray`` or ``cupy.ndarray``).
x, y, z = inputs

# Mark inputs (``x`` and ``y``) as retained so that it can be
# accessed during the backward process.
self.retain_inputs((0, 1))

# Compute results.
w = x * y + z

# Return the result as a tuple.
return w,

def backward(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w, = MulAdd().apply((x, y, z))

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd().apply((x, y, z))

(continues on next page)

20 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

w = muladd(x, y, z)

All functions under chainer.functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function 𝑓(𝑥, 𝑦) = exp(𝑥) + exp(𝑦). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd(FunctionNode):
def forward_cpu(self, inputs):

self.retain_inputs((0, 1))
x, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def forward_gpu(self, inputs):
self.retain_inputs((0, 1))
cupy = cuda.cupy
x, y = inputs
z = cupy.exp(x) + cupy.exp(y)
return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)
gy = gz * F.exp(y)
return gx, gy

def expadd(x, y):
z, = ExpAdd().apply((x, y))
return z

Note: Here we used chainer.backends.cuda.cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends.cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in forward_gpu. We
can unify these functions using the chainer.backend.get_array_module() function. This function accepts
arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd(FunctionNode):
def forward(self, inputs):

self.retain_inputs((0, 1))

(continues on next page)

2.4. Define your own function 21

https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

(continued from previous page)

xp = backend.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)
gy = gz * F.exp(y)
return gx, gy

def expadd(x, y):
z, = ExpAdd().apply((x, y))
return z

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module() function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x * y + z) and backward (gx = y * gw and gy = x *
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

CuPy provides a useful tool to define elementwise kernels, the cupy.ElementwiseKernel class, and Chainer
wraps it by chainer.backends.cuda.elementwise() function. Our MulAdd implementation can be im-
proved as follows:

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

self.retain_inputs((0, 1))
x, y, z = inputs
w = x * y + z
return w,

def forward_gpu(self, inputs):
self.retain_inputs((0, 1))
x, y, z = inputs
w = cuda.cupy.elementwise(

'float32 x, float32 y, float32 z',
'float32 w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward(self, target_input_indexes, grad_outputs):
x, y, z = self.get_retained_inputs()
gw, = grad_outputs

(continues on next page)

22 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel


Chainer Documentation, Release 6.5.0

(continued from previous page)

return MulAddGrad().apply((x, y, z, gw))

class MulAddGrad(FunctionNode):
def forward_cpu(self, inputs):

x, y, z, gw = inputs
gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

def forward_gpu(self, inputs):
x, y, z, gw = inputs
gx, gy = cuda.elementwise(

'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

def backward(self, target_input_indexes, grad_outputs):
# You can leave this unimplemented unless you need to compute
# higher-order derivative using this function.
raise NotImplementedError()

chainer.backends.cuda.elementwise() function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.

3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise().

The first one is binary caching: chainer.backends.cuda.elementwise() function caches the compiled
binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise() function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd(Function):
def forward_cpu(self, inputs):

(continues on next page)

2.4. Define your own function 23

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel


Chainer Documentation, Release 6.5.0

(continued from previous page)

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'T x, T y, T z',
'T w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'T x, T y, T gw',
'T gx, T gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.4.4 Advanced Topics

Write a function with training/test mode

We sometimes want to make a function behave differently in training and test modes. The training/test mode in
Chainer is configured by chainer.config. This is a thread-local configuration object, and users can substitute
True or False to its train attribute. You can refer to Configuring Chainer to see how to configure this flag as well as
other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the
value of the boolean flag chainer.config.train and branch appropriately.

For example, consider the following simple dropout function:

def dropout(x):
xp = backend.get_array_module(x.array)
mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
return x * mask

24 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel
https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel


Chainer Documentation, Release 6.5.0

This function applies dropout to each element and doubles survived elements to preserve the scale. The above imple-
mentation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

def dropout(x):
if not chainer.config.train:

return x

xp = backend.get_array_module(x.array)
mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
return x * mask

The function now supports test mode. Note that you usually do not have to implement your own dropout function
because dropout() is officially provided.

Testing Functions

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implemen-
tations. Chainer provides simple utilities to help writing unit tests. They are defined in the gradient_check
module.

The most important test utility is the numerical_grad() function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows:

x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))

f is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
numerical_grad() are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of sum(f(x)), where sum indicates the summation over all elements. The summation can
be weighted by changing gy. numerical_grad() function also accepts additional eps argument, which indicates
the quantization width of finite differences.

Note: numerical_grad() function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

Another utility is chainer.testing.assert_allclose() function. This is similar to numpy.testing.
assert_allclose() function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We
can mix them in one invocation of chainer.testing.assert_allclose(). The default values of optional
arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of functions.relu() function:

import unittest

from chainer import testing

class TestReLU(unittest.TestCase):
def test_backward_cpu(self):

x = Variable(np.random.randn(3, 2).astype(np.float32))
y = F.relu(x)
y.grad = np.random.randn(3, 2).astype(np.float32)
y.backward(retain_grad=True)

(continues on next page)

2.4. Define your own function 25

https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose


Chainer Documentation, Release 6.5.0

(continued from previous page)

def f():
return F.relu(x).array,

gx, = gradient_check.numerical_grad(f, (x.array,), (y.grad,))
testing.assert_allclose(gx, x.grad)

The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines
compute numerical gradient using the same forward function without backward routine. And at last, we compare these
two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing
CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function chainer.
gradient_check.check_backward() that follows this procedure.

import unittest

from chainer import gradient_check

class TestReLU(unittest.TestCase):
def test_backward_cpu(self):

def f(x):
return F.relu(x)

x = np.random.randn(3, 2).astype(np.float32)
y_grad = np.random.randn(3, 2).astype(np.float32)

gradient_check.check_backward(f, x, y_grad, atol=1e-4, rtol=1e-4)

You can find many examples of function tests under tests/chainer_tests/functions_tests directory.

You can use chainer.gradient_check.check_double_backward() to run gradient check for the second
order gradient computed by new-style functions. This function runs two backwpropagations; first to compute the
gradient gx of yw.r.t. x, and second to compute the gradient of gxw.r.t. x. It can be used like check_backward(),
but check_double_backward() expects an additional argument x_grad_grad, which is an array or a tuple
of arrays used for initializing the gradient array of each gradient w.r.t. an input. In other words, this argument is used
to initialize gx.grad for the second backprop.

2.4.5 Implementing User-Defined Links

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps the
function. We have already seen how to define a chain that wraps other links (by inheriting Chain class) in Creating
Models. Here we study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and
the parameter array. It can be defined as follows:

class EltwiseParamProduct(Link):
def __init__(self, shape):

super(EltwiseParamProduct, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(initializers.Normal(scale=1.), shape)

def __call__(self, x):
return self.W * x

26 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/tree/v6.5.0/tests/chainer_tests/functions_tests


Chainer Documentation, Release 6.5.0

For another example, assume we want to define a simple linear layer. It is already defined as chainer.links.
Linear, so this is an educational example. The linear layer is divided into two parts: a function and its wrapper link.
First, we have to define a function on variables:

class LinearFunction(FunctionNode):
def forward(self, inputs):

x, W, b = inputs
return x.dot(W.T) + b,

def backward(self, inputs, grad_outputs):
x, W, b = inputs
gy, = grad_outputs

gx = gy.dot(W)
gW = gy.T.dot(x)
gb = gy.sum(axis=0)
return gx, gW, gb

def linear(x, W, b):
return LinearFunction()(x, W, b)

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is
inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient
module, let’s wrap it into a link:

class Linear(Link):
def __init__(self, in_size, out_size):

super(Linear, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(
initializers.Normal(1. / math.sqrt(in_size)),
(out_size, in_size))

self.b = chainer.Parameter(0, (out_size,))

def __call__(self, x):
return linear(x, self.W, self.b)

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase the
memory consumption during the whole forward-backward computation. If you want to train very large networks on a
GPU with limited memory, it is not recommended that you cache arrays between forward and backward. There is one
exception for this: caching the output arrays does not change the memory consumption, because they are also held by
the output Variable objects.

Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

2.4.6 Migrating From Old-Style Functions To New-Style Functions

Here are the key differences between Function and FunctionNode.

2.4. Define your own function 27



Chainer Documentation, Release 6.5.0

• Implementing forward computation (difference between chainer.Function.forward() and
chainer.FunctionNode.forward())

– There are no difference between Function and FunctionNode except that the input arrays are NOT
retained by default.

If you want the inputs to be retained to use them in backward, call retain_inputs() explicitly. In
other words, self.retain_inputs(()) has no effect in FunctionNode.

• Implementing backward computation (difference between chainer.Function.backward() and
chainer.FunctionNode.backward())

– Arguments to the method has been changed.

* inputs argument is no longer passed.

You can use get_retained_inputs() and get_retained_outputs() to retrieve the in-
puts/outputs retained in the forward method. Note that grad_outputs and these retained in-
puts/outputs are all given as Variable objects, and backward method must return a tuple of
Variable objects.

* target_input_indexes argument has been added.

It contains a sorted indices of the input variables w.r.t. which the gradients are required. You can use
it to skip calculation of unneeded gradients. The use of target_input_indexes is optional; it
is acceptable to calculate and return all gradients.

– All inputs (grad_outputs) and retained values are given in Variable in FunctionNode, whereas
ndarray in Function.

• Invoking forward computation

– Function is a callable, whereas FunctionNode is not.

You need to use f.apply((x,)) instead of f(x). Note that apply() always returns outputs as
tuple even if the function generates only one output value.

When migrating from old-style to new-style, typically you will need to write a new function class that implements the
first-order gradient of the original function. Here is an example of rewriting old-style MyOldFunc unary function to
new-style MyFunc function.

class MyOldFunc(chainer.Function):

def forward(self, inputs):
x, = inputs
... # forward computation code
return y,

def backward(self, inputs, grad_outputs):
x, = inputs
gy, = grad_outputs
... # backward computation code
return gx,

class MyFunc(chainer.FunctionNode):

def forward(self, inputs):
self.retain_inputs((0,))
x, = inputs
... # forward computation code in MyOldFunc
return y,

(continues on next page)

28 Chapter 2. Concepts Walkthrough

https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

(continued from previous page)

def backward(self, target_input_indexes, grad_outputs):
x, = self.get_retained_inputs()
gy, = grad_outputs
gx, = MyFuncGrad().apply((x, gy))
return gx,

class MyFuncGrad(chainer.FunctionNode):

def forward(self, inputs):
x, gy = inputs
... # backward computation code in MyOldFunc
return gx,

def backward(self, target_input_indexes, grad_outputs):
# You can leave this unimplemented unless you need to compute
# higher-order derivative using this function.
raise NotImplementedError()

2.4.7 Implementing Old-Style Functions

Note: As noted in the New-Style v.s. Old-Style Functions, we recommend that you use new-style for newly imple-
mented functions. This section uses the same example as in Implementing New-Style Functions but using old-style.

First, suppose we want to define an elementwise function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 * 𝑦 + 𝑧. While it is possible to implement
this equation using a combination of the * and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Old-style functions must inherit the Function class. The
skeleton of a function looks like:

class MulAdd(Function):
def forward_cpu(self, inputs):

# do forward computation on CPU
return some_tuple

def backward_cpu(self, inputs, grad_outputs):
# do backward computation on CPU
return some_tuple

We must implement forward_cpu() and backward_cpu()methods. The non-self arguments of these functions
are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

x, y, z = inputs
w = x * y + z

(continues on next page)

2.4. Define your own function 29



Chainer Documentation, Release 6.5.0

(continued from previous page)

return w,

def backward_cpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

As per the warning above, the forward_cpu method returns a tuple of single element. Note that all arrays appear-
ing in CPU functions are numpy.ndarray. The forward function is straightforward; it unpacks the input tuple,
computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of
differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, Function class provides a chaining logic on it (i.e.,
storing the history of computation, etc.).

Note: Assuming we implement a (forward) function 𝑦 = 𝑓(𝑥) which takes as input the vector 𝑥 ∈ R𝑛 and produces
as output a vector 𝑦 ∈ R𝑚. Then the backward method has to compute

𝜆𝑖 =

𝑚∑︁
𝑗=1

𝜕𝑦𝑗
𝜕𝑥𝑖

𝛾𝑗 for 𝑖 = 1 . . . 𝑛

where 𝛾 is the grad_outputs. Note, that the resulting vector 𝜆 must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named
forward_gpu() and backward_gpu():

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
x, y, z = inputs
w = x * y + z
return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

In GPU methods, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class. These
operators implement the basic elementwise arithmetics.

30 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can
reduce them to forward() and backward() methods.

class MulAdd(Function):
def forward(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd()(x, y, z)

w = muladd(x, y, z)

All functions under chainer.functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function 𝑓(𝑥, 𝑦) = exp(𝑥) + exp(𝑦). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd(Function):
def forward_cpu(self, inputs):

x, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def backward_cpu(self, inputs, grad_outputs):
x, y = inputs
gz, = grad_outputs

(continues on next page)

2.4. Define your own function 31

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

gx = gz * np.exp(x)
gy = gz * np.exp(y)
return gx, gy

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y = inputs
z = cupy.exp(x) + cupy.exp(y)
return z,

def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
x, y = inputs
gz, = grad_outputs

gx = gz * cupy.exp(x)
gy = gz * cupy.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note: Here we used chainer.backends.cuda.cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends.cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in GPU methods. We
can unify these functions using the chainer.backend.get_array_module() function. This function accepts
arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd(Function):
def forward(self, inputs):

xp = backend.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, inputs, grad_outputs):
xp = backend.get_array_module(*inputs)
x, y = inputs
gz, = grad_outputs

gx = gz * xp.exp(x)
gy = gz * xp.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module() function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.

32 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy


Chainer Documentation, Release 6.5.0

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x * y + z) and backward (gx = y * gw and gy = x *
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define elemen-
twise kernels, the cupy.ElementwiseKernel class, and Chainer wraps it by chainer.backends.cuda.
elementwise() function. Our MulAdd implementation can be improved as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'float32 x, float32 y, float32 z',
'float32 w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

chainer.backends.cuda.elementwise() function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.

3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

2.4. Define your own function 33

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel


Chainer Documentation, Release 6.5.0

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise().

The first one is binary caching: chainer.backends.cuda.elementwise() function caches the compiled
binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise() function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'T x, T y, T z',
'T w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'T x, T y, T gw',
'T gx, T gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.5 Creating Models

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

34 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel
https://docs-cupy.chainer.org/en/stable/tutorial/kernel.html#udkernel


Chainer Documentation, Release 6.5.0

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple
linear layers. We can write complex procedures with parameters by combining multiple links like this:

>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)

>>> def my_forward(x):
... h = l1(x)
... return l2(h)

Here the L indicates the links module. A procedure with parameters defined in this way is hard to reuse. More
Pythonic way is combining the links and procedures into a class:

>>> class MyProc(object):
... def __init__(self):
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible
save/load features, etc. These features are all supported by the Chain class in Chainer. Then, what we have to do
here is just define the above class as a subclass of Chain:

>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)

It shows how a complex chain is constructed by simpler links. Links like l1 and l2 are called child links of MyChain.
Note that Chain itself inherits Link. It means we can define more complex chains that hold MyChain objects as
their child links.

Note: We often define a single forward method of a link by the forward operator. Such links and chains are callable

2.5. Creating Models 35



Chainer Documentation, Release 6.5.0

and behave like regular functions of Variables.

Another way to define a chain is using the ChainList class, which behaves like a list of links:

>>> class MyChain2(ChainList):
... def __init__(self):
... super(MyChain2, self).__init__(
... L.Linear(4, 3),
... L.Linear(3, 2),
... )
...
... def forward(self, x):
... h = self[0](x)
... return self[1](h)

ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above
case, the Chain class is recommended as a base class.

2.6 Optimizer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

From the previous guide on Creating Models, let’s use the MyChain class:

>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)

To tune parameters values to minimize loss, etc., we have to optimize them by the Optimizer class. It runs a
numerical optimization algorithm on a given link. Many algorithms are implemented in the optimizers module.
Here we use the simplest one, called Stochastic Gradient Descent (SGD):

36 Chapter 2. Concepts Walkthrough



Chainer Documentation, Release 6.5.0

>>> model = MyChain()
>>> optimizer = optimizers.SGD().setup(model)

The method setup() prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook func-
tions to the optimizer. Hook functions are called after the gradient computation and right before the actual update of
parameters. For example, we can set weight decay regularization by running the next line beforehand:

>>> optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0005))

Of course, you can write your own hook functions. It should be a function or a callable object.

There are two ways to use the optimizer. One is using it via Trainer, which we will see in the following sections.
The other way is using it directly. We here review the latter case. To use the optimizer in an automated fashion, see
the Trainer guide.

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the
update() method with no arguments. Do not forget to clear the gradients beforehand!

>>> x = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> model.cleargrads()
>>> # compute gradient here...
>>> loss = F.sum(model(chainer.Variable(x)))
>>> loss.backward()
>>> optimizer.update()

The other way is just passing a loss function to the update()method. In this case, cleargrads() is automatically
called by the update method, so the user does not have to call it manually.

>>> def lossfun(arg1, arg2):
... # calculate loss
... loss = F.sum(model(arg1 - arg2))
... return loss

>>> arg1 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))

See chainer.Optimizer.update() for the full specification.

2.7 Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times. A
typical training loop consists of the following procedures:

1. Iterations over training datasets

2. Preprocessing of extracted mini-batches

3. Forward/backward computations of the neural networks

4. Parameter updates

5. Evaluations of the current parameters on validation datasets

6. Logging and printing of the intermediate results

2.7. Trainer 37



Chainer Documentation, Release 6.5.0

Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop
abstraction mainly consists of two components:

• Dataset abstraction. It implements 1 and 2 in the above list. The core components are defined in the dataset
module. There are also many implementations of datasets and iterators in datasets and iterators mod-
ules, respectively.

• Trainer. It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by Trainer.
The way to update parameters (3 and 4) is defined by Updater, which can be freely customized. 5 and 6 are
implemented by instances of Extension, which appends an extra procedure to the training loop. Users can
freely customize the training procedure by adding extensions. Users can also implement their own extensions.

2.8 Trainer Extensions

In this section, you will learn about the following topics:

• How to create your own trainer extension

– by defining a simple function

– by defining a function decorated with @make_extension

– by defining a class inherited from Extension class

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

2.8.1 What is trainer Extension?

Extension is a callable object that takes a Trainer object as an argument. By adding an Extension to a
Trainer using the extend() method, the Extension will be called according to the schedule specified by using
a trigger object (See the details in 1. trigger)

The Trainer object contains all information used in a training loop, e.g., models, optimizers, updaters, iterators, and
datasets, etc. This makes it possible to change settings such as the learning rate of an optimizer.

2.8.2 Write a simple function

You can make a new Extension by writing a simple function which takes a Trainer object as its argument.
For example, when you want to reduce the learning rate periodically during training, an lr_drop extension can be
written as follows:

38 Chapter 2. Concepts Walkthrough

https://docs.python.org/3/reference/compound_stmts.html#function


Chainer Documentation, Release 6.5.0

def lr_drop(trainer):
trainer.updater.get_optimizer('main').lr *= 0.1

Then you can add this function to a Trainer object via extend() method.

trainer.extend(lr_drop, trigger=(10, 'epoch'))

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

2.8.3 Write a function decorated with @make_extension

make_extension() is a decorator that adds some attributes to a given function. For example, the simple extension
we created above can be written in this form:

@training.make_extension(trigger=(10, 'epoch'))
def lr_drop(trainer):

trainer.updater.get_optimizer('main').lr *= 0.1

The difference between the above example and this is whether it has a default trigger or not. In the latter case,
lr_drop() has its default trigger so that unless another trigger is specified via extend() method, the
trigger specified in make_extension() is used by default. The code below acts the same as the former exam-
ple, i.e., it reduces the learning rate every 10 epochs.

trainer.extend(lr_drop)

There are several attributes you can add using the make_extension() decorator.

1. trigger

trigger is an object that takes a Trainer object as an argument and returns a boolean value. If a tuple in the form
(period, unit) is given as a trigger, it will be considered as an IntervalTrigger that invokes the extension
every period unit. For example, when the given tuple is (10, 'epoch'), the extension will run every 10
epochs.

trigger can also be given to the extend() method that adds an extension to a Trainer object. The priority of
triggers is as follows:

• When both extend() and a given Extension have triggers, the trigger given to extend() is used.

• When None is given to extend() as the trigger argument and a given Extension has trigger, the
trigger given to the Extension is used.

• When both trigger attributes in extend() and Extension are None, the Extension will be fired
every iteration.

See the details in the documentation of get_trigger() for more information.

2. default_name

An Extension is kept in a dictionary which is a property in a Trainer. This argument gives the name of the
Extension. Users will see this name in the keys of the snapshot which is a dictionary generated by serialization.

2.8. Trainer Extensions 39



Chainer Documentation, Release 6.5.0

3. priority

As a Trainer object can be assigned multiple Extension objects, the execution order is defined according to the
following three values:

• PRIORITY_WRITER: The priority for extensions that write some records to the observation dictionary. It
includes cases that the extension directly adds values to the observation dictionary, or the extension uses the
chainer.report() function to report values to the observation dictionary. Extensions which write something to
reporter should go first because other Extensions which read those values may be added.

• PRIORITY_EDITOR: The priority for extensions that edit the observation dictionary based on already reported
values. Extensions which edit some values of reported ones should go after the extensions which write values
to reporter but before extensions which read the final values.

• PRIORITY_READER: The priority for extensions that only read records from the observation dictionary. This
is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the
reported values should be fired after all the extensions which have other priorities, e.g, PRIORITY_WRITER
and PRIORITY_EDITOR because it should read the final values.

See the details in the documentation of Trainer for more information.

4. finalizer

You can specify a function to finalize the extension. It is called once at the end of the training loop, i.e., when run()
has finished.

5. initializer

You can specify a function which takes a Trainer object as an argument to initialize the extension. It is called once
before the training loop begins.

2.8.4 Write a class inherited from the Extension class

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside
of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this
equation:

𝜂 = 𝜂init

(︂
1− 𝑡

𝑡max

)︂power

The learning rate will be dropped according to the curve below with power = 0.5:

40 Chapter 2. Concepts Walkthrough



Chainer Documentation, Release 6.5.0

class PolynomialShift(training.Extension):

def __init__(self, attr, power, stop_trigger, batchsize=None,
len_dataset=None):

self._attr = attr
self._power = power
self._init = None
self._t = 0
self._last_value = 0

if stop_trigger[1] == 'iteration':
self._maxiter = stop_trigger[0]

elif stop_trigger[1] == 'epoch':
if batchsize is None or len_dataset is None:

raise ValueError(
'When the unit of \'stop_trigger\' is \'epoch\', '
'\'batchsize\' and \'len_dataset\' should be '
'specified to calculate the maximum iteration.')

n_iter_per_epoch = len_dataset / float(batchsize)
self._maxiter = float(stop_trigger[0] * n_iter_per_epoch)

def initialize(self, trainer):
optimizer = trainer.updater.get_optimizer('main')
# ensure that _init is set
if self._init is None:

self._init = getattr(optimizer, self._attr)

def __call__(self, trainer):
(continues on next page)

2.8. Trainer Extensions 41



Chainer Documentation, Release 6.5.0

(continued from previous page)

self._t += 1

optimizer = trainer.updater.get_optimizer('main')
value = self._init * ((1 - (self._t / self._maxiter)) ** self._power)
setattr(optimizer, self._attr, value)
self._last_value = value

def serialize(self, serializer):
self._t = serializer('_t', self._t)
self._last_value = serializer('_last_value', self._last_value)
if isinstance(self._last_value, np.ndarray):

self._last_value = self._last_value.item()

stop_trigger = (10000, 'iteration')
trainer.extend(PolynomialShift('lr', 0.5, stop_trigger))

This extension PolynomialShift takes five arguments.

• attr: The name of the optimizer property you want to update using this extension.

• power: The power of the above equation to calculate the learning rate.

• stop_trigger: The trigger given to the Trainer object to specify when to stop the training loop.

• batchsize: The training mini-batchsize.

• len_dataset: The length of the dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed during training by using stop_trigger,
batchsize, and len_dataset, then stores it as a property _maxiter. This property will be used in the
__call__() method to update the learning rate. The initialize() method obtains the initial learning rate
from the optimizer given to the Trainer object. The serialize() method stores or recovers the properties, _t
(number of iterations) and _last_value (the latest learning rate), belonging to this extension.

2.9 Using GPU(s) in Chainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this section, you will learn about the following topics:

• Relationship between Chainer and CuPy

42 Chapter 2. Concepts Walkthrough



Chainer Documentation, Release 6.5.0

• Basics of CuPy

• Single-GPU usage of Chainer

• Multi-GPU usage of model-parallel computing

• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:

• Use Chainer on a CUDA-enabled GPU

• Write model-parallel computing in Chainer

• Write data-parallel computing in Chainer

2.9.1 Relationship between Chainer and CuPy

Note: Even if you have CUDA installed in your environment, you have to install CuPy separately to use GPUs. See
Working with Custom CUDA Installation for the way to set up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy.ndarray class is the GPU array
implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables
us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which
enables us to write fast implementations dedicated to GPU.

Note: The chainer.backends.cuda module imports many important symbols from CuPy. For example, the
cupy namespace is referred as cuda.cupy in the Chainer code. Note that the chainer.backends.cudamodule
can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and
destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since
memory allocation and release in CUDA (i.e. cudaMalloc and cudaFree functions) synchronize CPU and GPU
computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation,
Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy
to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

2.9.2 Basics of cupy.ndarray

See the documentation of CuPy for the basic usage of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy.ndarray class is in its core,
which is a compatible GPU alternative of numpy.ndarray. CuPy implements many functions on cupy.ndarray
objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most
features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy.ndarray from numpy.ndarray is that the content is allocated on the device mem-
ory. The allocation takes place on the current device by default. The current device can be changed by cupy.cuda.
Device object as follows:

with cupy.cuda.Device(1):
x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])

2.9. Using GPU(s) in Chainer 43

https://docs-cupy.chainer.org/en/stable/install.html#install-cuda
https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/index.html#cupy-reference
https://docs.scipy.org/doc/numpy/index.html
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device


Chainer Documentation, Release 6.5.0

Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a
non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the
chainer.backends.cuda.to_gpu() function copies a numpy.ndarray object to a specified device:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)

It is equivalent to the following code using CuPy:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):

x_gpu = cupy.array(x_cpu)

Moving a device array to the host can be done by chainer.backends.cuda.to_cpu() as follows:

x_cpu = cuda.to_cpu(x_gpu)

It is equivalent to the following code using CuPy:

with x_gpu.device:
x_cpu = x_gpu.get()

Note: The with statements in these codes are required to select the appropriate CUDA device. If user uses only one de-
vice, these device switching is not needed. chainer.backends.cuda.to_cpu() and chainer.backends.
cuda.to_gpu() functions automatically switch the current device correctly.

Chainer also provides a convenient function chainer.backends.cuda.get_device_from_id() and
chainer.backends.cuda.get_device_from_array() to select a device. The former function accepts
an integer or None. When None is given, it returns a dummy device object. Otherwise, it returns a corresponding
device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a
dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device
object also supports with statements like the above example but does nothing. Here are some other examples:

cuda.get_device_from_id(1).use()
x_gpu1 = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_id(1):
x_gpu1 = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_array(x_gpu1):
y_gpu1 = x_gpu + 1

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device
switching:

def add1(x):
with cuda.get_device_from_array(x):

return x + 1

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the
chainer.backend.get_array_module() function. This function returns the numpy or cupy module based
on arguments. A CPU/GPU generic function is defined using it like follows:

44 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

# Stable implementation of log(1 + exp(x))
def softplus(x):

xp = backend.get_array_module(x)
return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

2.9.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand.
In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_gpu() method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu() method also accepts
a device ID like model.to_gpu(0). In this case, the link object is transferred to the appropriate GPU device. The
current device is used by default.

If we use chainer.training.Trainer, what we have to do is just let the updater know the device ID to send
each mini-batch.

updater = training.updaters.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')

We also have to specify the device ID for an evaluator extension as well.

trainer.extend(extensions.Evaluator(test_iter, model, device=0))

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]]))
t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))
optimizer.update(model, x, t)

2.9.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”.
Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means paral-
lelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs
in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers
with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two
GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

(GPU0) input --+--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+--> output
| | |

(GPU1) +--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+

We can use the above MLP chain as following diagram:

2.9. Using GPU(s) in Chainer 45



Chainer Documentation, Release 6.5.0

(GPU0) input --+--> mlp1 --+--> mlp2 --+--> output
| | |

(GPU1) +--> mlp1 --+--> mlp2 --+

Let’s write a link for the whole network.

class ParallelMLP(Chain):
def __init__(self):

super(ParallelMLP, self).__init__()
with self.init_scope():

# the input size, 784, is inferred
self.mlp1_gpu0 = MLP(1000, 2000).to_gpu(0)
self.mlp1_gpu1 = MLP(1000, 2000).to_gpu(1)

# the input size, 2000, is inferred
self.mlp2_gpu0 = MLP(1000, 10).to_gpu(0)
self.mlp2_gpu1 = MLP(1000, 10).to_gpu(1)

def forward(self, x):
# assume x is on GPU 0
z0 = self.mlp1_gpu0(x)
z1 = self.mlp1_gpu1(F.copy(x, 1))

# sync
h0 = F.relu(z0 + F.copy(z1, 0))
h1 = F.relu(z1 + F.copy(z0, 1))

y0 = self.mlp2_gpu0(h0)
y1 = self.mlp2_gpu1(h1)

# sync
y = y0 + F.copy(y1, 0)
return y # output is on GPU0

Recall that the Link.to_gpu() method returns the link itself. The copy() function copies an input variable to
specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely
transfers an output gradient to the input device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the
above code run asynchronously to the host CPU.

An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py.

2.9.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it
means that a different device does computation on a different subset of the input data. In this subsection, we review
the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The
most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define
a model and optimizer instances:

46 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/blob/v6.5.0/examples/mnist/train_mnist_model_parallel.py


Chainer Documentation, Release 6.5.0

model = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred
optimizer = optimizers.SGD()
optimizer.setup(model)

Recall that the MLP link implements the multi-layer perceptron, and the Classifier link wraps it to provide a clas-
sifier interface. We used StandardUpdater in the previous example. In order to enable data-parallel computation
with multiple GPUs, we only have to replace it with ParallelUpdater.

updater = training.updaters.ParallelUpdater(train_iter, optimizer,
devices={'main': 0, 'second': 1})

The devices option specifies which devices to use in data-parallel learning. The device with name 'main' is used
as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above
example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every
backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the
updated parameters are sent to GPU 1 again.

See also the example code in examples/mnist/train_mnist_data_parallel.py.

2.9.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer. Most users can skip
this section. If you are interested in how to write a data-parallel computation by yourself, this section should be
informative. It is also helpful to, e.g., customize the ParallelUpdater class.

We again start from the MNIST example. At this time, we use a suffix like _0 and _1 to distinguish objects on each
device. First, we define a model.

model_0 = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred

We want to make two copies of this instance on different GPUs. The Link.to_gpu() method runs in place, so we
cannot use it to make a copy. In order to make a copy, we can use Link.copy() method.

model_1 = model_0.copy()
model_0.to_gpu(0)
model_1.to_gpu(1)

The Link.copy() method copies the link into another instance. It just copies the link hierarchy, and does not copy
the arrays it holds.

Then, set up an optimizer:

optimizer = optimizers.SGD()
optimizer.setup(model_0)

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be
aggregated to those of model_0.

Then, we can write a data-parallel learning loop as follows:

batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

(continues on next page)

2.9. Using GPU(s) in Chainer 47

https://github.com/chainer/chainer/blob/v6.5.0/examples/mnist/train_mnist_data_parallel.py


Chainer Documentation, Release 6.5.0

(continued from previous page)

x_batch = x_train[indexes[i : i + batchsize]]
y_batch = y_train[indexes[i : i + batchsize]]

x0 = Variable(cuda.to_gpu(x_batch[:batchsize//2], 0))
t0 = Variable(cuda.to_gpu(y_batch[:batchsize//2], 0))
x1 = Variable(cuda.to_gpu(x_batch[batchsize//2:], 1))
t1 = Variable(cuda.to_gpu(y_batch[batchsize//2:], 1))

loss_0 = model_0(x0, t0)
loss_1 = model_1(x1, t1)

model_0.cleargrads()
model_1.cleargrads()

loss_0.backward()
loss_1.backward()

model_0.addgrads(model_1)
optimizer.update()

model_1.copyparams(model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU 0, the
other half to GPU 1. Then the gradients are accumulated by the Link.addgrads() method. This method adds the
gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual
way. Note that the update only modifies the parameters of model_0. So we must manually copy them to model_1
using Link.copyparams() method.

Note: If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the
number of models, when we aggregate gradients from all models by chainer.Link.addgrads(). So you need
to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please
refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define
a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple
(elementwise) CUDA kernel using Chainer’s CUDA utilities.

2.10 Type Checks

In this section, you will learn about the following things:

• Basic usage of type check

• Detail of type information

• Internal mechanism of type check

• More complicated cases

• Call functions

• Typical type check example

After reading this section, you will be able to:

48 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/tree/v6.5.0/examples


Chainer Documentation, Release 6.5.0

• Write a code to check types of input arguments of your own functions

2.10.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result
by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such
problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is
called just before the forward() method of the Function class. You can override this method to check the
condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

def check_type_forward(self, in_types):
...

in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the
first argument, use in_types[0]. If the function gets multiple arguments, we recommend to use new variables for
readability:

x_type, y_type = in_types

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type
equals to 2, write this code:

utils.type_check.expect(x_type.ndim == 2)

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message
like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

2.10.2 Detail of type information

You can access three information of x_type.

• .shape is a tuple of ints. Each value is size of each dimension.

• .ndim is int value representing the number of dimensions. Note that ndim == len(shape)

• .dtype is numpy.dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect(x_type.shape[0] > 0)

You can also check data types with .dtype:

2.10. Type Checks 49

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

utils.type_check.expect(x_type.dtype == np.float64)

And an error is like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].dtype == <class 'numpy.
→˓float64'>
Actual: float32 != <class 'numpy.float64'>

You can also check kind of dtype. This code checks if the type is floating point

utils.type_check.expect(x_type.dtype.kind == 'f')

You can compare between variables. For example, the following code checks if the first argument and the second
argument have the same length:

utils.type_check.expect(x_type.shape[1] == y_type.shape[1])

2.10.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If x_type is an object containing ndim
member variable, we cannot show such an error message because this equation is evaluated as a boolean value by
Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself. Expr represents a syntax
tree. x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim'). x_type.ndim ==
2 makes an object like (eq, (getattr, x_type, 'ndim'), 2). expect() gets a Expr object and eval-
uates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable error
message.

If you want to evaluate a Expr object, call eval() method:

actual_type = x_type.eval()

actual_type is an instance of TypeInfo, while x_type is an instance of Expr. In the same way, x_type.
shape[0].eval() returns an int value.

2.10.4 More powerful methods

Expr class is more powerful. It supports all mathematical operators such as + and *. You can write a condition that
the first dimension of x_type is the first dimension of y_type times four:

utils.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)

When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1].
→˓shape[0] * 4
Actual: 3 != 4

To compare a member variable of your function, wrap a value with Variable to show readable error message:

50 Chapter 2. Concepts Walkthrough



Chainer Documentation, Release 6.5.0

x_type.shape[0] == utils.type_check.Variable(self.in_size, "in_size")

This code can check the equivalent condition below:

x_type.shape[0] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter
code shows unreadable error message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4 # what does
→˓'4' mean?
Actual: 3 != 4

Note that the second argument of utils.type_check.Variable is only for readability.

The former shows this message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size # OK,
→˓`in_size` is a value that is given to the constructor
Actual: 3 != 4 # You can also check actual value here

2.10.5 Call functions

How to check summation of all values of shape? Expr also supports function call:

sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)

Why do we need to wrap the function numpy.sum with utils.type_check.Variable? x_type.shape is
not a tuple but an object of Expr as we have seen before. Therefore, numpy.sum(x_type.shape) fails. We
need to evaluate this function lazily.

The above example produces an error message like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10

2.10.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate Expr and get
its result value with eval() method. Then check the condition and show warning message by hand:

x_shape = x_type.shape.eval() # get actual shape (int tuple)
if not more_complicated_condition(x_shape):

expect_msg = 'Shape is expected to be ...'
actual_msg = 'Shape is ...'
raise utils.type_check.InvalidType(expect_msg, actual_msg)

Please write a readable error message. This code generates the following error message:

2.10. Type Checks 51



Chainer Documentation, Release 6.5.0

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: Shape is expected to be ...
Actual: Shape is ...

2.10.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect(in_types.size() == 2)

in_types.size() returns a Expr object representing the number of arguments. You can check it in the same
way.

And then, get each type:

x_type, y_type = in_types

Don’t get each value before checking in_types.size(). When the number of argument is illegal, type_check.
expect might output unuseful error messages. For example, this code doesn’t work when the size of in_types is
0:

utils.type_check.expect(
in_types.size() == 2,
in_types[0].ndim == 3,

)

After that, check each type:

utils.type_check.expect(
x_type.dtype == np.float32,
x_type.ndim == 3,
x_type.shape[1] == 2,

)

The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.

2.11 Serializers – saving and loading

Serializer is a simple interface to serialize or deserialize an object. Link, Optimizer, and Trainer support
serialization.

Concrete serializers are defined in the serializers module. It supports NumPy NPZ and HDF5 formats.

For example, we can serialize a link object into NPZ file by the save_npz() function:

Assuming we have defined a model:

>>> from chainer import serializers
>>> serializers.save_npz('my.model', model)

This saves the parameters of model into the file 'my.model' in NPZ format. The saved model can be read back
from my.model back into model by the load_npz() function:

52 Chapter 2. Concepts Walkthrough



Chainer Documentation, Release 6.5.0

>>> serializers.load_npz('my.model', model)

Note: Note that only the parameters and the persistent values are serialized by this serialization code. Other at-
tributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values
by the add_persistent() method. The registered values can be accessed by attributes of the name passed to the
add_persistent method.

The state of an optimizer can also be saved by the same functions:

>>> serializers.save_npz('my.state', optimizer)
>>> serializers.load_npz('my.state', optimizer)

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum
vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to
explicitly save the target link with the optimizer to resume the optimization from saved states. This can be done by
saving the entire Trainer object, like this:

>>> serializers.save_npz('my.state', trainer)

Support of the HDF5 format is enabled if the h5py package is installed. Serialization and deserialization with the
HDF5 format are almost identical to those with the NPZ format; just replace save_npz() and load_npz() by
save_hdf5() and load_hdf5(), respectively.

2.12 Customize your own logging

In this section, you will learn about the following things:

• What is chainer.Reporter?

• How to report logging with chainer.Reporter?

• The naming rule for the reported values.

After reading this section, you will be able to:

• Write your own report.

2.12.1 What is Reporter?

chainer.Reporter is used to collect values that users want to watch. The reporter object manipulates a dictionary
from value names to the actually observed values. We call this dictionary as observation.

See the following example:

>>> from chainer import Reporter, report, report_scope
>>>
>>> reporter = Reporter()
>>> observer = object() # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer:', observer)
>>> observation = {}
>>> with reporter.scope(observation):

(continues on next page)

2.12. Customize your own logging 53



Chainer Documentation, Release 6.5.0

(continued from previous page)

... reporter.report({'x': 1}, observer)

...
>>> observation
{'my_observer:/x': 1}

When a value is passed to the reporter, an object called observer can be optionally attached. In this case,
the name of the observer is added as the prefix of the value name. The observer name should be registered
beforehand. Using reporter.scope, you can select which observation to save the observed values.

There are also a global API chainer.report(), which reports observed values with the current reporter object. In
this case, current means which with statement scope the current code line is in. This function calls the Reporter.
report() method of the current reporter.

>>> observation = {}
>>> with reporter.scope(observation):
... report({'x': 1}, observer)
...
>>> observation
{'my_observer:/x': 1}

2.12.2 Use report in Chain or Link

The most important application of Reporter is to report observed values from each Link or Chain in the training
and validation procedures.

But, how to report the observed values from each link or chain? Shold we prepare the Reporter? No, you only need
to call report() in chain or link, because Trainer and some extensions prepare their own Reporter object with
the hierarchy of the target link registered as observers. We can use report() function inside any links and chains to
report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

See the following example:

>>> class Classifier(Chain):
... def __init__(self, predictor):
... super(Classifier, self).__init__()
... with self.init_scope():
... self.predictor = predictor
...
... def forward(self, x, t):
... y = self.predictor(x)
... loss = F.softmax_cross_entropy(y, t)
... accuracy = F.accuracy(y, t)
... report({'loss': loss, 'accuracy': accuracy}, self)
... return loss
...

If the link is named 'main' in the hierarchy (which is the default name of the target link in the
StandardUpdater), these reported values are named 'main/loss' and 'main/accuracy'. If these val-
ues are reported inside the Evaluator extension, 'validation/' is added at the head of the link name,
thus the item names are changed to 'validation/main/loss' and 'validation/main/accuracy'
('validation' is the default name of the Evaluator extension).

54 Chapter 2. Concepts Walkthrough



Chainer Documentation, Release 6.5.0

2.12.3 Naming rule for the reported values

So, you know almost everything about Reporter. However, there is one more thing. It is what is the naming rule
for the reported values, especially when the values are reported from a link that is not the root of the link hierarchy.

As we explained in the previous section, the root of links is named as 'main' by the the StandardUpdater and
the names of reported values in the root have the prefix 'main/'. When the values are reported from a link that is
not the root of the link hierarchy, the prefix of the names are determined by the link hierarchy, or namedlinks().

See the following example:

>>> class MLP(Chain):
... def __init__(self, n_units, n_out):
... super(MLP, self).__init__()
... with self.init_scope():
... # the size of the inputs to each layer will be inferred
... self.l1 = L.Linear(None, n_units) # n_in -> n_units
... self.l2 = L.Linear(None, n_units) # n_units -> n_units
... self.l3 = L.Linear(None, n_out) # n_units -> n_out
...
... def forward(self, x):
... h1 = F.relu(self.l1(x))
... h2 = F.relu(self.l2(h1))
... y = self.l3(h2)
... report({'sum_y': F.sum(y)}, self)
... return y
...
>>> model = Classifier(MLP(100, 10))
>>> for name, observer in model.namedlinks(skipself=True):
... print(name)
/predictor
/predictor/l1
/predictor/l2
/predictor/l3

You can get the parameters of the link hierarchy by namedlinks(). In this example, we report 'loss' and
'accuracy' in the root of links, and 'sum_y' in the link of '/predictor'. So, you can access the reported
values by 'main/accuracy', 'main/accuracy', and 'main/predictor/sum_y'.

See what we explained is correct:

>>> train, test = datasets.get_mnist()
>>> train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)
>>> test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False,
→˓shuffle=False)
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)
>>> updater = training.StandardUpdater(train_iter, optimizer)
>>> trainer = training.Trainer(updater, (1, 'epoch'), out='result')
>>> trainer.extend(extensions.Evaluator(test_iter, model))
>>> trainer.extend(extensions.LogReport())
>>> trainer.extend(extensions.PrintReport(
... ['epoch', 'main/accuracy', 'main/loss', 'main/predictor/sum_y', 'validation/
→˓main/accuracy']))
>>> trainer.run()
epoch main/accuracy main/loss main/predictor/sum_y validation/main/accuracy
1 0.662317 1.38345 47.9927 0.8498

2.12. Customize your own logging 55



Chainer Documentation, Release 6.5.0

56 Chapter 2. Concepts Walkthrough



CHAPTER

THREE

NEURAL NET EXAMPLES

3.1 MNIST using Trainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

By using Trainer, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides
many useful extensions that can be used with Trainer to visualize your results, evaluate your model, store and
manage log files more easily.

This example will show how to use the Trainer to train a fully-connected feed-forward neural network on the
MNIST dataset.

Note: If you would like to know how to write a training loop without using the Trainer, please check MNIST with
a Manual Training Loop instead of this tutorial.

3.1.1 1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

from chainer.datasets import mnist

train, test = mnist.get_mnist()

Note: You can use a Python list as a dataset. That’s because Iterator can take any object as a dataset whose
elements can be accessed via [] accessor and whose length can be obtained with len() function. For example,

57



Chainer Documentation, Release 6.5.0

train = [(x1, t1), (x2, t2), ...]

a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in datasets. It is recommended that you utilize them in the actual
applications.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those
data into a list like above. In that case, you can use ImageDataset, which just keeps the paths to image files. The
actual image data will be loaded from the disk when the corresponding element is requested via [] accessor. Until
then, no images are loaded to the memory to reduce memory use.

3.1.2 2. Prepare the dataset iterations

Iterator creates a mini-batch from the given dataset.

batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize, False, False)

3.1.3 3. Prepare the model

Here, we are going to use the same model as the one defined in MNIST with a Manual Training Loop.

class MLP(Chain):

def __init__(self, n_mid_units=100, n_out=10):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(None, n_mid_units)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

gpu_id = 0 # Set to -1 if you use CPU

model = MLP()
if gpu_id >= 0:

model.to_gpu(gpu_id)

3.1.4 4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown
below.

58 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

Basically, all you need to pass to Trainer is an Updater. However, Updater contains an Iterator and
Optimizer. Since Iterator can access the dataset and Optimizer has references to the model, Updater can
access to the model to update its parameters.

So, Updater can perform the training procedure as shown below:

1. Retrieve the data from dataset and construct a mini-batch (Iterator)

2. Pass the mini-batch to the model and calculate the loss

3. Update the parameters of the model (Optimizer)

Now let’s create the Updater object !

max_epoch = 10

# Wrap your model by Classifier and include the process of loss calculation within
→˓your model.
# Since we do not specify a loss function here, the default 'softmax_cross_entropy'
→˓is used.
model = L.Classifier(model)

# selection of your optimizing method
optimizer = optimizers.MomentumSGD()

# Give the optimizer a reference to the model

(continues on next page)

3.1. MNIST using Trainer 59



Chainer Documentation, Release 6.5.0

(continued from previous page)

optimizer.setup(model)

# Get an updater that uses the Iterator and Optimizer
updater = training.updaters.StandardUpdater(train_iter, optimizer, device=gpu_id)

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier,
which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you
give the input data and the corresponding class labels to the model by the () operator,

1. forward() of the model is invoked. The data is then given to predictor to obtain the output y.

2. Next, together with the given labels, the output y is passed to the loss function which is determined by lossfun
argument in the constructor of Classifier.

3. The loss is returned as a Variable.

In Classifier, the lossfun is set to softmax_cross_entropy() as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the
MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses
the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

3.1.5 5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that
we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like
(length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is
given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will
never be stopped.

# Setup a Trainer
trainer = training.Trainer(updater, (max_epoch, 'epoch'), out='mnist_result')

The out argument specifies an output directory used to save the log files, the image files of plots to show the time
progress of loss, accuracy, etc. when you use PlotReport extension. Next, we will explain how to display or save
those information by using trainer Extension.

3.1.6 6. Add Extensions to the Trainer object

The Trainer extensions provide the following capabilities:

• Save log files automatically (LogReport)

• Display the training information to the terminal periodically (PrintReport)

• Visualize the loss progress by plotting a graph periodically and save it as an image file (PlotReport)

• Automatically serialize the state periodically (snapshot() / snapshot_object())

• Display a progress bar to the terminal to show the progress of training (ProgressBar)

• Save the model architecture as a Graphviz’s dot file (DumpGraph())

To use these wide variety of tools for your training task, pass Extension objects to the extend() method of your
Trainer object.

60 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

from chainer.training import extensions

trainer.extend(extensions.LogReport())
trainer.extend(extensions.snapshot(filename='snapshot_epoch-{.updater.epoch}'))
trainer.extend(extensions.snapshot_object(model.predictor, filename='model_epoch-{.
→˓updater.epoch}'))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy',
→˓'validation/main/loss', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], x_key=
→˓'epoch', file_name='loss.png'))
trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], x_
→˓key='epoch', file_name='accuracy.png'))
trainer.extend(extensions.DumpGraph('main/loss'))

LogReport

Collect loss and accuracy automatically every epoch or iteration and store the information under the log
file in the directory specified by the out argument when you create a Trainer object.

snapshot()

The snapshot() method saves the Trainer object at the designated timing (default: every epoch) in the directory
specified by out. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make
inferences using the previously trained model later.

snapshot_object()

However, when you keep the whole Trainer object, in some cases, it is very tedious to retrieve only the inside of
the model. By using snapshot_object(), you can save the particular object (in this case, the model wrapped
by Classifier) as a separate snapshot. Classifier is a Chain object which keeps the model that is also a
Chain object as its predictor property, and all the parameters are under the predictor, so taking the snapshot
of predictor is enough to keep all the trained parameters.

This is a list of commonly used trainer extensions:

LogReport This extension collects the loss and accuracy values every epoch or iteration and stores in a log file. The
log file will be located under the output directory (specified by out argument of the Trainer object).

snapshot() This extension saves the Trainer object at the designated timing (defaut: every epoch) in the output
directory. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or
make inferences using the previously trained model later.

snapshot_object() snapshot() extension above saves the whole Trainer object. However, in some cases,
it is tedious to retrieve only the inside of the model. By using snapshot_object(), you can save the
particular object (in the example above, the model wrapped by Classifier) as a separeted snapshot. Taking
the snapshot of predictor is enough to keep all the trained parameters, because Classifier (which is a
subclass of Chain) keeps the model as its predictor property, and all the parameters are under this property.

DumpGraph() This extension saves the structure of the computational graph of the model. The graph is saved in
Graphviz dot format under the output directory of the Trainer.

3.1. MNIST using Trainer 61

http://www.graphviz.org/


Chainer Documentation, Release 6.5.0

Evaluator Iterators that use the evaluation dataset and the model object are required to use Evaluator
extension. It evaluates the model using the given dataset (typically it’s a validation dataset) at the specified
timing interval.

PrintReport This extension outputs the spcified values to the standard output.

PlotReport This extension plots the values specified by its arguments and saves it as a image file.

This is not an exhaustive list of built-in extensions. Please take a look at Extensions for more of them.

3.1.7 7. Start Training

Just call run() method from Trainer object to start training.

trainer.run()

epoch main/loss main/accuracy validation/main/loss validation/main/accuracy
→˓ elapsed_time
1 1.53241 0.638409 0.74935 0.835839
→˓ 4.93409
2 0.578334 0.858059 0.444722 0.882812
→˓ 7.72883
3 0.418569 0.886844 0.364943 0.899229
→˓ 10.4229
4 0.362342 0.899089 0.327569 0.905558
→˓ 13.148
5 0.331067 0.906517 0.304399 0.911788
→˓ 15.846
6 0.309019 0.911964 0.288295 0.917722
→˓ 18.5395
7 0.292312 0.916128 0.272073 0.921776
→˓ 21.2173
8 0.278291 0.92059 0.261351 0.923457
→˓ 23.9211
9 0.266266 0.923541 0.253195 0.927314
→˓ 26.6612
10 0.255489 0.926739 0.242415 0.929094
→˓ 29.466

Let’s see the plot of loss progress saved in the mnist_result directory.

62 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

How about the accuracy?

Furthermore, let’s visualize the computational graph saved with DumpGraph() using Graphviz.

% dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png

3.1. MNIST using Trainer 63



Chainer Documentation, Release 6.5.0

64 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and
parameters are passed to the Functions.

3.1.8 8. Evaluate a pre-trained model

Evaluation using the snapshot of a model is as easy as what explained in the MNIST with a Manual Training Loop.

import matplotlib.pyplot as plt

model = MLP()
serializers.load_npz('mnist_result/model_epoch-10', model)

# Show the output
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.show()
print('label:', t)

y = model(x[None, ...])

print('predicted_label:', y.array.argmax(axis=1)[0])

label: 7
predicted_label: 7

The prediction looks correct. Success!

3.2 MNIST with a Manual Training Loop

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

3.2. MNIST with a Manual Training Loop 65



Chainer Documentation, Release 6.5.0

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in
the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example
is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are
10 classes for the labels.

Chainer provides a feature called Trainer that can simplify the training procedure of your model. However, it is
also good to know how the training works in Chainer before starting to use the useful Trainer class that hides the
actual processes. Writing your own training loop can be useful for learning how Trainer works or for implementing
features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. Prepare a dataset

2. Create a dataset iterator

3. Define a network

4. Select an optimization algorithm

5. Write a training loop

a. Retrieve a set of examples (mini-batch) from the training dataset.

b. Feed the mini-batch to your network.

c. Run a forward pass of the network and compute the loss.

d. Just call the backward() method from the loss Variable to compute the gradients for all trainable
parameters.

e. Run the optimizer to update those parameters.

6. Save the trained model

7. Perform classification by the saved model and check the network performance on validation/test sets.

3.2.1 1. Prepare a dataset

Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can
automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to
make sure the images are correctly obtained.

66 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

from __future__ import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

# Download the MNIST data if you haven't downloaded it yet
train, test = mnist.get_mnist(withlabel=True, ndim=1)

# Display an example from the MNIST dataset.
# `x` contains the input image array and `t` contains that target class
# label as an integer.
x, t = train[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('5.png')
print('label:', t)

label: 5

The saved image 5.png will look like:

3.2.2 2. Create a dataset iterator

Although this is an optional step, we’d like to introduce the Iterator class that retrieves a set of data and labels
from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in
different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use SerialIterator, which is also a subclass of Iterator in the example code below. The
SerialIterator can provide mini-batches with or without shuffling the order of data in the given dataset.

All Iterators produce a new mini-batch by calling its next() method. All Iterators also have properties to
know how many times we have taken all the data from the given dataset (epoch) and whether the next mini-batch
will be the start of a new epoch (is_new_epoch), and so on.

The code below shows how to create a SerialIterator object from a dataset object.

3.2. MNIST with a Manual Training Loop 67



Chainer Documentation, Release 6.5.0

from chainer import iterators

# Choose the minibatch size.
batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,

repeat=False, shuffle=False)

Note: Iterators can take a built-in Python list as a given dataset. It means that the example code below is able to
work,

train = [(x1, t1), (x2, t2), ...] # A list of tuples
train_iter = iterators.SerialIterator(train, batchsize)

where x1, x2, ... denote the input data and t1, t2, ... denote the corresponding labels.

Details of SerialIterator

• SerialIterator is a built-in subclass of Iterator that can retrieve a mini-batch from a given dataset in
either sequential or shuffled order.

• The Iterator’s constructor takes two arguments: a dataset object and a mini-batch size.

• If you want to use the same dataset repeatedly during the training process, set the repeat argument to True
(default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.

• If you want to shuffle the training dataset every epoch, set the shuffle argument to True. Otherwise, the
order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set batchsize = 128 in both train_iter and test_iter. So, these
iterators will provide 128 images and corresponding labels at a time.

3.2.3 3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-
layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is
corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of Chain. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be
instantiated and assigned to a property in the scope specified by init_scope():

2. Define a forward() method that represents the actual forward computation of your network. This method
takes one or more Variable, numpy.ndarray, or cupy.ndarray as its inputs and calculates the forward
pass using them.

class MyNetwork(Chain):

def __init__(self, n_mid_units=100, n_out=10):

(continues on next page)

68 Chapter 3. Neural Net Examples

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

super(MyNetwork, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(n_mid_units, n_mid_units)
self.l3 = L.Linear(n_mid_units, n_out)

def forward(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
return self.l3(h)

model = MyNetwork()

gpu_id = 0 # Set to -1 if you use CPU
if gpu_id >= 0:

model.to_gpu(gpu_id)

Link, Chain, ChainList, and those subclass objects which contain trainable parameters should be registered
to the model by assigning it as a property inside the init_scope(). For example, a FunctionNode does not
contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want
to use relu() in your network, using it as a function in forward() works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words,
we can conceptually think of the computation graph for our network being constructed dynamically as this forward
computation code executes. This allows Chainer to describe networks in which different computations can be per-
formed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key
feature of Chainer that we call Define-by-Run.

3.2.4 4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during
training. They are located in optimizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by
MomentumSGD. To use the optimizer, we give the network object (typically it’s a Chain or ChainList) to the
setup() method of the optimizer object to register it. In this way, the Optimizer can automatically find the
model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example,
you could try to change MomentumSGD to Adam, RMSprop, etc.

from chainer import optimizers

# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)

# Give the optimizer a reference to the model so that it
# can locate the model's parameters.
optimizer.setup(model)

Note: In the above example, we set lr to 0.01 in the constructor. This value is known as the “learning rate”, one
of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various
optimizers may each have different hyperparameters and so be sure to check the documentation for the details.

3.2. MNIST with a Manual Training Loop 69



Chainer Documentation, Release 6.5.0

3.2.5 5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use
softmax_cross_entropy() as the loss function for the optimizer to minimize. For other types of problems,
such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed
information on the various loss functions for more details.

Our training loop will be structured as follows.

1. We will first get a mini-batch of examples from the training dataset.

2. We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute
the forward-pass code that are written in the forward() method.

3. This will return the network output that represents class label predictions. We supply it to the loss function along
with the true (that is, target) values. The loss function will output the loss as a Variable object.

4. We then clear any previous gradients in the network and perform the backward pass by calling the backward()
method on the loss variable which computes the parameter gradients. We need to clear the gradients first because
the backward() method accumulates gradients instead of overwriting the previous values.

5. Since the optimizer already has a reference to the network, it has access to the parameters and the computed
gradients so that we can now call the update() method of the optimizer which will update the model param-
eters.

In addition to the above steps, you might want to check the performance of the network with a validation dataset. This
allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to
the training data. The code below checks the performance on the test set at the end of each epoch. The code has the
same structure as the training code except that no backpropagation is performed and we also compute the accuracy on
the test data using the accuracy() function.

The training loop code is as follows:

import numpy as np
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu

max_epoch = 10

while train_iter.epoch < max_epoch:

# ---------- One iteration of the training loop ----------
train_batch = train_iter.next()
image_train, target_train = concat_examples(train_batch, gpu_id)

# Calculate the prediction of the network
prediction_train = model(image_train)

# Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy(prediction_train, target_train)

# Calculate the gradients in the network
model.cleargrads()
loss.backward()

# Update all the trainable parameters
optimizer.update()
# --------------------- until here ---------------------

(continues on next page)

70 Chapter 3. Neural Net Examples

../reference/functions.html#loss-functions
../reference/functions.html#loss-functions


Chainer Documentation, Release 6.5.0

(continued from previous page)

# Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the

→˓current epoch

# Display the training loss
print('epoch:{:02d} train_loss:{:.04f} '.format(

train_iter.epoch, float(to_cpu(loss.array))), end='')

test_losses = []
test_accuracies = []
for test_batch in test_iter:

image_test, target_test = concat_examples(test_batch, gpu_id)

# Forward the test data
prediction_test = model(image_test)

# Calculate the loss
loss_test = F.softmax_cross_entropy(prediction_test, target_test)
test_losses.append(to_cpu(loss_test.array))

# Calculate the accuracy
accuracy = F.accuracy(prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.array)

test_iter.reset()

print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
np.mean(test_losses), np.mean(test_accuracies)))

Output

epoch:01 train_loss:0.8072 val_loss:0.7592 val_accuracy:0.8289
epoch:02 train_loss:0.5021 val_loss:0.4467 val_accuracy:0.8841
epoch:03 train_loss:0.3539 val_loss:0.3673 val_accuracy:0.9007
epoch:04 train_loss:0.2524 val_loss:0.3307 val_accuracy:0.9067
epoch:05 train_loss:0.4232 val_loss:0.3076 val_accuracy:0.9136
epoch:06 train_loss:0.3033 val_loss:0.2910 val_accuracy:0.9167
epoch:07 train_loss:0.2004 val_loss:0.2773 val_accuracy:0.9222
epoch:08 train_loss:0.2885 val_loss:0.2679 val_accuracy:0.9239
epoch:09 train_loss:0.2818 val_loss:0.2579 val_accuracy:0.9266
epoch:10 train_loss:0.2403 val_loss:0.2484 val_accuracy:0.9307

3.2.6 6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the
HDF5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to
save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

serializers.save_npz('my_mnist.model', model)

3.2. MNIST with a Manual Training Loop 71



Chainer Documentation, Release 6.5.0

3.2.7 7. Perform classification by the saved model

Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform
the following two steps:

1. Instantiate the same network as what you trained.

2. Overwrite all parameters in the model instance with the saved weights using the load_npz() function.

Once the model is restored, it can be used to predict image labels on new input data.

from chainer import serializers

# Create an instance of the network you trained
model = MyNetwork()

# Load the saved parameters into the instance
serializers.load_npz('my_mnist.model', model)

# Get a test image and label
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('7.png')
print('label:', t)

label: 7

The saved test image looks like:

# Change the shape of the minibatch.
# In this example, the size of minibatch is 1.
# Inference using any mini-batch size can be performed.

print(x.shape, end=' -> ')
x = x[None, ...]

(continues on next page)

72 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

(continued from previous page)

print(x.shape)

# Forward calculation of the model by sending X
y = model(x)

# The result is given as Variable, then we can take a look at the contents by the
→˓attribute, .array.
y = y.array

# Look up the most probable digit number using argmax
pred_label = y.argmax(axis=1)

print('predicted label:', pred_label[0])

(784,) -> (1, 784)
predicted label: 7

The prediction result looks correct. Yay!

3.3 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

• A small convolutional network with a model class that is inherited from Chain,

• A large convolutional network that has several building block networks with ChainList.

After reading this section, you will be able to:

• Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly
used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object
classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmen-
tation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is (𝑁,𝐶,𝐻,𝑊 ), where

• 𝑁 denotes the number of images in a mini-batch,

• 𝐶 denotes the number of channels of those images,

• 𝐻 and 𝑊 denote the height and width of those images,

respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes.
It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task,
etc.

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 73



Chainer Documentation, Release 6.5.0

(continued from previous page)

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

3.3.1 LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer. In this example, we show a simplified version of LeNet5
introduced in Deep Learning Tutorials. This is a ConvNet model that has 5 layers comprised of 3 convolutional layers
and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In Chainer, the model
can be written as follows:

class LeNet5(Chain):
def __init__(self):

super(LeNet5, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(
in_channels=1, out_channels=6, ksize=5, stride=1)

self.conv2 = L.Convolution2D(
in_channels=6, out_channels=16, ksize=5, stride=1)

self.conv3 = L.Convolution2D(
in_channels=16, out_channels=120, ksize=4, stride=1)

self.fc4 = L.Linear(None, 84)
self.fc5 = L.Linear(84, 10)

def forward(self, x):
h = F.sigmoid(self.conv1(x))
h = F.max_pooling_2d(h, 2, 2)
h = F.sigmoid(self.conv2(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.sigmoid(self.conv3(h))
h = F.sigmoid(self.fc4(h))
if chainer.config.train:

return self.fc5(h)
return F.softmax(self.fc5(h))

A typical way to write your network is creating a new class inherited from Chain class. When defining your model in
this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects
of Link as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors
simply by calling the model object like a function, forward() is usually defined in the model class. This method
performs the forward computation of the model. Chainer uses the powerful autograd system for any computational
graphs written with FunctionNodes and Links (actually a Link calls a corresponding FunctionNode inside
of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the
data, then give it to the model. The way this works is the resulting output Variable from the forward computation
has a backward() method to perform autograd. In the above model, forward() has a if statement at the end to
switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as
a global variable chainer.config.train. When it’s in training mode, forward() returns the output value of
the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating softmax().

It is recommended that you use the global configuration chainer.config.train to switch the running mode.

74 Chapter 3. Neural Net Examples

http://deeplearning.net/tutorial/lenet.html#lenet


Chainer Documentation, Release 6.5.0

If you don’t want to write conv1 and the other layers more than once, you can also write the same model like in this
way:

from functools import partial

class LeNet5(Chain):
def __init__(self):

super(LeNet5, self).__init__()
net = [('conv1', L.Convolution2D(1, 6, 5, 1))]
net += [('_sigm1', F.sigmoid)]
net += [('_mpool1', partial(F.max_pooling_2d, ksize=2, stride=2))]
net += [('conv2', L.Convolution2D(6, 16, 5, 1))]
net += [('_sigm2', F.sigmoid)]
net += [('_mpool2', partial(F.max_pooling_2d, ksize=2, stride=2))]
net += [('conv3', L.Convolution2D(16, 120, 4, 1))]
net += [('_sigm3', F.sigmoid)]
net += [('_mpool3', partial(F.max_pooling_2d, ksize=2, stride=2))]
net += [('fc4', L.Linear(None, 84))]
net += [('_sigm4', F.sigmoid)]
net += [('fc5', L.Linear(84, 10))]
net += [('_sigm5', F.sigmoid)]
with self.init_scope():

for n in net:
if not n[0].startswith('_'):

setattr(self, n[0], n[1])
self.layers = net

def forward(self, x):
for n, f in self.layers:

if not n.startswith('_'):
x = getattr(self, n)(x)

else:
x = f(x)

if chainer.config.train:
return x

return F.softmax(x)

Note: You can also use Sequential to write the above model more simply. Please note that Sequential is an
experimental feature introduced in Chainer v4 and its interface may be changed in the future versions.

This code creates a list of pairs of component name (e.g., conv1, _sigm1, etc.) and all Links and functions
(e.g., F.sigmoid, which internally invokes FunctionNode) after calling its superclass’s constructor. In this case,
components whose name start with _ are functions (FunctionNode), which doesn’t have any trainable parameters,
so that we don’t register (setattr) it to the model. Others (conv1, fc4, etc.) are Links, which are trainable
layers that hold parameters. This operation can be freely replaced with many other ways because those component
names are just designed to select Links only from the list net easily. The list net is stored as an attribute layers
to refer it in forward(). In forward(), it retrieves all layers in the network from self.forward sequentially
and gives the input variable or the intermediate output from the previous layer to the current layer. The last part of the
forward() to switch its behavior by the training/inference mode is the same as the former way.

Ways to calculate loss

When you train the model with label vector t, the loss should be calculated using the output from the model. There
also are several ways to calculate the loss:

3.3. Convolutional Network for Visual Recognition Tasks 75



Chainer Documentation, Release 6.5.0

model = LeNet5()

# Input data and label
x = np.random.rand(32, 1, 28, 28).astype(np.float32)
t = np.random.randint(0, 10, size=(32,)).astype(np.int32)

# Forward computation
y = model(x)

# Loss calculation
loss = F.softmax_cross_entropy(y, t)

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation
can be included in the model itself by wrapping the model object (Chain or ChainList object) with a class inherited
from Chain. The outer Chain should take the model defined above and register it with init_scope(). Chain
is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain.
Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually,
there is already a Classifier class that can be used to wrap the model and include the loss computation as well. It
can be used like this:

model = L.Classifier(LeNet5())

# Foward & Loss calculation
loss = model(x, t)

This class takes a model object as an input argument and registers it to a predictor property as a trained parameter.
As shown above, the returned object can then be called like a function in which we pass x and t as the input arguments
and the resulting loss value (which we recall is a Variable) is returned.

See the detailed implementation of Classifier from here: chainer.links.Classifier and check the im-
plementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many
different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

3.3.2 VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block
networks, ChainList is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

class VGG16(chainer.ChainList):
def __init__(self):

super(VGG16, self).__init__(
VGGBlock(64),
VGGBlock(128),
VGGBlock(256, 3),
VGGBlock(512, 3),
VGGBlock(512, 3, True))

def forward(self, x):
for f in self.children():

x = f(x)
if chainer.config.train:

return x
return F.softmax(x)

(continues on next page)

76 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

(continued from previous page)

class VGGBlock(chainer.Chain):
def __init__(self, n_channels, n_convs=2, fc=False):

w = chainer.initializers.HeNormal()
super(VGGBlock, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(None, n_channels, 3, 1, 1, initialW=w)
self.conv2 = L.Convolution2D(

n_channels, n_channels, 3, 1, 1, initialW=w)
if n_convs == 3:

self.conv3 = L.Convolution2D(
n_channels, n_channels, 3, 1, 1, initialW=w)

if fc:
self.fc4 = L.Linear(None, 4096, initialW=w)
self.fc5 = L.Linear(4096, 4096, initialW=w)
self.fc6 = L.Linear(4096, 1000, initialW=w)

self.n_convs = n_convs
self.fc = fc

def forward(self, x):
h = F.relu(self.conv1(x))
h = F.relu(self.conv2(h))
if self.n_convs == 3:

h = F.relu(self.conv3(h))
h = F.max_pooling_2d(h, 2, 2)
if self.fc:

h = F.dropout(F.relu(self.fc4(h)))
h = F.dropout(F.relu(self.fc5(h)))
h = self.fc6(h)

return h

That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since
then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so
it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists
of several building blocks that have the same architecture, we can build the whole network by re-using the building
block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu())
following them, and max_pooling_2d() operations. This block is written as VGGBlock in the above example
code. And the whole network just calls this block one by one in sequential manner.

3.3.3 ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16,
having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as
VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNet152(chainer.Chain):
def __init__(self, n_blocks=[3, 8, 36, 3]):

w = chainer.initializers.HeNormal()
super(ResNet152, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(None, 64, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.BatchNormalization(64)
self.res2 = ResBlock(n_blocks[0], 64, 64, 256, 1)
self.res3 = ResBlock(n_blocks[1], 256, 128, 512)

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 77

http://www.image-net.org/challenges/LSVRC/2014/results#clsloc


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.res4 = ResBlock(n_blocks[2], 512, 256, 1024)
self.res5 = ResBlock(n_blocks[3], 1024, 512, 2048)
self.fc6 = L.Linear(2048, 1000)

def forward(self, x):
h = self.bn1(self.conv1(x))
h = F.max_pooling_2d(F.relu(h), 2, 2)
h = self.res2(h)
h = self.res3(h)
h = self.res4(h)
h = self.res5(h)
h = F.average_pooling_2d(h, h.shape[2:], stride=1)
h = self.fc6(h)
if chainer.config.train:

return h
return F.softmax(h)

class ResBlock(chainer.ChainList):
def __init__(self, n_layers, n_in, n_mid, n_out, stride=2):

super(ResBlock, self).__init__()
self.add_link(BottleNeck(n_in, n_mid, n_out, stride, True))
for _ in range(n_layers - 1):

self.add_link(BottleNeck(n_out, n_mid, n_out))

def forward(self, x):
for f in self.children():

x = f(x)
return x

class BottleNeck(chainer.Chain):
def __init__(self, n_in, n_mid, n_out, stride=1, proj=False):

w = chainer.initializers.HeNormal()
super(BottleNeck, self).__init__()
with self.init_scope():

self.conv1x1a = L.Convolution2D(
n_in, n_mid, 1, stride, 0, initialW=w, nobias=True)

self.conv3x3b = L.Convolution2D(
n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True)

self.conv1x1c = L.Convolution2D(
n_mid, n_out, 1, 1, 0, initialW=w, nobias=True)

self.bn_a = L.BatchNormalization(n_mid)
self.bn_b = L.BatchNormalization(n_mid)
self.bn_c = L.BatchNormalization(n_out)
if proj:

self.conv1x1r = L.Convolution2D(
n_in, n_out, 1, stride, 0, initialW=w, nobias=True)

self.bn_r = L.BatchNormalization(n_out)
self.proj = proj

def forward(self, x):
h = F.relu(self.bn_a(self.conv1x1a(x)))
h = F.relu(self.bn_b(self.conv3x3b(h)))
h = self.bn_c(self.conv1x1c(h))
if self.proj:

x = self.bn_r(self.conv1x1r(x))
(continues on next page)

78 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

(continued from previous page)

return F.relu(h + x)

In the BottleNeck class, depending on the value of the proj argument supplied to the initializer, it will conditionally
compute a convolutional layer conv1x1r which will extend the number of channels of the input x to be equal to the
number of channels of the output of conv1x1c, and followed by a batch normalization layer before the final ReLU
layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in
__class__() by flags but also the parameter registration. In this case, when proj is False, the BottleNeck
doesn’t have conv1x1r and bn_r layers, so the memory usage would be efficient compared to the case when it registers
both anyway and just ignore them if proj is False.

Using nested Chains and ChainList for sequential part enables us to write complex and very deep models easily.

3.3.4 Use Pre-trained Models

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as
general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer
provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these
models as follows:

from chainer.links import VGG16Layers

model = VGG16Layers()

When VGG16Layers is instantiated, the pre-trained parameters are automatically downloaded from the author’s
server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the
details of this model here: chainer.links.VGG16Layers.

In the case of ResNet models, there are three variations differing in the number of layers. We have chainer.links.
ResNet50Layers, chainer.links.ResNet101Layers, and chainer.links.ResNet152Layers
models with easy parameter loading feature. ResNet’s pre-trained parameters are not available for direct down-
loading, so you need to download the weight from the author’s web page first, and then place it into the dir
$CHAINER_DATSET_ROOT/pfnet/chainer/models or your favorite place. Once the preparation is finished,
the usage is the same as VGG16:

from chainer.links import ResNet152Layers

model = ResNet152Layers()

Traceback (most recent call last):
OSError: The pre-trained caffemodel does not exist. Please download it from 'https://
→˓github.com/KaimingHe/deep-residual-networks', and place it on ...

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: chainer.links.
ResNet50Layers

3.3. Convolutional Network for Visual Recognition Tasks 79



Chainer Documentation, Release 6.5.0

References

3.4 DCGAN: Generate images with Deep Convolutional GAN

3.4.1 0. Introduction

In this tutorial, we generate images with generative adversarial networks (GAN). GAN are kinds of deep neural
network for generative modeling that are often applied to image generation. GAN-based models are also used in
PaintsChainer, an automatic colorization service.

In this tutorial, you will learn the following things:

1. Generative Adversarial Networks (GAN)

2. Implementation of DCGAN in Chainer

3.4.2 1. Generarive Adversarial Networks (GAN)

1.1 What are GAN?

As explained in GAN tutorial in NIPS 2016 [1], generative models can be classified into the categories as shown in
the following figure:

Fig. 1: cited from [1]

80 Chapter 3. Neural Net Examples

https://paintschainer.preferred.tech/index_en.html


Chainer Documentation, Release 6.5.0

Besides GAN, other famous generative models include Fully visible belief networks (FVBNs) and Variational autoen-
coder (VAE). Unlike FVBNs and VAE, GAN do not explicitly model the probability distribution 𝑝(s) that generates
training data. Instead, we model a generator 𝐺 : z ↦→ s. The generator 𝐺 samples s ∼ 𝑝(s) from the latent variable z.
Apart from the generator 𝐺, we create a discriminator 𝐷(x) which discriminates between samples from the generator
G and examples from training data. While training the discriminator 𝐷, the generator 𝐺 tries to maximize the proba-
bility of the discriminator 𝐷 making a mistake. So, the generator 𝐺 tries to create samples that seem to be drawn from
the same distribution as the training data.

The advantages of GAN are low sampling cost and its state-of-the-art performance in image generation. The disad-
vantage is that we cannot calculate the likelihood 𝑝model(s) because we do not model any probability distribution, and
we cannot infer the latent variable z from a sample.

1.2 How GAN work?

As explained above, GAN use the two models, the generator and the discriminator. When training the networks, we
should match the data distribution 𝑝(s) with the distribution of the samples s = 𝐺(z) generated from the generator.

The generator 𝐺 learns the target distribution, and ideally eventually reaches a Nash equilibrium [2] of game theory.
In detail, while training the discriminator 𝐷, the generator 𝐺 is also trained, so that the discriminator 𝐷 makes a
mistake.

As an intuitive example, the relationship between counterfeiters of banknotes and the police is frequently used. The
counterfeiters try to make counterfeit notes that look like real banknotes. The police try to distinguish real bank notes
from counterfeit notes. It is supposed that the ability of the police gradually rises, so that real banknotes and counterfeit

3.4. DCGAN: Generate images with Deep Convolutional GAN 81



Chainer Documentation, Release 6.5.0

notes can be recognized well. Then, the counterfeiters will not be able to use counterfeit banknotes, so they will create
counterfeit banknotes that appear more realistic. As the police improve their skill further, they can distinguish real and
counterfeit notes. . . Eventually, the counterfeiter will be able to produce counterfeit banknotes look as real as genuine
ones.

The training process is explained by the following mathematical expressions. First, since the discriminator 𝐷(s) is the
probability that a sample s is generated from the data distribution at, it can be expressed as follows:

𝐷(s) =
𝑝(s)

𝑝(s) + 𝑝model(s)

Then, when we match the data distribution s ∼ 𝑝(s) and the distribution of generated samples by 𝐺, it means that we
should minimize the dissimilarity between the two distributions. It is common to use Jensen-Shannon Divergence
𝐷JS to measure the dissimilarity between distributions[3].

The 𝐷JS of 𝑝model(s) and 𝑝(s) can be written as follows by using 𝐷(s):

2𝐷JS =

𝐷KL(𝑝(s)||𝑝(s)) +𝐷KL(𝑝model(s)||𝑝(s))
=

E𝑝(s)

[︂
log

2𝑝(s)

𝑝(s) + 𝑝model(s)

]︂
+ E𝑝model

[︂
log

2𝑝model(s)

𝑝(s) + 𝑝model(s)

]︂
=

E𝑝(s) log𝐷(s) + E𝑝model
log(1−𝐷(s)) + log 4

=

E𝑝(s) log𝐷(s) + E𝑝z log(1−𝐷(𝐺(z))) + log 4

where 𝑝(s) = 𝑝(s)+𝑝model(s)
2 . The 𝐷JS will be ma{bf s}imized by the discriminator 𝐷 and minimized by the generator

𝐺, namely, 𝑝model. And the distribution 𝑝m𝑜𝑑𝑒𝑙(s) generated by 𝐺(s) can match the data distribution 𝑝(s).

min
𝐺

max
𝐷

E𝑝(s) log𝐷(s) + E𝑝z log(1−𝐷(𝐺(z)))

When we actually train the model, the above min-max problem is solved by alternately updating the discriminator
𝐷(s) and the generator 𝐺(z) [4]. The actual training procedures are described as follows:

1.3 What are DCGAN?

In this section, we will introduce the model called DCGAN(Deep Convolutional GAN) proposed by Radford et al.[5].
As shown below, it is a model using CNN(Convolutional Neural Network) as its name suggests.

In addition, although GAN are known for its difficulty in training, this paper introduces various techniques for suc-
cessful training:

1. Convert max-pooling layers to convolution layers with larger or fractional strides

2. Convert fully connected layers to global average pooling layers in the discriminator

3. Use batch normalization layers in the generator and the discriminator

4. Use leaky ReLU activation functions in the discriminator

3.4.3 2. Implementation of DCGAN in Chainer

There is an example of DCGAN in the official repository of Chainer, so we will explain how to implement DCGAN
based on this: chainer/examples/dcgan

82 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/dcgan


Chainer Documentation, Release 6.5.0

Fig. 2: cited from [4]

Fig. 3: cited from [5]

3.4. DCGAN: Generate images with Deep Convolutional GAN 83



Chainer Documentation, Release 6.5.0

2.1 Define the generator model

First, let’s define a network for the generator.

Listing 1: train_dcgan.py

class Generator(chainer.Chain):

def __init__(self, n_hidden, bottom_width=4, ch=512, wscale=0.02):
super(Generator, self).__init__()
self.n_hidden = n_hidden
self.ch = ch
self.bottom_width = bottom_width

with self.init_scope():
w = chainer.initializers.Normal(wscale)
self.l0 = L.Linear(self.n_hidden, bottom_width * bottom_width * ch,

initialW=w)
self.dc1 = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
self.dc2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
self.dc3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
self.dc4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
self.bn0 = L.BatchNormalization(bottom_width * bottom_width * ch)
self.bn1 = L.BatchNormalization(ch // 2)
self.bn2 = L.BatchNormalization(ch // 4)
self.bn3 = L.BatchNormalization(ch // 8)

def make_hidden(self, batchsize):
dtype = chainer.get_dtype()
return numpy.random.uniform(-1, 1, (batchsize, self.n_hidden, 1, 1))\

.astype(dtype)

def forward(self, z):
h = F.reshape(F.relu(self.bn0(self.l0(z))),

(len(z), self.ch, self.bottom_width, self.bottom_width))
h = F.relu(self.bn1(self.dc1(h)))
h = F.relu(self.bn2(self.dc2(h)))
h = F.relu(self.bn3(self.dc3(h)))
x = F.sigmoid(self.dc4(h))
return x

When we make a network in Chainer, there are some conventions:

1. Define a network class which inherits Chain.

2. Make chainer.links’s instances in the init_scope(): of the initializer __init__.

3. Define network connections in the __call__ operator by using the chainer.links’s instances and
chainer.functions.

If you are not familiar with constructing a new network, please refer to this tutorial.

As we can see from the initializer __init__, the Generator uses deconvolution layers Deconvolution2D and
batch normalization layers BatchNormalization. In __call__, each layer is called and followed by relu
except the last layer.

Because the first argument of L.Deconvolution is the channel size of input and the second is the channel size
of output, we can find that each layer halves the channel size. When we construct Generator with ch=1024, the
network is same as the above image.

84 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

Note: Be careful when passing the output of a fully connected layer to a convolution layer, because the convolutional
layer needs additional dimensions for inputs. As we can see the 1st line of __call__, the output of the fully
connected layer is reshaped by reshape to add the dimensions of the channel, the width and the height of images.

2.2 Define the discriminator model

In addtion, let’s define the network for the discriminator.

Listing 2: train_dcgan.py

class Discriminator(chainer.Chain):

def __init__(self, bottom_width=4, ch=512, wscale=0.02):
w = chainer.initializers.Normal(wscale)
super(Discriminator, self).__init__()
with self.init_scope():

self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w)
self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w)
self.c1_0 = L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w)
self.c1_1 = L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w)
self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w)
self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w)
self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w)
self.l4 = L.Linear(bottom_width * bottom_width * ch, 1, initialW=w)
self.bn0_1 = L.BatchNormalization(ch // 4, use_gamma=False)
self.bn1_0 = L.BatchNormalization(ch // 4, use_gamma=False)
self.bn1_1 = L.BatchNormalization(ch // 2, use_gamma=False)
self.bn2_0 = L.BatchNormalization(ch // 2, use_gamma=False)
self.bn2_1 = L.BatchNormalization(ch // 1, use_gamma=False)
self.bn3_0 = L.BatchNormalization(ch // 1, use_gamma=False)

def forward(self, x):
device = self.device
h = add_noise(device, x)
h = F.leaky_relu(add_noise(device, self.c0_0(h)))
h = F.leaky_relu(add_noise(device, self.bn0_1(self.c0_1(h))))
h = F.leaky_relu(add_noise(device, self.bn1_0(self.c1_0(h))))
h = F.leaky_relu(add_noise(device, self.bn1_1(self.c1_1(h))))
h = F.leaky_relu(add_noise(device, self.bn2_0(self.c2_0(h))))
h = F.leaky_relu(add_noise(device, self.bn2_1(self.c2_1(h))))
h = F.leaky_relu(add_noise(device, self.bn3_0(self.c3_0(h))))
return self.l4(h)

The Discriminator network is almost mirrors of the Generator network. However, there are minor different
points:

1. Use leaky_relu as activation functions

2. Deeper than Generator

3. Add some noise to every intermediate outputs before giving them to the next layers

Listing 3: train_dcgan.py

def add_noise(device, h, sigma=0.2):
if chainer.config.train:

(continues on next page)

3.4. DCGAN: Generate images with Deep Convolutional GAN 85



Chainer Documentation, Release 6.5.0

(continued from previous page)

xp = device.xp
# TODO(niboshi): Support random.randn in ChainerX
if device.xp is chainerx:

fallback_device = device.fallback_device
with chainer.using_device(fallback_device):

randn = device.send(fallback_device.xp.random.randn(*h.shape))
else:

randn = xp.random.randn(*h.shape)
return h + sigma * randn

else:
return h

2.3 Prepare dataset and iterator

Let’s retrieve the CIFAR-10 dataset by using Chainer’s dataset utility function get_cifar10. CIFAR-10 is a set of
small natural images. Each example is an RGB color image of size 32x32. In the original images, each of R, G, B of
pixels is represented by one-byte unsigned integer (i.e. from 0 to 255). This function changes the scale of pixel values
into [0, scale] float values.

train, _ = chainer.datasets.get_cifar10(withlabel=False, scale=255.)

Listing 4: train_dcgan.py

train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

2.4 Prepare model and optimizer

Let’s make the instances of the generator and the discriminator.

Listing 5: train_dcgan.py

gen = Generator(n_hidden=args.n_hidden)
dis = Discriminator()

gen.to_device(device) # Copy the model to the device
dis.to_device(device)

# Setup an optimizer
def make_optimizer(model, alpha=0.0002, beta1=0.5):

optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
optimizer.setup(model)
optimizer.add_hook(

chainer.optimizer_hooks.WeightDecay(0.0001), 'hook_dec')
return optimizer

opt_gen = make_optimizer(gen)
opt_dis = make_optimizer(dis)

Next, let’s make optimizers for the models created above.

86 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

Listing 6: train_dcgan.py

def make_optimizer(model, alpha=0.0002, beta1=0.5):
optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
optimizer.setup(model)
optimizer.add_hook(

chainer.optimizer_hooks.WeightDecay(0.0001), 'hook_dec')
return optimizer

opt_gen = make_optimizer(gen)
opt_dis = make_optimizer(dis)

2.5 Prepare updater

GAN need the two models: the generator and the discriminator. Usually, the default updaters pre-defined in Chainer
take only one model. So, we need to define a custom updater for GAN training.

The definition of DCGANUpdater is a little complicated. However, it just minimizes the loss of the discriminator and
that of the generator alternately.

As you can see in the class definiton, DCGANUpdater inherits StandardUpdater. In this case, almost
all necessary functions are defined in StandardUpdater, we just override the functions of __init__ and
update_core.

Note: We do not need to define loss_dis and loss_gen because the functions are called only in update_core.
It aims at improving readability.

Listing 7: train_dcgan.py

class DCGANUpdater(chainer.training.updaters.StandardUpdater):

def __init__(self, *args, **kwargs):
self.gen, self.dis = kwargs.pop('models')
super(DCGANUpdater, self).__init__(*args, **kwargs)

def loss_dis(self, dis, y_fake, y_real):
batchsize = len(y_fake)
L1 = F.sum(F.softplus(-y_real)) / batchsize
L2 = F.sum(F.softplus(y_fake)) / batchsize
loss = L1 + L2
chainer.report({'loss': loss}, dis)
return loss

def loss_gen(self, gen, y_fake):
batchsize = len(y_fake)
loss = F.sum(F.softplus(-y_fake)) / batchsize
chainer.report({'loss': loss}, gen)
return loss

def update_core(self):
gen_optimizer = self.get_optimizer('gen')
dis_optimizer = self.get_optimizer('dis')

(continues on next page)

3.4. DCGAN: Generate images with Deep Convolutional GAN 87



Chainer Documentation, Release 6.5.0

(continued from previous page)

batch = self.get_iterator('main').next()
device = self.device
x_real = Variable(self.converter(batch, device)) / 255.

gen, dis = self.gen, self.dis
batchsize = len(batch)

y_real = dis(x_real)

z = Variable(device.xp.asarray(gen.make_hidden(batchsize)))
x_fake = gen(z)
y_fake = dis(x_fake)

dis_optimizer.update(self.loss_dis, dis, y_fake, y_real)
gen_optimizer.update(self.loss_gen, gen, y_fake)

In the intializer __init__, an addtional keyword argument models is required as you can see the code below.
Also, we use keyword arguments iterator, optimizer and device. It should be noted that the optimizer
augment takes a dictionary. The two different models require two different optimizers. To specify the different opti-
mizers for the models, we give a dictionary, {'gen': opt_gen, 'dis': opt_dis}, to the optimizer
argument. we should input optimizer as a dictionary {'gen': opt_gen, 'dis': opt_dis}. In the
DCGANUpdater, you can access the iterator with self.get_iterator('main'). Also, you can access the
optimizers with self.get_optimizer('gen') and self.get_optimizer('dis').

In update_core, the two loss functions loss_dis and loss_gen are minimized by the optimizers.
At first two lines, we access the optimizers. Then, we create next minibatch of training data by self.
get_iterator('main').next(), copy batch to the device by self.converter, and make it a
Variable object. After that, we minimize the loss functions with the optimizers.

Note: When defining update_core, we may want to manipulate the underlying array of a Variable with
numpy or cupy library. Note that the type of arrays on CPU is numpy.ndarray, while the type of arrays on
GPU is cupy.ndarray. However, users do not need to write if condition explicitly, because the appropriate
array module can be obtained by xp = chainer.backend.get_array_module(variable.array). If
variable is on GPU, cupy is assigned to xp, otherwise numpy is assigned to xp.

Listing 8: train_dcgan.py

updater = DCGANUpdater(
models=(gen, dis),
iterator=train_iter,
optimizer={

'gen': opt_gen, 'dis': opt_dis},
device=device)

2.6 Prepare trainer and run

Listing 9: train_dcgan.py

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

snapshot_interval = (args.snapshot_interval, 'iteration')

(continues on next page)

88 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

(continued from previous page)

display_interval = (args.display_interval, 'iteration')
trainer.extend(

extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
trigger=snapshot_interval)

trainer.extend(extensions.snapshot_object(
gen, 'gen_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)

trainer.extend(extensions.snapshot_object(
dis, 'dis_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)

trainer.extend(extensions.LogReport(trigger=display_interval))
trainer.extend(extensions.PrintReport([

'epoch', 'iteration', 'gen/loss', 'dis/loss',
]), trigger=display_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(

out_generated_image(
gen, dis,
10, 10, args.seed, args.out),

trigger=snapshot_interval)

Listing 10: train_dcgan.py

trainer.run()

2.7 Start training

We can run the example as follows.

$ pwd
/root2chainer/chainer/examples/dcgan
$ python train_dcgan.py --gpu 0
GPU: 0
# Minibatch-size: 50
# n_hidden: 100
# epoch: 1000

epoch iteration gen/loss dis/loss ................] 0.01%
0 100 1.2292 1.76914

total [..................................................] 0.02%
this epoch [#########.........................................] 19.00%

190 iter, 0 epoch / 1000 epochs
10.121 iters/sec. Estimated time to finish: 1 day, 3:26:26.372445.

The results will be saved in the directory /root2chainer/chainer/examples/dcgan/result/. The im-
age is generated by the generator trained for 1000 epochs, and the GIF image on the top of this page shows generated
images after every 10 epochs.

3.4. DCGAN: Generate images with Deep Convolutional GAN 89



Chainer Documentation, Release 6.5.0

3.4.4 3. Reference

• [1] NIPS 2016 Tutorial: Generative Adversarial Networks

• [2] Nash equilibrium

• [3] Jensen-Shannon Divergence

• [4] Generative Adversarial Networks

• [5] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

3.5 Recurrent Nets and their Computational Graph

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers

(continues on next page)

90 Chapter 3. Neural Net Examples

http://arxiv.org/abs/1701.00160
http://en.wikipedia.org/wiki/Nash_equilibrium
http://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.06434


Chainer Documentation, Release 6.5.0

(continued from previous page)

from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this section, you will learn how to write

• recurrent nets with full backprop,

• recurrent nets with truncated backprop,

• evaluation of networks with few memory.

After reading this section, you will be able to:

• Handle input sequences of variable length

• Truncate upper stream of the network during forward computation

• Use no-backprop mode to prevent network construction

3.5.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an
input stream 𝑥1, 𝑥2, . . . , 𝑥𝑡, . . . and the initial state ℎ0, a recurrent net iteratively updates its state by ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1),
and at some or every point in time 𝑡, it outputs 𝑦𝑡 = 𝑔(ℎ𝑡). If we expand the procedure along the time axis, it looks
like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence
of words, we want to predict the next word at each position without peeking the successive words. Suppose there
are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word
embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the chainer.
links.LSTM link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-
connected layer. On construction, you pass the input and output size to the constructor:

>>> l = L.LSTM(100, 50)

Then, call on this instance l(x) executes one step of LSTM layer:

>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds
its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the
internal state. Then, the next input can be directly fed to the LSTM instance:

>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)

Based on this LSTM link, let’s write our recurrent network as a new chain:

class RNN(Chain):
def __init__(self):

super(RNN, self).__init__()

(continues on next page)

3.5. Recurrent Nets and their Computational Graph 91



Chainer Documentation, Release 6.5.0

(continued from previous page)

with self.init_scope():
self.embed = L.EmbedID(1000, 100) # word embedding
self.mid = L.LSTM(100, 50) # the first LSTM layer
self.out = L.Linear(50, 1000) # the feed-forward output layer

def reset_state(self):
self.mid.reset_state()

def forward(self, cur_word):
# Given the current word ID, predict the next word.
x = self.embed(cur_word)
h = self.mid(x)
y = self.out(h)
return y

rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)

Here EmbedID is a link for word embedding. It converts input integers into corresponding fixed-dimensional embed-
ding vectors. The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it
to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_list. Then, we can compute loss values for the word sequence by simple
for loop.

def compute_loss(x_list):
loss = 0
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
return loss

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its
backward() method to compute gradients of the total loss according to the model parameters:

# Suppose we have a list of word variables x_list.
rnn.reset_state()
model.cleargrads()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()

Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state()
optimizer.update(compute_loss, x_list)

3.5.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence
is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This
technique is called truncated backprop. It is heuristic, and it makes the gradients biased. However, this technique
works well in practice if the time range is long enough.

92 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called back-
ward unchaining. It is implemented in the Variable.unchain_backward() method. Backward unchaining
starts from the Variable object, and it chops the computation history backwards from the variable. The chopped vari-
ables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are
no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsec-
tion. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We
can write truncated backprop using the model defined above:

loss = 0
count = 0
seqlen = len(x_list[1:])

rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
count += 1
if count % 30 == 0 or count == seqlen:

model.cleargrads()
loss.backward()
loss.unchain_backward()
optimizer.update()

State is updated at model(), and the losses are accumulated to loss variable. At each 30 steps, backprop takes
place at the accumulated loss. Then, the unchain_backward() method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance
holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize
this method to different situations. For example, we can easily extend the above code to use different schedules
between backprop timing and truncation length.

3.5.3 Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables
us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation
history. This is enabled by just calling no_backprop_mode() context:

with chainer.no_backprop_mode():
x_list = [Variable(...) for _ in range(100)] # list of 100 words
loss = compute_loss(x_list)

Note that we cannot call loss.backward() to compute the gradient here, since the variable created in the no-
backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.

We can combine a fixed feature extractor network and a trainable predictor network using no_backprop_mode().
For example, suppose we want to train a feed-forward network predictor_func, which is located on top of another
fixed pre-trained network fixed_func. We want to train predictor_func without storing the computation
history for fixed_func. This is simply done by following code snippets (suppose x_data and y_data indicate
input data and label, respectively):

3.5. Recurrent Nets and their Computational Graph 93



Chainer Documentation, Release 6.5.0

with chainer.no_backprop_mode():
x = Variable(x_data)
feat = fixed_func(x)

y = predictor_func(feat)
y.backward()

At first, the input variable x is in no-backprop mode, so fixed_func does not memorize the computation history.
Then predictor_func is executed in backprop mode, i.e., with memorizing the history of computation. Since
the history of computation is only memorized between variables feat and y, the backward computation stops at the
feat variable.

3.5.4 Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use
Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set
of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word
sequence, in which each sentence is separated by a special word <eos>, which stands for “End of Sequence”. This
dataset is easily obtained by chainer.datasets.get_ptb_words(). This function returns train, validation,
and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different
locations to form mini-batches. It means we maintain 𝐵 indices pointing to different locations in the sequence, read
from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the
end of the whole sequence, we turn the index back to 0.

In order to implement this training procedure, we have to customize the following components of Trainer:

• Iterator. Built-in iterators do not support reading from different locations and aggregating them into a mini-
batch.

• Update function. The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface
is not fixed. On the other hand, the iterator must support the Iterator interface. The important methods and
attributes to implement are batch_size, epoch, epoch_detail, is_new_epoch, iteration, __next__,
and serialize. Following is a code from the official example in the examples/ptb directory.

from __future__ import division

class ParallelSequentialIterator(chainer.dataset.Iterator):
def __init__(self, dataset, batch_size, repeat=True):

self.dataset = dataset
self.batch_size = batch_size
self.epoch = 0
self.is_new_epoch = False
self.repeat = repeat
self.offsets = [i * len(dataset) // batch_size for i in range(batch_size)]
self.iteration = 0

def __next__(self):
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:

raise StopIteration
cur_words = self.get_words()
self.iteration += 1

(continues on next page)

94 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/v6.5.0/examples/ptb


Chainer Documentation, Release 6.5.0

(continued from previous page)

next_words = self.get_words()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list(zip(cur_words, next_words))

@property
def epoch_detail(self):

return self.iteration * self.batch_size / len(self.dataset)

def get_words(self):
return [self.dataset[(offset + self.iteration) % len(self.dataset)]

for offset in self.offsets]

def serialize(self, serializer):
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)

train_iter = ParallelSequentialIterator(train, 20)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)

Although the code is slightly long, the idea is simple. First, this iterator creates offsets pointing to positions
equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset.
The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of
integer arrays by the concat_examples function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.

class BPTTUpdater(training.updaters.StandardUpdater):

def __init__(self, train_iter, optimizer, bprop_len):
super(BPTTUpdater, self).__init__(train_iter, optimizer)
self.bprop_len = bprop_len

# The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0
# When we pass one iterator and optimizer to StandardUpdater.__init__,
# they are automatically named 'main'.
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')

# Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

# Get the next batch (a list of tuples of two word IDs)
batch = train_iter.__next__()

# Concatenate the word IDs to matrices and send them to the device
# self.converter does this job
# (it is chainer.dataset.concat_examples by default)
x, t = self.converter(batch)

# Compute the loss at this time step and accumulate it
loss += optimizer.target(chainer.Variable(x), chainer.Variable(t))

(continues on next page)

3.5. Recurrent Nets and their Computational Graph 95



Chainer Documentation, Release 6.5.0

(continued from previous page)

optimizer.target.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters

updater = BPTTUpdater(train_iter, optimizer, bprop_len) # instantiation

In this case, we update the parameters on every bprop_len consecutive words. The call of unchain_backward
cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost
same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to man-
age the history of computation (a.k.a. computational graph). The example in the examples/ptb directory implements
truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will
review how to use GPU(s) in Chainer.

3.6 RNN Language Models

3.6.1 0. Introduction

The language model is modeling the probability of generating natural language sentences or documents. You can
use the language model to estimate how natural a sentence or a document is. Also, with the language model, you can
generate new sentences or documents.

Let’s start with modeling the probability of generating sentences. We represent a sentence as X = (x0,x1, ...,x𝑇 ), in
which x𝑡 is a one-hot vector. Generally, x0 is the one-hot vector of BOS (beginning of sentence), and x𝑇 is that of
EOS (end of sentence).

A language model models the probability of a word occurrence under the condition of its previous words in a sentence.
Let X[𝑖,𝑗] be (x𝑖,x𝑖+1, ...,x𝑗), the occurrence probability of sentence X can be represented as follows:

𝑃 (X) = 𝑃 (x0)

𝑇∏︁
𝑡=1

𝑃 (x𝑡|X[0,𝑡−1])

So, the language model 𝑃 (X) can be decomposed into word probabilities conditioned with its previous words. In this
tutorial, we model 𝑃 (x𝑡|X[0,𝑡−1]) with a recurrent neural network to obtain a language model 𝑃 (X).

3.6.2 1. Basic Idea of Recurrent Neural Net Language Model

1.1 Recurrent Neural Net Language Model

Recurrent Neural Net Language Model (RNNLM) is a type of neural net language models which contains the RNNs
in the network. Since an RNN can deal with the variable length inputs, it is suitable for modeling the sequential data
such as sentences in natural language.

We show one layer of an RNNLM with these parameters.

96 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/v6.5.0/examples/ptb


Chainer Documentation, Release 6.5.0

Symbol Definition
x𝑡 the one-hot vector of 𝑡-th word
y𝑡 the 𝑡-th output
h
(𝑖)
𝑡 the 𝑡-th hidden layer of 𝑖-th layer

p𝑡 the next word’s probability of 𝑡-th word
E Embedding matrix
Wℎ Hidden layer matrix
W𝑜 Output layer matrix

The process to get a next word prediction from 𝑖-th input word x𝑡

1. Get the embedding vector: h(0)
𝑡 = Ex𝑡

2. Calculate the hidden layer: h(1)
𝑡 = tanh

(︃
Wℎ

[︃
h
(0)
𝑡

h
(1)
𝑡−1

]︃)︃

3. Calculate the output layer: y𝑡 = W𝑜h
(1)
𝑡

4. Transform to probability: p𝑡 = softmax(y𝑡)

Note:

• Note that tanh in the above equation is applied to the input vector in element-wise manner.

• Note that
[︂

a
b

]︂
denotes a concatenated vector of a and b.

• Note that softmax in the above equation converts an arbitrary real vector to a probability vector which the
summation over all elements is 1.

3.6. RNN Language Models 97



Chainer Documentation, Release 6.5.0

1.2 Perplexity (Evaluation of the language model)

Perplexity is the common evaluation metric for a language model. Generally, it measures how well the proposed
probability model 𝑃model(X) represents the target data 𝑃 *(X). Let a validation dataset be 𝐷 = {X(𝑛)}|𝐷|

𝑛=1, which is
a set of sentences, where the 𝑛-th sentence length is 𝑇 (𝑛), and the vocabulary size of this dataset is |𝒱|, the perplexity
is represented as follows:

𝑏𝑧 𝑠.𝑡. 𝑧 = − 1

|𝒱|

|𝐷|∑︁
𝑛=1

𝑇 (𝑛)∑︁
𝑡=1

log𝑏 𝑃model(x
(𝑛)
𝑡 ,X

(𝑛)
[𝑎,𝑡−1])

We usually use 𝑏 = 2 or 𝑏 = 𝑒. The perplexity shows how much varied the predicted distribution for the next word is.
When a language model represents the dataset well, it should show a high probability only for the correct next word,
so that the entropy should be high. In the above equation, the sign is reversed, so that smaller perplexity means better
model.

During training, we minimize the below cross entropy:

ℋ(𝑃 , 𝑃model) = −𝑃 (X) log𝑃model(X)

where 𝑃 is the empirical distribution of a sequence in the training dataset.

3.6.3 2. Implementation of Recurrent Neural Net Language Model

There is an example of RNN language model in the official repository, so we will explain how to implement a
RNNLM in Chainer based on that: examples/ptb

2.1 Model Overview

The RNNLM used in this notebook is depicted in the above figure. The symbols appeared in the figure are defined as
follows:

98 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/v6.5.0/examples/ptb


Chainer Documentation, Release 6.5.0

Symbol Definition
x𝑡 the one-hot vector of 𝑡-th word
y𝑡 the 𝑡-th output
h
(𝑖)
𝑡 the 𝑡-th hidden layer of 𝑖-th layer

p𝑡 the next word’s probability of 𝑡-th word
E Embedding matrix
Wℎ Hidden layer matrix
W𝑜 Output layer matrix

LSTMs (long short-term memory) are used for the connection of hidden layers. A LSTM is one of major recurrent
neural net modules. It is designed for remembering the long-term memory, so that it should be able to consider
relationships of distant words, such that a word at beginning of sentence and it at the end. We also use Dropout
before both LSTMs and linear transformations. Dropout is one of regularization techniques for preventing overfitting
on training dataset.

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 11: train_ptb.py

"""
from __future__ import division
import argparse
import sys

import numpy as np

2.2.2 Define Training Settings

Define all training settings here.

Listing 12: train_ptb.py

parser.add_argument('--batchsize', '-b', type=int, default=20,
help='Number of examples in each mini-batch')

parser.add_argument('--bproplen', '-l', type=int, default=35,
help='Number of words in each mini-batch '

'(= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=39,

help='Number of sweeps over the dataset to train')
parser.add_argument('--device', '-d', type=str, default='-1',

help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer, '
'CuPy arrays with specified device id are used. If '
'negative integer, NumPy arrays are used')

parser.add_argument('--gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip')

parser.add_argument('--out', '-o', default='result',

(continues on next page)

3.6. RNN Language Models 99



Chainer Documentation, Release 6.5.0

(continued from previous page)

help='Directory to output the result')
parser.add_argument('--resume', '-r', type=str,

help='Resume the training from snapshot')
parser.add_argument('--test', action='store_true',

help='Use tiny datasets for quick tests')
parser.set_defaults(test=False)
parser.add_argument('--unit', '-u', type=int, default=650,

help='Number of LSTM units in each layer')
parser.add_argument('--model', '-m', default='model.npz',

help='Model file name to serialize')

2.2.3 Define Network Structure

An RNNLM written in Chainer is shown below. It implements the model depicted in the above figure.

Listing 13: train_ptb.py

class RNNForLM(chainer.Chain):

def __init__(self, n_vocab, n_units):
super(RNNForLM, self).__init__()
with self.init_scope():

self.embed = L.EmbedID(n_vocab, n_units)
self.l1 = L.LSTM(n_units, n_units)
self.l2 = L.LSTM(n_units, n_units)
self.l3 = L.Linear(n_units, n_vocab)

for param in self.params():
param.array[...] = np.random.uniform(-0.1, 0.1, param.shape)

def reset_state(self):
self.l1.reset_state()
self.l2.reset_state()

def forward(self, x):
h0 = self.embed(x)
h1 = self.l1(F.dropout(h0))
h2 = self.l2(F.dropout(h1))
y = self.l3(F.dropout(h2))
return y

• When we instantiate this class for making a model, we give the vocabulary size to n_vocab and the size of
hidden vectors to n_units.

• This network uses chainer.links.LSTM , chainer.links.Linear, and chainer.functions.
dropout as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

• You can access all the parameters in those layers by calling self.params().

• In the constructor, it initializes all parameters with values sampled from a uniform distribution 𝑈(−1, 1).

• The forward method takes an word ID x, and calculates the word probability vector for the next word by
forwarding it through the network, and returns the output.

• Note that the word ID x is automatically converted to a |𝒱|-dimensional one-hot vector and then multiplied with
the input embedding matrix in self.embed(x) to obtain an embed vector h0 at the first line of forward.

100 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

2.2.4 Load the Penn Tree Bank Long Word Sequence Dataset

In this notebook, we use Penn Tree Bank dataset that contains number of sentences. Chainer provides an utility func-
tion to obtain this dataset from server and convert it to a long single sequence of word IDs. chainer.datasets.
get_ptb_words() actually returns three separated datasets which are for train, validation, and test.

Let’s download and make dataset objects using it:

Listing 14: train_ptb.py

# Load the Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()

2.2.5 Define Iterator for Making a Mini-batch from the Dataset

Dataset iterator creates a mini-batch of couple of words at different positions, namely, pairs of current word and its next
word. Each example is a part of sentences starting from different offsets equally spaced within the whole sequence.

Listing 15: train_ptb.py

class ParallelSequentialIterator(chainer.dataset.Iterator):

def __init__(self, dataset, batch_size, repeat=True):
super(ParallelSequentialIterator, self).__init__()
self.dataset = dataset
self.batch_size = batch_size # batch size
self.repeat = repeat
length = len(dataset)
# Offsets maintain the position of each sequence in the mini-batch.
self.offsets = [i * length // batch_size for i in range(batch_size)]
self.reset()

def reset(self):
# Number of completed sweeps over the dataset. In this case, it is
# incremented if every word is visited at least once after the last
# increment.
self.epoch = 0
# True if the epoch is incremented at the last iteration.
self.is_new_epoch = False
# NOTE: this is not a count of parameter updates. It is just a count of
# calls of ``__next__``.
self.iteration = 0
# use -1 instead of None internally
self._previous_epoch_detail = -1.

def __next__(self):
# This iterator returns a list representing a mini-batch. Each item
# indicates a different position in the original sequence. Each item is
# represented by a pair of two word IDs. The first word is at the
# "current" position, while the second word at the next position.
# At each iteration, the iteration count is incremented, which pushes
# forward the "current" position.
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:

# If not self.repeat, this iterator stops at the end of the first
(continues on next page)

3.6. RNN Language Models 101



Chainer Documentation, Release 6.5.0

(continued from previous page)

# epoch (i.e., when all words are visited once).
raise StopIteration

cur_words = self.get_words()
self._previous_epoch_detail = self.epoch_detail
self.iteration += 1
next_words = self.get_words()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list(zip(cur_words, next_words))

@property
def epoch_detail(self):

# Floating point version of epoch.
return self.iteration * self.batch_size / len(self.dataset)

@property
def previous_epoch_detail(self):

if self._previous_epoch_detail < 0:
return None

return self._previous_epoch_detail

def get_words(self):
# It returns a list of current words.
return [self.dataset[(offset + self.iteration) % len(self.dataset)]

for offset in self.offsets]

def serialize(self, serializer):
# It is important to serialize the state to be recovered on resume.
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)
try:

self._previous_epoch_detail = serializer(
'previous_epoch_detail', self._previous_epoch_detail)

except KeyError:
# guess previous_epoch_detail for older version
self._previous_epoch_detail = self.epoch + \

(self.current_position - self.batch_size) / len(self.dataset)
if self.epoch_detail > 0:

self._previous_epoch_detail = max(
self._previous_epoch_detail, 0.)

else:
self._previous_epoch_detail = -1.

2.2.6 Define Updater

We use Backpropagation through time (BPTT) for optimize the RNNLM. BPTT can be implemented by overrid-
ing update_core() method of StandardUpdater. First, in the constructor of the BPTTUpdater, it takes
bprop_len as an argument in addition to other arguments StandardUpdater needs. bprop_len defines the

102 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

length of sequence 𝑇 to calculate the loss:

ℒ = −
𝑇∑︁

𝑡=0

|𝒱|∑︁
𝑛=1

𝑃 (x
(𝑛)
𝑡+1) log𝑃model(x

(𝑛)
𝑡+1 | x

(𝑛)
𝑡 )

where 𝑃 (x𝑛
𝑡 ) is a probability for 𝑛-th word in the vocabulary at the position 𝑡 in the training data sequence.

Listing 16: train_ptb.py

class BPTTUpdater(training.updaters.StandardUpdater):

def __init__(self, train_iter, optimizer, bprop_len, device):
super(BPTTUpdater, self).__init__(

train_iter, optimizer, device=device)
self.bprop_len = bprop_len

# The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0
# When we pass one iterator and optimizer to StandardUpdater.__init__,
# they are automatically named 'main'.
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')

# Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

# Get the next batch (a list of tuples of two word IDs)
batch = train_iter.__next__()

# Concatenate the word IDs to matrices and send them to the device
# self.converter does this job
# (it is chainer.dataset.concat_examples by default)
x, t = self.converter(batch, self.device)

# Compute the loss at this time step and accumulate it
loss += optimizer.target(x, t)

optimizer.target.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters

2.2.7 Define Evaluation Function (Perplexity)

Define a function to calculate the perplexity from the loss value. If we take 𝑒 as 𝑏 in the above definition of perplexity,
calculating the perplexity is just to give the loss value to the power of 𝑒:

Listing 17: train_ptb.py

def compute_perplexity(result):
result['perplexity'] = np.exp(result['main/loss'])
if 'validation/main/loss' in result:

result['val_perplexity'] = np.exp(result['validation/main/loss'])

3.6. RNN Language Models 103



Chainer Documentation, Release 6.5.0

2.2.8 Create Iterator

Here, the code below just creates iterator objects from dataset splits (train/val/test).

Listing 18: train_ptb.py

train_iter = ParallelSequentialIterator(train, args.batchsize)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)
test_iter = ParallelSequentialIterator(test, 1, repeat=False)

2.2.9 Create RNN and Classification Model

Instantiate RNNLM model and wrap it with chainer.links.Classifier because it calculates softmax cross
entropy as the loss.

Listing 19: train_ptb.py

rnn = RNNForLM(n_vocab, args.unit)
model = L.Classifier(rnn)
model.compute_accuracy = False # we only want the perplexity

Note that Classifier computes not only the loss but also accuracy based on a given input/label pair. To learn the
RNN language model, we only need the loss (cross entropy) in the Classifier because we calculate the perplexity
instead of classification accuracy to check the performance of the model. So, we turn off computing the accuracy by
giving False to model.compute_accuracy attribute.

2.2.10 Setup Optimizer

Prepare an optimizer. Here, we use GradientClipping to prevent gradient explosion. It automatically clips the
gradient to be used to update the parameters in the model with given constant gradclip.

Listing 20: train_ptb.py

optimizer = chainer.optimizers.SGD(lr=1.0)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer_hooks.GradientClipping(args.gradclip))

2.2.11 Setup and Run Trainer

Let’s make a trainer object and start the training! Note that we add an eval_hook to the Evaluator extension
to reset the internal states before starting evaluation process. It can prevent to use training data during evaluating the
model.

Listing 21: train_ptb.py

updater = BPTTUpdater(train_iter, optimizer, args.bproplen, device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

eval_model = model.copy() # Model with shared params and distinct states

(continues on next page)

104 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

(continued from previous page)

eval_rnn = eval_model.predictor
trainer.extend(extensions.Evaluator(

val_iter, eval_model, device=device,
# Reset the RNN state at the beginning of each evaluation
eval_hook=lambda _: eval_rnn.reset_state()))

interval = 10 if args.test else 500
trainer.extend(extensions.LogReport(postprocess=compute_perplexity,

trigger=(interval, 'iteration')))
trainer.extend(extensions.PrintReport(

['epoch', 'iteration', 'perplexity', 'val_perplexity']
), trigger=(interval, 'iteration'))
trainer.extend(extensions.ProgressBar(

update_interval=1 if args.test else 10))
trainer.extend(extensions.snapshot())
trainer.extend(extensions.snapshot_object(

model, 'model_iter_{.updater.iteration}'))
if args.resume is not None:

chainer.serializers.load_npz(args.resume, trainer)

trainer.run()

2.2.12 Evaluate the trained model on test dataset

Let’s see the perplexity on the test split. Trainer’s extension can be used as just a normal function outside of
Trainer.

Listing 22: train_ptb.py

print('test')
eval_rnn.reset_state()
evaluator = extensions.Evaluator(test_iter, eval_model, device=device)
result = evaluator()
print('test perplexity: {}'.format(np.exp(float(result['main/loss']))))

2.3 Run Example

2.3.1 Training the model

You can train the model with the script: examples/ptb/train_ptb.py

$ pwd
/root2chainer/chainer/examples/ptb
$ python train_ptb.py --test # run by test mode. If you want to use all data, remove
→˓"--test".
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓train.txt...
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓valid.txt...
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓test.txt...

(continues on next page)

3.6. RNN Language Models 105

https://github.com/chainer/chainer/blob/v6.5.0/examples/ptb/train_ptb.py


Chainer Documentation, Release 6.5.0

(continued from previous page)

#vocab = 10000
test
test perplexity: 29889.9857364

2.3.2 Generating sentences

You can generate the sentence which starts with a word in the vocabulary. In this example, we generate a sen-
tence which starts with the word apple. We use the script in the PTB example of the official repository: exam-
ples/ptb/gentxt.py

$ pwd
/root2chainer/chainer/examples/ptb
$ python gentxt.py -m model.npz -p apple
apple a new u.s. economist with <unk> <unk> fixed more than to N the company said who
→˓is looking back to

3.7 Word2Vec: Obtain word embeddings

3.7.1 0. Introduction

Word2vec is the tool for generating the distributed representation of words, which is proposed by Mikolov et al[1].
When the tool assigns a real-valued vector to each word, the closer the meanings of the words, the greater similarity
the vectors will indicate.

Distributed representation means assigning a real-valued vector for each word and representing the word by the
vector. When representing a word by distributed representation, we call the word embeddings. In this tutorial, we
aim at explaining how to get the word embeddings from Penn Tree Bank dataset.

Let’s think about what the meaning of word is. Since we are human, we can understand that the words “animal” and
“dog” are deeply related each other. But what information will Word2vec use to learn the vectors for words? The
words “animal” and “dog” should have similar vectors, but the words “food” and “dog” should be far from each other.
How to know the features of those words automatically?

3.7.2 1. Basic Idea

Word2vec learns the similarity of word meanings from simple information. It learns the representation of words from
sentences. The core idea is based on the assumption that the meaning of a word is affected by the words around it.
This idea follows distributional hypothesis[2].

The word we focus on to learn its representation is called center word, and the words around it are called context
words. The window size 𝐶 determines the number of context words which is considered.

Here, let’s see the algorithm by using an example sentence: “The cute cat jumps over the lazy dog.”.

• All of the following figures consider “cat” as the center word.

• According to the window size 𝐶, you can see that the number of context words is changed.

106 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/blob/v6.5.0/examples/ptb/gentxt.py
https://github.com/chainer/chainer/blob/v6.5.0/examples/ptb/gentxt.py


Chainer Documentation, Release 6.5.0

3.7.3 2. Main Algorithm

Word2vec, the tool for creating the word embeddings, is actually built with two models, which are called Skip-gram
and CBoW.

To explain the models with the figures below, we will use the following symbols.

Symbol Definition
|𝒱| The size of vocabulary
𝐷 The size of embedding vector
v𝑡 A one-hot center word vector
𝑉𝑡±𝐶 A set of 2𝐶 context vectors around v𝑡, namely, {v𝑡+𝑐}𝐶𝑐=−𝐶∖v𝑡

l𝐻 An embedding vector of an input word vector
l𝑂 An output vector of the network
W𝐻 The embedding matrix for inputs
W𝑂 The embedding matrix for outputs

Note: Using negative sampling or hierarchical softmax for the loss function is very common, however, in this
tutorial, we will use the softmax over all words and skip the other variants for the sake of simplicity.

2.1 Skip-gram

This model learns to predict context words 𝑉𝑡±𝐶 when a center word v𝑡 is given. In the model, each row of the
embedding matrix for input W𝐻 becomes a word embedding of each word.

When you input a center word v𝑡 into the network, you can predict one of context words v̂𝑡+𝑐 ∈ 𝑉𝑡±𝐶 as follows:

1. Calculate an embedding vector of the input center word vector: l𝐻 = W𝐻v𝑡

2. Calculate an output vector of the embedding vector: l𝑂 = W𝑂l𝐻

3. Calculate a probability vector of a context word: v̂𝑡+𝑐 = softmax(l𝑂)

Each element of the |𝒱|-dimensional vector v̂𝑡+𝑐 is a probability that a word in the vocabulary turns out to be a context
word at position 𝑐. So, the probability 𝑝(v𝑡+𝑐|v𝑡) can be estimated by a dot product of the one-hot vector v𝑡+𝑐 which
represents the actual word at the position 𝑐 and the output vector v̂𝑡+𝑐.

𝑝(v𝑡+𝑐|v𝑡) = v𝑇
𝑡+𝑐v̂𝑡+𝑐

3.7. Word2Vec: Obtain word embeddings 107



Chainer Documentation, Release 6.5.0

The loss function to predict all the context words 𝑉𝑡±𝐶 given a center word v𝑡 is defined as follows:

𝐿(𝑉𝑡±𝐶 |v𝑡;W𝐻 ,W𝑂) =
∑︁
𝑉𝑡±𝐶

− log (𝑝(v𝑡+𝑐 | v𝑡))

=
∑︁
𝑉𝑡±𝐶

− log(v𝑇
𝑡+𝑐v̂𝑡+𝑐)

2.2 Continuous Bag of Words (CBoW)

This model learns to predict center word v𝑡 when context words 𝑉𝑡±𝐶 is given. When you give a set of context words
𝑉𝑡±𝐶 to the network, you can estimate the probability of the center word v̂𝑡 as follows:

1. Calculate a mean embedding vector over all context words: l𝐻 = 1
2𝐶

∑︀
𝑉𝑡±𝐶

W𝐻v𝑡+𝑐

2. Calculate an output vector of the embedding vector: l𝑂 = W𝑂l𝐻

3. Calculate a probability vector of a center word: v̂𝑡 = softmax(l𝑂)

Each element of the |𝒱|-dimensional vector v̂𝑡 is a probability that a word in the vocabulary turns out to be a center
word. So, the probability 𝑝(v𝑡|𝑉𝑡±𝐶) can be estimated by a dot product of the one-hot vector v𝑡 which represents the
actual center word and the output vector v̂𝑡.

𝑝(v𝑡|𝑉𝑡±𝐶) = v𝑇
𝑡 v̂𝑡

The loss function to predict the center word v𝑡 given context words 𝑉𝑡±𝐶 is defined as follows:

𝐿(v𝑡|𝑉𝑡±𝐶 ;W𝐻 ,W𝑂) = − log (𝑝(v𝑡 | 𝑉𝑡±𝐶))

= − log(v𝑇
𝑡 v̂𝑡)

3.7.4 3. Details of Skip-gram

In this tutorial, we mainly explain Skip-gram model because

1. It is easier to understand the algorithm than CBoW.

2. Even if the number of words increases, the accuracy is largely maintained. So, it is more scalable.

So, let’s think about a concrete example of calculating Skip-gram under this setup:

• The size of vocabulary |𝒱| is 10.

• The size of embedding vector 𝐷 is 2.

• Center word is “dog”.

• Context word is “animal”.

Since there should be more than one context word, repeat the following process for each context word.

1. The one-hot vector of “dog” is [0 0 1 0 0 0 0 0 0 0] and you input it as the center word.

2. The third row of embedding matrix W𝐻 is used for the word embedding of “dog” l𝐻 .

3. Then, multiply W𝑂 with l𝐻 to obtain the output vector l𝑂.

4. Give l𝑂 to the softmax function to make it a predicted probability vector v̂𝑡+𝑐 for a context word at the position
𝑐.

5. Calculate the error between v̂𝑡+𝑐 and the one-hot vector of “animal”; [1 0 0 0 0 0 0 0 0 0 0].

6. Propagate the error back to the network to update the parameters.

108 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

3.7.5 4. Implementation of Skip-gram in Chainer

There is an example of Word2vec in the official repository of Chainer, so we will explain how to implement Skip-gram
based on this: examples/word2vec

4.1 Preparation

First, let’s import necessary packages:

Listing 23: train_word2vec.py

import argparse
import collections
import os
import six
import warnings

import numpy as np

import chainer
from chainer.backends import cuda
import chainer.functions as F
import chainer.initializers as I
import chainer.links as L
import chainer.optimizers as O
from chainer import reporter

4.2 Define a Skip-gram model

Next, let’s define a network for Skip-gram.

3.7. Word2Vec: Obtain word embeddings 109

https://github.com/chainer/chainer/tree/v6.5.0/examples/word2vec


Chainer Documentation, Release 6.5.0

Listing 24: train_word2vec.py

class SkipGram(chainer.Chain):
"""Definition of Skip-gram Model"""

def __init__(self, n_vocab, n_units, loss_func):
super(SkipGram, self).__init__()

with self.init_scope():
self.embed = L.EmbedID(

n_vocab, n_units, initialW=I.Uniform(1. / n_units))
self.loss_func = loss_func

def forward(self, x, contexts):
e = self.embed(contexts)
batch_size, n_context, n_units = e.shape
x = F.broadcast_to(x[:, None], (batch_size, n_context))
e = F.reshape(e, (batch_size * n_context, n_units))
x = F.reshape(x, (batch_size * n_context,))
loss = self.loss_func(e, x)
reporter.report({'loss': loss}, self)
return loss

Listing 25: train_word2vec.py

class SoftmaxCrossEntropyLoss(chainer.Chain):
"""Softmax cross entropy loss function preceded by linear transformation.

"""

def __init__(self, n_in, n_out):
super(SoftmaxCrossEntropyLoss, self).__init__()
with self.init_scope():

self.out = L.Linear(n_in, n_out, initialW=0)

def forward(self, x, t):
return F.softmax_cross_entropy(self.out(x), t)

Note:

• The weight matrix self.embed.W is the embedding matrix for input vector x.

• The function call forward takes the word ID of a center word x and word IDs of context words contexts as
inputs, and outputs the error calculated by the loss function loss_func s.t. SoftmaxCrossEntropyLoss.

• Note that the initial shape of x and contexts are (batch_size,) and (batch_size, n_context),
respectively.

• The batch_size means the size of mini-batch, and n_context means the number of context words.

First, we obtain the embedding vectors of contexts by e = self.embed(contexts). Then F.
broadcast_to(x[:, None], (batch_size, n_context)) performs broadcasting of x (its shape is
(batch_size,)) to (batch_size, n_context) by copying the same value n_context time to fill the
second axis, and then the broadcasted x is reshaped into 1-D vector (batchsize * n_context,) while e is re-
shaped to (batch_size * n_context, n_units). In Skip-gram model, predicting a context word from the
center word is the same as predicting the center word from a context word because the center word is always a context

110 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

word when considering the context word as a center word. So, we create batch_size * n_context center word
predictions by applying self.out linear layer to the embedding vectors of context words. Then, calculate softmax
cross entropy between the broadcasted center word ID x and the predictions.

4.3 Prepare dataset and iterator

Let’s retrieve the Penn Tree Bank (PTB) dataset by using Chainer’s dataset utility get_ptb_words() method.

train, val, _ = chainer.datasets.get_ptb_words()
counts = collections.Counter(train)

Then define an iterator to make mini-batches that contain a set of center words with their context words. train and
val means training data and validation data. Each data contains the list of Document IDs:

>>> train
array([ 0, 1, 2, ..., 39, 26, 24], dtype=int32)
>>> val
array([2211, 396, 1129, ..., 108, 27, 24], dtype=int32)

Listing 26: train_word2vec.py

class WindowIterator(chainer.dataset.Iterator):
"""Dataset iterator to create a batch of sequences at different positions.

This iterator returns a pair of the current words and the context words.
"""

def __init__(self, dataset, window, batch_size, repeat=True):
self.dataset = np.array(dataset, np.int32)
self.window = window # size of context window
self.batch_size = batch_size
self._repeat = repeat
# order is the array which is shuffled ``[window, window + 1, ...,
# len(dataset) - window - 1]``
self.order = np.random.permutation(

len(dataset) - window * 2).astype(np.int32)
self.order += window
self.current_position = 0
# Number of completed sweeps over the dataset. In this case, it is
# incremented if every word is visited at least once after the last
# increment.
self.epoch = 0
# True if the epoch is incremented at the last iteration.
self.is_new_epoch = False

def __next__(self):
"""This iterator returns a list representing a mini-batch.

Each item indicates a different position in the original sequence.
"""
if not self._repeat and self.epoch > 0:

raise StopIteration

i = self.current_position
i_end = i + self.batch_size
position = self.order[i:i_end]

(continues on next page)

3.7. Word2Vec: Obtain word embeddings 111



Chainer Documentation, Release 6.5.0

(continued from previous page)

w = np.random.randint(self.window - 1) + 1
offset = np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)])
pos = position[:, None] + offset[None, :]
contexts = self.dataset.take(pos)
center = self.dataset.take(position)

if i_end >= len(self.order):
np.random.shuffle(self.order)
self.epoch += 1
self.is_new_epoch = True
self.current_position = 0

else:
self.is_new_epoch = False
self.current_position = i_end

return center, contexts

@property
def epoch_detail(self):

return self.epoch + float(self.current_position) / len(self.order)

def serialize(self, serializer):
self.current_position = serializer('current_position',

self.current_position)
self.epoch = serializer('epoch', self.epoch)
self.is_new_epoch = serializer('is_new_epoch', self.is_new_epoch)
if self.order is not None:

serializer('order', self.order)

• In the constructor, we create an array self.order which denotes shuffled indices of [window, window
+ 1, ..., len(dataset) - window - 1] in order to choose a center word randomly from dataset
in a mini-batch.

• The iterator definition __next__ returns batch_size sets of center word and context words.

• The code self.order[i:i_end] returns the indices for a set of center words from the random-ordered
array self.order. The center word IDs center at the random indices are retrieved by self.dataset.
take.

• np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)]) creates a set of offsets to re-
trieve context words from the dataset.

• The code position[:, None] + offset[None, :] generates the indices of context words for each
center word index in position. The context word IDs context are retrieved by self.dataset.take.

4.4 Prepare model, optimizer, and updater

Listing 27: train_word2vec.py

model = SkipGram(n_vocab, args.unit, loss_func)

Listing 28: train_word2vec.py

optimizer = O.Adam()
optimizer.setup(model)

112 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

Listing 29: train_word2vec.py

train_iter = WindowIterator(train, args.window, args.batchsize)
val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)

# Set up an updater
updater = training.updaters.StandardUpdater(

train_iter, optimizer, converter=convert, device=device)

Listing 30: train_word2vec.py

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

trainer.extend(extensions.Evaluator(
val_iter, model, converter=convert, device=device))

trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(

['epoch', 'main/loss', 'validation/main/loss']))
trainer.extend(extensions.ProgressBar())

trainer.extend(
extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}'),
trigger=(args.snapshot_interval, 'epoch'))

if args.resume is not None:
chainer.serializers.load_npz(args.resume, trainer)

trainer.run()

4.5 Start training

$ pwd
/root2chainer/chainer/examples/word2vec
$ python train_word2vec.py --test # run by test mode. If you want to use all data,
→˓remove "--test".
GPU: -1
# unit: 100
Window: 5
Minibatch-size: 1000
# epoch: 20
Training model: skipgram
Output type: hsm

n_vocab: 10000
data length: 100
epoch main/loss validation/main/loss
1 4233.75 2495.33
2 1411.14 4990.66
3 4233.11 1247.66
4 2821.66 4990.65
5 4231.94 1247.66
6 5642.04 2495.3
7 5640.82 4990.64
8 5639.31 2495.28

(continues on next page)

3.7. Word2Vec: Obtain word embeddings 113



Chainer Documentation, Release 6.5.0

(continued from previous page)

9 2817.89 4990.62
10 1408.03 3742.94
11 5633.11 1247.62
12 4221.71 2495.21
13 4219.3 4990.56
14 4216.57 2495.16
15 4213.52 2495.12
16 5616.03 1247.55
17 5611.34 3742.78
18 2800.31 3742.74
19 1397.79 2494.95
20 2794.1 3742.66

4.5 Search the similar words

$ pwd
/root2chainer/chainer/examples/word2vec
$ python search.py
>> apple
query: apple
compaq: 0.6169619560241699
chip: 0.49579331278800964
retailer: 0.4904134273529053
maker: 0.4684058427810669
computer: 0.4652436673641205
>> animal
query: animal
beauty: 0.5680124759674072
human: 0.5404794216156006
insulin: 0.5365156531333923
cell: 0.5186758041381836
photographs: 0.5077002048492432

3.7.6 5. Reference

• [1] Mikolov, Tomas; et al. “Efficient Estimation of Word Representations in Vector Space”. arXiv:1301.3781

• [2] Distributional Hypothesis

3.8 Write a Sequence to Sequence (seq2seq) Model

3.8.1 0. Introduction

The sequence to sequence (seq2seq) model[1][2] is a learning model that converts an input sequence into an output
sequence. In this context, the sequence is a list of symbols, corresponding to the words in a sentence. The seq2seq
model has achieved great success in fields such as machine translation, dialogue systems, question answering, and text
summarization. All of these tasks can be regarded as the task to learn a model that converts an input sequence into an
output sequence.

114 Chapter 3. Neural Net Examples

https://arxiv.org/abs/1301.3781
https://aclweb.org/aclwiki/Distributional_Hypothesis


Chainer Documentation, Release 6.5.0

3.8.2 1. Basic Idea of Seq2seq Model

1.1 Overview of Seq2seq Model

The Notations of Sequence

The seq2seq model converts an input sequence into an output sequence. Let the input sequence and the output sequence
be X and Y. The 𝑖-th element of the input sequence is represented as x𝑖, and the 𝑗-th element of the output sequence
is also represented as y𝑗 . Generally, each of the x𝑖 and the y𝑗 is the one-hot vector of the symbols. For example, in
natural language processing(NLP), the one-hot vector represents the word and its size becomes the vocabulary size.

Let’s think about the seq2seq model in the context of NLP. Let the vocabulary of the inputs and the outputs be 𝒱(𝑠) and
𝒱(𝑡), all the elements x𝑖 and y𝑗 satisfy x𝑖 ∈ R|𝒱(𝑠)| and y𝑖 ∈ R|𝒱(𝑡)|. The input sequence X and the output sequence
Y are represented as the following equations:

X = (x1, ...,x𝐼) = (x𝑖)
𝐼
𝑖=1

Y = (y1, ...,y𝐽) = (y𝑗)
𝐽
𝑗=1

𝐼 and 𝐽 are the length of the input sequence and the output sequence. Using the typical NLP notation, y0 is the one-hot
vector of BOS, which is the virtual word representing the beginning of the sentence, and y𝐽+1 is that of EOS, which
is the virtual word representing the end of the sentence.

The Notations of Conditional Probability 𝑃 (Y|X)

Next, let’s think about the conditional probability 𝑃 (Y|X) generating the output sequence Y when the input sequence
X is given. The purpose of seq2seq model is modeling the probability 𝑃 (Y|X). However, the seq2seq model does not
model the probability 𝑃 (Y|X) directly. Actually, it models the probability 𝑃 (y𝑗 |Y<𝑗 ,X), which is the probability
of generating the 𝑗-th element of the output sequence y𝑗 given the Y<𝑗 and X. Y<𝑗 means the output sequence from
1 to 𝑗 − 1, or (y𝑗)

𝑗−1
𝑗=1. In this notation, you can write the model 𝑃𝜃(Y|X) with the product of 𝑃𝜃(y𝑗 |Y<𝑗 ,X):

𝑃𝜃(Y|X) =

𝐽+1∏︁
𝑗=1

𝑃𝜃(y𝑗 |Y<𝑗 ,X)

Processing Steps in Seq2seq Model

Now, let’s think about the processing steps in seq2seq model. The feature of seq2seq model is that it consists of the
two processes:

1. The process that generates the fixed size vector z from the input sequence X

2. The process that generates the output sequence Y from z

In other words, the information of X is conveyed by z, and 𝑃𝜃(y𝑗 |Y<𝑗 ,X) is actually calculated by 𝑃𝜃(y𝑗 |Y<𝑗 , z).

First, we represent the process which generating z from X by the function Λ:

z = Λ(X)

The function Λ may be the recurrent neural net such as LSTMs.

Second, we represent the process which generating Y from z by the following formula:

𝑃𝜃(y𝑗 |Y<𝑗 ,X) = Υ(h
(𝑡)
𝑗 ,y𝑗)

h
(𝑡)
𝑗 = Ψ(h

(𝑡)
𝑗−1,y𝑗−1)

3.8. Write a Sequence to Sequence (seq2seq) Model 115



Chainer Documentation, Release 6.5.0

Ψ is the function to generate the hidden vectors h(𝑡)
𝑗 , and Υ is the function to calculate the generative probability of

the one-hot vector y𝑗 . When 𝑗 = 1, h(𝑡)
𝑗−1 or h(𝑡)

0 is z generated by Λ(X), and y𝑗−1 or y0 is the one-hot vector of
BOS.

1.2 Model Architecture of Seq2seq Model

In this section, we describe the architecture of seq2seq model. To simplify the explanation, we use the most basic
architecture. The architecture of seq2seq model can be separated to the five major roles.

1. Encoder Embedding Layer

2. Encoder Recurrent Layer

3. Decoder Embedding Layer

4. Decoder Recurrent Layer

5. Decoder Output Layer

The encoder consists of two layers: the embedding layer and the recurrent layer, and the decoder consists of three
layers: the embedding layer, the recurrent layer, and the output layer.

In the explanation, we use the following symbols:

116 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

Symbol Definition
𝐻 the size of the hidden vector
𝐷 the size of the embedding vector
x𝑖 the one-hot vector of 𝑖-th word in the input sentence
x̄𝑖 the embedding vector of 𝑖-th word in the input sentence
E(𝑠) Embedding matrix of the encoder
h
(𝑠)
𝑖 the 𝑖-th hidden vector of the encoder

y𝑗 the one-hot vector of 𝑗-th word in the output sentence
ȳ𝑗 the embedding vector of 𝑗-th word in the output sentence
E(𝑡) Embedding matrix of the decoder
h
(𝑡)
𝑗 the 𝑗-th hidden vector of the decoder

1.2.1 Encoder Embedding Layer

The first layer, or the encoder embedding layer converts the each word in the input sentence to the embedding vector.
When processing the 𝑖-th word in the input sentence, the input and the output of the layer are the following:

• The input is x𝑖 : the one-hot vector which represents 𝑖-th word

• The output is x̄𝑖 : the embedding vector which represents 𝑖-th word

Each embedding vector is calculated by the following equation:

x̄𝑖 = E(𝑠)x𝑖

E(𝑠) ∈ R𝐷×|𝒱(𝑠)| is the embedding matrix of the encoder.

1.2.2 Encoder Recurrent Layer

The encoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the 𝑖-th
embedding vector, the input and the output of the layer are the following:

• The input is x̄𝑖 : the embedding vector which represents the 𝑖-th word

• The output is h(𝑠)
𝑖 : the hidden vector of the 𝑖-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
Ψ(𝑠):

h
(𝑠)
𝑖 = Ψ(𝑠)(x̄𝑖,h

(𝑠)
𝑖−1)

= tanh

(︂
W(𝑠)

[︂
h
(𝑠)
𝑖−1

x̄𝑖

]︂
+ b(𝑠)

)︂
In this case, we use the tanh as the activation function.

1.2.3 Decoder Embedding Layer

The decoder embedding layer converts the each word in the output sentence to the embedding vector. When processing
the 𝑗-th word in the output sentence, the input and the output of the layer are the following:

• The input is y𝑗−1 : the one-hot vector which represents the (𝑗 − 1)-th word generated by the decoder output
layer

3.8. Write a Sequence to Sequence (seq2seq) Model 117



Chainer Documentation, Release 6.5.0

• The output is ȳ𝑗 : the embedding vector which represents the (𝑗 − 1)-th word

Each embedding vector is calculated by the following equation:

ȳ𝑗 = E(𝑡)y𝑗−1

E(𝑡) ∈ R𝐷×|𝒱(𝑡)| is the embedding matrix of the encoder.

1.2.4 Decoder Recurrent Layer

The decoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the 𝑗-th
embedding vector, the input and the output of the layer are the following:

• The input is ȳ𝑗 : the embedding vector

• The output is h(𝑡)
𝑗 : the hidden vector of 𝑗-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
Ψ(𝑡):

h
(𝑡)
𝑗 = Ψ(𝑡)(ȳ𝑗 ,h

(𝑡)
𝑗−1)

= tanh

(︂
W(𝑡)

[︂
h
(𝑡)
𝑗−1

ȳ𝑗

]︂
+ b(𝑡)

)︂
In this case, we use the tanh as the activation function. And we must use the encoder’s hidden vector of the last
position as the decoder’s hidden vector of first position as following:

h
(𝑡)
0 = z = h

(𝑠)
𝐼

1.2.5 Decoder Output Layer

The decoder output layer generates the probability of the 𝑗-th word of the output sentence from the hidden vector.
When processing the 𝑗-th embedding vector, the input and the output of the layer are the following:

• The input is h(𝑡)
𝑗 : the hidden vector of 𝑗-th position

• The output is 𝑝𝑗 : the probability of generating the one-hot vector y𝑗 of the 𝑗-th word

𝑝𝑗 = 𝑃𝜃(y𝑗 |Y<𝑗) = softmax(o𝑗) · y𝑗

= softmax(W(𝑜)h
(𝑡)
𝑗 + b(𝑜)) · y𝑗

Note: There are a lot of varieties of seq2seq models. We can use the different RNN models in terms of: (1) directional-
ity (unidirectional or bidirectional), (2) depth (single-layer or multi-layer), (3) type (a vanilla RNN, a Long Short-term
Memory (LSTM), or a gated recurrent unit (GRU)), and (4) additional functionality (s.t. Attention Mechanism).

3.8.3 2. Implementation of Seq2seq Model

The official Chainer repository includes a neural machine translation example using the seq2seq model. We
will now provide an overview of the example and explain its implementation in detail. chainer/examples/seq2seq

118 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/seq2seq


Chainer Documentation, Release 6.5.0

2.1 Model Overview

In this simple example, an input sequence is processed by a stacked LSTM-RNN (long short-term memory recurrent
neural networks) and it is encoded as a fixed-size vector. The output sequence is also processed by another stacked
LSTM-RNN. At decoding time, an output sequence is generated using argmax.

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 31: seq2seq.py

import io

from nltk.translate import bleu_score
import numpy
import progressbar
import six

import chainer
import chainer.functions as F

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 119



Chainer Documentation, Release 6.5.0

(continued from previous page)

import chainer.links as L
from chainer import training

2.2.2 Define Training Settings

Define all training settings here.

Listing 32: seq2seq.py

parser.add_argument('SOURCE', help='source sentence list')
parser.add_argument('TARGET', help='target sentence list')
parser.add_argument('SOURCE_VOCAB', help='source vocabulary file')
parser.add_argument('TARGET_VOCAB', help='target vocabulary file')
parser.add_argument('--validation-source',

help='source sentence list for validation')
parser.add_argument('--validation-target',

help='target sentence list for validation')
parser.add_argument('--batchsize', '-b', type=int, default=64,

help='number of sentence pairs in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,

help='number of sweeps over the dataset to train')
parser.add_argument('--resume', '-r', type=str,

help='resume the training from snapshot')
parser.add_argument('--save', '-s', type=str,

help='save a snapshot of the training')
parser.add_argument('--unit', '-u', type=int, default=1024,

help='number of units')
parser.add_argument('--layer', '-l', type=int, default=3,

help='number of layers')
parser.add_argument('--use-dataset-api', default=False,

action='store_true',
help='use TextDataset API to reduce CPU memory usage')

parser.add_argument('--min-source-sentence', type=int, default=1,
help='minimium length of source sentence')

parser.add_argument('--max-source-sentence', type=int, default=50,
help='maximum length of source sentence')

parser.add_argument('--min-target-sentence', type=int, default=1,
help='minimium length of target sentence')

parser.add_argument('--max-target-sentence', type=int, default=50,
help='maximum length of target sentence')

parser.add_argument('--log-interval', type=int, default=200,
help='number of iteration to show log')

parser.add_argument('--validation-interval', type=int, default=4000,
help='number of iteration to evlauate the model '
'with validation dataset')

parser.add_argument('--device', '-d', type=str, default='-1',
help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer, '
'CuPy arrays with specified device id are used. If '
'negative integer, NumPy arrays are used')

parser.add_argument('--out', '-o', default='result',
help='directory to output the result')

group = parser.add_argument_group('deprecated arguments')
group.add_argument('--gpu', '-g', dest='device',

type=int, nargs='?', const=0,

(continues on next page)

120 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

(continued from previous page)

help='GPU ID (negative value indicates CPU)')

2.2.3 Define Network Structure

The Chainer implementation of seq2seq is shown below. It implements the model depicted in the above figure.

Listing 33: seq2seq.py

class Seq2seq(chainer.Chain):

def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
super(Seq2seq, self).__init__()
with self.init_scope():

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID(n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.W = L.Linear(n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

# Both xs and ys_in are lists of arrays.
exs = sequence_embed(self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)
# None represents a zero vector in an encoder.
hx, cx, _ = self.encoder(None, None, exs)
_, _, os = self.decoder(hx, cx, eys)

# It is faster to concatenate data before calculating loss
# because only one matrix multiplication is called.
concat_os = F.concat(os, axis=0)
concat_ys_out = F.concat(ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy(

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report({'loss': loss}, self)
n_words = concat_ys_out.shape[0]
perp = self.xp.exp(loss.array * batch / n_words)
chainer.report({'perp': perp}, self)
return loss

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode(), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 121



Chainer Documentation, Release 6.5.0

(continued from previous page)

exs = sequence_embed(self.embed_x, xs)
h, c, _ = self.encoder(None, None, exs)
ys = self.xp.full(batch, EOS, numpy.int32)
result = []
for i in range(max_length):

eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)
h, c, ys = self.decoder(h, c, eys)
cys = F.concat(ys, axis=0)
wy = self.W(cys)
ys = self.xp.argmax(wy.array, axis=1).astype(numpy.int32)
result.append(ys)

# Using `xp.concatenate(...)` instead of `xp.stack(result)` here to
# support NumPy 1.9.
result = chainer.get_device('@numpy').send(

self.xp.concatenate([x[None, :] for x in result]).T)

# Remove EOS taggs
outs = []
for y in result:

inds = numpy.argwhere(y == EOS)
if len(inds) > 0:

y = y[:inds[0, 0]]
outs.append(y)

return outs

• In Seq2seq, three functions are defined: the constructor __init__, the function call forward, and the
function for translation translate.

Listing 34: seq2seq.py

def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
super(Seq2seq, self).__init__()
with self.init_scope():

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID(n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.W = L.Linear(n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

• When we instantiate this class for making a model, we give the number of stacked lstms to n_layers, the
vocabulary size of the source language to n_source_vocab, the vocabulary size of the target language to
n_target_vocab, and the size of hidden vectors to n_units.

• This network uses chainer.links.NStepLSTM , chainer.links.EmbedID, and chainer.
links.Linear as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

• You can access all the parameters in those layers by calling self.params().

• In the constructor, it initializes all parameters with values sampled from a uniform distribution 𝑈(−1, 1).

122 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

Listing 35: seq2seq.py

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

# Both xs and ys_in are lists of arrays.
exs = sequence_embed(self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)
# None represents a zero vector in an encoder.
hx, cx, _ = self.encoder(None, None, exs)
_, _, os = self.decoder(hx, cx, eys)

# It is faster to concatenate data before calculating loss
# because only one matrix multiplication is called.
concat_os = F.concat(os, axis=0)
concat_ys_out = F.concat(ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy(

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report({'loss': loss}, self)
n_words = concat_ys_out.shape[0]
perp = self.xp.exp(loss.array * batch / n_words)
chainer.report({'perp': perp}, self)
return loss

• The forward method takes sequences of source language’s word IDs xs and sequences of target language’s
word IDs ys. Each sequence represents a sentence, and the size of xs is mini-batch size.

• Note that the sequences of word IDs xs and ys are converted to a vocabulary-size one-hot vectors and then
multiplied with the embedding matrix in sequence_embed to obtain embedding vectors exs and eys.

Listing 36: seq2seq.py

def sequence_embed(embed, xs):
x_len = [len(x) for x in xs]
x_section = numpy.cumsum(x_len[:-1])
ex = embed(F.concat(xs, axis=0))
exs = F.split_axis(ex, x_section, 0)
return exs

• self.encoder and self.decoder are the encoder and the decoder of the seq2seq model. Each element
of the decoder output os is ℎ(𝑡)[1:𝐽] in the figure above.

• After calculating the recurrent layer output, the loss loss and the perplexity perp are calculated, and the
values are logged by chainer.report.

Note: It is well known that the seq2seq model learns much better when the source sentences are reversed. The
paper[1] says that “While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not reversed). By doing
so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU scores of its decoded translations increased
from 25.9 to 30.6.” So, at the first line in the forward, the input sentences are reversed xs = [x[::-1] for x

3.8. Write a Sequence to Sequence (seq2seq) Model 123



Chainer Documentation, Release 6.5.0

in xs].

Listing 37: seq2seq.py

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode(), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]
exs = sequence_embed(self.embed_x, xs)
h, c, _ = self.encoder(None, None, exs)
ys = self.xp.full(batch, EOS, numpy.int32)
result = []
for i in range(max_length):

eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)
h, c, ys = self.decoder(h, c, eys)
cys = F.concat(ys, axis=0)
wy = self.W(cys)
ys = self.xp.argmax(wy.array, axis=1).astype(numpy.int32)
result.append(ys)

# Using `xp.concatenate(...)` instead of `xp.stack(result)` here to
# support NumPy 1.9.
result = chainer.get_device('@numpy').send(

self.xp.concatenate([x[None, :] for x in result]).T)

# Remove EOS taggs
outs = []
for y in result:

inds = numpy.argwhere(y == EOS)
if len(inds) > 0:

y = y[:inds[0, 0]]
outs.append(y)

return outs

• After the model learned the parameters, the function translate is called to generate the translated sentences
outs from the source sentences xs.

• So as not to change the parameters, the codes for the translation are nested in the scope chainer.
no_backprop_mode() and chainer.using_config('train', False).

2.2.4 Load French-English Corpus from WMT15 Dataset

In this tutorial, we use French-English corpus from WMT15 website that contains 10^9 documents. We must prepare
additional libraries, dataset, and parallel corpus. To understand the pre-processing, see 2.3.1 Requirements.

After the pre-processing the dataset, let’s make dataset objects:

Listing 38: seq2seq.py

# Load pre-processed dataset
print('[{}] Loading dataset... (this may take several minutes)'.format(

datetime.datetime.now()))
source_ids = load_vocabulary(args.SOURCE_VOCAB)
target_ids = load_vocabulary(args.TARGET_VOCAB)

(continues on next page)

124 Chapter 3. Neural Net Examples

http://www.statmt.org/wmt15/translation-task.html


Chainer Documentation, Release 6.5.0

(continued from previous page)

if args.use_dataset_api:
# By using TextDataset, you can avoid loading whole dataset on memory.
# This significantly reduces the host memory usage.
def _filter_func(s, t):

sl = len(s.strip().split()) # number of words in source line
tl = len(t.strip().split()) # number of words in target line
return (

args.min_source_sentence <= sl <= args.max_source_sentence and
args.min_target_sentence <= tl <= args.max_target_sentence)

train_data = load_data_using_dataset_api(
source_ids, args.SOURCE,
target_ids, args.TARGET,
_filter_func,

)
else:

# Load all records on memory.
train_source = load_data(source_ids, args.SOURCE)
train_target = load_data(target_ids, args.TARGET)
assert len(train_source) == len(train_target)

train_data = [
(s, t)
for s, t in six.moves.zip(train_source, train_target)
if (args.min_source_sentence <= len(s) <= args.max_source_sentence

and
args.min_target_sentence <= len(t) <= args.max_target_sentence)

]
print('[{}] Dataset loaded.'.format(datetime.datetime.now()))

if not args.use_dataset_api:
# Skip printing statistics when using TextDataset API, as it is slow.
train_source_unknown = calculate_unknown_ratio(

[s for s, _ in train_data])
train_target_unknown = calculate_unknown_ratio(

[t for _, t in train_data])

print('Source vocabulary size: %d' % len(source_ids))
print('Target vocabulary size: %d' % len(target_ids))
print('Train data size: %d' % len(train_data))
print('Train source unknown ratio: %.2f%%' % (

train_source_unknown * 100))
print('Train target unknown ratio: %.2f%%' % (

train_target_unknown * 100))

target_words = {i: w for w, i in target_ids.items()}
source_words = {i: w for w, i in source_ids.items()}

• This code uses utility functions below:

Listing 39: seq2seq.py

def load_vocabulary(path):
with io.open(path, encoding='utf-8') as f:

# +2 for UNK and EOS
(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 125



Chainer Documentation, Release 6.5.0

(continued from previous page)

word_ids = {line.strip(): i + 2 for i, line in enumerate(f)}
word_ids['<UNK>'] = 0
word_ids['<EOS>'] = 1
return word_ids

Listing 40: seq2seq.py

def load_data(vocabulary, path):
n_lines = count_lines(path)
bar = progressbar.ProgressBar()
data = []
print('loading...: %s' % path)
with io.open(path, encoding='utf-8') as f:

for line in bar(f, max_value=n_lines):
words = line.strip().split()
array = numpy.array([vocabulary.get(w, UNK)

for w in words], numpy.int32)
data.append(array)

return data

Listing 41: seq2seq.py

def calculate_unknown_ratio(data):
unknown = sum((s == UNK).sum() for s in data)
total = sum(s.size for s in data)
return unknown / total

2.2.5 Define Evaluation Function (Bleu Score)

BLEU[3] (bilingual evaluation understudy) is the evaluation metric for the quality of text which has been machine-
translated from one natural language to another.

Listing 42: seq2seq.py

class CalculateBleu(chainer.training.Extension):

trigger = 1, 'epoch'
priority = chainer.training.PRIORITY_WRITER

def __init__(
self, model, test_data, key, device, batch=100, max_length=100):

self.model = model
self.test_data = test_data
self.key = key
self.batch = batch
self.device = device
self.max_length = max_length

def __call__(self, trainer):
device = self.device

with chainer.no_backprop_mode():
references = []
hypotheses = []

(continues on next page)

126 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

(continued from previous page)

for i in range(0, len(self.test_data), self.batch):
sources, targets = zip(*self.test_data[i:i + self.batch])
references.extend([[t.tolist()] for t in targets])

sources = [device.send(x) for x in sources]
ys = [y.tolist()

for y in self.model.translate(sources, self.max_length)]
hypotheses.extend(ys)

bleu = bleu_score.corpus_bleu(
references, hypotheses,
smoothing_function=bleu_score.SmoothingFunction().method1)

chainer.report({self.key: bleu})

2.2.6 Create Iterator

Here, the code below just creates iterator objects.

Listing 43: seq2seq.py

train_iter = chainer.iterators.SerialIterator(train_data, args.batchsize)

2.2.7 Create RNN and Classification Model

Instantiate Seq2seq model.

Listing 44: seq2seq.py

model = Seq2seq(args.layer, len(source_ids), len(target_ids), args.unit)

2.2.8 Setup Optimizer

Prepare an optimizer. We use chainer.optimizers.Adam.

Listing 45: seq2seq.py

optimizer = chainer.optimizers.Adam()
optimizer.setup(model)

2.2.9 Setup and Run Trainer

Let’s make a trainer object.

Listing 46: seq2seq.py

updater = training.updaters.StandardUpdater(
train_iter, optimizer, converter=convert, device=device)

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 127



Chainer Documentation, Release 6.5.0

(continued from previous page)

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(extensions.LogReport(

trigger=(args.log_interval, 'iteration')))
trainer.extend(extensions.PrintReport(

['epoch', 'iteration', 'main/loss', 'main/perp',
'validation/main/bleu', 'elapsed_time']),

trigger=(args.log_interval, 'iteration'))

trainer.extend(
extensions.snapshot(filename='snapshot_epoch_{.updater.iteration}'),
trigger=(args.validation_interval, 'iteration'))

Setup the trainer’s extension to see the BLEU score on the test data.

Listing 47: seq2seq.py

test_source = load_data(source_ids, args.validation_source)
test_target = load_data(target_ids, args.validation_target)
assert len(test_source) == len(test_target)
test_data = list(six.moves.zip(test_source, test_target))
test_data = [(s, t) for s, t in test_data if 0 < len(s) and 0 < len(t)]
test_source_unknown = calculate_unknown_ratio(

[s for s, _ in test_data])
test_target_unknown = calculate_unknown_ratio(

[t for _, t in test_data])

print('Validation data: %d' % len(test_data))
print('Validation source unknown ratio: %.2f%%' %

(test_source_unknown * 100))
print('Validation target unknown ratio: %.2f%%' %

(test_target_unknown * 100))

@chainer.training.make_extension()
def translate(trainer):

source, target = test_data[numpy.random.choice(len(test_data))]
result = model.translate([model.xp.array(source)])[0]

source_sentence = ' '.join([source_words[x] for x in source])
target_sentence = ' '.join([target_words[y] for y in target])
result_sentence = ' '.join([target_words[y] for y in result])
print('# source : ' + source_sentence)
print('# result : ' + result_sentence)
print('# expect : ' + target_sentence)

trainer.extend(
translate, trigger=(args.validation_interval, 'iteration'))

trainer.extend(
CalculateBleu(

model, test_data, 'validation/main/bleu', device),
trigger=(args.validation_interval, 'iteration'))

if args.resume is not None:
# Resume from a snapshot
chainer.serializers.load_npz(args.resume, trainer)

Let’s start the training!

128 Chapter 3. Neural Net Examples



Chainer Documentation, Release 6.5.0

Listing 48: seq2seq.py

trainer.run()

if args.save is not None:
# Save a snapshot
chainer.serializers.save_npz(args.save, trainer)

2.3 Run Example

2.3.1 Requirements

Before running the example, you must prepare additional libraries, dataset, and parallel corpus.

• See the detail description: chainer/examples/seq2seq/README.md

2.3.1 Training the model

You can train the model with the script: chainer/examples/seq2seq/seq2seq.py

$ pwd
/root2chainer/chainer/examples/seq2seq
$ python seq2seq.py --gpu=0 giga-fren.preprocess.en giga-fren.preprocess.fr \
vocab.en vocab.fr \
--validation-source newstest2013.preprocess.en \
--validation-target newstest2013.preprocess.fr > log
100% (22520376 of 22520376) |#############| Elapsed Time: 0:09:20 Time: 0:09:20
100% (22520376 of 22520376) |#############| Elapsed Time: 0:10:36 Time: 0:10:36
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
epoch iteration main/loss validation/main/loss main/perp validation/main/
→˓perp validation/main/bleu elapsed_time
0 200 171.449 991.556
→˓ 85.6739
0 400 143.918 183.594
→˓ 172.473
0 600 133.48 126.945
→˓ 260.315
0 800 128.734 104.127
→˓ 348.062
0 1000 124.741 91.5988
→˓ 436.536
...

Note: Before running the script, be careful the locale and the python’s encoding. Please setup them to use utf-8
encoding.

3.8. Write a Sequence to Sequence (seq2seq) Model 129

https://github.com/chainer/chainer/tree/master/examples/seq2seq/README.md
https://github.com/chainer/chainer/tree/master/examples/seq2seq/seq2seq.py


Chainer Documentation, Release 6.5.0

2.3.1 Validate the model

While you are training the model, you can get the validation results:

...
# source : We knew the Government had tried many things , like launching <UNK> with
→˓<UNK> or organising speed dating evenings .
# result : Nous savions que le gouvernement avait <UNK> plusieurs fois , comme le
→˓<UNK> <UNK> , le <UNK> ou le <UNK> <UNK> .
# expect : Nous savions que le gouvernement avait tenté plusieurs choses comme lancer
→˓des parfums aux <UNK> ou organiser des soirées de <UNK>
...

3.8.4 3. Reference

• [1] Sequence to Sequence Learning with Neural Networks

• [2] Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

• [3] BLEU

130 Chapter 3. Neural Net Examples

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
https://en.wikipedia.org/wiki/BLEU


CHAPTER

FOUR

API REFERENCE

4.1 Variable and Parameter

4.1.1 Variable classes and utilities

chainer.Variable Array with a structure to keep track of computation.
chainer.as_variable Converts an array or a variable into Variable.
chainer.Parameter Parameter variable that can be registered to a link.
chainer.variable.VariableNode Node in the backward computational graph representing

a variable.

chainer.Variable

class chainer.Variable(data=None, *, name=None, grad=None, requires_grad=True)
Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy.ndarray or cupy.ndarray.

A variable object holds a data array and a VariableNode object of a computational graph. If the variable
is constructed by the user, the node is root and does not hold any parent. If the variable is constructed by a
FunctionNode object (i.e., by calling functions under chainer.functions or user-defined functions),
or by using operators (see the list below), the node holds a reference to its parent called creator_node. This
reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling no_backprop_mode() (resp.
force_backprop_mode()). In the former context, a variable never creates a computational graph, whereas
in the latter context, it is forced to create.

Note: The following operators are defined for variable(s).

• Indexing: a[slices] (__getitem__())

• Addition: a + b (__add__(), __radd__())

• Subtraction: a - b (__sub__(), __rsub__())

• Multiplication: a * b (__mul__(), __rmul__())

• Division: a / b (__div__(), __rdiv__(), __truediv__(), __rtruediv__())

• Floor Division: a // b (__floordiv__(), __rfloordiv__())

• Exponentiation: a ** b (__pow__(), __rpow__())

131

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

• Matrix Multiplication: a @ b (__matmul__(), __rmatmul__())

• Negation (Arithmetic): - a (__neg__())

• Absolute value: abs(a) (__abs__())

Parameters

• data (N-dimensional array) – Initial data array.

• name (str) – Name of the variable.

• grad (N-dimensional array) – Initial gradient array.

• requires_grad (bool) – Boolean indicating whether grad will be set in backward
calculation.

Methods

__getitem__(slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[ 0, 1, 2],

[ 3, 4, 5]],

[[ 6, 7, 8],
[ 9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])

(continues on next page)

132 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[ 2, 5],

[ 8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

__len__()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

__copy__()

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of data is () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to
False.

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16

4.1. Variable and Parameter 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata(var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable) – Source variable.

debug_print()
Display a summary of the stored data and location of the Variable

from_chx()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array
held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.

Returns The element of the array.

Return type int or float

reshape(*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

set_creator_node(fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) – Function node that has this variable as an output.

summary()

134 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

to_chx()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu()
Copies the data and gradient arrays to CPU.

to_device(device)
Copies the data and gradient arrays to specified device.

Parameters device – Target device specifier. See get_device() for available values.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

to_intel64()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy.ndarray.

transpose(*axes)
Permute the dimensions of an input variable without copy.

See also:

chainer.functions.transpose() for full documentation.

unchain()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward(), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

zerograd()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads() instead.

__eq__(other)
This operator is not supported in Variables.

__ne__(other)
This operator is not supported in Variables.

__lt__(other)
This operator is not supported in Variables.

4.1. Variable and Parameter 135

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

__le__(other)
This operator is not supported in Variables.

__gt__(other)
This operator is not supported in Variables.

__ge__(other)
This operator is not supported in Variables.

__nonzero__()
This operator is not supported in Variables.

__bool__()
This operator is not supported in Variables.

__neg__()
Element-wise negation.

Returns Output variable.

Return type Variable

__abs__()
Element-wise absolute.

Returns Output variable.

Return type Variable

__add__()
Element-wise addition.

Returns Output variable.

Return type Variable

__radd__()
Element-wise addition.

Returns Output variable.

Return type Variable

__sub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__rsub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__mul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__rmul__(rhs)
Element-wise multiplication.

136 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Returns Output variable.

Return type Variable

__div__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__truediv__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__rdiv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__rtruediv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__floordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__rfloordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__pow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__rpow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__matmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

4.1. Variable and Parameter 137



Chainer Documentation, Release 6.5.0

__rmatmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes

T
Transposition of this variable.

array
The underlying data array.

It is either numpy.ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx_array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.

If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Function), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain(); it purges the variable from the function that created this variable.

The setter also accepts the original FunctionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode() object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode() object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array , you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

device
Device on which the data array of this variable reside.

dtype

138 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

label
Short text that represents the variable.

name

ndim

node

rank

requires_grad
It indicates that grad will be set in backward calculation.

shape

size

xp
Array module for the data array of this variable.

chainer.as_variable

chainer.as_variable(obj)
Converts an array or a variable into Variable.

This is a convenient function to get a Variable object transparently from a raw array or a variable.

Note that this function should only be used for type consistency (i.e., to enforce the return value of an API
having type Variable). The requires_grad flag is kept as is; if obj is a raw array, the newly created
variable has requires_grad = False. In order to make a variable w.r.t. which you want to compute the
gradient, you should use Variable directly.

Parameters obj (N-dimensional array or ~chainer.Variable) – An array or a variable that you want
to convert to Variable.

Returns A variable converted from obj. If obj is a raw array, this is a new Variable object that
wraps the array. If obj is already a Variable object, this function returns obj as is.

Return type Variable

chainer.Parameter

class chainer.Parameter(initializer=None, shape=None, name=None)
Parameter variable that can be registered to a link.

Parameter is a subclass of Variable. It almost behaves as same as a usual variable except that a parameter
can be registered to a Link object just by assigning it to an attribute of the link within an init_scope()
context.

4.1. Variable and Parameter 139



Chainer Documentation, Release 6.5.0

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and
the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and
the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to an GradientMethod, an update rule is
set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient
array.

Parameters

• initializer (~chainer.Initializer or N-dimensional array) – Initializer of the data array.
If shape is given, this initializer is immediately used to initialize the data array. Otherwise,
if it is an array, it is immediately used as the data array, and otherwise the data array is left
uninitialized and will be initialized by this initializer in initialize(). It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

• shape (int or tuple of int or None) – Shape of the parameter. If it is None,
the initialization is deferred to the call of initialize().

• name (str) – Name of the parameter.

Variables

• initializer – Initializer of the data array. It is used for initializing the data array of an
uninitialized variable.

• update_rule – UpdateRule instance that updates this variable as a parameter. This
argument is set to update_rule.

Methods

__getitem__(slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

140 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html


Chainer Documentation, Release 6.5.0

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[ 0, 1, 2],

[ 3, 4, 5]],

[[ 6, 7, 8],
[ 9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[ 2, 5],

[ 8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

__len__()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

__copy__()

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of data is () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to

4.1. Variable and Parameter 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

False.

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata(var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable) – Source variable.

debug_print()
Display a summary of the stored data and location of the Variable

from_chx()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array
held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

initialize(shape)
Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and
initializes the data array. The shape of the variable can be left unknown until this method is called.

Parameters shape (tuple of int) – Shape of the data array.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.

Returns The element of the array.

Return type int or float

reshape(*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

142 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

set_creator_node(fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) – Function node that has this variable as an output.

summary()

to_chx()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu()
Copies the data and gradient arrays to CPU.

to_device(device)
Copies the data and gradient arrays to specified device.

Parameters device – Target device specifier. See get_device() for available values.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

to_intel64()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy.ndarray.

transpose(*axes)
Permute the dimensions of an input variable without copy.

See also:

chainer.functions.transpose() for full documentation.

unchain()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward(), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

4.1. Variable and Parameter 143

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

update()
Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

zerograd()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads() instead.

__eq__(other)
This operator is not supported in Variables.

__ne__(other)
This operator is not supported in Variables.

__lt__(other)
This operator is not supported in Variables.

__le__(other)
This operator is not supported in Variables.

__gt__(other)
This operator is not supported in Variables.

__ge__(other)
This operator is not supported in Variables.

__nonzero__()
This operator is not supported in Variables.

__bool__()
This operator is not supported in Variables.

__neg__()
Element-wise negation.

Returns Output variable.

Return type Variable

__abs__()
Element-wise absolute.

Returns Output variable.

Return type Variable

__add__()
Element-wise addition.

Returns Output variable.

Return type Variable

__radd__()
Element-wise addition.

Returns Output variable.

Return type Variable

144 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

__sub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__rsub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__mul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__rmul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__div__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__truediv__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__rdiv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__rtruediv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__floordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__rfloordiv__(rhs)
Element-wise floor division.

Returns Output variable.

4.1. Variable and Parameter 145



Chainer Documentation, Release 6.5.0

Return type Variable

__pow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__rpow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__matmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

__rmatmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes

T
Transposition of this variable.

array
The underlying data array.

It is either numpy.ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx_array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.

If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Function), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain(); it purges the variable from the function that created this variable.

146 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

The setter also accepts the original FunctionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode() object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode() object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array , you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

device
Device on which the data array of this variable reside.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

initializer = None

label
Short text that represents the variable.

name

ndim

node

rank

requires_grad
It indicates that grad will be set in backward calculation.

shape

size

xp
Array module for the data array of this variable.

chainer.variable.VariableNode

class chainer.variable.VariableNode(variable, name, **kwargs)
Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation
(a.k.a. backprop) to determine which gradient to be passed to each function.

4.1. Variable and Parameter 147



Chainer Documentation, Release 6.5.0

A variable node is held by the corresponding Variable object, which is managed by users. FunctionNode
objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually
accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a
weak reference to the variable object, and thus the data array is accessible via the weak reference.

2. If retain_data() is called, the node holds a reference to the data array. It is mainly called by a
function that needs the input or output data array in its backprop procedure. See FunctionNode.
retain_inputs() and FunctionNode.retain_outputs() for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed
by Chainer, and any interface that is beneficial for users is also provided by Variable.

Parameters

• variable (Variable) – The corresponding variable object.

• name (str) – Name of the variable node.

Variables

• dtype – Data type of the data array.

• shape – Shape of the data array.

• name (str) – Name of the variable node.

Methods

get_variable()
Returns the corresponding Variable object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by
this property. Otherwise, this property creates a new Variable object from this node object and returns
it.

Returns The variable object that refers this node.

Return type Variable

get_variable_or_none()
Returns the holding Variable object or None.

VariableNode object holds a weak reference of the variable object.If the reference is alive, it is returned by
this property. Otherwise, returns None.

Returns The variable object that refers this node.

Return type Variable

retain_data()
Lets the node hold a reference to the underlying data array.

This method gets the data array of the corresponding variable and keeps it. If the weak reference to the
corresponding variable is dead, it raises an error.

set_creator(creator)
Sets a Function object that created this node.

This method is equivalent to self.creator = creator. A FunctionNode object can also be
passed.

148 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters creator (Function or FunctionNode) – Function that has created this
variable.

set_creator_node(creator_node)
Sets a FunctionNode object that created this node.

This method is equivalent to self.creator_node = creator_node. A Function object can
also be passed, in which case the Function.node attribute is used.

Parameters creator_node (FunctionNode or Function) – Function node that has
this variable as an output.

unchain()
Deletes the reference to the creator of this variable node.

This method is equivalent to self.creator_node = None.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

creator
Function object that created this variable node.

When the function is implemented with the old-style API (i.e., it uses Function class), this property
returns the Function object. The object is extracted from the FunctionAdapter object, so the
returned object is not the function node, but instead the actual implementation of forward and backward
procedures.

When the function is implemented with the new-style API (i.e., it uses FunctionNode class), this prop-
erty returns the function node object. In this case, the returned object is same as creator_node.

Warning: As of v3.0.0, when the creator is an old-style function, the following code is invalid:

creator = v.creator
v.creator = None
...
v.creator = creator

The point is that FunctionNode objects are used as nodes in the computational graph instead
of Function, and each Function object only holds a weak reference to the corresponding
FunctionNode. Since creator returns the Function object, the FunctionNode object is
not kept by preserving creator.

4.1. Variable and Parameter 149



Chainer Documentation, Release 6.5.0

The above code should be fixed as follows.

creator_node = v.creator_node
v.creator_node = None
...
v.creator_node = creator_node

creator_node
Function node that has this variable as an output.

See FunctionNode for the definition of a function node.

data
Data array of the corresponding variable.

If the data is not available, it returns None.

grad
Gradient array of the corresponding variable.

If the variable is not available, it returns None.

grad_var
Gradient variable of the corresponding variable.

If the corresponding variable is not available, it return None.

label
Short text that represents the variable node.

rank

requires_grad
It indicates that grad will be set in backward calculation.

4.1.2 N-dimensional array

chainer.Variable holds its value as an n-dimensional array (ndarray). Chainer supports the following classes:

• numpy.ndarray, including ideep4py.mdarray

• cupy.ndarray

• chainerx.ndarray

Note: Python scalars (float, etc.) and NumPy scalars (numpy.float16, numpy.float32, etc.) cannot be
used as chainer.Variable.array . See also chainer.utils.force_array().

4.2 Functions

Chainer provides variety of built-in function implementations in chainer.functions package. These functions
usually return a Variable object or a tuple of multiple Variable objects. For a Variable argument of a
function, an N-dimensional array can be passed if you do not need its gradient. Some functions additionally supports
scalar arguments.

150 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

Note: Functions implemented in Chainer consists of the following two parts:

• A class that inherits FunctionNode, which defines forward/backward computation.

• A “wrapper” function around the class.

APIs listed in this page are “wrapper” of FunctionNode implementations. In most cases, you don’t have to use
FunctionNode classes directly.

For example, chainer.functions.sum() is a wrapper function defined as def sum(...): in
chainer/functions/math/sum.py, and it calls its corresponding FunctionNode implementation, Sum. Some func-
tions may not have the corresponding FunctionNode implementation; one example is chainer.functions.
average(), which is defined in chainer/functions/math/average.py, which calls other wrapper functions to calculate
average.

If you are implementing your own functions, please see Define your own function.

4.2.1 Arithmetic functions

Basic arithmetic operations for Variables are implemented as operators. Refer to the Notes section of Variable
for details.

chainer.functions.add() provides better performance when accumulating three or more Variables at
once.

chainer.functions.add Element-wise addition.

chainer.functions.add

chainer.functions.add(*xs)
Element-wise addition.

Returns Output variable.

Return type Variable

4.2.2 Activation functions

chainer.functions.clipped_relu Clipped Rectifier Unit function.
chainer.functions.crelu Concatenated Rectified Linear Unit function.
chainer.functions.elu Exponential Linear Unit function.
chainer.functions.hard_sigmoid Element-wise hard-sigmoid function.
chainer.functions.leaky_relu Leaky Rectified Linear Unit function.
chainer.functions.log_softmax Channel-wise log-softmax function.
chainer.functions.lstm Long Short-Term Memory units as an activation func-

tion.
chainer.functions.maxout Maxout activation function.
chainer.functions.prelu Parametric ReLU function.
chainer.functions.rrelu Randomized Leaky Rectified Liner Unit function.
chainer.functions.relu Rectified Linear Unit function.
chainer.functions.relu6 Rectifier Unit function clipped at 6.

Continued on next page

4.2. Functions 151

https://github.com/chainer/chainer/blob/master/chainer/functions/math/sum.py
https://github.com/chainer/chainer/blob/master/chainer/functions/math/average.py


Chainer Documentation, Release 6.5.0

Table 3 – continued from previous page
chainer.functions.selu Scaled Exponential Linear Unit function.
chainer.functions.sigmoid Element-wise sigmoid logistic function.
chainer.functions.slstm S-LSTM units as an activation function.
chainer.functions.softmax Softmax function.
chainer.functions.softplus Element-wise softplus function.
chainer.functions.swish Swish activation function.
chainer.functions.tanh Elementwise hyperbolic tangent function.
chainer.functions.tree_lstm TreeLSTM unit as an activation function.

chainer.functions.clipped_relu

chainer.functions.clipped_relu(x, z=20.0)
Clipped Rectifier Unit function.

For a clipping value 𝑧(> 0), it computes

ClippedReLU(𝑥, 𝑧) = min(max(0, 𝑥), 𝑧).

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float
array.

• z (float) – Clipping value. (default = 20.0)

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float array.

Return type Variable

Example

>>> x = np.random.uniform(-100, 100, (10, 20)).astype(np.float32)
>>> z = 10.0
>>> np.any(x < 0)
True
>>> np.any(x > z)
True
>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.array < 0)
False
>>> np.any(y.array > z)
False

chainer.functions.crelu

chainer.functions.crelu(x, axis=1)
Concatenated Rectified Linear Unit function.

This function is expressed as follows

𝑓(𝑥) = (max(0, 𝑥),max(0,−𝑥)).

152 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Here, two output values are concatenated along an axis.

See: https://arxiv.org/abs/1603.05201

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float
array.

• axis (int) – Axis that the output values are concatenated along. Default is 1.

Returns Output variable of concatenated array. If the axis is 1, A (𝑠1, 𝑠2 × 2, ..., 𝑠𝑁 )-shaped float
array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1., 0.],

[ 2., -3.]], dtype=float32)
>>> y = F.crelu(x, axis=1)
>>> y.array
array([[0., 0., 1., 0.],

[2., 0., 0., 3.]], dtype=float32)

chainer.functions.elu

chainer.functions.elu(x, alpha=1.0)
Exponential Linear Unit function.

For a parameter 𝛼, it is expressed as

𝑓(𝑥) =

{︂
𝑥 if 𝑥 ≥ 0
𝛼(exp(𝑥)− 1) if 𝑥 < 0,

See: https://arxiv.org/abs/1511.07289

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float
array.

• alpha (float) – Parameter 𝛼. Default is 1.0.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1., 0.],

[ 2., -3.]], dtype=float32)
>>> y = F.elu(x, alpha=1.)
>>> y.array

(continues on next page)

4.2. Functions 153

https://arxiv.org/abs/1603.05201
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1511.07289
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

(continued from previous page)

array([[-0.63212055, 0. ],
[ 2. , -0.95021296]], dtype=float32)

chainer.functions.hard_sigmoid

chainer.functions.hard_sigmoid(x)
Element-wise hard-sigmoid function.

This function is defined as

𝑓(𝑥) =

⎧⎨⎩ 0 if 𝑥 < −2.5
0.2𝑥+ 0.5 if − 2.5 < 𝑥 < 2.5
1 if 2.5 < 𝑥.

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.array([-2.6, -1, 0, 1, 2.6])
>>> x
array([-2.6, -1. , 0. , 1. , 2.6])
>>> F.hard_sigmoid(x).array
array([0. , 0.3, 0.5, 0.7, 1. ])

chainer.functions.leaky_relu

chainer.functions.leaky_relu(x, slope=0.2)
Leaky Rectified Linear Unit function.

This function is expressed as

𝑓(𝑥) =

{︂
𝑥 if 𝑥 ≥ 0
𝑎𝑥 if 𝑥 < 0,

where 𝑎 is a configurable slope value.

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float
array.

• slope (float) – Slope value 𝑎.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

Example

154 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> x
array([[-1., 0.],

[ 2., -3.],
[-2., 1.]], dtype=float32)

>>> F.leaky_relu(x, slope=0.2).array
array([[-0.2, 0. ],

[ 2. , -0.6],
[-0.4, 1. ]], dtype=float32)

chainer.functions.log_softmax

chainer.functions.log_softmax(x, axis=1)
Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝐷) be the slice of
x along with the second axis. For each slice 𝑐, it computes the logarithm of the function 𝑓(𝑐) defined as

𝑓(𝑐) =
exp(𝑐)∑︀
𝑑 exp(𝑐𝑑)

.

This method is theoretically equivalent to log(softmax(x)) but is more stable.

Note: log(softmax(x)) may cause underflow when x is too small, because softmax(x) may returns
0. log_softmax method is more stable.

Parameters

• x (Variable or N-dimensional array) – Input variable. A 𝑛-dimensional (𝑛 ≥ 2) float
array.

• axis (int) – The axis along which the softmax is to be computed.

Returns Output variable. A 𝑛-dimensional (𝑛 ≥ 2) float array, which is the same shape with x.

Return type Variable

See also:

softmax()

Example

>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],

[0., 2., 4.]], dtype=float32)
>>> F.log_softmax(x).array
array([[-2.407606 , -1.4076059 , -0.4076059 ],

[-4.1429315 , -2.1429315 , -0.14293146]], dtype=float32)
>>> np.allclose(F.log_softmax(x).data, F.log(F.softmax(x)).data)
True

4.2. Functions 155

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.lstm

chainer.functions.lstm(c_prev, x)
Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state c_prev and the input array
x.

First, the input array x is split into four arrays 𝑎, 𝑖, 𝑓, 𝑜 of the same shapes along the second axis. It means that
x ‘s second axis must have 4 times the c_prev ‘s second axis.

The split input arrays are corresponding to:

• 𝑎 : sources of cell input

• 𝑖 : sources of input gate

• 𝑓 : sources of forget gate

• 𝑜 : sources of output gate

Second, it computes the updated cell state c and the outgoing signal h as:

𝑐 = tanh(𝑎)𝜎(𝑖) + 𝑐prev𝜎(𝑓),

ℎ = tanh(𝑐)𝜎(𝑜),

where 𝜎 is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or
smaller than that of the previous one. When mini-batch size of x is smaller than that of c, this function only
updates c[0:len(x)] and doesn’t change the rest of c, c[len(x):]. So, please sort input sequences in
descending order of lengths before applying the function.

Parameters

• c_prev (Variable or N-dimensional array) – Variable that holds the previous cell state.
The cell state should be a zero array or the output of the previous call of LSTM.

• x (Variable or N-dimensional array) – Variable that holds the sources of cell input, input
gate, forget gate and output gate. It must have the second dimension whose size is four times
of that of the cell state.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.

See also:

LSTM

Example

Assuming y is the current incoming signal, c is the previous cell state, and h is the previous outgoing signal
from an lstm function. Each of y, c and h has n_units channels. Most typical preparation of x is:

>>> n_units = 100
>>> y = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h = chainer.Variable(np.zeros((1, n_units), np.float32))

(continues on next page)

156 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
http://www.felixgers.de/papers/phd.pdf
http://www.felixgers.de/papers/phd.pdf


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> c = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(n_units, 4 * n_units)
... model.v = L.Linear(n_units, 4 * n_units)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)

It corresponds to calculate the input array x, or the input sources 𝑎, 𝑖, 𝑓, 𝑜, from the current incoming signal y
and the previous outgoing signal h. Different parameters are used for different kind of input sources.

Note: We use the naming rule below.

• incoming signal The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of
lower RNN layer). The input of chainer.links.LSTM is the incoming signal.

• input array The array which is linear transformed from incoming signal and the previous outgoing signal.
The input array contains four sources, the sources of cell input, input gate, forget gate and output gate.
The input of chainer.functions.activation.lstm.LSTM is the input array.

chainer.functions.maxout

chainer.functions.maxout(x, pool_size, axis=1)
Maxout activation function.

It accepts an input tensor x, reshapes the axis dimension (say the size being M * pool_size) into two
dimensions (M, pool_size), and takes maximum along the axis dimension.

Parameters

• x (Variable or N-dimensional array) – Input variable. A 𝑛-dimensional (𝑛 ≥ axis)
float array. In general, its first dimension is assumed to be the minibatch dimension. The
other dimensions are treated as one concatenated dimension.

• pool_size (int) – The size used for downsampling of pooling layer.

• axis (int) – The axis dimension to be reshaped. The size of axis dimension should
be M * pool_size.

Returns Output variable. The shape of the output is same as x except that axis dimension is
transformed from M * pool_size to M.

Return type Variable

See also:

Maxout

Example

Typically, x is the output of a linear layer or a convolution layer. The following is the example where we use
maxout() in combination with a Linear link.

4.2. Functions 157

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

>>> in_size, out_size, pool_size = 10, 10, 10
>>> bias = np.arange(out_size * pool_size).astype(np.float32)
>>> l = L.Linear(in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((1, in_size), np.float32) # prepare data
>>> x = l(x)
>>> y = F.maxout(x, pool_size)
>>> x.shape
(1, 100)
>>> y.shape
(1, 10)
>>> x.reshape((out_size, pool_size)).array
array([[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.],

[10., 11., 12., 13., 14., 15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24., 25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34., 35., 36., 37., 38., 39.],
[40., 41., 42., 43., 44., 45., 46., 47., 48., 49.],
[50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],
[60., 61., 62., 63., 64., 65., 66., 67., 68., 69.],
[70., 71., 72., 73., 74., 75., 76., 77., 78., 79.],
[80., 81., 82., 83., 84., 85., 86., 87., 88., 89.],
[90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]], dtype=float32)

>>> y.array
array([[ 9., 19., 29., 39., 49., 59., 69., 79., 89., 99.]], dtype=float32)

chainer.functions.prelu

chainer.functions.prelu(x, W)
Parametric ReLU function.

It accepts two arguments: an input x and a weight array W and computes the output as

𝑃𝑅𝑒𝐿𝑈(𝑥𝑖) =

{︃
𝑥𝑖 (𝑥𝑖 > 0)

𝑊𝑖 * 𝑥𝑖 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

Parameters

• x (Variable or N-dimensional array) – Input variable. Its first axis is assumed to be the
minibatch dimension.

• W (Variable or N-dimensional array) – Weight variable.

Returns Output variable

Return type Variable

Example

>>> x = np.arange(-3, 3, dtype=np.float32).reshape((2, 3))
>>> x
array([[-3., -2., -1.],

[ 0., 1., 2.]], dtype=float32)
>>> W = np.array([0.01, 0.1, 1], dtype=np.float32)
>>> W
array([0.01, 0.1 , 1. ], dtype=float32)
>>> F.prelu(x, W)

(continues on next page)

158 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

(continued from previous page)

variable([[-0.03, -0.2 , -1. ],
[ 0. , 1. , 2. ]])

Note: When the PReLU function is combined with two-dimensional convolution, the elements of parameter
𝑊 are typically shared across the same filter of different pixels. In order to support such usage, this func-
tion supports the shape of parameter array that indicates leading dimensions of input arrays except the batch
dimension.

For example, if 𝑊 has the shape of (2, 3, 4), 𝑥 must have the shape of (𝐵, 2, 3, 4, 𝑆1, ..., 𝑆𝑁 ) where 𝐵 is the
batch size and the number of trailing 𝑆’s 𝑁 is an arbitrary non-negative integer.

Warning: 𝑊 is a trainable parameter in the original paper (https://arxiv.org/abs/1502.01852). To train 𝑊 ,
use chainer.links.PReLU instead.

See also:

chainer.links.PReLU to manage the model parameter W.

chainer.functions.rrelu

chainer.functions.rrelu(x, l=1. / 8, u=1. / 3, *, r=None, return_r=False)
Randomized Leaky Rectified Liner Unit function.

This function is expressed as

𝑓(𝑥) = max(𝑥, 𝑟𝑥),

where 𝑟 is a random number sampled from a uniform distribution 𝑈(𝑙, 𝑢).

Note: The 𝑟 corresponds to 𝑎 in the original paper (https://arxiv.org/pdf/1505.00853.pdf).

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float
array.

• l (float) – The lower bound of the uniform distribution.

• u (float) – The upper bound of the uniform distribution.

• r (N-dimensional array or None) – The r to be used for rrelu. The shape and dtype must be
the same as x[0] and should be on the same device. If r is not specified or set to None, an
r will be generated randomly according to the given l and u. If r is specified, l and u will
be ignored.

• return_r (bool) – If True, the r used for rrelu is returned altogether with the output
variable. The returned r can latter be reused by passing it to r argument.

Returns When return_r is False (default), return the output variable. Otherwise returnes the
tuple of the output variable and r (N-dimensional array). The r will be on the same device as
the input. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

4.2. Functions 159

https://arxiv.org/abs/1502.01852
https://arxiv.org/pdf/1505.00853.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Return type Variable or tuple

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> x
array([[-1., 0.],

[ 2., -3.],
[-2., 1.]], dtype=float32)

>>> F.rrelu(x).array
array([[-0.24850948, 0. ],

[ 2. , -0.50844127],
[-0.598535 , 1. ]], dtype=float32)

chainer.functions.relu

chainer.functions.relu(x)
Rectified Linear Unit function.

𝑓(𝑥) = max(0, 𝑥).

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> np.any(x < 0)
True
>>> y = F.relu(x)
>>> np.any(y.array < 0)
False
>>> y.shape
(3, 2)

chainer.functions.relu6

chainer.functions.relu6(x)
Rectifier Unit function clipped at 6.

It computes

ReLU6(𝑥) = min(max(0, 𝑥), 6).

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float
array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float array.

160 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Return type Variable

See also:

chainer.functions.clipped_relu()

Example

>>> x = np.array([-20, -2, 0, 2, 4, 10, 100]).astype(np.float32)
>>> x
array([-20., -2., 0., 2., 4., 10., 100.], dtype=float32)
>>> F.relu6(x)
variable([0., 0., 0., 2., 4., 6., 6.])

chainer.functions.selu

chainer.functions.selu(x, alpha=1.6732632423543772, scale=1.0507009873554805)
Scaled Exponential Linear Unit function.

For parameters 𝛼 and 𝜆, it is expressed as

𝑓(𝑥) = 𝜆

{︂
𝑥 if 𝑥 ≥ 0
𝛼(exp(𝑥)− 1) if 𝑥 < 0,

See: https://arxiv.org/abs/1706.02515

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float
array.

• alpha (float) – Parameter 𝛼.

• scale (float) – Parameter 𝜆.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

chainer.functions.sigmoid

chainer.functions.sigmoid(x)
Element-wise sigmoid logistic function.

𝑓(𝑥) = (1 + exp(−𝑥))−1.

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

4.2. Functions 161

https://arxiv.org/abs/1706.02515
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.sigmoid(x).array
array([0.11920291, 0.5 , 0.8807971 ], dtype=float32)

chainer.functions.slstm

chainer.functions.slstm(c_prev1, c_prev2, x1, x2)
S-LSTM units as an activation function.

This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function
is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states c_prev1
and c_prev2, and input arrays x1 and x2.

First both input arrays x1 and x2 are split into eight arrays 𝑎1, 𝑖1, 𝑓1, 𝑜1, and 𝑎2, 𝑖2, 𝑓2, 𝑜2. They have the same
shape along the second axis. It means that x1 and x2 ‘s second axis must have 4 times the length of c_prev1
and c_prev2.

The split input arrays are corresponding to:

• 𝑎𝑖 : sources of cell input

• 𝑖𝑖 : sources of input gate

• 𝑓𝑖 : sources of forget gate

• 𝑜𝑖 : sources of output gate

It computes the updated cell state c and the outgoing signal h as:

𝑐 = tanh(𝑎1 + 𝑎2)𝜎(𝑖1 + 𝑖2) + 𝑐prev1𝜎(𝑓1) + 𝑐prev2𝜎(𝑓2),

ℎ = tanh(𝑐)𝜎(𝑜1 + 𝑜2),

where 𝜎 is the elementwise sigmoid function. The function returns c and h as a tuple.

Parameters

• c_prev1 (Variable or N-dimensional array) – Variable that holds the previous cell state
of the first child node. The cell state should be a zero array or the output of the previous call
of LSTM.

• c_prev2 (Variable or N-dimensional array) – Variable that holds the previous cell state
of the second child node.

• x1 (Variable or N-dimensional array) – Variable that holds the sources of cell input,
input gate, forget gate and output gate from the first child node. It must have the second
dimension whose size is four times of that of the cell state.

• x2 (Variable or N-dimensional array) – Variable that holds the input sources from the
second child node.

Returns Two Variable objects c and h. c is the cell state. h indicates the outgoing signal.

Return type tuple

See detail in paper: Long Short-Term Memory Over Tree Structures.

Example

162 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1503.04881


Chainer Documentation, Release 6.5.0

Assuming c1, c2 is the previous cell state of children, and h1, h2 is the previous outgoing signal from children.
Each of c1, c2, h1 and h2 has n_units channels. Most typical preparation of x1, x2 is:

>>> n_units = 100
>>> h1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h2 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c2 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> model1 = chainer.Chain()
>>> with model1.init_scope():
... model1.w = L.Linear(n_units, 4 * n_units)
... model1.v = L.Linear(n_units, 4 * n_units)
>>> model2 = chainer.Chain()
>>> with model2.init_scope():
... model2.w = L.Linear(n_units, 4 * n_units)
... model2.v = L.Linear(n_units, 4 * n_units)
>>> x1 = model1.w(c1) + model1.v(h1)
>>> x2 = model2.w(c2) + model2.v(h2)
>>> c, h = F.slstm(c1, c2, x1, x2)

It corresponds to calculate the input array x1, or the input sources 𝑎1, 𝑖1, 𝑓1, 𝑜1 from the previous cell state of
first child node c1, and the previous outgoing signal from first child node h1. Different parameters are used for
different kind of input sources.

chainer.functions.softmax

chainer.functions.softmax(x, axis=1)
Softmax function.

This function computes its softmax along an axis. Let 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝐷) be the slice of x along with the axis.
For each slice 𝑐, it computes the function 𝑓(𝑐) defined as 𝑓(𝑐) = exp(𝑐)∑︀

𝑑 exp(𝑐𝑑)
.

Parameters

• x (Variable or N-dimensional array) – Input variable. A 𝑛-dimensional (𝑛 ≥ 2) float
array.

• axis (int) – The axis along which the softmax is to be computed.

Returns Output variable. A 𝑛-dimensional (𝑛 ≥ 2) float array, which is the same shape with x.

Return type Variable

Example

>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],

[0., 2., 4.]], dtype=float32)
>>> y = F.softmax(x, axis=1)
>>> y.array
array([[0.09003057, 0.24472848, 0.66524094],

[0.01587624, 0.11731043, 0.86681336]], dtype=float32)
>>> F.sum(y, axis=1).array
array([1., 1.], dtype=float32)

4.2. Functions 163

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.softplus

chainer.functions.softplus(x, beta=1.0)
Element-wise softplus function.

The softplus function is the smooth approximation of ReLU.

𝑓(𝑥) =
1

𝛽
log(1 + exp(𝛽𝑥)),

where 𝛽 is a parameter. The function becomes curved and akin to ReLU as the 𝛽 is increasing.

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float
array.

• beta (float) – Parameter 𝛽.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

Example

>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.softplus(x, beta=1.0).array
array([0.126928 , 0.6931472, 2.126928 ], dtype=float32)

chainer.functions.swish

chainer.functions.swish(x, beta)
Swish activation function.

𝑓(𝑥, 𝛽) = 𝑥 · 𝜎(𝛽𝑥),

where 𝜎(·) is the sigmoid function. It has the following properties:

𝑓(𝑥, 0) =
𝑥

2
,

lim
𝛽→∞

𝑓(𝑥, 𝛽) = max(0, 𝑥).

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑠𝐵 , 𝑠1, 𝑠2, ..., 𝑠𝑁 ), where
𝑠𝐵 is assumed to be the minibatch dimension.

• beta (Variable or N-dimensional array) – Parameter variable 𝛽 of shape
(𝑠1, 𝑠2, ..., 𝑠𝑀 ), where 𝑀 is an arbitrary integer between 0 ≤ 𝑀 ≤ 𝑁 . The number of
dimensions of beta will be matched with x by reshaping it as (1, 𝑠1, ..., 𝑠𝑀 , 1, ...1), then
beta and x are multiplied together in an element-wise manner.

Returns Output variable of the same shape as x.

Return type Variable

164 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Warning: 𝛽 is a trainable parameter in the original paper (https://arxiv.org/abs/1710.05941). To train 𝛽,
use chainer.links.Swish instead.

See also:

chainer.links.Swish to manage the model parameter beta.

chainer.functions.tanh

chainer.functions.tanh(x)
Elementwise hyperbolic tangent function.

𝑓(𝑥) = tanh(𝑥).

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

Return type Variable

Example

>>> x = np.arange(-1, 4, 2).astype(np.float32)
>>> x
array([-1., 1., 3.], dtype=float32)
>>> F.tanh(x).array
array([-0.7615942, 0.7615942, 0.9950548], dtype=float32)

chainer.functions.tree_lstm

chainer.functions.tree_lstm(*inputs)
TreeLSTM unit as an activation function.

This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the chil-
dren cell states 𝑐1, 𝑐2, . . . , 𝑐N, and the incoming signal 𝑥.

First, the incoming signal 𝑥 is split into (3 + N) arrays 𝑎, 𝑖, 𝑜, 𝑓1, 𝑓2, ..., 𝑓N of the same shapes along the second
axis. It means that 𝑥 ‘s second axis must have (3 + N) times of the length of each 𝑐𝑛.

The splitted input signals are corresponding to:

• 𝑎 : sources of cell input

• 𝑖 : sources of input gate

• 𝑜 : sources of output gate

• 𝑓𝑛 : sources of forget gate for n-th ary

4.2. Functions 165

https://arxiv.org/abs/1710.05941


Chainer Documentation, Release 6.5.0

Second, it computes outputs as:

𝑐 = tanh(𝑎)sigmoid(𝑖)

+ 𝑐1sigmoid(𝑓1),

+ 𝑐2sigmoid(𝑓2),

+ ...,

+ 𝑐Nsigmoid(𝑓N),

ℎ = tanh(𝑐)sigmoid(𝑜).

These are returned as a tuple of (N + 1) variables.

Parameters inputs (list of Variable) – Variable arguments which include all cell vectors from
child-nodes, and an input vector. Each of the cell vectors and the input vector is Variable or
N-dimensional array. The input vector must have the second dimension whose size is (N + 3)
times of that of each cell, where N denotes the total number of cells.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. only has one 𝑊 matrix to be applied to 𝑥, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

Example

Assuming y is the current input signal, c is the previous cell state, and h is the previous output signal from an
tree_lstm() function. Each of y, c and h has n_units channels. Using 2-ary (binary) TreeLSTM, most
typical preparation of x is:

>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(10, 5 * 10)
... model.v1 = L.Linear(10, 5 * 10)
... model.v2 = L.Linear(10, 5 * 10)
>>> y = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h1 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c1 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> x = model.w(y) + model.v1(h1) + model.v2(h2)
>>> c, h = F.tree_lstm(c1, c2, x)

It corresponds to calculate the input sources 𝑎, 𝑖, 𝑜, 𝑓1, 𝑓2 from the current input y and the children’s outputs h1
and h2. Different parameters are used for different kind of input sources.

4.2.3 Array manipulations

166 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf


Chainer Documentation, Release 6.5.0

chainer.functions.as_strided Create a new view of array with the given shape, strides,
and offset.

chainer.functions.broadcast Broadcast given variables.
chainer.functions.broadcast_to Broadcast a given variable to a given shape.
chainer.functions.cast Cast an input variable to a given type.
chainer.functions.concat Concatenates given variables along an axis.
chainer.functions.copy Copies the input variable onto the specified device.
chainer.functions.depth2space Computes the depth2space transformation for subpixel

calculations.
chainer.functions.diagonal Take diagonal
chainer.functions.dstack Concatenate variables along third axis (depth wise).
chainer.functions.expand_dims Expands dimensions of an input variable without copy.
chainer.functions.flatten Flatten a given array into one dimension.
chainer.functions.flip Flips an input variable in reverse order along the given

axis.
chainer.functions.fliplr Flip array in the left/right direction.
chainer.functions.flipud Flip array in the up/down direction.
chainer.functions.get_item Extract elements from array with specified shape, axes

and offsets.
chainer.functions.hstack Concatenate variables horizontally (column wise).
chainer.functions.im2col Extract patches from an image based on the filter.
chainer.functions.moveaxis Move the source axes to the destination.
chainer.functions.pad Pad an input variable.
chainer.functions.pad_sequence Pad given arrays to make a matrix.
chainer.functions.permutate Permutates a given variable along an axis.
chainer.functions.repeat Construct an array by repeating a given array.
chainer.functions.reshape Reshapes an input variable without copy.
chainer.functions.resize_images Resize images to the given shape.
chainer.functions.rollaxis Roll the axis backwards to the given position.
chainer.functions.scatter_add Adds given values to specified elements of an array.
chainer.functions.select_item Select elements stored in given indices.
chainer.functions.separate Separates an array along a given axis.
chainer.functions.space2depth Computes the space2depth transformation for subpixel

calculations.
chainer.functions.
spatial_transformer_grid

2D Spatial Transformer grid.

chainer.functions.
spatial_transformer_sampler

2D Spatial Transformer sampler.

chainer.functions.split_axis Splits given variables along an axis.
chainer.functions.squeeze Remove dimensions of size one from the shape of a

ndarray.
chainer.functions.stack Concatenate variables along a new axis.
chainer.functions.swapaxes Swap two axes of a variable.
chainer.functions.tile Construct an array by tiling a given array.
chainer.functions.transpose Permute the dimensions of an input variable without

copy.
chainer.functions.transpose_sequence Transpose a list of Variables.
chainer.functions.vstack Concatenate variables vertically (row wise).
chainer.functions.where Choose elements depending on condition.

4.2. Functions 167



Chainer Documentation, Release 6.5.0

chainer.functions.as_strided

chainer.functions.as_strided(x, shape, strides, storage_offset=None)
Create a new view of array with the given shape, strides, and offset.

Parameters

• x (tuple of Variable or numpy.ndarray or cupy.ndarray) – The array pointing a
memory buffer. Its view is totally ignored.

• shape (tuple of int) – The shape of output.

• strides (tuple of int) – The strides of output, given in the unit of steps.

• storage_offset (int) – The offset between the head of allocated memory and the
pointer of first element, given in the unit of steps.

Returns The strided variable.

Return type Variable

Warning: Users should be aware that this function potentially causes unintended side effects. See
numpy.lib.stride_tricks.as_strided for the detail.

Note: The backward algorithm is borrowed from torch.Tensor.as_strided. Therefore, the returned gradient of
backward is layout-agnostic when x contains memory overlap. See notes in pytorch’s source code (as_strided
Backward and layout-aware/agnostic autograd) too.

Note: In this function strides and storage_offset are given in the unit of steps instead of bytes. This
specification differs from numpy.lib.stride_tricks.as_strided().

Example

>>> from chainer import functions as F, Variable
>>> x = Variable(np.arange(4, dtype=np.float32))
>>> x
variable([0., 1., 2., 3.])
>>> y = F.as_strided(x, (3, 2), (1, 1), 0)
>>> y
variable([[0., 1.],

[1., 2.],
[2., 3.]])

>>> y.grad = np.ones((3, 2), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([1., 2., 2., 1.], dtype=float32)

chainer.functions.broadcast

chainer.functions.broadcast(*args)
Broadcast given variables.

168 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided


Chainer Documentation, Release 6.5.0

Parameters args (Variable or N-dimensional array) – Input variables to be broadcasted. Each
dimension of the shapes of the input variables must have the same size.

Returns Variable or tuple of Variable objects which are broadcasted from the given argu-
ments.

Return type Variable

Example

>>> x = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y = F.broadcast(x)
>>> np.all(x == y.array)
True
>>> z = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y, w = F.broadcast(x, z)
>>> np.all(x == y.array) & np.all(z == w.array)
True

chainer.functions.broadcast_to

chainer.functions.broadcast_to(x, shape)
Broadcast a given variable to a given shape.

Parameters

• x (Variable or N-dimensional array) – Input variable to be broadcasted. A
(𝑠1, 𝑠2, ..., 𝑠𝑁 )-shaped float array.

• shape (tuple) – Tuple of int of the shape of the output variable.

Returns Output variable broadcasted to the given shape.

Return type Variable

Example

>>> x = np.arange(0, 3)
>>> x
array([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.array
array([[0, 1, 2],

[0, 1, 2],
[0, 1, 2]])

chainer.functions.cast

chainer.functions.cast(x, typ)
Cast an input variable to a given type.

Parameters

• x (Variable or N-dimensional array) – Input variable to be casted. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )-
shaped array.

4.2. Functions 169

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• typ (str of dtype or numpy.dtype) – Typecode or data type to cast.

Returns Variable holding a casted array.

Return type Variable

Example

>>> x = np.arange(0, 3, dtype=np.float64)
>>> x.dtype
dtype('float64')
>>> y = F.cast(x, np.float32)
>>> y.dtype
dtype('float32')
>>> y = F.cast(x, 'float16')
>>> y.dtype
dtype('float16')

chainer.functions.concat

chainer.functions.concat(xs, axis=1)
Concatenates given variables along an axis.

Parameters

• xs (tuple of Variable or N-dimensional array) – Input variables to be concatenated. The
variables must have the same shape, except in the dimension corresponding to axis.

• axis (int) – The axis along which the arrays will be joined. Default is 1.

Returns The concatenated variable.

Return type Variable

Example

>>> x = np.arange(0, 12).reshape(3, 4)
>>> x
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> y = np.arange(0, 3).reshape(3, 1)
>>> y
array([[0],

[1],
[2]])

>>> z = F.concat((x, y), axis=1)
>>> z.array
array([[ 0, 1, 2, 3, 0],

[ 4, 5, 6, 7, 1],
[ 8, 9, 10, 11, 2]])

170 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.copy

chainer.functions.copy(x, dst)
Copies the input variable onto the specified device.

If the input x already resides on the device specified by dst, no copy will actually take place and the returned
variable will hold a view of the input. In other cases, the input will be copied to dst. When dst == -1, the
array is copied to the host memory. This function supports copies from host to host, from host to device, from
device to device and from device to host.

Parameters

• x (Variable or N-dimensional array) – Variable to be copied.

• dst (int) – Target device specifier.

Returns Output variable.

Return type Variable

Example

>>> import chainer.backends.cuda as cuda
>>> x = np.random.uniform(-1, 1, (5, 10))
>>> cuda.get_device_from_array(x).id
-1
>>> y = F.copy(x, 0) # from host to device0
>>> cuda.get_device_from_array(y.array).id
0
>>> z = F.copy(y, -1) # from device0 to host
>>> cuda.get_device_from_array(z.array).id
-1

chainer.functions.depth2space

chainer.functions.depth2space(X, r)
Computes the depth2space transformation for subpixel calculations.

Parameters

• X (Variable or N-dimensional array) – Variable holding a 4d array of shape (batch,
channel * r * r, dim1, dim2).

• r (int) – the upscaling factor.

Returns A variable holding the upscaled array from interspersed depth layers. The shape is
(batch, channel, dim1 * r, dim2 * r).

Return type Variable

Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for
details.

See also:

space2depth()

4.2. Functions 171

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158


Chainer Documentation, Release 6.5.0

Example

>>> X = np.arange(24).reshape(1, 4, 2, 3).astype(np.float32)
>>> X.shape
(1, 4, 2, 3)
>>> X
array([[[[ 0., 1., 2.],

[ 3., 4., 5.]],

[[ 6., 7., 8.],
[ 9., 10., 11.]],

[[12., 13., 14.],
[15., 16., 17.]],

[[18., 19., 20.],
[21., 22., 23.]]]], dtype=float32)

>>> y = F.depth2space(X, 2)
>>> y.shape
(1, 1, 4, 6)
>>> y.array
array([[[[ 0., 6., 1., 7., 2., 8.],

[12., 18., 13., 19., 14., 20.],
[ 3., 9., 4., 10., 5., 11.],
[15., 21., 16., 22., 17., 23.]]]], dtype=float32)

chainer.functions.diagonal

chainer.functions.diagonal(x, offset=0, axis1=0, axis2=1)
Take diagonal

Axes other than axis1 and axis2 are regarded as batch dimensions.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• offset (int) – Offset from the principal diagonal. An upper diagonal matrix can have
nonzero diagonals with nonnegative offsets.

• axis1 (int) – First axis (that has row indices) of matrix

• axis2 (int) – Second axis (that has column indices) of matrix

Returns (Batched) diagonal vectors

Return type Variable

Example

>>> x = chainer.Variable(np.arange(9).reshape(3, 3).astype(np.float32))
>>> x
variable([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.]])

>>> chainer.functions.diagonal(x, offset=1)
variable([1., 5.])

172 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.dstack

chainer.functions.dstack(xs)
Concatenate variables along third axis (depth wise).

Parameters xs (list of Variable or N-dimensional array) – Input variables to be concatenated.
The variables must have the same ndim. When the variables have the third axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 3),
the variables must have the same shape along all but the third axis. When the variables do not
have the third axis(i.e. 𝑛𝑑𝑖𝑚 < 3), the variables must have the same shape.

Returns Output variable. When the input variables have the third axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 3), the shapes
of inputs and output are the same along all but the third axis. The length of third axis is the sum
of the lengths of inputs’ third axis. When the shape of variables are (N1, N2) (i.e. 𝑛𝑑𝑖𝑚 = 2),
the shape of output is (N1, N2, 2). When the shape of variables are (N1,) (i.e. 𝑛𝑑𝑖𝑚 = 1),
the shape of output is (1, N1, 2). When the shape of variables are () (i.e. 𝑛𝑑𝑖𝑚 = 0), the
shape of output is (1, 1, 2).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.dstack((x1, x2))
>>> y.shape
(1, 3, 2)
>>> y.array
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> x1 = np.arange(0, 6).reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array([[0, 1],

[2, 3],
[4, 5]])

>>> x2 = np.arange(6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[ 6, 7],

[ 8, 9],
[10, 11]])

>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 2)
>>> y.array
array([[[ 0, 6],

(continues on next page)

4.2. Functions 173



Chainer Documentation, Release 6.5.0

(continued from previous page)

[ 1, 7]],

[[ 2, 8],
[ 3, 9]],

[[ 4, 10],
[ 5, 11]]])

>>> x1 = np.arange(0, 12).reshape(3, 2, 2)
>>> x2 = np.arange(12, 18).reshape(3, 2, 1)
>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 3)
>>> y.array
array([[[ 0, 1, 12],

[ 2, 3, 13]],

[[ 4, 5, 14],
[ 6, 7, 15]],

[[ 8, 9, 16],
[10, 11, 17]]])

chainer.functions.expand_dims

chainer.functions.expand_dims(x, axis)
Expands dimensions of an input variable without copy.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• axis (int) – Position where new axis is to be inserted. The axis parameter is acceptable
when −𝑛𝑑𝑖𝑚 − 1 ≤ 𝑎𝑥𝑖𝑠 ≤ 𝑛𝑑𝑖𝑚. (ndim is the dimension of input variables). When
𝑎𝑥𝑖𝑠 < 0, the result is the same with 𝑛𝑑𝑖𝑚+ 1− |𝑎𝑥𝑖𝑠|.

Returns Variable that holds an expanded input. The ndim of output is one greater than that of x.

Return type Variable

Example

>>> x = np.array([1, 2, 3])
>>> x.shape
(3,)
>>> y = F.expand_dims(x, axis=0)
>>> y.shape
(1, 3)
>>> y.array
array([[1, 2, 3]])
>>> y = F.expand_dims(x, axis=1)
>>> y.shape
(3, 1)
>>> y.array

(continues on next page)

174 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

array([[1],
[2],
[3]])

>>> y = F.expand_dims(x, axis=-2)
>>> y.shape
(1, 3)
>>> y.array
array([[1, 2, 3]])

chainer.functions.flatten

chainer.functions.flatten(x)
Flatten a given array into one dimension.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable flatten to one dimension.

Return type Variable

Note: When you input a scalar array (i.e. the shape is ()), you can also get the one dimension array whose
shape is (1,).

Example

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.flatten(x)
>>> y.shape
(4,)
>>> y.array
array([1, 2, 3, 4])

>>> x = np.arange(8).reshape(2, 2, 2)
>>> x.shape
(2, 2, 2)
>>> y = F.flatten(x)
>>> y.shape
(8,)
>>> y.array
array([0, 1, 2, 3, 4, 5, 6, 7])

chainer.functions.flip

chainer.functions.flip(x, axis)
Flips an input variable in reverse order along the given axis.

Parameters

• x (Variable or N-dimensional array) – Input variable.

4.2. Functions 175



Chainer Documentation, Release 6.5.0

• axis (int) – Axis along which the input variable is reversed.

Returns Output variable.

Return type Variable

chainer.functions.fliplr

chainer.functions.fliplr(a)
Flip array in the left/right direction.

Parameters a (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.flipud

chainer.functions.flipud(a)
Flip array in the up/down direction.

Parameters a (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.get_item

chainer.functions.get_item(x, slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the selection
of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64
and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

176 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html


Chainer Documentation, Release 6.5.0

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[ 0, 1, 2],

[ 3, 4, 5]],

[[ 6, 7, 8],
[ 9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[ 2, 5],

[ 8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

chainer.functions.hstack

chainer.functions.hstack(xs)
Concatenate variables horizontally (column wise).

Parameters xs (list of Variable or N-dimensional array) – Input variables to be concatenated.
The variables must have the same ndim. When the variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥
2), the variables must have the same shape along all but the second axis. When the variables do
not have the second axis(i.e. 𝑛𝑑𝑖𝑚 < 2), the variables need not to have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the shapes
of inputs and output are the same along all but the second axis. The length of second axis is the
sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e.
𝑛𝑑𝑖𝑚 < 2), the shape of output is (N, ) (N is the sum of the input variables’ size).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.hstack((x1, x2))
>>> y.shape
(6,)
>>> y.array
array([1, 2, 3, 2, 3, 4])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],

(continues on next page)

4.2. Functions 177



Chainer Documentation, Release 6.5.0

(continued from previous page)

[ 8, 9, 10, 11]])
>>> x2 = np.arange(12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],

[14, 15],
[16, 17]])

>>> y = F.hstack([x1, x2])
>>> y.shape
(3, 6)
>>> y.array
array([[ 0, 1, 2, 3, 12, 13],

[ 4, 5, 6, 7, 14, 15],
[ 8, 9, 10, 11, 16, 17]])

chainer.functions.im2col

chainer.functions.im2col(x, ksize, stride=1, pad=0, cover_all=False, dilate=1)
Extract patches from an image based on the filter.

This function rearranges patches of an image and puts them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of stride from the first position -pad for each spatial
axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.

• 𝑛 is the batch size.

• 𝑐 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

• 𝑠𝑌 and 𝑠𝑋 are the strides of the filter.

• 𝑝𝐻 and 𝑝𝑊 are the spatial padding sizes.

• 𝑑𝑌 and 𝑑𝑋 are the dilation factors of filter application.

The output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations when cover_all = False:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1))/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1))/𝑠𝑋 + 1.

When cover_all = True, the output size is determined by the following equations:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1) + 𝑠𝑌 − 1)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1) + 𝑠𝑋 − 1)/𝑠𝑋 + 1.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐, ℎ, 𝑤).

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

178 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• cover_all (bool) – If True, all spatial locations are rearranged into some output pixels.
It may make the output size larger.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

Returns Output variable whose shape is (𝑛, 𝑐 · 𝑘𝐻 · 𝑘𝑊 , ℎ𝑂, 𝑤𝑂)

Return type Variable

chainer.functions.moveaxis

chainer.functions.moveaxis(x, source, destination)
Move the source axes to the destination.

This function transpose the input x by moving the axes source to the axes destination. Other axes remain
in their original order.

See also chainer.functions.transpose(), chainer.functions.swapaxes().

Parameters

• x (Variable or N-dimensional array) – Input variable.

• source (int or tuple of int) – Original positions of the axes to move. These
must be unique.

• destination (int or tuple of int) – Destination positions for each of the orig-
inal axes. These must also be unique.

Returns Variable whose axis is moved.

Return type Variable

Example

>>> x = np.zeros((2, 3, 4, 5), np.float32)
>>> chainer.functions.moveaxis(x, 0, -1).shape
(3, 4, 5, 2)
>>> chainer.functions.moveaxis(x, (0, 3), (2, 0)).shape
(5, 3, 2, 4)

chainer.functions.pad

chainer.functions.pad(x, pad_width, mode, **keywords)
Pad an input variable.

Parameters

• x (Variable or N-dimensional array) – Input data.

• pad_width (int or array-like) – Number of values padded to the edges of each
axis.

4.2. Functions 179

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• mode (str) – Specifies how the function fills the periphery of the array. The mode is
passed to numpy.pad() or cupy.pad(). If it is 'constant', the input is padded by
a constant value specified by constant_values.

• constant_values (int or array-like) – Constant values to fill the periphery in
the 'constant' mode.

Returns Output variable.

Return type Variable

chainer.functions.pad_sequence

chainer.functions.pad_sequence(xs, length=None, padding=0)
Pad given arrays to make a matrix.

Parameters

• xs (list of ~chainer.Variable or N-dimensional array) – Variables you want to concatenate.

• length (None or int) – Size of the first dimension of a padded array. If it is None,
the longest size of the first dimension of xs is used.

• padding (int or float) – Value to fill.

Returns A padded matrix. Its shape is (n, length, ...), where n == len(xs).

Return type Variable

chainer.functions.permutate

chainer.functions.permutate(x, indices, axis=0, inv=False)
Permutates a given variable along an axis.

This function permutate x with given indices. That means y[i] = x[indices[i]] for all i. Note
that this result is same as y = x.take(indices). indices must be a permutation of [0, 1, ...,
len(x) - 1].

When inv is True, indices is treated as its inverse. That means y[indices[i]] = x[i].

Parameters

• x (Variable or N-dimensional array) – Variable to permutate. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped
float array.

• indices (Variable or N-dimensional array) – Indices to extract from the variable. A
one-dimensional int array.

• axis (int) – Axis that the input array is permutate along.

• inv (bool) – If True, indices is treated as its inverse.

Returns Output variable.

Return type Variable

Example

180 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html#numpy.pad
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.pad.html#cupy.pad
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

>>> x = np.arange(6).reshape((3, 2)).astype(np.float32)
>>> x
array([[0., 1.],

[2., 3.],
[4., 5.]], dtype=float32)

>>> indices = np.array([2, 0, 1], np.int32)
>>> y = F.permutate(x, indices)
>>> y.array
array([[4., 5.],

[0., 1.],
[2., 3.]], dtype=float32)

>>> y = F.permutate(x, indices, inv=True)
>>> y.array
array([[2., 3.],

[4., 5.],
[0., 1.]], dtype=float32)

>>> indices = np.array([1, 0], np.int32)
>>> y = F.permutate(x, indices, axis=1)
>>> y.array
array([[1., 0.],

[3., 2.],
[5., 4.]], dtype=float32)

chainer.functions.repeat

chainer.functions.repeat(x, repeats, axis=None)
Construct an array by repeating a given array.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• repeats (int or tuple of int s) – The number of times which each element of x is
repeated.

• axis (int) – The axis along which to repeat values.

Returns The repeated output Variable.

Return type Variable

Example

>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.repeat(x, 2)
>>> y.shape
(6,)
>>> y.array
array([0, 0, 1, 1, 2, 2])
>>> x = np.array([[1,2], [3,4]])
>>> x.shape
(2, 2)
>>> y = F.repeat(x, 3, axis=1)
>>> y.shape

(continues on next page)

4.2. Functions 181

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

(2, 6)
>>> y.array
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])
>>> y = F.repeat(x, (1, 2), axis=0)
>>> y.shape
(3, 2)
>>> y.array
array([[1, 2],

[3, 4],
[3, 4]])

chainer.functions.reshape

chainer.functions.reshape(x, shape)
Reshapes an input variable without copy.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• shape (tuple of int s) – Expected shape of the output array. The number of elements
which the array of shape contains must be equal to that of input array. One shape dimen-
sion can be -1. In this case, the value is inferred from the length of the array and remaining
dimensions.

Returns Variable that holds a reshaped version of the input variable.

Return type Variable

See also:

numpy.reshape(), cupy.reshape()

Example

>>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> y = F.reshape(x, (8,))
>>> y.shape
(8,)
>>> y.array
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> y = F.reshape(x, (4, -1)) # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.array
array([[1, 2],

[3, 4],
[5, 6],
[7, 8]])

>>> y = F.reshape(x, (4, 3)) # the shape of input and output are not consistent
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Reshape (Forward)

(continues on next page)

182 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.reshape.html#cupy.reshape


Chainer Documentation, Release 6.5.0

(continued from previous page)

Expect: prod(in_types[0].shape) == prod((4, 3))
Actual: 8 != 12

chainer.functions.resize_images

chainer.functions.resize_images(x, output_shape)
Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the
sampling method.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• output_shape (tuple) – This is a tuple of length 2 whose values are (h_O, w_O).
Note that the order of height and width is opposite of the one in OpenCV.

Returns Resized image whose shape is (𝑛, 𝑐𝐼 , ℎ𝑂, 𝑤𝑂).

Return type Variable

chainer.functions.rollaxis

chainer.functions.rollaxis(x, axis, start=0)
Roll the axis backwards to the given position.

This function continues to be supported for backward compatibility, but you should prefer chainer.
functions.moveaxis(x, source, destination). See chainer.functions.moveaxis().

Parameters

• x (Variable or N-dimensional array) – Input variable.

• axis (int) – The axis to roll backwards.

• start (int) – The place to which the axis is moved.

Returns Variable whose axis is rolled.

Return type Variable

chainer.functions.scatter_add

chainer.functions.scatter_add(a, slices, b)
Adds given values to specified elements of an array.

4.2. Functions 183

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

This function adds b to the specified elements of the copy of a, and returns the copy. The value of the original
a is not changed.

Parameters

• a (Variable or N-dimensional array) – A variable.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – It is an integer, a slice, an
ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

• b (Variable or N-dimensional array) – A variable that is scatter added to a. Its shape has
to equal a[slices] because broadcasting of variables is not supported.

Returns A Variable object which is the result of scatter addition.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64
and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

See also:

numpy.add.at() and cupyx.scatter_add().

chainer.functions.select_item

chainer.functions.select_item(x, t)
Select elements stored in given indices.

This function returns t.choose(x.T), that means y[i] == x[i, t[i]] for all i.

Parameters

• x (Variable or N-dimensional array) – Variable storing arrays. A two-dimensional float
array.

• t (Variable or N-dimensional array) – Variable storing index numbers. A one-
dimensional int array. Length of the t should be equal to x.shape[0].

Returns Variable that holds t-th element of x.

Return type Variable

Example

>>> x = np.array([[0, 1, 2], [3, 4, 5]], np.float32)
>>> t = np.array([0, 2], np.int32)
>>> y = F.select_item(x, t)
>>> y.shape
(2,)
>>> y.array
array([0., 5.], dtype=float32)

184 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs-cupy.chainer.org/en/stable/reference/generated/cupyx.scatter_add.html#cupyx.scatter_add


Chainer Documentation, Release 6.5.0

chainer.functions.separate

chainer.functions.separate(x, axis=0)
Separates an array along a given axis.

This function separates an array along a given axis. For example, shape of an array is (2, 3, 4). When it
separates the array with axis=1, it returns three (2, 4) arrays.

This function is an inverse of chainer.functions.stack().

Parameters

• x (Variable or N-dimensional array) – Variable to be separated. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -
shaped float array.

• axis (int) – Axis along which variables are separated.

Returns Output variables.

Return type tuple of chainer.Variable

See also:

chainer.functions.stack()

Example

>>> x = np.arange(6).reshape((2, 3)).astype(np.float32)
>>> x
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> x.shape
(2, 3)
>>> y = F.separate(x) # split along axis=0
>>> isinstance(y, tuple)
True
>>> len(y)
2
>>> y[0].shape
(3,)
>>> y[0].array
array([0., 1., 2.], dtype=float32)
>>> y = F.separate(x, axis=1)
>>> len(y)
3
>>> y[0].shape
(2,)
>>> y[0].array
array([0., 3.], dtype=float32)

chainer.functions.space2depth

chainer.functions.space2depth(X, r)
Computes the space2depth transformation for subpixel calculations.

Parameters

• X (Variable or N-dimensional array) – Variable holding a 4d array of shape (batch,
channel, dim1 * r, dim2 * r).

4.2. Functions 185

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• r (int) – the downscaling factor.

Returns A variable holding the downscaled layer array from subpixel array sampling. The shape is
(batch, channel * r * r, dim1, dim2).

Return type Variable

Note: This can be used to compute inverse super-resolution transformations. See https://arxiv.org/abs/1609.
05158 for details.

See also:

depth2space()

Example

>>> X = np.arange(24).reshape(1, 1, 4, 6).astype(np.float32)
>>> X.shape
(1, 1, 4, 6)
>>> X
array([[[[ 0., 1., 2., 3., 4., 5.],

[ 6., 7., 8., 9., 10., 11.],
[12., 13., 14., 15., 16., 17.],
[18., 19., 20., 21., 22., 23.]]]], dtype=float32)

>>> y = F.space2depth(X, 2)
>>> y.shape
(1, 4, 2, 3)
>>> y.array
array([[[[ 0., 2., 4.],

[12., 14., 16.]],

[[ 1., 3., 5.],
[13., 15., 17.]],

[[ 6., 8., 10.],
[18., 20., 22.]],

[[ 7., 9., 11.],
[19., 21., 23.]]]], dtype=float32)

chainer.functions.spatial_transformer_grid

chainer.functions.spatial_transformer_grid(theta, output_shape, **kwargs)
2D Spatial Transformer grid.

This function generates coordinates of the points sampled from an image to perform warping described in Spatial
Transformer Networks.

Given a coordinate in the warped image (𝑥𝑡𝑖, 𝑦
𝑡
𝑖), the point sampled from the source image (𝑥𝑠𝑖 , 𝑦

𝑠
𝑖 ) are calculated

by the following equation.

Note: cuDNN supports SpatialTransformerGrid from version 5.0.0.

186 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1506.02025


Chainer Documentation, Release 6.5.0

(︂
𝑥𝑠𝑖
𝑦𝑠𝑖

)︂
=

(︂
𝜃11 𝜃12 𝜃13
𝜃21 𝜃22 𝜃23

)︂⎛⎝𝑥𝑡𝑖𝑦𝑡𝑖
1

⎞⎠
Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• ℎ𝑂 and 𝑤𝑂 are the height and the width of the output image.

Parameters

• theta (Variable or N-dimensional array) – An array of shape (𝑛, 2, 3). This is a batch
of 2× 3 matrix used for the warping described above.

• output_shape (tuple) – A tuple of 2 elements: ℎ𝑂, 𝑤𝑂.

Returns A variable of shape (𝑛, 2, ℎ𝑂, 𝑤𝑂). In the 2nd dimension, the first element is the coordinate
along the x axis, and the second element is the coordinate along the y axis. All the coordinates in
the image are scaled to fit range [−1, 1]. This means that the coordinate (−1,−1) corresponds
to the upper-left corner of the input image.

Return type Variable

chainer.functions.spatial_transformer_sampler

chainer.functions.spatial_transformer_sampler(x, grid, **kwargs)
2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points grid and an input feature map x, this
produces a sampled output feature map.

This function currently only supports bilinear interpolation as a sampling kernel.

When coordinates in grid is outside range [−1, 1], values are sampled from a zero padded input image.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image.

See detail in the following paper: Spatial Transformer Networks.

Note: cuDNN supports SpatialTransformerSampler from version 5.0.0.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• grid (Variable) – Coordinate variable of shape (𝑛, 2, ℎ𝑂, 𝑤𝑂). Each coordinate defines
the spatial location in the input where a sampling kernel is applied to get the value at a
particular pixel in the output. grid[idx, :, i, j] corresponds to the coordinate
that is used to sample the values for an output pixel at location (𝑖, 𝑗).

4.2. Functions 187

https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1506.02025


Chainer Documentation, Release 6.5.0

In the second dimension, the first coordinate corresponds to the location along the horizontal
axis, and the second coordinate corresponds to the location along the vertical axis.

The coordinate (−1,−1) corresponds to the upper-left corner of the input image.

Returns Output feature map of shape (𝑛, 𝑐𝐼 , ℎ𝑂, 𝑤𝑂).

Return type Variable

chainer.functions.split_axis

chainer.functions.split_axis(x, indices_or_sections, axis, force_tuple=True)
Splits given variables along an axis.

Parameters

• x (Variable or N-dimensional array) – A variable to be split.

• indices_or_sections (int or 1-D array) – If this argument is an integer, N,
the array will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers,
it indicates the positions where the array is split.

• axis (int) – Axis that the input array is split along.

• force_tuple (bool) – If True (the default) this method returns a tuple even when the
number of outputs is one. Otherwise, if False a Variable will be returned when the number
of outputs is one.

Returns Tuple of Variable objects if the number of outputs is more than 1 or Variable other-
wise. When force_tuple is True, returned value is always a tuple regardless of the number
of outputs.

Return type tuple or Variable

chainer.functions.squeeze

chainer.functions.squeeze(x, axis=None)
Remove dimensions of size one from the shape of a ndarray.

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped float
array.

• axis (None or int or tuple of ints) – A subset of the single-dimensional en-
tries in the shape to remove. If None is supplied, all of them are removed. The dimension
index starts at zero. If an axis with dimension greater than one is selected, an error is raised.

Returns Variable whose dimensions of size 1 are removed.

Return type Variable

Example

>>> x = np.array([[[[0, 1, 2]]], [[[3, 4, 5]]]], np.float32)
>>> x.shape
(2, 1, 1, 3)
>>> y = F.squeeze(x)
>>> y.shape

(continues on next page)

188 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

(2, 3)
>>> y.array
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> y = F.squeeze(x, axis=1)
>>> y.shape
(2, 1, 3)
>>> y.array
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)
>>> y = F.squeeze(x, axis=(1, 2))
>>> y.shape
(2, 3)
>>> y.array
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)

chainer.functions.stack

chainer.functions.stack(xs, axis=0)
Concatenate variables along a new axis.

Parameters

• xs (list of Variable or N-dimensional array) – Input variables to be concatenated. The
variables must have the same shape.

• axis (int) – The axis along which the arrays will be stacked. The axis parameter is
acceptable when −𝑛𝑑𝑖𝑚− 1 ≤ 𝑎𝑥𝑖𝑠 ≤ 𝑛𝑑𝑖𝑚. (ndim is the dimension of input variables).
When 𝑎𝑥𝑖𝑠 < 0, the result is the same with 𝑛𝑑𝑖𝑚+ 1− |𝑎𝑥𝑖𝑠|.

Returns Output variable. Let x_1, x_2, ..., x_n and y be the input variables and the output
variable, y[:, ..., 0, ..., :] is x_1, y[:, ..., 1, ..., :] is x_2 and
y[:, ..., n-1, ..., :] is x_n (The indexed axis indicates the axis).

Return type Variable

Example

>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x2 = np.arange(12, 24).reshape(3, 4)
>>> x2.shape
(3, 4)
>>> x2
array([[12, 13, 14, 15],

[16, 17, 18, 19],
[20, 21, 22, 23]])

>>> y = F.stack([x1, x2], axis=0)
(continues on next page)

4.2. Functions 189

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> y.shape
(2, 3, 4)
>>> y.array
array([[[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y = F.stack([x1, x2], axis=1)
>>> y.shape
(3, 2, 4)
>>> y.array
array([[[ 0, 1, 2, 3],

[12, 13, 14, 15]],

[[ 4, 5, 6, 7],
[16, 17, 18, 19]],

[[ 8, 9, 10, 11],
[20, 21, 22, 23]]])

>>> y = F.stack([x1, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.array
array([[[ 0, 12],

[ 1, 13],
[ 2, 14],
[ 3, 15]],

[[ 4, 16],
[ 5, 17],
[ 6, 18],
[ 7, 19]],

[[ 8, 20],
[ 9, 21],
[10, 22],
[11, 23]]])

>>> y = F.stack([x1, x2], axis=-1)
>>> y.shape
(3, 4, 2)

chainer.functions.swapaxes

chainer.functions.swapaxes(x, axis1, axis2)
Swap two axes of a variable.

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped float
array.

• axis1 (int) – The first axis to swap.

190 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• axis2 (int) – The second axis to swap.

Returns Variable whose axes are swapped.

Return type Variable

Example

>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.swapaxes(x, axis1=0, axis2=1)
>>> y.shape
(2, 1, 3)
>>> y.array
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)

chainer.functions.tile

chainer.functions.tile(x, reps)
Construct an array by tiling a given array.

Parameters

• x (Variable or N-dimensional array) – Input variable. Let the length of reps be d. If
x.ndim < d, x is treated as d-dimensional array by prepending new axes. For example,
when the shape of x is (2,) and tiled with 2-dim repetitions, x is treated as the shape (1,
2). If x.ndim > d, reps is treated as x.ndim-dimensional by pre-pending 1’s. For
example, when the shape of x is (2, 3, 2, 3), the 2-dim reps of (2, 2) is treated
as (1, 1, 2, 2).

• reps (int or tuple of int s) – The number of times which x is replicated along each
axis.

Returns The tiled output Variable. Let the length of reps be d, the output has the dimension of
max(d, x.ndim).

Return type Variable

Example

>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.tile(x, 2)
>>> y.shape
(6,)
>>> y.array
array([0, 1, 2, 0, 1, 2])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(2, 6)
>>> y.array
array([[0, 1, 2, 0, 1, 2],

(continues on next page)

4.2. Functions 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

[0, 1, 2, 0, 1, 2]])
>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 1, 6)
>>> y.array
array([[[0, 1, 2, 0, 1, 2]],

[[0, 1, 2, 0, 1, 2]]])

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.tile(x, 2)
>>> y.shape
(2, 4)
>>> y.array
array([[1, 2, 1, 2],

[3, 4, 3, 4]])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(4, 4)
>>> y.array
array([[1, 2, 1, 2],

[3, 4, 3, 4],
[1, 2, 1, 2],
[3, 4, 3, 4]])

>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 2, 4)
>>> y.array
array([[[1, 2, 1, 2],

[3, 4, 3, 4]],

[[1, 2, 1, 2],
[3, 4, 3, 4]]])

chainer.functions.transpose

chainer.functions.transpose(x, axes=None)
Permute the dimensions of an input variable without copy.

Parameters

• x (Variable or N-dimensional array) – Input variable to be transposed. A (𝑠1, 𝑠2, ..., 𝑠𝑁 )
-shaped float array.

• axes (tuple of ints) – By default, reverse the dimensions, otherwise permute the
axes according to the values given.

Returns Variable whose axes are permuted.

Return type Variable

Example

192 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.transpose(x) # reverse the dimensions
>>> y.shape
(3, 2, 1)
>>> y.array
array([[[0.],

[3.]],

[[1.],
[4.]],

[[2.],
[5.]]], dtype=float32)

>>> y = F.transpose(x, axes=(1, 0, 2)) # swap 1st and 2nd axis
>>> y.shape
(2, 1, 3)
>>> y.array
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)

chainer.functions.transpose_sequence

chainer.functions.transpose_sequence(xs)
Transpose a list of Variables.

This function transposes a list of Variables and returns a list of Variables. For example a user gives [(0,
1, 2, 3), (4, 5), (6)], the function returns [(0, 4, 6), (1, 5), (2), (3)]. Note that a
given list needs to be sorted by each length of Variable.

Parameters xs (list of Variable or N-dimensional array) – Variables to transpose.

Returns Transposed list.

Return type tuple of Variable

Example

>>> lst = [chainer.Variable(np.array([1, 1, 1])),
... chainer.Variable(np.array([2, 2])),
... chainer.Variable(np.array([3]))]
>>> lst
[variable([1, 1, 1]), variable([2, 2]), variable([3])]
>>> transposed = F.transpose_sequence(lst)
>>> transposed
(variable([1, 2, 3]), variable([1, 2]), variable([1]))

chainer.functions.vstack

chainer.functions.vstack(xs)
Concatenate variables vertically (row wise).

4.2. Functions 193



Chainer Documentation, Release 6.5.0

Parameters xs (list of Variable or N-dimensional array) – Input variables to be concatenated.
The variables must have the same ndim. When the variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥
2), the variables must have the same shape along all but the first axis. When the variables do not
have the second axis(i.e. 𝑛𝑑𝑖𝑚 < 2), the variables must have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the shapes
of inputs and output are the same along all but the first axis. The length of first axis is the sum of
the lengths of inputs’ first axis. When the variables do not have the second axis (i.e. 𝑛𝑑𝑖𝑚 < 2),
the shape of output is (2, N) (N is the size of the input variable).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.vstack((x1, x2))
>>> y.shape
(2, 3)
>>> y.array
array([[1, 2, 3],

[2, 3, 4]])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> x2 = np.arange(12, 20).reshape(2, 4)
>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],

[16, 17, 18, 19]])
>>> y = F.vstack([x1, x2])
>>> y.shape
(5, 4)
>>> y.array
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])

chainer.functions.where

chainer.functions.where(condition, x, y)
Choose elements depending on condition.

This function choose values depending on a given condition. All condition, x, and y must have the same
shape.

194 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Parameters

• condition (Variable or N-dimensional array) – Input variable containing the condi-
tion. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped boolean array. Only boolean array is permitted.

• x (Variable or N-dimensional array) – Input variable chosen when condition is
True. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped float array.

• y (Variable or N-dimensional array) – Input variable chosen when condition is
False. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped float array.

Returns Variable containing chosen values.

Return type Variable

Example

>>> cond = np.array([[1, 0], [0, 1]], dtype=np.bool)
>>> cond
array([[ True, False],

[False, True]])
>>> x = np.array([[1, 2], [3, 4]], np.float32)
>>> y = np.zeros((2, 2), np.float32)
>>> F.where(cond, x, y).array
array([[1., 0.],

[0., 4.]], dtype=float32)

4.2.4 Neural network connections

chainer.functions.bilinear Applies a bilinear function based on given parameters.
chainer.functions.convolution_1d 1-dimensional convolution function.
chainer.functions.convolution_2d Two-dimensional convolution function.
chainer.functions.convolution_3d 3-dimensional convolution function.
chainer.functions.convolution_nd N-dimensional convolution function.
chainer.functions.deconvolution_1d 1-dimensional deconvolution function.
chainer.functions.deconvolution_2d Two dimensional deconvolution function.
chainer.functions.deconvolution_3d 3-dimensional deconvolution function.
chainer.functions.deconvolution_nd N-dimensional deconvolution function.
chainer.functions.
depthwise_convolution_2d

Two-dimensional depthwise convolution function.

chainer.functions.
deformable_convolution_2d_sampler

Two-dimensional deformable convolution function us-
ing computed offset.

chainer.functions.
dilated_convolution_2d

Two-dimensional dilated convolution function.

chainer.functions.embed_id Efficient linear function for one-hot input.
chainer.functions.linear Linear function, or affine transformation.
chainer.functions.
local_convolution_2d

Two-dimensional local convolution function.

chainer.functions.n_step_bigru Stacked Bi-directional Gated Recurrent Unit function.
chainer.functions.n_step_bilstm Stacked Bi-directional Long Short-Term Memory func-

tion.
Continued on next page

4.2. Functions 195



Chainer Documentation, Release 6.5.0

Table 5 – continued from previous page
chainer.functions.n_step_birnn Stacked Bi-directional RNN function for sequence in-

puts.
chainer.functions.n_step_gru Stacked Uni-directional Gated Recurrent Unit function.
chainer.functions.n_step_lstm Stacked Uni-directional Long Short-Term Memory

function.
chainer.functions.n_step_rnn Stacked Uni-directional RNN function for sequence in-

puts.
chainer.functions.shift Shift function.

chainer.functions.bilinear

chainer.functions.bilinear(e1, e2, W, V1=None, V2=None, b=None)
Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables
and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by 𝑒1 ∈ R𝐼·𝐽 , 𝑒2 ∈ R𝐼·𝐾 , 𝑊 ∈ R𝐽·𝐾·𝐿, 𝑉 1 ∈ R𝐽·𝐿,
𝑉 2 ∈ R𝐾·𝐿, and 𝑏 ∈ R𝐿, where 𝐼 is mini-batch size. In this document, we call 𝑉 1, 𝑉 2, and 𝑏 linear parameters.

The output of forward propagation is calculated as

𝑦𝑖𝑙 =
∑︁
𝑗𝑘

𝑒1𝑖𝑗𝑒
2
𝑖𝑘𝑊𝑗𝑘𝑙 +

∑︁
𝑗

𝑒1𝑖𝑗𝑉
1
𝑗𝑙 +

∑︁
𝑘

𝑒2𝑖𝑘𝑉
2
𝑘𝑙 + 𝑏𝑙.

Note that V1, V2, b are optional. If these are not given, then this function omits the last three terms in the above
equation.

Note: This function accepts an input variable e1 or e2 of a non-matrix array. In this case, the leading
dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

Note: In the original paper, 𝐽 and 𝐾 must be equal and the author denotes [𝑉 1𝑉 2] (concatenation of matrices)
by 𝑉 .

Parameters

• e1 (Variable or N-dimensional array) – Left input variable.

• e2 (Variable or N-dimensional array) – Right input variable.

• W (Variable or N-dimensional array) – Quadratic weight variable.

• V1 (Variable or N-dimensional array) – Left coefficient variable.

• V2 (Variable or N-dimensional array) – Right coefficient variable.

• b (Variable or N-dimensional array) – Bias variable.

Returns Output variable.

Return type Variable

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

See also:

Bilinear to manage the model parameters W, V1, V2, and b.

196 Chapter 4. API Reference

https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion


Chainer Documentation, Release 6.5.0

chainer.functions.convolution_1d

chainer.functions.convolution_1d(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)

1-dimensional convolution function.

Note: This function calls convolution_nd() internally, so see the details of the behavior in the documen-
tation of convolution_nd().

chainer.functions.convolution_2d

chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, cover_all=False, *, dilate=1,
groups=1)

Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image
x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• ℎ𝐼 and 𝑤𝐼 are the height and width of the input image, respectively.

• ℎ𝐾 and 𝑤𝐾 are the height and width of the filters, respectively.

• ℎ𝑃 and 𝑤𝑃 are the height and width of the spatial padding size, respectively.

Then the Convolution2D function computes correlations between filters and patches of size (ℎ𝐾 , 𝑤𝐾) in x.
Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at
positions shifted by multiples of stride from the first position (-h_P, -w_P) for each spatial axis. The
right-most (or bottom-most) patches do not run over the padded spatial size.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following
equations:

ℎ𝑂 = (ℎ𝐼 + 2ℎ𝑃 − ℎ𝐾)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤𝐼 + 2𝑤𝑃 − 𝑤𝐾)/𝑠𝑋 + 1.

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In
this case, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ𝐼 + 2ℎ𝑃 − ℎ𝐾 + 𝑠𝑌 − 1)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤𝐼 + 2𝑤𝑃 − 𝑤𝐾 + 𝑠𝑋 − 1)/𝑠𝑋 + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-
ministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

When the dilation factor is greater than one, cuDNN is not used unless the version is 6.0 or higher.

4.2. Functions 197



Chainer Documentation, Release 6.5.0

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ𝐼 , 𝑤𝐼).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , ℎ𝐾 , 𝑤𝐾).

• b (None or Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of int s) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of int s) – Spatial padding width for input arrays. pad=p and pad=(p,
p) are equivalent.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.

• dilate (int or pair of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – Number of groups of channels. If the number is greater than 1, input
tensor 𝑊 is divided into some blocks by this value. For each tensor blocks, convolution
operation will be executed independently. Input channel size 𝑐𝐼 and output channel size 𝑐𝑂
must be exactly divisible by this value.

Returns Output variable of shape (𝑛, 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

See also:

Convolution2D to manage the model parameters W and b.

Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> h_i, w_i = 30, 40
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40)
>>> W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o,)).astype(np.float32)
>>> b.shape
(1,)
>>> s_y, s_x = 5, 7
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 1, 7, 6)
>>> h_o = int((h_i + 2 * h_p - h_k) / s_y + 1)
>>> w_o = int((w_i + 2 * w_p - w_k) / s_x + 1)
>>> y.shape == (n, c_o, h_o, w_o)
True
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p), cover_
→˓all=True)
>>> y.shape == (n, c_o, h_o, w_o + 1)
True

198 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.convolution_3d

chainer.functions.convolution_3d(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)

3-dimensional convolution function.

Note: This function calls convolution_nd() internally, so see the details of the behavior in the documen-
tation of convolution_nd().

chainer.functions.convolution_nd

chainer.functions.convolution_nd(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)

N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in
ConvNets. It takes three variables: the input x, the filter weight W and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑙1, 𝑙2, ..., 𝑙𝑁 are the size of each axis of the output’s spatial dimensions, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

Then the convolution_nd function computes correlations between filters and patches of size (𝑘1, 𝑘2, ..., 𝑘𝑁 )
in x. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are
extracted at positions shifted by multiples of stride from the first position (-p_1, -p_2, ..., -p_N)
for each spatial axis.

Let (𝑠1, 𝑠2, ..., 𝑠𝑁 ) be the stride of filter application. Then, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁 ) is determined by the
following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In
this case, the output size is determined by the following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛 + 𝑠𝑛 − 1)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁 ).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘1, 𝑘2, ..., 𝑘𝑁 ).

• b (None or Variable or N-dimensional array) – One-dimensional bias variable with
length 𝑐𝑂 (optional).

4.2. Functions 199



Chainer Documentation, Release 6.5.0

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁 ).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁 ).
pad=p is equivalent to (p, p, ..., p).

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use cuDNN.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁 ).

Return type Variable

Note: This function uses cuDNN implementation for its forward and backward computation if ALL of the
following conditions are satisfied:

• cuda.cudnn_enabled is True

• chainer.config.use_cudnn is 'always' or 'auto'

• The number of spatial dimensions is more than one.

• cover_all is False

• The input’s dtype is equal to the filter weight’s.

• The dtype is FP16, FP32 or FP64. (FP16 is only available when cuDNN version ≥ v3.)

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

See also:

ConvolutionND to manage the model parameters W and b.

See also:

convolution_2d()

Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40, 50)
>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape

(continues on next page)

200 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, l1, l2, l3)
True
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_
→˓all=True)
>>> y.shape == (n, c_o, l1, l2, l3 + 1)
True

chainer.functions.deconvolution_1d

chainer.functions.deconvolution_1d(x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)

1-dimensional deconvolution function.

Note: This function calls deconvolution_nd() internally, so see the details of the behavior in the docu-
mentation of deconvolution_nd().

chainer.functions.deconvolution_2d

chainer.functions.deconvolution_2d(x, W, b=None, stride=1, pad=0, outsize=None, *, di-
late=1, groups=1)

Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep learning frameworks and pa-
pers, this function is called transposed convolution. But because of historical reasons (e.g. paper by Ziller
Deconvolutional Networks) and backward compatibility, this function is called deconvolution in Chainer.

It takes three variables: input image x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• ℎ𝐼 and 𝑤𝐼 are the height and width of the input image, respectively.

• ℎ𝐾 and 𝑤𝐾 are the height and width of the filters, respectively.

• ℎ𝑃 and 𝑤𝑃 are the height and width of the spatial padding size, respectively.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is estimated by the following
equations:

ℎ𝑂 = 𝑠𝑌 (ℎ𝐼 − 1) + ℎ𝐾 − 2ℎ𝑃 ,

𝑤𝑂 = 𝑠𝑋(𝑤𝐼 − 1) + 𝑤𝐾 − 2𝑤𝑃 .

4.2. Functions 201

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf


Chainer Documentation, Release 6.5.0

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ𝐼 , 𝑤𝐼).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝐼 , 𝑐𝑂, ℎ𝐾 , 𝑤𝐾).

• b (None or Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of int s) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of int s) – Spatial padding width for input arrays. pad=p and pad=(p,
p) are equivalent.

• outsize (None or tuple of int s) – Expected output size of deconvolutional operation.
It should be pair of height and width (ℎ𝑂, 𝑤𝑂). Default value is None and the outsize is
estimated by input size, stride and pad.

• dilate (int or pair of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

See also:

Deconvolution2D to manage the model parameters W and b.

Example

>>> n = 10
>>> c_i, c_o = 1, 3
>>> h_i, w_i = 5, 10
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 1, 5, 10)
>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, c_o).astype(np.float32)
>>> b.shape
(3,)
>>> s_y, s_x = 5, 5
>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 3, 20, 45)
>>> h_o = s_y * (h_i - 1) + h_k - 2 * h_p

(continues on next page)

202 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> w_o = s_x * (w_i - 1) + w_k - 2 * w_p
>>> y.shape == (n, c_o, h_o, w_o)
True

chainer.functions.deconvolution_3d

chainer.functions.deconvolution_3d(x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)

3-dimensional deconvolution function.

Note: This function calls deconvolution_nd() internally, so see the details of the behavior in the docu-
mentation of deconvolution_nd().

chainer.functions.deconvolution_nd

chainer.functions.deconvolution_nd(x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)

N-dimensional deconvolution function.

This is an implementation of N-dimensional deconvolution which generalizes two-dimensional one. In most of
deep learning frameworks and papers, this function is called transposed convolution. But because of historical
reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called
deconvolution in Chainer.

It takes three variables: the input x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

• 𝑠1, 𝑠2, ..., 𝑠𝑁 are the stride of each axis of filter application, respectively.

If outsize option is None, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁 ) is determined by the following equations with the
items in the above list:

𝑙𝑛 = 𝑠𝑛(𝑑𝑛 − 1) + 𝑘𝑛 − 2𝑝𝑛 (𝑛 = 1, ..., 𝑁)

If outsize option is given, the output size is determined by outsize. In this case, the outsize
(𝑙1, 𝑙2, ..., 𝑙𝑁 ) must satisfy the following equations:

𝑑𝑛 = ⌊(𝑙𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛⌋+ 1 (𝑛 = 1, ..., 𝑁)

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

4.2. Functions 203

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf


Chainer Documentation, Release 6.5.0

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁 ).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝐼 , 𝑐𝑂, 𝑘1, 𝑘2, ..., 𝑘𝑁 ).

• b (None or Variable or N-dimensional array) – One-dimensional bias variable with
length 𝑐𝑂 (optional).

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁 ).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁 ).
pad=p is equivalent to (p, p, ..., p).

• outsize (None or tuple of int s) – Expected output size of deconvolutional operation.
It should be a tuple of ints (𝑙1, 𝑙2, ..., 𝑙𝑁 ). Default value is None and the outsize is estimated
by input size, stride and pad.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁 ).

Return type Variable

See also:

DeconvolutionND to manage the model parameters W and b.

See also:

deconvolution_2d()

Example

Example1: the case when outsize is not given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3

(continues on next page)

204 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> y.shape == (n, c_o, l1, l2, l3)
True

Example2: the case when outsize is given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> l1, l2, l3 = 9, 38, 87
>>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1
True
>>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1
True
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3),
→˓outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True

chainer.functions.depthwise_convolution_2d

chainer.functions.depthwise_convolution_2d(x, W, b=None, stride=1, pad=0)
Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution. It takes two or three variables: the input
image x, the filter weight W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input.

• 𝑐𝑀 is the channel multiplier.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

4.2. Functions 205



Chainer Documentation, Release 6.5.0

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑀 , 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊 ).

• b (Variable or N-dimensional array) – Bias variable of length 𝑐𝑀 * 𝑐𝐼 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

Returns Output variable. Its shape is (𝑛, 𝑐𝐼 * 𝑐𝑀 , ℎ𝑂, 𝑤𝑂).

Return type Variable

Like Convolution2D, DepthwiseConvolution2D function computes correlations between filters and
patches of size (𝑘𝐻 , 𝑘𝑊 ) in x. But unlike Convolution2D, DepthwiseConvolution2D does not add up
input channels of filters but concatenates them. For that reason, the shape of outputs of depthwise convolution
are (𝑛, 𝑐𝐼 * 𝑐𝑀 , ℎ𝑂, 𝑤𝑂), 𝑐𝑀 is called channel_multiplier.

(ℎ𝑂, 𝑤𝑂) is determined by the equivalent equation of Convolution2D.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See: L. Sifre. Rigid-motion scattering for image classification

See also:

DepthwiseConvolution2D to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (2, 3, 4, 7))
>>> W = np.random.uniform(0, 1, (2, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (6,))
>>> y = F.depthwise_convolution_2d(x, W, b)
>>> y.shape
(2, 6, 2, 5)

chainer.functions.deformable_convolution_2d_sampler

chainer.functions.deformable_convolution_2d_sampler(x, offset, W, b=None, stride=1,
pad=0)

Two-dimensional deformable convolution function using computed offset.

This is an implementation of two-dimensional deformable convolution from Deformable Convolutional Net-
works.

It takes four variables: the input image x, the offset image offset, the filter weight W, and the bias vector b.

Notation: here is the notation for the dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output, respectively.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

• 𝑠𝑌 and 𝑠𝑋 are the strides of the filter.

206 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf
https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/1703.06211


Chainer Documentation, Release 6.5.0

• 𝑝𝐻 and 𝑝𝑊 are the spatial padding sizes.

The output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 )/𝑠𝑋 + 1.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• offset (Variable or N-dimensional array) – Offset variable of shape (𝑛, 2 · 𝑘𝐻 ·
𝑘𝑊 , ℎ𝑂, 𝑤𝑂). The first 𝑘𝐻 · 𝑘𝑊 index of the second axis corresponds to the offsets in the
horizontal direction. The last 𝑘𝐻 · 𝑘𝑊 index of the second axis corresponds to the offsets in
the vertical direction.

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊 ).

• b (Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

Returns Output variable.

Return type Variable

Deformable convolution adds 2D offsets to the regular grid sampling locations in the standard convolution. It
enables free form deformation of the sampling grid.

See Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei. Deformable Convolu-
tional Networks

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

DeformableConvolution2D to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (2, 3, 4, 7)).astype(np.float32)
>>> offset = np.random.uniform(
... 0, 1, (2, 2 * 3 * 3, 2, 5)).astype(np.float32)
>>> W = np.random.uniform(0, 1, (4, 3, 3, 3)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (4,)).astype(np.float32)
>>> y = F.deformable_convolution_2d_sampler(x, offset, W, b)
>>> y.shape
(2, 4, 2, 5)

chainer.functions.dilated_convolution_2d

chainer.functions.dilated_convolution_2d(x, W, b=None, stride=1, pad=0, dilate=1,
cover_all=False)

Two-dimensional dilated convolution function.

4.2. Functions 207

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/1703.06211


Chainer Documentation, Release 6.5.0

This is an implementation of two-dimensional dilated convolution in ConvNets. It takes three variables: the
input image x, the filter weight W, and the bias vector b.

Note: You can also perform dilated convolution by passing dilate argument to chainer.functions.
convolution_2d. The functionality is the same.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output, respectively.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊 ).

• b (Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger.

Returns Output variable.

Return type Variable

The two-dimensional dilated convolution function is defined as follows. Then the DilatedConvolution2D
function computes correlations between filters and patches of size (𝑘𝐻 , 𝑘𝑊 ) in x. Patches here are extracted at
intervals of the dilation factor. Note that correlation here is equivalent to the inner product between expanded
vectors. Patches are extracted at intervals of the dilation factor and at positions shifted by multiples of stride
from the first position -pad for each spatial axis. The right-most (or bottom-most) patches do not run over the
padded spatial size.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application, (𝑝𝐻 , 𝑝𝑊 ) the spatial padding size, and (𝑑𝑌 , 𝑑𝑋) the dilation
factor of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1))/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1))/𝑠𝑋 + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

chainer.functions.embed_id

chainer.functions.embed_id(x, W, ignore_label=None)
Efficient linear function for one-hot input.

208 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This function implements so called word embeddings. It takes two arguments: a set of IDs (words) x in 𝐵
dimensional integer vector, and a set of all ID (word) embeddings W in 𝑉 × 𝑑 float matrix. It outputs 𝐵 × 𝑑
matrix whose i-th row is the x[i]-th row of W.

This function is only differentiable on the input W.

Parameters

• x (Variable or N-dimensional array) – Batch vectors of IDs. Each element must be
signed integer.

• W (Variable or N-dimensional array) – Distributed representation of each ID (a.k.a. word
embeddings).

• ignore_label (int or None) – If ignore_label is an int value, i-th row of return
value is filled with 0.

Returns Output variable.

Return type Variable

See also:

EmbedID to manage the model parameter W.

Example

>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype(np.float32)
>>> W
array([[0., 0., 0.],

[1., 1., 1.],
[2., 2., 2.]], dtype=float32)

>>> F.embed_id(x, W).array
array([[2., 2., 2.],

[1., 1., 1.]], dtype=float32)
>>> F.embed_id(x, W, ignore_label=1).array
array([[2., 2., 2.],

[0., 0., 0.]], dtype=float32)

chainer.functions.linear

chainer.functions.linear(x, W, b=None, n_batch_axes=1)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It
computes

𝑦𝑖 = 𝑊𝑥𝑖 + 𝑏.

Parameters

• x (Variable or N-dimensional array) – Input variable, which is a (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped
float array. Its first n_batch_axes dimensions are handled as minibatch dimensions.

4.2. Functions 209

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

The other dimensions are handled as concatenated one dimension whose size must be
(𝑠n_batch_axes * ... * 𝑠𝑛 = 𝑁).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑀,𝑁), where (𝑁 =
𝑠n_batch_axes * ... * 𝑠𝑛).

• b (Variable or N-dimensional array) – Bias variable (optional) of shape (𝑀, ).

• n_batch_axes (int) – The number of batch axes. The default is 1. The input variable
is reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output variable. A float array with shape of (𝑠1, ..., 𝑠n_batch_axes,𝑀).

Return type Variable

See also:

Linear to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (3, 4)).astype(np.float32)
>>> W = np.random.uniform(0, 1, (5, 4)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (5,)).astype(np.float32)
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)

chainer.functions.local_convolution_2d

chainer.functions.local_convolution_2d(x, W, b=None, stride=1)
Two-dimensional local convolution function.

Locally-connected function for 2D inputs. Works similarly to convolution_2d, except that weights are unshared,
that is, a different set of filters is applied at each different patch of the input. It takes two or three variables: the
input image x, the filter weight W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input.

• 𝑐𝑂 is the number of output channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable or N-dimensional array) – Weight variable of shape
(𝑐𝑂, ℎ𝑂, 𝑤𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊 ).

• b (Variable or N-dimensional array) – Bias variable of shape (𝑐𝑂, ℎ𝑂, 𝑤𝑂) (optional).

210 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

Returns Output variable. Its shape is (𝑛, 𝑐𝐼 * 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

Like Convolution2D, LocalConvolution2D function computes correlations between filters and patches
of size (𝑘𝐻 , 𝑘𝑊 ) in x. But unlike Convolution2D, LocalConvolution2D has a separate filter for each
patch of the input

(ℎ𝑂, 𝑤𝑂) is determined by the equivalent equation of Convolution2D, without any padding

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

LocalConvolution2D to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (2, 3, 7, 7))
>>> W = np.random.uniform(0, 1, (2, 5, 5, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (2, 5, 5))
>>> y = F.local_convolution_2d(x, W, b)
>>> y.shape
(2, 2, 5, 5)

chainer.functions.n_step_bigru

chainer.functions.n_step_bigru(n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Bi-directional Gated Recurrent Unit function.

This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state
ℎ0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates hidden states ℎ𝑡 for
each time 𝑡 from input 𝑥𝑡.

𝑟𝑓𝑡 = 𝜎(𝑊 𝑓
0 𝑥𝑡 +𝑊 𝑓

3 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓3 )

𝑧𝑓𝑡 = 𝜎(𝑊 𝑓
1 𝑥𝑡 +𝑊 𝑓

4 ℎ𝑡−1 + 𝑏𝑓1 + 𝑏𝑓4 )

ℎ𝑓
′

𝑡 = tanh(𝑊 𝑓
2 𝑥𝑡 + 𝑏𝑓2 + 𝑟𝑓𝑡 · (𝑊

𝑓
5 ℎ𝑡−1 + 𝑏𝑓5 ))

ℎ𝑓𝑡 = (1− 𝑧𝑓𝑡 ) · ℎ𝑓
′

𝑡 + 𝑧𝑓𝑡 · ℎ𝑡−1

𝑟𝑏𝑡 = 𝜎(𝑊 𝑏
0𝑥𝑡 +𝑊 𝑏

3ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏3)

𝑧𝑏𝑡 = 𝜎(𝑊 𝑏
1𝑥𝑡 +𝑊 𝑏

4ℎ𝑡−1 + 𝑏𝑏1 + 𝑏𝑏4)

ℎ𝑏
′

𝑡 = tanh(𝑊 𝑏
2𝑥𝑡 + 𝑏𝑏2 + 𝑟𝑏𝑡 · (𝑊 𝑏

5ℎ𝑡−1 + 𝑏𝑏5))

ℎ𝑏𝑡 = (1− 𝑧𝑏𝑡 ) · ℎ𝑏
′

𝑡 + 𝑧𝑏𝑡 · ℎ𝑡−1

ℎ𝑡 = [ℎ𝑓𝑡 ;ℎ𝑏𝑡 ]

where 𝑊 𝑓 is weight matrices for forward-GRU, 𝑊 𝑏 is weight matrices for backward-GRU.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Six weight matrices and six bias
vectors are required for each layers. So, when 𝑆 layers exists, you need to prepare 6𝑆 weight matrices and 6𝑆
bias vectors.

4.2. Functions 211

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (2S, B, N)where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

• ws (list of list of Variable) – Weight matrices. ws[i] represents weights for i-th layer.
Each ws[i] is a list containing six matrices. ws[i][j] is corresponding with W_j in the
equation. Only ws[0][j] where 0 <= j < 3 is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i] represnents biases for i-th layer.
Each bs[i] is a list containing six vectors. bs[i][j] is corresponding with b_j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

• use_bi_direction (bool) – If True, this function uses Bi-direction GRU.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.n_step_bilstm

chainer.functions.n_step_bilstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates

212 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

𝑖𝑓𝑡 =

𝜎(𝑊 𝑓
0 𝑥𝑡 +𝑊 𝑓

4 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓4 ),

𝑓𝑓𝑡 =

𝜎(𝑊 𝑓
1 𝑥𝑡 +𝑊 𝑓

5 ℎ𝑡−1 + 𝑏𝑓1 + 𝑏𝑓5 ),

𝑜𝑓𝑡 =

𝜎(𝑊 𝑓
2 𝑥𝑡 +𝑊 𝑓

6 ℎ𝑡−1 + 𝑏𝑓2 + 𝑏𝑓6 ),

𝑎𝑓𝑡 =

tanh(𝑊 𝑓
3 𝑥𝑡 +𝑊 𝑓

7 ℎ𝑡−1 + 𝑏𝑓3 + 𝑏𝑓7 ),

𝑐𝑓𝑡 =

𝑓𝑓𝑡 · 𝑐
𝑓
𝑡−1 + 𝑖𝑓𝑡 · 𝑎

𝑓
𝑡 ,

ℎ𝑓𝑡 =

𝑜𝑓𝑡 · tanh(𝑐𝑓𝑡 ),

𝑖𝑏𝑡 =

𝜎(𝑊 𝑏
0𝑥𝑡 +𝑊 𝑏

4ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏4),

𝑓 𝑏𝑡 =

𝜎(𝑊 𝑏
1𝑥𝑡 +𝑊 𝑏

5ℎ𝑡−1 + 𝑏𝑏1 + 𝑏𝑏5),

𝑜𝑏𝑡 =

𝜎(𝑊 𝑏
2𝑥𝑡 +𝑊 𝑏

6ℎ𝑡−1 + 𝑏𝑏2 + 𝑏𝑏6),

𝑎𝑏𝑡 =

tanh(𝑊 𝑏
3𝑥𝑡 +𝑊 𝑏

7ℎ𝑡−1 + 𝑏𝑏3 + 𝑏𝑏7),

𝑐𝑏𝑡 =

𝑓 𝑏𝑡 · 𝑐𝑏𝑡−1 + 𝑖𝑏𝑡 · 𝑎𝑏𝑡 ,
ℎ𝑏𝑡 =

𝑜𝑏𝑡 · tanh(𝑐𝑏𝑡),

ℎ𝑡 =

[ℎ𝑓𝑡 ;ℎ𝑏𝑡 ]

where 𝑊 𝑓 is the weight matrices for forward-LSTM, 𝑊 𝑏 is weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Eight weight matrices and eight bias
vectors are required for each layer of each direction. So, when 𝑆 layers exist, you need to prepare 16𝑆 weight
matrices and 16𝑆 bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the
k-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

• n_layers (int) – The number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (2S, B, N)where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units. Because of bi-direction, the first dimension length is 2S.

4.2. Functions 213

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• cx (Variable) – Variable holding stacked cell states. It has the same shape as hx.

• ws (list of list of Variable) – Weight matrices. ws[2 * l + m] represents the weights
for the l-th layer of the m-th direction. (m == 0 means the forward direction and m == 1
means the backward direction.) Each ws[i] is a list containing eight matrices. ws[i][j]
corresponds to 𝑊𝑗 in the equation. ws[0][j] and ws[1][j] where 0 <= j < 4 are
(I, N)-shaped because they are multiplied with input variables, where I is the size of the
input. ws[i][j] where 2 <= i and 0 <= j < 4 are (N, 2N)-shaped because they
are multiplied with two hidden layers ℎ𝑡 = [ℎ𝑓𝑡 ;ℎ𝑏𝑡 ]. All other matrices are (N, N)-shaped.

• bs (list of list of Variable) – Bias vectors. bs[2 * l + m] represents the weights
for the l-th layer of m-th direction. (m == 0 means the forward direction and m == 1
means the backward direction.) Each bs[i] is a list containing eight vectors. bs[i][j]
corresponds to 𝑏𝑗 in the equation. The shape of each matrix is (N,).

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose_sequence() can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs
needs to satisfy xs[t].shape[0] >= xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, 2N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

Example

>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers * 2, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> def w_in(i, j):
... if i == 0 and j < 4:
... return in_size
... elif i > 0 and j < 4:
... return out_size * 2
... else:
... return out_size
...
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
... for direction in (0, 1):

(continues on next page)

214 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

(continued from previous page)

... ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i
→˓in range(8)])
... bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
...
>>> ws[0][0].shape # ws[0:2][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[2][0].shape # ws[2:][:4].shape are (out_size, 2 * out_size)
(2, 4)
>>> ws[0][4].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_bilstm(
... n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(4, 3, 2)
>>> cy.shape
(4, 3, 2)
>>> [y.shape for y in ys]
[(3, 4), (2, 4), (1, 4)]

chainer.functions.n_step_birnn

chainer.functions.n_step_birnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation=’tanh’)
Stacked Bi-directional RNN function for sequence inputs.

This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

ℎ𝑓𝑡 =

𝑓(𝑊 𝑓
0 𝑥𝑡 +𝑊 𝑓

1 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓1 ),

ℎ𝑏𝑡 =

𝑓(𝑊 𝑏
0𝑥𝑡 +𝑊 𝑏

1ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏1),

ℎ𝑡 =

[ℎ𝑓𝑡 ;ℎ𝑓𝑡 ],

where 𝑓 is an activation function.

Weight matrices 𝑊 contains two matrices 𝑊 𝑓 and 𝑊 𝑏. 𝑊 𝑓 is weight matrices for forward directional RNN.
𝑊 𝑏 is weight matrices for backward directional RNN.

𝑊 𝑓 contains 𝑊 𝑓
0 for an input sequence and 𝑊 𝑓

1 for a hidden state. 𝑊 𝑏 contains 𝑊 𝑏
0 for an input sequence and

𝑊 𝑏
1 for a hidden state.

Bias matrices 𝑏 contains two matrices 𝑏𝑓 and 𝑏𝑓 . 𝑏𝑓 contains 𝑏𝑓0 for an input sequence and 𝑏𝑓1 for a hidden state.
𝑏𝑏 contains 𝑏𝑏0 for an input sequence and 𝑏𝑏1 for a hidden state.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Two weight matrices and two bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 2𝑆 weight matrices and 2𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

4.2. Functions 215



Chainer Documentation, Release 6.5.0

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (2S, B, N)where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units. Because of bi-direction, the first dimension length is 2S.

• ws (list of list of Variable) – Weight matrices. ws[i + di] represents weights for
i-th layer. Note that di = 0 for forward-RNN and di = 1 for backward-RNN. Each
ws[i + di] is a list containing two matrices. ws[i + di][j] is corresponding with
W^{f}_j if di = 0 and corresponding with W^{b}_j if di = 1 in the equation. Only
ws[0][j] and ws[1][j] where 0 <= j < 1 are (I, N) shape as they are multi-
plied with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i + di] represnents biases for i-
th layer. Note that di = 0 for forward-RNN and di = 1 for backward-RNN. Each
bs[i + di] is a list containing two vectors. bs[i + di][j] is corresponding with
b^{f}_j if di = 0 and corresponding with b^{b}_j if di = 1 in the equation. Shape
of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

• activation (str) – Activation function name. Please select tanh or relu.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.n_step_gru

chainer.functions.n_step_gru(n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Uni-directional Gated Recurrent Unit function.

This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state
ℎ0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates hidden states ℎ𝑡 for
each time 𝑡 from input 𝑥𝑡.

𝑟𝑡 = 𝜎(𝑊0𝑥𝑡 +𝑊3ℎ𝑡−1 + 𝑏0 + 𝑏3)

𝑧𝑡 = 𝜎(𝑊1𝑥𝑡 +𝑊4ℎ𝑡−1 + 𝑏1 + 𝑏4)

ℎ′𝑡 = tanh(𝑊2𝑥𝑡 + 𝑏2 + 𝑟𝑡 · (𝑊5ℎ𝑡−1 + 𝑏5))

ℎ𝑡 = (1− 𝑧𝑡) · ℎ′𝑡 + 𝑧𝑡 · ℎ𝑡−1

216 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Six weight matrices and six bias
vectors are required for each layers. So, when 𝑆 layers exists, you need to prepare 6𝑆 weight matrices and 6𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

• ws (list of list of Variable) – Weight matrices. ws[i] represents weights for i-th layer.
Each ws[i] is a list containing six matrices. ws[i][j] is corresponding with W_j in the
equation. Only ws[0][j] where 0 <= j < 3 is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i] represnents biases for i-th layer.
Each bs[i] is a list containing six vectors. bs[i][j] is corresponding with b_j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.n_step_lstm

chainer.functions.n_step_lstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates

4.2. Functions 217

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

𝑖𝑡 = 𝜎(𝑊0𝑥𝑡 +𝑊4ℎ𝑡−1 + 𝑏0 + 𝑏4)

𝑓𝑡 = 𝜎(𝑊1𝑥𝑡 +𝑊5ℎ𝑡−1 + 𝑏1 + 𝑏5)

𝑜𝑡 = 𝜎(𝑊2𝑥𝑡 +𝑊6ℎ𝑡−1 + 𝑏2 + 𝑏6)

𝑎𝑡 = tanh(𝑊3𝑥𝑡 +𝑊7ℎ𝑡−1 + 𝑏3 + 𝑏7)

𝑐𝑡 = 𝑓𝑡 · 𝑐𝑡−1 + 𝑖𝑡 · 𝑎𝑡
ℎ𝑡 = 𝑜𝑡 · tanh(𝑐𝑡)

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Eight weight matrices and eight bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 8𝑆 weight matrices and 8𝑆
bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the
k-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

• n_layers (int) – The number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units.

• cx (Variable) – Variable holding stacked cell states. It has the same shape as hx.

• ws (list of list of Variable) – Weight matrices. ws[i] represents the weights for the
i-th layer. Each ws[i] is a list containing eight matrices. ws[i][j] corresponds to 𝑊𝑗

in the equation. Only ws[0][j] where 0 <= j < 4 are (I, N)-shaped as they are
multiplied with input variables, where I is the size of the input and N is the dimension of
the hidden units. All other matrices are (N, N)-shaped.

• bs (list of list of Variable) – Bias vectors. bs[i] represents the biases for the i-th
layer. Each bs[i] is a list containing eight vectors. bs[i][j] corresponds to 𝑏𝑗 in the
equation. The shape of each matrix is (N,) where N is the dimension of the hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose_sequence() can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs
needs to satisfy xs[t].shape[0] >= xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

218 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Note: The dimension of hidden units is limited to only one size N. If you want to use variable dimension of
hidden units, please use chainer.functions.lstm.

See also:

chainer.functions.lstm()

Example

>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
... ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i in
→˓range(8)])
... bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
...
>>> ws[0][0].shape # ws[0][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[1][0].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_lstm(
... n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(2, 3, 2)
>>> cy.shape
(2, 3, 2)
>>> [y.shape for y in ys]
[(3, 2), (2, 2), (1, 2)]

chainer.functions.n_step_rnn

chainer.functions.n_step_rnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation=’tanh’)
Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

ℎ𝑡 = 𝑓(𝑊0𝑥𝑡 +𝑊1ℎ𝑡−1 + 𝑏0 + 𝑏1)

where 𝑓 is an activation function.

4.2. Functions 219



Chainer Documentation, Release 6.5.0

Weight matrices 𝑊 contains two matrices 𝑊0 and 𝑊1. 𝑊0 is a parameter for an input sequence. 𝑊1 is a
parameter for a hidden state. Bias matrices 𝑏 contains two matrices 𝑏0 and 𝑏1. 𝑏0 is a parameter for an input
sequence. 𝑏1 is a parameter for a hidden state.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Two weight matrices and two bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 2𝑆 weight matrices and 2𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

• ws (list of list of Variable) – Weight matrices. ws[i] represents weights for i-th layer.
Each ws[i] is a list containing two matrices. ws[i][j] is corresponding with W_j in the
equation. Only ws[0][j] where 0 <= j < 1 is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i] represnents biases for i-th layer.
Each bs[i] is a list containing two vectors. bs[i][j] is corresponding with b_j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

• activation (str) – Activation function name. Please select tanh or relu.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.shift

chainer.functions.shift(x, ksize=3, dilate=1)
Shift function.

See: Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐, ℎ, 𝑤).

220 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1711.08141


Chainer Documentation, Release 6.5.0

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

Returns Output variable of same shape as x.

Return type Variable

4.2.5 Evaluation functions

chainer.functions.accuracy Computes multiclass classification accuracy of the
minibatch.

chainer.functions.binary_accuracy Computes binary classification accuracy of the mini-
batch.

chainer.functions.
classification_summary

Calculates Precision, Recall, F beta Score, and support.

chainer.functions.f1_score
chainer.functions.precision
chainer.functions.r2_score Computes R^2(coefficient of determination) regression

score function.
chainer.functions.recall

chainer.functions.accuracy

chainer.functions.accuracy(y, t, ignore_label=None)
Computes multiclass classification accuracy of the minibatch.

Parameters

• y (Variable or N-dimensional array) – Array whose (i, j, k, . . . )-th element indicates the
score of the class j at the (i, k, . . . )-th sample. The prediction label 𝑡 is calculated by the
formula 𝑡(𝑖, 𝑘, ...) = argmax𝑗 𝑦(𝑖, 𝑗, 𝑘, ...).

• t (Variable or N-dimensional array) – Array of ground truth labels.

• ignore_label (int or None) – Skip calculating accuracy if the true label is
ignore_label.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when y is the two dimensional array.

>>> y = np.array([[0.1, 0.7, 0.2], # prediction label is 1
... [8.0, 1.0, 2.0], # prediction label is 0
... [-8.0, 1.0, 2.0], # prediction label is 2
... [-8.0, -1.0, -2.0]]) # prediction label is 1
>>> t = np.array([1, 0, 2, 1], np.int32)

(continues on next page)

4.2. Functions 221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> F.accuracy(y, t).array # 100% accuracy because all samples are correct
array(1.)
>>> t = np.array([1, 0, 0, 0], np.int32)
>>> F.accuracy(y, t).array # 50% accuracy because 1st and 2nd samples are correct.
array(0.5)
>>> F.accuracy(y, t, ignore_label=0).array # 100% accuracy because of ignoring
→˓the 2nd, 3rd and 4th samples.
array(1.)

chainer.functions.binary_accuracy

chainer.functions.binary_accuracy(y, t)
Computes binary classification accuracy of the minibatch.

Parameters

• y (Variable or N-dimensional array) – Array whose i-th element indicates the score of
positive at the i-th sample. The prediction label 𝑡[𝑖] is 1 if y[i] >= 0, otherwise 0.

• t (Variable or N-dimensional array) – Array holding a signed integer vector of ground
truth labels. If t[i] == 1, it indicates that i-th sample is positive. If t[i] == 0, it
indicates that i-th sample is negative. If t[i] == -1, corresponding y[i] is ignored.
Accuracy is zero if all ground truth labels are -1.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when y is the two dimensional array.

>>> y = np.array([[-2.0, 0.0], # prediction labels are [0, 1]
... [3.0, -5.0]]) # prediction labels are [1, 0]
>>> t = np.array([[0, 1],
... [1, 0]], np.int32)
>>> F.binary_accuracy(y, t).array # 100% accuracy because all samples are correct.
array(1.)
>>> t = np.array([[0, 0],
... [1, 1]], np.int32)
>>> F.binary_accuracy(y, t).array # 50% accuracy because y[0][0] and y[1][0] are
→˓correct.
array(0.5)
>>> t = np.array([[0, -1],
... [1, -1]], np.int32)
>>> F.binary_accuracy(y, t).array # 100% accuracy because of ignoring y[0][1] and
→˓y[1][1].
array(1.)

222 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

chainer.functions.classification_summary

chainer.functions.classification_summary(y, t, label_num=None, beta=1.0, ignore_label=-
1)

Calculates Precision, Recall, F beta Score, and support.

This function calculates the following quantities for each class.

• Precision: tp
tp+fp

• Recall: tp
tp+fn

• F beta Score: The weighted harmonic average of Precision and Recall.

• Support: The number of instances of each ground truth label.

Here, tp, fp, tn, and fn stand for the number of true positives, false positives, true negatives, and false
negatives, respectively.

label_num specifies the number of classes, that is, each value in t must be an integer in the range of [0,
label_num). If label_num is None, this function regards label_num as a maximum of in t plus one.

ignore_label determines which instances should be ignored. Specifically, instances with the given label
are not taken into account for calculating the above quantities. By default, it is set to -1 so that all instances are
taken into consideration, as labels are supposed to be non-negative integers. Setting ignore_label to a non-
negative integer less than label_num is illegal and yields undefined behavior. In the current implementation,
it arises RuntimeWarning and ignore_label-th entries in output arrays do not contain correct quantities.

Parameters

• y (Variable or N-dimensional array) – Variable holding a vector of scores.

• t (Variable or N-dimensional array) – Variable holding a vector of ground truth labels.

• label_num (int) – The number of classes.

• beta (float) – The parameter which determines the weight of precision in the F-beta
score.

• ignore_label (int) – Instances with this label are ignored.

Returns 4-tuple of ~chainer.Variable of size (label_num,). Each element represents precision,
recall, F beta score, and support of this minibatch.

chainer.functions.f1_score

chainer.functions.f1_score(y, t, label_num=None, ignore_label=-1)

chainer.functions.precision

chainer.functions.precision(y, t, label_num=None, ignore_label=-1)

chainer.functions.r2_score

chainer.functions.r2_score(pred, true, sample_weight=None, multioutput=’uniform_average’)
Computes R^2(coefficient of determination) regression score function.

Parameters

4.2. Functions 223

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• pred (Variable or N-dimensional array) – Variable holding a vector, matrix or tensor of
estimated target values.

• true (Variable or N-dimensional array) – Variable holding a vector, matrix or tensor of
correct target values.

• sample_weight – This argument is for compatibility with scikit-learn’s implementation
of r2_score. Current implementation admits None only.

• multioutput (string) – [‘uniform_average’, ‘raw_values’]. if ‘uniform_average’, this
function returns an average of R^2 score of multiple output. If ‘raw_average’, this function
return a set of R^2 score of multiple output.

Returns A Variable holding a scalar array of the R^2 score if ‘multioutput’ is ‘uniform_average’ or
a vector of R^2 scores if ‘multioutput’ is ‘raw_values’.

Return type Variable

Note: This function is non-differentiable.

chainer.functions.recall

chainer.functions.recall(y, t, label_num=None, ignore_label=-1)

4.2.6 Loss functions

chainer.functions.absolute_error Element-wise absolute error function.
chainer.functions.bernoulli_nll Computes the negative log-likelihood of a Bernoulli dis-

tribution.
chainer.functions.black_out BlackOut loss function.
chainer.functions.
connectionist_temporal_classification

Connectionist Temporal Classification loss function.

chainer.functions.contrastive Computes contrastive loss.
chainer.functions.crf1d Calculates negative log-likelihood of linear-chain CRF.
chainer.functions.argmax_crf1d Computes a state that maximizes a joint probability of

the given CRF.
chainer.functions.cross_covariance Computes the sum-squared cross-covariance penalty

between y and z
chainer.functions.decov Computes the DeCov loss of h
chainer.functions.
discriminative_margin_based_clustering_loss

Discriminative margin-based clustering loss function

chainer.functions.
gaussian_kl_divergence

Computes the KL-divergence of Gaussian variables
from the standard one.

chainer.functions.gaussian_nll Computes the negative log-likelihood of a Gaussian dis-
tribution.

chainer.functions.hinge Computes the hinge loss for a one-of-many classifica-
tion task.

chainer.functions.huber_loss Computes the Huber loss.
chainer.functions.
mean_absolute_error

Mean absolute error function.

chainer.functions.mean_squared_error Mean squared error function.
Continued on next page

224 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Table 7 – continued from previous page
chainer.functions.negative_sampling Negative sampling loss function.
chainer.functions.
sigmoid_cross_entropy

Computes cross entropy loss for pre-sigmoid activa-
tions.

chainer.functions.
softmax_cross_entropy

Computes cross entropy loss for pre-softmax activa-
tions.

chainer.functions.squared_error Squared error function.
chainer.functions.triplet Computes triplet loss.

chainer.functions.absolute_error

chainer.functions.absolute_error(x0, x1)
Element-wise absolute error function.

Computes the element-wise absolute error 𝐿 between two inputs 𝑥0 and 𝑥1 defined as follows.

𝐿 = |𝑥0 − 𝑥1|

Parameters

• x0 (Variable or N-dimensional array) – First input variable.

• x1 (Variable or N-dimensional array) – Second input variable.

Returns An array representing the element-wise absolute error between the two inputs.

Return type Variable

chainer.functions.bernoulli_nll

chainer.functions.bernoulli_nll(x, y, reduce=’sum’)
Computes the negative log-likelihood of a Bernoulli distribution.

This function calculates the negative log-likelihood of a Bernoulli distribution.

− log𝐵(𝑥; 𝑝) = −
∑︁
𝑖

{𝑥𝑖 log(𝑝𝑖) + (1− 𝑥𝑖) log(1− 𝑝𝑖)},

where 𝑝 = 𝜎(𝑦), 𝜎(·) is a sigmoid function, and 𝐵(𝑥; 𝑝) is a Bernoulli distribution.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Note: As this function uses a sigmoid function, you can pass a result of fully-connected layer (that means
Linear) to this function directly.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• y (Variable or N-dimensional array) – A variable representing the parameter of Bernoulli
distribution.

• reduce (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'.
Otherwise, ValueError is raised.

4.2. Functions 225

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

Returns A variable representing the negative log-likelihood. If reduce is 'no', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If it is 'sum'
or 'mean', the output variable holds a scalar value.

Return type Variable

chainer.functions.black_out

chainer.functions.black_out(x, t, W, samples, reduce=’mean’)
BlackOut loss function.

BlackOut loss function is defined as

− log(𝑝(𝑡))−
∑︁
𝑠∈𝑆

log(1− 𝑝(𝑠)),

where 𝑡 is the correct label, 𝑆 is a set of negative examples and 𝑝(·) is likelihood of a given label. And, 𝑝 is
defined as

𝑝(𝑦) =
exp(𝑊⊤

𝑦 𝑥)∑︀
𝑠∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠 exp(𝑊⊤

𝑠 𝑥)
.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the no
loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• x (Variable or N-dimensional array) – Batch of input vectors. Its shape should be
(𝑁,𝐷).

• t (Variable or N-dimensional array) – Vector of ground truth labels. Its shape should be
(𝑁, ). Each elements 𝑣 should satisfy 0 ≥ 𝑣 ≥ 𝑉 or −1 where 𝑉 is the number of label
types.

• W (Variable or N-dimensional array) – Weight matrix. Its shape should be (𝑉,𝐷)

• samples (Variable) – Negative samples. Its shape should be (𝑁,𝑆) where 𝑆 is the
number of negative samples.

• reduce (str) – Reduction option. Its value must be either 'no' or 'mean'. Otherwise,
ValueError is raised.

Returns A variable object holding loss value(s). If reduce is 'no', the output variable holds an
array whose shape is (𝑁, ) . If it is 'mean', it holds a scalar.

Return type Variable

See: BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies

See also:

BlackOut to manage the model parameter W.

chainer.functions.connectionist_temporal_classification

chainer.functions.connectionist_temporal_classification(x, t, blank_symbol,
input_length=None,
label_length=None, re-
duce=’mean’)

Connectionist Temporal Classification loss function.

226 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1511.06909


Chainer Documentation, Release 6.5.0

Connectionist Temporal Classification(CTC) [Graves2006] is a loss function of sequence labeling where the
alignment between the inputs and target is unknown. See also [Graves2012]

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
samplewise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

• x (list or tuple of Variable) – A list of unnormalized probabilities for labels. Each ele-
ment of x, x[i] is a Variable object, which has shape (B, V), where B is the batch
size and V is the number of labels. The softmax of x[i] represents the probabilities of the
labels at time i.

• t (Variable or N-dimensional array) – A matrix including expected label sequences.
Its shape is (B, M), where B is the batch size and M is the maximum length of the label
sequences. All elements in t must be less than V, the number of labels.

• blank_symbol (int) – Index of blank_symbol. This value must be non-negative.

• input_length (Variable or N-dimensional array) – Length of sequence for each of
mini batch x (optional). Its shape must be (B,). If the input_length is omitted or
None, it assumes that all of x is valid input.

• label_length (Variable or N-dimensional array) – Length of sequence for each of
mini batch t (optional). Its shape must be (B,). If the label_length is omitted or
None, it assumes that all of t is valid input.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar value of the CTC loss. If reduce is 'no', the output variable
holds array whose shape is (B,) where B is the number of samples. If it is 'mean', it holds a
scalar.

Return type Variable

Note: You need to input x without applying to activation functions(e.g. softmax function), because this
function applies softmax functions to x before calculating CTC loss to avoid numerical limitations. You also
need to apply softmax function to forwarded values before you decode it.

Note: This function is differentiable only by x.

Note: This function supports (batch, sequence, 1-dimensional input)-data.

chainer.functions.contrastive

chainer.functions.contrastive(x0, x1, y, margin=1, reduce=’mean’)
Computes contrastive loss.

It takes a pair of samples and a label as inputs. The label is 1 when those samples are similar, or 0 when they
are dissimilar.

4.2. Functions 227

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

Let 𝑁 and 𝐾 denote mini-batch size and the dimension of input variables, respectively. The shape of both input
variables x0 and x1 should be (N, K). The loss value of the 𝑛-th sample pair 𝐿𝑛 is

𝐿𝑛 =
1

2

(︀
𝑦𝑛𝑑

2
𝑛 + (1− 𝑦𝑛) max(margin− 𝑑𝑛, 0)2

)︀
where 𝑑𝑛 = ‖x0𝑛 − x1𝑛‖2, x0𝑛 and x1𝑛 are 𝑛-th K-dimensional vectors of x0 and x1.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• x0 (Variable or N-dimensional array) – The first input variable. The shape should be
(N, K), where N denotes the mini-batch size, and K denotes the dimension of x0.

• x1 (Variable or N-dimensional array) – The second input variable. The shape should be
the same as x0.

• y (Variable or N-dimensional array) – Labels. All values should be 0 or 1. The shape
should be (N,), where N denotes the mini-batch size.

• margin (float) – A parameter for contrastive loss. It should be positive value.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the loss value(s) calculated by the above equation. If reduce is 'no',
the output variable holds array whose shape is same as one of (hence both of) input variables. If
it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train siamese networks. See Learning a Similarity Metric Discriminatively, with
Application to Face Verification for details.

Example

>>> x0 = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x1 = np.array([[-1.0, 3.0, 1.0], [3.5, 0.5, -2.0]]).astype(np.float32)
>>> y = np.array([1, 0]).astype(np.int32)
>>> F.contrastive(x0, x1, y)
variable(0.3125)
>>> F.contrastive(x0, x1, y, margin=3.0) # harder penalty
variable(0.3528857)
>>> z = F.contrastive(x0, x1, y, reduce='no')
>>> z.shape
(2,)
>>> z.array
array([0.625, 0. ], dtype=float32)

chainer.functions.crf1d

chainer.functions.crf1d(cost, xs, ys, reduce=’mean’)
Calculates negative log-likelihood of linear-chain CRF.

228 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf


Chainer Documentation, Release 6.5.0

It takes a transition cost matrix, a sequence of costs, and a sequence of labels. Let 𝑐𝑠𝑡 be a transition cost from a
label 𝑠 to a label 𝑡, 𝑥𝑖𝑡 be a cost of a label 𝑡 at position 𝑖, and 𝑦𝑖 be an expected label at position 𝑖. The negative
log-likelihood of linear-chain CRF is defined as

𝐿 = −

(︃
𝑙∑︁

𝑖=1

𝑥𝑖𝑦𝑖
+

𝑙−1∑︁
𝑖=1

𝑐𝑦𝑖𝑦𝑖+1
− log(𝑍)

)︃
,

where 𝑙 is the length of the input sequence and 𝑍 is the normalizing constant called partition function.

Note: When you want to calculate the negative log-likelihood of sequences which have different lengths, sort
the sequences in descending order of lengths and transpose the sequences. For example, you have three input
sequences:

>>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> c1 = c2 = np.random.uniform(-1, 1, 3).astype(np.float32)

>>> a = [a1, a2, a3, a4]
>>> b = [b1, b2, b3]
>>> c = [c1, c2]

where a1 and all other variables are arrays with (K,) shape. Make a transpose of the sequences:

>>> x1 = np.stack([a1, b1, c1])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])
>>> x4 = np.stack([a4])

and make a list of the arrays:

>>> xs = [x1, x2, x3, x4]

You need to make label sequences in the same fashion. And then, call the function:

>>> cost = chainer.Variable(
... np.random.uniform(-1, 1, (3, 3)).astype(np.float32))
>>> ys = [np.zeros(x.shape[0:1], dtype=np.int32) for x in xs]
>>> loss = F.crf1d(cost, xs, ys)

It calculates mean of the negative log-likelihood of the three sequences.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', it holds mean of the loss values.

Parameters

• cost (Variable or N-dimensional array) – A 𝐾 ×𝐾 matrix which holds transition cost
between two labels, where 𝐾 is the number of labels.

• xs (list of Variable) – Input vector for each label. len(xs) denotes the length of
the sequence, and each Variable holds a 𝐵 ×𝐾 matrix, where 𝐵 is mini-batch size, 𝐾
is the number of labels. Note that 𝐵s in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

• ys (list of Variable) – Expected output labels. It needs to have the same length as
xs. Each Variable holds a 𝐵 integer vector. When x in xs has the different 𝐵, corre-

4.2. Functions 229



Chainer Documentation, Release 6.5.0

spoding y has the same 𝐵. In other words, ys must satisfy ys[i].shape == xs[i].
shape[0:1] for all i.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the average negative log-likelihood of the input sequences.

Return type Variable

Note: See detail in the original paper: Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data.

chainer.functions.argmax_crf1d

chainer.functions.argmax_crf1d(cost, xs)
Computes a state that maximizes a joint probability of the given CRF.

Parameters

• cost (Variable or N-dimensional array) – A 𝐾 ×𝐾 matrix which holds transition cost
between two labels, where 𝐾 is the number of labels.

• xs (list of Variable) – Input vector for each label. len(xs) denotes the length of
the sequence, and each Variable holds a 𝐵 ×𝐾 matrix, where 𝐵 is mini-batch size, 𝐾
is the number of labels. Note that 𝐵s in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

Returns A tuple of Variable object s and a list ps. The shape of s is (B,), where B is the
mini-batch size. i-th element of s, s[i], represents log-likelihood of i-th data. ps is a list
of N-dimensional array, and denotes the state that maximizes the point probability. len(ps)
is equal to len(xs), and shape of each ps[i] is the mini-batch size of the corresponding
xs[i]. That means, ps[i].shape == xs[i].shape[0:1].

Return type tuple

chainer.functions.cross_covariance

chainer.functions.cross_covariance(y, z, reduce=’half_squared_sum’)
Computes the sum-squared cross-covariance penalty between y and z

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the covariant matrix that has as many rows (resp. columns) as the dimension of y (resp.z). If it is
'half_squared_sum', it holds the half of the Frobenius norm (i.e. L2 norm of a matrix flattened to a
vector) of the covarianct matrix.

Parameters

• y (Variable or N-dimensional array) – Variable holding a matrix where the first dimen-
sion corresponds to the batches.

• z (Variable or N-dimensional array) – Variable holding a matrix where the first dimen-
sion corresponds to the batches.

• reduce (str) – Reduction option. Its value must be either 'half_squared_sum' or
'no'. Otherwise, ValueError is raised.

230 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://repository.upenn.edu/cis_papers/159/
https://repository.upenn.edu/cis_papers/159/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

Returns A variable holding the cross covariance loss. If reduce is 'no', the output variable holds
2-dimensional array matrix of shape (M, N) where M (resp. N) is the number of columns of y
(resp. z). If it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to disentangle variables. See https://arxiv.org/abs/1412.6583v3 for details.

chainer.functions.decov

chainer.functions.decov(h, reduce=’half_squared_sum’)
Computes the DeCov loss of h

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds a matrix
whose size is same as the number of columns of y. If it is 'half_squared_sum', it holds the half of the
squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix.

Parameters

• h (Variable or N-dimensional array) – Variable holding a matrix where the first dimen-
sion corresponds to the batches.

• recude (str) – Reduction option. Its value must be either 'half_squared_sum' or
'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar of the DeCov loss. If reduce is 'no', the output variable
holds 2-dimensional array matrix of shape (N, N) where N is the number of columns of y. If
it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: See https://arxiv.org/abs/1511.06068 for details.

chainer.functions.discriminative_margin_based_clustering_loss

chainer.functions.discriminative_margin_based_clustering_loss(embeddings, la-
bels, delta_v,
delta_d,
max_embedding_dim,
norm=1, al-
pha=1.0,
beta=1.0,
gamma=0.001)

Discriminative margin-based clustering loss function

This is the implementation of the following paper: https://arxiv.org/abs/1708.02551 This method is a semi-
supervised solution to instance segmentation. It calculates pixel embeddings, and calculates three different
terms based on those embeddings and applies them as loss. The main idea is that the pixel embeddings for same
instances have to be closer to each other (pull force), for different instances, they have to be further away (push
force). The loss also brings a weak regularization term to prevent overfitting. This loss function calculates the
following three parameters:

Variance Loss Loss to penalize distances between pixels which are belonging to the same instance. (Pull force)

Distance loss Loss to penalize distances between the centers of instances. (Push force)

4.2. Functions 231

https://arxiv.org/abs/1412.6583v3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1511.06068
https://arxiv.org/abs/1708.02551


Chainer Documentation, Release 6.5.0

Regularization loss Small regularization loss to penalize weights against overfitting.

Parameters

• embeddings (Variable or N-dimensional array) – predicted embedding vectors (batch
size, max embedding dimensions, height, width)

• labels (N-dimensional array) – instance segmentation ground truth each unique value has
to be denoting one instance (batch size, height, width)

• delta_v (float) – Minimum distance to start penalizing variance

• delta_d (float) – Maximum distance to stop penalizing distance

• max_embedding_dim (int) – Maximum number of embedding dimensions

• norm (int) – Norm to calculate pixels and cluster center distances

• alpha (float) – Weight for variance loss

• beta (float) – Weight for distance loss

• gamma (float) – Weight for regularization loss

Returns

• Variance loss: Variance loss multiplied by alpha

• Distance loss: Distance loss multiplied by beta

• Regularization loss: Regularization loss multiplied by gamma

Return type tuple of chainer.Variable

chainer.functions.gaussian_kl_divergence

chainer.functions.gaussian_kl_divergence(mean, ln_var, reduce=’sum’)
Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function calculates the KL-
divergence in elementwise manner between the given multi-dimensional Gaussian 𝑁(𝜇, 𝑆) and the standard
Gaussian 𝑁(0, 𝐼)

𝐷KL(𝑁(𝜇, 𝑆)‖𝑁(0, 𝐼)),

where 𝑆 is a diagonal matrix such that 𝑆𝑖𝑖 = 𝜎2
𝑖 and 𝐼 is an identity matrix.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Parameters

• mean (Variable or N-dimensional array) – A variable representing mean of given gaus-
sian distribution, 𝜇.

• ln_var (Variable or N-dimensional array) – A variable representing logarithm of vari-
ance of given gaussian distribution, log(𝜎2).

• reduce (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'.
Otherwise, ValueError is raised.

232 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

Returns A variable representing KL-divergence between given gaussian distribution and the stan-
dard gaussian. If reduce is 'no', the output variable holds array whose shape is same as one
of (hence both of) input variables. If it is 'sum' or 'mean', the output variable holds a scalar
value.

Return type Variable

chainer.functions.gaussian_nll

chainer.functions.gaussian_nll(x, mean, ln_var, reduce=’sum’)
Computes the negative log-likelihood of a Gaussian distribution.

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function computes in elemen-
twise manner the negative log-likelihood of 𝑥 on a Gaussian distribution 𝑁(𝜇, 𝑆),

− log𝑁(𝑥;𝜇, 𝜎2) = log

(︂√︁
(2𝜋)𝐷|𝑆|

)︂
+

1

2
(𝑥− 𝜇)⊤𝑆−1(𝑥− 𝜇),

where 𝐷 is a dimension of 𝑥 and 𝑆 is a diagonal matrix where 𝑆𝑖𝑖 = 𝜎2
𝑖 .

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• mean (Variable or N-dimensional array) – A variable representing mean of a Gaussian
distribution, 𝜇.

• ln_var (Variable or N-dimensional array) – A variable representing logarithm of vari-
ance of a Gaussian distribution, log(𝜎2).

• reduce (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'.
Otherwise, ValueError is raised.

Returns A variable representing the negative log-likelihood. If reduce is 'no', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If it is 'sum'
or 'mean', the output variable holds a scalar value.

Return type Variable

chainer.functions.hinge

chainer.functions.hinge(x, t, norm=’L1’, reduce=’mean’)
Computes the hinge loss for a one-of-many classification task.

𝐿 =
1

𝑁

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

[max(0, 1− 𝛿{𝑡𝑛 = 𝑘}𝑥𝑛𝑘)]
𝑝

where 𝑁 denotes the batch size and 𝐾 is the number of classes of interest,

𝛿{condition} =

{︂
1 if condition is true
−1 otherwise,

and

𝑝 =

{︂
1 if norm = L1
2 if norm = L2.

4.2. Functions 233

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

Let the hinge loss function 𝑙(𝑥, 𝛿) be [max(0, 1− 𝛿𝑥)]
𝑝. When 𝑥 and 𝛿 have the same sign (meaning

𝑥 predicts the proper score for classification) and |𝑥| ≥ 1, the hinge loss 𝑙(𝑥, 𝛿) = 0, but when they
have opposite sign, 𝑙(𝑥, 𝛿) increases linearly with 𝑥.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the elementwise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

• x (Variable or N-dimensional array) – Input variable. The shape of x should be (𝑁 , 𝐾).

• t (Variable or N-dimensional array) – The 𝑁 -dimensional label vector with values 𝑡𝑛 ∈
{0, 1, 2, . . . ,𝐾 − 1}. The shape of t should be (𝑁 ,).

• norm (string) – Specifies norm type. Either 'L1' or 'L2' is acceptable.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable object holding a scalar array of the hinge loss 𝐿. If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it
is 'mean', the output variable holds a scalar value.

Return type Variable

Example

In this case, the batch size N is 2 and the number of classes K is 3.

>>> x = np.array([[-2.0, 3.0, 0.5],
... [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. , 3. , 0.5],

[ 5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([1, 0]).astype(np.int32)
>>> t
array([1, 0], dtype=int32)
>>> F.hinge(x, t)
variable(2.5)
>>> F.hinge(x, t, reduce='no')
variable([[0. , 0. , 1.5],

[0. , 3. , 0.5]])
>>> F.hinge(x, t, norm='L2')
variable(5.75)

chainer.functions.huber_loss

chainer.functions.huber_loss(x, t, delta, reduce=’sum_along_second_axis’)
Computes the Huber loss.

The Huber loss is similar to the mean_squared_error() but is less sensitive to outliers in the data. It is
defined as

𝐿𝛿(𝑎) =

{︂
1
2𝑎

2 if |a| ≤ 𝛿
𝛿(|𝑎| − 1

2𝛿) otherwise,

where 𝑎 = 𝑥− 𝑡 is the difference between the input 𝑥 and the target 𝑡.

234 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

The loss is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum_along_second_axis', loss values are summed up along the second
axis (i.e. axis=1).

See: Huber loss - Wikipedia.

Parameters

• x (Variable or N-dimensional array) – Input variable. The shape of x should be (𝑁 , 𝐾,
. . . ) if reduce='sum_along_second_axis'.

• t (Variable or N-dimensional array) – Target variable for regression. The shape of t
should be (𝑁 , 𝐾, . . . ) if reduce='sum_along_second_axis'.

• delta (float) – Constant variable for Huber loss function as used in definition.

• reduce (str) – Reduction option. Its value must be either
'sum_along_second_axis' or 'no'. Otherwise, ValueError is raised.

Returns A variable object holding a scalar array of the Huber loss 𝐿𝛿 . If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it is
'sum_along_second_axis', the shape of the array is same as the input variables, except
the second axis is removed.

Return type Variable

Example

Example without reduction, in which case the output y will have the same shape as the inputs x and t.

>>> import numpy as np
>>> from chainer import functions as F
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x.shape
(2, 3)
>>> t = np.array([[-2.0, 3.0, 0.0], [10.0, 2.0, -0.5]]).astype(np.float32)
>>> t.shape
(2, 3)
>>> y = F.huber_loss(x, t, delta=1.0, reduce='no')
>>> y.shape
(2, 3)
>>> y
variable([[0. , 0. , 0.125],

[4.5 , 0. , 0. ]])

Example with reduction along the second axis.

>>> y = F.huber_loss(x, t, delta=1.0, reduce='sum_along_second_axis')
>>> y.shape
(2,)
>>> y
variable([0.125, 4.5 ])

chainer.functions.mean_absolute_error

chainer.functions.mean_absolute_error(x0, x1)
Mean absolute error function.

4.2. Functions 235

https://en.wikipedia.org/wiki/Huber_loss
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


Chainer Documentation, Release 6.5.0

This function computes mean absolute error between two variables. The mean is taken over the minibatch.

Parameters

• x0 (Variable or N-dimensional array) – Input variable.

• x1 (Variable or N-dimensional array) – Input variable.

Returns A variable holding an array representing the mean absolute error of two inputs.

Return type Variable

chainer.functions.mean_squared_error

chainer.functions.mean_squared_error(x0, x1)
Mean squared error function.

This function computes mean squared error between two variables. The mean is taken over the minibatch. Note
that the error is not scaled by 1/2.

Parameters

• x0 (Variable or N-dimensional array) – Input variable.

• x1 (Variable or N-dimensional array) – Input variable.

Returns A variable holding an array representing the mean squared error of two inputs.

Return type Variable

chainer.functions.negative_sampling

chainer.functions.negative_sampling(x, t, W, sampler, sample_size, reduce=’sum’, *, re-
turn_samples=False)

Negative sampling loss function.

In natural language processing, especially language modeling, the number of words in a vocabulary can be very
large. Therefore, you need to spend a lot of time calculating the gradient of the embedding matrix.

By using the negative sampling trick you only need to calculate the gradient for a few sampled negative exam-
ples.

The loss is defined as follows.

𝑓(𝑥, 𝑝) = − log 𝜎(𝑥⊤𝑤𝑝)− 𝑘𝐸𝑖∼𝑃 (𝑖)[log 𝜎(−𝑥⊤𝑤𝑖)]

where 𝜎(·) is a sigmoid function, 𝑤𝑖 is the weight vector for the word 𝑖, and 𝑝 is a positive example. It is
approximated with 𝑘 examples 𝑁 sampled from probability 𝑃 (𝑖).

𝑓(𝑥, 𝑝) ≈ − log 𝜎(𝑥⊤𝑤𝑝)−
∑︁
𝑛∈𝑁

log 𝜎(−𝑥⊤𝑤𝑛)

Each sample of 𝑁 is drawn from the word distribution 𝑃 (𝑤) = 1
𝑍 𝑐(𝑤)𝛼, where 𝑐(𝑤) is the unigram count of

the word 𝑤, 𝛼 is a hyper-parameter, and 𝑍 is the normalization constant.

Parameters

• x (Variable or N-dimensional array) – Batch of input vectors.

• t (Variable or N-dimensional array) – Vector of ground truth labels.

• W (Variable or N-dimensional array) – Weight matrix.

236 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

• sampler (FunctionType) – Sampling function. It takes a shape and returns an integer
array of the shape. Each element of this array is a sample from the word distribution. A
WalkerAlias object built with the power distribution of word frequency is recommended.

• sample_size (int) – Number of samples.

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

• return_samples (bool) – If True, the sample array is also returned. The sample array is
a (

Returns

If return_samples is False (default), the output variable holding the loss value(s) calcu-
lated by the above equation is returned. Otherwise, a tuple of the output variable and the sample
array is returned.

If reduce is 'no', the output variable holds array whose shape is same as one of (hence both
of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type Variable or tuple

See: Distributed Representations of Words and Phrases and their Compositionality

See also:

NegativeSampling to manage the model parameter W.

chainer.functions.sigmoid_cross_entropy

chainer.functions.sigmoid_cross_entropy(x, t, normalize=True, reduce=’mean’)
Computes cross entropy loss for pre-sigmoid activations.

Parameters

• x (Variable or N-dimensional array) – A variable object holding a matrix whose (i, j)-th
element indicates the unnormalized log probability of the j-th unit at the i-th example.

• t (Variable or N-dimensional array) – A variable object holding a matrix whose (i, j)-th
element indicates a signed integer vector of ground truth labels 0 or 1. If t[i, j] ==
-1, corresponding x[i, j] is ignored. Loss is zero if all ground truth labels are -1.

• normalize (bool) – Variable holding a boolean value which determines the normaliza-
tion constant. If true, this function normalizes the cross entropy loss across all instances. If
else, it only normalizes along a batch size.

• reduce (str) – Variable holding a str which determines whether to reduce the shape of
the input. If it is 'mean', it computes the sum of cross entropy and normalize it according
to normalize option. If is is 'no', this function computes cross entropy for each instance
and does not normalize it (normalize option is ignored). In this case, the loss value of
the ignored instance, which has -1 as its target value, is set to 0.

Returns A variable object holding an array of the cross entropy. If reduce is 'mean', it is a
scalar array. If reduce is 'no', the shape is same as those of x and t.

Return type Variable

Note: This function is differentiable only by x.

4.2. Functions 237

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1310.4546
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. , 3. , 0.5],

[ 5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([[0, 1, 0], [1, 1, -1]]).astype(np.int32)
>>> t
array([[ 0, 1, 0],

[ 1, 1, -1]], dtype=int32)
>>> F.sigmoid_cross_entropy(x, t)
variable(0.25664714)
>>> F.sigmoid_cross_entropy(x, t, normalize=False)
variable(0.64161783)
>>> y = F.sigmoid_cross_entropy(x, t, reduce='no')
>>> y.shape
(2, 3)
>>> y.array
array([[ 0.126928 , 0.04858735, 0.974077 ],

[ 0.00671535, 0.126928 , -0. ]], dtype=float32)

chainer.functions.softmax_cross_entropy

chainer.functions.softmax_cross_entropy(x, t, normalize=True, cache_score=True,
class_weight=None, ignore_label=-1, re-
duce=’mean’, enable_double_backprop=False)

Computes cross entropy loss for pre-softmax activations.

Parameters

• x (Variable or N-dimensional array) – Variable holding a multidimensional array whose
element indicates unnormalized log probability: the first axis of the variable represents the
number of samples, and the second axis represents the number of classes. While this func-
tion computes a usual softmax cross entropy if the number of dimensions is equal to 2, it
computes a cross entropy of the replicated softmax if the number of dimensions is greater
than 2.

• t (Variable or N-dimensional array) – Variable holding a signed integer vector of ground
truth labels. If t[i] == ignore_label, corresponding x[i] is ignored.

• normalize (bool) – If True, this function normalizes the cross entropy loss across all
instances. If False, it only normalizes along a batch size.

• cache_score (bool) – When it is True, the function stores result of forward compu-
tation to use it on backward computation. It reduces computational cost though consumes
more memory. If enable_double_backprop option is True, this option is forcibly
turned off and the function does not cache the intermediate value.

• class_weight (N-dimensional array) – An array that contains constant weights that will
be multiplied with the loss values along with the second dimension. The shape of this array
should be (x.shape[1],). If this is not None, each class weight class_weight[i]
is actually multiplied to y[:, i] that is the corresponding log-softmax output of x and
has the same shape as x before calculating the actual loss value.

• ignore_label (int) – Label value you want to ignore. Its default value is -1. See
description of the argument t.

238 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• reduce (str) – A string that determines whether to reduce the loss values. If it is
'mean', it computes the sum of the individual cross entropy and normalize it according
to normalize option. If it is 'no', this function computes cross entropy for each in-
stance and does not normalize it (normalize option is ignored). In this case, the loss
value of the ignored instance, which has ignore_label as its target value, is set to 0.

• enable_double_backprop (bool) – If True, this function uses implementation that
supports higher order differentiation. If False, it uses single-backprop implementation.
This function use the single-backprop version because we expect it is faster. So, if you need
second or higher derivatives, you need to turn it on explicitly.

Returns A variable holding a scalar array of the cross entropy loss. If reduce is 'mean', it is a
scalar array. If reduce is 'no', the shape is same as that of t.

Return type Variable

Note: This function is differentiable only by x.

Example

>>> x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]]).astype(np.float32)
>>> x
array([[-1., 0., 1., 2.],

[ 2., 0., 1., -1.]], dtype=float32)
>>> t = np.array([3, 0]).astype(np.int32)
>>> t
array([3, 0], dtype=int32)
>>> y = F.softmax_cross_entropy(x, t)
>>> y
variable(0.44018972)
>>> log_softmax = -F.log_softmax(x)
>>> expected_loss = np.mean([log_softmax[row, column].data for row, column in
→˓enumerate(t)])
>>> y.array == expected_loss
True

chainer.functions.squared_error

chainer.functions.squared_error(x0, x1)
Squared error function.

This function computes the squared error between two variables:

(𝑥0 − 𝑥1)2

where operation is done in elementwise manner. Note that the error is not scaled by 1/2:

Parameters

• x0 (Variable or N-dimensional array) – Input variable.

• x1 (Variable or N-dimensional array) – Input variable.

Returns A variable holding an array representing the squared error of two inputs.

Return type Variable

4.2. Functions 239

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

chainer.functions.triplet

chainer.functions.triplet(anchor, positive, negative, margin=0.2, reduce=’mean’)
Computes triplet loss.

It takes a triplet of variables as inputs, 𝑎, 𝑝 and 𝑛: anchor, positive example and negative example respectively.
The triplet defines a relative similarity between samples. Let𝑁 and𝐾 denote mini-batch size and the dimension
of input variables, respectively. The shape of all input variables should be (𝑁,𝐾).

𝐿(𝑎, 𝑝, 𝑛) =
1

𝑁

(︃
𝑁∑︁
𝑖=1

max{𝑑(𝑎𝑖, 𝑝𝑖)− 𝑑(𝑎𝑖, 𝑛𝑖) + margin, 0}

)︃

where 𝑑(𝑥𝑖, 𝑦𝑖) = ‖x𝑖 − y𝑖‖22.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• anchor (Variable or N-dimensional array) – The anchor example variable. The shape
should be (𝑁,𝐾), where𝑁 denotes the minibatch size, and𝐾 denotes the dimension of the
anchor.

• positive (Variable or N-dimensional array) – The positive example variable. The
shape should be the same as anchor.

• negative (Variable or N-dimensional array) – The negative example variable. The
shape should be the same as anchor.

• margin (float) – A parameter for triplet loss. It should be a positive value.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar that is the loss value calculated by the above equation. If
reduce is 'no', the output variable holds array whose shape is same as one of (hence both
of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train triplet networks. See Learning Fine-grained Image Similarity with Deep
Ranking for details.

Example

>>> anchor = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> pos = np.array([[-2.1, 2.8, 0.5], [4.9, 2.0, -0.4]]).astype(np.float32)
>>> neg = np.array([[-2.1, 2.7, 0.7], [4.9, 2.0, -0.7]]).astype(np.float32)
>>> F.triplet(anchor, pos, neg)
variable(0.14000003)
>>> y = F.triplet(anchor, pos, neg, reduce='no')
>>> y.shape
(2,)
>>> y.array
array([0.11000005, 0.17 ], dtype=float32)
>>> F.triplet(anchor, pos, neg, margin=0.5) # harder penalty
variable(0.44000003)

240 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1404.4661
https://arxiv.org/abs/1404.4661


Chainer Documentation, Release 6.5.0

4.2.7 Mathematical functions

chainer.functions.absolute Element-wise absolute.
chainer.functions.arccos Elementwise arccosine function.
chainer.functions.arcsin Elementwise arcsine function.
chainer.functions.arctan Elementwise arctangent function.
chainer.functions.arctan2 Elementwise arctangent function with two arguments.
chainer.functions.argmax Returns index which holds maximum of array elements

over a given axis.
chainer.functions.argmin Returns index which holds minimum of array elements

over a given axis.
chainer.functions.average Calculate weighted average of array elements over a

given axis.
chainer.functions.batch_inv Computes the inverse of a batch of square matrices.
chainer.functions.
batch_l2_norm_squared

L2 norm (a.k.a. Euclidean norm) squared.

chainer.functions.batch_matmul Computes the batch matrix multiplications of two sets
of arrays.

chainer.functions.bias Elementwise summation with broadcasting.
chainer.functions.ceil Elementwise ceil function.
chainer.functions.clip Clips (limits) elements of input variable.
chainer.functions.cos Elementwise cos function.
chainer.functions.cosh Elementwise hyperbolic cosine function.
chainer.functions.cumprod Cumulative prod of array elements over a given axis.
chainer.functions.cumsum Cumulative sum of array elements over a given axis.
chainer.functions.det Computes the determinant of a single square matrix.
chainer.functions.batch_det Computes the determinant of a batch of square matrices.
chainer.functions.digamma Digamma function.
chainer.functions.einsum Einstein summation
chainer.functions.erf Elementwise error function.
chainer.functions.erfc Elementwise complementary error function.
chainer.functions.erfcinv Elementwise inverse function of complementary error

function.
chainer.functions.erfcx Elementwise scaled complementary error function.
chainer.functions.erfinv Elementwise inverse function of error function.
chainer.functions.exp Elementwise exponential function.
chainer.functions.expm1 Elementwise exponential minus one function.
chainer.functions.fft Fast Fourier transform.
chainer.functions.fix Elementwise fix function.
chainer.functions.fmod Elementwise mod function.
chainer.functions.floor Elementwise floor function.
chainer.functions.identity Just returns input variables.
chainer.functions.ifft Inverse fast Fourier transform.
chainer.functions.inv Computes the inverse of square matrix.
chainer.functions.lgamma logarithm of gamma function.
chainer.functions.linear_interpolate Elementwise linear-interpolation function.
chainer.functions.log Elementwise natural logarithm function.
chainer.functions.log10 Elementwise logarithm function to the base 10.
chainer.functions.log1p Elementwise natural logarithm plus one function.
chainer.functions.log2 Elementwise logarithm function to the base 2.

Continued on next page

4.2. Functions 241



Chainer Documentation, Release 6.5.0

Table 8 – continued from previous page
chainer.functions.log_ndtr Logarithm of cumulative distribution function of normal

distribution.
chainer.functions.logsumexp Log-sum-exp of array elements over a given axis.
chainer.functions.matmul Computes the matrix multiplication of two arrays.
chainer.functions.max Maximum of array elements over a given axis.
chainer.functions.maximum Element-wise maximum of input variables.
chainer.functions.mean Calculate weighted average of array elements over a

given axis.
chainer.functions.min Minimum of array elements over a given axis.
chainer.functions.minimum Element-wise minimum of input variables.
chainer.functions.ndtr Elementwise cumulative distribution function of normal

distribution.
chainer.functions.ndtri Elementwise inverse function of ndtr.
chainer.functions.prod Product of array elements over a given axis.
chainer.functions.polygamma Polygamma function.
chainer.functions.rsqrt Computes elementwise reciprocal of square root of in-

put 𝑥𝑖.
chainer.functions.scale Elementwise product with broadcasting.
chainer.functions.sin Elementwise sin function.
chainer.functions.sinh Elementwise hyperbolic sine function.
chainer.functions.sign Elementwise sign function.
chainer.functions.sparse_matmul Computes the batched multiplication of sparse and

dense matrix.
chainer.functions.sqrt Elementwise square root function.
chainer.functions.square Elementwise square function.
chainer.functions.squared_difference Squared difference of input variables.
chainer.functions.sum Sum of array elements over a given axis.
chainer.functions.sum_to Sum elements along axes to output an array of a given

shape.
chainer.functions.tanh Elementwise hyperbolic tangent function.
chainer.functions.tan Elementwise tan function.
chainer.functions.tensordot Returns the tensor dot product of two arrays along spec-

ified axes.

chainer.functions.absolute

chainer.functions.absolute(self)
Element-wise absolute.

Returns Output variable.

Return type Variable

chainer.functions.arccos

chainer.functions.arccos(x)
Elementwise arccosine function.

𝑦𝑖 = arccos𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

242 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Return type Variable

chainer.functions.arcsin

chainer.functions.arcsin(x)
Elementwise arcsine function.

𝑦𝑖 = arcsin𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.arctan

chainer.functions.arctan(x)
Elementwise arctangent function.

𝑦𝑖 = arctan𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.arctan2

chainer.functions.arctan2(x1, x2)
Elementwise arctangent function with two arguments.

Parameters

• x1 (Variable or N-dimensional array) – Y-coordinates.

• x2 (Variable or N-dimensional array) – X-coordinates.

Returns Angles in radians, in the range [-pi, pi].

Return type Variable

chainer.functions.argmax

chainer.functions.argmax(x, axis=None)
Returns index which holds maximum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to find maximum elements.

• axis (None or int) – Axis over which a max is performed. The default (axis = None)
is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

4.2. Functions 243

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.argmin

chainer.functions.argmin(x, axis=None)
Returns index which holds minimum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to find minimum elements.

• axis (None or int) – Axis over which a min is performed. The default (axis = None)
is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.average

chainer.functions.average(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to sum.

• axis (None or int or tuple of int) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

• weights (None or Variable or N-dimensional array) – An array holding weights to
calculate weighted average. If it is None, all weights are assumed to be one. When axis is
None, weights must have the same shape of x. And when axis is int, it must be 1-D
array satisfing weights.shape == (x.shape[axis],).

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

chainer.functions.batch_inv

chainer.functions.batch_inv(a)
Computes the inverse of a batch of square matrices.

Parameters a (Variable or N-dimensional array) – Input array to compute the inverse for. Shape
of the array should be (m, n, n) where m is the number of matrices in the batch, and n is the
dimensionality of a square matrix.

Returns Inverse of every matrix in the batch of matrices.

Return type Variable

chainer.functions.batch_l2_norm_squared

chainer.functions.batch_l2_norm_squared(x)
L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

244 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Input variable. The first dimension is as-
sumed to be the minibatch dimension. If x has more than two dimensions all but the first dimen-
sion are flattened to one dimension.

Returns Two dimensional output variable.

Return type Variable

chainer.functions.batch_matmul

chainer.functions.batch_matmul(a, b, transa=False, transb=False)
Computes the batch matrix multiplications of two sets of arrays.

Parameters

• a (Variable or N-dimensional array) – The left operand of the batch matrix multiplica-
tions. A 2-D array of shape (B, N) is considered as B 𝑁 × 1 matrices. A 3-D array of
shape (B, M, N) is considered as B 𝑀 ×𝑁 matrices.

• b (Variable or N-dimensional array) – The right operand of the batch matrix multiplica-
tions. Its array is treated as matrices in the same way as a’s array.

• transa (bool) – If True, transpose each matrix in a.

• transb (bool) – If True, transpose each matrix in b.

Returns The result of the batch matrix multiplications as a 3-D array.

Return type Variable

Deprecated since version v3.0.0: batch_matmul is deprecated. Use matmul instead.

chainer.functions.bias

chainer.functions.bias(x, y, axis=1)
Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s bias layer so the “broadcasting” with the following arguments:

x : 100 x 3 x 40 x 5 x 6
y : 3 x 40

axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y : (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply y is specified by the argument axis, whose meaning is different from
numpy’s axis.

Parameters

• x (Variable or N-dimensional array) – Input variable to be summed.

• y (Variable or N-dimensional array) – Input variable to sum, broadcasted.

4.2. Functions 245

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

• axis (int) – The first axis of x along which y is applied.

Returns Output variable.

Return type Variable

chainer.functions.ceil

chainer.functions.ceil(x)
Elementwise ceil function.

𝑦𝑖 = ⌈𝑥𝑖⌉

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.clip

chainer.functions.clip(x, x_min, x_max)
Clips (limits) elements of input variable.

Given an interval [x_min, xmax], elements outside the interval are clipped to the interval edges.

Its gradients at x_min and x_max are regarded as 1.

Parameters

• x (Variable or N-dimensional array) – Input variable to be clipped.

• x_min (float) – Minimum value.

• x_max (float) – Maximum value.

Returns Output variable.

Return type Variable

chainer.functions.cos

chainer.functions.cos(x)
Elementwise cos function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.cosh

chainer.functions.cosh(x)
Elementwise hyperbolic cosine function.

𝑦𝑖 = cosh𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

246 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Returns Output variable.

Return type Variable

chainer.functions.cumprod

chainer.functions.cumprod(x, axis=None)
Cumulative prod of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to calculate the cumulative prod.

• axis (int or None) – Axis along which the cumulative prod is taken. If it is not spec-
ified, the input is flattened.

Returns Output variable.

Return type Variable

chainer.functions.cumsum

chainer.functions.cumsum(x, axis=None)
Cumulative sum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to calculate the cumulative sum.

• axis (int or None) – Axis along which the cumulative sum is taken. If it is not speci-
fied, the input is flattened.

Returns Output variable.

Return type Variable

chainer.functions.det

chainer.functions.det(a)
Computes the determinant of a single square matrix.

Parameters a (Variable or N-dimensional array) – Input array to compute the determinant for.

Returns Scalar determinant of the matrix a.

Return type Variable

chainer.functions.batch_det

chainer.functions.batch_det(a)
Computes the determinant of a batch of square matrices.

Parameters a (Variable or N-dimensional array) – Input array to compute the determinant for.
The first dimension should iterate over each matrix and be of the batchsize.

Returns vector of determinants for every matrix in the batch.

Return type Variable

4.2. Functions 247

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


Chainer Documentation, Release 6.5.0

chainer.functions.digamma

chainer.functions.digamma(x)
Digamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.einsum

chainer.functions.einsum(*operands)
Einstein summation

This function supports two formats of inputs:

• einsum(subscripts, op0, op1, ...)

• einsum(op0, sublist0, op1, sublist1, ..., [sublistout])

See also numpy.einsum()

Example

The following example computes a batched application of a bilinear function with weight w.

>>> x1 = np.arange(12).reshape(3, 4).astype(np.float32)
>>> x2 = np.arange(15).reshape(3, 5).astype(np.float32)
>>> w = np.arange(120).reshape(4, 5, 6).astype(np.float32)
>>> y = F.einsum('ij,ik,jkl->il', x1, x2, w)
>>> y.shape
(3, 6)

The batch axes can be denoted by .... If the string of output subscripts is omitted, the summation is taken over
the subscript alphabets with two (or more) occurrences.

>>> np.allclose(y.array, F.einsum('...j,...k,jkl', x1, x2, w).array)
True

In the other format:

>>> y = F.einsum(x1, [0, 1], x2, [0, 2], w, [1, 2, 3], [0, 3])
>>> y.shape
(3, 6)
>>> y = F.einsum(x1, [Ellipsis, 1], x2, [Ellipsis, 2], w, [1, 2, 3])
>>> y.shape
(3, 6)

248 Chapter 4. API Reference

https://www.scipy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum


Chainer Documentation, Release 6.5.0

chainer.functions.erf

chainer.functions.erf(x)
Elementwise error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.erfc

chainer.functions.erfc(x)
Elementwise complementary error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.erfcinv

chainer.functions.erfcinv(x)
Elementwise inverse function of complementary error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.erfcx

chainer.functions.erfcx(x)
Elementwise scaled complementary error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

4.2. Functions 249

https://www.scipy.org/
https://www.scipy.org/
https://www.scipy.org/
https://www.scipy.org/


Chainer Documentation, Release 6.5.0

Return type Variable

chainer.functions.erfinv

chainer.functions.erfinv(x)
Elementwise inverse function of error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.exp

chainer.functions.exp(x)
Elementwise exponential function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.expm1

chainer.functions.expm1(x)
Elementwise exponential minus one function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.fft

chainer.functions.fft(x)
Fast Fourier transform.

Parameters x (tuple) – (real, imag) where real is a Variable or an N-dimensional
array storing the real part and imag is a Variable or an N-dimensional array storing the
imaginary part.

Returns Returns (ry, iy) where ry is the real part of the result and iy is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.

250 Chapter 4. API Reference

https://www.scipy.org/
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

chainer.functions.fix

chainer.functions.fix(x)
Elementwise fix function.

𝑦𝑖 = 𝑥𝑖

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.fmod

chainer.functions.fmod(x, divisor)
Elementwise mod function.

𝑦𝑖 = 𝑥𝑖 mod divisor.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• divisor (Variable or N-dimensional array) – Input divisor.

Returns Output variable.

Return type Variable

chainer.functions.floor

chainer.functions.floor(x)
Elementwise floor function.

𝑦𝑖 = ⌊𝑥𝑖⌋

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.identity

chainer.functions.identity(*inputs)
Just returns input variables.

chainer.functions.ifft

chainer.functions.ifft(x)
Inverse fast Fourier transform.

Parameters x (tuple) – (real, imag) where real is a Variable or an N-dimensional
array storing the real part and imag is a Variable or an N-dimensional array storing the
imaginary part.

4.2. Functions 251

https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Returns Returns (ry, iy) where ry is the real part of the result and iy is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.

chainer.functions.inv

chainer.functions.inv(a)
Computes the inverse of square matrix.

a (Variable or N-dimensional array): Input array to compute the inverse for. Shape of the array
should be (n, n) where n is the dimensionality of a square matrix.

Returns Matrix inverse of a.

Return type Variable

chainer.functions.lgamma

chainer.functions.lgamma(x)
logarithm of gamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.linear_interpolate

chainer.functions.linear_interpolate(p, x, y)
Elementwise linear-interpolation function.

This function is defined as

𝑓(𝑝, 𝑥, 𝑦) = 𝑝𝑥+ (1− 𝑝)𝑦.

Parameters

• p (Variable or N-dimensional array) – Input variable.

• x (Variable or N-dimensional array) – Input variable.

• y (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

252 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://www.scipy.org/


Chainer Documentation, Release 6.5.0

chainer.functions.log

chainer.functions.log(x)
Elementwise natural logarithm function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log10

chainer.functions.log10(x)
Elementwise logarithm function to the base 10.

𝑦𝑖 = log10 𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log1p

chainer.functions.log1p(x)
Elementwise natural logarithm plus one function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log2

chainer.functions.log2(x)
Elementwise logarithm function to the base 2.

𝑦𝑖 = log2 𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log_ndtr

chainer.functions.log_ndtr(x)
Logarithm of cumulative distribution function of normal distribution.

Note: Forward computation in CPU can not be done if SciPy is not available.

4.2. Functions 253

https://www.scipy.org/


Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.logsumexp

chainer.functions.logsumexp(x, axis=None)
Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.

𝑦𝑖 = log

⎛⎝∑︁
𝑗

exp(𝑥𝑖𝑗)

⎞⎠
Parameters

• x (Variable or N-dimensional array) – Elements to log-sum-exp.

• axis (None, int, or tuple of int) – Axis which a sum is performed. The de-
fault (axis = None) is perform a sum over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.matmul

chainer.functions.matmul(a, b, transa=False, transb=False)
Computes the matrix multiplication of two arrays.

Parameters

• a (Variable or N-dimensional array) – The left operand of the matrix multiplication. If
a and b are both 1-D arrays, matmul returns a dot product of vector a and vector b. If 2-D
arrays, matmul returns matrix product of a and b. If either’s dimension is larger than 2,
they are treated as a stack of matrices residing in the last two indexes. matmul returns a
stack of each two arrays. In this case, a and b are broadcasted along axes except the last
two.

• b (Variable or N-dimensional array) – The right operand of the matrix multiplication.
Its array is treated as a matrix in the same way as a’s array.

• transa (bool) – If True, each matrices in a will be transposed. If a.ndim == 1, do
nothing.

• transb (bool) – If True, each matrices in b will be transposed. If b.ndim == 1, do
nothing.

Returns The result of the matrix multiplication.

Return type Variable

Example

254 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

>>> a = np.array([[1, 0], [0, 1]], np.float32)
>>> b = np.array([[4, 1], [2, 2]], np.float32)
>>> F.matmul(a, b).array
array([[4., 1.],

[2., 2.]], dtype=float32)

chainer.functions.max

chainer.functions.max(x, axis=None, keepdims=False)
Maximum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to be maximized.

• axis (None, int, or tuple of int) – Axis over which a max is performed. The
default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.maximum

chainer.functions.maximum(x1, x2)
Element-wise maximum of input variables.

Parameters

• x1 (Variable or N-dimensional array) – Input variables to be compared.

• x2 (Variable or N-dimensional array) – Input variables to be compared.

Returns Output variable.

Return type Variable

chainer.functions.mean

chainer.functions.mean(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to sum.

• axis (None or int or tuple of int) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

• weights (None or Variable or N-dimensional array) – An array holding weights to
calculate weighted average. If it is None, all weights are assumed to be one. When axis is
None, weights must have the same shape of x. And when axis is int, it must be 1-D
array satisfing weights.shape == (x.shape[axis],).

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

4.2. Functions 255

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

chainer.functions.min

chainer.functions.min(x, axis=None, keepdims=False)
Minimum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to be minimized.

• axis (None, int, or tuple of int) – Axis over which a min is performed. The
default (axis = None) is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.minimum

chainer.functions.minimum(x1, x2)
Element-wise minimum of input variables.

Parameters

• x1 (Variable or N-dimensional array) – Input variables to be compared.

• x2 (Variable or N-dimensional array) – Input variables to be compared.

Returns Output variable.

Return type Variable

chainer.functions.ndtr

chainer.functions.ndtr(x)
Elementwise cumulative distribution function of normal distribution.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.ndtri

chainer.functions.ndtri(x)
Elementwise inverse function of ndtr.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

256 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://www.scipy.org/
https://www.scipy.org/


Chainer Documentation, Release 6.5.0

chainer.functions.prod

chainer.functions.prod(x, axis=None, keepdims=False)
Product of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to calculate the product.

• axis (None, int, or tuple of int) – Axis which a product is performed. The
default (axis = None) is perform a product over all the dimensions of the input array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

chainer.functions.polygamma

chainer.functions.polygamma(n, x)
Polygamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters

• n (Variable or N-dimensional array) – Input variable.

• x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.rsqrt

chainer.functions.rsqrt(x)
Computes elementwise reciprocal of square root of input 𝑥𝑖.

𝑦𝑖 =
1√
𝑥𝑖
.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

See also:

sqrt()

4.2. Functions 257

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://www.scipy.org/


Chainer Documentation, Release 6.5.0

chainer.functions.scale

chainer.functions.scale(x, y, axis=1)
Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s scale layer so the “broadcasting” with the following argu-
ments:

x : 100 x 3 x 40 x 5 x 6
y : 3 x 40

axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y : (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply y is specified by the argument axis, whose meaning is different from
numpy’s axis.

Parameters

• x (Variable or N-dimensional array) – Input variable to be scaled.

• y (Variable or N-dimensional array) – Input variable to scale, broadcasted.

• axis (int) – The first axis of x along which y is applied.

Returns Output variable.

Return type Variable

chainer.functions.sin

chainer.functions.sin(x)
Elementwise sin function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.sinh

chainer.functions.sinh(x)
Elementwise hyperbolic sine function.

𝑦𝑖 = sinh𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

258 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.sign

chainer.functions.sign(x)
Elementwise sign function.

For a given input 𝑥, this function returns 𝑠𝑔𝑛(𝑥) defined as

𝑠𝑔𝑛(𝑥) =

⎧⎨⎩ −1 if x < 0
0 if x = 0
1 if x > 0

Note: The gradient of this function is None everywhere and therefore unchains the computational graph.

Parameters x (Variable or N-dimensional array) – Input variable for which the sign is computed.

Returns Output variable.

Return type Variable

chainer.functions.sparse_matmul

chainer.functions.sparse_matmul(a, b, transa=False, transb=False)
Computes the batched multiplication of sparse and dense matrix.

The following use cases are supported:

1. C (dense) = A (sparse) * B (dense)

2. C (dense) = A (dense) * B (sparse)

Parameters

• a (Variable or CooMatrix) – The left operand of matrix multiplication.

• b (Variable or CooMatrix) – The right operand of matrix multiplication.

• transa (bool) – If True, each matrix in a will be transposed.

• transb (bool) – If True, each matrix in b will be transposed.

Returns Result of batched mat-mul.

Return type Variable

See also:

See to_coo() for how to construct a COO matrix from an array.

Note: Performance of this function on GPU can be improved by using the order argument of CooMatrix
when the sparse matrix is created.

4.2. Functions 259

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

chainer.functions.sqrt

chainer.functions.sqrt(x)
Elementwise square root function.

𝑦𝑖 =
√
𝑥𝑖.

If the value of 𝑥𝑖 is negative, it returns Nan for 𝑦𝑖 respect to underlying numpy and cupy specification.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.square

chainer.functions.square(x)
Elementwise square function.

𝑦𝑖 = 𝑥2𝑖 .

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.squared_difference

chainer.functions.squared_difference(x1, x2)
Squared difference of input variables.

Parameters

• x1 (Variable or N-dimensional array) – Input variables to be compared.

• x2 (Variable or N-dimensional array) – Input variables to be compared.

Returns (x1 - x2) ** 2 element-wise.

Return type Variable

chainer.functions.sum

chainer.functions.sum(x, axis=None, keepdims=False)
Sum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to sum. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped float
array.

• axis (None, int, or tuple of int) – Axis along which a sum is performed.
The default (axis = None) is perform a sum over all the dimensions of the input array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

260 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Return type Variable

Example

>>> x = np.arange(6).reshape(2,3).astype(np.float32)
>>> x
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> y = F.sum(x)
>>> y.shape
()
>>> y.array
array(15., dtype=float32)
>>> y = F.sum(x, axis=1)
>>> y.shape
(2,)
>>> y.array
array([ 3., 12.], dtype=float32)
>>> y = F.sum(x, keepdims=True)
>>> y.shape
(1, 1)
>>> y.array
array([[15.]], dtype=float32)

chainer.functions.sum_to

chainer.functions.sum_to(x, shape)
Sum elements along axes to output an array of a given shape.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• shape (tuple of int) – The target shape.

Returns Output variable of shape shape.

Return type Variable

Example

>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> x
array([[1., 2., 3.],

[4., 5., 6.]])
>>> y = F.sum_to(x, (1, 3))
>>> y
variable([[5., 7., 9.]])
>>> z = F.sum_to(x, (2, 1))
>>> z
variable([[ 6.],

[15.]])

4.2. Functions 261



Chainer Documentation, Release 6.5.0

chainer.functions.tan

chainer.functions.tan(x)
Elementwise tan function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.tensordot

chainer.functions.tensordot(a, b, axes=2)
Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping.

Parameters

• a (Variable or N-dimensional array) – The first argument.

• b (Variable or N-dimensional array) – The second argument.

• axes –

– If it is an integer, then axes axes at the last of a and the first of b are used.

– If it is a pair of sequences of integers, then these two sequences specify the list of axes for
a and b. The corresponding axes are paired for sum-product.

Returns The tensor dot product of a and b along the axes specified by axes.

Return type Variable

Example

>>> a = np.random.rand(5, 3, 2)
>>> b = np.random.rand(3, 2, 4)
>>> c = F.tensordot(a, b, axes=2)
>>> c.shape
(5, 4)

See also:

numpy.tensordot()

4.2.8 Noise injections

chainer.functions.dropout Drops elements of input variable randomly.
chainer.functions.gaussian Gaussian sampling function.
chainer.functions.gumbel_softmax Gumbel-Softmax sampling function.
chainer.functions.
simplified_dropconnect

Linear unit regularized by simplified dropconnect.

chainer.functions.zoneout Drops elements of input variable and sets to previous
variable randomly.

262 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot


Chainer Documentation, Release 6.5.0

chainer.functions.dropout

chainer.functions.dropout(x, ratio=.5, *, mask=None, return_mask=False)
Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and scales the remaining elements by
factor 1 / (1 - ratio). In testing mode (i.e., chainer.config.train is set to False), it does
nothing and just returns x.

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁 ) -shaped float
array.

• ratio (float) – Dropout ratio. The ratio must be 0.0 <= ratio < 1.0.

• mask (N-dimensional array or None) – The mask to be used for dropout. You do not have
to specify this value, unless you need to make results deterministic. If mask is not specified
or set to None, a mask will be generated randomly according to the given ratio. If mask
is specified, ratio will be ignored. The shape and dtype must be the same as x and should
be on the same device. Note that iDeep and cuDNN will not be used for this function if
mask is specified, as iDeep and cuDNN do not support it.

• return_mask (bool) – If True, the mask used for dropout is returned together with the
output variable. The returned mask can later be reused by passing it to mask argument.

Returns When return_mask is False (default), returns the output variable. When True, re-
turns the tuple of the output variable and mask (N-dimensional array). The mask will be on the
same device as the input. The mask will become None when chainer.config.train is
set to False.

Return type Variable or tuple

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> with chainer.using_config('train', True):
... y = F.dropout(x)
>>> y.array
array([[-2., 0.],

[ 4., -6.],
[-0., 2.]], dtype=float32)

>>> with chainer.using_config('train', True):
... y = F.dropout(x, ratio=0.0) # dropout returns original input if ratio=0.0
>>> (x == y.array).all()
True
>>> with chainer.using_config('train', False):
... y = F.dropout(x) # dropout in test mode returns original input
>>> (x == y.array).all()
True

chainer.functions.gaussian

chainer.functions.gaussian(mean, ln_var, *, eps=None, return_eps=False)
Gaussian sampling function.

4.2. Functions 263

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1207.0580


Chainer Documentation, Release 6.5.0

This function takes a mean 𝜇 and the logarithm of a variance log(𝜎2) as inputs and outputs a sample drawn from
a Gaussian distribution 𝑁(𝜇, 𝜎).

The inputs must have the same shape.

Parameters

• mean (Variable or N-dimensional array) – Input variable representing the mean 𝜇.

• ln_var (Variable or N-dimensional array) – Input variable representing the logarithm
of a variance log(𝜎2).

• eps (N-dimensional array or None) – The eps value to be used. You do not have to specify
this value, unless you need to make results deterministic. If eps is not specified or set to
None, an eps value will be generated randomly. The shape and dtype must be the same as
ln_var and should be on the same device.

• return_eps (bool) – If True, the eps value used in this function is returned together
with the output variable. The returned eps can later be reused by passing it to the eps
argument.

Returns When return_eps is False (default), returns the output variable with the shape of
mean and/or ln_var. When True, returns the tuple of the output variable and eps (N-
dimensional array). The eps will be on the same device as the input (ln_var).

Return type Variable or tuple

chainer.functions.gumbel_softmax

chainer.functions.gumbel_softmax(log_pi, tau=0.1, axis=1)
Gumbel-Softmax sampling function.

This function draws samples 𝑦𝑖 from Gumbel-Softmax distribution,

𝑦𝑖 =
exp((𝑔𝑖 + log 𝜋𝑖)/𝜏)∑︀
𝑗 exp((𝑔𝑗 + log 𝜋𝑗)/𝜏)

,

where 𝜏 is a temperature parameter and 𝑔𝑖 s are samples drawn from Gumbel distribution 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1)

See Categorical Reparameterization with Gumbel-Softmax.

Parameters

• log_pi (Variable or N-dimensional array) – Input variable representing pre-
normalized log-probability log 𝜋.

• tau (float or Variable or N-dimensional array) – Input variable representing temper-
ature 𝜏 .

Returns Output variable.

Return type Variable

chainer.functions.simplified_dropconnect

chainer.functions.simplified_dropconnect(x, W, b=None, ratio=0.5, train=True,
mask=None, use_batchwise_mask=True)

Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with probability ratio and scales the remain-
ing elements by factor 1 / (1 - ratio). It accepts two or three arguments: an input minibatch x, a weight
matrix W, and optionally a bias vector b. It computes 𝑌 = 𝑥𝑊⊤ + 𝑏.

264 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1611.01144
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

In testing mode, zero will be used as simplified dropconnect ratio instead of ratio.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

• x (Variable or N-dimensional array) – Input variable. Its first dimension n is assumed to
be the minibatch dimension. The other dimensions are treated as concatenated one dimen-
sion whose size must be N.

• W (Variable or N-dimensional array) – Weight variable of shape (M, N).

• b (Variable or N-dimensional array) – Bias variable (optional) of shape (M,).

• ratio (float) – Dropconnect ratio.

• train (bool) – If True, executes simplified dropconnect. Otherwise, simplified drop-
connect function works as a linear function.

• mask (None or Variable or N-dimensional array) – If None, randomized dropconnect
mask is generated. Otherwise, The mask must be (n, M, N) or (M, N) shaped array,
and use_batchwise_mask is ignored. Main purpose of this option is debugging. mask array
will be used as a dropconnect mask.

• use_batchwise_mask (bool) – If True, dropped connections depend on each sample
in mini-batch.

Returns Output variable.

Return type Variable

See also:

Dropconnect

See also:

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013). Regularization of Neural Network using DropConnect.
International Conference on Machine Learning. URL

chainer.functions.zoneout

chainer.functions.zoneout(h, x, ratio=.5)
Drops elements of input variable and sets to previous variable randomly.

This function drops input elements randomly with probability ratio and instead sets dropping element to their
previous variable. In testing mode , it does nothing and just returns x.

Parameters

• h (Variable or N-dimensional array) – Previous variable.

• x (Variable or N-dimensional array) – Input variable.

• ratio (float) – Zoneout ratio.

Returns Output variable.

Return type Variable

See the paper: Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations.

4.2. Functions 265

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://cs.nyu.edu/~wanli/dropc/
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1606.01305


Chainer Documentation, Release 6.5.0

4.2.9 Normalization functions

chainer.functions.batch_normalization Batch normalization function.
chainer.functions.
batch_renormalization

Batch renormalization function.

chainer.functions.
decorrelated_batch_normalization

Decorrelated batch normalization function.

chainer.functions.
fixed_batch_normalization

Batch normalization function with fixed statistics.

chainer.functions.
fixed_batch_renormalization
chainer.functions.
fixed_decorrelated_batch_normalization

Decorrelated batch normalization function with fixed
statistics.

chainer.functions.group_normalization Group normalization function.
chainer.functions.layer_normalization Layer normalization.
chainer.functions.
local_response_normalization

Local response normalization across neighboring chan-
nels.

chainer.functions.normalize Normalize input by L2 norm.

chainer.functions.batch_normalization

chainer.functions.batch_normalization(x, gamma, beta, eps=2e-5, running_mean=None, run-
ning_var=None, decay=0.9, axis=None)

Batch normalization function.

It takes the input variable x and two parameter variables gamma and beta. The parameter variables must both
have the same dimensionality, which is referred to as the channel shape. This channel shape corresponds to
the dimensions in the input which are not averaged over. Since the first dimension of the input corresponds
to the batch size, the second dimension of x will correspond to the first dimension of the channel shape, the
third dimension of x will correspond to the second channel dimension (if it exists) and so on. Therefore, the
dimensionality of the input must be at least one plus the number of channel dimensions. The total effective
“batch size” will then be considered to be the product of all dimensions in x except for the channel dimensions.

As an example, if the input is four dimensional and the parameter variables are one dimensional, then it is
assumed that the first dimension of the input is the batch size, the second dimension is the channel size, and
the remaining two dimensions are considered to be spatial dimensions that will be averaged over along with the
batch size in the batch normalization computations. That is, the total batch size will be considered to be the
product of all input dimensions except the second dimension.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• gamma (Variable or N-dimensional array) – Scaling parameter of normalized data.

• beta (Variable or N-dimensional array) – Shifting parameter of scaled normalized data.

• eps (float) – Epsilon value for numerical stability.

• running_mean (N-dimensional array) – Running average of the mean. This is a running
average of the mean over several mini-batches using the decay parameter. The function takes
a previous running average, and updates the array in-place by the new running average. If
None, the running average is not computed. If this is None, then runnng_var must also
be None.

• running_var (N-dimensional array) – Running average of the variance. This is a running
average of the variance over several mini-batches using the decay parameter. The function

266 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

takes a previous running average, and updates the array in-place by the new running average.
If None, the running average is not computed. If this is None, then running_mean must
also be None.

• decay (float) – Decay rate of moving average. It is used during training.

• axis (int, tuple of int or None) – Axis over which normalization is per-
formed. When axis is None, it is determined from input dimensions. For example, if
x.ndim is 4, axis becomes (0, 2, 3) and normalization is performed over 0th, 2nd and 3rd
axis of input. If it is 2, axis becomes (0) and normalization is performed over 0th axis of
input. When a tuple of int is given to this option, numbers in the tuple must be being sorted
in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

BatchNormalization to manage the model parameters (gamma, beta) and the statistics
(running_mean, running_var).

chainer.functions.batch_renormalization

chainer.functions.batch_renormalization(x, gamma, beta, rmax, dmax, eps=2e-05, run-
ning_mean=None, running_var=None, decay=0.9,
update_statistics=False)

Batch renormalization function.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

Note: This function does not perform in-place update to running_mean and running_var by de-
fault, contrary to batch_normalization(). If the function is called, it will not be possible to access
the updated running mean and variance statistics, because they are members of the function object, which
cannot be accessed by the caller. If it is desired to update the running statistics, call the function with
update_statistics=True option.

Note: For the consistency with Batch Normalization, this function intentionally ignores some of the theoretical
flaws in Algorithm 1 of the Batch Renormalization paper:

• F.batch_renormalization maintains the moving average of variances 𝜎2, while the original paper
maintains the moving average of standard deviations 𝜎.

• F.batch_renormalization applies Bessel’s correction to update the moving average of variances.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:

BatchRenormalization to manage the model parameters (gamma, beta) and the statistics
(running_mean, running_var).

4.2. Functions 267

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1702.03275


Chainer Documentation, Release 6.5.0

chainer.functions.decorrelated_batch_normalization

chainer.functions.decorrelated_batch_normalization(x, *, groups=16, eps=2e-5,
running_mean=None, run-
ning_projection=None, de-
cay=0.9)

Decorrelated batch normalization function.

It takes the input variable x and normalizes it using batch statistics to make the output zero-mean and decorre-
lated.

Parameters

• x (Variable) – Input variable.

• groups (int) – Number of groups to use for group whitening.

• eps (float) – Epsilon value for numerical stability.

• running_mean (N-dimensional array) – Expected value of the mean. This is a running
average of the mean over several mini-batches using the decay parameter. If None, the
expected mean is initialized to zero.

• running_projection (N-dimensional array) – Expected value of the project matrix.
This is a running average of the projection over several mini-batches using the decay param-
eter. If None, the expected projected is initialized to the identity matrix.

• decay (float) – Decay rate of moving average. It is used during training.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See: Decorrelated Batch Normalization

See also:

DecorrelatedBatchNormalization

chainer.functions.fixed_batch_normalization

chainer.functions.fixed_batch_normalization(x, gamma, beta, mean, var, eps=2e-05,
axis=None)

Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as fixed
variables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used
for prediction consistency.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• gamma (Variable or N-dimensional array) – Scaling parameter of normalized data.

• beta (Variable or N-dimensional array) – Shifting parameter of scaled normalized data.

• mean (Variable or N-dimensional array) – Shifting parameter of input.

• var (Variable or N-dimensional array) – Square of scaling parameter of input.

• eps (float) – Epsilon value for numerical stability.

268 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1804.08450
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• axis (int, tuple of int or None) – Axis over which normalization is per-
formed. When axis is None, it is determined from input dimensions. For example, if
x.ndim is 4, axis becomes (0, 2, 3) and normalization is performed over 0th, 2nd and
3rd axis of input. If it is 2, axis becomes (0) and normalization is performed over 0th axis of
input. When a tuple of int is given to this option, numbers in the tuple must be being sorted
in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See also:

batch_normalization(), BatchNormalization

chainer.functions.fixed_batch_renormalization

chainer.functions.fixed_batch_renormalization(x, gamma, beta, mean, var, eps=2e-05)

chainer.functions.fixed_decorrelated_batch_normalization

chainer.functions.fixed_decorrelated_batch_normalization(x, mean, projection,
groups=16)

Decorrelated batch normalization function with fixed statistics.

This is a variant of decorrelated batch normalization, where the mean and projection statistics are given by the
caller as fixed variables. This is used in testing mode of the decorrelated batch normalization layer, where batch
statistics cannot be used for prediction consistency.

Parameters

• x (Variable) – Input variable.

• mean (Variable or N-dimensional array) – Shifting parameter of input.

• projection (Variable or N-dimensional array) – Projection matrix for decorrelation
of input.

• groups (int) – Number of groups to use for group whitening.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See also:

decorrelated_batch_normalization(), DecorrelatedBatchNormalization

chainer.functions.group_normalization

chainer.functions.group_normalization(x, groups, gamma, beta, eps=1e-05)
Group normalization function.

This function implements a “group normalization” which divides the channels into groups and computes within
each group the mean and variance, then normalize by these statistics, scales and shifts them.

Parameters

• x (Variable or N-dimensional array) – Batch tensors. First dimension of this value must
be the size of minibatch and second dimension must be the number of channels. Moreover,
this value must have one or more following dimensions, such as height and width.

• groups (int) – The number of channel groups. This value must be a divisor of the number
of channels.

4.2. Functions 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• gamma (Variable or N-dimensional array) – Scaling parameter.

• beta (Variable or N-dimensional array) – Shifting parameter.

• eps (float) – Epsilon value for numerical stability of normalization.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See: Group Normalization

See also:

GroupNormalization to manage the model parameters gamma and beta.

chainer.functions.layer_normalization

chainer.functions.layer_normalization(x, gamma, beta, eps=1e-05)
Layer normalization.

This function implements a “layer normalization” which normalizes the input units by statistics that are com-
puted along the second axis, scales and shifts them.

Parameters

• x (Variable or N-dimensional array) – Batch vectors. Shape of this value must be
(batch_size, unit_size), e.g., the output of linear().

• gamma (Variable or N-dimensional array) – Scaling vectors.

• beta (Variable or N-dimensional array) – Shifting vectors.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See: Layer Normalization

See also:

LayerNormalization to manage the model parameters gamma and beta.

chainer.functions.local_response_normalization

chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)
Local response normalization across neighboring channels.

This function implements normalization across channels. Let 𝑥 an input image with 𝑁 channels. Then, this
function computes an output image 𝑦 by following formula:

𝑦𝑖 =
𝑥𝑖(︁

𝑘 + 𝛼
∑︀min𝑁,𝑖+𝑛/2

𝑗=max 1,𝑖−𝑛/2 𝑥
2
𝑗

)︁𝛽 .
Parameters

• x (Variable or N-dimensional array) – Input variable.

• n (int) – Normalization window width.

• k (float) – Smoothing parameter.

• alpha (float) – Normalizer scaling parameter.

270 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1607.06450
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• beta (float) – Normalizer power parameter.

Returns Output variable.

Return type Variable

See: Section 3.3 of ImageNet Classification with Deep Convolutional Neural Networks

chainer.functions.normalize

chainer.functions.normalize(x, eps=1e-05, axis=1)
Normalize input by L2 norm.

This function implements L2 normalization on a sample along the given axis/axes. No reduction is done along
the normalization axis.

In the case when axis=1 and x is a matrix of dimension (𝑁,𝐾), where 𝑁 and 𝐾 denote mini-batch size
and the dimension of the input vectors, this function computes an output matrix y of dimension (𝑁,𝐾) by the
following equation:

y𝑖 =
x𝑖

‖x𝑖‖2 + 𝜖

eps is used to avoid division by zero when norm of x along the given axis is zero.

The default value of axis is determined for backward compatibility.

Parameters

• x (Variable or N-dimensional array) – multi-dimensional output variable. The first di-
mension is assumed to be the mini-batch dimension.

• eps (float) – Epsilon value for numerical stability.

• axis (int or tuple of ints) – Axis along which to normalize.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

4.2.10 Spatial pooling

chainer.functions.average_pooling_1d 1-dimensional spatial average pooling function.
chainer.functions.average_pooling_2d Spatial average pooling function.
chainer.functions.average_pooling_3d 3-dimensional spatial average pooling function.
chainer.functions.average_pooling_nd N-dimensionally spatial average pooling function.
chainer.functions.max_pooling_1d 1-dimensional spatial max pooling function.
chainer.functions.max_pooling_2d Spatial max pooling function.
chainer.functions.max_pooling_3d 3-dimensional spatial max pooling function.
chainer.functions.max_pooling_nd N-dimensionally spatial max pooling function.
chainer.functions.
roi_average_align_2d

Spatial Region of Interest (ROI) average align function.

chainer.functions.
roi_average_pooling_2d

Spatial Region of Interest (ROI) average pooling func-
tion.

chainer.functions.roi_max_align_2d Spatial Region of Interest (ROI) max align function.
chainer.functions.roi_max_pooling_2d Spatial Region of Interest (ROI) max pooling function.
chainer.functions.roi_pooling_2d Spatial Region of Interest (ROI) pooling function.

Continued on next page

4.2. Functions 271

https://docs.python.org/3/library/functions.html#float
https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Table 11 – continued from previous page
chainer.functions.
spatial_pyramid_pooling_2d

Spatial pyramid pooling function.

chainer.functions.unpooling_1d Inverse operation of 1-dimensional spatial pooling.
chainer.functions.unpooling_2d Inverse operation of pooling for 2d array.
chainer.functions.unpooling_3d Inverse operation of 3-dimensional spatial pooling.
chainer.functions.unpooling_nd Inverse operation of N-dimensional spatial pooling.
chainer.functions.upsampling_2d Upsampling using pooling indices.

chainer.functions.average_pooling_1d

chainer.functions.average_pooling_1d(x, ksize, stride=None, pad=0, pad_value=0)
1-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls average_pooling_nd() internally, so see the details of the behavior in the
documentation of average_pooling_nd().

chainer.functions.average_pooling_2d

chainer.functions.average_pooling_2d(x, ksize, stride=None, pad=0)
Spatial average pooling function.

This function acts similarly to convolution_2d(), but it computes the average of input spatial patch for
each channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_2d(). Average pool-
ing runs in non-cover-all mode.

Note: The values in the padded region is treated as 0, leading the averages biased towards zero. To obtain
unbiased averages, use average_pooling_nd() with pad_value=None.

272 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.functions.average_pooling_3d

chainer.functions.average_pooling_3d(x, ksize, stride=None, pad=0, pad_value=0)
3-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls average_pooling_nd() internally, so see the details of the behavior in the
documentation of average_pooling_nd().

chainer.functions.average_pooling_nd

chainer.functions.average_pooling_nd(x, ksize, stride=None, pad=0, pad_value=0)
N-dimensionally spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of average_pooling_2d(). This acts simi-
larly to convolution_nd(), but it computes the average of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

• pad_value (0 or None) – Value to fill the padded region when calculating average. If
None is specified, such region is ignored. The default value is 0, therefore the averages are
biased towards zero.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_nd(). Average pool-
ing runs in non-cover-all mode.

chainer.functions.max_pooling_1d

chainer.functions.max_pooling_1d(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

1-dimensional spatial max pooling function.

4.2. Functions 273

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


Chainer Documentation, Release 6.5.0

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls max_pooling_nd() internally, so see the details of the behavior in the documen-
tation of max_pooling_nd().

chainer.functions.max_pooling_2d

chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

Spatial max pooling function.

This function acts similarly to convolution_2d(), but it computes the maximum of input spatial patch for
each channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

• return_indices (bool) – If True, pooling indices array is returned together
with the output variable. The returned indices are expected for use by chainer.
functions.upsampling_2d(). Note that cuDNN will not be used for this function
if return_indices is set to True, as cuDNN does not return indices information.

Returns When return_indices is False (default), returns the output variable. When True,
returns the tuple of the output variable and pooling indices (N-dimensional array). Pooling
indices will be on the same device as the input.

Return type Variable or tuple

chainer.functions.max_pooling_3d

chainer.functions.max_pooling_3d(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

3-dimensional spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

274 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Note: This function calls max_pooling_nd() internally, so see the details of the behavior in the documen-
tation of max_pooling_nd().

chainer.functions.max_pooling_nd

chainer.functions.max_pooling_nd(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

N-dimensionally spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of max_pooling_2d(). This acts similarly
to convolution_nd(), but it computes the maximum of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s,s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

• return_indices (bool) – If True, pooling indices array is returned together
with the output variable. The returned indices are expected for use by chainer.
functions.upsampling_nd(). Note that cuDNN will not be used for this function
if return_indices is set to True, as cuDNN does not return indices information.

Returns When return_indices is False (default), returns the output variable. When True,
returns the tuple of the output variable and pooling indices (N-dimensional array). Pooling
indices will be on the same device as the input.

Return type Variable or tuple

chainer.functions.roi_average_align_2d

chainer.functions.roi_average_align_2d(x, rois, roi_indices, outsize, spatial_scale, sam-
pling_ratio=None)

Spatial Region of Interest (ROI) average align function.

This function acts similarly to roi_average_pooling_2d(), but it computes average of input spatial
patch with bilinear interpolation for each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n:
batch, c: channel, h, height, w: width).

4.2. Functions 275

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size,
4), and each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n:
data size, ).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

• sampling_ratio ((int, int) or int) – Sampling step for the alignment. It
must be an integer over 1 or None, and the value is automatically decided when None
is passed. Use of different ratio in height and width axis is also supported by passing tu-
ple of int as (sampling_ratio_h, sampling_ratio_w). sampling_ratio=s
and sampling_ratio=(s, s) are equivalent.

Returns Output variable.

Return type Variable

See the original paper proposing ROIAlign: Mask R-CNN.

chainer.functions.roi_average_pooling_2d

chainer.functions.roi_average_pooling_2d(x, rois, roi_indices, outsize, spatial_scale)
Spatial Region of Interest (ROI) average pooling function.

This function acts similarly to average_pooling_2d(), but it computes the average of input spatial patch
for each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 4), and
each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n: data
size, ).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.roi_max_align_2d

chainer.functions.roi_max_align_2d(x, rois, roi_indices, outsize, spatial_scale, sam-
pling_ratio=None)

Spatial Region of Interest (ROI) max align function.

This function acts similarly to roi_max_pooling_2d(), but it computes maximum of input spatial patch
with bilinear interpolation for each channel with the region of interest.

276 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1703.06870
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083


Chainer Documentation, Release 6.5.0

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n:
batch, c: channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size,
4), and each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n:
data size, ).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

• sampling_ratio ((int, int) or int) – Sampling step for the alignment. It
must be an integer over 1 or None, and the value is automatically decided when None
is passed. Use of different ratio in height and width axis is also supported by passing tu-
ple of int as (sampling_ratio_h, sampling_ratio_w). sampling_ratio=s
and sampling_ratio=(s, s) are equivalent.

Returns Output variable.

Return type Variable

See the original paper proposing ROIAlign: Mask R-CNN.

chainer.functions.roi_max_pooling_2d

chainer.functions.roi_max_pooling_2d(x, rois, roi_indices, outsize, spatial_scale)
Spatial Region of Interest (ROI) max pooling function.

This function acts similarly to max_pooling_2d(), but it computes the maximum of input spatial patch for
each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 4), and
each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n: data
size, ).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.roi_pooling_2d

chainer.functions.roi_pooling_2d(x, rois, outh, outw, spatial_scale)
Spatial Region of Interest (ROI) pooling function.

4.2. Functions 277

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1703.06870
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083


Chainer Documentation, Release 6.5.0

This function acts similarly to max_pooling_2d(), but it computes the maximum of input spatial patch for
each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 5), and
each datum is set as below: (batch_index, x_min, y_min, x_max, y_max).

• outh (int) – Height of output image after pooled.

• outw (int) – Width of output image after pooled.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.spatial_pyramid_pooling_2d

chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling=None)
Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array x with different kernel sizes and padding sizes, and then
flattens all dimensions except first dimension of all pooling results, and finally concatenates them along second
dimension.

At 𝑖-th pyramid level, the kernel size (𝑘
(𝑖)
ℎ , 𝑘

(𝑖)
𝑤 ) and padding size (𝑝

(𝑖)
ℎ , 𝑝

(𝑖)
𝑤 ) of pooling operation are calculated

as below:

𝑘
(𝑖)
ℎ = ⌈𝑏ℎ/2𝑖⌉,
𝑘(𝑖)𝑤 = ⌈𝑏𝑤/2𝑖⌉,

𝑝
(𝑖)
ℎ = (2𝑖𝑘

(𝑖)
ℎ − 𝑏ℎ)/2,

𝑝(𝑖)𝑤 = (2𝑖𝑘(𝑖)𝑤 − 𝑏𝑤)/2,

where ⌈·⌉ denotes the ceiling function, and 𝑏ℎ, 𝑏𝑤 are height and width of input variable x, respectively. Note
that index of pyramid level 𝑖 is zero-based.

See detail in paper: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

Parameters

• x (Variable) – Input variable. The shape of x should be (batchsize, # of
channels, height, width).

• pyramid_height (int) – Number of pyramid levels

• pooling (str) – Currently, only max is supported, which performs a 2d max pooling
operation.

Returns Output variable. The shape of the output variable will be (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑐
∑︀𝐻−1

ℎ=0 22ℎ, 1, 1),
where 𝑐 is the number of channels of input variable x and 𝐻 is the number of pyramid levels.

Return type Variable

278 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1406.4729
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainer.functions.unpooling_1d

chainer.functions.unpooling_1d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of 1-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls unpooling_nd() internally, so see the details of the behavior in the documentation
of unpooling_nd().

chainer.functions.unpooling_2d

chainer.functions.unpooling_2d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2DFunction, but it spreads input 2d array’s value without
any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int, pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• outsize (None or pair of ints) – Expected output size (height, width) of array
after the operation. If None, the size (height or width) is estimated from the size of input
array in first batch with get_deconv_outsize(). If outsize is not None, the result of
outsize applied to get_conv_outsize() must be equal to the shape of the 2d array in
the input batch x.

• cover_all (bool) – If True, the output size may be smaller than the size if
cover_all is False. This flag serves to align behavior to the pooling functions which
can cover all input locations, see max_pooling_2d() and convolution_2d().

Returns Output variable.

Return type Variable

chainer.functions.unpooling_3d

chainer.functions.unpooling_3d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of 3-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

4.2. Functions 279

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Note: This function calls unpooling_nd() internally, so see the details of the behavior in the documentation
of unpooling_nd().

chainer.functions.unpooling_nd

chainer.functions.unpooling_nd(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of N-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

This function acts similarly to DeconvolutionND, but it spreads input N-dimensional array’s value without
any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window (𝑘1, 𝑘2, ..., 𝑘𝑁 ).
ksize=k is equivalent to (k, k, ..., k).

• stride (int, pair of ints or None) – Stride of pooling applications
(𝑠1, 𝑠2, ..., 𝑠𝑁 ). stride=s is equivalent to (s, s, ..., s). If None is speci-
fied, then it uses same stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array
(𝑝1, 𝑝2, ..., 𝑝𝑁 ). pad=p is equivalent to (p, p, ..., p).

• outsize (None or pair of ints) – Expected output size of unpooling operation
(𝑜𝑢𝑡1, 𝑜𝑢𝑡2, ..., 𝑜𝑢𝑡𝑁 ). If None, the size is estimated from input size, stride and padding.

• cover_all (bool) – If True, the pooling window is assumed to cover all of the output
array, eventually the output size may be smaller than that in the case cover_all is False.

Returns Output variable.

Return type Variable

chainer.functions.upsampling_2d

chainer.functions.upsampling_2d(x, indexes, ksize, stride=None, pad=0, outsize=None,
cover_all=True)

Upsampling using pooling indices.

This function produces an upsampled image using pooling indices.

Example

>>> x = np.arange(1, 37).reshape(1, 1, 6, 6).astype(np.float32)
>>> x = chainer.Variable(x)
>>> x.array
array([[[[ 1., 2., 3., 4., 5., 6.],

[ 7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.],

(continues on next page)

280 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

(continued from previous page)

[25., 26., 27., 28., 29., 30.],
[31., 32., 33., 34., 35., 36.]]]], dtype=float32)

This is the original x before max pooling.

>>> pooled_x, indexes = F.max_pooling_2d(
... x, ksize=2, stride=2, return_indices=True)
>>> pooled_x.array
array([[[[ 8., 10., 12.],

[20., 22., 24.],
[32., 34., 36.]]]], dtype=float32)

>>> indexes
array([[[[3, 3, 3],

[3, 3, 3],
[3, 3, 3]]]])

These are the outputs from the max pooling operation including the resulting indices that will be used to upsam-
ple pooled_x. Note that the indices all point to the largest, in the case the last, elements in each window.

>>> upsampled_x = F.upsampling_2d(
... pooled_x, indexes, ksize=2, stride=2, outsize=x.shape[2:])
>>> upsampled_x.shape
(1, 1, 6, 6)
>>> upsampled_x.array
array([[[[ 0., 0., 0., 0., 0., 0.],

[ 0., 8., 0., 10., 0., 12.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 20., 0., 22., 0., 24.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 32., 0., 34., 0., 36.]]]], dtype=float32)

Parameters

• x (Variable) – Input variable.

• indexes (N-dimensional array) – Index array returned from preceding call to
max_pooling_2d().

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• outsize ((int, int)) – Expected output size (height, width).

• cover_all (bool) – Should be set to True if all spatial locations were pooled into
some output pixels during the preceding pooling operation. False otherwise. See
max_pooling_2d().

Returns Output variable.

Return type Variable

4.2. Functions 281

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

4.2.11 Utility functions

chainer.functions.forget Calls a function without storing intermediate results.

chainer.functions.forget

chainer.functions.forget(func, *xs)
Calls a function without storing intermediate results.

On a forward propagation, Chainer normally stores all intermediate results of VariableNodes on a computa-
tional graph as they are required on backward propagation. Sometimes these results consume too much memory.
F.forget forgets such intermediate results on forward propagation, and still supports backpropagation with
recalculation.

On a forward propagation, F.forget calls a given function with given variables without creating a computa-
tional graph. That means, no intermediate results are stored. On a backward propagation, F.forget calls the
given function again to create a computational graph for backpropagation.

F.forget reduces internal memory usage, whereas it requires more calculation time as it calls the function
twice.

Example

Let f be a function defined as:

>>> def f(a, b):
... return (a + b) * a

and, x and y be Variables:

>>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))
>>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))

When z is calculated as z = f(x, y), its intermediate result x + y is stored in memory. Instead, if you
call f with F.forget:

>>> z = F.forget(f, x, y)

intermediate x + y is forgotten.

Note: F.forget does not support functions which behave differently in multiple calls with the same inputs,
such as F.dropout() and F.negative_sampling().

Note: In case input argument variables are of N-dimensional array objects, arguments will automatically be
converted to Variables. This conversion takes place to ensure that this function is included in the computa-
tional graph to enable backward computations.

Note: F.forget does not support double backpropagation.

282 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Note: If you want to use F.forget to a link which updates the link’s internal information every time the
forward computation is called, please ensure that the information is updated just once in a single iteration. You
may use the chainer.config.in_recomputing flag to check if the forward computation is the first call
in an iteration. Please see the implementation of BatchNormalization for detail.

Parameters

• func (callable) – A function to call. It needs to be called with Variable object(s)
and to return a Variable object or a tuple of Variable objects.

• xs (tuple of Variable or N-dimensional array) – Argument variables of the function.

Returns A variable func returns. If it returns a tuple, the method returns a tuple too.

Return type Variable

4.2.12 Function base

chainer.Function Old-style interface of a differentiable function.
chainer.FunctionAdapter Adapter class to wrap Function with FunctionNode.
chainer.FunctionNode Function node of the computational graph.
chainer.force_backprop_mode Make a context manager which enables back-

propagation.
chainer.no_backprop_mode Make a context manager which disables back-

propagation.
chainer.grad Computes the gradient of output variables w.r.t. the in-

put variables.

chainer.Function

class chainer.Function
Old-style interface of a differentiable function.

This class provides an interface to implement an old-style differentiable function (i.e., the function applica-
tion is recorded to the computational graph). The subclass of Function that implement forward() and
backward() can be used to run the forward computation and automatically induce the backpropagation pro-
cedure.

There is another way to implement such a function: subclassing FunctionNode. There are mainly two
differences between them.

1. The differentiable backprop is available for FunctionNode, while it is not for Function because the
backward() of the latter directly operates on the arrays instead of Variable objects so that it cannot
record the history of the computation.

2. The information passed to backward() is different. In FunctionNode, which inputs the function
node has to compute the gradients w.r.t. is passed so that it can omit unnecessary computations, while
Function always has to compute gradients w.r.t. all the input nodes. The FunctionNode also accepts
the current gradient values of the input nodes so that the accumulation work can be merged with the
gradient computation if an efficient kernel is available.

This class uses FunctionAdapter to convert the interface to that of FunctionNode and adds the
FunctionNode object to the computational graph.

See FunctionNode for the details of building the computational graph in Chainer.

4.2. Functions 283

https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Methods

__call__(*inputs)
Applies forward propagation with chaining backward references.

This method creates a new FunctionAdapter object and runs the forward propagation using it.

See FunctionNode for the detailed behavior of building the computational graph.

Parameters inputs – Tuple of input Variable or N-dimensional array objects. If the input
is N-dimensional array, it is automatically wrapped with Variable.

Returns One Variable object or a tuple of multiple Variable objects.

add_hook(hook, name=None)
Registers a function hook.

See FunctionNode.add_hook() for the detail.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. name must be unique among function hooks
registered to the function. If None, default name of the function hook is used.

backward(inputs, grad_outputs)
Applies backprop to output gradient arrays.

It delegates the procedure to backward_cpu() or backward_gpu() by default. Which it selects is
determined by the type of input arrays and output gradient arrays. Implementations of Function must
implement either CPU/GPU methods or this method, if the function is intended to be backprop-ed.

Parameters

• inputs – Tuple of input arrays.

• grad_outputs – Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be None, if the function is not
differentiable on inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_cpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters

• inputs – Tuple of input numpy.ndarray object(s).

• grad_outputs – Tuple of output gradient numpy.ndarray object(s).

Returns Tuple of input gradient numpy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

284 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_gpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters

• inputs – Tuple of input cupy.ndarray object(s).

• grad_outputs – Tuple of output gradient cupy.ndarray object(s).

Returns Tuple of input gradient cupy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

check_type_forward(in_types)
Checks types of input data before forward propagation.

Before forward() is called, this function is called. You need to validate types of input data in this
function using the type checking utilities.

Parameters in_types (TypeInfoTuple) – The type information of input data for
forward().

delete_hook(name)
Unregisters the specified function hook.

Parameters name (str) – the name of the function hook to be unregistered.

forward(inputs)
Applies forward propagation to input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which it selects is
determined by the type of input arrays. Implementations of Function must implement either CPU/GPU
methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_cpu(inputs)
Applies forward propagation to input arrays on CPU.

Parameters inputs – Tuple of numpy.ndarray object(s).

Returns Tuple of numpy.ndarray object(s).

Return type tuple

4.2. Functions 285

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_gpu(inputs)
Applies forward propagation to input arrays on GPU.

Parameters inputs – Tuple of cupy.ndarray object(s).

Returns Tuple of cupy.ndarray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function can specify which inputs are required for backprop.

If this method is not called, the function keeps all input arrays. If you want to release all input ar-
rays, call this method by passing an empty sequence. Note that this behavior is different from that of
FunctionNode.retain_inputs().

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes, retain_after_backward=False)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function can specify which outputs are required for back-
prop. If this method is not called, any output variables are not marked to keep the data array at the point of
returning from __call__(). The retained arrays are stored to output_data.

Note: It is STRONGLY RECOMMENDED that you use this method if the function requires some
or all output arrays in backprop. The function can also use output arrays just by keeping references to
them directly, whereas it might influence on the performance of later function applications to the output
variables.

Note that this method must not be called from the outside of forward().

Parameters

• indexes (iterable of int) – Indexes of input variables that the function will re-
quire for backprop.

• retain_after_backward (bool) – This option has no effect. It is left only for the
backward compatibility.

unchain()
Purges in/out nodes and this function itself from the graph.

See FunctionNode.unchain() for the detail.

__eq__()
Return self==value.

286 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

inputs
The input nodes of the function.

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

local_function_hooks
Ordered Dictionary of registered function hooks.

See FunctionNode.local_function_hooks for the detail.

node
The FunctionAdapter object that wraps this Function.

If the Function does not have a node object, this property automatically creates a new one.

output_data
A tuple of the retained output arrays.

It has the same length as the outputs. Elements that are not retained are set to None.

outputs
Weak references to the output nodes of the function.

rank
The topological ordinal of the corresponding function node.

stack

chainer.FunctionAdapter

class chainer.FunctionAdapter(function)
Adapter class to wrap Function with FunctionNode.

While FunctionNode provides the interface of new-style differentiable functions, the old-style Function
can still be used for the backward compatibility. This class provides an adapter of there interface; it adds
FunctionNode interface to any Function object by delegation.

4.2. Functions 287



Chainer Documentation, Release 6.5.0

Note: The ownership of FunctionAdapter and Function is a bit tricky. At the initialization,
FunctionAdapter is owned by the Function object. Once the function is applied to variables, the own-
ership is reversed; the adapter becomes the owner of the Function object and the Function object changes
the reference to a weak one.

Parameters function (Function) – The function object to wrap.

New in version 3.0.0.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a function hook.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply(inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attributes of the input variables exist on a GPU device, that device is made current
before calling forward(), so implementers do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable or N-
dimensional array. If the element is an ndarray, it is automatically wrapped with Variable.

Returns A tuple of output Variable objects.

backward(target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

288 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len(target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate() provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate(target_input_indexes, grad_outputs, grad_inputs)
Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward(). It is often simpler to implement
backward() and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variable) – Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

• grad_inputs (tuple of Variable) – Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward(), the length of the tuple must be same as that of
target_input_indices.

Note: Gradient variables in grad_outputs are distinct, even if a variable is passed to multiple in-
put arguments of the function. This is an implementation-detail convention to avoid the complication of
correctly accumulating gradients in such a case.

Usually, only the first position of grad_inputs corresponding to these input arguments may contain the
gradient variable corresponding to that input variable, and other entries are set to None. This is not the
case with the lazy_grad_sum feature. This behavior might be changed in a future version.

check_type_forward(in_types)
Checks types of input data before forward propagation.

This method is called before forward() and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) – The type information of input variables for
forward().

4.2. Functions 289



Chainer Documentation, Release 6.5.0

delete_hook(name)
Unregisters the function hook.

Parameters name (str) – The name of the function hook to be unregistered.

forward(inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_chainerx(inputs)
Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using
ChainerX implementation. If it’s not supported, chainer.Fallback should be returned instead of
output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s) or chainer.Fallback.

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables, if available. Otherwise return None.

290 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables, if available. Otherwise return None.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from apply(). The output variables with retained arrays can then be obtained by
calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of output variables that the function
will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.2. Functions 291



Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

chainerx_device = None

function
The Function object that this adapter is wrapping.

inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy_grad_sum = False

local_function_hooks
Ordered dictionary of registered function hooks.

Contrary to chainer.thread_local.function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.FunctionNode

class chainer.FunctionNode
Function node of the computational graph.

FunctionNode is a class representing a node in a computational graph. The node corresponds to an application
of a differentiable function to input variables.

When a differentiable function is applied to Variable objects, it creates an instance of FunctionNode imple-
mentation and calls its apply() method. The apply() method basically does the following three things.

1. Adding an edge from the function node to the variable node corresponding to each input. The node of each
input is extracted by Variable.node.

2. Computing the output arrays of the function.

3. Creating a Variable object for each output array and adding an edge from the node of the variable to
the function node.

292 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

The output variables are then returned.

Example

Let x be an instance of Variable and f be an instance of FunctionNode taking only one argument. Then
the following code

>>> import numpy, chainer
>>> x = chainer.Variable(numpy.zeros(10))
>>> f = chainer.functions.math.identity.Identity()
>>> y = f.apply((x,))[0]

computes a new variable y and creates backward references. The backward references are actually set as per the
following diagram:

x.node <--- f <--- y.node

If an application of another function g occurs as

>>> g = chainer.functions.math.identity.Identity()
>>> z = g.apply((x,))[0]

then the graph grows with a branch:

|--- f <--- y.node
x.node <-+

|--- g <--- z.node

Note that the branching is correctly managed on backward computation, i.e. the gradients from f and g are
accumulated to the gradient of x.

Every function-node implementation should provide forward() and backward(). Instead of overriding
forward(), one can also implement forward_cpu() and forward_gpu() when the implementations
for CPU and GPU arrays are totally different.

Note that the input and output variables are inaccessible from backward() by default. If it needs accesses
to these variables, the forward() method (or its CPU/GPU variants) has to call retain_inputs() and
retain_outputs() appropriately. The retained input/output variables can be accessed from backward()
by calling get_retained_inputs() and get_retained_outputs().

Note: There are two types of differentiable functions in Chainer (since v3). The first type is of a function using
a subclass of Function, which is called old-style differentiable function. The second type is of a function
using a subclass of FunctionNode, which is called new-style differentiable function. There are several
advantages on using the new-style differentiable function.

• The new-style differentiable function supports differentiable backpropagation. The backpropagated gradi-
ents computed through the new-style differentiable functions themselves support further backpropagations
so that the automatic higher-order differentiation is available.

• The backpropagation of the new-style differentiable function can be more computationally efficient be-
cause the interface allows an implementation to omit the computation of unneeded input gradients.

Note that the new-style differentiable function is the standard way of defining a function node of the compu-
tational graph in Chainer; old- style differentiable functions are implemented as wrappers of the new- style
differentiable functions.

4.2. Functions 293



Chainer Documentation, Release 6.5.0

Variables

• inputs – A tuple of the input VariableNode objects.

• outputs – A tuple of weak references to the output VariableNode objects.

• rank (int) – An ordinal following the topological order of the computational graph.

• stack – Stack trace retrieved at the forward computation. The stack trace is available only
in the debug mode.

New in version 3.0.0.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a function hook.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply(inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attributes of the input variables exist on a GPU device, that device is made current
before calling forward(), so implementers do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable or N-
dimensional array. If the element is an ndarray, it is automatically wrapped with Variable.

Returns A tuple of output Variable objects.

backward(target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

294 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len(target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate() provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate(target_input_indexes, grad_outputs, grad_inputs)
Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward(). It is often simpler to implement
backward() and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variable) – Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

• grad_inputs (tuple of Variable) – Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward(), the length of the tuple must be same as that of
target_input_indices.

Note: Gradient variables in grad_outputs are distinct, even if a variable is passed to multiple in-
put arguments of the function. This is an implementation-detail convention to avoid the complication of
correctly accumulating gradients in such a case.

Usually, only the first position of grad_inputs corresponding to these input arguments may contain the
gradient variable corresponding to that input variable, and other entries are set to None. This is not the
case with the lazy_grad_sum feature. This behavior might be changed in a future version.

check_type_forward(in_types)
Checks types of input data before forward propagation.

This method is called before forward() and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) – The type information of input variables for
forward().

4.2. Functions 295



Chainer Documentation, Release 6.5.0

delete_hook(name)
Unregisters the function hook.

Parameters name (str) – The name of the function hook to be unregistered.

forward(inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_chainerx(inputs)
Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using
ChainerX implementation. If it’s not supported, chainer.Fallback should be returned instead of
output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s) or chainer.Fallback.

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables, if available. Otherwise return None.

296 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables, if available. Otherwise return None.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from apply(). The output variables with retained arrays can then be obtained by
calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of output variables that the function
will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.2. Functions 297



Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

chainerx_device = None

inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy_grad_sum = False

local_function_hooks
Ordered dictionary of registered function hooks.

Contrary to chainer.thread_local.function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.force_backprop_mode

chainer.force_backprop_mode()
Make a context manager which enables back-propagation.

When you want to enable back-propagation in no_backprop_mode(), call this method. A Variable
created in this context always has a computational graph unless overridden by deeper contexts. If you call this
method outside of no_backprop_mode() context, it changes nothing.

In the following example, y has a computational graph and calling backward() on y will compute and
accumulate the gradients of the variables in the graph, in this case only x.

>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
... with chainer.force_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad
array([1.], dtype=float32)

298 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Note: chainer.force_backprop_mode() implicitly applies ChainerX’s counterpart chainerx.
force_backprop_mode(), but not vice versa. Also, setting enable_backprop configuration does not
affect ChainerX.

See also:

See chainer.no_backprop_mode() for details on disabled back-propagation mode.

chainer.no_backprop_mode

chainer.no_backprop_mode()
Make a context manager which disables back-propagation.

In this context, Chainer does not make a computational graph. It has the benefit of reducing memory consump-
tion. However, a Variable created in this context does not hold a reference to the FunctionNode that
created itself so no gradients are accumulated by backward().

In the following example, y is created in this context, which means that calling backward() on y has no
effect on the gradients of x.

>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad is None
True

Note: chainer.no_backprop_mode() implicitly applies ChainerX’s counterpart chainerx.
no_backprop_mode(), but not vice versa. Also, setting enable_backprop configuration does not affect
ChainerX.

See also:

See chainer.force_backprop_mode() for details on how to override this context.

chainer.grad

chainer.grad(outputs, inputs, grad_outputs=None, grad_inputs=None, set_grad=False, re-
tain_grad=False, enable_double_backprop=False, loss_scale=None)

Computes the gradient of output variables w.r.t. the input variables.

This function implements the backpropagation algorithm. While Variable.backward() also implements
backprop, this function selects the smallest paths in the computational graph needed to compute the gradients
w.r.t. inputs. The error is backpropagated only through these selected paths, which may reduce the overall
computational cost.

This function also differs from Variable.backward() in the way to return the gradients; it directly returns
the gradient variables as a list instead of setting gradients to the Variable.grad_var attribute of the original
variable. It means users do not need to clear the gradient w.r.t. each variable before computing the gradient using
this function. If set_grad option is set to True, the computed gradient is also stored in the Variable.
grad_var attribute of each variable, in which case any original value of Variable.grad_var will be
updated even if it had already been set.

Parameters

4.2. Functions 299



Chainer Documentation, Release 6.5.0

• outputs (tuple or list of Variable) – A sequence of output variables from which back-
prop starts.

• inputs (tuple or list of Variable) – A sequence of input variables each of which this
function computes the gradient w.r.t.

• grad_outputs (tuple or list of Variable or None) – A sequence of variables that gives
the initial value of each output gradient. If an element is set to None, an array filled with 1
is used. If this argument itself is None, it is treated as a sequence of Nones.

• grad_inputs (tuple or list of Variable or None) – A sequence of variables that gives
the initial value of each input gradient. The gradients computed by the backprop algorithm
are accumulated to them (not in-place). If an element is set to None, the gradient is not
accumulated to this value. If this argument itself is None, it is treated as a sequence of
Nones.

• set_grad (bool) – If it is True, the Variable.grad_var attribute of each input
variable is set to the corresponding computed gradient variable.

• retain_grad (bool) – If it is True, the gradients w.r.t. all the intermediate variables
are stored in the Variable.grad_var attribute. In this case, the set_grad option is
ignored.

• enable_double_backprop (bool) – If it is True, the computed gradients can be
further backpropagated. Enabling it may increase the memory consumption (and possibly
the computational time) to remember the intermediate gradient values for the second back-
propagation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

Returns A list of gradient variables w.r.t. the inputs.

4.2.13 Function hooks

Chainer provides a function-hook mechanism that enriches the behavior of forward and backward propagation of
FunctionNode and Function.

chainer.function_hooks.
CUDAProfileHook
chainer.function_hooks.
CupyMemoryProfileHook

Function hook for measuring memory usage of func-
tions in cupy memory pool.

chainer.function_hooks.PrintHook Function hook that prints debug information.
chainer.function_hooks.TimerHook Function hook for measuring elapsed time of functions.

chainer.function_hooks.CUDAProfileHook

class chainer.function_hooks.CUDAProfileHook

300 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

__eq__()
Return self==value.

4.2. Functions 301



Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'CUDAProfileHook'

chainer.function_hooks.CupyMemoryProfileHook

class chainer.function_hooks.CupyMemoryProfileHook
Function hook for measuring memory usage of functions in cupy memory pool.

Example

Code example:

from chainer.function_hooks import CupyMemoryProfileHook
hook = CupyMemoryProfileHook()
with hook:

trainer.run()
hook.print_report()

Output example:

FunctionName UsedBytes AcquiredBytes Occurrence
LinearFunction 5.16GB 179.98MB 3900

ReLU 0.99GB 458.97MB 2600
SoftmaxCrossEntropy 0.01GB 5.08MB 1300

Accuracy 0.00GB 0.35MB 700

where FunctionName is the name of function that calls the hook, and UsedBytes is the memory bytes the function
used from cupy memory pool, and AcquiredBytes is the actual memory bytes the cupy memory pool acquired
from GPU device on the function call, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of the name of the func-
tion that calls this hook, the memory bytes the function used from cupy memory pool, and the
memory bytes the cupy memory pool acquired from GPU device on the function call.

Methods

__enter__()

__exit__(*_)

302 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

added(function=None)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function=None)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

print_report(unit=’auto’, file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Prints a summary report of memory profiling in functions.

Parameters unit (str) – Supplementary units used for used memories. B, KB, MB, GB, TB,
PB, EB, ZB, auto‘(default) and ‘auto_foreach are supported. If auto, units of memories are
aligned to the largest values of ‘used_bytes’ and ‘acquired_bytes’. If auto_foreach, units of
memories are adjusted for each element.

4.2. Functions 303

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

summary()
Returns a summary of memory profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
used_bytes, acquired_bytes, and occurrrence.

total_acquired_bytes()
Returns total bytes that cupy memory pool acquired from GPU.

total_used_bytes()
Returns total bytes that functions used from cupy memory pool.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'CupyMemoryProfileHook'

chainer.function_hooks.PrintHook

class chainer.function_hooks.PrintHook(sep=None, end=’n’, file=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’ encoding=’UTF-8’>,
flush=True)

Function hook that prints debug information.

This function hook outputs the debug information of input arguments of forward and backward methods
involved in the hooked functions at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions at every function to be inspected, we
can show the information of all functions involved with single with statement.

Further, this hook enables us to show the information of backward methods without inserting print functions
into Chainer’s library code.

Parameters

• sep – (deprecated since v4.0.0) Ignored.

• end – Character to be added at the end of print function.

• file – Output file_like object that that redirect to.

• flush – If True, this hook forcibly flushes the text stream at the end of preprocessing.

304 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Example

The basic usage is to use it with with statement.

>>> from chainer import function_hooks
>>> l = L.Linear(10, 10)
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.PrintHook():
... y = l(x)
... z = F.sum(y)
... z.backward()

In this example, PrintHook shows the debug information of forward propagation of LinearFunction
(which is implicitly called by l) and Sum (called by F.sum) and backward propagation of z and y.

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

4.2. Functions 305



Chainer Documentation, Release 6.5.0

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'PrintHook'

chainer.function_hooks.TimerHook

class chainer.function_hooks.TimerHook
Function hook for measuring elapsed time of functions.

Example

Code example:

from chainer.function_hooks import TimerHook
hook = TimerHook()
with hook:

trainer.run()
hook.print_report()

Output example:

FunctionName ElapsedTime Occurrence
LinearFunction 1.24sec 3900

ReLU 0.59sec 2600

(continues on next page)

306 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

(continued from previous page)

SoftmaxCrossEntropy 0.82sec 1300
Accuracy 0.18sec 700

where FunctionName is the name of function that calls the hook, and ElapsedTime is the elapsed time the
function consumed, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of pairs of the name of the
function that calls this hook and the elapsed time the function consumes.

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

4.2. Functions 307



Chainer Documentation, Release 6.5.0

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

print_report(unit=’auto’, file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Prints a summary report of time profiling in functions.

Parameters unit (str) – Supplementary units used for computational times. sec, ms, us, ns,
auto‘(default) and ‘auto_foreach are supported. If auto, units of times are aligned to the
largest, and if auto_foreach, units of times are adjusted for each element.

summary()
Returns a summary of time profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
elapsed_time and occurrence.

total_time()
Returns total elapsed time in seconds.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'TimerHook'

table = {'ms': 1000, 'ns': 1000000000, 'sec': 1, 'us': 1000000}

You can also implement your own function-hook to inject arbitrary code before/after the forward/backward propaga-
tion.

chainer.FunctionHook Base class of hooks for Functions.

chainer.FunctionHook

class chainer.FunctionHook
Base class of hooks for Functions.

FunctionHook is a callback object that is registered to FunctionNode. Registered function hooks are
invoked before and after forward and backward operations of each function.

308 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Function hooks that derive from FunctionHook may override the following methods:

• added()

• deleted()

• forward_preprocess()

• forward_postprocess()

• backward_preprocess()

• backward_postprocess()

By default, these methods do nothing.

Specifically, when the __call__() method of some function is invoked, forward_preprocess() (resp.
forward_postprocess()) of all function hooks registered to this function are called before (resp. after)
forward propagation.

Likewise, when backward() of some Variable is invoked, backward_preprocess() (resp.
backward_postprocess()) of all function hooks registered to the function which holds this variable as a
gradient are called before (resp. after) backward propagation.

added() and deleted() are called when the hook is registered or unregistered, respectively.

There are two ways to register FunctionHook objects to FunctionNode objects.

The first one is to use with statement. Function hooks hooked in this way are registered to all functions within
with statement and are unregistered at the end of with statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation
procedure with TimerHook, which is a subclass of FunctionHook.

>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l = L.Linear(10, 10)
... def __call__(self, x1):
... return F.exp(self.l(x1))
>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.TimerHook() as m:
... _ = model1(x)
... y = model2(x)
>>> model3 = Model()
>>> z = model3(y)
>>> print('Total time : {}'.format(m.total_time()))
...
Total time : ...

In this example, we measure the elapsed times for each forward propagation of all functions in model1 and
model2. Note that model3 is not a target of measurement as TimerHook is unregistered before forward
propagation of model3.

4.2. Functions 309



Chainer Documentation, Release 6.5.0

Note: Chainer stores the dictionary of registered function hooks as a thread local object. So, function hooks
registered are different depending on threads.

The other one is to register it directly to a FunctionNode object by calling its add_hook() method. Func-
tion hooks registered in this way can be removed by delete_hook() method. Contrary to the former regis-
tration method, function hooks are registered only to the function whose add_hook() method is called.

If the hook is registered globally using with statement, None is passed as the function argument of
added() and deleted().

If the hook is registered in a specific function using add_hook(), the FunctionNode instance is passed as
the function argument of added() and deleted().

Parameters name (str) – Name of this function hook.

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

310 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'FunctionHook'

4.3 Link and Chains

Chainer provides many Link implementations in the chainer.links package.

Note: Some of the links are originally defined in the chainer.functions namespace. They are still left in
the namespace for backward compatibility, though it is strongly recommended that you use them via the chainer.
links package.

4.3.1 Learnable connections

chainer.links.Bias Broadcasted elementwise summation with learnable pa-
rameters.

chainer.links.Bilinear Bilinear layer that performs tensor multiplication.
chainer.links.ChildSumTreeLSTM Child-Sum TreeLSTM unit.
chainer.links.Convolution1D 1-dimensional convolution layer.
chainer.links.Convolution2D Two-dimensional convolutional layer.

Continued on next page

4.3. Link and Chains 311



Chainer Documentation, Release 6.5.0

Table 16 – continued from previous page
chainer.links.Convolution3D 3-dimensional convolution layer.
chainer.links.ConvolutionND N-dimensional convolution layer.
chainer.links.Deconvolution1D 1-dimensional deconvolution layer.
chainer.links.Deconvolution2D Two dimensional deconvolution function.
chainer.links.Deconvolution3D 3-dimensional deconvolution layer.
chainer.links.DeconvolutionND N-dimensional deconvolution function.
chainer.links.DeformableConvolution2D Two-dimensional deformable convolutional layer.
chainer.links.DepthwiseConvolution2D Two-dimensional depthwise convolutional layer.
chainer.links.DilatedConvolution2D Two-dimensional dilated convolutional layer.
chainer.links.EmbedID Efficient linear layer for one-hot input.
chainer.links.GRU Stateful Gated Recurrent Unit function (GRU)
chainer.links.Highway Highway module.
chainer.links.Inception Inception module of GoogLeNet.
chainer.links.InceptionBN Inception module of the new GoogLeNet with Batch-

Normalization.
chainer.links.Linear Linear layer (a.k.a. fully-connected layer).
chainer.links.LocalConvolution2D Two-dimensional local convolutional layer.
chainer.links.LSTM Fully-connected LSTM layer.
chainer.links.MLPConvolution2D Two-dimensional MLP convolution layer of Network in

Network.
chainer.links.NaryTreeLSTM N-ary TreeLSTM unit.
chainer.links.NStepBiGRU Stacked Bi-directional GRU for sequences.
chainer.links.NStepBiLSTM Stacked Bi-directional LSTM for sequences.
chainer.links.NStepBiRNNReLU Stacked Bi-directional RNN for sequences.
chainer.links.NStepBiRNNTanh Stacked Bi-directional RNN for sequences.
chainer.links.NStepGRU Stacked Uni-directional GRU for sequences.
chainer.links.NStepLSTM Stacked Uni-directional LSTM for sequences.
chainer.links.NStepRNNReLU Stacked Uni-directional RNN for sequences.
chainer.links.NStepRNNTanh Stacked Uni-directional RNN for sequences.
chainer.links.Parameter Link that just holds a parameter and returns it.
chainer.links.Scale Broadcasted elementwise product with learnable param-

eters.
chainer.links.StatefulGRU Stateful Gated Recurrent Unit function (GRU).
chainer.links.StatelessGRU Stateless Gated Recurrent Unit function (GRU).
chainer.links.StatefulMGU
chainer.links.StatelessMGU
chainer.links.StatefulPeepholeLSTM Fully-connected LSTM layer with peephole connec-

tions.
chainer.links.StatefulZoneoutLSTM
chainer.links.StatelessLSTM Stateless LSTM layer.

chainer.links.Bias

class chainer.links.Bias(axis=1, shape=None)
Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as bias() function does except that its second input is a learnable bias
parameter 𝑏 the link has.

Parameters

• axis (int) – The first axis of the first input of bias() function along which its second
input is applied.

312 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• shape (tuple of ints) – Shape of the learnable bias parameter. If None, this link
does not have learnable parameters so an explicit bias needs to be given to its forward
method’s second input.

See also:

See bias() for details.

Variables b (Variable) – Bias parameter if shape is given. Otherwise, no attributes.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

4.3. Link and Chains 313

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

314 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*xs)
Applies broadcasted elementwise summation.

Parameters xs (list of Variables) – Input variables whose length should be one if the
link has a learnable bias parameter, otherwise should be two.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

4.3. Link and Chains 315

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all

316 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

4.3. Link and Chains 317



Chainer Documentation, Release 6.5.0

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Bilinear

class chainer.links.Bilinear(left_size, right_size, out_size, nobias=False, initialW=None, ini-
tial_bias=None)

Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the bilinear() functions. It holds parameters W, V1, V2, and b
corresponding to the arguments of bilinear().

Parameters

• left_size (int) – Dimension of input vector 𝑒1 (𝐽)

• right_size (int) – Dimension of input vector 𝑒2 (𝐾)

• out_size (int) – Dimension of output vector 𝑦 (𝐿)

• nobias (bool) – If True, parameters V1, V2, and b are omitted.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

318 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

• initial_bias (tuple of initializer) – Initial values of 𝑉 1, 𝑉 2 and 𝑏. The length of this
argument must be 3. Each element of this tuple must have the shapes of (left_size,
out_size), (right_size, out_size), and (out_size,), respectively if they
are numpy.ndarray. If None, 𝑉 1 and 𝑉 2 are initialized by the default initializer and 𝑏
is set to 0.

See also:

See chainer.functions.bilinear() for details.

Variables

• W (Variable) – Bilinear weight parameter.

• V1 (Variable) – Linear weight parameter for the first argument.

• V2 (Variable) – Linear weight parameter for the second argument.

• b (Variable) – Bias parameter.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

4.3. Link and Chains 319

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

320 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(e1, e2)
Applies the bilinear function to inputs and the internal parameters.

Parameters

• e1 (Variable) – Left input.

• e2 (Variable) – Right input.

Returns Output variable.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

4.3. Link and Chains 321

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

(continues on next page)

322 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

4.3. Link and Chains 323

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zero_grads()

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

324 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

chainer.links.ChildSumTreeLSTM

class chainer.links.ChildSumTreeLSTM(in_size, out_size)
Child-Sum TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a Child-Sum TreeLSTM unit as a chain. This link is a variable arguments function, which compounds
the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, 𝑐, and
the output, ℎ, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as func(c1, c2, h1, h2, x) if the number of children nodes is
2, while func(c1, c2, c3, h1, h2, h3, x) if that is 3. This function is independent from an order
of children nodes. Thus, the returns of func(c1, c2, h1, h2, x) equal to those of func(c2, c1,
h2, h1, x).

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimensionality of cell and output vectors.

Variables

• W_x (chainer.links.Linear) – Linear layer of connections from input vectors.

• W_h_aio (chainer.links.Linear) – Linear layer of connections between (𝑎, 𝑖, 𝑜)
and summation of children’s output vectors. 𝑎, 𝑖 and 𝑜 denotes input compound, input gate
and output gate, respectively. 𝑎, input compound, equals to 𝑢 in the paper by Tai et al.

• W_h_f (chainer.links.Linear) – Linear layer of connections between forget gate
𝑓 and the output of each child.

See the paper for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

4.3. Link and Chains 325

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized

326 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*cshsx)
Returns new cell state and output of Child-Sum TreeLSTM.

Parameters cshsx (list of Variable) – Variable arguments which include all cell vectors
and all output vectors of variable children, and an input vector.

4.3. Link and Chains 327

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns Returns (𝑐𝑛𝑒𝑤, ℎ𝑛𝑒𝑤), where 𝑐𝑛𝑒𝑤 represents new cell state vector, and ℎ𝑛𝑒𝑤 is new
output vector.

Return type tuple of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

328 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

4.3. Link and Chains 329

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

330 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution1D

class chainer.links.Convolution1D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)

1-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 1 to the first argument ndim, so see the details of the
behavior in the documentation of ConvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

4.3. Link and Chains 331

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

332 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies N-dimensional convolution layer.

Parameters x (Variable) – Input image.

Returns Output of convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

4.3. Link and Chains 333

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

334 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

4.3. Link and Chains 335

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

336 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution2D

class chainer.links.Convolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, initialW=None, initial_bias=None, *,
dilate=1, groups=1)

Two-dimensional convolutional layer.

This link wraps the convolution_2d() function and holds the filter weight and bias vector as parameters.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• groups (int) – Number of groups of channels. If the number is greater than 1, input
tensor 𝑊 is divided into some blocks by this value channel-wise. For each tensor blocks,
convolution operation will be executed independently. Input channel size in_channels
and output channel size out_channels must be exactly divisible by this value.

See also:

See chainer.functions.convolution_2d() for the definition of two-dimensional convolution.

4.3. Link and Chains 337

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Example

There are several ways to make a Convolution2D link.

Let an input vector x be:

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(
... 1, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> l = L.Convolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.Convolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.Convolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.Convolution2D(7, 5, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.Convolution2D(None, 7, 5, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

Methods

__call__(*args, **kwargs)
Call self as a function.

338 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

4.3. Link and Chains 339

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

340 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

forward(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

4.3. Link and Chains 341

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

342 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 343



Chainer Documentation, Release 6.5.0

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution3D

class chainer.links.Convolution3D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)

3-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 3 to the first argument ndim, so see the details of the
behavior in the documentation of ConvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

344 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

4.3. Link and Chains 345

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies N-dimensional convolution layer.

Parameters x (Variable) – Input image.

Returns Output of convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

346 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 347

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

348 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 349



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ConvolutionND

class chainer.links.ConvolutionND(ndim, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)

N-dimensional convolution layer.

This link wraps the convolution_nd() function and holds the filter weight and bias vector as parameters.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• ndim (int) – Number of spatial dimensions.

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or tuple of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints) – Stride of filter application. stride=s and
stride=(s, s, ..., s) are equivalent.

• pad (int or tuple of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 𝑛+ 2 where 𝑛 is the number of spatial dimensions.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should 1.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use
cuDNN.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

See also:

350 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

See convolution_nd() for the definition of N-dimensional convolution. See convolution_2d() for
the definition of two-dimensional convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter. If initial_bias is None, set to None.

Example

There are several ways to make a ConvolutionND link.

Let an input vector x be:

>>> x = np.arange(2 * 5 * 5 * 5, dtype=np.float32).reshape(
... 1, 2, 5, 5, 5)

1. Give the first four arguments explicitly:

>>> l = L.ConvolutionND(3, 2, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.ConvolutionND(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

>>> l = L.ConvolutionND(3, None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

When you omit the second argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.ConvolutionND(3, 7, 4, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

>>> l = L.ConvolutionND(3, None, 7, 4, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

4.3. Link and Chains 351



Chainer Documentation, Release 6.5.0

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

352 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 353

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies N-dimensional convolution layer.

Parameters x (Variable) – Input image.

Returns Output of convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

354 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 355

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

356 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution1D

class chainer.links.Deconvolution1D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, outsize=None, initialW=None, ini-
tial_bias=None, dilate=1, groups=1)

1-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 1 to the first argument ndim, so see the details of the
behavior in the documentation of DeconvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 357

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

358 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

4.3. Link and Chains 359

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

360 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

4.3. Link and Chains 361

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

362 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution2D

class chainer.links.Deconvolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None, *, dilate=1, groups=1)

Two dimensional deconvolution function.

This link wraps the deconvolution_2d() function and holds the filter weight and bias vector as parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias term.

• outsize (tuple) – Expected output size of deconvolutional operation. It should be pair
of height and width (𝑜𝑢𝑡𝐻 , 𝑜𝑢𝑡𝑊 ). Default value is None and the outsize is estimated by
input size, stride and pad.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

The filter weight has four dimensions (𝑐𝐼 , 𝑐𝑂, 𝑘𝐻 , 𝑘𝑊 ) which indicate the number of input channels, output
channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d. Gaussian
random samples, each of which has zero mean and deviation

√︀
1/(𝑐𝐼𝑘𝐻𝑘𝑊 ) by default.

4.3. Link and Chains 363

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

The bias vector is of size 𝑐𝑂. Its elements are initialized by bias argument. If nobias argument is set to
True, then this function does not hold the bias parameter.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-
ministic algorithm.

See also:

See chainer.functions.deconvolution_2d() for the definition of two-dimensional convolution.

See also:

See chainer.links.Convolution2D() for the examples of ways to give arguments to this link.

Example

There are several ways to make a Deconvolution2D link.

Let an input vector x be:

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(
... 1, 3, 10, 10)

1. Give the first three arguments explicitly:

In this case, all the other arguments are set to the default values.

>>> l = L.Deconvolution2D(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.Deconvolution2D(7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

>>> l = L.Deconvolution2D(None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword arguments. So the below two cases are the same.

>>> l = L.Deconvolution2D(None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)

>>> l = L.Deconvolution2D(7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)

364 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 365

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

366 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 367

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

368 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.3. Link and Chains 369



Chainer Documentation, Release 6.5.0

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution3D

class chainer.links.Deconvolution3D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, outsize=None, initialW=None, ini-
tial_bias=None, dilate=1, groups=1)

3-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 3 to the first argument ndim, so see the details of the
behavior in the documentation of DeconvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

370 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3. Link and Chains 371

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

372 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 373

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

374 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 375



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DeconvolutionND

class chainer.links.DeconvolutionND(ndim, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None, dilate=1, groups=1)

N-dimensional deconvolution function.

This link wraps deconvolution_nd() function and holds the filter weight and bias vector as its parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• ndim (int) – Number of spatial dimensions.

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or tuple of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints) – Stride of filter application. stride=s and
stride=(s, s, ..., s) are equivalent.

• pad (int or tuple of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias.

• outsize (tuple of ints) – Expected output size of deconvolutional operation. It
should be a tuple of ints that represents the output size of each dimension. Default value is
None and the outsize is estimated with input size, stride and pad.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 𝑛+ 2 where 𝑛 is the number of spatial dimensions.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should 1.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

See also:

deconvolution_nd()

376 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter. If initial_bias is None, set to None.

Example

There are several ways to make a DeconvolutionND link.

Let an input vector x be:

>>> x = np.arange(2 * 5 * 5 * 5, dtype=np.float32).reshape(
... 1, 2, 5, 5, 5)

1. Give the first four arguments explicitly:

>>> l = L.DeconvolutionND(3, 2, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.DeconvolutionND(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)

>>> l = L.DeconvolutionND(3, None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)

When you omit the second argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.DeconvolutionND(3, 7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 10, 10, 10)

>>> l = L.DeconvolutionND(3, None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 10, 10, 10)

Methods

__call__(*args, **kwargs)
Call self as a function.

4.3. Link and Chains 377



Chainer Documentation, Release 6.5.0

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

378 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

4.3. Link and Chains 379

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

380 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 381

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

382 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DeformableConvolution2D

class chainer.links.DeformableConvolution2D(in_channels, out_channels,
ksize, stride=1, pad=0, off-
set_nobias=False, offset_initialW=None,
offset_initial_bias=None, de-
form_nobias=False, deform_initialW=None,
deform_initial_bias=None)

Two-dimensional deformable convolutional layer.

This link wraps the convolution layer for offset prediction and the
deformable_convolution_2d_sampler() function. This also holds the filter weights and bias
vectors of two convolution layers as parameters.

Parameters

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• offset_nobias (bool) – If True, then this link does not use the bias term for the first
convolution layer.

• offset_initialW (initializer) – Initializer to initialize the weight of the first convolu-
tion layer. When it is numpy.ndarray, its ndim should be 4.

• offset_initial_bias (initializer) – Initializer to initialize the bias of the first convo-
lution layer. If None, the bias will be initialized to zero. When it is numpy.ndarray, its
ndim should be 1.

• deform_nobias (bool) – If True, then this link does not use the bias term for the
second convolution layer.

4.3. Link and Chains 383

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

• deform_initialW (initializer) – Initializer to initialize the weight for the second con-
volution layer. When it is numpy.ndarray, its ndim should be 4.

• deform_initial_bias (initializer) – Initializer to initialize the bias for the second
convolution layer. If None, the bias will be initialized to zero. When it is numpy.
ndarray, its ndim should be 1.

See also:

See chainer.functions.deformable_convolution_2d_sampler().

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

384 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

4.3. Link and Chains 385

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the deformable convolution.

Parameters x (Variable) – Input image.

Returns Output of the deformable convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

386 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

4.3. Link and Chains 387

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

388 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DepthwiseConvolution2D

class chainer.links.DepthwiseConvolution2D(in_channels, channel_multiplier, ksize,
stride=1, pad=0, nobias=False, ini-
tialW=None, initial_bias=None)

Two-dimensional depthwise convolutional layer.

4.3. Link and Chains 389

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

This link wraps the depthwise_convolution_2d() function and holds the filter weight and bias vector
as parameters.

Parameters

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• channel_multiplier (int) – Channel multiplier number. Number of output arrays
equal in_channels * channel_multiplier.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

See chainer.functions.depthwise_convolution_2d().

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

390 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

4.3. Link and Chains 391

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the depthwise convolution layer.

Parameters x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input image.

Returns Output of the depthwise convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

392 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 393

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

394 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 395



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DilatedConvolution2D

class chainer.links.DilatedConvolution2D(in_channels, out_channels, ksize=None,
stride=1, pad=0, dilate=1, nobias=False,
initialW=None, initial_bias=None)

Two-dimensional dilated convolutional layer.

This link wraps the dilated_convolution_2d() function and holds the filter weight and bias vector as
parameters.

Note: You can also define a dilated convolutional layer by passing dilate argument to chainer.links.
Convolution2D. The functionality is the same.

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

See chainer.functions.dilated_convolution_2d() for the definition of two-dimensional dilated
convolution.

Variables

• W (Variable) – Weight parameter.

396 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

• b (Variable) – Bias parameter.

Example

There are several ways to make a DilatedConvolution2D link.

Let an input vector x be:

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(1, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> l = L.DilatedConvolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.DilatedConvolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.DilatedConvolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.DilatedConvolution2D(None, 7, 5, 1, 0, 2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

>>> l = L.DilatedConvolution2D(7, 5, stride=1, pad=0, dilate=2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

4.3. Link and Chains 397



Chainer Documentation, Release 6.5.0

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.

398 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

4.3. Link and Chains 399

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

400 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 401

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

402 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.EmbedID

class chainer.links.EmbedID(in_size, out_size, initialW=None, ignore_label=None)
Efficient linear layer for one-hot input.

This is a link that wraps the embed_id() function. This link holds the ID (word) embedding matrix W as a
parameter.

Parameters

• in_size (int) – Number of different identifiers (a.k.a. vocabulary size).

• out_size (int) – Size of embedding vector.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• ignore_label (int or None) – If ignore_label is an int value, i-th row of re-
turn value is filled with 0.

See also:

embed_id()

Variables W (Variable) – Embedding parameter matrix.

Example

>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype(np.float32)
>>> W
array([[0., 0., 0.],

[1., 1., 1.],
[2., 2., 2.]], dtype=float32)

>>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> y = l(x)
>>> y.array
array([[2., 2., 2.],

[1., 1., 1.]], dtype=float32)

4.3. Link and Chains 403

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


Chainer Documentation, Release 6.5.0

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

404 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

4.3. Link and Chains 405

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Extracts the word embedding of given IDs.

Parameters x (Variable) – Batch vectors of IDs.

Returns Batch of corresponding embeddings.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

406 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

4.3. Link and Chains 407

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

408 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

ignore_label = None

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.GRU

class chainer.links.GRU(in_size, out_size, init=None, inner_init=None, bias_init=0)
Stateful Gated Recurrent Unit function (GRU)

This is an alias of StatefulGRU .

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

4.3. Link and Chains 409

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

410 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 411

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x)
Does forward propagation.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

412 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

4.3. Link and Chains 413

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

414 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Highway

class chainer.links.Highway(in_out_size, nobias=False, activate=<function relu>,
init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1)

Highway module.

In highway network, two gates are added to the ordinal non-linear transformation (𝐻(𝑥) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑊ℎ𝑥 +
𝑏ℎ)). One gate is the transform gate 𝑇 (𝑥) = 𝜎(𝑊𝑡𝑥+ 𝑏𝑡), and the other is the carry gate 𝐶(𝑥). For simplicity,
the author defined 𝐶 = 1− 𝑇 . Highway module returns 𝑦 defined as

𝑦 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑊ℎ𝑥+ 𝑏ℎ)⊙ 𝜎(𝑊𝑡𝑥+ 𝑏𝑡) + 𝑥⊙ (1− 𝜎(𝑊𝑡𝑥+ 𝑏𝑡))

The output array has the same spatial size as the input. In order to satisfy this, 𝑊ℎ and 𝑊𝑡 must be square
matrices.

Parameters

• in_out_size (int) – Dimension of input and output vectors.

• nobias (bool) – If True, then this function does not use the bias.

• activate – Activation function of plain array. 𝑡𝑎𝑛ℎ is also available.

• init_Wh (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• init_bh (initializer) – Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy.ndarray, its ndim should be 1.

• init_Wt (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

4.3. Link and Chains 415

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

• init_bt (initializer) – Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy.ndarray, its ndim should be 1. Negative value is recom-
mended by the author of the paper. (e.g. -1, -3, . . . ).

See: Highway Networks.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

416 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arxiv.org/abs/1505.00387
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

4.3. Link and Chains 417

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Computes the output of the Highway module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

418 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same

4.3. Link and Chains 419

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

420 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Inception

class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool,
conv_init=None, bias_init=None)

Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension.
Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1
convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and
3x3 max pooling.

4.3. Link and Chains 421

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate
padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

• in_channels (int or None) – Number of channels of input arrays.

• out1 (int) – Output size of 1x1 convolution path.

• proj3 (int) – Projection size of 3x3 convolution path.

• out3 (int) – Output size of 3x3 convolution path.

• proj5 (int) – Projection size of 5x5 convolution path.

• out5 (int) – Output size of 5x5 convolution path.

• proj_pool (int) – Projection size of max pooling path.

• conv_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 4.

• bias_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 1.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

422 Chapter 4. API Reference

https://arxiv.org/abs/1409.4842
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

4.3. Link and Chains 423

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Computes the output of the Inception module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array. The channel dimension has size out1 + out3 + out5 + proj_pool.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

424 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 425

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

426 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 427



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.InceptionBN

class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype,
proj_pool=None, stride=1, conv_init=None, dtype=None)

Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the BatchNormalization on top of each con-
volution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling
method is configurable.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Parameters

• in_channels (int or None) – Number of channels of input arrays.

• out1 (int) – Output size of the 1x1 convolution path.

• proj3 (int) – Projection size of the single 3x3 convolution path.

• out3 (int) – Output size of the single 3x3 convolution path.

• proj33 (int) – Projection size of the double 3x3 convolutions path.

• out33 (int) – Output size of the double 3x3 convolutions path.

• pooltype (str) – Pooling type. It must be either 'max' or 'avg'.

• proj_pool (int or None) – Projection size in the pooling path. If None, no projec-
tion is done.

• stride (int) – Stride parameter of the last convolution of each path.

• conv_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 4.

• dtype (numpy.dtype) – Type to use in BatchNormalization.

See also:

Inception

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

428 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://arxiv.org/abs/1502.03167
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype


Chainer Documentation, Release 6.5.0

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3. Link and Chains 429

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

430 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

4.3. Link and Chains 431

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

432 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 433



Chainer Documentation, Release 6.5.0

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Linear

class chainer.links.Linear(in_size, out_size=None, nobias=False, initialW=None, ini-
tial_bias=None)

Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the linear() function, and holds a weight matrix W and optionally a bias vector b as
parameters.

If initialW is left to the default value of None, the weight matrix W is initialized with i.i.d. Gaussian samples,
each of which has zero mean and deviation

√︀
1/

Parameters
• in_size (int or None) – Dimension of input vectors. If unspecified or None, parameter initialization

will be deferred until the first forward data pass at which time the size will be determined.
• out_size (int) – Dimension of output vectors. If only one value is passed for in_size and
out_size, that value will be used for the out_size dimension.

• nobias (bool) – If True, then this function does not use the bias.
• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be

2. If initialW is None, then the weights are initialized with i.i.d. Gaussian samples, each of which has zero
mean and deviation

√︀
1/

See also:

linear()

• Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Example

There are several ways to make a Linear link.

434 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

Define an input vector x as:

>>> x = np.array([[0, 1, 2, 3, 4]], np.float32)

1. Give the first two arguments explicitly:

Those numbers are considered as the input size and the output size.

>>> l = L.Linear(5, 10)
>>> y = l(x)
>>> y.shape
(1, 10)

2. Omit in_size (give the output size only as the first argument) or fill it with None:

In this case, the size of second axis of x is used as the input size. So the below two cases are the same.

>>> l = L.Linear(10)
>>> y = l(x)
>>> y.shape
(1, 10)

>>> l = L.Linear(None, 10)
>>> y = l(x)
>>> y.shape
(1, 10)

When you omit the first argument, you need to specify the other subsequent arguments from nobias
as keyword arguments. So the below two cases are the same.

>>> l = L.Linear(None, 10, False, None, 0)
>>> y = l(x)
>>> y.shape
(1, 10)

>>> l = L.Linear(10, nobias=False, initialW=None, initial_bias=0)
>>> y = l(x)
>>> y.shape
(1, 10)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks registered
to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 435

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the
parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer.
Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the
data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of
the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumu-
lation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain
(even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method,
so that all the parameters may have different initial values from the original link. copy means
that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply
copied. Thus, all parameters have same initial values but can be changed independently. share
means that the link is shallowly copied, so that its parameters’ arrays are shared with the original
one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

436 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and
devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is
copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with
copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its
descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, n_batch_axes=1)
Applies the linear layer.

Parameters

• x (Variable) – Batch of input vectors.

• n_batch_axes (int) – The number of batch axes. The default is 1. The input variable is
reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output of the linear layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

4.3. Link and Chains 437

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by
an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this
context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we
can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this
link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent
value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

438 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode
argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block
is re-initialized with different parameters. If you give copy to this argument, each block has same values for
its parameters but its object ID is different from others. If it is share, each block is same to others in terms of
not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one
block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters of each
repeated element in the returned Sequential will be re-initialized, so that all elements have
different initial parameters. copy means that the parameters will not be re-initialized but object
itself will be deep-copied, so that all elements have same initial parameters but can be changed
independently. share means all the elements which consist the resulting Sequential object
are same object because they are shallow-copied, so that all parameters of elements are shared
with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX,
the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the
link implementation should override device_resident_accept() to do so.

Returns: self

4.3. Link and Chains 439

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device,
the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the
link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link
hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value)
that are passed to the __init__(). This pair of key and value is used for representing this class
or subclass with __str__().

440 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LocalConvolution2D

class chainer.links.LocalConvolution2D(in_channels, out_channels, in_size=None,
ksize=None, stride=1, nobias=False, ini-
tialW=None, initial_bias=None, **kwargs)

Two-dimensional local convolutional layer.

This link wraps the local_convolution_2d() function and holds the filter weight and bias array as pa-
rameters.

Parameters

• in_channels (int) – Number of channels of input arrays. If either in_channels or
in_size is None, parameter initialization will be deferred until the first forward data pass
at which time the size will be determined.

• out_channels (int) – Number of channels of output arrays

• in_size (int or pair of ints) – Size of each image channel in_size=k and
in_size=(k,k) are equivalent. If either in_channels or in_size is None, parameter ini-
tialization will be deferred until the first forward data pass when the size will be determined.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 6.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 3.

See also:

See chainer.functions.local_convolution_2d().

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

4.3. Link and Chains 441

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

442 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 443

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the local convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

444 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 445

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

446 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LSTM

class chainer.links.LSTM(in_size, out_size=None, lateral_init=None, upward_init=None,
bias_init=None, forget_bias_init=None)

Fully-connected LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, which is defined as a stateless
activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be
used as a stateful LSTM.

This link supports variable length inputs. The mini-batch size of the current input must be equal to or smaller
than that of the previous one. The mini-batch size of c and h is determined as that of the first input x. When
mini-batch size of i-th input is smaller than that of the previous input, this link only updates c[0:len(x)]
and h[0:len(x)] and doesn’t change the rest of c and h. So, please sort input sequences in descending order
of lengths before applying the function.

Parameters

• in_size (int) – Dimension of input vectors. If it is None or omitted, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_size (int) – Dimensionality of output vectors.

• lateral_init – A callable that takes N-dimensional array and edits its value. It is used
for initialization of the lateral connections. May be None to use default initialization.

• upward_init – A callable that takes N-dimensional array and edits its value. It is used
for initialization of the upward connections. May be None to use default initialization.

4.3. Link and Chains 447

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• bias_init – A callable that takes N-dimensional array and edits its value It is used for
initialization of the biases of cell input, input gate and output gate.and gates of the upward
connection. May be a scalar, in that case, the bias is initialized by this value. If it is None,
the cell-input bias is initialized to zero.

• forget_bias_init – A callable that takes N-dimensional array and edits its value. It
is used for initialization of the biases of the forget gate of the upward connection. May be
a scalar, in that case, the bias is initialized by this value. If it is None, the forget bias is
initialized to one.

Variables

• upward (Linear) – Linear layer of upward connections.

• lateral (Linear) – Linear layer of lateral connections.

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the previous time step.

Example

There are several ways to make a LSTM link.

Let a two-dimensional input array 𝑥 be:

>>> x = np.zeros((1, 10), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.LSTM(10, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

The below two cases are the same.

>>> l = L.LSTM(20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

>>> l = L.LSTM(None, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

448 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 449

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

450 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

4.3. Link and Chains 451

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

452 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal state.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(c, h)
Sets the internal state.

It sets the c and h attributes.

Parameters

• c (Variable) – A new cell states of LSTM units.

• h (Variable) – A new output at the previous time step.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 453



Chainer Documentation, Release 6.5.0

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.MLPConvolution2D

class chainer.links.MLPConvolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, activation=relu.relu, conv_init=None,
bias_init=None)

Two-dimensional MLP convolution layer of Network in Network.

454 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

This is an “mlpconv” layer from the Network in Network paper. This layer is a two-dimensional convolution
layer followed by 1x1 convolution layers and interleaved activation functions.

Note that it does not apply the activation function to the output of the last 1x1 convolution layer.

Parameters

• in_channels (int or None) – Number of channels of input arrays. If it is None or
omitted, parameter initialization will be deferred until the first forward data pass at which
time the size will be determined.

• out_channels (tuple of ints) – Tuple of number of channels. The i-th integer
indicates the number of filters of the i-th convolution.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels) of the first convolu-
tion layer. ksize=k and ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications at the first convolution
layer. stride=s and stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays at the first con-
volution layer. pad=p and pad=(p, p) are equivalent.

• activation (callable) – Activation function for internal hidden units. You can spec-
ify one of activation functions from built-in activation functions or your own function. It
should not be an activation functions with parameters (i.e., Link instance). The function
must accept one argument (the output from each child link), and return a value. Returned
value must be a Variable derived from the input Variable to perform backpropagation on the
variable. Note that this function is not applied to the output of this link.

• conv_init – An initializer of weight matrices passed to the convolution layers. This
option must be specified as a keyword argument.

• bias_init – An initializer of bias vectors passed to the convolution layers. This option
must be specified as a keyword argument.

See: Network in Network.

Variables activation (callable) – Activation function. See the description in the arguments
for details.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

4.3. Link and Chains 455

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1312.4400v3
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

456 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(x)
Computes the output of the mlpconv layer.

4.3. Link and Chains 457

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters x (Variable) – Input image.

Returns Output of the mlpconv layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

458 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

4.3. Link and Chains 459

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

460 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NaryTreeLSTM

class chainer.links.NaryTreeLSTM(in_size, out_size, n_ary=2)
N-ary TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a N-ary TreeLSTM unit as a chain. This link is a fixed-length arguments function, which compounds the
states of all children nodes into the new states of a current (parent) node. states denotes the cell state, 𝑐, and the
output, ℎ, which are produced by this link. This link doesn’t keep cell and hidden states internally.

4.3. Link and Chains 461

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

For example, this link is called such as func(c1, c2, h1, h2, x) if the number of children nodes
was set 2 (n_ary = 2), while func(c1, c2, c3, h1, h2, h3, x) if that was 3 (n_ary = 3).
This function is dependent from an order of children nodes unlike Child-Sum TreeLSTM. Thus, the returns of
func(c1, c2, h1, h2, x) are different from those of func(c2, c1, h2, h1, x).

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimensionality of cell and output vectors.

• n_ary (int) – The number of children nodes in a tree structure.

Variables

• W_x (chainer.links.Linear) – Linear layer of connections from input vectors.

• W_h (chainer.links.Linear) – Linear layer of connections between (𝑎, 𝑖, 𝑜, all 𝑓 )
and the output of each child. 𝑎, 𝑖, 𝑜 and 𝑓 denotes input compound, input gate, output gate
and forget gate, respectively. 𝑎, input compound, equals to 𝑢 in the paper by Tai et al.

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks, and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. has only one 𝑊 matrix to be applied to 𝑥, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

462 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

4.3. Link and Chains 463

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*cshsx)
Returns new cell state and output of N-ary TreeLSTM.

Parameters cshsx (list of Variable) – Arguments which include all cell vectors and all
output vectors of fixed-length children, and an input vector. The number of arguments must
be same as n_ary * 2 + 1.

Returns Returns (𝑐𝑛𝑒𝑤, ℎ𝑛𝑒𝑤), where 𝑐𝑛𝑒𝑤 represents new cell state vector, and ℎ𝑛𝑒𝑤 is new
output vector.

Return type tuple of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

464 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 465

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

466 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

4.3. Link and Chains 467



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiGRU

class chainer.links.NStepBiGRU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional GRU for sequences.

This link is stacked version of Bi-directional GRU for sequences. It calculates hidden and cell states of all layer
at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bigru(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_bigru()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

468 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3. Link and Chains 469

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional

470 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

4.3. Link and Chains 471

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
(continues on next page)

472 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

4.3. Link and Chains 473

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

474 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiLSTM

class chainer.links.NStepBiLSTM(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional LSTM for sequences.

This link is stacked version of Bi-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bilstm(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_bilstm()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

4.3. Link and Chains 475

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

476 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, cx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional

4.3. Link and Chains 477

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

LSTM where S is the number of layers and is equal to n_layers, B is the mini-batch
size, and N is the dimension of the hidden units.

• cx (Variable or None) – Initial cell states. If None is specified zero-vector is used. It
has the same shape as hx.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_i is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional LSTM and
(L_i, 2N) for bi-directional LSTM where L_i is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

478 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

(continues on next page)

4.3. Link and Chains 479

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

480 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 8

printable_specs
Generator of printable specs of this link.

4.3. Link and Chains 481



Chainer Documentation, Release 6.5.0

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNReLU

class chainer.links.NStepBiRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is relu. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_birnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

482 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

4.3. Link and Chains 483

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

484 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

4.3. Link and Chains 485

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

(continues on next page)

486 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

4.3. Link and Chains 487

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

488 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNTanh

class chainer.links.NStepBiRNNTanh(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is tanh. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_birnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

4.3. Link and Chains 489

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

490 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional

4.3. Link and Chains 491

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

492 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
(continues on next page)

4.3. Link and Chains 493

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

494 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 495



Chainer Documentation, Release 6.5.0

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepGRU

class chainer.links.NStepGRU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional GRU for sequences.

This link is stacked version of Uni-directional GRU for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_gru(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_gru()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

496 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3. Link and Chains 497

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional

498 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

4.3. Link and Chains 499

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
(continues on next page)

500 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

4.3. Link and Chains 501

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

502 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepLSTM

class chainer.links.NStepLSTM(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional LSTM for sequences.

This link is stacked version of Uni-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_lstm(), this function automatically sort inputs in descending or-
der by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_lstm()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

4.3. Link and Chains 503

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

504 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, cx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional

4.3. Link and Chains 505

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

LSTM where S is the number of layers and is equal to n_layers, B is the mini-batch
size, and N is the dimension of the hidden units.

• cx (Variable or None) – Initial cell states. If None is specified zero-vector is used. It
has the same shape as hx.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_i is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional LSTM and
(L_i, 2N) for bi-directional LSTM where L_i is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

506 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

(continues on next page)

4.3. Link and Chains 507

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

508 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 8

printable_specs
Generator of printable specs of this link.

4.3. Link and Chains 509



Chainer Documentation, Release 6.5.0

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepRNNReLU

class chainer.links.NStepRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is relu. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_rnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

510 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

4.3. Link and Chains 511

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

512 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

4.3. Link and Chains 513

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

(continues on next page)

514 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

4.3. Link and Chains 515

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

516 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepRNNTanh

class chainer.links.NStepRNNTanh(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is tanh. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_rnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

4.3. Link and Chains 517

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

518 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional

4.3. Link and Chains 519

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

520 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
(continues on next page)

4.3. Link and Chains 521

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

522 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 523



Chainer Documentation, Release 6.5.0

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Parameter

class chainer.links.Parameter(array)
Link that just holds a parameter and returns it.

Deprecated since version v1.5: The parameters are stored as variables since v1.5. Use them directly instead.

Parameters array – Initial parameter array.

Variables W (Variable) – Parameter variable.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

524 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

4.3. Link and Chains 525

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(volatile=’off’)
Returns the parameter variable.

Parameters volatile (Flag) – The volatility of the returned variable.

Returns A copy of the parameter variable with given volatility.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

526 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

4.3. Link and Chains 527

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

528 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Scale

class chainer.links.Scale(axis=1, W_shape=None, bias_term=False, bias_shape=None)
Broadcasted elementwise product with learnable parameters.

Computes a elementwise product as scale() function does except that its second input is a learnable weight
parameter 𝑊 the link has.

4.3. Link and Chains 529

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Parameters

• axis (int) – The first axis of the first input of scale() function along which its second
input is applied.

• W_shape (tuple of ints) – Shape of learnable weight parameter. If None, this link
does not have learnable weight parameter so an explicit weight needs to be given to its
forward method’s second input.

• bias_term (bool) – Whether to also learn a bias (equivalent to Scale link + Bias link).

• bias_shape (tuple of ints) – Shape of learnable bias. If W_shape is None, this
should be given to determine the shape. Otherwise, the bias has the same shape W_shape
with the weight parameter and bias_shape is ignored.

See also:

See scale() for details.

Variables

• W (Parameter) – Weight parameter if W_shape is given. Otherwise, no W attribute.

• bias (Bias) – Bias term if bias_term is True. Otherwise, no bias attribute.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

530 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

4.3. Link and Chains 531

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*xs)
Applies broadcasted elementwise product.

Parameters xs (list of Variables) – Input variables whose length should be one if the
link has a learnable weight parameter, otherwise should be two.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

532 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 533

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

534 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 535



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulGRU

class chainer.links.StatefulGRU(in_size, out_size, init=None, inner_init=None, bias_init=0)
Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . The three parameters 𝑊𝑟, 𝑊𝑧 , and 𝑊
are 𝑛 ×𝑚 matrices, and the others 𝑈𝑟, 𝑈𝑧 , and 𝑈 are 𝑛 × 𝑛 matrices, where 𝑚 is the length of input vectors
and 𝑛 is the length of hidden vectors.

Given input vector 𝑥, Stateful GRU returns the next hidden vector ℎ′ defined as

𝑟 =

𝜎(𝑊𝑟𝑥+ 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥+ 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥+ 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1− 𝑧)⊙ ℎ+ 𝑧 ⊙ ℎ̄,

where ℎ is current hidden vector.

As the name indicates, StatefulGRU is stateful, meaning that it also holds the next hidden vector h’ as a
state. For a stateless GRU, use StatelessGRU .

Parameters

• in_size (int) – Dimension of input vector 𝑥.

• out_size (int) – Dimension of hidden vector ℎ.

• init – Initializer for GRU’s input units (𝑊 ). It is a callable that takes N-dimensional array
and edits its value. If it is None, the default initializer is used.

• inner_init – Initializer for the GRU’s inner recurrent units (𝑈 ). It is a callable that takes
N-dimensional array and edits its value. If it is None, the default initializer is used.

• bias_init – Bias initializer. It is a callable that takes N-dimensional array and edits its
value. If None, the bias is set to zero.

Variables h (Variable) – Hidden vector that indicates the state of StatefulGRU .

See also:

• StatelessGRU

• GRU : an alias of StatefulGRU

536 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Example

There are several ways to make a StatefulGRU link. Let x be a two-dimensional input array:

>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)

1. Give only in_size and out_size arguments:

>>> l = L.StatefulGRU(in_size, out_size)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

2. Give all optional arguments:

>>> init = np.zeros((out_size, in_size), dtype=np.float32)
>>> inner_init = np.zeros((out_size, out_size), dtype=np.float32)
>>> bias = np.zeros((1, out_size), dtype=np.float32)
>>> l = L.StatefulGRU(in_size, out_size, init=init,
... inner_init=inner_init, bias_init=bias)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

4.3. Link and Chains 537

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

538 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

4.3. Link and Chains 539

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

540 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

4.3. Link and Chains 541

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

542 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatelessGRU

class chainer.links.StatelessGRU(in_size, out_size, init=None, inner_init=None,
bias_init=None)

Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . The three parameters 𝑊𝑟, 𝑊𝑧 , and 𝑊 are 𝑛×𝑚
matrices, and the others 𝑈𝑟, 𝑈𝑧 , and 𝑈 are 𝑛 × 𝑛 matrices, where 𝑚 is the length of input vectors and 𝑛 is the
length of hidden vectors.

Given two inputs a previous hidden vector ℎ and an input vector 𝑥, GRU returns the next hidden vector ℎ′

defined as

𝑟 =

𝜎(𝑊𝑟𝑥+ 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥+ 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥+ 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1− 𝑧)⊙ ℎ+ 𝑧 ⊙ ℎ̄,

where 𝜎 is the sigmoid function, and ⊙ is the element-wise product.

As the name indicates, StatelessGRU is stateless, meaning that it does not hold the value of hidden vector
ℎ. For a stateful GRU, use StatefulGRU .

Parameters

• in_size (int) – Dimension of input vector 𝑥. If None, parameter initialization will be
deferred until the first forward data pass at which time the size will be determined.

• out_size (int) – Dimension of hidden vector ℎ, ℎ̄ and ℎ′.

See:

• On the Properties of Neural Machine Translation: Encoder-Decoder Approaches [Cho+, SSST2014].

• Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Chung+NIPS2014
DLWorkshop].

See also:

StatefulGRU

Example

There are several ways to make a StatelessGRU link. Let x be a two-dimensional input array:

4.3. Link and Chains 543

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/W14-4012
https://arxiv.org/abs/1412.3555


Chainer Documentation, Release 6.5.0

>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)
>>> h = np.zeros((1, out_size), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.StatelessGRU(in_size, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

>>> l = L.StatelessGRU(None, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

544 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

4.3. Link and Chains 545

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(h, x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

546 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 547

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

548 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

4.3. Link and Chains 549



Chainer Documentation, Release 6.5.0

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulMGU

class chainer.links.StatefulMGU(in_size, out_size)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

550 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

4.3. Link and Chains 551

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

552 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

4.3. Link and Chains 553

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

554 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatelessMGU

class chainer.links.StatelessMGU(n_inputs, n_units)

Methods

__call__(*args, **kwargs)
Call self as a function.

4.3. Link and Chains 555

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

556 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

4.3. Link and Chains 557

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(h, x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

558 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 559

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

560 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulPeepholeLSTM

class chainer.links.StatefulPeepholeLSTM(in_size, out_size)
Fully-connected LSTM layer with peephole connections.

This is a fully-connected LSTM layer with peephole connections as a chain. Unlike the LSTM link, this chain
holds peep_i, peep_f and peep_o as child links besides upward and lateral.

Given a input vector 𝑥, Peephole returns the next hidden vector ℎ′ defined as

𝑎 =

tanh(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ),

𝑖 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ+ 𝑝𝑒𝑒𝑝𝑖𝑐),

𝑓 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ+ 𝑝𝑒𝑒𝑝𝑓𝑐),

𝑐′ =

𝑎⊙ 𝑖+ 𝑓 ⊙ 𝑐,
𝑜 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ+ 𝑝𝑒𝑒𝑝𝑜𝑐
′),

ℎ′ =

𝑜 tanh(𝑐′),

where 𝜎 is the sigmoid function, ⊙ is the element-wise product, 𝑐 is the current cell state, 𝑐′ is the next cell state
and ℎ is the current hidden vector.

4.3. Link and Chains 561

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Parameters

• in_size (int) – Dimension of the input vector 𝑥.

• out_size (int) – Dimension of the hidden vector ℎ.

Variables

• upward (Linear) – Linear layer of upward connections.

• lateral (Linear) – Linear layer of lateral connections.

• peep_i (Linear) – Linear layer of peephole connections to the input gate.

• peep_f (Linear) – Linear layer of peephole connections to the forget gate.

• peep_o (Linear) – Linear layer of peephole connections to the output gate.

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the current time step.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a

562 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,

4.3. Link and Chains 563

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

564 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 565

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal states.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

566 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

4.3. Link and Chains 567



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulZoneoutLSTM

class chainer.links.StatefulZoneoutLSTM(in_size, out_size, c_ratio=0.5, h_ratio=0.5,
**kwargs)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a

568 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,

4.3. Link and Chains 569

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

570 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 571

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal state.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(c, h)
Sets the internal state.

It sets the c and h attributes.

Parameters

• c (Variable) – A new cell states of LSTM units.

• h (Variable) – A new output at the previous time step.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

572 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

4.3. Link and Chains 573



Chainer Documentation, Release 6.5.0

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatelessLSTM

class chainer.links.StatelessLSTM(in_size, out_size=None, lateral_init=None, up-
ward_init=None, bias_init=None, forget_bias_init=None)

Stateless LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, this chain holds upward and
lateral connections as child links. This link doesn’t keep cell and hidden states.

Parameters

• in_size (int or None) – Dimension of input vectors. If None, parameter initializa-
tion will be deferred until the first forward data pass at which time the size will be deter-
mined.

• out_size (int) – Dimensionality of output vectors.

Variables

• upward (chainer.links.Linear) – Linear layer of upward connections.

• lateral (chainer.links.Linear) – Linear layer of lateral connections.

Example

There are several ways to make a StatelessLSTM link.

Let a two-dimensional input array 𝑥, a cell state array ℎ, and the output array of the previous step ℎ be:

>>> x = np.zeros((1, 10), dtype=np.float32)
>>> c = np.zeros((1, 20), dtype=np.float32)
>>> h = np.zeros((1, 20), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.StatelessLSTM(10, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

574 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

2. Omit in_size argument or fill it with None:

The below two cases are the same.

>>> l = L.StatelessLSTM(20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

>>> l = L.StatelessLSTM(None, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

4.3. Link and Chains 575

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

576 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(c, h, x)
Returns new cell state and updated output of LSTM.

Parameters

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the previous time step.

• x (Variable) – A new batch from the input sequence.

Returns Returns (c_new, h_new), where c_new represents new cell state, and h_new is
updated output of LSTM units.

Return type tuple of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

4.3. Link and Chains 577

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

578 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

4.3. Link and Chains 579

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

580 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.2 Activation/loss/normalization functions with parameters

chainer.links.BatchNormalization Batch normalization layer on outputs of linear or convo-
lution functions.

chainer.links.BatchRenormalization Batch renormalization layer on outputs of linear or con-
volution functions.

chainer.links.DecorrelatedBatchNormalizationDecorrelated batch normalization layer.
chainer.links.GroupNormalization Group normalization layer on outputs of convolution

functions.
chainer.links.LayerNormalization Layer normalization layer on outputs of linear func-

tions.
chainer.links.BinaryHierarchicalSoftmaxHierarchical softmax layer over binary tree.
chainer.links.BlackOut BlackOut loss layer.
chainer.links.CRF1d Linear-chain conditional random field loss layer.
chainer.links.SimplifiedDropconnect Fully-connected layer with simplified dropconnect reg-

ularization.
chainer.links.PReLU Parametric ReLU function as a link.
chainer.links.Swish Swish activation function as a link.
chainer.links.Maxout Fully-connected maxout layer.
chainer.links.NegativeSampling Negative sampling loss layer.

chainer.links.BatchNormalization

class chainer.links.BatchNormalization(size=None, decay=0.9, eps=2e-05, dtype=None,
use_gamma=True, use_beta=True, ini-
tial_gamma=None, initial_beta=None, axis=None,
initial_avg_mean=None, initial_avg_var=None)

Batch normalization layer on outputs of linear or convolution functions.

This link wraps the batch_normalization() and fixed_batch_normalization() functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statis-
tics by moving averages, which can be used for instant evaluation in testing mode. Training mode is enabled
when chainer.config.train is set to True and __call__() is invoked with finetune=False
(the default is False).

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute
the population statistics, a user must use this mode to feed mini-batches running through whole training dataset.
Finetuning mode is enabled when chainer.config.train is set to True and __call__() is invoked
with finetune=True.

4.3. Link and Chains 581

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population
statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-
tuning mode. Testing mode is enabled when chainer.config.train is set to False.

Parameters

• size (int, tuple of ints, or None) – Size (or shape) of channel dimensions.
If None, the size will be determined from dimension(s) of the input batch during the first
forward pass.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

• use_gamma (bool) – If True, use scaling parameter. Otherwise, use unit(1) which makes
no effect.

• use_beta (bool) – If True, use shifting parameter. Otherwise, use unit(0) which makes
no effect.

• axis (int or tuple of int) – Axis over which normalization is performed. When
axis is None, it is determined from input dimensions. For example, if x.ndim is 4, axis
becomes (0, 2, 3) and normalization is performed over 0th, 2nd and 3rd axis of input. If it
is 2, axis becomes (0) and normalization is performed over 0th axis of input. When a tuple
of int is given to this option, numbers in the tuple must be being sorted in ascending order.
For example, (0, 2) is OK, but (2, 0) is not.

• initial_gamma – Initializer of the scaling parameter. The default value is 1.

• initial_beta – Initializer of the shifting parameter. The default value is 0.

• initial_avg_mean – Initializer of the moving average of population mean. The default
value is 0.

• initial_avg_var – Initializer of the moving average of population variance. The de-
fault value is 1.

Note: From v5.0.0, the initial value of the population variance is changed to 1. It does not change the behavior
of training, but the resulting model may have a slightly different behavior on inference. To emulate the old
behavior, pass initial_avg_var=0 for training.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

batch_normalization(), fixed_batch_normalization()

Variables

• gamma (Variable) – Scaling parameter. In mixed16 mode, it is initialized as float32
variable.

• beta (Variable) – Shifting parameter. In mixed16 mode, it is initialized as float32
variable.

• avg_mean (N-dimensional array) – Population mean. In mixed16 mode, it is initialized as
float32 array.

• avg_var (N-dimensional array) – Population variance. In mixed16 mode, it is initialized
as float32 array.

582 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1502.03167


Chainer Documentation, Release 6.5.0

• N (int) – Count of batches given for fine-tuning.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability. This value is added to the batch
variances.

Example

>>> x = np.arange(12).reshape(4, 3).astype(np.float32) ** 2
>>> x
array([[ 0., 1., 4.],

[ 9., 16., 25.],
[ 36., 49., 64.],
[ 81., 100., 121.]], dtype=float32)

>>> bn = chainer.links.BatchNormalization(3)
>>> bn(x)
variable([[-1. , -1.0664359 , -1.1117983 ],

[-0.71428573, -0.6714596 , -0.6401263 ],
[ 0.14285715, 0.19748813, 0.23583598],
[ 1.5714287 , 1.5404074 , 1.5160885 ]])

>>> (x - x.mean(axis=0)) / np.sqrt(x.var(axis=0) + 2e-5)
array([[-1. , -1.0664359 , -1.1117983 ],

[-0.71428573, -0.6714596 , -0.6401263 ],
[ 0.14285715, 0.19748813, 0.235836 ],
[ 1.5714285 , 1.5404074 , 1.5160886 ]], dtype=float32)

There are several ways to make a BatchNormalization link. Consider an input of batched 10 images of 32x32
with 3 channels.

>>> x = np.random.randn(10, 3, 32, 32).astype(np.float32)

1. Give the parameter size:

To normalize for each channel, give the number of channels to size.

>>> bn = chainer.links.BatchNormalization(3)
>>> bn.avg_mean.shape
(3,)
>>> bn.beta += 2.0
>>> bn.gamma *= 5.0
>>> list(sorted(bn.namedparams()))
[('/beta', variable([2., ...])), ('/gamma', variable([5., ...]))]
>>> y = bn(x)
>>> y.shape
(10, 3, 32, 32)
>>> np.testing.assert_allclose(
... y.array.mean(axis=(0, 2, 3)), bn.beta.array, atol=1e-6)
>>> np.testing.assert_allclose(
... y.array.std(axis=(0, 2, 3)),
... bn.gamma.array, atol=1e-3)

To normalize for each channel for each pixel, size should be the tuple of the dimensions.

>>> bn = chainer.links.BatchNormalization((3, 32, 32))
>>> bn.avg_mean.shape
(3, 32, 32)

(continues on next page)

4.3. Link and Chains 583

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> y = bn(x)
>>> y.shape
(10, 3, 32, 32)
>>> np.testing.assert_allclose(
... y.array.mean(axis=0), bn.beta.array, atol=1e-6)
>>> np.testing.assert_allclose(
... y.array.std(axis=0),
... bn.gamma.array, atol=1e-3)

By default, channel axis is (or starts from) the 1st axis of the input shape.

2. Give the aggregate axes:

from Chainer v5

With axis option, similarly to NumPy, you may specify the aggregate axes, which are treated
as the “batch” axes for the batch statistics.

You can omit size if axis is given. In this case, creation of persistent values avg_mean,
avg_var and parameters beta, gamma is deferred until first forward propagation.

The examples in 1. corresponds to the following, respectively.

>>> bn = chainer.links.BatchNormalization(axis=(0, 2, 3))
>>> print(bn.avg_mean)
None
>>> y = bn(x)
>>> bn.avg_mean.shape
(3,)

>>> bn = chainer.links.BatchNormalization(axis=0)
>>> print(bn.avg_mean)
None
>>> y = bn(x)
>>> bn.avg_mean.shape
(3, 32, 32)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

584 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

4.3. Link and Chains 585

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation
during training, and normalizes the input using batch statistics.

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, BatchNor-
malization runs in fine-tuning mode; it accumulates the input array to compute population
statistics for normalization, and normalizes the input using batch statistics.

586 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

4.3. Link and Chains 587

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

588 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

avg_mean = None

avg_var = None

beta = None

4.3. Link and Chains 589



Chainer Documentation, Release 6.5.0

device
Device instance.

gamma = None

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.BatchRenormalization

class chainer.links.BatchRenormalization(size, rmax=1, dmax=0, decay=0.9, eps=2e-05,
dtype=None, use_gamma=True, use_beta=True,
initial_gamma=None, initial_beta=None, ini-
tial_avg_mean=None, initial_avg_var=None)

Batch renormalization layer on outputs of linear or convolution functions.

This link wraps the batch_renormalization() and fixed_batch_renormalization() func-
tions.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:

batch_renormalization(), fixed_batch_renormalization()
batch_normalization(),

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

590 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://arxiv.org/abs/1702.03275


Chainer Documentation, Release 6.5.0

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

4.3. Link and Chains 591

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

592 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

forward(self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation
during training, and normalizes the input using batch statistics.

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, BatchNor-
malization runs in fine-tuning mode; it accumulates the input array to compute population
statistics for normalization, and normalizes the input using batch statistics.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 593

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

594 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.3. Link and Chains 595



Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

avg_mean = None

avg_var = None

beta = None

device
Device instance.

gamma = None

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DecorrelatedBatchNormalization

class chainer.links.DecorrelatedBatchNormalization(size, groups=16, decay=0.9,
eps=2e-05, dtype=<class
’numpy.float32’>)

Decorrelated batch normalization layer.

This link wraps the decorrelated_batch_normalization() and
fixed_decorrelated_batch_normalization() functions. It works on outputs of linear or
convolution functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statistics
by moving averages, which can be used for instant evaluation in testing mode.

596 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute the
population statistics, a user must use this mode to feed mini-batches running through whole training dataset.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population
statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-
tuning mode.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• groups (int) – Number of groups to use for group whitening.

• decay (float) – Decay rate of moving average which is used during training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

See: Decorrelated Batch Normalization

See also:

decorrelated_batch_normalization(), fixed_decorrelated_batch_normalization()

Variables

• avg_mean (N-dimensional array) – Population mean.

• avg_projection (N-dimensional array) – Population projection.

• groups (int) – Number of groups to use for group whitening.

• N (int) – Count of batches given for fine-tuning.

• decay (float) – Decay rate of moving average which is used during training.

• eps (float) – Epsilon value for numerical stability. This value is added to the batch
variances.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

4.3. Link and Chains 597

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://arxiv.org/abs/1804.08450
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

598 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x, *, finetune=False)
Invokes the forward propagation of DecorrelatedBatchNormalization.

In training mode, the DecorrelatedBatchNormalization computes moving averages of the mean and pro-
jection for evaluation during training, and normalizes the input using batch statistics.

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, Decorrelated-
BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute
population statistics for normalization, and normalizes the input using batch statistics.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

4.3. Link and Chains 599

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

600 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

4.3. Link and Chains 601

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

602 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.GroupNormalization

class chainer.links.GroupNormalization(groups, size=None, eps=1e-05, ini-
tial_gamma=None, initial_beta=None)

Group normalization layer on outputs of convolution functions.

This link implements a “group normalization” which divides the channels into groups and computes within each
group the mean and variance, then normalize by these statistics, scales and shifts them. Parameter initialization
will be deferred until the first forward data pass at which time the size will be determined.

Parameters

• groups (int) – The number of channel groups. This value must be a divisor of the number
of channels.

• size (int) – Size of input units. If None, parameter initialization will be deferred until
the first forward data pass at which time the size will be determined.

• eps (float) – Epsilon value for numerical stability of normalization.

• initial_gamma (Initializer) – Initializer for scaling parameter. If None, then the
vector is filled by 1. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is
set by it.

• initial_beta (Initializer) – Initializer for shifting parameter. If None, then the
vector is filled by 0. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is
set by it.

Variables

• groups (int) – The number of channel groups.

• gamma (Parameter) – Scaling parameter.

• beta (Parameter) – Shifting parameter.

• eps (float) – Epsilon value for numerical stability.

See: Group Normalization

4.3. Link and Chains 603

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1803.08494


Chainer Documentation, Release 6.5.0

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

604 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 605

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Apply group normalization to given input.

Parameters x (Variable) – Batch tensors. First dimension of this value must be the size of
minibatch and second dimension must be the number of channels. Moreover, this value must
have one or more following dimensions, such as height and width.

Returns Output of the group normalization.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

606 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

4.3. Link and Chains 607

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

608 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LayerNormalization

class chainer.links.LayerNormalization(size=None, eps=1e-06, initial_gamma=None, ini-
tial_beta=None)

Layer normalization layer on outputs of linear functions.

Warning: This feature is experimental. The interface can change in the future.

This link implements a “layer normalization” layer which normalizes the input units by statistics that are com-
puted along the second axis, scales and shifts them. Parameter initialization will be deferred until the first
forward data pass at which time the size will be determined.

Parameters

• size (int) – Size of input units. If None, parameter initialization will be deferred until
the first forward data pass at which time the size will be determined.

• eps (float) – Epsilon value for numerical stability of normalization.

4.3. Link and Chains 609

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• initial_gamma (Initializer) – Initializer for scaling vector. If None, then the
vector is filled by 1. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is
set by it.

• initial_beta (Initializer) – Initializer for shifting vector. If None, then the vec-
tor is filled by 0. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is set
by it.

Variables

• gamma (Parameter) – Scaling parameter.

• beta (Parameter) – Shifting parameter.

• eps (float) – Epsilon value for numerical stability.

See: Layer Normalization

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

610 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1607.06450
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

4.3. Link and Chains 611

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Apply layer normalization to given input.

Parameters x (Variable) – Batch vectors. Shape of this value must be (batch_size, unit_size),
e.g., the output of linear().

Returns Output of the layer normalization.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

612 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same

4.3. Link and Chains 613

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

614 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.BinaryHierarchicalSoftmax

class chainer.links.BinaryHierarchicalSoftmax(in_size, tree, dtype=None)
Hierarchical softmax layer over binary tree.

In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical
softmax uses product of sigmoid functions. It costs only 𝑂(log(𝑛)) time where 𝑛 is the vocabulary size in
average.

4.3. Link and Chains 615

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

At first a user needs to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When
a word 𝑥 is given, exactly one path from the root of the tree to the leaf of the word exists. Let path(𝑥) =
((𝑒1, 𝑏1), . . . , (𝑒𝑚, 𝑏𝑚)) be the path of 𝑥, where 𝑒𝑖 is an index of 𝑖-th internal node, and 𝑏𝑖 ∈ {−1, 1} indicates
direction to move at 𝑖-th internal node (-1 is left, and 1 is right). Then, the probability of 𝑥 is given as below:

𝑃 (𝑥) =
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝑃 (𝑏𝑖|𝑒𝑖)

=
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝜎(𝑏𝑖𝑥

⊤𝑤𝑒𝑖),

where 𝜎(·) is a sigmoid function, and 𝑤 is a weight matrix.

This function costs𝑂(log(𝑛)) time as an average length of paths is𝑂(log(𝑛)), and𝑂(𝑛) memory as the number
of internal nodes equals 𝑛− 1.

Parameters

• in_size (int) – Dimension of input vectors.

• tree – A binary tree made with tuples like ((1, 2), 3).

• dtype (numpy.dtype) – Type to use in computing.

Variables W (Variable) – Weight parameter matrix.

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

616 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

4.3. Link and Chains 617

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy


Chainer Documentation, Release 6.5.0

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

static create_huffman_tree(word_counts)
Makes a Huffman tree from a dictionary containing word counts.

This method creates a binary Huffman tree, that is required for BinaryHierarchicalSoftmax. For
example, {0: 8, 1: 5, 2: 6, 3: 4} is converted to ((3, 1), (2, 0)).

Parameters word_counts (dict of int key and int or float values) –
Dictionary representing counts of words.

Returns Binary Huffman tree with tuples and keys of word_coutns.

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, t)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input to the classifier at each node.

• t (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

618 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 619

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

620 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

4.3. Link and Chains 621



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.BlackOut

class chainer.links.BlackOut(in_size, counts, sample_size)
BlackOut loss layer.

See also:

black_out() for more detail.

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

Variables W (Parameter) – Weight parameter matrix.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

622 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

4.3. Link and Chains 623

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, t)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.

• t (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

624 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 625

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

626 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

sample_data = None

4.3. Link and Chains 627



Chainer Documentation, Release 6.5.0

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.CRF1d

class chainer.links.CRF1d(n_label, initial_cost=None)
Linear-chain conditional random field loss layer.

This link wraps the crf1d() function. It holds a transition cost matrix as a parameter.

Parameters

• n_label (int) – Number of labels.

• initial_cost (initializer) – Initializer to initialize the transition cost matrix. If this
attribute is not specified, the transition cost matrix is initialized with zeros.

See also:

crf1d() for more detail.

Variables cost (Variable) – Transition cost parameter.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

628 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

argmax(xs)
Computes a state that maximizes a joint probability.

Parameters xs (list of Variable) – Input vector for each label.

Returns A tuple of Variable representing each log-likelihood and a list representing the
argmax path.

Return type tuple

See also:

See crf1d_argmax() for more detail.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3. Link and Chains 629

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(xs, ys, reduce=’mean’)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

630 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 631

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

632 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 633



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.SimplifiedDropconnect

class chainer.links.SimplifiedDropconnect(in_size, out_size, ratio=0.5, nobias=False, ini-
tialW=None, initial_bias=None)

Fully-connected layer with simplified dropconnect regularization.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

• in_size (int) – Dimension of input vectors. If None, parameter initialization will be
deferred until the first forward data pass at which time the size will be determined.

• out_size (int) – Dimension of output vectors.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 2.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

See also:

simplified_dropconnect()

See also:

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013). Regularization of Neural Network using DropConnect.
International Conference on Machine Learning. URL

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

634 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://cs.nyu.edu/~wanli/dropc/


Chainer Documentation, Release 6.5.0

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.

4.3. Link and Chains 635

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, train=True, mask=None, use_batchwise_mask=True)
Applies the simplified dropconnect layer.

Parameters

636 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• x (chainer.Variable or N-dimensional array) – Batch of input vectors. Its first dimension
n is assumed to be the minibatch dimension.

• train (bool) – If True, executes simplified dropconnect. Otherwise, simplified drop-
connect link works as a linear unit.

• mask (None or chainer.Variable or N-dimensional array) – If None, randomized sim-
plified dropconnect mask is generated. Otherwise, The mask must be (n, M, N) or
(M, N) shaped array, and use_batchwise_mask is ignored. Main purpose of this option
is debugging. mask array will be used as a dropconnect mask.

• use_batchwise_mask (bool) – If True, dropped connections depend on each sam-
ple in mini-batch.

Returns Output of the simplified dropconnect layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

4.3. Link and Chains 637

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

638 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.3. Link and Chains 639



Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.PReLU

class chainer.links.PReLU(shape=(), init=0.25)
Parametric ReLU function as a link.

Parameters

• shape (tuple of ints) – Shape of the parameter array.

• init (float) – Initial parameter value.

See the paper for details: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification.

To try PReLU instead of ReLU, replace F.relu with individual PReLU links registered to the model. For
example, the model defined in the MNIST example can be rewritten as follows.

ReLU version (original):

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()

(continues on next page)

640 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://github.com/chainer/chainer/tree/master/examples/mnist/train_mnist.py


Chainer Documentation, Release 6.5.0

(continued from previous page)

with self.init_scope():
self.l1 = L.Linear(None, n_units)
self.l2 = L.Linear(None, n_units)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

PReLU version:

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.a1 = L.PReLU()
self.l2 = L.Linear(None, n_units)
self.a2 = L.PReLU()
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = self.a1(self.l1(x))
h2 = self.a2(self.l2(h1))
return self.l3(h2)

See also:

chainer.functions.prelu()

Variables W (Parameter) – Coefficient of parametric ReLU.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

4.3. Link and Chains 641

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

642 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the parametric ReLU activation function.

Parameters x (Variable) – Input variable.

Returns Output of the parametric ReLU function.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

4.3. Link and Chains 643

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

644 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

4.3. Link and Chains 645

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

646 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Swish

class chainer.links.Swish(beta_shape, beta_init=1.0)
Swish activation function as a link.

Parameters

• beta_shape (tuple of ints or None) – Shape of the parameter variable 𝛽. If
None, parameter initialization will be deferred until the first forward data pass at which
time the shape will be determined.

• beta_init (float) – Initial value of the parameter variable 𝛽.

See the paper for details: Searching for Activation Functions

To try Swish instead of ReLU, replace F.relu with individual Swish links registered to the model. For
example, the model defined in the MNIST example can be rewritten as follows.

ReLU version (original):

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.l2 = L.Linear(None, n_units)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

Swish version:

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.s1 = L.Swish(None)
self.l2 = L.Linear(None, n_units)
self.s2 = L.Swish(None)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = self.s1(self.l1(x))

(continues on next page)

4.3. Link and Chains 647

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1710.05941
https://github.com/chainer/chainer/tree/master/examples/mnist/train_mnist.py


Chainer Documentation, Release 6.5.0

(continued from previous page)

h2 = self.s2(self.l2(h1))
return self.l3(h2)

See also:

See chainer.functions.swish() for the definition of Swish activation function.

Variables beta (Parameter) – Parameter variable 𝛽.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

648 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

4.3. Link and Chains 649

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the Swish activation function.

Parameters x (Variable) – Input variable.

Returns Output of the Swish activation function.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

650 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

4.3. Link and Chains 651

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

652 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Maxout

class chainer.links.Maxout(in_size, out_size, pool_size, initialW=None, initial_bias=0)
Fully-connected maxout layer.

Let M, P and N be an input dimension, a pool size, and an output dimension, respectively. For an input vector 𝑥
of size M, it computes

𝑌𝑖 = max𝑗(𝑊𝑖𝑗·𝑥+ 𝑏𝑖𝑗).

Here 𝑊 is a weight tensor of shape (M, P, N), 𝑏 an optional bias vector of shape (M, P) and 𝑊𝑖𝑗· is a sub-
vector extracted from 𝑊 by fixing first and second dimensions to 𝑖 and 𝑗, respectively. Minibatch dimension is
omitted in the above equation.

As for the actual implementation, this chain has a Linear link with a (M * P, N) weight matrix and an
optional M * P dimensional bias vector.

4.3. Link and Chains 653

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimension of output vectors.

• pool_size (int) – Number of channels.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias is omitted.
When it is numpy.ndarray, its ndim should be 2.

Variables linear (Link) – The Linear link that performs affine transformation.

See also:

maxout()

See also:

Goodfellow, I., Warde-farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout Networks. In Pro-
ceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 1319-1327). URL

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

654 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://jmlr.org/proceedings/papers/v28/goodfellow13.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

4.3. Link and Chains 655

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the maxout layer.

Parameters x (Variable) – Batch of input vectors.

Returns Output of the maxout layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

656 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 657

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

658 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 659



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NegativeSampling

class chainer.links.NegativeSampling(in_size, counts, sample_size, power=0.75,
dtype=None)

Negative sampling loss layer.

This link wraps the negative_sampling() function. It holds the weight matrix as a parameter. It also
builds a sampler internally given a list of word counts.

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

• power (float) – Power factor 𝛼.

• dtype (numpy.dtype) – Type to use in computing.

See also:

negative_sampling() for more detail.

Variables W (Variable) – Weight parameter matrix.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

660 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

4.3. Link and Chains 661

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, t, reduce=’sum’, *, return_samples=False)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.

• t (Variable) – Batch of ground truth labels.

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

• return_samples (bool) – If True, the sample array is also returned. The sample array
is a (

Returns

If return_samples is False (default), loss value is returned.

Otherwise, a tuple of the loss value and the sample array is returned.

662 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Return type Variable or tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 663

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

664 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

4.3. Link and Chains 665



Chainer Documentation, Release 6.5.0

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.3 Machine learning models

chainer.links.Classifier A simple classifier model.

chainer.links.Classifier

class chainer.links.Classifier(predictor, lossfun=<function softmax_cross_entropy>, acc-
fun=<function accuracy>, label_key=-1)

A simple classifier model.

This is an example of chain that wraps another chain. It computes the loss and accuracy based on a given
input/label pair.

Parameters

• predictor (Link) – Predictor network.

• lossfun (callable) – Loss function. You can specify one of loss functions from built-
in loss functions, or your own loss function (see the example below). It should not be an loss
functions with parameters (i.e., Link instance). The function must accept two argument (an
output from predictor and its ground truth labels), and return a loss. Returned value must be
a Variable derived from the input Variable to perform backpropagation on the variable.

• accfun (callable) – Function that computes accuracy. You can specify one of eval-
uation functions from built-in evaluation functions, or your own evaluation function. The
signature of the function is the same as lossfun.

• label_key (int or str) – Key to specify label variable from arguments. When it is
int, a variable in positional arguments is used. And when it is str, a variable in keyword
arguments is used.

Variables

• predictor (Link) – Predictor network.

• lossfun (callable) – Loss function. See the description in the arguments for details.

• accfun (callable) – Function that computes accuracy. See the description in the argu-
ments for details.

• y (Variable) – Prediction for the last minibatch.

• loss (Variable) – Loss value for the last minibatch.

666 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• accuracy (Variable) – Accuracy for the last minibatch.

• compute_accuracy (bool) – If True, compute accuracy on the forward computation.
The default value is True.

Note: This link uses chainer.softmax_cross_entropy() with default arguments as a loss function
(specified by lossfun), if users do not explicitly change it. In particular, the loss function does not sup-
port double backpropagation. If you need second or higher order differentiation, you need to turn it on with
enable_double_backprop=True:

>>> import chainer.functions as F
>>> import chainer.links as L
>>>
>>> def lossfun(x, t):
... return F.softmax_cross_entropy(
... x, t, enable_double_backprop=True)
>>>
>>> predictor = L.Linear(10)
>>> model = L.Classifier(predictor, lossfun=lossfun)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

4.3. Link and Chains 667

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

668 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*args, **kwargs)
Computes the loss value for an input and label pair.

It also computes accuracy and stores it to the attribute.

Parameters

• args (list of ~chainer.Variable) – Input minibatch.

• kwargs (dict of ~chainer.Variable) – Input minibatch.

When label_key is int, the corresponding element in args is treated as ground truth labels. And
when it is str, the element in kwargs is used. The all elements of args and kwargs except the ground
truth labels are features. It feeds features to the predictor and compare the result with ground truth labels.

Note: We set None to the attributes y, loss and accuracy each time before running the predictor,
to avoid unnecessary memory consumption. Note that the variables set on those attributes hold the whole
computation graph when they are computed. The graph stores interim values on memory required for
back-propagation. We need to clear the attributes to free those values.

4.3. Link and Chains 669

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns Loss value.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

670 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

4.3. Link and Chains 671

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

compute_accuracy = True

device
Device instance.

672 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.4 Pre-trained models

Pre-trained models are mainly used to achieve a good performance with a small dataset, or extract a semantic feature
vector. Although CaffeFunction automatically loads a pre-trained model released as a caffemodel, the following
link models provide an interface for automatically converting caffemodels, and easily extracting semantic feature
vectors.

For example, to extract the feature vectors with VGG16Layers, which is a common pre-trained model in the field of
image recognition, users need to write the following few lines:

from chainer.links import VGG16Layers
from PIL import Image

model = VGG16Layers()
img = Image.open("path/to/image.jpg")
feature = model.extract([img], layers=["fc7"])["fc7"]

where fc7 denotes a layer before the last fully-connected layer. Unlike the usual links, these classes automatically
load all the parameters from the pre-trained models during initialization.

VGG Networks

chainer.links.VGG16Layers A pre-trained CNN model with 16 layers provided by
VGG team.

chainer.links.VGG19Layers A pre-trained CNN model with 19 layers provided by
VGG team.

chainer.links.model.vision.vgg.
prepare

Converts the given image to the numpy array for VGG
models.

4.3. Link and Chains 673

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

chainer.links.VGG16Layers

class chainer.links.VGG16Layers(pretrained_model=’auto’)
A pre-trained CNN model with 16 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another
chainer model, stores it on your local directory, and initializes all the parameters with it. This model would
be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a
different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify an-
other value as a environment variable. The converted chainer model is automatically used from
the second time. If the argument is specified as None, all the parameters are not initialized
by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.
initializers.Normal(scale=0.01).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

674 Chapter 4. API Reference

https://arxiv.org/abs/1409.1556
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized

4.3. Link and Chains 675

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’fc7’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

676 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

# model is an instance of VGGLayers (16 or 19 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract. If None, ‘prob’
will be used as layers.

Returns A dictionary in which the key contains the layer and the value contains the correspond-
ing feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

4.3. Link and Chains 677

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

678 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

4.3. Link and Chains 679

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

680 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.VGG19Layers

class chainer.links.VGG19Layers(pretrained_model=’auto’)
A pre-trained CNN model with 19 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another
chainer model, stores it on your local directory, and initializes all the parameters with it. This model would
be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a
different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify an-
other value as a environment variable. The converted chainer model is automatically used from
the second time. If the argument is specified as None, all the parameters are not initialized
by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.
initializers.Normal(scale=0.01).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

4.3. Link and Chains 681

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://arxiv.org/abs/1409.1556
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

682 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 683

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’fc7’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

# model is an instance of VGGLayers (16 or 19 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract. If None, ‘prob’
will be used as layers.

Returns A dictionary in which the key contains the layer and the value contains the correspond-
ing feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

684 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

4.3. Link and Chains 685

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

686 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

4.3. Link and Chains 687



Chainer Documentation, Release 6.5.0

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.vgg.prepare

chainer.links.model.vision.vgg.prepare(image, size=(224, 224))
Converts the given image to the numpy array for VGG models.

Note that you have to call this method before forward because the pre-trained vgg model requires to resize
the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

Note: ChainerCV contains implementation of VGG networks as well (i.e., chainercv.links.model.vgg.
VGG16). Unlike the Chainer’s implementation, the ChainerCV’s implementation assumes the color channel of the
input image to be ordered in RGB instead of BGR.

GoogLeNet

chainer.links.GoogLeNet A pre-trained GoogLeNet model provided by BVLC.
chainer.links.model.vision.googlenet.
prepare

Converts the given image to the numpy array for
GoogLeNet.

688 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://chainercv.readthedocs.io/en/latest/reference/links/vgg.html#chainercv.links.model.vgg.VGG16
https://chainercv.readthedocs.io/en/latest/reference/links/vgg.html#chainercv.links.model.vgg.VGG16


Chainer Documentation, Release 6.5.0

chainer.links.GoogLeNet

class chainer.links.GoogLeNet(pretrained_model=’auto’)
A pre-trained GoogLeNet model provided by BVLC.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want to
extract a semantic feature vector per image, or fine-tune the model on a different dataset.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

GoogLeNet, which is also called Inception-v1, is an architecture of convolutional neural network proposed in
2014. This model is relatively lightweight and requires small memory footprint during training compared with
modern architectures such as ResNet. Therefore, if you fine-tune your network based on a model pre-trained
by Imagenet and need to train it with large batch size, GoogLeNet may be useful. On the other hand, if you
just want an off-the-shelf classifier, we recommend that you use ResNet50 or other models since they are more
accurate than GoogLeNet.

The original model is provided here: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify
another value as a environment variable. The converted chainer model is automatically used
from the second time. If the argument is specified as None, all the parameters are not ini-
tialized by the pre-trained model, but the default initializer used in BVLC, i.e., chainer.
initializers.LeCunUniform(scale=1.0). Note that, in Caffe, when weight_filler
is specified as “xavier” type without variance_norm parameter, the weights are initialized by
Uniform(-s, s), where 𝑠 =

√︁
3

𝑓𝑎𝑛𝑖𝑛
and 𝑓𝑎𝑛𝑖𝑛 is the number of input units. This corresponds to

LeCunUniform in Chainer but not GlorotUniform.

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

4.3. Link and Chains 689

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

690 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

4.3. Link and Chains 691

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

# model is an instance of `GoogLeNet`
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

692 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 693

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

694 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

4.3. Link and Chains 695



Chainer Documentation, Release 6.5.0

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.googlenet.prepare

chainer.links.model.vision.googlenet.prepare(image, size=(224, 224))
Converts the given image to the numpy array for GoogLeNet.

Note that you have to call this method before forward because the pre-trained GoogLeNet model requires
to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before
calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

Residual Networks

chainer.links.model.vision.resnet.
ResNetLayers

A pre-trained CNN model provided by MSRA.

chainer.links.ResNet50Layers A pre-trained CNN model with 50 layers provided by
MSRA.

chainer.links.ResNet101Layers A pre-trained CNN model with 101 layers provided by
MSRA.

chainer.links.ResNet152Layers A pre-trained CNN model with 152 layers provided by
MSRA.

chainer.links.model.vision.resnet.
prepare

Converts the given image to a numpy array for ResNet.

696 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

chainer.links.model.vision.resnet.ResNetLayers

class chainer.links.model.vision.resnet.ResNetLayers(pretrained_model, n_layers,
downsample_fb=False)

A pre-trained CNN model provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and con-
verts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/
ResNet-{n-layers}-model.caffemodel, where $CHAINER_DATASET_ROOT
is set as $HOME/.chainer/dataset unless you specify another value by modifying
the environment variable and {n_layers} is replaced with the specified number of layers
given as the first argument to this constructor. Note that in this case the converted chainer
model is stored on the same directory and automatically used from the next time. If this ar-
gument is specified as None, all the parameters are not initialized by the pre-trained model,
but the default initializer used in the original paper, i.e., chainer.initializers.
HeNormal(scale=1.0).

• n_layers (int) – The number of layers of this model. It should be either 50, 101, or 152.

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If
this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 697

https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

698 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 699

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

# model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

700 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

4.3. Link and Chains 701

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

702 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

4.3. Link and Chains 703



Chainer Documentation, Release 6.5.0

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ResNet50Layers

class chainer.links.ResNet50Layers(pretrained_model=’auto’, downsample_fb=False)
A pre-trained CNN model with 50 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet50 has 25,557,096 trainable parameters, and it’s 58% and 43% fewer than ResNet101 and ResNet152,
respectively. On the other hand, the top-5 classification accuracy on ImageNet dataset drops only 0.7% and
1.1% from ResNet101 and ResNet152, respectively. Therefore, ResNet50 may have the best balance between
the accuracy and the model size. It would be basically just enough for many cases, but some advanced models
for object detection or semantic segmentation use deeper ones as their building blocks, so these deeper ResNets
are here for making reproduction work easier.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model seri-
alized as a .npz file. If this argument is specified as auto, it automatically loads
and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/
models/ResNet-50-model.caffemodel, where $CHAINER_DATASET_ROOT is
set as $HOME/.chainer/dataset unless you specify another value by modifying the
environment variable. Note that in this case the converted chainer model is stored on the
same directory and automatically used from the next time. If this argument is specified as

704 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

None, all the parameters are not initialized by the pre-trained model, but the default initial-
izer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.
0).

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If
this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

4.3. Link and Chains 705

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

706 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

# model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

4.3. Link and Chains 707

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

708 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

(continues on next page)

4.3. Link and Chains 709

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

710 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3. Link and Chains 711

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

chainer.links.ResNet101Layers

class chainer.links.ResNet101Layers(pretrained_model=’auto’, downsample_fb=False)
A pre-trained CNN model with 101 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet101 has 44,549,224 trainable parameters, and it’s 43% fewer than ResNet152 model, while the top-5
classification accuracy on ImageNet dataset drops 1.1% from ResNet152. For many cases, ResNet50 may have
the best balance between the accuracy and the model size.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and con-
verts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/
ResNet-101-model.caffemodel, where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value by modifying the envi-
ronment variable. Note that in this case the converted chainer model is stored on the same
directory and automatically used from the next time. If this argument is specified as None,
all the parameters are not initialized by the pre-trained model, but the default initializer used
in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If
this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

712 Chapter 4. API Reference

https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

4.3. Link and Chains 713

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

714 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

# model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

4.3. Link and Chains 715

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

716 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

4.3. Link and Chains 717

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

718 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ResNet152Layers

class chainer.links.ResNet152Layers(pretrained_model=’auto’, downsample_fb=False)
A pre-trained CNN model with 152 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet152 has 60,192,872 trainable parameters, and it’s the deepest ResNet model and it achieves the best
result on ImageNet classification task in ILSVRC 2015.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and con-
verts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/
ResNet-152-model.caffemodel, where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value by modifying the envi-
ronment variable. Note that in this case the converted chainer model is stored on the same
directory and automatically used from the next time. If this argument is specified as None,
all the parameters are not initialized by the pre-trained model, but the default initializer used
in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If

4.3. Link and Chains 719

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://github.com/KaimingHe/deep-residual-networks
http://image-net.org/challenges/LSVRC/2015/results#loc
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

720 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

4.3. Link and Chains 721

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy


Chainer Documentation, Release 6.5.0

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

# model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

722 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 723

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

724 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

4.3. Link and Chains 725

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.resnet.prepare

chainer.links.model.vision.resnet.prepare(image, size=(224, 224))
Converts the given image to a numpy array for ResNet.

Note that this method must be called before calling forward, because the pre-trained resnet model will resize
the given image, convert from RGB to BGR, subtract the mean, and permute the dimensions before calling.

Parameters

726 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

Note: ChainerCV contains implementation of ResNet as well (i.e., chainercv.links.model.resnet.
ResNet50, chainercv.links.model.resnet.ResNet101, chainercv.links.model.resnet.
ResNet152). Unlike the Chainer’s implementation, the ChainerCV’s implementation assumes the color channel
of the input image to be ordered in RGB instead of BGR.

ChainerCV models

Note: ChainerCV supports implementations of links that are useful for computer vision problems, such as object
detection, semantic segmentation, and instance segmentation. The documentation can be found in chainercv.
links. Here is a subset of models with pre-trained weights supported by ChainerCV:

• Detection

– chainercv.links.model.faster_rcnn.FasterRCNNVGG16

– chainercv.links.model.ssd.SSD300

– chainercv.links.model.ssd.SSD512

– chainercv.links.model.yolo.YOLOv2

– chainercv.links.model.yolo.YOLOv3

• Semantic Segmentation

– chainercv.links.model.segnet.SegNetBasic

– chainercv.experimental.links.model.pspnet.PSPNetResNet101

• Instance Segmentation

– chainercv.experimental.links.model.fcis.FCISResNet101

• Classification

– chainercv.links.model.resnet.ResNet101

– chainercv.links.model.resnet.ResNet152

– chainercv.links.model.resnet.ResNet50

– chainercv.links.model.senet.SEResNet101

– chainercv.links.model.senet.SEResNet152

– chainercv.links.model.senet.SEResNet50

– chainercv.links.model.senet.SEResNeXt101

– chainercv.links.model.senet.SEResNeXt50

– chainercv.links.model.vgg.VGG16

4.3. Link and Chains 727

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/general_chain.html#module-chainercv.links
https://chainercv.readthedocs.io/en/latest/reference/links/general_chain.html#module-chainercv.links
https://chainercv.readthedocs.io/en/latest/reference/links/faster_rcnn.html#chainercv.links.model.faster_rcnn.FasterRCNNVGG16
https://chainercv.readthedocs.io/en/latest/reference/links/ssd.html#chainercv.links.model.ssd.SSD300
https://chainercv.readthedocs.io/en/latest/reference/links/ssd.html#chainercv.links.model.ssd.SSD512
https://chainercv.readthedocs.io/en/latest/reference/links/yolo.html#chainercv.links.model.yolo.YOLOv2
https://chainercv.readthedocs.io/en/latest/reference/links/yolo.html#chainercv.links.model.yolo.YOLOv3
https://chainercv.readthedocs.io/en/latest/reference/links/segnet.html#chainercv.links.model.segnet.SegNetBasic
https://chainercv.readthedocs.io/en/latest/reference/experimental/pspnet.html#chainercv.experimental.links.model.pspnet.PSPNetResNet101
https://chainercv.readthedocs.io/en/latest/reference/experimental/fcis.html#chainercv.experimental.links.model.fcis.FCISResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNeXt101
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNeXt50
https://chainercv.readthedocs.io/en/latest/reference/links/vgg.html#chainercv.links.model.vgg.VGG16


Chainer Documentation, Release 6.5.0

Compatibility with other frameworks

chainer.links.TheanoFunction Theano function wrapper.
chainer.links.caffe.CaffeFunction Caffe emulator based on the model file of Caffe.

chainer.links.TheanoFunction

class chainer.links.TheanoFunction(inputs, outputs)
Theano function wrapper.

Warning: This feature is experimental. The interface can change in the future.

This function wraps Theano function as a chainer.Link. A user needs to make input Theano variables
and output Theano variables. This function automatically creates Theano function for forward calculation and
backward calculation from inputs and ouptuts. And then, it sends data in chainer.Variable to the function
and gets results from Theano.

Example

>>> import theano
>>> x = theano.tensor.fvector()
>>> y = theano.tensor.fvector()
>>> z = x + y
>>> w = x - y
>>> f = L.TheanoFunction(inputs=[x, y], outputs=[z, w])
>>> a = chainer.Variable(np.array([1, 2], dtype=np.float32))
>>> b = chainer.Variable(np.array([2, 3], dtype=np.float32))
>>> c, d = f(a, b)
>>> c.array
array([3., 5.], dtype=float32)
>>> d.array
array([-1., -1.], dtype=float32)

Note: The current implementation always copies cupy.ndarray to CPU.

Parameters

• inputs (tuple of theano.tensor.TensorVariable) – Input variables of Theano.
This function accepts the same number of Variables in forward computation.

• outputs (tuple of theano.tensor.TensorVariable) – Output variables of
Theano. The function returns the same number of Variables as outputs.

Methods

__call__(*args, **kwargs)
Call self as a function.

728 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

4.3. Link and Chains 729

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

730 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

forward(*args)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 731

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

732 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

4.3. Link and Chains 733



Chainer Documentation, Release 6.5.0

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.caffe.CaffeFunction

class chainer.links.caffe.CaffeFunction(model_path)
Caffe emulator based on the model file of Caffe.

Given a protocol buffers file of a Caffe model, this class loads and emulates it on Variable objects. It supports
the official reference models provided by BVLC.

Note: CaffeFunction ignores the following layers:

• Layers that CaffeFunction does not support (including data layers)

• Layers that have no top blobs

• Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)

Warning: It does not support full compatibility against Caffe. Some layers and configurations are not
implemented in Chainer yet, though the reference models provided by the BVLC team are supported except
data layers.

Example

Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference
CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply written as follows:

# Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

# Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
... # (Fill the minibatch here)

# Forward the pre-trained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])

734 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel


Chainer Documentation, Release 6.5.0

The result y contains the Variable corresponding to the fc8 blob. The computational graph is memorized as a
usual forward computation in Chainer, so we can run backprop through this pre-trained net.

Parameters model_path (str) – Path to the binary-proto model file of Caffe.

Variables forwards (dict) – A mapping from layer names to corresponding functions.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

4.3. Link and Chains 735

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

736 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, inputs, outputs, disable=())
Executes a sub-network of the network.

This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each
layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output
blobs as Variable objects.

Parameters

• inputs (dict) – A dictionary whose key-value pairs indicate initial correspondences
between blob names and Variable objects.

• outputs (Iterable) – A list of blob names whose corresponding Variable objects
are returned.

• disable (Iterable) – A list of layer names that will be ignored during the forward
computation.

Returns A tuple of output Variable objects corresponding to elements of the outputs argu-
ment.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

4.3. Link and Chains 737

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

738 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

4.3. Link and Chains 739

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

740 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.5 Link and Chain base classes

chainer.Link Building block of model definitions.
chainer.Chain Composable link with object-like interface.
chainer.ChainList Composable link with list-like interface.
chainer.Sequential Sequential model which has a single-stream forward

pass.

chainer.Link

class chainer.Link(**params)
Building block of model definitions.

Link is a building block of neural network models that support various features like handling parameters, defin-
ing network fragments, serialization, etc.

Link is the primitive structure for the model definitions. It supports management of parameter variables and
persistent values that should be incorporated to serialization.

Parameter is an instance of Parameter registered to a link. A Parameter object can be registered as a
parameter of the link by assigning it to an attribute within an initialization scope, which is a code surrounded
by a init_scope() context manager using the with statement.

Persistent values are arrays, scalars, or any other serializable values registered via
register_persistent() or add_persistent().

Note: Whereas arbitrary serializable objects can be registered as persistent values, it is strongly recommended
that you just register values that should be treated as results of learning. A typical example of persistent values
is ones computed during training and required for testing, e.g. running statistics for batch normalization.

Parameters and persistent values are referred by their names. They can be accessed as attributes of the links.
Link class itself manages the lists of names of parameters and persistent values to distinguish parameters and
persistent values from other attributes.

Link can be composed into more complex models. This composition feature is supported by child classes like
Chain and ChainList. One can create a chain by combining one or more links. See the documents for these
classes for details.

As noted above, Link supports the serialization protocol of the Serializer class. Note that only parameters
and persistent values are saved and loaded. Other attributes are considered as a part of user program (i.e. a
part of network definition). In order to construct a link from saved file, other attributes must be identically
reconstructed by user codes.

Example

4.3. Link and Chains 741

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

This is a simple example of custom link definition. Chainer itself also provides many links defined under the
links module. They might serve as examples, too.

Consider we want to define a simple primitive link that implements a fully-connected layer based on the
linear() function. Note that this function takes input units, a weight variable, and a bias variable as ar-
guments. Then, the fully-connected layer can be defined as follows:

import chainer
import chainer.functions as F
from chainer import initializers
import numpy as np

class LinearLayer(chainer.Link):

def __init__(self, n_in, n_out):
super(LinearLayer, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(
initializers.Normal(), (n_out, n_in))

self.b = chainer.Parameter(
initializers.Zero(), (n_out,))

def forward(self, x):
return F.linear(x, self.W, self.b)

This example shows that a user can define arbitrary parameters and use them in any methods. Links typically
implement the forward operator, although they can also provide other methods to implement the forward
propagation.

Parameters params – Names, shapes, and optional dtypes of initial parameters. The keywords are
used as the parameter names and the corresponding values consist either of the shape or a tuple
of shape and a dtype (shape, dtype). If only the shape is supplied, the default dtype will
be used.

Variables name (str) – Name of this link, given by the parent chain (if exists).

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

742 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

4.3. Link and Chains 743

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

744 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 745

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

746 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

4.3. Link and Chains 747



Chainer Documentation, Release 6.5.0

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.Chain

class chainer.Chain(**links)
Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural net models consist of many reusable
fragments, and each model itself might be embedded into a larger learnable system. Chain enables us to write a
neural net based on composition, without bothering about routine works like collecting parameters, serialization,
copying the structure with parameters shared, etc.

This class actually provides a way to compose one or more links into one structure. A chain can contain one or
more child links. Child link is a link registered to the chain with its own name. The child link is stored to an
attribute of the chain with the name. User can write a whole model or a fragment of neural nets as a child class
of Chain.

Each chain itself is also a link. Therefore, one can combine chains into higher-level chains. In this way, links
and chains construct a link hierarchy. Link hierarchy forms a tree structure, where each node is identified by the
path from the root. The path is represented by a string like a file path in UNIX, consisting of names of nodes on
the path, joined by slashes /.

A child link can be added just by assigning it to an attribute of the chain within init_scope().

The registered child link is saved and loaded on serialization and deserialization, and involved in the optimiza-
tion. The registered link is called a child. The child link is accessible via children() generator, which
returns a generator running through the children in lexical order.

On registration of a child link, its name attribute is also set (or overwritten if the link has already been registered
to another chain).

Example

This is a simple example of custom chain definition. Chainer itself also provides some chains defined under the
links module. They might serve as examples, too.

Consider we want to define a multi-layer perceptron consisting of two hidden layers with rectifiers as activation
functions. We can use the Linear link as a building block:

import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(MultiLayerPerceptron, self).__init__()
with self.init_scope():

self.layer1 = L.Linear(n_in, n_hidden)
self.layer2 = L.Linear(n_hidden, n_hidden)
self.layer3 = L.Linear(n_hidden, n_out)

(continues on next page)

748 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

(continued from previous page)

def forward(self, x):
# Forward propagation
h1 = F.relu(self.layer1(x))
h2 = F.relu(self.layer2(h1))
return self.layer3(h2)

Child links are registered via the assignment within a with self.init_scope(): block. The forward
propagation is often implemented as the forward operator as the above example, though it is not mandatory.

Parameters links – Child links. The keywords are used as their names. The names are also set to
the links.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

4.3. Link and Chains 749

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

750 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy


Chainer Documentation, Release 6.5.0

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

4.3. Link and Chains 751

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same

752 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

4.3. Link and Chains 753

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.ChainList

class chainer.ChainList(*links)
Composable link with list-like interface.

This is another example of compositional link. Unlike Chain, this class can be used like a list of child links.
Each child link is indexed by a non-negative integer, and it maintains the current number of registered child
links. The add_link() method inserts a new link at the end of the list. It is useful to write a chain with
arbitrary number of child links, e.g. an arbitrarily deep multi-layer perceptron.

754 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

This class inherits the methods index, count, append, reverse, extend, pop, remove from collec-
tions.abc.MutableSequence and can be accessed and assigned by index or slice.

Parameters links – Initial child links.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

4.3. Link and Chains 755

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

756 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

4.3. Link and Chains 757

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

(continues on next page)

758 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

4.3. Link and Chains 759

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

760 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.Sequential

class chainer.Sequential(*layers)
Sequential model which has a single-stream forward pass.

Warning: This feature is experimental. The interface can change in the future.

This class enables to construct a network which has sequential structure easily. While Chain and ChainList
can only take Link object as input to their constructor, this Sequential can take arbitrary number of any
callable objects for the forward pass computation. A Sequential calls the given callable objects sequentially
inside of the forward() method in the same order as the given arguments. Therefore, you do not need to
write the forward pass computation explicitly.

Example

The below example code shows how to use this class to construct a simple sequential network:

import chainer
import chainer.functions as F
import chainer.links as L
from chainer import Sequential

# Model definition without writing forward function
model = Sequential(

L.Linear(n_in, n_hidden),
F.relu,
L.Linear(n_hidden, n_hidden),
F.relu,
L.Linear(n_hidden, n_out)

)

# Compute the forward pass
y = model(x)

where x denotes a mini-batch of n_in-dimensional input vectors.

Furthermore, Sequential supports built-in list APIs, so you can concatenate Sequential objects to create
a longer Sequential model easily with the same ways as Python lists:

>>> from chainer import Sequential
>>> model_A = Sequential(L.Linear(10, 10), F.relu)
>>> model_B = Sequential(L.Linear(10, 10), F.sigmoid)
>>> model_C = model_A + model_B

To repeat a Sequential object multiple times, you can use repeat() method.

>>> model_D = model_A.repeat(3)

You can also add your own functions or any callable objects to a Sequential object:

4.3. Link and Chains 761

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

from chainer.links.model.vision.vgg import VGG16Layers

model = Sequential()
model.append(L.Linear(n_out, n_hidden))
model.append(F.relu)
model.append(lambda x: F.reshape(x, (1, 3, 224, 224)))
model.append(VGG16Layers())
model.append(lambda x: x['prob'])

y = model(x)

The above code example shows how to add some layers to the model using append() method and then add
a large network (VGG16Layers) and finally add a lambda function to extract the prob output.

You can check the structure of your model briefly using print as following:

>>> print(model_C)
Sequential(
(0): Linear(in_size=10, out_size=10, nobias=False),
(1): <function relu at 0x...>,
(2): Linear(in_size=10, out_size=10, nobias=False),
(3): <function sigmoid at 0x...>,

)

Note: Note that a Sequential link which has at least one lambda function as its member cannot be pickled.
So, please use partial method from functools package instead:

from functools import partial

# This is not pickable
model = Sequential(

L.Convolution2D(None, 64, 3, 1, 1),
lambda x: F.max_pooling_2d(x, 2)

)

# This is pickable
model = Sequential(

L.Convolution2D(None, 64, 3, 1, 1),
partial(F.max_pooling_2d, ksize=2)

)

Parameters layers – The layers which are called in its order. Each component should be a
callable object including Link object and functions defined under the chainer.functions,
e.g., relu(), etc.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(i)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

762 Chapter 4. API Reference

https://docs.python.org/3/library/functools.html#module-functools
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns The index-th child link.

Return type Link

__setitem__(i, layer)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

4.3. Link and Chains 763

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

append(layer)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_by_layer_type(type_name)
Count the number of layers by layer type.

This method counts the number of layers which have the name given by the argument type_name. For
example, if you want to know the number of Linear layers included in this model, type_name should
be Linear. If you want to know the number of Function classes or user-defined functions which have
a specific name, type_name should be the function name, e.g., relu or reshape, etc.

Parameters type_name (str) – The class or function name of a layer you want to enumerate.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

764 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(sequential)
S.extend(iterable) – extend sequence by appending elements from the iterable

flatten()
Flatten nested Sequential links.

This method flattens all the nested Sequential links inside this Sequential link.

Returns A flattened Sequential object.

Example

>>> import chainer
>>> import chainer.functions as F
>>> import chainer.links as L
>>> a = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> b = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> a.append(b)
>>> print(a) # Without flatten
0 Linear W(None) b(10,)
1 relu
2 Sequential which has 2 layers
>>> print(a.flatten()) # With flatten
0 Linear W(None) b(10,)
1 relu
2 Linear W(None) b(10,)
3 relu

forward(*x)
Forward pass computation.

This method performs the forward pass computation by giving the input variable x to the layers registered
in the constructor in the same order as the order in which the arguments are given to the constructor.

It should be noted that the input variable is given directly to the first layer and all intermediate outputs
generated during the forward pass are also directly fed to the next layer. Therefore, the number of outputs
at a layer should be the same as the number of inputs at the next layer.

Parameters x – Input variables.

Returns The output of the final layer in the given layers.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

4.3. Link and Chains 765



Chainer Documentation, Release 6.5.0

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(i, layer)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

766 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

pop([index ])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(layer)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

remove_by_layer_type(type_name)
Remove layers by layer type.

This method removes layers from the Sequential object by the layer’s class name or function name.
If you want to remove a Link, the argument type_name should be its class name, e.g., Linear
or Convolution2D, etc. If you want to remove a Function class or any other callable objects,
type_name should be the function name, e.g., relu or reshape, etc.

Parameters type_name (str) – The name of a layer you want to remove.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

4.3. Link and Chains 767

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

768 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

__add__(other)

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.6 Link hooks

Chainer provides a link-hook mechanism that enriches the behavior of Link.

chainer.link_hooks.
SpectralNormalization

Spectral Normalization link hook implementation.

chainer.link_hooks.TimerHook Link hook for measuring elapsed time of Link.
forward().

4.3. Link and Chains 769

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

chainer.link_hooks.SpectralNormalization

class chainer.link_hooks.SpectralNormalization(n_power_iteration=1, eps=1e-06,
use_gamma=False, factor=None,
weight_name=’W’, name=None)

Spectral Normalization link hook implementation.

This hook normalizes a weight using max singular value and this value is computed via power iteration
method. Currently, this hook is supposed to be added to chainer.links.Linear, chainer.links.
EmbedID, chainer.links.Convolution2D, chainer.links.ConvolutionND, chainer.
links.Deconvolution2D, and chainer.links.DeconvolutionND. However, you can use this to
other links like RNNs by specifying weight_name. It is highly recommended to add this hook before opti-
mizer setup because this hook add a scaling parameter gamma if use_gamma is True. Otherwise, the registered
gamma will not be updated.

W̄ =

W

𝜎(W)

, where 𝜎(W) :=

max
h:h̸=0

‖Wh‖2
‖h‖2

= max
‖h‖2≤1

‖Wh‖2

See: T. Miyato et. al., Spectral Normalization for Generative Adversarial Networks

Parameters

• n_power_iteration (int) – Number of power iteration. The default value is 1.

• eps (float) – Numerical stability in norm calculation. The default value is 1e-6 for the
compatibility with mixed precision training. The value used in the author’s implementation
is 1e-12.

• use_gamma (bool) – If True, weight scaling parameter gamma which is initialized by
initial weight’s max singular value is introduced.

• factor (float, None) – Scaling parameter to divide maximum singular value. The
default value is 1.0.

• weight_name (str) – Link’s weight name to apply this hook. The default value is 'W'.

• name (str or None) – Name of this hook. The default value is
'SpectralNormalization'.

Variables

• vector_name (str) – Name of the approximate first left singular vector registered in the
target link. the target link.

• axis (int) – Axis of weight represents the number of output feature maps or output units
(out_channels and out_size, respectively).

Example

There are almost the same but 2 ways to apply spectral normalization (SN) hook to links.

1. Initialize link and SN separately. This makes it easy to handle buffer and parameter of links registered by SN
hook.

770 Chapter 4. API Reference

https://arxiv.org/abs/1802.05957
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

>>> l = L.Convolution2D(3, 5, 3)
>>> hook = chainer.link_hooks.SpectralNormalization()
>>> _ = l.add_hook(hook)
>>> # Check the shape of the first left singular vector.
>>> getattr(l, hook.vector_name).shape
(5,)
>>> # Delete SN hook from this link.
>>> l.delete_hook(hook.name)

2. Initialize both link and SN hook at one time. This makes it easy to define your original Chain.

>>> # SN hook handles lazy initialization!
>>> layer = L.Convolution2D(
... 5, 3, stride=1, pad=1).add_hook(
... chainer.link_hooks.SpectralNormalization())

Methods

__enter__()

__exit__()

added(link)
Callback function invoked when the link hook is registered

Parameters link (Link) – Link object to which the link hook is registered. None if the link
hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters link (Link) – Link object to which the link hook is unregistered. None if the
link hook had been registered globally.

forward_postprocess(cb_args)
Callback function invoked after a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

• out Return value of the forward method.

forward_preprocess(cb_args)
Callback function invoked before a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

4.3. Link and Chains 771

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

normalize_weight(link)
Normalize target weight before every single forward computation.

reshape_W(W)
Reshape & transpose weight into 2D if necessary.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'SpectralNormalization'

chainer.link_hooks.TimerHook

class chainer.link_hooks.TimerHook
Link hook for measuring elapsed time of Link.forward().

Example

Code example:

from chainer.link_hooks import TimerHook
hook = TimerHook()
with hook:

trainer.run()
hook.print_report()

Output example:

LinkName ElapsedTime Occurrence
Linear 41.42sec 2100

MLP 42.09sec 700
Classifier 42.39sec 700

where LinkName is the name of link that calls the hook, and ElapsedTime is the elapsed time the link consumed,
and Occurrence is the number of calls.

Warning: Call graph of links are hierarchical. That means reported elapsed times may be overlapping with
each other and the sum may exceed the total time.

772 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Variables call_history – List of measurement results. It consists of pairs of the name of the
link that calls this hook and the elapsed time the forward() method of link consumes.

Methods

__enter__()

__exit__(*_)

added(link)
Callback function invoked when the link hook is registered

Parameters link (Link) – Link object to which the link hook is registered. None if the link
hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters link (Link) – Link object to which the link hook is unregistered. None if the
link hook had been registered globally.

forward_postprocess(args)
Callback function invoked after a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

• out Return value of the forward method.

forward_preprocess(args)
Callback function invoked before a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

print_report(unit=’auto’, file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Prints a summary report of time profiling in links.

Parameters unit (str) – Supplementary units used for computational times. sec, ms, us, ns,
auto‘(default) and ‘auto_foreach are supported. If auto, units of times are aligned to the
largest, and if auto_foreach, units of times are adjusted for each element.

summary()
Returns a summary of time profiling in links.

Returns A summarized dictionary whose keys are link names and values are dictionaries of
elapsed_time and occurrence.

total_time()
Returns total elapsed time in seconds.

4.3. Link and Chains 773

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'TimerHook'

table = {'ms': 1000, 'ns': 1000000000, 'sec': 1, 'us': 1000000}

You can also implement your own link-hook to inject arbitrary code before/after the forward propagation.

chainer.LinkHook Base class of hooks for links.

chainer.LinkHook

class chainer.LinkHook
Base class of hooks for links.

LinkHook is a callback object that is registered to a Link. Registered link hooks are invoked before and after
calling Link.forward() method of each link.

Link hooks that derive from LinkHook may override the following method:

• added()

• deleted()

• forward_preprocess()

• forward_postprocess()

By default, these methods do nothing.

Specifically, when the __call__() method of some link is invoked, forward_preprocess() (resp.
forward_postprocess()) of all link hooks registered to this link are called before (resp. after) Link.
forward() method of the link.

There are two ways to register LinkHook objects to Link objects.

The first one is to use with statement. Link hooks hooked in this way are registered to all links within with
statement and are unregistered at the end of with statement.

Example

774 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

The following code is a simple example in which we measure the elapsed time of a part of forward propagation
procedure with TimerHook, which is a subclass of LinkHook.

>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l = L.Linear(10, 10)
... def forward(self, x1):
... return F.exp(self.l(x1))
>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.link_hooks.TimerHook() as m:
... _ = model1(x)
... y = model2(x)
>>> model3 = Model()
>>> z = model3(y)
>>> print('Total time : {}'.format(m.total_time()))
...
Total time : ...

In this example, we measure the elapsed times for each forward propagation of all functions in model1 and
model2. Note that model3 is not a target measurement as TimerHook is unregistered before forward prop-
agation of model3.

Note: Chainer stores the dictionary of registered link hooks as a thread local object. So, link hooks registered
are different depending on threads.

The other one is to register directly to a Link object by calling its add_hook()method. Link hooks registered
in this way can be removed by delete_hook() method. Contrary to former registration method, link hooks
are registered only to the link which add_hook() is called.

Parameters name (str) – Name of this link hook.

Methods

__enter__()

__exit__(*_)

added(link)
Callback function invoked when the link hook is registered

Parameters link (Link) – Link object to which the link hook is registered. None if the link
hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters link (Link) – Link object to which the link hook is unregistered. None if the
link hook had been registered globally.

forward_postprocess(args)
Callback function invoked after a forward call of a link.

Parameters args – Callback data. It has the following attributes:

4.3. Link and Chains 775

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

• out Return value of the forward method.

forward_preprocess(args)
Callback function invoked before a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'LinkHook'

4.4 Probability Distributions

Chainer provides many Distribution implementations in the chainer.distributions package.

4.4.1 Distributions

chainer.distributions.Bernoulli Bernoulli Distribution.
chainer.distributions.Beta Beta Distribution.
chainer.distributions.Categorical Categorical Distribution.
chainer.distributions.Cauchy Cauchy Distribution.
chainer.distributions.Chisquare Chi-Square Distribution.
chainer.distributions.Dirichlet Dirichlet Distribution.

Continued on next page

776 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

Table 26 – continued from previous page
chainer.distributions.Exponential Exponential Distribution.
chainer.distributions.Gamma Gamma Distribution.
chainer.distributions.Geometric Geometric Distribution.
chainer.distributions.Gumbel Gumbel Distribution.
chainer.distributions.Independent Independent distribution.
chainer.distributions.Laplace Laplace Distribution.
chainer.distributions.LogNormal Logatithm Normal Distribution.
chainer.distributions.
MultivariateNormal

MultivariateNormal Distribution.

chainer.distributions.Normal Normal Distribution.
chainer.distributions.
OneHotCategorical

OneHotCategorical Distribution.

chainer.distributions.Pareto Pareto Distribution.
chainer.distributions.Poisson Poisson Distribution.
chainer.distributions.Uniform Uniform Distribution.

chainer.distributions.Bernoulli

class chainer.distributions.Bernoulli(p=None, logit=None, binary_check=False)
Bernoulli Distribution.

The probability mass function of the distribution is expressed as

𝑃 (𝑥 = 1; 𝑝) = 𝑝

𝑃 (𝑥 = 0; 𝑝) = 1− 𝑝

Parameters

• p (Variable or N-dimensional array) – Parameter of distribution representing 𝑝. Either p
or logit (not both) must have a value.

• logit (Variable or N-dimensional array) – distribution representing log{𝑝/(1 − 𝑝)}.
Either p or logit (not both) must have a value.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

4.4. Probability Distributions 777



Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

778 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

logit

mean

4.4. Probability Distributions 779

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Beta

class chainer.distributions.Beta(a, b)
Beta Distribution.

The probability density function of the distribution is expressed as

𝑓(𝑥) =
𝑥𝛼−1(1− 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
,

for 0 < 𝑥 < 1, 𝛼 > 0, 𝛽 > 0.

Parameters

• a (Variable or N-dimensional array) – Parameter of distribution representing 𝛼.

• b (Variable or N-dimensional array) – Parameter of distribution representing 𝛽.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

780 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

4.4. Probability Distributions 781

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

a

b

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

782 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Categorical

class chainer.distributions.Categorical(p=None, **kwargs)
Categorical Distribution.

The probability mass function of the distribution is expressed as

𝑃 (𝑥 = 𝑖; 𝑝) = 𝑝𝑖

Parameters

• p (Variable or N-dimensional array) – Parameter of distribution.

• logit (Variable or N-dimensional array) – Parameter of distribution representing
log{𝑝}+ 𝐶. Either p or logit (not both) must have a value.

4.4. Probability Distributions 783

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

784 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

4.4. Probability Distributions 785

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

log_p

mean
Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

786 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Cauchy

class chainer.distributions.Cauchy(loc, scale)
Cauchy Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝑥0, 𝛾) =
1

𝜋

𝛾

(𝑥− 𝑥0)2 + 𝛾2

Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝑥0.

• scale (Variable or N-dimensional array) – Parameter of distribution representing the
scale 𝛾.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

4.4. Probability Distributions 787

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

788 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev
Returns the standard deviation of the distribution.

4.4. Probability Distributions 789

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Chisquare

class chainer.distributions.Chisquare(k)
Chi-Square Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥; 𝑘) =
1

2𝑘/2Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2

Parameters k (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

790 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

4.4. Probability Distributions 791

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

k

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

792 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Dirichlet

class chainer.distributions.Dirichlet(alpha)
Dirichlet Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥) =
Γ(
∑︀𝐾

𝑖=1 𝛼𝑖)∏︀𝐾
𝑖=1 Γ(𝛼𝑖)

𝐾∏︁
𝑖=1

𝑥𝑖
𝛼𝑖−1

Parameters alpha (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 793

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

794 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

alpha

alpha0

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

4.4. Probability Distributions 795

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Exponential

class chainer.distributions.Exponential(lam)
Exponential Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜆) = 𝜆𝑒−𝜆𝑥

Parameters lam (Variable or N-dimensional array) – Parameter of distribution 𝜆.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

796 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

4.4. Probability Distributions 797

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

lam

mean

798 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Gamma

class chainer.distributions.Gamma(k, theta)
Gamma Distribution.

Parameters

• k (Variable or N-dimensional array) – Parameter of distribution.

• theta (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 799

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

800 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

4.4. Probability Distributions 801

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

k

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

theta

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Geometric

class chainer.distributions.Geometric(p)
Geometric Distribution.

The probability mass function of the distribution is expressed as

𝑃𝑟(𝑥 = 𝑘) = 𝑝(1− 𝑝)𝑘−1, 𝑓𝑜𝑟𝑘 = 1, 2, 3, ...,

Parameters p (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

802 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

4.4. Probability Distributions 803



Chainer Documentation, Release 6.5.0

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

804 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Gumbel

class chainer.distributions.Gumbel(loc, scale)
Gumbel Distribution.

The probability density function of the distribution is expressed as

𝑓(𝑥) =
1

𝜂
exp

{︂
−𝑥− 𝜇

𝜂

}︂
exp

[︂
− exp

{︂
−𝑥− 𝜇

𝜂

}︂]︂
,

Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution 𝜇.

• scale (Variable or N-dimensional array) – Parameter of distribution 𝜂.

4.4. Probability Distributions 805

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

806 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

4.4. Probability Distributions 807

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Independent

class chainer.distributions.Independent(distribution, reinterpreted_batch_ndims=None)
Independent distribution.

Parameters

808 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

• distribution (Distribution) – The base distribution instance to transform.

• reinterpreted_batch_ndims (int) – Integer number of rightmost batch dims
which will be regarded as event dims. When None all but the first batch axis (batch axis 0)
will be transferred to event dimensions.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
The inverse cumulative distribution function for multivariate variable.

Cumulative distribution function for multivariate variable is not invertible. This function always raises
RuntimeError.

Parameters x (Variable or N-dimensional array) – Data points in the codomain of the dis-
tribution

Raises RuntimeError –

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 809

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError


Chainer Documentation, Release 6.5.0

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

810 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
The covariance of the independent distribution.

By definition, the covariance of the new distribution becomes block diagonal matrix. Let Σx be the co-
variance matrix of the original random variable x ∈ R𝑑, and x(1),x(2), · · ·x(𝑚) be the 𝑚 i.i.d. random
variables, new covariance matrix Σy of y = [x(1),x(2), · · · ,x(𝑚)] ∈ R𝑚𝑑 can be written as⎡⎢⎣ Σx1 0

. . .
0 Σx𝑚

⎤⎥⎦ .
Note that this relationship holds only if the covariance matrix of the original distribution is given analyti-
cally.

Returns The covariance of the distribution.

Return type Variable

distribution

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean
Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

reinterpreted_batch_ndims

4.4. Probability Distributions 811

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Laplace

class chainer.distributions.Laplace(loc, scale)
Laplace Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝑏) =
1

2𝑏
exp

(︂
−|𝑥− 𝜇|

𝑏

)︂
Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝜇.

• scale (Variable or N-dimensional array) – Parameter of distribution representing the
scale 𝑏.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

812 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

4.4. Probability Distributions 813

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

814 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

loc

mean

mode

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.LogNormal

class chainer.distributions.LogNormal(mu, sigma)
Logatithm Normal Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝜎) =
1√

2𝜋𝜎2𝑥
exp

(︂
− (log 𝑥− 𝜇)2

2𝜎2

)︂
Parameters

• mu (Variable or N-dimensional array) – Parameter of distribution 𝜇.

• sigma (Variable or N-dimensional array) – Parameter of distribution 𝜎.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 815

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

816 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

4.4. Probability Distributions 817

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

mu

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

sigma

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.MultivariateNormal

class chainer.distributions.MultivariateNormal(loc, **kwargs)
MultivariateNormal Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝑉 ) =
1√︀

det(2𝜋𝑉 )
exp

(︂
−1

2
(𝑥− 𝜇)𝑉 −1(𝑥− 𝜇)

)︂
Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝜇.

• scale_tril (Variable or N-dimensional array) – Parameter of distribution represent-
ing the scale 𝐿 such that 𝑉 = 𝐿𝐿𝑇 .

818 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Methods

__copy__()

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

4.4. Probability Distributions 819



Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

820 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

d

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale_tril

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.4. Probability Distributions 821

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

chainer.distributions.Normal

class chainer.distributions.Normal(loc, scale=None, **kwargs)
Normal Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝜎) =
1√

2𝜋𝜎2
exp

(︂
− (𝑥− 𝜇)2

2𝜎2

)︂
Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝜇. This is the mean parameter.

• scale (Variable or N-dimensional array) – Parameter of distribution representing the
scale 𝜎. Either scale or log_scale (not both) must have a value.

• log_scale (Variable or N-dimensional array) – Parameter of distribution representing
the scale log(𝜎). Either scale or log_scale (not both) must have a value.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

822 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

4.4. Probability Distributions 823

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

log_scale

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev

support
Returns the support of the distribution.

824 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.OneHotCategorical

class chainer.distributions.OneHotCategorical(p)
OneHotCategorical Distribution.

Parameters p (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

4.4. Probability Distributions 825

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

826 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

log_p

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

4.4. Probability Distributions 827

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Pareto

class chainer.distributions.Pareto(scale, alpha)
Pareto Distribution.

𝑓(𝑥) = 𝛼𝑥𝛼𝑚(𝑥)−(𝛼+1),

Parameters

• scale (Variable or N-dimensional array) – Parameter of distribution 𝑥𝑚.

• alpha (Variable or N-dimensional array) – Parameter of distribution 𝛼.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

828 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 829

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

alpha

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

830 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Poisson

class chainer.distributions.Poisson(lam)
Poisson Distribution.

The probability mass function of the distribution is expressed as

𝑃 (𝑥;𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!

Parameters lam (Variable or N-dimensional array) – Parameter of distribution. 𝜆

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

4.4. Probability Distributions 831

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

832 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

lam

mean

mode
Returns the mode of the distribution.

4.4. Probability Distributions 833

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Uniform

class chainer.distributions.Uniform(**kwargs)
Uniform Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥; 𝑙, ℎ) =

{︃
1

ℎ−𝑙 if 𝑙 ≤ 𝑥 ≤ ℎ
0 otherwise

Parameters

• low (Variable or N-dimensional array) – Parameter of distribution representing the
lower bound 𝑙.

• high (Variable or N-dimensional array) – Parameter of distribution representing the
higher bound ℎ.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

834 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

4.4. Probability Distributions 835



Chainer Documentation, Release 6.5.0

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

836 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

high

loc

low

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.4.2 Functionals of distribution

chainer.cross_entropy Computes Cross entropy.
chainer.kl_divergence Computes Kullback-Leibler divergence.
chainer.register_kl Decorator to register KL divergence function.

chainer.cross_entropy

chainer.cross_entropy(dist1, dist2)
Computes Cross entropy.

For two continuous distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐻(𝑝, 𝑞) = −
∫︁
𝑝(𝑥) log 𝑞(𝑥)𝑑𝑥

4.4. Probability Distributions 837

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

For two discrete distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐻(𝑝, 𝑞) = −
∑︁
𝑥

𝑝(𝑥) log 𝑞(𝑥)

This function call kl_divergence() and entropy() of dist1. Therefore, it is necessary to register KL
divergence function with register_kl() decoartor and define entropy() in dist1.

Parameters

• dist1 (Distribution) – Distribution to calculate cross entropy 𝑝. This is the first (left)
operand of the cross entropy.

• dist2 (Distribution) – Distribution to calculate cross entropy 𝑞. This is the second
(right) operand of the cross entropy.

Returns Output variable representing cross entropy 𝐻(𝑝, 𝑞).

Return type Variable

chainer.kl_divergence

chainer.kl_divergence(dist1, dist2)
Computes Kullback-Leibler divergence.

For two continuous distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐷𝐾𝐿(𝑝||𝑞) =

∫︁
𝑝(𝑥) log

𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

For two discrete distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐷𝐾𝐿(𝑝||𝑞) =
∑︁
𝑥

𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)

Parameters

• dist1 (Distribution) – Distribution to calculate KL divergence 𝑝. This is the first
(left) operand of the KL divergence.

• dist2 (Distribution) – Distribution to calculate KL divergence 𝑞. This is the second
(right) operand of the KL divergence.

Returns Output variable representing kl divergence 𝐷𝐾𝐿(𝑝||𝑞).

Return type Variable

Using register_kl(), we can define behavior of kl_divergence() for any two distributions.

chainer.register_kl

chainer.register_kl(Dist1, Dist2)
Decorator to register KL divergence function.

This decorator registers a function which computes Kullback-Leibler divergence. This function will be called
by kl_divergence() based on the argument types.

Parameters

• Dist1 (type) – type of a class inherit from Distribution to calculate KL divergence.

• Dist2 (type) – type of a class inherit from Distribution to calculate KL divergence.

838 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

The decorated functoion takes an instance of Dist1 and Dist2 and returns KL divergence value.

Example

This is a simple example to register KL divergence. A function to calculate a KL divergence value between an
instance of Dist1 and an instance of Dist2 is registered.

from chainer import distributions
@distributions.register_kl(Dist1, Dist2)
def _kl_dist1_dist2(dist1, dist2):

return KL

4.4.3 Base classes

chainer.Distribution Interface of Distribution

chainer.Distribution

class chainer.Distribution
Interface of Distribution

Distribution is a bass class for dealing with probability distributions.

This class provides the following capabilities.

1. Sampling random points.

2. Evaluating a probability-related function at a given realization value. (e.g., probability density function,
probability mass function)

3. Obtaining properties of distributions. (e.g., mean, variance)

Note that every method and property that computes them from chainer.Variable can basically be differ-
entiated.

In this class, sampled random points and realization values given in probability-related function is called sample.
Sample consists of batches, and each batch consists of independent events. Each event consists of values, and
each value in an event cannot be sampled independently in general. Each event in a batch is independent while it
is not sampled from an identical distribution. And each batch in sample is sampled from an identical distribution.

Each part of the sample-batch-event hierarchy has its own shape, which is called sample_shape,
batch_shape, and event_shape, respectively.

On initialization, it takes distribution-specific parameters as inputs. batch_shape and event_shape is
decided by the shape of the parameter when generating an instance of a class.

Example

The following code is an example of sample-batch-event hierarchy on using MultivariateNormal distri-
bution. This makes 2d normal distributions. dist consists of 12(4 * 3) independent 2d normal distributions.
And on initialization, batch_shape and event_shape is decided.

>>> import chainer
>>> import chainer.distributions as D
>>> import numpy as np

(continues on next page)

4.4. Probability Distributions 839



Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> d = 2
>>> shape = (4, 3)
>>> loc = np.random.normal(
... size=shape + (d,)).astype(np.float32)
>>> cov = np.random.normal(size=shape + (d, d)).astype(np.float32)
>>> cov = np.matmul(cov, np.rollaxis(cov, -1, -2))
>>> l = np.linalg.cholesky(cov)
>>> dist = D.MultivariateNormal(loc, scale_tril=l)
>>> dist.event_shape
(2,)
>>> dist.batch_shape
(4, 3)
>>> sample = dist.sample(sample_shape=(6, 5))
>>> sample.shape
(6, 5, 4, 3, 2)

Every probability-related function takes realization value whose shape is the concatenation of sample_shape,
batch_shape, and event_shape and returns an evaluated value whose shape is the concatenation of
sample_shape, and batch_shape.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

840 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

4.4. Probability Distributions 841

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean
Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

842 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.5 Optimizers

chainer.optimizers.AdaDelta Zeiler’s ADADELTA.
chainer.optimizers.AdaGrad AdaGrad optimizer.
chainer.optimizers.Adam Adam optimizer.
chainer.optimizers.
CorrectedMomentumSGD

Momentum SGD optimizer.

chainer.optimizers.MomentumSGD Momentum SGD optimizer.
chainer.optimizers.NesterovAG Nesterov’s Accelerated Gradient.
chainer.optimizers.MSVAG M-SVAG optimizer.
chainer.optimizers.RMSprop RMSprop optimizer.
chainer.optimizers.RMSpropGraves Alex Graves’s RMSprop.
chainer.optimizers.SGD Vanilla Stochastic Gradient Descent.
chainer.optimizers.SMORMS3 Simon Funk’s SMORMS3.

4.5.1 chainer.optimizers.AdaDelta

class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)
Zeiler’s ADADELTA.

See: http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

Parameters

• rho (float) – Exponential decay rate of the first and second order moments.

• eps (float) – Small value for the numerical stability.

4.5. Optimizers 843

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

844 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

4.5. Optimizers 845

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

rho
Alias to self.hyperparam.rho

t = 0

target = None

use_auto_new_epoch = False

4.5.2 chainer.optimizers.AdaGrad

class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)
AdaGrad optimizer.

See: http://jmlr.org/papers/v12/duchi11a.html

Parameters

• lr (float) – Learning rate.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

846 Chapter 4. API Reference

http://jmlr.org/papers/v12/duchi11a.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

4.5. Optimizers 847

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

848 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__ge__()
Return self>=value.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

4.5.3 chainer.optimizers.Adam

class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08, eta=1.0,
weight_decay_rate=0, amsgrad=False, adabound=False, fi-
nal_lr=0.1, gamma=0.001)

Adam optimizer.

See: Adam: A Method for Stochastic Optimization

Modified for proper weight decay (also called AdamW). AdamW introduces the additional parameters eta and
weight_decay_rate, which can be used to properly scale the learning rate, and decouple the weight decay
rate from alpha, as shown in the below paper.

Note that with the default values eta = 1 and weight_decay_rate = 0, this implementation is identical
to the standard Adam method.

See: Fixing Weight Decay Regularization in Adam

A flag amsgrad to use the AMSGrad variant of Adam from the paper: On the Convergence of Adam and
Beyond

A flag adabound to use the AdaBound variant of Adam from the paper: Adaptive Gradient Methods with
Dynamic Bound of Learning Rate

Parameters

• alpha (float) – Coefficient of learning rate.

• beta1 (float) – Exponential decay rate of the first order moment.

• beta2 (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

• eta (float) – Schedule multiplier, can be used for warm restarts.

• weight_decay_rate (float) – Weight decay rate.

• amsgrad (bool) – Whether to use AMSGrad variant of Adam.

• adabound (bool) – Whether to use the AdaBound variant of Adam.

• final_lr (float) – Final (SGD) learning rate in AdaBound.

• gamma (float) – Convergence speed of the bound functions in AdaBound.

4.5. Optimizers 849

https://arxiv.org/abs/1412.6980v8
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=Bkg3g2R9FX
https://openreview.net/forum?id=Bkg3g2R9FX
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

850 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

4.5. Optimizers 851

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

adabound
Alias to self.hyperparam.adabound

alpha
Alias to self.hyperparam.alpha

alpha_t

amsgrad
Alias to self.hyperparam.amsgrad

beta1
Alias to self.hyperparam.beta1

beta2
Alias to self.hyperparam.beta2

epoch = 0

eps
Alias to self.hyperparam.eps

eta
Alias to self.hyperparam.eta

final_lr
Alias to self.hyperparam.final_lr

gamma
Alias to self.hyperparam.gamma

lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

852 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

4.5.4 chainer.optimizers.CorrectedMomentumSGD

class chainer.optimizers.CorrectedMomentumSGD(lr=0.01, momentum=0.9)
Momentum SGD optimizer.

This implements momentum correction discussed in the third section of Accurate, Large Minibatch SGD: Train-
ing ImageNet in 1 Hour.

MomentumSGD implements the equation (10) of the paper. This optimizer implements the equation (9).

To get better understanding between the two methods, we show the equivalence between the equation (9) and
modification of the equation (10) that takes momentum correction into account. First, we set 𝑣𝑡 = 𝜂𝑡𝑢𝑡. We
substitute this relation to the equation (10).

𝑣𝑡+1 = 𝑚
𝜂𝑡+1

𝜂𝑡
𝑣𝑡 + 𝜂𝑡+1𝑔𝑡

= 𝑚
𝜂𝑡+1

𝜂𝑡
𝜂𝑡𝑢𝑡 + 𝜂𝑡+1𝑔𝑡

= 𝜂𝑡+1(𝑚𝑢𝑡 + 𝑔𝑡)

From this result, we derive 𝑢𝑡+1 = 𝑚𝑢𝑡 + 𝑔𝑡, which is how update tensors are calculated by
CorrectedMomentumSGD. Thus, the equivalence is shown.

Parameters

• lr (float) – Learning rate.

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

4.5. Optimizers 853

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

854 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

4.5. Optimizers 855

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

target = None

use_auto_new_epoch = False

4.5.5 chainer.optimizers.MomentumSGD

class chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)
Momentum SGD optimizer.

Parameters

• lr (float) – Learning rate.

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

856 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

4.5. Optimizers 857

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

use_auto_new_epoch = False

4.5.6 chainer.optimizers.NesterovAG

class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)
Nesterov’s Accelerated Gradient.

See: https://arxiv.org/abs/1212.0901

Parameters

• lr (float) – Learning rate.

858 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1212.0901
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

4.5. Optimizers 859

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

860 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

use_auto_new_epoch = False

4.5.7 chainer.optimizers.MSVAG

class chainer.optimizers.MSVAG(lr=0.1, beta=0.9, eta=1.0, weight_decay_rate=0)
M-SVAG optimizer.

See: Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Modified for proper weight decay (also called AdamW). AdamW introduces the additional parameters eta and
weight_decay_rate, which can be used to properly scale the learning rate, and decouple the weight decay
rate from alpha, as shown in the below paper.

See: Fixing Weight Decay Regularization in Adam

Parameters

• lr (float) – Learning rate.

• beta (float) – Exponential decay rate of the first and second order moment.

• eta (float) – Schedule multiplier, can be used for warm restarts.

• weight_decay_rate (float) – Weight decay rate.

4.5. Optimizers 861

https://arxiv.org/abs/1705.07774
https://openreview.net/forum?id=rk6qdGgCZ
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

862 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

4.5. Optimizers 863

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

beta
Alias to self.hyperparam.beta

epoch = 0

eta
Alias to self.hyperparam.eta

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

4.5.8 chainer.optimizers.RMSprop

class chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08, eps_inside_sqrt=False)
RMSprop optimizer.

See: T. Tieleman and G. Hinton (2012). Lecture 6.5 - rmsprop, COURSERA: Neural Networks for Machine
Learning.

Parameters

• lr (float) – Learning rate.

• alpha (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

• eps_inside_sqrt (bool) – When True, gradient will be divided by
√
𝑚𝑠+ 𝑒𝑝𝑠

where ms is the mean square. When False (default), gradient will be divided by√
𝑚𝑠 + 𝑒𝑝𝑠 instead. This option may be convenient for users porting code from other

frameworks; see #4754 for details.

864 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://github.com/chainer/chainer/issues/4754


Chainer Documentation, Release 6.5.0

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

4.5. Optimizers 865

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

866 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

alpha
Alias to self.hyperparam.alpha

epoch = 0

eps
Alias to self.hyperparam.eps

eps_inside_sqrt
Alias to self.hyperparam.eps_inside_sqrt

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

4.5.9 chainer.optimizers.RMSpropGraves

class chainer.optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.9,
eps=0.0001)

Alex Graves’s RMSprop.

See: https://arxiv.org/abs/1308.0850

Parameters

• lr (float) – Learning rate.

• alpha (float) – Exponential decay rate of the first and second order moments of the raw
gradient.

• momentum (float) – Exponential decay rate of the first order moment of the adjusted
gradient.

• eps (float) – Small value for the numerical stability.

4.5. Optimizers 867

https://arxiv.org/abs/1308.0850
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

868 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

4.5. Optimizers 869

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

alpha
Alias to self.hyperparam.alpha

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

use_auto_new_epoch = False

4.5.10 chainer.optimizers.SGD

class chainer.optimizers.SGD(lr=0.01)
Vanilla Stochastic Gradient Descent.

Parameters lr (float) – Learning rate.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

870 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

4.5. Optimizers 871

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

872 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__ge__()
Return self>=value.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

4.5.11 chainer.optimizers.SMORMS3

class chainer.optimizers.SMORMS3(lr=0.001, eps=1e-16)
Simon Funk’s SMORMS3.

See http://sifter.org/~simon/journal/20150420.html.

Parameters

• lr (float) – Learning rate.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

4.5. Optimizers 873

http://sifter.org/~simon/journal/20150420.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

874 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

4.5. Optimizers 875

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

t = 0

target = None

use_auto_new_epoch = False

4.5.12 Optimizer base classes

chainer.Optimizer Base class of all numerical optimizers.
chainer.UpdateRule Base class of all update rules.
chainer.optimizer.Hyperparameter Set of hyperparameter entries of an optimizer.
chainer.GradientMethod Base class of all single gradient-based optimizers.

chainer.Optimizer

class chainer.Optimizer
Base class of all numerical optimizers.

This class provides basic features for all optimization methods. It optimizes parameters of a target link. The
target link is registered via the setup()method, and then the update()method updates its parameters based
on a given loss function.

Each optimizer implementation must be defined as a child class of Optimizer. It must override update()
method.

If the optimizer is based on single gradient computation (like most first-order methods), then it should inherit
GradientMethod, which adds some features dedicated for the first order methods, including the support of
UpdateRule.

Optimizer instance also supports hook functions. Hook function is registered by the add_hook() method.
Each hook function is called in registration order before of after the actual parameter update (configurable). If
the hook function has an attribute call_for_each_param and its value is True, the hook function is used
as a hook function of all update rules (i.e., it is invoked for every parameter by passing the corresponding update
rule and the parameter).

Variables

• target – Target link object. It is set by the setup() method.

• t – Number of update steps. It must be incremented by the update() method.

• epoch – Current epoch. It is incremented by the new_epoch() method.

• use_auto_new_epoch – Boolean flag to indicate if new_epoch() will be called by
the updater. Updater should set this flag to True if it automatically calls new_epoch().

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

876 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

4.5. Optimizers 877

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates the parameters.

This method updates the parameters of the target link. The behavior of this method is different for the
cases either lossfun is given or not.

If lossfun is given, this method typically clears the gradients, calls the loss function with given ex-
tra arguments, and calls the backward() method of its output to compute the gradients. The actual
implementation might call lossfun more than once.

If lossfun is not given, then this method assumes that the gradients of all parameters are already com-
puted. An implementation that requires multiple gradient computations might raise an error on this case.

In both cases, this method invokes the update procedure for all parameters.

Parameters

• lossfun (callable) – Loss function. You can specify one of loss functions from
built-in loss functions, or your own loss function. It should not be an loss functions with
parameters (i.e., Link instance). The function must accept arbitrary arguments and return
one Variable object that represents the loss (or objective) value. Returned value must
be a Variable derived from the input Variable object. lossfun can be omitted for single
gradient-based methods. In this case, this method assumes gradient arrays computed.

• kwds (args,) – Arguments for the loss function.

update_loss_scale()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

t = 0

target = None

878 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

use_auto_new_epoch = False

chainer.UpdateRule

class chainer.UpdateRule(parent_hyperparam=None)
Base class of all update rules.

Update rule is an object that implements how to update one parameter variable using the gradient of a loss
function. This class provides the interface and the common features of any update rules.

An update rule can be set to a Variable object that represents a parameter array of a model. An Optimizer
instance defines which parameters to update, and the update rule instance of each parameter defines how to
update it.

Hook functions can be set to any update rule instance. The hook function is called just before or after any
updates (configurable) in the order of registrations.

An implementation of update rule should override update_core() or its device-dependent variants (i.e.,
update_core_cpu() and update_core_gpu()).

The state (e.g. a moving average of the gradient) of the update rule is stored into the state dictionary. An
implementation of update rule using state should also override init_state() to initialize the state at the first
update. The values of the state dictionary are automatically copied to the appropriate device before the update
based on the data and grad arrays.

Parameters parent_hyperparam (Hyperparameter) – Hyperparameter that provides the
default values.

Variables

• enabled (bool) – Flag to configure if this update rule is active. If the update rule is not
active (i.e., enabled = False), the update() method does not update the parameter.

• hyperparam (Hyperparameter) – Hyperparameter of the update rule.

• t (int) – Number of updates made by this update rule.

Methods

add_hook(hook, name=None, timing=’auto’)
Adds a hook function.

The hook function is called before or after any updates (see the timing attribute).

Parameters

• hook (callable) – Hook function to be added. It takes two arguments: the update rule
object and the parameter variable.

• name (str) – Name of the hook function. The name attribute of the hook function is
used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates. If ‘auto’ and the timing property of the hook is
not available, timing will default to ‘pre’.

init_state(param)
Initializes the state.

4.5. Optimizers 879

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Any implementations that use the state should override this mehtod. This method is called at the first
update.

Parameters param (Variable) – Parameter variable. It can be used to extract the shape and
the data type of the parameter.

remove_hook(name)
Removes the specified hook function.

Parameters name (str) – Name of the hook function to be removed. The hook function reg-
istered with this name will be removed.

serialize(serializer)
Serializes the update rule state.

Be careful that this method only saves/loads the state of the update rule. The parameters of the target link
is not saved/loaded by this method, and so you need to serialize the target link separately if you want to
fully recover the training state including parameters.

Parameters serializer (AbstractSerializer) – Serializer object.

update(param)
Invokes hook functions and updates the parameter.

Parameters param (Variable) – Variable to be updated.

update_core(param)
Updates the parameter.

Implementation of UpdateRule should override this method or both of update_core_cpu() and
update_core_gpu().

Parameters param (Variable) – Variable to be updated.

update_core_chainerx(param)
Updates the ChainerX parameter.

This method can be overridden to implement custom update logic. The default implementation is to convert
the parameter to a memory-shared NumPy/CuPy parameter and call the corresponding update method.

See update_core() for details.

Parameters param (Variable) – Variable to be updated.

update_core_cpu(param)
Updates the parameter on CPU.

See update_core() for details.

Parameters param (Variable) – Variable to be updated.

update_core_gpu(param)
Updates the parameter on GPU.

See update_core() for details.

Parameters param (Variable) – Variable to be updated.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

This method enables use of parameter update in fp32. When it is enabled and data type of original
parameter variable is fp16, fp32 copy of parameter variable is automatically created and retained at
self.fp32_param. And the parameter is update in fp32 in the following way.

880 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

1. copies the grad of original parameter variable to the grad of fp32 parameter variable, converting its
data type from fp16 to fp32.

2. updates the parameter in fp32.

3. copies the data of fp32 parameter variable to the data of original parameter variable, converting its
data type from fp32 to fp16.

See update() for details.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

state
State dictionary.

chainer.optimizer.Hyperparameter

class chainer.optimizer.Hyperparameter(parent=None)
Set of hyperparameter entries of an optimizer.

This is a utility class to provide a set of hyperparameter entries for update rules and an optimizer. Each entry
can be set as an attribute of a hyperparameter object.

A hyperparameter object can hold a reference to its parent hyperparameter object. When an attribute does not
exist in the child hyperparameter, it automatically refers to the parent. We typically set the hyperparameter of
the gradient method as the parent of the hyperparameter of each update rule. It enables us to centralize the
management of hyperparameters (e.g. we can change the learning rate of all update rules just by modifying the
hyperparameter of the central optimizer object), while users can freely customize the hyperparameter of each
update rule if needed.

Parameters parent (Hyperparameter) – Parent hyperparameter.

Methods

get_dict()
Converts the hyperparameter into a dictionary.

Returns Dictionary containing all entries that can be referred by this hyperparameter object.

__eq__()
Return self==value.

4.5. Optimizers 881



Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

parent
Parent hyperparameter object.

chainer.GradientMethod

class chainer.GradientMethod
Base class of all single gradient-based optimizers.

This is an extension of the Optimizer class. Typical gradient methods that just require the gradient at the
current parameter vector on an update can be implemented as its child class.

This class uses UpdateRule to manage the update rule of each parameter. A child class of GradientMethod
should override create_update_rule() to create the default update rule of each parameter.

This class also provides hyperparam, which is the hyperparameter used as the default configuration of each
update rule. All built-in gradient method implementations also provide proxy properties that act as aliases to the
attributes of hyperparam. It is recommended that you provide such an alias to each attribute. It can be done
by only adding one line for each attribute using HyperparameterProxy.

Variables hyperparam (Hyperparameter) – The hyperparameter of the gradient method. It
is used as the default configuration of each update rule (i.e., the hyperparameter of each update
rule refers this hyperparameter as its parent).

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

882 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

4.5. Optimizers 883

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

884 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__ge__()
Return self>=value.

Attributes

epoch = 0

t = 0

target = None

use_auto_new_epoch = False

4.5.13 Hook functions

chainer.optimizer_hooks.WeightDecay Optimizer/UpdateRule hook function for weight decay
regularization.

chainer.optimizer_hooks.Lasso Optimizer/UpdateRule hook function for Lasso regular-
ization.

chainer.optimizer_hooks.
GradientClipping

Optimizer hook function for gradient clipping.

chainer.optimizer_hooks.
GradientHardClipping

Optimizer/UpdateRule hook function for gradient clip-
ping.

chainer.optimizer_hooks.GradientNoise Optimizer/UpdateRule hook function for adding gradi-
ent noise.

chainer.optimizer_hooks.GradientLARS Optimizer/UpdateRule hook function for layer wise
adaptive rate scaling.

chainer.optimizer_hooks.WeightDecay

class chainer.optimizer_hooks.WeightDecay(rate)
Optimizer/UpdateRule hook function for weight decay regularization.

This hook function adds a scaled parameter to the corresponding gradient. It can be used as a regularization.

Parameters rate (float) – Coefficient for the weight decay.

Variables

• rate (float) – Coefficient for the weight decay.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

4.5. Optimizers 885

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'WeightDecay'

timing = 'pre'

chainer.optimizer_hooks.Lasso

class chainer.optimizer_hooks.Lasso(rate)
Optimizer/UpdateRule hook function for Lasso regularization.

This hook function adds a scaled parameter to the sign of each weight. It can be used as a regularization.

Parameters rate (float) – Coefficient for the weight decay.

Variables

• rate (float) – Coefficient for the weight decay.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

886 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'Lasso'

timing = 'pre'

chainer.optimizer_hooks.GradientClipping

class chainer.optimizer_hooks.GradientClipping(threshold)
Optimizer hook function for gradient clipping.

This hook function scales all gradient arrays to fit to the defined L2 norm threshold.

Parameters threshold (float) – L2 norm threshold.

Variables

• threshold (float) – L2 norm threshold of gradient norm.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

New in version 4.0.0: The timing parameter.

Methods

__call__(opt)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

4.5. Optimizers 887

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

__ge__()
Return self>=value.

Attributes

name = 'GradientClipping'

timing = 'pre'

chainer.optimizer_hooks.GradientHardClipping

class chainer.optimizer_hooks.GradientHardClipping(lower_bound, upper_bound)
Optimizer/UpdateRule hook function for gradient clipping.

This hook function clips all gradient arrays to be within a lower and upper bound.

Parameters

• lower_bound (float) – The lower bound of the gradient value.

• upper_bound (float) – The upper bound of the gradient value.

Variables

• lower_bound (float) – The lower bound of the gradient value.

• upper_bound (float) – The upper bound of the gradient value.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

888 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Attributes

call_for_each_param = True

name = 'GradientHardClipping'

timing = 'pre'

chainer.optimizer_hooks.GradientNoise

class chainer.optimizer_hooks.GradientNoise(eta, noise_func=<function exponen-
tial_decay_noise>)

Optimizer/UpdateRule hook function for adding gradient noise.

This hook function simply adds noise generated by the noise_func to the gradient. By default it adds time-
dependent annealed Gaussian noise to the gradient at every training step:

𝑔𝑡 ← 𝑔𝑡 +𝑁(0, 𝜎2
𝑡 )

where

𝜎2
𝑡 =

𝜂

(1 + 𝑡)𝛾

with 𝜂 selected from {0.01, 0.3, 1.0} and 𝛾 = 0.55.

Parameters

• eta (float) – Parameter that defines the scale of the noise. For the default noise function,
it is recommended that it be either 0.01, 0.3 or 1.0.

• noise_func (function) – Noise generating function which by default is given by
Adding Gradient Noise Improves Learning for Very Deep Networks.

Variables

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

4.5. Optimizers 889

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/pdf/1511.06807
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'GradientNoise'

timing = 'pre'

chainer.optimizer_hooks.GradientLARS

class chainer.optimizer_hooks.GradientLARS(threshold=0.01, weight_decay=0.0, eps=1e-
09)

Optimizer/UpdateRule hook function for layer wise adaptive rate scaling.

See: Large Batch Training of Convolutional Networks.

See: Convergence Analysis of Gradient Descent Algorithms with Proportional Updates.

This hook function scales all gradient arrays to fit to the weight norm.

In <https://arxiv.org/abs/1708.03888>,

𝑣𝑡+1 = 𝑚 * 𝑣𝑡 + 𝛾 * 𝜆 * (∇𝐿(𝑤𝑡) + 𝛽𝑤𝑡),

𝑤𝑡+1 = 𝑤𝑡 − 𝑣𝑡+1,

where

• 𝛾 : learning_rate

• 𝑚 : momentum

• 𝛽 : weight_decay

• 𝜂 : lars_coeeficient

• 𝜆: local_lr = 𝜂 * ‖𝑤𝑡‖
‖∇𝐿(𝑤𝑡)‖+𝛽*‖𝑤𝑡‖ .

As 𝑙𝑟 in chainer.optimizers.SGD or chainer.optimizers.MomentumSGD corresponds to 𝛾 * 𝜂, we define
𝑐𝑙𝑖𝑝_𝑟𝑎𝑡𝑒 as ‖𝑤𝑡‖

‖∇𝐿(𝑤𝑡)‖+𝛽*‖𝑤𝑡‖ and reformulate the aforementioned formula as: 𝑣𝑡+1 = 𝑚*𝑣𝑡 + 𝑙𝑟*𝑐𝑙𝑖𝑝_𝑟𝑎𝑡𝑒*
(∇𝐿(𝑤𝑡) + 𝛽𝑤𝑡) and implement in this way. So you do not set lars_coeeficient.

Parameters

• threashold (float) – If weight norm is more than threshold, this function scales all
gradient arrays to fit weight norm. (See <https://arxiv.org/abs/1801.03137>)

• weight_decay (float) – Coefficient for the weight decay.

• eps (float) – Small value for the numerical stability. (See <https://arxiv.org/abs/1801.
03137>)

Variables

890 Chapter 4. API Reference

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1801.03137
https://arxiv.org/abs/1708.03888
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://arxiv.org/abs/1801.03137


Chainer Documentation, Release 6.5.0

• threashold (float) – If weight norm is more than threshold, this function scales all
gradient arrays to fit weight norm. (See <https://arxiv.org/abs/1801.03137>)

• weight_decay (float) – Coefficient for the weight decay.

• eps (float) – Small value for the numerical stability. (See <https://arxiv.org/abs/1801.
03137>)

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'GradientLARS'

timing = 'pre'

4.6 Weight Initializers

Weight initializers are used to initialize arrays. They destructively modify the content of numpy.ndarray or cupy.
ndarray. Typically, weight initializers are passed to Links to initialize their weights and biases.

A weight initializer can be any of the following objects.

• chainer.Initializer class instance.

• Python or NumPy scalar or numpy.ndarray.

• A callable that takes an array (numpy.ndarray or cupy.ndarray) and feeds the initial data into it.

4.6. Weight Initializers 891

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://arxiv.org/abs/1801.03137
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

• None, in which case the default initializer is used. Unless explicitly specified, it is LeCunNormal with scale
value 1.

If an initializer object has the dtype attribute, the initializer can assume that the array to feed the data into has
that dtype. If the required dtype, depending on the context where the initializer is used, does not match the dtype
attribute, Chainer will report an error.

4.6.1 Base class

chainer.Initializer Initializes array.

chainer.Initializer

class chainer.Initializer(dtype=None)
Initializes array.

It initializes the given array.

Variables dtype – Data type specifier. It is for type check in __call__ function.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.6.2 Concrete initializers

chainer.initializers.Identity Initializes array with the identity matrix.
chainer.initializers.Constant Initializes array with constant value.
chainer.initializers.Zero Initializes array to all-zero.
chainer.initializers.One Initializes array to all-one.

Continued on next page

892 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Table 33 – continued from previous page
chainer.initializers.NaN Initializes array to all-NaN.
chainer.initializers.Normal Initializes array with a normal distribution.
chainer.initializers.LeCunNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.GlorotNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.HeNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.Orthogonal Initializes array with an orthogonal system.
chainer.initializers.Uniform Initializes array with a scaled uniform distribution.
chainer.initializers.LeCunUniform Initializes array with a scaled uniform distribution.
chainer.initializers.GlorotUniform Initializes array with a scaled uniform distribution.
chainer.initializers.HeUniform Initializes array with scaled uniform distribution.

chainer.initializers.Identity

class chainer.initializers.Identity(scale=1.0, dtype=None)
Initializes array with the identity matrix.

It initializes the given array with the constant multiple of the identity matrix. Note that arrays to be passed must
be 2D squared matrices.

Variables scale (scalar) – A constant to be multiplied to identity matrices.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.Constant

class chainer.initializers.Constant(fill_value, dtype=None)
Initializes array with constant value.

Variables

4.6. Weight Initializers 893



Chainer Documentation, Release 6.5.0

• fill_value (scalar or N-dimensional array) – A constant to be assigned to the initialized
array. Broadcast is allowed on this assignment.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = None

chainer.initializers.Zero

class chainer.initializers.Zero(dtype=None)
Initializes array to all-zero.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

894 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = 0.0

chainer.initializers.One

class chainer.initializers.One(dtype=None)
Initializes array to all-one.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = 1.0

4.6. Weight Initializers 895



Chainer Documentation, Release 6.5.0

chainer.initializers.NaN

class chainer.initializers.NaN(dtype=None)
Initializes array to all-NaN.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = nan

chainer.initializers.Normal

class chainer.initializers.Normal(scale=0.05, dtype=None)
Initializes array with a normal distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is scale.

Parameters

• scale (float) – Standard deviation of Gaussian distribution.

• dtype – Data type specifier.

896 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.LeCunNormal

class chainer.initializers.LeCunNormal(scale=1.0, dtype=None)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
1

𝑓𝑎𝑛𝑖𝑛
, where 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Reference: LeCun 98, Efficient Backprop http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.6. Weight Initializers 897

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.GlorotNormal

class chainer.initializers.GlorotNormal(scale=1.0, dtype=None)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
2

𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡
, where 𝑓𝑎𝑛𝑖𝑛 and 𝑓𝑎𝑛𝑜𝑢𝑡 are the number of input

and output units, respectively.

Reference: Glorot & Bengio, AISTATS 2010

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

898 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

chainer.initializers.HeNormal

class chainer.initializers.HeNormal(scale=1.0, dtype=None, fan_option=’fan_in’)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
2

𝑓𝑎𝑛 . If fan_option == 'fan_in', 𝑓𝑎𝑛 is the number of
input units. If fan_option == 'fan_out', 𝑓𝑎𝑛 is the number of output units.

Reference: He et al., https://arxiv.org/abs/1502.01852

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

• fan_option ({'fan_in', 'fan_out'}) – Decides how to compute the standard
deviation. The default value is 'fan_in'.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.Orthogonal

class chainer.initializers.Orthogonal(scale=1.1, dtype=None)
Initializes array with an orthogonal system.

This initializer first makes a matrix of the same shape as the array to be initialized whose elements are drawn
independently from standard Gaussian distribution. Next, it applies QR decomposition to (the transpose of) the
matrix. To make the decomposition (almost surely) unique, we require the diagonal of the triangular matrix
R to be non-negative (see e.g. Edelman & Rao, https://web.eecs.umich.edu/~rajnrao/Acta05rmt.pdf). Then, it
initializes the array with the (semi-)orthogonal matrix Q. Finally, the array is multiplied by the constant scale.

4.6. Weight Initializers 899

https://arxiv.org/abs/1502.01852
https://docs.python.org/3/library/functions.html#float
https://web.eecs.umich.edu/~rajnrao/Acta05rmt.pdf


Chainer Documentation, Release 6.5.0

If the ndim of the input array is more than 2, we consider the array to be a matrix by concatenating all axes
except the first one.

The number of vectors consisting of the orthogonal system (i.e. first element of the shape of the array) must be
equal to or smaller than the dimension of each vector (i.e. second element of the shape of the array).

Variables

• scale (float) – A constant to be multiplied by.

• dtype – Data type specifier.

Reference: Saxe et al., https://arxiv.org/abs/1312.6120

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.Uniform

class chainer.initializers.Uniform(scale=0.05, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution
[−𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒].

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

900 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1312.6120
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.LeCunUniform

class chainer.initializers.LeCunUniform(scale=1.0, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠]
where 𝑠 = 𝑠𝑐𝑎𝑙𝑒×

√︁
3

𝑓𝑎𝑛𝑖𝑛
. Here 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Reference: LeCun 98, Efficient Backprop http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.6. Weight Initializers 901

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.GlorotUniform

class chainer.initializers.GlorotUniform(scale=1.0, dtype=None)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠] where

𝑠 = 𝑠𝑐𝑎𝑙𝑒×
√︁

6
𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡

. Here, 𝑓𝑎𝑛𝑖𝑛 and 𝑓𝑎𝑛𝑜𝑢𝑡 are the number of input and output units, respectively.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.HeUniform

class chainer.initializers.HeUniform(scale=1.0, dtype=None)
Initializes array with scaled uniform distribution.

902 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠]
where 𝑠 = 𝑠𝑐𝑎𝑙𝑒×

√︁
6

𝑓𝑎𝑛𝑖𝑛
. Here, 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.6.3 Helper function

chainer.initializers.generate_array Return initialized array.

chainer.initializers.generate_array

chainer.initializers.generate_array(initializer, shape, xp, dtype=None, device=None)
Return initialized array.

The algorithms used to make the new values depend on the concrete derived classes. If the initializer has the
dtype attribute, it is used to construct the array. Otherwise, chainer.config.dtype is used instead. See
Configuring Chainer for the dtype config.

Parameters

• initializer – A callable object that takes N-dimensional array and edits its value.

• shape (int or tuple of int) – Shape of the initialized array.

• xp (module) – cupy, numpy, or chainerx.

• dtype – Dtype specifier. If omitted, initializer.dtype is used.

4.6. Weight Initializers 903

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy


Chainer Documentation, Release 6.5.0

• device – Target device specifier. If omitted, the current device is used for cupy, and the
default device is used for chainerx.

Returns An initialized array.

Return type N-dimensional array

4.7 Snapshot Writers

chainer.training.extensions.
snapshot_writers.Writer

Base class of snapshot writers.

chainer.training.extensions.
snapshot_writers.SimpleWriter

The most simple snapshot writer.

chainer.training.extensions.
snapshot_writers.ThreadWriter

Snapshot writer that uses a separate thread.

chainer.training.extensions.
snapshot_writers.ProcessWriter

Snapshot writer that uses a separate process.

chainer.training.extensions.
snapshot_writers.QueueWriter

Base class of queue snapshot writers.

chainer.training.extensions.
snapshot_writers.ThreadQueueWriter

Snapshot writer that uses a thread queue.

chainer.training.extensions.
snapshot_writers.ProcessQueueWriter

Snapshot writer that uses process queue.

4.7.1 chainer.training.extensions.snapshot_writers.Writer

class chainer.training.extensions.snapshot_writers.Writer
Base class of snapshot writers.

Snapshot invokes __call__ of this class everytime when taking a snapshot. This class determines how the
actual saving function will be invoked.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

904 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.2 chainer.training.extensions.snapshot_writers.SimpleWriter

class chainer.training.extensions.snapshot_writers.SimpleWriter(savefun=<function
save_npz>,
**kwds)

The most simple snapshot writer.

This class just passes the arguments to the actual saving function.

Parameters

• savefun – Callable object. It takes three arguments: the output file path, the serialized
dictionary object, and the optional keyword arguments.

• kwds – Keyword arguments for the savefun.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

4.7. Snapshot Writers 905

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.3 chainer.training.extensions.snapshot_writers.ThreadWriter

class chainer.training.extensions.snapshot_writers.ThreadWriter(savefun=<function
save_npz>,
**kwds)

Snapshot writer that uses a separate thread.

This class creates a new thread that invokes the actual saving function.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

create_worker(filename, outdir, target, **kwds)
Creates a worker for the snapshot.

This method creates a thread or a process to take a snapshot. The created worker must have start() and
join() methods.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is already
formated string.

• outdir (str) – Output directory. Passed by trainer.out.

• target (dict) – Serialized object which will be saved.

906 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

• kwds – Keyword arguments for the savefun.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.4 chainer.training.extensions.snapshot_writers.ProcessWriter

class chainer.training.extensions.snapshot_writers.ProcessWriter(savefun=<function
save_npz>,
**kwds)

Snapshot writer that uses a separate process.

This class creates a new process that invokes the actual saving function.

Note: Forking a new process from a MPI process might be danger. Consider using ThreadWriter instead
of ProcessWriter if you are using MPI.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

4.7. Snapshot Writers 907

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

create_worker(filename, outdir, target, **kwds)
Creates a worker for the snapshot.

This method creates a thread or a process to take a snapshot. The created worker must have start() and
join() methods.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is already
formated string.

• outdir (str) – Output directory. Passed by trainer.out.

• target (dict) – Serialized object which will be saved.

• kwds – Keyword arguments for the savefun.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.5 chainer.training.extensions.snapshot_writers.QueueWriter

class chainer.training.extensions.snapshot_writers.QueueWriter(savefun=<function
save_npz>,
task=None)

Base class of queue snapshot writers.

This class is a base class of snapshot writers that use a queue. A Queue is created when this class is constructed,
and every time when __call__ is invoked, a snapshot task is put into the queue.

Parameters

• savefun – Callable object which is passed to the create_task() if the task is None. It
takes three arguments: the output file path, the serialized dictionary object, and the optional
keyword arguments.

• task – Callable object. Its __call__ must have a same interface to Writer.
__call__. This object is directly put into the queue.

See also:

908 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

consume(q)

create_consumer(q)

create_queue()

create_task(savefun)

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.6 chainer.training.extensions.snapshot_writers.ThreadQueueWriter

class chainer.training.extensions.snapshot_writers.ThreadQueueWriter(savefun=<function
save_npz>,
task=None)

Snapshot writer that uses a thread queue.

This class creates a thread and a queue by threading and queue modules respectively. The thread will be a
consumer of the queue, and the main thread will be a producer of the queue.

See also:

4.7. Snapshot Writers 909

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/queue.html#module-queue


Chainer Documentation, Release 6.5.0

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

consume(q)

create_consumer(q)

create_queue()

create_task(savefun)

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.7 chainer.training.extensions.snapshot_writers.ProcessQueueWriter

class chainer.training.extensions.snapshot_writers.ProcessQueueWriter(savefun=<function
save_npz>,
task=None)

Snapshot writer that uses process queue.

This class creates a process and a queue by multiprocessing module. The process will be a consumer of
this queue, and the main process will be a producer of this queue.

910 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing


Chainer Documentation, Release 6.5.0

Note: Forking a new process from MPI process might be danger. Consider using ThreadQueueWriter
instead of ProcessQueueWriter if you are using MPI.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

consume(q)

create_consumer(q)

create_queue()

create_task(savefun)

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7. Snapshot Writers 911

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

4.8 Training Tools

Chainer provides a standard implementation of the training loops under the chainer.training module. It is
built on top of many other core features of Chainer, including Variable and Function, Link/Chain/ChainList, Opti-
mizer, Dataset, and Reporter/Summary. Compared to the training loop abstraction of other machine learning tool
kits, Chainer’s training framework aims at maximal flexibility, while keeps the simplicity for the typical usages. Most
components are pluggable, and users can overwrite the definition.

The core of the training loop abstraction is Trainer, which implements the training loop itself. The training loop
consists of two parts: one is Updater, which actually updates the parameters to train, and the other is Extension
for arbitrary functionalities other than the parameter update.

Updater and some extensions use chainer.dataset and Iterator to scan the datasets and load mini-batches.
The trainer also uses Reporter to collect the observed values, and some extensions use DictSummary to accu-
mulate them and computes the statistics.

You can find many examples for the usage of this training utilities from the official examples. You can also search the
extension implementations from Extensions.

4.8.1 Trainer

chainer.training.Trainer The standard training loop in Chainer.

chainer.training.Trainer

class chainer.training.Trainer(updater, stop_trigger=None, out=’result’, extensions=None)
The standard training loop in Chainer.

Trainer is an implementation of a training loop. Users can invoke the training by calling the run() method.

Each iteration of the training loop proceeds as follows.

• Update of the parameters. It includes the mini-batch loading, forward and backward computations, and an
execution of the update formula. These are all done by the update object held by the trainer.

• Invocation of trainer extensions in the descending order of their priorities. A trigger object is attached to
each extension, and it decides at each iteration whether the extension should be executed. Trigger objects
are callable objects that take the trainer object as the argument and return a boolean value indicating
whether the extension should be called or not.

Extensions are callable objects that take the trainer object as the argument. There are three ways to define
custom extensions: inheriting the Extension class, decorating functions by make_extension(), and
defining any callable including lambda functions. See Extension for more details on custom extensions and
how to configure them.

Users can register extensions to the trainer by calling the extend() method, where some configurations can
be added.

• Trigger object, which is also explained above. In most cases, IntervalTrigger is used, in which case
users can simply specify a tuple of the interval length and its unit, like (1000, 'iteration') or (1,
'epoch').

• The order of execution of extensions is determined by their priorities. Extensions of higher priorities are
invoked earlier. There are three standard values for the priorities:

– PRIORITY_WRITER. This is the priority for extensions that write some records to the
observation dictionary. It includes cases that the extension directly adds values to the obser-

912 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

vation dictionary, or the extension uses the chainer.report() function to report values to the
observation dictionary.

– PRIORITY_EDITOR. This is the priority for extensions that edit the observation dictionary
based on already reported values.

– PRIORITY_READER. This is the priority for extensions that only read records from the
observation dictionary. This is also suitable for extensions that do not use the observation
dictionary at all.

The current state of the trainer object and objects handled by the trainer can be serialized through the standard
serialization protocol of Chainer. It enables us to easily suspend and resume the training loop.

>>> serializers.save_npz('my.trainer', trainer) # To suspend and save
>>> serializers.load_npz('my.trainer', trainer) # To load and resume

The snapshot() method makes regular snapshots of the Trainer object during training.

Note: The serialization does not recover everything of the training loop. It only recovers the states which
change over the training (e.g. parameters, optimizer states, the batch iterator state, extension states, etc.). You
must initialize the objects correctly before deserializing the states.

On the other hand, it means that users can change the settings on deserialization. For example, the exit condition
can be changed on the deserialization, so users can train the model for some iterations, suspend it, and then
resume it with larger number of total iterations.

During the training, it also creates a Reporter object to store observed values on each update. For each
iteration, it creates a fresh observation dictionary and stores it in the observation attribute.

Links of the target model of each optimizer are registered to the reporter object as observers, where the name of
each observer is constructed as the format <optimizer name><link name>. The link name is given by
the chainer.Link.namedlink() method, which represents the path to each link in the hierarchy. Other
observers can be registered by accessing the reporter object via the reporter attribute.

The default trainer is plain, i.e., it does not contain any extensions.

Parameters

• updater (Updater) – Updater object. It defines how to update the models.

• stop_trigger – Trigger that determines when to stop the training loop. If it is not
callable, it is passed to IntervalTrigger.

• out – Output directory.

• extensions – Extensions registered to the trainer.

Variables

• updater – The updater object for this trainer.

• stop_trigger – Trigger that determines when to stop the training loop. The training
loop stops at the iteration on which this trigger returns True.

• observation – Observation of values made at the last update. See the Reporter class
for details.

• out – Output directory.

• reporter – Reporter object to report observed values.

4.8. Training Tools 913



Chainer Documentation, Release 6.5.0

Methods

extend(extension, name=None, trigger=None, priority=None, **kwargs)
Registers an extension to the trainer.

Extension is a callable object which is called after each update unless the corresponding trigger object
decides to skip the iteration. The order of execution is determined by priorities: extensions with higher
priorities are called earlier in each iteration. Extensions with the same priority are invoked in the order of
registrations.

If two or more extensions with the same name are registered, suffixes are added to the names of the second
to last extensions. The suffix is _N where N is the ordinal of the extensions.

See Extension for the interface of extensions.

Parameters

• extension – Extension to register.

• name (str) – Name of the extension. If it is omitted, the Extension.name attribute
of the extension is used or the Extension.default_name attribute of the extension
if name is is set to None or is undefined. Note that the name would be suffixed by an
ordinal in case of duplicated names as explained above.

• trigger (tuple or Trigger) – Trigger object that determines when to invoke the
extension. If it is None, extension.trigger is used instead. If it is None and the
extension does not have the trigger attribute, the extension is triggered at every iteration
by default. If the trigger is not callable, it is passed to IntervalTrigger to build an
interval trigger.

• priority (int) – Invocation priority of the extension. Extensions are invoked in the
descending order of priorities in each iteration. If this is None, extension.priority
is used instead.

get_extension(name)
Returns the extension of a given name.

Parameters name (str) – Name of the extension.

Returns Extension.

run(show_loop_exception_msg=True)
Executes the training loop.

This method is the core of Trainer. It executes the whole loop of training the models.

Note that this method cannot run multiple times for one trainer object.

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

914 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

__ge__()
Return self>=value.

Attributes

elapsed_time
Total time used for the training.

The time is in seconds. If the training is resumed from snapshot, it includes the time of all the previous
training to get the current state of the trainer.

4.8.2 Updaters

chainer.training.Updater Interface of updater objects for trainers.
chainer.training.updaters.
StandardUpdater

Standard implementation of Updater.

chainer.training.updaters.
ParallelUpdater

Implementation of a parallel GPU Updater.

chainer.training.updaters.
MultiprocessParallelUpdater

Implementation of a multiprocess parallel GPU Up-
dater.

chainer.training.Updater

class chainer.training.Updater
Interface of updater objects for trainers.

Updater implements a training iteration as update(). Typically, the updating iteration proceeds as follows.

• Fetch a minibatch from dataset via Iterator.

• Run forward and backward process of Chain.

• Update parameters according to their UpdateRule.

The first line is processed by Iterator.__next__. The second and third are processed by Optimizer.
update. Users can also implement their original updating iteration by overriding Updater.update.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method is called at the end of training loops. It should finalize each dataset iterator used in this
updater.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

4.8. Training Tools 915



Chainer Documentation, Release 6.5.0

Returns Dictionary that maps names to optimizers.

Return type dict

get_optimizer(name)
Gets the optimizer of given name.

Updater holds one or more optimizers with names. They can be retrieved by this method.

Parameters name (str) – Name of the optimizer.

Returns Optimizer of the name.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.updaters.StandardUpdater

class chainer.training.updaters.StandardUpdater(iterator, optimizer, con-
verter=<function con-
cat_examples>, device=None,
loss_func=None, loss_scale=None,
auto_new_epoch=True)

Standard implementation of Updater.

This is the standard implementation of Updater. It accepts one or more training datasets and one or more
optimizers. The default update routine assumes that there is only one training dataset and one optimizer. Users
can override this update routine by inheriting this class and overriding the update_core() method. Each
batch is converted to input arrays by chainer.dataset.concat_examples() by default, which can
also be manually set by converter argument.

Parameters

916 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps
strings to iterators. If this is just an iterator, then the iterator is registered by the name
'main'.

• optimizer – Optimizer to update parameters. It can also be a dictionary that maps strings
to optimizers. If this is just an optimizer, then the optimizer is registered by the name
'main'.

• converter – Converter function to build input arrays. Each batch extracted by the
main iterator and the device option are passed to this function. chainer.dataset.
concat_examples() is used by default.

• device – Device to which the training data is sent. Negative value indicates the host
memory (CPU).

• loss_func – Loss function. The target link of the main optimizer is used by default.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

• auto_new_epoch (bool) – If True, new_epoch() of the main optimizer is automat-
ically called when the is_new_epoch attribute of the main iterator is True.

Variables

• converter – Converter function.

• loss_func – Loss function. If it is None, the target link of the main optimizer is used
instead.

• device – Device to which the training data is sent.

• iteration – Current number of completed updates.

• auto_new_epoch – If True, new_epoch() is automatically called by
update_core(). In this case, the use_auto_new_epoch attribute of each op-
timizer is also set to True. If update_core() is overridden, the implementation should
correctly call new_epoch() of each optimizer.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

4.8. Training Tools 917

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

918 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainer.training.updaters.ParallelUpdater

class chainer.training.updaters.ParallelUpdater(iterator, optimizer, con-
verter=<function concat_examples>,
models=None, devices=None,
loss_func=None, loss_scale=None,
auto_new_epoch=True)

Implementation of a parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs. It behaves similarly to StandardUpdater.
The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is
based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the
parameters only in the main device.

Parameters

• iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps
strings to iterators. If this is just an iterator, then the iterator is registered by the name
'main'.

• optimizer – Optimizer to update parameters. It can also be a dictionary that maps strings
to optimizers. If this is just an optimizer, then the optimizer is registered by the name
'main'.

• converter – Converter function to build input arrays. Each batch extracted by the main
iterator is split equally between the devices and then passed with corresponding device
option to this function. concat_examples() is used by default.

• models – Dictionary of models. The main model should be the same model attached to
the 'main' optimizer.

• devices – Dictionary of devices to which the training data is sent. The devices should be
arranged in a dictionary with the same structure as models.

• loss_func – Loss function. The model is used as a loss function by default.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

• auto_new_epoch (bool) – If True, new_epoch() of the main optimizer is automat-
ically called when the is_new_epoch attribute of the main iterator is True.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

4.8. Training Tools 919

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch

epoch_detail

920 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

is_new_epoch

previous_epoch_detail

chainer.training.updaters.MultiprocessParallelUpdater

class chainer.training.updaters.MultiprocessParallelUpdater(iterators, optimizer,
converter=<function
concat_examples>,
devices=None,
auto_new_epoch=True)

Implementation of a multiprocess parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs with multi-process data parallelism. It uses
Nvidia NCCL for communication between multiple GPUs.

It behaves similarly to StandardUpdater. The update routine is modified to support data-parallel compu-
tation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient
computation over a mini-batch, and updates the parameters only in the main device.

It does not transfer the values collected by Reporter in the sub devices to the main device. So you can only
see the reported values in the main device.

Parameters

• iterators – List of dataset iterator for the training dataset. The number of the iterators
must be same to the number of GPUs you use.

• optimizer – Optimizer to update parameters. The model should be attached to the opti-
mizer.

• converter – Converter function to build input arrays. Each batch extracted by the iterator
is split equally between the devices and then passed with corresponding device option to
this function. concat_examples() is used by default.

• devices – Dictionary or list of devices to which the training data is sent. The master
device will be the first one in the list or the value attached to the key 'main'.

• auto_new_epoch (bool) – If True, new_epoch() of the main optimizer is automat-
ically called when the is_new_epoch attribute of the main iterator is True.

Methods

static available()

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

4.8. Training Tools 921

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

setup_workers()

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

922 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

We have two kinds of updaters for multi-gpus training. The pros/cons for the updaters are as follows:

ParallelUpdater:

• (+) Can use the same iterator for any number of GPUs

• (-) No parallelism at CPU side

• (-) GPUs used later may be blocked due to the limit of kernel-launch queue size

MultiprocessParallelUpdater:

• (+) Parallelism at CPU side

• (+) No degrade due to kernel launch queue size

• (-) Need per-process data iterator

• (-) Reporter cannot collect data except for one of the devices

4.8.3 Extensions

An extension is a callable object that can perform arbitrary actions during the training loop. Extensions can be reg-
istered to Trainer by using Trainer.extend() method, and they are invoked when the Trigger condition is
satisfied.

In addition to the built-in extensions listed below, you can define your own extension by implementing Extension
or using the make_extension() decorator. See Trainer Extensions for details.

Common

chainer.training.Extension Base class of trainer extensions.
chainer.training.make_extension Decorator to make given functions into trainer exten-

sions.

chainer.training.Extension

class chainer.training.Extension
Base class of trainer extensions.

Extension of Trainer is a callable object that takes the trainer object as the argument. It also provides some
default configurations as its attributes, e.g. the default trigger and the default priority. This class provides a set
of typical default values for these attributes.

There are three ways to define users’ own extensions: inheriting this class, decorating closures by
make_extension(), or using any callable including lambda functions as extensions. Decorator can slightly
reduce the overhead and is much easier to use, while this class provides more flexibility (for example, it can
have methods to configure the behavior). Using a lambda function allows one-line coding for simple purposes,
but users have to specify the configurations as arguments to Trainer.extend(). For a callable not in-
heriting this class, the default configurations of this class are used unless the user explicitly specifies them in
Trainer.extend() method.

Variables

• trigger – Default value of trigger for this extension. It is set to (1, 'iteration')
by default.

• priority – Default priority of the extension. It is set to PRIORITY_READER by default.

4.8. Training Tools 923



Chainer Documentation, Release 6.5.0

• name – Name of the extension. It is set to None by default. This value will be overwrit-
ten when registering an extension to a trainer. See chainer.training.Trainer.
extend() for details.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

924 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.make_extension

chainer.training.make_extension(trigger=None, default_name=None, priority=None, final-
izer=None, initializer=None, on_error=None, **kwargs)

Decorator to make given functions into trainer extensions.

This decorator just adds some attributes to a given function. The value of the attributes are given by the argu-
ments of this decorator.

See Extension for details of trainer extensions. Most of the default values of arguments also follow those for
this class.

Parameters

• trigger – Default trigger of the extension.

• default_name – Default name of the extension. The name of a given function is used by
default.

• priority (int) – Default priority of the extension.

• finalizer – Finalizer function of this extension. It is called at the end of the training
loop.

• initializer – Initializer function of this extension. It is called at the beginning of the
training loop.

• on_error – Error handler callback function of this extension. It is called after an error is
raised during the trainer loop.

Evaluation and Metrics Collection

These extensions provide features to collect additional metrics. The typical use case is to use Evaluator to perform
evaluation with a validation dataset to compute validation loss/accuracy.

4.8. Training Tools 925

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.training.extensions.
Evaluator

Trainer extension to evaluate models on a validation set.

chainer.training.extensions.
MicroAverage

Calculates micro-average ratio.

chainer.training.extensions.
FailOnNonNumber

Trainer extension to raise RuntimeError if parameters
contain NaN or Inf.

chainer.training.extensions.
ParameterStatistics

Trainer extension to report parameter statistics.

chainer.training.extensions.
observe_lr

Returns a trainer extension to record the learning rate.

chainer.training.extensions.
observe_value

Returns a trainer extension to continuously record a
value.

chainer.training.extensions.Evaluator

class chainer.training.extensions.Evaluator(iterator, target, converter=<function
concat_examples>, device=None,
eval_hook=None, eval_func=None)

Trainer extension to evaluate models on a validation set.

This extension evaluates the current models by a given evaluation function. It creates a Reporter object to
store values observed in the evaluation function on each iteration. The report for all iterations are aggregated to
DictSummary . The collected mean values are further reported to the reporter object of the trainer, where the
name of each observation is prefixed by the evaluator name. See Reporter for details in naming rules of the
reports.

Evaluator has a structure to customize similar to that of StandardUpdater. The main differences are:

• There are no optimizers in an evaluator. Instead, it holds links to evaluate.

• An evaluation loop function is used instead of an update function.

• Preparation routine can be customized, which is called before each evaluation. It can be used, e.g., to
initialize the state of stateful recurrent networks.

There are two ways to modify the evaluation behavior besides setting a custom evaluation function. One is
by setting a custom evaluation loop via the eval_func argument. The other is by inheriting this class and
overriding the evaluate() method. In latter case, users have to create and handle a reporter object manually.
Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation. In
both cases, the functions are called in testing mode (i.e., chainer.config.train is set to False).

This extension is called at the end of each epoch by default.

Parameters

• iterator – Dataset iterator for the validation dataset. It can also be a dictionary of itera-
tors. If this is just an iterator, the iterator is registered by the name 'main'.

• target – Link object or a dictionary of links to evaluate. If this is just a link object, the
link is registered by the name 'main'.

• converter – Converter function to build input arrays. concat_examples() is used
by default.

• device – Device to which the validation data is sent. Negative value indicates the host
memory (CPU).

926 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

• eval_hook – Function to prepare for each evaluation process. It is called at the beginning
of the evaluation. The evaluator extension object is passed at each call.

• eval_func – Evaluation function called at each iteration. The target link to evaluate as a
callable is used by default.

Variables

• converter – Converter function.

• device – Device to which the validation data is sent.

• eval_hook – Function to prepare for each evaluation process.

• eval_func – Evaluation function called at each iteration.

Methods

__call__(trainer=None)
Executes the evaluator extension.

Unlike usual extensions, this extension can be executed without passing a trainer object. This extension
reports the performance on validation dataset using the report() function. Thus, users can use this
extension independently from any trainer by manually configuring a Reporter object.

Parameters trainer (Trainer) – Trainer object that invokes this extension. It can be omit-
ted in case of calling this extension manually.

Returns Result dictionary that contains mean statistics of values reported by the evaluation func-
tion.

Return type dict

evaluate()
Evaluates the model and returns a result dictionary.

This method runs the evaluation loop over the validation dataset. It accumulates the reported values to
DictSummary and returns a dictionary whose values are means computed by the summary.

Note that this function assumes that the main iterator raises StopIteration or code in the evaluation
loop raises an exception. So, if this assumption is not held, the function could be caught in an infinite loop.

Users can override this method to customize the evaluation routine.

Note: This method encloses eval_func calls with function.no_backprop_mode() context, so
all calculations using FunctionNodes inside eval_func do not make computational graphs. It is for
reducing the memory consumption.

Returns Result dictionary. This dictionary is further reported via report()without specifying
any observer.

Return type dict

finalize()
Finalizes the evaluator object.

This method calls the finalize method of each iterator that this evaluator has. It is called at the end of
training loops.

4.8. Training Tools 927

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

get_all_iterators()
Returns a dictionary of all iterators.

get_all_targets()
Returns a dictionary of all target links.

get_iterator(name)
Returns the iterator of the given name.

get_target(name)
Returns the target link of the given name.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

928 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

Attributes

default_name = 'validation'

name = None

priority = 300

trigger = (1, 'epoch')

chainer.training.extensions.MicroAverage

class chainer.training.extensions.MicroAverage(numerator_key, denominator_key, re-
sult_key, trigger=(1, ’epoch’))

Calculates micro-average ratio.

Give 𝑁 batches and values {𝑛1, . . . , 𝑛𝑁} and {𝑑1, . . . , 𝑑𝑁}, this extension calculates micro-average of these
ratio defined as: ∑︀𝑁

𝑖 𝑛𝑖∑︀𝑁
𝑖 𝑑𝑖

.

A user usually uses the number of examples which a system correctly predict as 𝑛𝑖 and the number of total
examples in 𝑖-th batch as 𝑑𝑖. This value is called macro-average of precision.

Note that macro-average is defined as:

1

𝑁

𝑁∑︁
𝑖

(𝑛𝑖/𝑑𝑖),

It is same to the micro-average when each mini-batch has the same 𝑑𝑖.

You need to report numerator value (the number of correct examples) and denominator value (the number of
examples) in your model.

>>> class MyModel(chainer.Link):
... def __call__(self, x, y):
... loss = F.softmax_cross_entropy(x, y)
... correct = (x.data.argmax(axis=1) == y.data).sum()
... total = len(y.data)
... reporter.report({'correct': correct, 'total': total}, self)
... return loss

And then, make an extension with corresponding reporting keys and register it.

>>> ext = extensions.MicroAverage(
... 'main/correct', 'main/total', 'main/accuracy')

Parameters

• numerator_key (str) – Key string of obserbation storing a numerator value.

• denominator_key (str) – Key string of obserbation storing a denominator value.

• result_key (str) – Key string of obserbation to store a result.

• trigger – Trigger that decides when to calcurate average. This is distinct from the trig-
ger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>,
'iteration', it is passed to IntervalTrigger.

4.8. Training Tools 929

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

930 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 200

trigger = (1, 'iteration')

chainer.training.extensions.FailOnNonNumber

class chainer.training.extensions.FailOnNonNumber
Trainer extension to raise RuntimeError if parameters contain NaN or Inf.

Although parameters including non-number such as NaN and Inf are unnecessary in most cases, Trainer will
continue to compute even if the parameters in a given optimizer diverge. This extension is aimed to reduce
unnecessary computations by throwing RuntimeError if the parameters contain NaN or Inf.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

4.8. Training Tools 931



Chainer Documentation, Release 6.5.0

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

932 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

chainer.training.extensions.ParameterStatistics

class chainer.training.extensions.ParameterStatistics(links, statistics={’max’:
<function ParameterStatis-
tics.<lambda>>, ’mean’:
<function ParameterStatis-
tics.<lambda>>, ’min’:
<function ParameterStatis-
tics.<lambda>>, ’per-
centile’: <function Param-
eterStatistics.<lambda>>,
’std’: <function Parame-
terStatistics.<lambda>>,
’zeros’: <function Parameter-
Statistics.<lambda>>},
report_params=True,
report_grads=True,
prefix=None, trig-
ger=(1, ’epoch’),
skip_nan_params=False)

Trainer extension to report parameter statistics.

Statistics are collected and reported for a given Link or an iterable of Links. If a link contains child links, the
statistics are reported separately for each child.

Any function that takes a one-dimensional numpy.ndarray or a cupy.ndarray and outputs a single or
multiple real numbers can be registered to handle the collection of statistics, e.g. numpy.ndarray.mean().

The keys of reported statistics follow the convention of link name followed by parameter name, attribute name
and function name, e.g. VGG16Layers/conv1_1/W/data/mean. They are prepended with an optional
prefix and appended with integer indices if the statistics generating function return multiple values.

Parameters

• links (Link or iterable of ~chainer.Link) – Link(s) containing the param-
eters to observe. The link is expected to have a name attribute which is used as a part of the
report key.

• statistics (dict) – Dictionary with function name to function mappings. The name
is a string and is used as a part of the report key. The function is responsible for generating
the statistics.

• report_params (bool) – If True, report statistics for parameter values such as weights
and biases.

• report_grads (bool) – If True, report statistics for parameter gradients.

• prefix (str) – Optional prefix to prepend to the report keys.

• trigger – Trigger that decides when to aggregate the results and report the values.

• skip_nan_params (bool) – If True, statistics are not computed for parameters includ-
ing NaNs and a single NaN value is immediately reported instead. Otherwise, this extension
will simply try to compute the statistics without performing any checks for NaNs.

Methods

__call__(trainer)
Execute the statistics extension.

4.8. Training Tools 933

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Collect statistics for the current state of parameters.

Note that this method will merely update its statistic summary, unless the internal trigger is fired. If the
trigger is fired, the summary will also be reported and then reset for the next accumulation.

Parameters trainer (Trainer) – Associated trainer that invoked this extension.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

register_statistics(name, function)
Register a function to compute a certain statistic.

The registered function will be called each time the extension runs and the results will be included in the
report.

Parameters

• name (str) – Name of the statistic.

• function – Function to generate the statistic. Any function that takes a one-dimensional
numpy.ndarray or a cupy.ndarray and outputs a single or multiple real numbers
is allowed.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

934 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name = 'parameter_statistics'

default_statistics = {'max': <function ParameterStatistics.<lambda>>, 'mean': <function ParameterStatistics.<lambda>>, 'min': <function ParameterStatistics.<lambda>>, 'percentile': <function ParameterStatistics.<lambda>>, 'std': <function ParameterStatistics.<lambda>>, 'zeros': <function ParameterStatistics.<lambda>>}

name = None

priority = 300

report_key_template = '{prefix}{link_name}{param_name}/{attr_name}/{function_name}'

trigger = (1, 'iteration')

chainer.training.extensions.observe_lr

chainer.training.extensions.observe_lr(optimizer_name=’main’, observation_key=’lr’)
Returns a trainer extension to record the learning rate.

Parameters

• optimizer_name (str) – Name of optimizer whose learning rate is recorded.

• observation_key (str) – Key of observation to record.

Returns The extension function.

chainer.training.extensions.observe_value

chainer.training.extensions.observe_value(observation_key, target_func)
Returns a trainer extension to continuously record a value.

Parameters

• observation_key (str) – Key of observation to record.

• target_func (function) – Function that returns the value to record. It must take one
argument: :class:~chainer.training.Trainer object.

Returns The extension function.

Optimizer Behavior Control

These extensions provide features to adjust optimizer behavior. The typical use case is to change the learning rate of
the optimizer over time.

4.8. Training Tools 935

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainer.training.extensions.
ExponentialShift

Trainer extension to exponentially shift an optimizer at-
tribute.

chainer.training.extensions.
InverseShift

Trainer extension to shift an optimizer attribute.

chainer.training.extensions.
LinearShift

Trainer extension to change an optimizer attribute lin-
early.

chainer.training.extensions.
MultistepShift

Trainer extension to shift an optimizer attribute in sev-
eral steps.

chainer.training.extensions.
PolynomialShift

Trainer extension to polynomially shift an optimizer at-
tribute.

chainer.training.extensions.
WarmupShift

Trainer extension to gradually initialize an optimizer at-
tribute.

chainer.training.extensions.StepShift Trainer extension to shift an optimizer attribute in
“steps”.

chainer.training.extensions.ExponentialShift

class chainer.training.extensions.ExponentialShift(attr, rate, init=None, tar-
get=None, optimizer=None)

Trainer extension to exponentially shift an optimizer attribute.

This extension exponentially increases or decreases the specified attribute of the optimizer. The typical use case
is an exponential decay of the learning rate.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• rate (float) – Rate of the exponential shift. This value is multiplied to the attribute at
each call.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

936 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

4.8. Training Tools 937

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

trigger = (1, 'iteration')

chainer.training.extensions.InverseShift

class chainer.training.extensions.InverseShift(attr, gamma, power, init=None, tar-
get=None, optimizer=None)

Trainer extension to shift an optimizer attribute.

The new value is computed according to the fomula below: new_attr = init_attr * (1 + gamma * iter) ^ (- power),
which is compatible to the inv learning rate policy in Caffe.

The typical use is to decrease the learning rate during the training.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• gamma (float) – Parameter used to compute the new value. Refer to the fomula above.
Note that gamma is assumed to be nonegative.

• power (float) – Parameter used to compute the new value. Refer to the fomula above.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

938 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.LinearShift

class chainer.training.extensions.LinearShift(attr, value_range, time_range, opti-
mizer=None)

Trainer extension to change an optimizer attribute linearly.

This extension changes an optimizer attribute from the first value to the last value linearly within a specified
duration. The typical use case is warming up of the momentum coefficient.

4.8. Training Tools 939

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

For example, suppose that this extension is called at every iteration, and value_range == (x, y) and
time_range == (i, j). Then, this extension keeps the attribute to be x up to the i-th iteration, linearly
shifts the value to y by the j-th iteration, and then keeps the value to be y after the j-th iteration.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the optimizer attribute to adjust.

• value_range (tuple of float) – The first and the last values of the attribute.

• time_range (tuple of ints) – The first and last counts of calls in which the attribute
is adjusted.

• optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
the trainer is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

940 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.MultistepShift

class chainer.training.extensions.MultistepShift(attr, gamma, step_value, init, opti-
mizer=None)

Trainer extension to shift an optimizer attribute in several steps.

This extension changes an optimizer attribute in several steps, every step the attribute will multiply a factor
gamma.

For example, suppose that this extension is called at every iteration, and init = x, gamma = y,
step_value = [s1, s2, s3]. Then during the iterations from 0 to (s1 - 1), the attr will be x. Dur-
ing the iterations from s1 to (s2 - 1), the attr will be x * y. During the iterations from s2 to (s3 - 1), the attr
will be x * y * y. During the iterations after s3, the attr will be x * y * y * y.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• gamma (float) – The factor which the attr will mutiply at the beginning of each step.

4.8. Training Tools 941

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• step_value (tuple) – The first iterations of each step.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

942 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.PolynomialShift

class chainer.training.extensions.PolynomialShift(attr, rate, max_count, init=None,
target=None, optimizer=None)

Trainer extension to polynomially shift an optimizer attribute.

This extension polynomially decreases the specified attribute of the optimizer. The typical use case is a polyno-
mial decay of the learning rate at each iteration.

For example, suppose that this extension is invoke at every iteration. Then this extension will set the corre-
sponding attribute to init_value * (1 - i / max_iter) ^ rate at the i-th iteration, where the
max_iter is the number of iterations to be running.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• rate (float) – Exponent of polynomial shift.

• max_count (int) – Number of this extension to be invoked.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

4.8. Training Tools 943

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

944 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

invoke_before_training = True

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.WarmupShift

class chainer.training.extensions.WarmupShift(attr, warmup_start, warmup_iter, init, op-
timizer=None)

Trainer extension to gradually initialize an optimizer attribute.

This extension changes an optimizer attribute evenly at the begining of one training.

For example, suppose that this extension is called at every iteration, and warmup_start = x , init = y, warmup_iter
= t. Then this extension will set the corresponding attribute to from x to y evenly in first t iterations.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the optimizer attribute to adjust.

• warmup_start (float) – the value of the attr at the begining of one training.

• init (float) – the value of the attr after warm up iterations.

• warmup_iter (int) – the number of the iterations in which the attr changes from
warmup_start to init.

• optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
the trainer is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

4.8. Training Tools 945

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

946 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

chainer.training.extensions.StepShift

class chainer.training.extensions.StepShift(attr, gamma, step, init=None, target=None,
optimizer=None)

Trainer extension to shift an optimizer attribute in “steps”.

This extension multiplies the specified attribute of the optimizer in “steps”. The typical use case is to scale the
attribute at every kth iteration.

For example, suppose that this extension is invoked at every iteration, then given k, a multiplier gamma and
an initial value init, the optimizer attribute is set to init * gamma ^ (floor(i / k)), where i
represents the index of the current iteration.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the optimizer attribute to adjust.

• gamma (float) – The multiplier.

• step (int) – The interval for the multiplication, i.e., k.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
the trainer is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

4.8. Training Tools 947

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

Reporting

These extensions provide features to perform reporting of metrics and various statistics to the console or files.

chainer.training.extensions.
PrintReport

Trainer extension to print the accumulated results.

chainer.training.extensions.
ProgressBar

Trainer extension to print a progress bar and recent
training status.

Continued on next page

948 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

Table 41 – continued from previous page
chainer.training.extensions.LogReport Trainer extension to output the accumulated results to a

log file.
chainer.training.extensions.
PlotReport

Trainer extension to output plots.

chainer.training.extensions.
VariableStatisticsPlot

Trainer extension to plot statistics for Variables.

chainer.training.extensions.DumpGraph Trainer extension to dump a computational graph.

chainer.training.extensions.PrintReport

class chainer.training.extensions.PrintReport(entries, log_report=’LogReport’,
out=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Trainer extension to print the accumulated results.

This extension uses the log accumulated by a LogReport extension to print specified entries of the log in a
human-readable format.

Parameters

• entries (list of str) – List of keys of observations to print.

• log_report (str or LogReport) – Log report to accumulate the observations. This
is either the name of a LogReport extensions registered to the trainer, or a LogReport in-
stance to use internally.

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

4.8. Training Tools 949

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.ProgressBar

class chainer.training.extensions.ProgressBar(training_length=None, up-
date_interval=100, bar_length=50,
out=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Trainer extension to print a progress bar and recent training status.

950 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

This extension prints a progress bar at every call. It watches the current iteration and epoch to print the bar.

Parameters

• training_length (tuple) – Length of whole training. It consists of an integer and
either 'epoch' or 'iteration'. If this value is omitted and the stop trigger of the
trainer is IntervalTrigger, this extension uses its attributes to determine the length of
the training.

• update_interval (int) – Number of iterations to skip printing the progress bar.

• bar_length (int) – Length of the progress bar in characters.

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

4.8. Training Tools 951

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.LogReport

class chainer.training.extensions.LogReport(keys=None, trigger=(1, ’epoch’), postpro-
cess=None, filename=’log’)

Trainer extension to output the accumulated results to a log file.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by
a supplied trigger, and writes them into a log file in JSON format.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used
to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary
of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes
a new fresh summary object which is used until the next time that the trigger fires.

It also adds some entries to each result dictionary.

• 'epoch' and 'iteration' are the epoch and iteration counts at the output, respectively.

• 'elapsed_time' is the elapsed time in seconds since the training begins. The value is taken from
Trainer.elapsed_time.

Parameters

• keys (iterable of strs) – Keys of values to accumulate. If this is None, all the
values are accumulated and output to the log file.

952 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

• trigger – Trigger that decides when to aggregate the result and output the values. This
is distinct from the trigger of this extension itself. If it is a tuple in the form <int>,
'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.

• postprocess – Callback to postprocess the result dictionaries. Each result dictionary is
passed to this callback on the output. This callback can modify the result dictionaries, which
are used to output to the log file.

• filename (str) – Name of the log file under the output directory. It can be a format
string: the last result dictionary is passed for the formatting. For example, users can use
‘{iteration}’ to separate the log files for different iterations. If the log name is None, it does
not output the log to any file. For historical reasons log_name is also accepted as an alias
of this argument.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

4.8. Training Tools 953

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

log
The current list of observation dictionaries.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.PlotReport

class chainer.training.extensions.PlotReport(y_keys, x_key=’iteration’, trigger=(1,
’epoch’), postprocess=None, file-
name=’plot.png’, marker=’x’, grid=True)

Trainer extension to output plots.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by
a supplied trigger, and plot a graph with using them.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used
to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary
of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes
a new fresh summary object which is used until the next time that the trigger fires.

It also adds 'epoch' and 'iteration' entries to each result dictionary, which are the epoch and iteration
counts at the output.

Warning: If your environment needs to specify a backend of matplotlib explicitly, please call
matplotlib.use before calling trainer.run. For example:

954 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

import matplotlib
matplotlib.use('Agg')

trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'],

'epoch', filename='loss.png'))
trainer.run()

Then, once one of instances of this extension is called, matplotlib.use will have no effect.

For the details, please see here: https://matplotlib.org/faq/usage_faq.html#what-is-a-backend

Parameters

• y_keys (iterable of strs) – Keys of values regarded as y. If this is None, nothing
is output to the graph.

• x_key (str) – Keys of values regarded as x. The default value is ‘iteration’.

• trigger – Trigger that decides when to aggregate the result and output the values. This
is distinct from the trigger of this extension itself. If it is a tuple in the form <int>,
'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.

• postprocess – Callback to postprocess the result dictionaries. Figure object, Axes ob-
ject, and all plot data are passed to this callback in this order. This callback can modify the
figure.

• filename (str) – Name of the figure file under the output directory. It can be a format
string. For historical reasons file_name is also accepted as an alias of this argument.

• marker (str) – The marker used to plot the graph. Default is 'x'. If None is given, it
draws with no markers.

• grid (bool) – If True, set the axis grid on. The default value is True.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

static available()

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

4.8. Training Tools 955

https://matplotlib.org/faq/usage_faq.html#what-is-a-backend
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

956 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

chainer.training.extensions.VariableStatisticsPlot

class chainer.training.extensions.VariableStatisticsPlot(targets,
max_sample_size=1000,
report_data=True,
report_grad=True,
plot_mean=True,
plot_std=True, per-
centile_sigmas=(0, 0.13,
2.28, 15.87, 50, 84.13,
97.72, 99.87, 100),
trigger=(1, ’epoch’),
filename=’statistics.png’,
figsize=None,
marker=None,
grid=True)

Trainer extension to plot statistics for Variables.

This extension collects statistics for a single Variable, a list of Variables or similarly a single or a list of
Links containing one or more Variables. In case multiple Variables are found, the means are computed.
The collected statistics are plotted and saved as an image in the directory specified by the Trainer.

Statistics include mean, standard deviation and percentiles.

This extension uses reservoir sampling to preserve memory, using a fixed size running sample. This means that
collected items in the sample are discarded uniformly at random when the number of items becomes larger than
the maximum sample size, but each item is expected to occur in the sample with equal probability.

Parameters

• targets (Variable, Link or list of either) – Parameters for which statistics are col-
lected.

• max_sample_size (int) – Maximum number of running samples.

• report_data (bool) – If True, data (e.g. weights) statistics are plotted. If False,
they are neither computed nor plotted.

• report_grad (bool) – If True, gradient statistics are plotted. If False, they are
neither computed nor plotted.

• plot_mean (bool) – If True, means are plotted. If False, they are neither computed
nor plotted.

• plot_std (bool) – If True, standard deviations are plotted. If False, they are neither
computed nor plotted.

• percentile_sigmas (float or tuple of floats) – Percentiles to plot in the
range [0, 100].

• trigger – Trigger that decides when to save the plots as an image. This is distinct from the
trigger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>,
'iteration', it is passed to IntervalTrigger.

• filename (str) – Name of the output image file under the output directory. For historical
reasons file_name is also accepted as an alias of this argument.

• figsize (tuple of int) – Matlotlib figsize argument that specifies the size of the
output image.

• marker (str) – Matplotlib marker argument that specified the marker style of the plots.

4.8. Training Tools 957

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• grid (bool) – Matplotlib grid argument that specifies whether grids are rendered in in
the plots or not.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

static available()

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

save_plot_using_module(file_path, plt)

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

958 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.DumpGraph

class chainer.training.extensions.DumpGraph(root_name, filename=’cg.dot’, vari-
able_style=None, function_style=None)

Trainer extension to dump a computational graph.

This extension dumps a computational graph. The graph is output in DOT language. If graphviz is available,
this also renders and saves the image of the computational graph.

It only dumps a graph at the first invocation.

Note: The computational graph is not kept by default. This extension changes this behavior until the first
invocation. It is strongly recommended that you use it with the default trigger setting.

The detailed behavior of this extension is as follows.

1. In its initializer, it turns on the chainer.config.keep_graph_on_report flag.

2. At the first iteration, it dumps the graph using the graph held by the reported variable.

3. After dumping the graph, it turns off the flag (if it was originally turned off) so that any variable reported
afterward does not hold a computational graph.

When the keep_graph_on_report flag is turned on, the computational graph created by the updater is
kept during the invocation of extensions. It will cause an unnecessarily large memory consumption when an
extension also uses a large amount of memory, e.g. Evaluator.

With the default setting, the DumpGraph extension is called at the first iteration. Since Evaluator is not
called at the first iteration in most cases, it does not cause any memory problem.

Parameters

4.8. Training Tools 959



Chainer Documentation, Release 6.5.0

• root_name (str) – Name of the root of the computational graph. The root variable is
retrieved by this name from the observation dictionary of the trainer.

• filename (str) – Output file name. For historical reasons out_name is also accepted
as an alias of this argument.

• variable_style (dict) – Dot node style for variables. Each variable is rendered by
an octagon by default.

• function_style (dict) – Dot node style for functions. Each function is rendered by a
rectangular by default.

See also:

See build_computational_graph() for the variable_style and function_style arguments.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

960 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

trigger(trainer)
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name = 'dump_graph'

name = None

priority = 100

Snapshot

These extensions provide features to take snapshots of models.

chainer.training.extensions.snapshot Returns a trainer extension to take snapshots of the
trainer.

chainer.training.extensions.
snapshot_object

Returns a trainer extension to take snapshots of a given
object.

chainer.training.extensions.snapshot

chainer.training.extensions.snapshot(savefun=None, filename=’snapshot_iter_{.updater.iteration}’,
*, target=None, condition=None, writer=None,
snapshot_on_error=False, num_retain=-1, au-
toload=False)

Returns a trainer extension to take snapshots of the trainer.

This extension serializes the trainer object and saves it to the output directory. It is used to support resuming the
training loop from the saved state.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object
specifying the required interval can be passed along with this extension to the extend() method of the trainer.

4.8. Training Tools 961



Chainer Documentation, Release 6.5.0

The default priority is -100, which is lower than that of most built-in extensions.

Note: This extension first writes the serialized object to a temporary file and then rename it to the target file
name. Thus, if the program stops right before the renaming, the temporary file might be left in the output
directory.

Parameters

• savefun – Function to save the trainer. It takes two arguments: the output file path and
the trainer object. It is chainer.serializers.save_npz() by default. If writer
is specified, this argument must be None.

• filename (str) – Name of the file into which the trainer is serialized. It can be a format
string, where the trainer object is passed to the str.format() method.

• target – Object to serialize. If it is not specified, it will be the trainer object.

• condition – Condition object. It must be a callable object that returns boolean without
any arguments. If it returns True, the snapshot will be done. If not, it will be skipped. The
default is a function that always returns True.

• writer – Writer object. It must be a callable object. See below for the list of built-in
writers. If savefun is other than None, this argument must be None. In that case, a
SimpleWriter object instantiated with specified savefun argument will be used.

• snapshot_on_error (bool) – Whether to take a snapshot in case trainer loop has been
failed.

• n_retains (int) – Number of snapshot files to retain through the cleanup. Must be a
positive integer for any cleanup to take place. Automatic deletion of old snapshots only
works when the filename is string.

• num_retain (int) – Same as n_retains (deprecated).

• autoload (bool) – With this enabled, the extension automatically finds the latest snap-
shot and loads the data to the target. Automatic loading only works when the filename
is a string. It is assumed that snapshots are generated by chainer.serializers.
save_npz() .

Returns Snapshot extension object.

Using asynchronous writers

By specifying writer argument, writing operations can be made asynchronous, hiding I/O overhead of snap-
shots.

>>> from chainer.training import extensions
>>> writer = extensions.snapshot_writers.ProcessWriter()
>>> trainer.extend(extensions.snapshot(writer=writer), trigger=(1, 'epoch'))

To change the format, such as npz or hdf5, you can pass a saving function as savefun argument of the writer.

>>> from chainer.training import extensions
>>> from chainer import serializers
>>> writer = extensions.snapshot_writers.ProcessWriter(
... savefun=serializers.save_npz)
>>> trainer.extend(extensions.snapshot(writer=writer), trigger=(1, 'epoch'))

962 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This is the list of built-in snapshot writers.

• chainer.training.extensions.snapshot_writers.SimpleWriter

• chainer.training.extensions.snapshot_writers.ThreadWriter

• chainer.training.extensions.snapshot_writers.ProcessWriter

• chainer.training.extensions.snapshot_writers.ThreadQueueWriter

• chainer.training.extensions.snapshot_writers.ProcessQueueWriter

See also:

• chainer.training.extensions.snapshot_object()

chainer.training.extensions.snapshot_object

chainer.training.extensions.snapshot_object(target, filename, savefun=None, *,
condition=None, writer=None, snap-
shot_on_error=False, num_retain=-1,
autoload=False)

Returns a trainer extension to take snapshots of a given object.

This extension serializes the given object and saves it to the output directory.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object
specifying the required interval can be passed along with this extension to the extend() method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

Parameters

• target – Object to serialize.

• filename (str) – Name of the file into which the object is serialized. It can be a for-
mat string, where the trainer object is passed to the str.format() method. For exam-
ple, 'snapshot_{.updater.iteration}' is converted to 'snapshot_10000'
at the 10,000th iteration.

• savefun – Function to save the object. It takes two arguments: the output file path and the
object to serialize.

• condition – Condition object. It must be a callable object that returns boolean without
any arguments. If it returns True, the snapshot will be done. If not, it will be skipped. The
default is a function that always returns True.

• writer – Writer object. It must be a callable object. See below for the list of built-in
writers. If savefun is other than None, this argument must be None. In that case, a
SimpleWriter object instantiated with specified savefun argument will be used.

• snapshot_on_error (bool) – Whether to take a snapshot in case trainer loop has been
failed.

• n_retains (int) – Number of snapshot files to retain through the cleanup. Must be a
positive integer for any cleanup to take place. Automatic deletion of old snapshots only
works when the filename is string.

• num_retain (int) – Same as n_retains (deprecated).

4.8. Training Tools 963

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• autoload (bool) – With this enabled, the extension automatically finds the latest snap-
shot and loads the data to the target. Automatic loading only works when the filename is a
string.

Returns Snapshot extension object.

See also:

• chainer.training.extensions.snapshot()

Memory Release

These extensions provide features to release memories.

chainer.training.extensions.
unchain_variables

Trainer extension to unchain all comptational graphs.

chainer.training.extensions.unchain_variables

class chainer.training.extensions.unchain_variables
Trainer extension to unchain all comptational graphs.

This extenstion unchains all comptational graphs after all extensions are run to release memory and to avoid
memory leak. This extension can be used as a last resort when there is an extension that use a variable graph and
cannot release the graph in itself. It observes the previous chainer.config.keep_graph_on_report
flag. The extension is triggered when the flag is turned on.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(_)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

964 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

trigger(_)
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 0

4.8.4 Triggers

A trigger is a callable object to decide when to process some specific event within the training loop. It takes a Trainer
object as the argument, and returns True if some event should be fired.

It is mainly used to determine when to call an extension. It is also used to determine when to quit the training loop.

4.8. Training Tools 965

https://docs.python.org/3/library/exceptions.html#Exception


Chainer Documentation, Release 6.5.0

chainer.training.get_trigger Gets a trigger object.
chainer.training.triggers.
BestValueTrigger

Trigger invoked when specific value becomes best.

chainer.training.triggers.
EarlyStoppingTrigger

Trigger for Early Stopping

chainer.training.triggers.
IntervalTrigger

Trigger based on a fixed interval.

chainer.training.triggers.
ManualScheduleTrigger

Trigger invoked at specified point(s) of iterations or
epochs.

chainer.training.triggers.
MaxValueTrigger

Trigger invoked when specific value becomes maxi-
mum.

chainer.training.triggers.
MinValueTrigger

Trigger invoked when specific value becomes mini-
mum.

chainer.training.triggers.
OnceTrigger

Trigger based on the starting point of the iteration.

chainer.training.triggers.
TimeTrigger

Trigger based on a fixed time interval.

chainer.training.get_trigger

chainer.training.get_trigger(trigger)
Gets a trigger object.

Trigger object is a callable that accepts a Trainer object as an argument and returns a boolean value. When
it returns True, various kinds of events can occur depending on the context in which the trigger is used. For
example, if the trigger is passed to the Trainer as the stop trigger, the training loop breaks when the trigger
returns True. If the trigger is passed to the extend() method of a trainer, then the registered extension is
invoked only when the trigger returns True.

This function returns a trigger object based on the argument. If trigger is already a callable, it just re-
turns the trigger. If trigger is None, it returns a trigger that never fires. Otherwise, it passes the value to
IntervalTrigger.

Parameters trigger – Trigger object. It can be either an already built trigger object (i.e., a
callable object that accepts a trainer object and returns a bool value), or a tuple. In latter case,
the tuple is passed to IntervalTrigger.

Returns trigger if it is a callable, otherwise a IntervalTrigger object made from
trigger.

chainer.training.triggers.BestValueTrigger

class chainer.training.triggers.BestValueTrigger(key, compare, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes best.

Parameters

• key (str) – Key of value.

• compare (callable) – Compare function which takes current best value and new value
and returns whether new value is better than current best.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

966 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.EarlyStoppingTrigger

class chainer.training.triggers.EarlyStoppingTrigger(check_trigger=(1, ’epoch’),
monitor=’main/loss’, pa-
tients=3, mode=’auto’,
verbose=False,
max_trigger=(100, ’epoch’))

Trigger for Early Stopping

It can be used as a stop trigger of Trainer to realize early stopping technique.

This trigger works as follows. Within each check interval defined by the check_trigger argument, it mon-
itors and accumulates the reported value at each iteration. At the end of each interval, it computes the mean of
the accumulated values and compares it to the previous ones to maintain the best value. When it finds that the
best value is not updated for some periods (defined by patients), this trigger fires.

Parameters

• monitor (str) – The metric you want to monitor

• check_trigger – Trigger that decides the comparison interval between current best
value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

• patients (int) – Counts to let the trigger be patient. The trigger will not fire until the
condition is met for successive patient checks.

• mode (str) – 'max', 'min', or 'auto'. It is used to determine how to compare the
monitored values.

4.8. Training Tools 967

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• verbose (bool) – Enable verbose output. If verbose is true, you can get more information

• max_trigger – Upper bound of the number of training loops

Methods

__call__(trainer)
Decides whether the training loop should be stopped.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the training loop should be stopped.

Return type bool

get_training_length()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.IntervalTrigger

class chainer.training.triggers.IntervalTrigger(period, unit)
Trigger based on a fixed interval.

This trigger accepts iterations divided by a given interval. There are two ways to specify the interval: per
iterations and epochs. Iteration means the number of updates, while epoch means the number of sweeps over
the training dataset. Fractional values are allowed if the interval is a number of epochs; the trigger uses the
iteration and epoch_detail attributes defined by the updater.

For the description of triggers, see get_trigger().

Parameters

• period (int or float) – Length of the interval. Must be an integer if unit is
'iteration'.

• unit (str) – Unit of the length specified by period. It must be either 'iteration'
or 'epoch'.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

968 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

get_training_length()

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.ManualScheduleTrigger

class chainer.training.triggers.ManualScheduleTrigger(points, unit)
Trigger invoked at specified point(s) of iterations or epochs.

This trigger accepts iterations or epochs indicated by given point(s). There are two ways to specify the point(s):
iteration and epoch. iteration means the number of updates, while epoch means the number of sweeps
over the training dataset. Fractional values are allowed if the point is a number of epochs; the trigger uses the
iteration and epoch_detail attributes defined by the updater.

Parameters

• points (int, float, or list of int or float) – time of the trigger. Must
be an integer or list of integer if unit is 'iteration'.

• unit (str) – Unit of the time specified by points. It must be either 'iteration' or
'epoch'.

Variables

• finished (bool) – Flag that indicates whether or not this trigger will

• in the future. This flag is used to determine if the
extension (fire) –

• be initialized after resume. (should) –

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

4.8. Training Tools 969

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.MaxValueTrigger

class chainer.training.triggers.MaxValueTrigger(key, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes maximum.

For example you can use this trigger to take snapshot on the epoch the validation accuracy is maximum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes maximum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

970 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.MinValueTrigger

class chainer.training.triggers.MinValueTrigger(key, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes minimum.

For example you can use this trigger to take snapshot on the epoch the validation loss is minimum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes minimum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.8. Training Tools 971

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

chainer.training.triggers.OnceTrigger

class chainer.training.triggers.OnceTrigger(call_on_resume=False)
Trigger based on the starting point of the iteration.

This trigger accepts only once at starting point of the iteration. There are two ways to specify the starting point:
only starting point in whole iteration or called again when training resumed.

Parameters call_on_resume (bool) – Whether the extension is called again or not when re-
stored from a snapshot. It is set to False by default.

Variables

• finished (bool) – Flag that indicates whether or not this trigger will

• in the future. This flag is used to determine if the
extension (fire) –

• be initialized after resume. (should) –

Methods

__call__(trainer)
Call self as a function.

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

finished

chainer.training.triggers.TimeTrigger

class chainer.training.triggers.TimeTrigger(period)
Trigger based on a fixed time interval.

This trigger accepts iterations with a given interval time.

Parameters period (float) – Interval time. It is given in seconds.

972 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

Methods

__call__(trainer)
Call self as a function.

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.9 Datasets

4.9.1 Dataset Abstraction (chainer.dataset)

Chainer supports a common interface for training and validation of datasets. The dataset support consists of three
components: datasets, iterators, and batch conversion functions.

Dataset represents a set of examples. The interface is only determined by combination with iterators you want to
use on it. The built-in iterators of Chainer require the dataset to support __getitem__ and __len__ methods. In
particular, the __getitem__ method should support indexing by both an integer and a slice. We can easily support
slice indexing by inheriting DatasetMixin, in which case users only have to implement get_example()method
for indexing. Basically, datasets are considered as stateless objects, so that we do not need to save the dataset as a
checkpoint of the training procedure.

Iterator iterates over the dataset, and at each iteration, it yields a mini-batch of examples as a list. Iterators should
support the Iterator interface, which includes the standard iterator protocol of Python. Iterators manage where to
read next, which means they are stateful.

Batch conversion function converts the mini-batch into arrays to feed to the neural nets. They are also responsible to
send each array to an appropriate device. Chainer currently provides two implementations:

• concat_examples() is a plain implementation which is used as the default choice.

• ConcatWithAsyncTransfer is a variant which is basically same as concat_examples() except that
it overlaps other GPU computations and data transfer for the next iteration.

These components are all customizable, and designed to have a minimum interface to restrict the types of datasets
and ways to handle them. In most cases, though, implementations provided by Chainer itself are enough to cover the
usages.

Chainer also has a light system to download, manage, and cache concrete examples of datasets. All
datasets managed through the system are saved under the dataset root directory, which is determined by the
CHAINER_DATASET_ROOT environment variable, and can also be set by the set_dataset_root() function.

4.9. Datasets 973



Chainer Documentation, Release 6.5.0

Dataset Representation

See Dataset Examples (chainer.datasets) for dataset implementations.

chainer.dataset.DatasetMixin Default implementation of dataset indexing.

chainer.dataset.DatasetMixin

class chainer.dataset.DatasetMixin
Default implementation of dataset indexing.

DatasetMixin provides the __getitem__() operator. The default implementation uses get_example()
to extract each example, and combines the results into a list. This mixin makes it easy to implement a new
dataset that does not support efficient slicing.

Dataset implementation using DatasetMixin still has to provide the __len__() operator explicitly.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

974 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Iterator Interface

See Iterator for dataset iterator implementations.

chainer.dataset.Iterator Base class of all dataset iterators.

chainer.dataset.Iterator

class chainer.dataset.Iterator
Base class of all dataset iterators.

Iterator iterates over the dataset, yielding a minibatch at each iteration. Minibatch is a list of examples. Each
implementation should implement an iterator protocol (e.g., the __next__() method).

Note that, even if the iterator supports setting the batch size, it does not guarantee that each batch always contains
the same number of examples. For example, if you let the iterator to stop at the end of the sweep, the last batch
may contain a fewer number of examples.

The interface between the iterator and the underlying dataset is not fixed, and up to the implementation.

Each implementation should provide the following attributes (not needed to be writable).

• batch_size: Number of examples within each minibatch.

• epoch: Number of completed sweeps over the dataset.

• epoch_detail: Floating point number version of the epoch. For example, if the iterator is at the middle
of the dataset at the third epoch, then this value is 2.5.

• previous_epoch_detail: The value of epoch_detail at the previous iteration. This value is
None before the first iteration.

4.9. Datasets 975

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• is_new_epoch: True if the epoch count was incremented at the last update.

Each implementation should also support serialization to resume/suspend the iteration.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Python2 alternative of __next__.

It calls __next__() by default.

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

976 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#StopIteration


Chainer Documentation, Release 6.5.0

Batch Conversion Function

chainer.dataset.converter Decorator to make a converter function.
chainer.dataset.concat_examples Concatenates a list of examples into array(s).
chainer.dataset.
ConcatWithAsyncTransfer

Interface to concatenate data and transfer them to GPU
asynchronously.

chainer.dataset.to_device Send an array to a given device.

chainer.dataset.converter

chainer.dataset.converter()
Decorator to make a converter function.

The target converter must be a callable that accepts two positional arguments: a batch and a device, and returns
a converted batch.

The type of the device argument is chainer.backend.Device.

The types and values of the batches (the first argument and the return value) are not specified: they depend on
how the converter is used (e.g. by updaters).

Example

>>> @chainer.dataset.converter()
... def custom_converter(batch, device):
... assert isinstance(device, chainer.backend.Device)
... # do something with batch...
... return device.send(batch)

This decorator puts a mark on the target converter function so that Chainer can recognize that it accepts
chainer.backend.Device as the device argument. For backward compatibility, the decorator also wraps
the function so that if the converter is called with the device argument with int type, it is converted to a
chainer.backend.Device instance before calling the original function. The int value indicates the
CUDA device of the cupy backend.

Without the decorator, the converter cannot support ChainerX devices. If the batch were requested to be con-
verted to ChainerX with such converters, RuntimeError will be raised.

chainer.dataset.concat_examples

chainer.dataset.concat_examples(batch, device=None, padding=None)
Concatenates a list of examples into array(s).

This function converts an “array of tuples” into a “tuple of arrays”. Specifically, given a list of examples each of
which consists of a list of elements, this function first makes an array by taking the element in the same position
from each example and concatenates them along the newly-inserted first axis (called batch dimension) into one
array. It repeats this for all positions and returns the resulting arrays.

The output type depends on the type of examples in batch. For instance, consider each example consists of
two arrays (x, y). Then, this function concatenates x ‘s into one array, and y ‘s into another array, and returns
a tuple of these two arrays. Another example: consider each example is a dictionary of two entries whose keys
are 'x' and 'y', respectively, and values are arrays. Then, this function concatenates x ‘s into one array, and y
‘s into another array, and returns a dictionary with two entries x and y whose values are the concatenated arrays.

4.9. Datasets 977

https://docs.python.org/3/library/exceptions.html#RuntimeError


Chainer Documentation, Release 6.5.0

When the arrays to concatenate have different shapes, the behavior depends on the padding value. If
padding is None (default), it raises an error. Otherwise, it builds an array of the minimum shape that the
contents of all arrays can be substituted to. The padding value is then used to the extra elements of the resulting
arrays.

Example

>>> import numpy as np
>>> from chainer import dataset
>>> x = [([1, 2], 1),
... ([3, 4], 2),
... ([5, 6], 3)]
>>> dataset.concat_examples(x)
(array([[1, 2],

[3, 4],
[5, 6]]), array([1, 2, 3]))

>>>
>>> y = [(np.array([1, 2]), 0),
... (np.array([3]), 1),
... (np.array([]), 2)]
>>> dataset.concat_examples(y, padding=100)
(array([[ 1, 2],

[ 3, 100],
[100, 100]]), array([0, 1, 2]))

>>>
>>> z = [(np.array([1, 2]), np.array([0])),
... (np.array([3]), np.array([])),
... (np.array([]), np.array([2]))]
>>> dataset.concat_examples(z, padding=(100, 200))
(array([[ 1, 2],

[ 3, 100],
[100, 100]]), array([[ 0],
[200],
[ 2]]))

>>> w = [{'feature': np.array([1, 2]), 'label': 0},
... {'feature': np.array([3, 4]), 'label': 1},
... {'feature': np.array([5, 6]), 'label': 2}]
>>> dataset.concat_examples(w)
{'feature': array([[1, 2],

[3, 4],
[5, 6]]), 'label': array([0, 1, 2])}

Parameters

• batch (list) – A list of examples. This is typically given by a dataset iterator.

• device (device specifier) – A device to which each array is sent. If it is omitted,
all arrays are left in their original devices. See to_device() for more details.

• padding – Scalar value for extra elements. If this is None (default), an error is raised on
shape mismatch. Otherwise, an array of minimum dimensionalities that can accommodate
all arrays is created, and elements outside of the examples are padded by this value.

Returns Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each
example in the batch.

978 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#list


Chainer Documentation, Release 6.5.0

chainer.dataset.ConcatWithAsyncTransfer

class chainer.dataset.ConcatWithAsyncTransfer(stream=None, compute_stream=None)
Interface to concatenate data and transfer them to GPU asynchronously.

It enables to transfer next batch of input data to GPU while GPU is running kernels for training using current
batch of input data.

An instance of this class is mainly intended to be used as a converter function of an updater like below.

from chainer.dataset import convert
...
updater = chainer.training.updaters.StandardUpdater(

...,
converter=convert.ConcatWithAsyncTransfer(),
...)

Parameters

• stream (cupy.cuda.Stream) – CUDA stream. If None, a stream is automatically cre-
ated on the first call. Data transfer operation is launched asynchronously using the stream.

• compute_stream (cupy.cuda.Stream) – CUDA stream used for compute kernels.
If not None, CUDA events are created/used to avoid global synchronization and overlap
execution of compute kernels and data transfers as much as possible. If None, global syn-
chronization is used instead.

Methods

__call__(batch, device=None, padding=None)
Concatenate data and transfer them to GPU asynchronously.

See also chainer.dataset.concat_examples().

Parameters

• batch (list) – A list of examples.

• device (int) – Device ID to which each array is sent.

• padding – Scalar value for extra elements.

Returns Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each
example in the batch.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

4.9. Datasets 979

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__ge__()
Return self>=value.

chainer.dataset.to_device

chainer.dataset.to_device(device, x)
Send an array to a given device.

This method sends a given array to a given device. This method is used in concat_examples().
You can also use this method in a custom converter method used in Updater and Extension such as
StandardUpdater and Evaluator.

See also chainer.dataset.concat_examples().

Parameters

• device (None or int or device specifier) – A device to which an array is
sent. If it is a negative integer, an array is sent to CPU. If it is a positive integer, an array is
sent to GPU with the given ID. If it is‘‘None‘‘, an array is left in the original device. Also,
any of device specifiers described at DeviceId is accepted.

• x (N-dimensional array) – An array to send.

Returns Converted array.

Dataset Management

chainer.dataset.get_dataset_root Gets the path to the root directory to download and
cache datasets.

chainer.dataset.set_dataset_root Sets the root directory to download and cache datasets.
chainer.dataset.cached_download Downloads a file and caches it.
chainer.dataset.cache_or_load_file Caches a file if it does not exist, or loads it otherwise.

chainer.dataset.get_dataset_root

chainer.dataset.get_dataset_root()
Gets the path to the root directory to download and cache datasets.

Returns The path to the dataset root directory.

Return type str

chainer.dataset.set_dataset_root

chainer.dataset.set_dataset_root(path)
Sets the root directory to download and cache datasets.

There are two ways to set the dataset root directory. One is by setting the environment variable
CHAINER_DATASET_ROOT. The other is by using this function. If both are specified, one specified via this
function is used. The default dataset root is $HOME/.chainer/dataset.

Parameters path (str) – Path to the new dataset root directory.

980 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainer.dataset.cached_download

chainer.dataset.cached_download(url)
Downloads a file and caches it.

It downloads a file from the URL if there is no corresponding cache. After the download, this function stores a
cache to the directory under the dataset root (see set_dataset_root()). If there is already a cache for the
given URL, it just returns the path to the cache without downloading the same file.

Note: This function raises OSError when it fails to create the cache directory. In older version, it raised
RuntimeError.

Parameters url (str) – URL to download from.

Returns Path to the downloaded file.

Return type str

chainer.dataset.cache_or_load_file

chainer.dataset.cache_or_load_file(path, creator, loader)
Caches a file if it does not exist, or loads it otherwise.

This is a utility function used in dataset loading routines. The creator creates the file to given path, and
returns the content. If the file already exists, the loader is called instead, and it loads the file and returns the
content.

Note that the path passed to the creator is temporary one, and not same as the path given to this function.
This function safely renames the file created by the creator to a given path, even if this function is called
simultaneously by multiple threads or processes.

Parameters

• path (str) – Path to save the cached file.

• creator – Function to create the file and returns the content. It takes a path to temporary
place as the argument. Before calling the creator, there is no file at the temporary path.

• loader – Function to load the cached file and returns the content.

Returns It returns the returned values by the creator or the loader.

4.9.2 Dataset Examples (chainer.datasets)

The most basic dataset implementation is an array. Both NumPy and CuPy arrays can be used directly as datasets.

In many cases, though, the simple arrays are not enough to write the training procedure. In order to cover most of such
cases, Chainer provides many built-in implementations of datasets.

These built-in datasets are divided into two groups. One is a group of general datasets. Most of them are wrapper of
other datasets to introduce some structures (e.g., tuple or dict) to each data point. The other one is a group of concrete,
popular datasets. These concrete examples use the downloading utilities in the chainer.dataset module to cache
downloaded and converted datasets.

4.9. Datasets 981

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

4.9.3 General Datasets

General datasets are further divided into four types.

The first one is DictDataset and TupleDataset, both of which combine other datasets and introduce some
structures on them.

The second one is ConcatenatedDataset and SubDataset. ConcatenatedDataset represents a con-
catenation of existing datasets. It can be used to merge datasets and make a larger dataset. SubDataset represents a
subset of an existing dataset. It can be used to separate a dataset for hold-out validation or cross validation. Convenient
functions to make random splits are also provided.

The third one is TransformDataset, which wraps around a dataset by applying a function to data indexed from
the underlying dataset. It can be used to modify behavior of a dataset that is already prepared.

The last one is a group of domain-specific datasets. Currently, implementations for datasets of images
(ImageDataset, LabeledImageDataset, etc.) and text (TextDataset) are provided.

DictDataset

chainer.datasets.DictDataset Dataset of a dictionary of datasets.

chainer.datasets.DictDataset

class chainer.datasets.DictDataset(**datasets)
Dataset of a dictionary of datasets.

It combines multiple datasets into one dataset. Each example is represented by a dictionary mapping a key to an
example of the corresponding dataset.

Parameters datasets – Underlying datasets. The keys are used as the keys of each example. All
datasets must have the same length.

Methods

__getitem__(index)

__len__()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

982 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

TupleDataset

chainer.datasets.TupleDataset Dataset of tuples from multiple equal-length datasets.

chainer.datasets.TupleDataset

class chainer.datasets.TupleDataset(*datasets)
Dataset of tuples from multiple equal-length datasets.

A TupleDataset combines multiple equal-length datasets into a single dataset of tuples. The i-th tuple
contains the i-th example from each of the argument datasets, in the same order that they were supplied.

Recall that in Chainer, a dataset is defined as an iterable that supports both __getitem__ and __len__. The
__getitem__ method should support indexing by both an integer and a slice.

As an example, consider creating a TupleDataset from two argument datasets d1 = [8, 0, 5, 1] and
d2 = [3, 1, 7, 4] as tuple_dataset = TupleDataset(d1, d2). The tuple_dataset
will then contain the examples (8, 3), (0, 1), (5, 7), (1, 4). Note that this behavior is simi-
lar to that of the built-in zip() function.

Parameters datasets – Underlying datasets that will be aggregated. Each dataset must be an
iterable that implements __getitem__ and __len__. The j-th dataset will be used for the
j-th item of each example tuple. All datasets must have the same length.

Methods

__getitem__(index)

__len__()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

ConcatenatedDataset

chainer.datasets.ConcatenatedDataset Dataset which concatenates some base datasets.

4.9. Datasets 983

https://docs.python.org/3/library/functions.html#zip


Chainer Documentation, Release 6.5.0

chainer.datasets.ConcatenatedDataset

class chainer.datasets.ConcatenatedDataset(*datasets)
Dataset which concatenates some base datasets.

This dataset wraps some base datasets and works as a concatenated dataset. For example, if a base dataset with
10 samples and another base dataset with 20 samples are given, this dataset works as a dataset which has 30
samples.

Parameters datasets – The underlying datasets. Each dataset has to support __len__() and
__getitem__().

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

984 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError


Chainer Documentation, Release 6.5.0

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

SubDataset

chainer.datasets.SubDataset Subset of a base dataset.
chainer.datasets.split_dataset Splits a dataset into two subsets.
chainer.datasets.split_dataset_random Splits a dataset into two subsets randomly.
chainer.datasets.
get_cross_validation_datasets

Creates a set of training/test splits for cross validation.

chainer.datasets.
get_cross_validation_datasets_random

Creates a set of training/test splits for cross validation
randomly.

chainer.datasets.SubDataset

class chainer.datasets.SubDataset(dataset, start, finish, order=None)
Subset of a base dataset.

SubDataset defines a subset of a given base dataset. The subset is defined as an interval of indexes, optionally
with a given permutation.

If order is given, then the i-th example of this dataset is the order[start + i]-th example of the base
dataset, where i is a non-negative integer. If order is not given, then the i-th example of this dataset is the
start + i-th example of the base dataset. Negative indexing is also allowed: in this case, the term start
+ i is replaced by finish + i.

SubDataset is often used to split a dataset into training and validation subsets. The training set is used for
training, while the validation set is used to track the generalization performance, i.e. how the learned model
works well on unseen data. We can tune hyperparameters (e.g. number of hidden units, weight initializers,
learning rate, etc.) by comparing the validation performance. Note that we often use another set called test set
to measure the quality of the tuned hyperparameter, which can be made by nesting multiple SubDatasets.

There are two ways to make training-validation splits. One is a single split, where the dataset is split just
into two subsets. It can be done by split_dataset() or split_dataset_random(). The other
one is a 𝑘-fold cross validation, in which the dataset is divided into 𝑘 subsets, and 𝑘 different splits are
generated using each of the 𝑘 subsets as a validation set and the rest as a training set. It can be done by
get_cross_validation_datasets().

Parameters

4.9. Datasets 985

https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• dataset – Base dataset.

• start (int) – The first index in the interval.

• finish (int) – The next-to-the-last index in the interval.

• order (sequence of ints) – Permutation of indexes in the base dataset. If this is
None, then the ascending order of indexes is used.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

986 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.split_dataset

chainer.datasets.split_dataset(dataset, split_at, order=None)
Splits a dataset into two subsets.

This function creates two instances of SubDataset. These instances do not share any examples, and they
together cover all examples of the original dataset.

Parameters

• dataset – Dataset to split.

• split_at (int) – Position at which the base dataset is split.

• order (sequence of ints) – Permutation of indexes in the base dataset. See the
documentation of SubDataset for details.

Returns Two SubDataset objects. The first subset represents the examples of in-
dexes order[:split_at] while the second subset represents the examples of indexes
order[split_at:].

Return type tuple

chainer.datasets.split_dataset_random

chainer.datasets.split_dataset_random(dataset, first_size, seed=None)
Splits a dataset into two subsets randomly.

This function creates two instances of SubDataset. These instances do not share any examples, and they
together cover all examples of the original dataset. The split is automatically done randomly.

Parameters

• dataset – Dataset to split.

• first_size (int) – Size of the first subset.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer being
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

4.9. Datasets 987

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns Two SubDataset objects. The first subset contains first_size examples randomly
chosen from the dataset without replacement, and the second subset contains the rest of the
dataset.

Return type tuple

chainer.datasets.get_cross_validation_datasets

chainer.datasets.get_cross_validation_datasets(dataset, n_fold, order=None)
Creates a set of training/test splits for cross validation.

This function generates n_fold splits of the given dataset. The first part of each split corresponds to the
training dataset, while the second part to the test dataset. No pairs of test datasets share any examples, and all
test datasets together cover the whole base dataset. Each test dataset contains almost same number of examples
(the numbers may differ up to 1).

Parameters

• dataset – Dataset to split.

• n_fold (int) – Number of splits for cross validation.

• order (sequence of ints) – Order of indexes with which each split is determined.
If it is None, then no permutation is used.

Returns List of dataset splits.

Return type list of tuples

chainer.datasets.get_cross_validation_datasets_random

chainer.datasets.get_cross_validation_datasets_random(dataset, n_fold, seed=None)
Creates a set of training/test splits for cross validation randomly.

This function acts almost same as get_cross_validation_dataset(), except automatically generating
random permutation.

Parameters

• dataset – Dataset to split.

• n_fold (int) – Number of splits for cross validation.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer beging
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

Returns List of dataset splits.

Return type list of tuples

TransformDataset

chainer.datasets.TransformDataset Dataset that indexes the base dataset and transforms the
data.

988 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.datasets.TransformDataset

class chainer.datasets.TransformDataset(dataset, transform)
Dataset that indexes the base dataset and transforms the data.

This dataset wraps the base dataset by modifying the behavior of the base dataset’s __getitem__(). Arrays
returned by __getitem__() of the base dataset with an integer as an argument are transformed by the given
function transform. Also, __len__() returns the integer returned by the base dataset’s __len__().

The function transform takes, as an argument, in_data, which is the output of the base dataset’s
__getitem__(), and returns the transformed arrays as output. Please see the following example. Since
in_data directly refers to the item in the dataset, take care that transform not modify it. For example, note
that the line img = img - 0.5 bellow is correct since it makes a copy of img. However, it would be incorrect to
use img -= 0.5 since that would update the contents of the item in the dataset in place, corrupting it.

>>> from chainer.datasets import get_mnist
>>> from chainer.datasets import TransformDataset
>>> dataset, _ = get_mnist()
>>> def transform(in_data):
... img, label = in_data
... img = img - 0.5 # scale to [-0.5, 0.5]
... return img, label
>>> dataset = TransformDataset(dataset, transform)

Parameters

• dataset – The underlying dataset. The index of this dataset corresponds to the index of the
base dataset. This object needs to support functions __getitem__() and __len__()
as described above.

• transform (callable) – A function that is called to transform values returned by the
underlying dataset’s __getitem__().

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):

(continues on next page)

4.9. Datasets 989

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

... return len(self.values)

... def get_example(self, i):

... return self.values[i]

...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

ImageDataset

chainer.datasets.ImageDataset Dataset of images built from a list of paths to image
files.

chainer.datasets.ZippedImageDataset Dataset of images built from a zip file.
chainer.datasets.
MultiZippedImageDataset

Dataset of images built from a list of paths to zip files.

990 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.datasets.ImageDataset

class chainer.datasets.ImageDataset(paths, root=’.’, dtype=None)
Dataset of images built from a list of paths to image files.

This dataset reads an external image file on every call of the __getitem__() operator. The paths to the
image to retrieve is given as either a list of strings or a text file that contains paths in distinct lines.

Each image is automatically converted to arrays of shape channels, height, width, where channels
represents the number of channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color images).

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow
(e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For
example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the
same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale
images.

Parameters

• paths (str or list of strs) – If it is a string, it is a path to a text file that contains
paths to images in distinct lines. If it is a list of paths, the i-th element represents the path to
the i-th image. In both cases, each path is a relative one from the root path given by another
argument.

• root (str) – Root directory to retrieve images from.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):

(continues on next page)

4.9. Datasets 991

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

... self.values = values

... def __len__(self):

... return len(self.values)

... def get_example(self, i):

... return self.values[i]

...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.ZippedImageDataset

class chainer.datasets.ZippedImageDataset(zipfilename, dtype=None)
Dataset of images built from a zip file.

This dataset reads an external image file in the given zipfile. The zipfile shall contain only image files. This shall
be able to replace ImageDataset and works better on NFS and other networked file systems. If zipfile becomes
too large you may consider MultiZippedImageDataset as a handy alternative.

Known issue: pickle and unpickle on same process may cause race condition on ZipFile. Pickle of this class is
expected to be sent to different processess via ChainerMN.

992 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters

• zipfilename (str) – a string to point zipfile path

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i_or_filename)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

4.9. Datasets 993

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.MultiZippedImageDataset

class chainer.datasets.MultiZippedImageDataset(zipfilenames, dtype=None)
Dataset of images built from a list of paths to zip files.

This dataset reads an external image file in given zipfiles. The zipfiles shall contain only image files. This shall
be able to replace ImageDataset and works better on NFS and other networked file systems. The user shall find
good balance between zipfile size and number of zipfiles (e.g. granularity)

Parameters

• zipfilenames (list of strings) – List of zipped archive filename.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]

(continues on next page)

994 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

LabeledImageDataset

chainer.datasets.LabeledImageDataset Dataset of image and label pairs built from a list of paths
and labels.

chainer.datasets.
LabeledZippedImageDataset

Dataset of zipped image and label pairs.

chainer.datasets.LabeledImageDataset

class chainer.datasets.LabeledImageDataset(pairs, root=’.’, dtype=None, la-
bel_dtype=<class ’numpy.int32’>)

Dataset of image and label pairs built from a list of paths and labels.

This dataset reads an external image file like ImageDataset. The difference from ImageDataset is that

4.9. Datasets 995

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

this dataset also returns a label integer. The paths and labels are given as either a list of pairs or a text file
contains paths/labels pairs in distinct lines. In the latter case, each path and corresponding label are separated
by white spaces. This format is same as one used in Caffe.

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow
(e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For
example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the
same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale
images.

Parameters

• pairs (str or list of tuples) – If it is a string, it is a path to a text file that
contains paths to images in distinct lines. If it is a list of pairs, the i-th element represents a
pair of the path to the i-th image and the corresponding label. In both cases, each path is a
relative one from the root path given by another argument.

• root (str) – Root directory to retrieve images from.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]

(continues on next page)

996 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

(continued from previous page)

...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.LabeledZippedImageDataset

class chainer.datasets.LabeledZippedImageDataset(zipfilename, labelfilename,
dtype=None, label_dtype=<class
’numpy.int32’>)

Dataset of zipped image and label pairs.

This dataset is zip version of LabeledImageDataset. It takes a zipfile like ZippedImageDataset. The
label file shall contain lines like text file used in LabeledImageDataset, but a filename in each line of the
label file shall match with a file in the zip archive.

Parameters

• zipfilename (str) – Path to a zipfile with images

4.9. Datasets 997

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• labelfilename (str) – Path to a label file. i-th line shall contain a filename and an
integer label that corresponds to the i-th sample. A filename in the label file shall match
with a filename in the zip file given with zipfilename.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

998 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

TextDataset

chainer.datasets.TextDataset Dataset of a line-oriented text file.

chainer.datasets.TextDataset

class chainer.datasets.TextDataset(paths, encoding=None, errors=None, newline=None, fil-
ter_func=None)

Dataset of a line-oriented text file.

This dataset reads each line of text file(s) on every call of the __getitem__() operator. Positions of line
boundaries are cached so that you can quickliy random access the text file by the line number.

Note: Cache will be built in the constructor. You can pickle and unpickle the dataset to reuse the cache, but in
that case you are responsible to guarantee that files are not modified after the cache has built.

Parameters

• paths (str or list of str) – Path to the text file(s). If it is a string, this dataset
reads a line from the text file and emits it as str. If it is a list of string, this dataset reads
lines from each text file and emits it as a tuple of str. In this case, number of lines in all
files must be the same.

• encoding (str or list of str) – Name of the encoding used to decode the file.
See the description in open() for the supported options and how it works. When reading
from multiple text files, you can also pass a list of str to use different encoding for each
file.

• errors (str or list of str) – String that specifies how decoding errors are to
be handled. See the description in open() for the supported options and how it works.
When reading from multiple text files, you can also pass a list of str to use different error
handling policy for each file.

• newline (str or list of str) – Controls how universal newlines mode works.
See the description in open() for the supported options and how it works. When reading
from multiple text files, you can also pass a list of str to use different mode for each file.

4.9. Datasets 999

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• filter_func (callable) – Function to filter each line of the text file. It should be a
function that takes number of arguments equals to the number of files. Arguments are lines
loaded from each file. The filter function must return True to accept the line, or return False
to skip the line.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

close()
Manually closes all text files.

In most cases, you do not have to call this method, because files will automatically be closed after Text-
Dataset instance goes out of scope.

get_example(idx)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

1000 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

PickleDataset

chainer.datasets.PickleDataset Dataset stored in a storage using pickle.
chainer.datasets.PickleDatasetWriter Writer class that makes PickleDataset.
chainer.datasets.open_pickle_dataset Opens a dataset stored in a given path.
chainer.datasets.
open_pickle_dataset_writer

Opens a writer to make a PickleDataset.

chainer.datasets.PickleDataset

class chainer.datasets.PickleDataset(reader)
Dataset stored in a storage using pickle.

pickle is the default serialization library of Python. This dataset stores any objects in a storage using pickle.
Even when a user wants to use a large dataset, this dataset can stores all data in a large storage like HDD and
each data can be randomly accessible.

>>> with chainer.datasets.open_pickle_dataset_writer(path_to_data) as w:
... w.write((1, 2.0, 'hello'))
... w.write((2, 3.0, 'good-bye'))
...
>>> with chainer.datasets.open_pickle_dataset(path_to_data) as dataset:
... print(dataset[1])
...
(2, 3.0, 'good-bye')

Parameters reader – File like object. reader must support random access.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__getitem__(index)
Returns an example or a sequence of examples.

4.9. Datasets 1001

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle


Chainer Documentation, Release 6.5.0

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

close()
Closes a file reader.

After a user calls this method, the dataset will no longer be accessible..

get_example(index)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

1002 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.PickleDatasetWriter

class chainer.datasets.PickleDatasetWriter(writer, protocol=4)
Writer class that makes PickleDataset.

To make PickleDataset, a user needs to prepare data using PickleDatasetWriter.

Parameters

• writer – File like object that supports write and tell methods.

• protocol (int) – Valid protocol for pickle.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

close()

flush()

write(x)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.open_pickle_dataset

chainer.datasets.open_pickle_dataset(path)
Opens a dataset stored in a given path.

This is a helper function to open PickleDataset. It opens a given file in binary mode, and creates a
PickleDataset instance.

4.9. Datasets 1003

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pickle.html#module-pickle


Chainer Documentation, Release 6.5.0

This method does not close the opened file. A user needs to call PickleDataset.close() or use with:

with chainer.datasets.open_pickle_dataset('path') as dataset:
pass # use dataset

Parameters path (str) – Path to a dataset.

Returns Opened dataset.

Return type chainer.datasets.PickleDataset

chainer.datasets.open_pickle_dataset_writer

chainer.datasets.open_pickle_dataset_writer(path, protocol=4)
Opens a writer to make a PickleDataset.

This is a helper function to open PickleDatasetWriter. It opens a given file in binary mode and creates
a PickleDatasetWriter instance.

This method does not close the opened file. A user needs to call PickleDatasetWriter.close() or use
with:

with chainer.datasets.open_pickle_dataset_writer('path') as writer:
pass # use writer

Parameters

• path (str) – Path to a dataset.

• protocol (int) – Valid protocol for pickle.

Returns Opened writer.

Return type chainer.datasets.PickleDatasetWriter

4.9.4 Concrete Datasets

chainer.datasets.get_mnist Gets the MNIST dataset.
chainer.datasets.get_kuzushiji_mnist Gets the Kuzushiji-MNIST dataset.
chainer.datasets.
get_kuzushiji_mnist_labels

Provides a list of labels for the Kuzushiji-MNIST
dataset.

chainer.datasets.
get_fashion_mnist_labels

Provide a list of the string value names of the labels.

chainer.datasets.get_fashion_mnist Gets the Fashion-MNIST dataset.
chainer.datasets.get_cifar10 Gets the CIFAR-10 dataset.
chainer.datasets.get_cifar100 Gets the CIFAR-100 dataset.
chainer.datasets.get_ptb_words Gets the Penn Tree Bank dataset as long word se-

quences.
chainer.datasets.
get_ptb_words_vocabulary

Gets the Penn Tree Bank word vocabulary.

chainer.datasets.get_svhn Gets the SVHN dataset.

1004 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pickle.html#module-pickle


Chainer Documentation, Release 6.5.0

chainer.datasets.get_mnist

chainer.datasets.get_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, label_dtype=<class
’numpy.int32’>, rgb_format=False)

Gets the MNIST dataset.

MNIST is a set of hand-written digits represented by grey-scale 28x28 images. In the original images, each
pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the
interval [0, scale].

This function returns the training set and the test set of the official MNIST dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_kuzushiji_mnist

chainer.datasets.get_kuzushiji_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, la-
bel_dtype=<class ’numpy.int32’>, rgb_format=False)

Gets the Kuzushiji-MNIST dataset.

Kuzushiji-MNIST (KMNIST) is a set of hand-written Japanese characters represented by grey-scale 28x28
images. In the original images, each pixel is represented by one-byte unsigned integer. This function scales the
pixels to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official KMNIST dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

4.9. Datasets 1005

http://yann.lecun.com/exdb/mnist/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
http://codh.rois.ac.jp/kmnist/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_kuzushiji_mnist_labels

chainer.datasets.get_kuzushiji_mnist_labels()
Provides a list of labels for the Kuzushiji-MNIST dataset.

Returns List of labels in the form of tuples. Each tuple contains the character name in romaji as a
string value and the unicode codepoint for the character.

chainer.datasets.get_fashion_mnist_labels

chainer.datasets.get_fashion_mnist_labels()
Provide a list of the string value names of the labels.

Returns List of string values of the image labels.

chainer.datasets.get_fashion_mnist

chainer.datasets.get_fashion_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, la-
bel_dtype=<class ’numpy.int32’>, rgb_format=False)

Gets the Fashion-MNIST dataset.

Fashion-MNIST is a set of fashion articles represented by grey-scale 28x28 images. In the original images, each
pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the
interval [0, scale].

This function returns the training set and the test set of the official Fashion-MNIST dataset. If withlabel is
True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

1006 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://github.com/zalandoresearch/fashion-mnist/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_cifar10

chainer.datasets.get_cifar10(withlabel=True, ndim=3, scale=1.0, dtype=None)
Gets the CIFAR-10 dataset.

CIFAR-10 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into
10 groups. In the original images, each component of pixels is represented by one-byte unsigned integer. This
function scales the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official CIFAR-10 dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (3072,)

– ndim == 3: the shape is (3, 32, 32)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_cifar100

chainer.datasets.get_cifar100(withlabel=True, ndim=3, scale=1.0, dtype=None)
Gets the CIFAR-100 dataset.

CIFAR-100 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into
100 groups. In the original images, each component pixels is represented by one-byte unsigned integer. This
function scales the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official CIFAR-100 dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

4.9. Datasets 1007

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.cs.toronto.edu/~kriz/cifar.html


Chainer Documentation, Release 6.5.0

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (3072,)

– ndim == 3: the shape is (3, 32, 32)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Returns A tuple of two datasets. If withlabel is True, both are TupleDataset instances.
Otherwise, both datasets are arrays of images.

chainer.datasets.get_ptb_words

chainer.datasets.get_ptb_words()
Gets the Penn Tree Bank dataset as long word sequences.

Penn Tree Bank is originally a corpus of English sentences with linguistic structure annotations. This func-
tion uses a variant distributed at https://github.com/wojzaremba/lstm, which omits the annotation and splits the
dataset into three parts: training, validation, and test.

This function returns the training, validation, and test sets, each of which is represented as a long array of word
IDs. All sentences in the dataset are concatenated by End-of-Sentence mark ‘<eos>’, which is treated as one of
the vocabulary.

Returns Int32 vectors of word IDs.

Return type tuple of numpy.ndarray

See also:

Use get_ptb_words_vocabulary() to get the mapping between the words and word IDs.

chainer.datasets.get_ptb_words_vocabulary

chainer.datasets.get_ptb_words_vocabulary()
Gets the Penn Tree Bank word vocabulary.

Returns Dictionary that maps words to corresponding word IDs. The IDs are used in the Penn Tree
Bank long sequence datasets.

Return type dict

See also:

See get_ptb_words() for the actual datasets.

chainer.datasets.get_svhn

chainer.datasets.get_svhn(withlabel=True, scale=1.0, dtype=None, label_dtype=<class
’numpy.int32’>, add_extra=False)

Gets the SVHN dataset.

1008 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://catalog.ldc.upenn.edu/LDC99T42
https://github.com/wojzaremba/lstm
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

The Street View House Numbers (SVHN) dataset is a dataset similar to MNIST but composed of cropped
images of house numbers. The functionality of this function is identical to the counterpart for the MNIST
dataset (get_mnist()), with the exception that there is no ndim argument.

Note: SciPy is required to use this feature.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• add_extra – Use extra training set.

Returns If add_extra is False, a tuple of two datasets (train and test). Otherwise, a tuple of
three datasets (train, test, and extra). If withlabel is True, all datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

Note: ChainerCV supports implementations of datasets that are useful for computer vision problems, which can be
found in chainercv.datasets. Here is a subset of data loaders supported by ChainerCV:

• Bounding Box Datasets

– chainercv.datasets.VOCBboxDataset

– chainercv.datasets.COCOBboxDataset

• Semantic Segmentation Datasets

– chainercv.datasets.ADE20KSemanticSegmentationDataset

– chainercv.datasets.CamVidDataset

– chainercv.datasets.CityscapesSemanticSegmentationDataset

– chainercv.datasets.VOCSemanticSegmentationDataset

• Instance Segmentation Datasets

– chainercv.datasets.COCOInstanceSegmentationDataset

– chainercv.datasets.VOCInstanceSegmentationDataset

• Classification Datasets

– chainercv.datasets.CUBLabelDataset

– chainercv.datasets.OnlineProductsDataset

4.9. Datasets 1009

http://ufldl.stanford.edu/housenumbers/
https://www.scipy.org/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#module-chainercv.datasets
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.VOCBboxDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.COCOBboxDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.ADE20KSemanticSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.CamVidDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.CityscapesSemanticSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.VOCSemanticSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.COCOInstanceSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.VOCInstanceSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.CUBLabelDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.OnlineProductsDataset


Chainer Documentation, Release 6.5.0

4.10 Iterator

Chainer provides some iterators that implement typical strategies to create mini-batches by iterating over
datasets. SerialIterator is the simplest one, which extracts mini-batches in the main thread.
MultiprocessIterator and MultithreadIterator are parallelized versions of SerialIterator.
They maintain worker subprocesses and subthreads, respectively, to load the next mini-batch in parallel.

chainer.iterators.SerialIterator Dataset iterator that serially reads the examples.
chainer.iterators.
MultiprocessIterator

Dataset iterator that loads examples in parallel.

chainer.iterators.
MultithreadIterator

Dataset iterator that loads examples in parallel.

chainer.iterators.DaliIterator (Experimental) Iterator for DALI pipeline.

4.10.1 chainer.iterators.SerialIterator

class chainer.iterators.SerialIterator(dataset, batch_size, repeat=True, shuffle=None, or-
der_sampler=None)

Dataset iterator that serially reads the examples.

This is a simple implementation of Iterator that just visits each example in either the order of indexes or a
shuffled order.

To avoid unintentional performance degradation, the shuffle option is set to True by default. For validation,
it is better to set it to False when the underlying dataset supports fast slicing. If the order of examples has an
important meaning and the updater depends on the original order, this option should be set to False.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes. If None and no
order_sampler is given, the behavior is the same as the case with shuffle=True.

• order_sampler (callable) – A callable that generates the order of the indices to
sample in the next epoch when a epoch finishes. This function should take two arguments:
the current order and the current position of the iterator. This should return the next order.
The size of the order should remain constant. This option cannot be used when shuffle
is not None.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

1010 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

current_position

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

repeat

4.10. Iterator 1011

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration


Chainer Documentation, Release 6.5.0

4.10.2 chainer.iterators.MultiprocessIterator

class chainer.iterators.MultiprocessIterator(dataset, batch_size, repeat=True,
shuffle=None, n_processes=None,
n_prefetch=1, shared_mem=None, or-
der_sampler=None, dataset_timeout=30.0,
maxtasksperchild=None)

Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads examples with worker processes. It uses the standard
multiprocessing module to parallelize the loading. The dataset is sent to the worker processes in the
standard way using pickle.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current
batch is returned.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Note: When you are using OpenCV somewhere in your code and the MultiprocessIterator is used in
the training code, the training loop may get stuck at some point. In such situation, there are several workarounds
to prevent the process got stuck.

1. Set the environment variable as follows: OMP_NUM_THREADS=1

2. Add cv2.setNumThreads(0) right after import cv2 in your training script.

3. Use MultithreadIterator instead of MultiprocessIterator.

Parameters

• dataset (Dataset) – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes. If None and no
order_sampler is given, the behavior is the same as the case with shuffle=True.

• n_processes (int) – Number of worker processes. The number of CPUs is used by
default.

• n_prefetch (int) – Number of prefetch batches.

• shared_mem (int) – The size of using shared memory per data. If None, size is adjusted
automatically.

• dataset_timeout (float) – MultiprocessIterator.TimeoutWarningwill
be issued after this time in seconds elapsed in each dataset realization. None to dis-
able the warning. You can turn this warning into an error by using warnings.
simplefilter():

warnings.simplefilter(
'error',
chainer.iterators.MultiprocessIterator.TimeoutWarning)

• order_sampler (callable) – A callable that generates the order of the indices to
sample in the next epoch when a epoch finishes. This function should take two arguments:

1012 Chapter 4. API Reference

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/warnings.html#warnings.simplefilter
https://docs.python.org/3/library/warnings.html#warnings.simplefilter


Chainer Documentation, Release 6.5.0

the current order and the current position of the iterator. This should return the next order.
The size of the order should remain constant. This option cannot be used when shuffle
is not None.

• maxtasksperchild (int) – Number of tasks a worker of prefetch process can complete
before it will exit and be replaced with a fresh worker process, to enable unused resources
to be freed. If None, worker processes will live as long as the pool.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

__copy__()

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.10. Iterator 1013

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration


Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

current_position

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

4.10.3 chainer.iterators.MultithreadIterator

class chainer.iterators.MultithreadIterator(dataset, batch_size, repeat=True,
shuffle=None, n_threads=1, or-
der_sampler=None)

Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads examples with worker threads. It uses the standard
threading module to parallelize the loading.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current
batch is returned.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset (Dataset) – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes. If None and no
order_sampler is given, the behavior is the same as the case with shuffle=True.

• n_threads (int) – Number of worker threads.

• order_sampler (callable) – A callable that generates the order of the indices to
sample in the next epoch when a epoch finishes. This function should take two arguments:
the current order and the current position of the iterator. This should return the next order.
The size of the order should remain constant. This option cannot be used when shuffle
is not None.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

1014 Chapter 4. API Reference

https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

current_position

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

4.10. Iterator 1015

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration


Chainer Documentation, Release 6.5.0

repeat

4.10.4 chainer.iterators.DaliIterator

class chainer.iterators.DaliIterator(pipeline, repeat=True)
(Experimental) Iterator for DALI pipeline.

Parameters

• pipeline – DALI pipeline.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

1016 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_size

epoch_detail

previous_epoch_detail

repeat

4.10.5 Order sampler examples

An Iterator iterates over a dataset according to an order represented by a 1-D array of indices. Order samplers are
callables that are used by those iterators to generate this array.

chainer.iterators.OrderSampler Base class of all order samplers.
chainer.iterators.
ShuffleOrderSampler

Sampler that generates random orders.

chainer.iterators.OrderSampler

class chainer.iterators.OrderSampler
Base class of all order samplers.

Every order sampler subclass has to provide a method __call__(). This method is called by an iterator
before a new epoch, and it should return a new index order for the next epoch.

Methods

__call__(current_order, current_position)
Sample the next order.

Parameters

• current_order (numpy.ndarray) – 1-D array of indices. The length should be the
same as the dataset to sample data from.

• current_position (int) – The current position of an iterator.

Returns 1-D array of indices. This is the order in which examples are sampled from a dataset in
the next epoch.

Return type numpy.ndarray

4.10. Iterator 1017

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.iterators.ShuffleOrderSampler

class chainer.iterators.ShuffleOrderSampler(random_state=None)
Sampler that generates random orders.

This is expected to be used together with Chainer’s iterators. An order sampler is called by an iterator every
epoch.

The two initializations below create basically the same objects.

>>> dataset = [(1, 2), (3, 4)]
>>> it = chainer.iterators.MultiprocessIterator(dataset, 1, shuffle=True)
>>> it = chainer.iterators.MultiprocessIterator(
... dataset, 1, order_sampler=chainer.iterators.ShuffleOrderSampler())

Parameters random_state (numpy.random.RandomState) – Pseudo-random number
generator.

Methods

__call__(current_order, current_position)
Sample the next order.

Parameters

• current_order (numpy.ndarray) – 1-D array of indices. The length should be the
same as the dataset to sample data from.

• current_position (int) – The current position of an iterator.

Returns 1-D array of indices. This is the order in which examples are sampled from a dataset in
the next epoch.

Return type numpy.ndarray

__eq__()
Return self==value.

__ne__()
Return self!=value.

1018 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.11 Serializers

4.11.1 Serialization in NumPy NPZ format

NumPy serializers can be used in arbitrary environments that Chainer runs with. It consists of asymmetric serial-
izer/deserializer due to the fact that numpy.savez() does not support online serialization. Therefore, serialization
requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.

chainer.serializers.
DictionarySerializer

Serializer for dictionary.

chainer.serializers.NpzDeserializer Deserializer for NPZ format.
chainer.serializers.save_npz Saves an object to the file in NPZ format.
chainer.serializers.load_npz Loads an object from the file in NPZ format.

chainer.serializers.DictionarySerializer

class chainer.serializers.DictionarySerializer(target=None, path=”)
Serializer for dictionary.

This is the standard serializer in Chainer. The hierarchy of objects are simply mapped to a flat dictionary with
keys representing the paths to objects in the hierarchy.

Note: Despite of its name, this serializer DOES NOT serialize the object into external files. It just build a
flat dictionary of arrays that can be fed into numpy.savez() and numpy.savez_compressed(). If you
want to use this serializer directly, you have to manually send a resulting dictionary to one of these functions.

Parameters

• target (dict) – The dictionary that this serializer saves the objects to. If target is None,
then a new dictionary is created.

• path (str) – The base path in the hierarchy that this serializer indicates.

Variables target (dict) – The target dictionary. Once the serialization completes, this dictionary
can be fed into numpy.savez() or numpy.savez_compressed() to serialize it in the
NPZ format.

4.11. Serializers 1019

https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed


Chainer Documentation, Release 6.5.0

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

1020 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainer.serializers.NpzDeserializer

class chainer.serializers.NpzDeserializer(npz, path=”, strict=True, ig-
nore_names=None)

Deserializer for NPZ format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
save_npz().

Parameters

• npz – npz file object.

• path – The base path that the deserialization starts from.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

• ignore_names (string, callable or list of them) – If callable, it is a
function that takes a name of a parameter and a persistent and returns True when it needs to
be skipped. If string, this is a name of a parameter or persistent that are going to be skipped.
This can also be a list of callables and strings that behave as described above.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

4.11. Serializers 1021

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.serializers.save_npz

chainer.serializers.save_npz(file, obj, compression=True)
Saves an object to the file in NPZ format.

This is a short-cut function to save only one object into an NPZ file.

Parameters

• file (str or file-like) – Target file to write to.

• obj – Object to be serialized. It must support serialization protocol. If it is a dictionary
object, the serialization will be skipped.

• compression (bool) – If True, compression in the resulting zip file is enabled.

See also:

chainer.serializers.load_npz()

chainer.serializers.load_npz

chainer.serializers.load_npz(file, obj, path=”, strict=True, ignore_names=None)
Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only one object.

Parameters

• file (str or file-like) – File to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

• path (str) – The path in the hierarchy of the serialized data under which the data is to be
loaded. The default behavior (blank) will load all data under the root path.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

1022 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

• ignore_names (string, callable or list of them) – If callable, it is a
function that takes a name of a parameter and a persistent and returns True when it needs to
be skipped. If string, this is a name of a parameter or persistent that are going to be skipped.
This can also be a list of callables and strings that behave as described above.

See also:

chainer.serializers.save_npz()

4.11.2 Serialization in HDF5 format

chainer.serializers.HDF5Serializer Serializer for HDF5 format.
chainer.serializers.HDF5Deserializer Deserializer for HDF5 format.
chainer.serializers.save_hdf5 Saves an object to the file in HDF5 format.
chainer.serializers.load_hdf5 Loads an object from the file in HDF5 format.

chainer.serializers.HDF5Serializer

class chainer.serializers.HDF5Serializer(group, compression=4)
Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply mapped to HDF5 hierarchical groups.

Parameters

• group (h5py.Group) – The group that this serializer represents.

• compression (int) – Gzip compression level.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

4.11. Serializers 1023

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.serializers.HDF5Deserializer

class chainer.serializers.HDF5Deserializer(group, strict=True)
Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
HDF5Serializer.

Parameters

• group (h5py.Group) – The group that the deserialization starts from.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given HDF5 file. Otherwise, it ignores the value and skip deserialization.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be

1024 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.serializers.save_hdf5

chainer.serializers.save_hdf5(filename, obj, compression=4)
Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If you want to save multiple objects to
one HDF5 file, use HDF5Serializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Target file name.

4.11. Serializers 1025

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• obj – Object to be serialized. It must support serialization protocol. If it is a dictionary
object, the serialization will be skipped.

• compression (int) – Gzip compression level.

Note: Currently save_hdf5() only supports writing to an actual file on file system due to a limitation of
HD5F library. See h5py/h5py#687 for details.

See also:

chainer.serializers.load_hdf5()

chainer.serializers.load_hdf5

chainer.serializers.load_hdf5(filename, obj)
Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only one object. If you want to load multiple
objects from one HDF5 file, use HDF5Deserializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Name of the file to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

Note: Currently load_hdf5() only supports loading an actual file on file system due to a limitation of HD5F
library. See h5py/h5py#687 for details.

See also:

chainer.serializers.save_hdf5()

4.11.3 Serializers base classes

chainer.Serializer Base class of all serializers.
chainer.AbstractSerializer Abstract base class of all serializers and deserializers.
chainer.Deserializer Base class of all deserializers.

chainer.Serializer

class chainer.Serializer
Base class of all serializers.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

1026 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://github.com/h5py/h5py/issues/687
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/h5py/h5py/issues/687


Chainer Documentation, Release 6.5.0

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.AbstractSerializer

class chainer.AbstractSerializer
Abstract base class of all serializers and deserializers.

4.11. Serializers 1027

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.Deserializer

class chainer.Deserializer
Base class of all deserializers.

1028 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.11. Serializers 1029

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

4.12 Backends and Devices

4.12.1 Common Classes and Utilities

chainer.backend.Device A base class of unified devices.
chainer.get_device Returns a device object.
chainer.using_device Context manager to apply the thread-local device state.
chainer.backend.
get_device_from_array

Gets the device from arrays.

chainer.backend.get_array_module Gets an appropriate NumPy-compatible module to pro-
cess arguments

chainer.DeviceResident A base class of objects with multi-device hierarchy.
chainer.device_resident.
DeviceResidentsVisitor

Base class of visitors that visits device resident objects
recursively.

chainer.backend.copyto Copies the elements of an ndarray to those of another
one.

chainer.backend.Device

class chainer.backend.Device
A base class of unified devices.

Chainer has the following concrete implementations:

• chainer.backend.CpuDevice

• chainer.backend.GpuDevice

• chainer.backend.Intel64Device

• chainer.backend.ChainerxDevice

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

use()
Makes the device current in the current thread.

1030 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

supported_array_types
Array types supported by the device.

Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.

chainer.get_device

chainer.get_device(device_spec)
Returns a device object.

Parameters device_spec (object) – Device specifier. If a chainer.backend.Device
instance is given, it is returned intact. Otherwise the following values are supported:

• ChainerX devices

– A string representing a device. (ex. 'native:0', 'native')

– A chainerx.Device object.

• CuPy

– A string starts with '@cupy:'. (ex. '@cupy:0')

– A cupy.cuda.Device object.

• NumPy

– The string '@numpy'.

• NumPy with Intel Architecture

– The string '@intel64'.

chainer.using_device

chainer.using_device(device_spec)
Context manager to apply the thread-local device state.

4.12. Backends and Devices 1031

https://docs.python.org/3/library/functions.html#object
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device


Chainer Documentation, Release 6.5.0

Parameters device_spec (object) – Device specifier. See chainer.get_device() for
details.

Example

with chainer.using_device('@cupy:1'):
a = cupy.empty((3, 2))

assert a.device.id == 1

chainer.backend.get_device_from_array

chainer.backend.get_device_from_array(*arrays)
Gets the device from arrays.

The device on which the given array reside is returned.

Note: Unlike get_array_module(), this method does not recognize Variable objects. If you need to
get device from the Variable instance v, you need to use get_device_from_array(v.array).

Parameters arrays (array or list of arrays) – Arrays to determine the device. If mul-
tiple arrays are given, the device correspoinding to the first array which is not NumPy array is
returned.

Returns Device instance.

Return type chainer.backend.Device

chainer.backend.get_array_module

chainer.backend.get_array_module(*args)
Gets an appropriate NumPy-compatible module to process arguments

This function will return their data arrays’ array module for Variable arguments.

Parameters args – Values to determine whether NumPy, CuPy, or ChainerX should be used.

Returns numpy, cupy, or chainerx is returned based on the types of the arguments.

Return type module

chainer.DeviceResident

class chainer.DeviceResident
A base class of objects with multi-device hierarchy.

Methods

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

1032 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.12. Backends and Devices 1033



Chainer Documentation, Release 6.5.0

Attributes

device
Device instance.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.device_resident.DeviceResidentsVisitor

class chainer.device_resident.DeviceResidentsVisitor
Base class of visitors that visits device resident objects recursively.

See also:

chainer.DeviceResident

Methods

visit_array(arr)
Processes an array and returns a new one.

If the visitor does not create a new array, it can simply return the original array.

visit_device_resident(device_resident)
Processes a DeviceResident instance.

visit_variable(param)
Processes a Variable or a Parameter.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.backend.copyto

chainer.backend.copyto(dst, src)
Copies the elements of an ndarray to those of another one.

This function can copy the CPU/GPU arrays to the destination arrays on another device.

Parameters

1034 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

• dst (numpy.ndarray, cupy.ndarray, ideep4py.mdarray or chainerx.
ndarray) – Destination array.

• src (numpy.ndarray, cupy.ndarray, ideep4py.mdarray or chainerx.
ndarray) – Source array.

4.12.2 Concrete Device Classes

chainer.backend.CpuDevice Device for CPU (NumPy) backend
chainer.backend.GpuDevice Device for GPU (CuPy) backend
chainer.backend.Intel64Device Device for Intel64 (Intel Architecture) backend with

iDeep
chainer.backend.ChainerxDevice Device for ChainerX backend

chainer.backend.CpuDevice

class chainer.backend.CpuDevice
Device for CPU (NumPy) backend

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

4.12. Backends and Devices 1035

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

supported_array_types
Array types supported by the device.

Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.

chainer.backend.GpuDevice

class chainer.backend.GpuDevice(device)
Device for GPU (CuPy) backend

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

static from_device_id(device_id)
Returns a GpuDevice corresponding to the CUDA device ID.

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

1036 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

supported_array_types
Array types supported by the device.

Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.

chainer.backend.Intel64Device

class chainer.backend.Intel64Device
Device for Intel64 (Intel Architecture) backend with iDeep

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

4.12. Backends and Devices 1037



Chainer Documentation, Release 6.5.0

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

supported_array_types
Array types supported by the device.

Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.

chainer.backend.ChainerxDevice

class chainer.backend.ChainerxDevice(device)
Device for ChainerX backend

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

static from_fallback_device(device)
Returns a ChainerxDevice corresponding to the fallback device.

See also:

fallback_device

1038 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fallback_device
Fallback device.

A fallback device is either a CpuDevice or a GpuDevice which shares the same physical device with
the original ChainerX device.

For example, the fallback device of native:0 ChainerX device is CpuDevice. The fallback device of
cuda:1 ChainerX device is GpuDevice with device ID 1.

supported_array_types
Array types supported by the device.

Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.

4.12.3 GPU (CuPy)

Device, context and memory management on CuPy.

Note: The package chainer.cuda has been renamed to chainer.backends.cuda as of v4.0.0, but the
previous module path chainer.cuda is also available.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU computation. Following modules and classes
defined in CuPy are imported to chainer.backends.cuda module for convenience (refer to this table when
reading chainer’s source codes).

4.12. Backends and Devices 1039

https://cupy.chainer.org/


Chainer Documentation, Release 6.5.0

imported name original name
chainer.backends.cuda.cupy cupy
chainer.backends.cuda.cupyx cupyx
chainer.backends.cuda.ndarray cupy.ndarray
chainer.backends.cuda.cupy.cuda cupy.cuda
chainer.backends.cuda.Device cupy.cuda.Device
chainer.backends.cuda.Event cupy.cuda.Event
chainer.backends.cuda.Stream cupy.cuda.Stream

Chainer replaces the default allocator of CuPy by its memory pool implementation. It enables us to reuse the device
memory over multiple forward/backward computations, and temporary arrays for consecutive elementwise operations.

Devices

chainer.backends.cuda.get_device Gets the device from a device object, an ID integer or
an array object.

chainer.backends.cuda.
get_device_from_id

Gets the device from an ID integer.

chainer.backends.cuda.
get_device_from_array

Gets the device from a list of CuPy array or a single
CuPy array.

chainer.backends.cuda.get_device

chainer.backends.cuda.get_device(*args)
Gets the device from a device object, an ID integer or an array object.

Note: This API is deprecated since v3.0.0. Please use get_device_from_id() or
get_device_from_array() instead.

This is a convenient utility to select a correct device if the type of arg is unknown (i.e., one can use this function
on arrays that may be on CPU or GPU). The returned device object supports the context management protocol
of Python for the with statement.

Parameters args – Values to specify a GPU device. The first device object, integer or cupy.
ndarray object is used to select a device. If it is a device object, it is returned. If it is an
integer, the corresponding device is returned. If it is a CuPy array, the device on which this array
reside is returned. If any arguments are neither integers nor CuPy arrays, a dummy device object
representing CPU is returned.

Returns Device object specified by given args.

See also:

See cupy.cuda.Device for the device selection not by arrays.

chainer.backends.cuda.get_device_from_id

chainer.backends.cuda.get_device_from_id(device_id)
Gets the device from an ID integer.

Parameters device_id (int or None) – The ID of the device which this function returns.

1040 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs-cupy.chainer.org/en/stable/reference/ext.html#module-cupyx
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Event.html#cupy.cuda.Event
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


Chainer Documentation, Release 6.5.0

chainer.backends.cuda.get_device_from_array

chainer.backends.cuda.get_device_from_array(*arrays)
Gets the device from a list of CuPy array or a single CuPy array.

Deprecated since version v6.0.0: This API is deprecated. Please use chainer.backend.
get_device_from_array() instead.

The device on which the given CuPy array reside is returned.

Note: This method only recognizes cupy.ndarrays in arguments. Especially note that, unlike
get_array_module(), this method does not recognize Variable objects. If you need to get device
from the Variable instance v, you need to use get_device_from_array(v.array).

Parameters arrays (cupy.ndarray or list of cupy.ndarray) – A CuPy array which this
function returns the device corresponding to. If a list of cupy.ndarrays are given, it returns
the first device object of an array in the list.

CuPy array allocation and copy

chainer.backends.cuda.copy Copies a cupy.ndarray object using the default
stream.

chainer.backends.cuda.to_cpu Copies the given GPU array to host CPU.
chainer.backends.cuda.to_gpu Copies the given CPU array to the specified device.

chainer.backends.cuda.copy

chainer.backends.cuda.copy(array, out=None, out_device=None, stream=None)
Copies a cupy.ndarray object using the default stream.

This function can copy the device array to the destination array on another device.

Parameters

• array (cupy.ndarray) – Array to be copied.

• out (cupy.ndarray) – Destination array. If it is not None, then out_device argu-
ment is ignored.

• out_device – Destination device specifier. Actual device object is obtained by passing
this value to get_device().

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Copied array.

If out is not specified, then the array is allocated on the device specified by out_device
argument.

Return type cupy.ndarray

4.12. Backends and Devices 1041

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

chainer.backends.cuda.to_cpu

chainer.backends.cuda.to_cpu(array, stream=None)
Copies the given GPU array to host CPU.

Parameters

• array (array, None, list or tuple) – Array or arrays to be sent to CPU.

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Array on CPU.

If some of the arrays are already on CPU, then this function just returns those arrays without
performing any copy.

If input arrays include None, it is returned as None as is.

Return type numpy.ndarray, list or tuple

chainer.backends.cuda.to_gpu

chainer.backends.cuda.to_gpu(array, device=None, stream=None)
Copies the given CPU array to the specified device.

Parameters

• array (array, None, list or tuple) – Array or arrays to be sent to GPU.

• device – CUDA device specifier. If None or cuda.DummyDevice, the arrays will be
copied to the current CUDA device.

• stream (Stream) – (deprecated since v3.0.0) CUDA stream. If not None, the copy runs
asynchronously.

Returns

Array or arrays on GPU.

If some of the arrays are already on GPU, then this function just returns those arrays without
performing any copy.

If input arrays include None, it is returned as None as is.

Return type cupy.ndarray, list or tuple

Kernel definition utilities

chainer.backends.cuda.memoize Makes a function memoizing the result for each argu-
ment and device.

chainer.backends.cuda.clear_memo Clears the memoized results for all functions decorated
by memoize.

chainer.backends.cuda.elementwise Creates an elementwise kernel function.
chainer.backends.cuda.raw Creates a raw kernel function.
chainer.backends.cuda.reduce Creates a global reduction kernel function.

1042 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

chainer.backends.cuda.memoize

chainer.backends.cuda.memoize(for_each_device=False)
Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that this function can be used in the global
scope even if CUDA is not available. In such case, this function does nothing.

Note: This decorator acts as a dummy if CUDA is not available. It cannot be used for general purpose
memoization even if for_each_device is set to False.

chainer.backends.cuda.clear_memo

chainer.backends.cuda.clear_memo()
Clears the memoized results for all functions decorated by memoize.

This function works like cupy.clear_memo() as a counterpart for chainer.backends.cuda.
memoize(). It can be used even if CUDA is not available. In such a case, this function does nothing.

chainer.backends.cuda.elementwise

chainer.backends.cuda.elementwise(in_params, out_params, operation, name, **kwargs)
Creates an elementwise kernel function.

This function uses memoize() to cache the kernel object, i.e. the resulting kernel object is cached for each
argument combination and CUDA device.

The arguments are the same as those for cupy.ElementwiseKernel, except that the name argument is
mandatory.

chainer.backends.cuda.raw

chainer.backends.cuda.raw(code, name, *args, **kwargs)
Creates a raw kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached
for each argument combination and CUDA device.

The arguments are the same as those for cupy.RawKernel.

chainer.backends.cuda.reduce

chainer.backends.cuda.reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr,
identity, name, **kwargs)

Creates a global reduction kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached
for each argument combination and CUDA device.

The arguments are the same as those for cupy.ReductionKernel, except that the name argument is
mandatory.

4.12. Backends and Devices 1043

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.memoize.html#cupy.memoize
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.clear_memo.html#cupy.clear_memo
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.RawKernel.html#cupy.RawKernel
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ReductionKernel.html#cupy.ReductionKernel


Chainer Documentation, Release 6.5.0

CPU/GPU generic code support

chainer.backends.cuda.
get_array_module

Gets an appropriate one from numpy or cupy.

chainer.backends.cuda.get_array_module

chainer.backends.cuda.get_array_module(*args)
Gets an appropriate one from numpy or cupy.

This is almost equivalent to cupy.get_array_module(). The differences are that this function can be used
even if CUDA is not available and that it will return their data arrays’ array module for Variable arguments.

Deprecated since version v5.0.0: This API is deprecated. Please use get_array_module() instead.

Parameters args – Values to determine whether NumPy or CuPy should be used.

Returns cupy or numpy is returned based on the types of the arguments.

Return type module

cuDNN support

chainer.backends.cuda.
set_max_workspace_size

Sets the workspace size for cuDNN.

chainer.backends.cuda.
get_max_workspace_size

Gets the workspace size for cuDNN.

chainer.backends.cuda.set_max_workspace_size

chainer.backends.cuda.set_max_workspace_size(size)
Sets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

Parameters size – The workspace size for cuDNN.

chainer.backends.cuda.get_max_workspace_size

chainer.backends.cuda.get_max_workspace_size()
Gets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

Returns The workspace size for cuDNN.

Return type int

4.12.4 Intel64 (iDeep)

iDeep is a module that provides NumPy-like API and DNN acceleration using MKL-DNN for Intel CPUs. See Tips
and FAQs and Performance Best Practices for details.

1044 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.get_array_module.html#cupy.get_array_module
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs.python.org/3/library/functions.html#int
https://github.com/intel/ideep


Chainer Documentation, Release 6.5.0

chainer.backends.intel64.
is_ideep_available

Returns if iDeep is available.

chainer.backends.intel64.is_ideep_available

chainer.backends.intel64.is_ideep_available()
Returns if iDeep is available.

Returns True if the supported version of iDeep is installed.

Return type bool

4.12.5 ChainerX

chainer.backend.from_chx Converts an array or arrays from ChainerX to NumPy
or CuPy ones.

chainer.backend.to_chx Converts an array or arrays to ChainerX.

chainer.backend.from_chx

chainer.backend.from_chx(array)
Converts an array or arrays from ChainerX to NumPy or CuPy ones.

Destination array types are chosen such that no copies occur.

chainer.backend.to_chx

chainer.backend.to_chx(array)
Converts an array or arrays to ChainerX.

Destination ChainerX devices are chosen according to the types of input arrays.

4.13 Utilities

4.13.1 Convolution/Deconvolution utilities

chainer.utils.get_conv_outsize Calculates output size of convolution.
chainer.utils.get_deconv_outsize Calculates output size of deconvolution.

chainer.utils.get_conv_outsize

chainer.utils.get_conv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of convolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_deconv_outsize()

4.13. Utilities 1045

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature
map.

• k (int) – The size of convolution kernel.

• s (int) – The size of stride.

• p (int) – The size of padding.

• cover_all (bool) – Use cover_all option or not.

• d (int) – The size of dilation.

Returns The expected output size of the convolution operation.

Return type int

chainer.utils.get_deconv_outsize

chainer.utils.get_deconv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of deconvolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_conv_outsize()

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature
map.

• k (int) – The size of deconvolution kernel.

• s (int) – The size of stride.

• p (int) – The size of padding.

• cover_all (bool) – Use cover_all option or not.

• d (int) – The size of dilation.

Returns The expected output size of the deconvolution operation.

Return type int

4.13.2 Common algorithms

chainer.utils.WalkerAlias Implementation of Walker’s alias method.

chainer.utils.WalkerAlias

class chainer.utils.WalkerAlias(probs)
Implementation of Walker’s alias method.

This method generates a random sample from given probabilities 𝑝1, . . . , 𝑝𝑛 in 𝑂(1) time. It is more efficient
than choice(). This class works on both CPU and GPU.

1046 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Parameters probs (float list) – Probabilities of entries. They are normalized with
sum(probs).

See: Wikipedia article

Methods

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

sample(shape)
Generates a random sample based on given probabilities.

Parameters shape (tuple of int) – Shape of a return value.

Returns Returns a generated array with the given shape. If a sampler is in CPU mode the return
value is a numpy.ndarray object, and if it is in GPU mode the return value is a cupy.
ndarray object.

sample_gpu(shape)

sample_xp(xp, shape)

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Parameters device – Target device specifier. If omitted, the current device is used.

4.13. Utilities 1047

https://en.wikipedia.org/wiki/Alias_method
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

use_gpu

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.13.3 Common utilities

chainer.print_runtime_info Shows Chainer runtime information.

chainer.print_runtime_info

chainer.print_runtime_info(out=None)
Shows Chainer runtime information.

Runtime information includes:

• OS platform

• Chainer version

• ChainerX version

• NumPy version

• CuPy version

– CUDA information

– cuDNN information

– NCCL information

1048 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

• iDeep version

Parameters out – Output destination. If it is None, runtime information will be shown in sys.
stdout.

4.13.4 Reporter

chainer.Reporter Object to which observed values are reported.
chainer.get_current_reporter Returns the current reporter object.
chainer.report Reports observed values with the current reporter ob-

ject.
chainer.report_scope Returns a report scope with the current reporter.

chainer.Reporter

class chainer.Reporter
Object to which observed values are reported.

Reporter is used to collect values that users want to watch. The reporter object holds a mapping from value
names to the actually observed values. We call this mapping observations.

When a value is passed to the reporter, an object called observer can be optionally attached. In this case,
the name of the observer is added as the prefix of the value name. The observer name should be registered
beforehand.

See the following example:

>>> from chainer import Reporter, report, report_scope
>>>
>>> reporter = Reporter()
>>> observer = object() # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer', observer)
>>> observation = {}
>>> with reporter.scope(observation):
... reporter.report({'x': 1}, observer)
...
>>> observation
{'my_observer/x': 1}

There are also a global API to add values:

>>> observation = {}
>>> with report_scope(observation):
... report({'x': 1}, observer)
...
>>> observation
{'my_observer/x': 1}

The most important application of Reporter is to report observed values from each link or chain in the training
and validation procedures. Trainer and some extensions prepare their own Reporter object with the hierarchy
of the target link registered as observers. We can use report() function inside any links and chains to report
the observed values (e.g., training loss, accuracy, activation statistics, etc.).

Variables observation – Dictionary of observed values.

4.13. Utilities 1049



Chainer Documentation, Release 6.5.0

Methods

__enter__()
Makes this reporter object current.

__exit__(exc_type, exc_value, traceback)
Recovers the previous reporter object to the current.

add_observer(name, observer)
Registers an observer of values.

Observer defines a scope of names for observed values. Values observed with the observer are registered
with names prefixed by the observer name.

Parameters

• name (str) – Name of the observer.

• observer – The observer object. Note that the reporter distinguishes the observers by
their object ids (i.e., id(owner)), rather than the object equality.

add_observers(prefix, observers)
Registers multiple observers at once.

This is a convenient method to register multiple objects at once.

Parameters

• prefix (str) – Prefix of each name of observers.

• observers – Iterator of name and observer pairs.

report(values, observer=None)
Reports observed values.

The values are written with the key, prefixed by the name of the observer object if given.

Note: If a value is of type Variable, the variable is copied without preserving the computational graph
and the new variable object purged from the graph is stored to the observer. This behavior can be changed
by setting chainer.config.keep_graph_on_report to True.

Parameters

• values (dict) – Dictionary of observed values.

• observer – Observer object. Its object ID is used to retrieve the observer name, which
is used as the prefix of the registration name of the observed value.

scope(observation)
Creates a scope to report observed values to observation.

This is a context manager to be passed to with statements. In this scope, the observation dictionary is
changed to the given one.

It also makes this reporter object current.

Parameters observation (dict) – Observation dictionary. All observations reported inside
of the with statement are written to this dictionary.

__eq__()
Return self==value.

1050 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.get_current_reporter

chainer.get_current_reporter()
Returns the current reporter object.

chainer.report

chainer.report(values, observer=None)
Reports observed values with the current reporter object.

Any reporter object can be set current by the with statement. This function calls the Reporter.report()
method of the current reporter. If no reporter object is current, this function does nothing.

Example

The most typical example is a use within links and chains. Suppose that a link is registered to the current
reporter as an observer (for example, the target link of the optimizer is automatically registered to the reporter
of the Trainer). We can report some values from the link as follows:

class MyRegressor(chainer.Chain):
def __init__(self, predictor):

super(MyRegressor, self).__init__(predictor=predictor)

def __call__(self, x, y):
# This chain just computes the mean absolute and squared
# errors between the prediction and y.
pred = self.predictor(x)
abs_error = F.sum(abs(pred - y)) / len(x)
loss = F.mean_squared_error(pred, y)

# Report the mean absolute and squared errors.
chainer.report({

'abs_error': abs_error,
'squared_error': loss,

}, self)

return loss

If the link is named 'main' in the hierarchy (which is the default name of the target link
in the StandardUpdater), these reported values are named 'main/abs_error' and 'main/
squared_error'. If these values are reported inside the Evaluator extension, 'validation/' is
added at the head of the link name, thus the item names are changed to 'validation/main/abs_error'

4.13. Utilities 1051



Chainer Documentation, Release 6.5.0

and 'validation/main/squared_error' ('validation' is the default name of the Evaluator ex-
tension).

Parameters

• values (dict) – Dictionary of observed values.

• observer – Observer object. Its object ID is used to retrieve the observer name, which is
used as the prefix of the registration name of the observed value.

chainer.report_scope

chainer.report_scope(observation)
Returns a report scope with the current reporter.

This is equivalent to get_current_reporter().scope(observation), except that it does not make
the reporter current redundantly.

4.13.5 Summary and DictSummary

chainer.Summary Online summarization of a sequence of scalars.
chainer.DictSummary Online summarization of a sequence of dictionaries.

chainer.Summary

class chainer.Summary
Online summarization of a sequence of scalars.

Summary computes the statistics of given scalars online.

Methods

add(value, weight=1)
Adds a scalar value.

Parameters

• value – Scalar value to accumulate. It is either a NumPy scalar or a zero-dimensional
array (on CPU or GPU).

• weight – An optional weight for the value. It is a NumPy scalar or a zero-dimensional
array (on CPU or GPU). Default is 1 (integer).

compute_mean()
Computes the mean.

make_statistics()
Computes and returns the mean and standard deviation values.

Returns Mean and standard deviation values.

Return type tuple

serialize(serializer)

1052 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple


Chainer Documentation, Release 6.5.0

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.DictSummary

class chainer.DictSummary
Online summarization of a sequence of dictionaries.

DictSummary computes the statistics of a given set of scalars online. It only computes the statistics for scalar
values and variables of scalar values in the dictionaries.

Methods

add(d)
Adds a dictionary of scalars.

Parameters d (dict) – Dictionary of scalars to accumulate. Only elements of scalars, zero-
dimensional arrays, and variables of zero-dimensional arrays are accumulated. When the
value is a tuple, the second element is interpreted as a weight.

compute_mean()
Creates a dictionary of mean values.

It returns a single dictionary that holds a mean value for each entry added to the summary.

Returns Dictionary of mean values.

Return type dict

make_statistics()
Creates a dictionary of statistics.

It returns a single dictionary that holds mean and standard deviation values for every entry added to the
summary. For an entry of name 'key', these values are added to the dictionary by names 'key' and
'key.std', respectively.

Returns Dictionary of statistics of all entries.

Return type dict

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.13. Utilities 1053

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.13.6 Sparse utilities

A chainer.Variable can be converted into a sparse matrix in e.g. COO (Coordinate list) format. A sparse matrix
stores the same data as the original object but with a different internal representation, optimized for efficient operations
on sparse data, i.e. data with many zero elements.

Following are a list of supported sparse matrix formats and utilities for converting between a chainer.Variable
and these representations.

Note: Please be aware that only certain functions accept sparse matrices as inputs, such as chainer.functions.
sparse_matmul().

chainer.utils.CooMatrix A sparse matrix in COO format.
chainer.utils.to_coo Returns a single or a batch of matrices in COO format.

chainer.utils.CooMatrix

class chainer.utils.CooMatrix(data, row, col, shape, order=None, requires_grad=False)
A sparse matrix in COO format.

Parameters

• data (N-dimensional array) – The entries of the matrix. The entries are usually non-zero-
elements in the matrix.

• row (N-dimensional array) – The row indices of the matrix entries.

• col (N-dimensional array) – The column indices of the matrix entries.

• shape (tuple of int) – The shape of the matrix in dense format.

• order ('C', 'F', 'other' or None) – If 'C', the maxtix is assumed that its row
indices are sorted. If 'F', the matrix is assumed that its column indices are sorted. If
'other', the matrix is assumed as neither ‘C’ order nor ‘F’ order. If None (this is the
default), the matrix is automatically checked if it is ‘C’ order, ‘F’ order or another. This
information will be used by some functions like sparse_matmul() as a hint to improve
performance.

• requires_grad (bool) – If True, gradient of this sparse matrix will be computed in
back-propagation.

See also:

See to_coo() for how to construct a COO matrix from an array.

1054 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Methods

to_dense()
Returns a dense matrix format of this sparse matrix.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.utils.to_coo

chainer.utils.to_coo(x, ldnz=None, requires_grad=False)
Returns a single or a batch of matrices in COO format.

Parameters

• x (N-dimensional array) – Input dense matrix. The ndim of x must be two or three. If ndim
is two, it is treated as a single matrix. If three, it is treated as batched matrices.

• ldnz (int) – Size of arrays for data, row index and column index to be created. The Actual
size becomes max(nnz, ldnz) where nnz is number of non-zero elements in a input dense
matrix.

• requires_grad (bool) – If True, gradient of sparse matrix will be computed in back-
propagation.

Returns A sparse matrix or batched sparse matrices in COO format of a given dense matrix or
batched dense matrices.

Return type CooMatrix

Example

Create a CooMatrix from an array with 2 non-zero elements and 4 zeros and access its attributes. No batch
dimension is involved.

>>> data = np.array([[0, 2, 0], [-1, 0, 0]], np.float32)
>>> x = chainer.utils.to_coo(data)
>>> x.data
variable([ 2., -1.])
>>> x.row
array([0, 1], dtype=int32)
>>> x.col
array([1, 0], dtype=int32)
>>> x.shape
(2, 3)

4.13. Utilities 1055

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

4.13.7 Experimental feature annotation

chainer.utils.experimental Declares that user is using an experimental feature.

chainer.utils.experimental

chainer.utils.experimental(api_name)
Declares that user is using an experimental feature.

The developer of an API can mark it as experimental by calling this function. When users call experimental
APIs, FutureWarning is issued. The presentation of FutureWarning is disabled by setting chainer.
disable_experimental_feature_warning to True, which is False by default.

The basic usage is to call it in the function or method we want to mark as experimental along with the API name.

from chainer import utils

def f(x):
utils.experimental('chainer.foo.bar.f')
# concrete implementation of f follows

f(1)

... FutureWarning: chainer.foo.bar.f is experimental. The interface can change in
→˓the future. ...

We can also make a whole class experimental. In that case, we should call this function in its __init__
method.

class C():
def __init__(self):

utils.experimental('chainer.foo.C')

C()

... FutureWarning: chainer.foo.C is experimental. The interface can change in the
→˓future. ...

If we want to mark __init__ method only, rather than class itself, it is recommended that we explicitly feed
its API name.

class D():
def __init__(self):

utils.experimental('D.__init__')

D()

... FutureWarning: D.__init__ is experimental. The interface can change in the
→˓future. ...

Currently, we do not have any sophisticated way to mark some usage of non-experimental function as experi-
mental. But we can support such usage by explicitly branching it.

1056 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning


Chainer Documentation, Release 6.5.0

def g(x, experimental_arg=None):
if experimental_arg is not None:

utils.experimental('experimental_arg of chainer.foo.g')

Parameters api_name (str) – The name of an API marked as experimental.

4.14 Configuring Chainer

Chainer provides some global settings that affect the behavior of some functionalities. Such settings can be configured
using the unified configuration system. The system provides a transparent way to manage the configuration for each
process and for each thread.

The configuration is managed by two global objects: chainer.global_config and chainer.config.

• The global_config object maintains the configuration shared in the Python process. This is an instance of
the GlobalConfig class. It can be used just as a plain object, and users can freely set any attributes on it.

• The config object, on the other hand, maintains the configuration for the current thread. This is an instance of
the LocalConfig class. It behaves like a thread-local object, and any attribute modifications are only visible
to the current thread.

If no value is set to config for a given key, global_config is transparently referred. Thanks to this transparent
lookup, users can always use config to read any configuration so that the thread-local configuration is used if
available and otherwise the default global setting is used.

The following entries of the configuration are currently provided by Chainer. Some entries support environment
variables to set the default values. Note that the default values are set in the global config.

4.14.1 Configuration Keys

• cudnn_deterministic (default: False) Flag to configure deterministic computations in cuDNN APIs.

If it is True, convolution functions that use cuDNN use the deterministic mode (i.e, the computation is
reproducible). Otherwise, the results of convolution functions using cuDNN may be non-deterministic in
exchange for better performance.

• debug (default: False) Debug mode flag.

If it is True, Chainer runs in debug mode. Enabling debug mode may introduce some performance
overhead. See Debug Mode for more information of the debug mode.

You can change the default value to True by setting CHAINER_DEBUG environment variable to 1.

• dtype (default: numpy.float32) Default floating point data type.

Chainer uses this dtype to construct arrays when the dtype is not specified (e.g. initializers).

You can change the default value by setting CHAINER_DTYPE environment variable to mixed16,
float16, float32, float64.

Note: If you want to use float16 for better performance, it is recommended that you use mixed16 instead
of float16.

• enable_backprop (default: True) Flag to enable backpropagation support.

4.14. Configuring Chainer 1057

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

If it is True, computational graphs are created during forward passes by FunctionNodes, allowing
backpropagation to start from any Variable in the graph. Otherwise, computational graphs are not
created but memory consumptions are reduced. So calling backward() on the results of a function will
not compute any gradients of any input.

• keep_graph_on_report (default: False) Flag to configure whether or not to let report() keep the
computational graph.

If it is False, report() does not keep the computational graph when a Variable object is reported.
It means that report() stores a copy of the Variable object which is purged from the computational
graph. If it is True, report() just stores the Variable object as is with the computational graph left
attached.

You can change the default value to True by setting CHAINER_KEEP_GRAPH_ON_REPORT environ-
ment variable to 1.

• warn_nondeterministic (default: False) Flag to give warning when a non-deterministic function is
used. This function is experimental.

If it is true, then functions that use non-deterministic functions and cannot be given a seed, such as
atomicAdd, will give a warning when executed. For functions that can take a seed argument, such as
split_dataset_random(), setting the seed should be done when the function is called and will not
be flagged by this setting.

Note that this feature is provided as best-effort. It cannot assure that every nondeterministic function can
be detected. For example, SSE computations in CPU mode may cause non-deterministic behavior that
would not raise a warning.

Also, determinisitic outputs may still result, even if this flag produces a non-deterministic warning. For
example, reduction on 1-dim axis should always be deterministic, but it may raise a warning.

• train (default: True) Training mode flag.

If it is True, Chainer runs in training mode. Otherwise, it runs in the testing (evaluation) mode.

This configuration is used by Functions and Links that need to behave differently between training phase
and evaluation (inference) phase. One example is chainer.links.BatchNormalization up-
dates statistics using input data only when train is set to True. The other example is chainer.
functions.dropout(), which does nothing when train is set to False.

Generally, you are responsible to change the configuration to False during evaluation. If you are using
Trainer with Evaluator extension, train configuration will automatically be switched to False
during evaluation in the training loop.

Note that this parameter does not reduce memory consumption or affect the creation of computational
graphs required in order to compute gradients.

• type_check (default: True) Type checking mode flag.

If it is True, Chainer checks the types (data types and shapes) of inputs on Function applications.
Otherwise, it skips type checking.

You can change the default value to False by setting CHAINER_TYPE_CHECK environment variable to
0.

• use_cudnn (default: 'auto') Flag to configure whether or not to use cuDNN.

This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of
each flag is as follows.

– If it is 'always', Chainer will try to use cuDNN everywhere if possible.

1058 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

– If it is 'auto', Chainer will use cuDNN only if it is known that the usage does not degrade the
performance.

– If it is 'never', Chainer will never use cuDNN anywhere.

You can change the default value by setting CHAINER_USE_CUDNN environment variable to any of
'always', 'auto' or 'never'.

• use_ideep (default: 'never') Flag to configure whether or not to use iDeep.

This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of
each flag is as follows.

– If it is 'always', Chainer will try to use iDeep everywhere if possible.

– If it is 'auto', Chainer will use iDeep only if it is known that the usage does not degrade the
performance.

– If it is 'never', Chainer will never use iDeep anywhere.

You can change the default value by setting CHAINER_USE_IDEEP environment variable to any of
'always', 'auto' or 'never'.

Note that in spite of the configuration, optimizers will use iDeep if and only if the link is converted manu-
ally to iDeep (e.g., model.to_intel64()).

• lazy_grad_sum (default: False) Flag to control the behavior of gradient accumulation.

If it is True, gradients are accumulated in batch for performance. Otherwise gradients are accumulated
one by one.

You can change the default value to True by setting CHAINER_LAZY_GRAD_SUM environment variable
to 1.

• use_cudnn_tensor_core (default: 'auto') Flag to configure whether or not to enable Tensor Core
operatons in cuDNN.

This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of
each flag is as follows.

– If it is always, Chainer uses cuDNN’s Tensor Core operations.

– If it is never, Chainer does not use cuDNN’s Tensor Core operations.

– If it is auto, Chainer checks cuDNN version, the data type of input, the compute capability of the
GPU used, and configures whether or not to use cuDNN’s Tensor Core operations.

• autotune (default: False) Autotune for convolutional networks flag.

If it is True, Chainer uses the cuDNN autotune feature to find the fastest calculation
process for chainer.links.Convolution2D, ConvolutionND, Deconvolution2D, or
DeconvolutionND links.

• cudnn_fast_batch_normalization (default: False) Flag to configure whether or not to enable use
of fast implementation for batch normalization in cuDNN.

If True, Chainer will try to use the fast implementation for batch normalization in cuDNN by set-
ting cuDNN’s batch normalization mode to CUDNN_BATCHNORM_SPATIAL_PERSISTENT. You can
change the default value to True by setting CHAINER_CUDNN_FAST_BATCH_NORMALIZATION en-
vironment variable to 1.

• in_recomputing (default: False) This flag is automatically set by chainer.functions.
forget() and not intended to be changed by users. You can use this flag when implementing

4.14. Configuring Chainer 1059



Chainer Documentation, Release 6.5.0

your own Link to avoid updating the internal states during recomputation done by chainer.
functions.forget(). See the documentation of chainer.functions.forget() for
details.

4.14.2 User-defined Keys

Users can also define their own configurations. There are two ways:

1. Use Chainer’s configuration objects. In this case, it is strongly recommended that the name be prefixed by
“user_” to avoid name conflicts with configurations introduced to Chainer in the future.

2. Use your own configuration objects. Users can define their own configuration objects using chainer.
configuration.GlobalConfig and chainer.configuration.LocalConfig. In this case,
there is no need to take care of the name conflicts.

4.14.3 Changing Configuration

If you want to share a setting within the process, set an attribute to the global configuration. This value is automatically
extracted by referring to the local config.

>>> chainer.global_config.train
True
>>> chainer.config.train
True

>>> chainer.global_config.train = False

>>> chainer.global_config.train
False
>>> chainer.config.train
False

If you set an attribute to the local configuration, the value is only visible to the current thread.

>>> chainer.global_config.train
True
>>> chainer.config.train
True

>>> chainer.config.train = False

>>> chainer.global_config.train
True
>>> chainer.config.train
False

If you want to temporarily modify the configuration for the specific scope, you can use using_config(). For
example, if you only want to enable debug mode in a fragment of code, write as follows.

>>> with chainer.using_config('debug', True):
... pass # code running in debug mode

If you want to switch to the test mode for an evaluation, you can do that in the same way.

1060 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

>>> # Do training here
>>> with chainer.using_config('train', False):
... pass # Perform evaluation here

Note that Evaluator automatically switches to the test mode, and thus you do not need to manually switch in the
loss function for the evaluation.

You can also make your own code behave differently in training and test modes as follows.

if chainer.config.train:
pass # code only running in the training mode

else:
pass # code only running in the test mode

chainer.global_config
chainer.config Thread-local configuration of Chainer.
chainer.using_config Context manager to temporarily change the thread-local

configuration.
chainer.configuration.GlobalConfig
chainer.configuration.LocalConfig Thread-local configuration of Chainer.

chainer.global_config

chainer.global_config = <chainer.configuration.GlobalConfig object>

chainer.config

chainer.config = <chainer.configuration.LocalConfig object>
Thread-local configuration of Chainer.

This class implements the local configuration. When a value is set to this object, the configuration is only
updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically
retrieves a value from the global configuration.

chainer.using_config

chainer.using_config(name, value, config=chainer.config)
Context manager to temporarily change the thread-local configuration.

Parameters

• name (str) – Name of the configuration to change.

• value – Temporary value of the configuration entry.

• config (LocalConfig) – Configuration object. Chainer’s thread-local configuration is
used by default.

See also:

Configuring Chainer

4.14. Configuring Chainer 1061

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainer.configuration.GlobalConfig

class chainer.configuration.GlobalConfig

Methods

show(file=sys.stdout)
Prints the global config entries.

The entries are sorted in the lexicographical order of the entry name.

Parameters file – Output file-like object.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

autotune = None

cudnn_deterministic = None

cudnn_fast_batch_normalization = None

debug = None

dtype = None

enable_backprop = None

in_recomputing = None
The plain object that represents the global configuration of Chainer.

keep_graph_on_report = None

lazy_grad_sum = None

schedule_func = None

train = None

type_check = None

use_cudnn = None

use_cudnn_tensor_core = None

use_ideep = None

1062 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

warn_nondeterministic = None

chainer.configuration.LocalConfig

class chainer.configuration.LocalConfig(global_config)
Thread-local configuration of Chainer.

This class implements the local configuration. When a value is set to this object, the configuration is only
updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically
retrieves a value from the global configuration.

Methods

show(file=sys.stdout)
Prints the config entries.

The entries are sorted in the lexicographical order of the entry names.

Parameters file – Output file-like object.

Example

You can easily print the list of configurations used in the current thread.

>>> chainer.config.show()
debug False
enable_backprop True
train True
type_check True

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Related functions

chainer.get_dtype Resolves Chainer’s default dtype.
chainer.mixed16 Dtype-like object that represents 16/32 bits mixed pre-

cision float.

4.14. Configuring Chainer 1063



Chainer Documentation, Release 6.5.0

chainer.get_dtype

chainer.get_dtype(dtype=None, map_mixed16=None)
Resolves Chainer’s default dtype.

Parameters

• dtype – Dtype specifier. If this value is specified (not None), this function returns the
dtype object corresponding to it.

• map_mixed16 – Dtype specifier. When chainer.config.dtype is mixed16, this
option is used. If this value is None, float16 is used.

Returns If dtype is not None, it returns the dtype normalized by numpy.dtype(). Otherwise,
it returns chainer.config.dtype (see Configuring Chainer) normalized as well. When
chainer.config.dtype is mixed16 and map_mixed16 is specified, it returns the nor-
malized version of map_mixed16.

chainer.mixed16

chainer.mixed16 = dtype('mixed16')
Dtype-like object that represents 16/32 bits mixed precision float.

4.14.4 Environment Variables

Here are the environment variables Chainer uses.

1064 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

CHAINER_SEED Default seed value of random number generators for CUDA. If it is not set, the seed value is
generated from Python random module. Set an integer value in decimal format.

CHAINER_DATASET_ROOTDefault directory path to store the downloaded datasets. See Datasets for details.
CHAINER_CUDNN Set 0 to completely disable cuDNN in Chainer. In this case, cuDNN will not be used re-

gardless of CHAINER_USE_CUDNN and chainer.config.use_cudnn configuration.
Otherwise cuDNN is enabled automatically.

CHAINER_USE_CUDNNUsed as the default value for chainer.config.use_cudnn configuration. The value
must be any of 'always', 'auto' or 'never'. If CHAINER_CUDNN is set to 0, this
environment variable has no effect. See Configuring Chainer for details.

CHAINER_CUDNN_FAST_BATCH_NORMALIZATIONUsed as the default value for chainer.config.
cudnn_fast_batch_normalization configuration. Set 1 to enable use of fast
implementation for batch normalization in cuDNN. See Configuring Chainer for details.

CHAINER_USE_IDEEPUsed as the default value for chainer.config.use_ideep configuration. The value
must be any of 'always', 'auto' or 'never'. See Configuring Chainer for details.

CHAINER_LAZY_GRAD_SUMUsed as the default value for chainer.config.lazy_grad_sum configuration. Set 1
to enable batch accumulation of gradients. See Configuring Chainer for details.

CHAINER_DTYPE Used as the default value for chainer.config.dtype configuration. The value must be
any of 'mixed16', 'float16', 'float32' or 'float64'. See Configuring Chainer
for details.

CHAINER_TYPE_CHECKUsed as the default value for chainer.config.type_check configuration. Set 0 to
disable type checking. Otherwise type checking is enabled automatically. See Configuring
Chainer and Type checking utilities for details.

CHAINER_DEBUG Used as the default value for chainer.config.debug configuration. Set 1 to enable
debug mode. It is disabled by default. In debug mode, Chainer performs various runtime
checks that can help debug user’s code at the cost of some overhead. See Configuring Chainer
and Debug Mode for details.

CHAINER_KEEP_GRAPH_ON_REPORTUsed as the default value for chainer.config.keep_graph_on_report configura-
tion. Set 1 to let report() keep the computational graph. See Configuring Chainer for
details.

CHAINER_PYTHON_350_FORCESet 1 to force using Chainer with Python 3.5.0. Note that Chainer does not work with Python
3.5.0. Use Python 3.5.1+ or other supported versions (see Installation).

The following environment variables are only effective when running unit tests.

CHAINER_TEST_GPU_LIMITNumber of GPUs available for unit tests. When running unit test, test cases that require
more GPUs than the specified value will be skipped. Set 0 to skip all test cases that
require GPU. See Unit Testing for details.

CHAINER_TEST_RANDOM_NONDETERMINISTICSet 1 to use non-fixed seed for random number generators, even for test cases annotated
with fix_random.

4.15 Debug Mode

In debug mode, Chainer checks values of variables on runtime and shows more detailed error messages. It helps you
to debug your programs. However, it requires some additional overhead time.

If you want to enable debug mode for the entire code, you can set CHAINER_DEBUG environment variable to 1.

You can also enable or disable debug mode for the specific scope of code with chainer.using_config() or by
changing chainer.config.debug configuration.

4.15. Debug Mode 1065



Chainer Documentation, Release 6.5.0

with chainer.using_config('debug', True):
...

See Configuring Chainer for the details of Chainer’s configuration mechanism.

In debug mode, Chainer checks all results of forward and backward computation, and if it finds a NaN value, it raises
a RuntimeError. Some functions and links also check validity of input values more strictly.

You can check if debug mode is enabled with chainer.is_debug() function.

chainer.is_debug Returns if the debug mode is enabled or not in the cur-
rent thread.

chainer.set_debug Enables or disables the debug mode in the current
thread.

4.15.1 chainer.is_debug

chainer.is_debug()
Returns if the debug mode is enabled or not in the current thread.

Returns True if the debug mode is enabled.

Return type bool

4.15.2 chainer.set_debug

chainer.set_debug(debug)
Enables or disables the debug mode in the current thread.

Note: chainer.set_debug(value) is equivalent to chainer.config.debug = value.

Parameters debug (bool) – New debug mode.

4.16 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed
properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by in-
voking build_computational_graph(). Generated computational graphs are dumped to specified format
(Currently Dot Language is supported).

Basic usage is as follows:

import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:

o.write(g.dump())

where vs is list of Variable instances and g is an instance of ComputationalGraph. This code generates the
computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of
vs.

1066 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/DOT_(graph_description_language)


Chainer Documentation, Release 6.5.0

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from example/
imagenet.

chainer.computational_graph.
build_computational_graph

Builds a graph of functions and variables backward-
reachable from outputs.

chainer.computational_graph.
ComputationalGraph

Class that represents computational graph.

4.16.1 chainer.computational_graph.build_computational_graph

chainer.computational_graph.build_computational_graph(outputs, remove_split=True,
variable_style={’fillcolor’:
’#E0E0E0’, ’shape’: ’oc-
tagon’, ’style’: ’filled’},
function_style={’fillcolor’:
’#6495ED’, ’shape’:
’record’, ’style’: ’filled’},
rankdir=’TB’, re-
move_variable=False,
show_name=True)

Builds a graph of functions and variables backward-reachable from outputs.

Parameters

• outputs (Variable, VariableNode, FunctionNode, or list) – node(s) from
which the graph is constructed. Each element of outputs must be either Variable object,
VariableNode object, or FunctionNode object.

• remove_split (bool) – It must be True. This argument is left for backward compati-
bility.

• variable_style (dict) – Dot node style for variable. Possible keys are ‘shape’,
‘color’, ‘fillcolor’, ‘style’, and etc.

• function_style (dict) – Dot node style for function.

• rankdir (str) – Direction of the graph that must be TB (top to bottom), BT (bottom to
top), LR (left to right) or RL (right to left).

4.16. Visualization of Computational Graph 1067

https://arxiv.org/abs/1409.4842
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• remove_variable (bool) – If True, VariableNodes are removed from the result-
ing computational graph. Only FunctionNodes are shown in the output.

• show_name (bool) – If True, the name attribute of each node is added to the label of
the node. Default is True.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of
outputs.

If unchain_backward was called in some variable in the computational graph before this
function, backward step is stopped at this variable.

For example, suppose that computational graph is as follows:

|--> f ---> y
x --+

|--> g ---> z

Let outputs = [y, z]. Then the full graph is emitted.

Next, let outputs = [y]. Note that z and g are not backward-reachable from y. The result-
ing graph would be following:

x ---> f ---> y

See TestGraphBuilder for details.

Return type ComputationalGraph

Note: The default behavior of ComputationalGraph has been changed from v1.23.0, so that it ouputs
the richest representation of a graph as default, namely, styles are set and names of functions and variables are
shown. To reproduce the same result as previous versions (<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.

4.16.2 chainer.computational_graph.ComputationalGraph

class chainer.computational_graph.ComputationalGraph(nodes, edges, vari-
able_style={’fillcolor’:
’#E0E0E0’, ’shape’: ’oc-
tagon’, ’style’: ’filled’},
function_style={’fillcolor’:
’#6495ED’, ’shape’: ’record’,
’style’: ’filled’}, rankdir=’TB’,
remove_variable=False,
show_name=True)

Class that represents computational graph.

Note: We assume that the computational graph is directed and acyclic.

Parameters

• nodes (list) – List of nodes. Each node is either VariableNode object or
FunctionNode object.

1068 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list


Chainer Documentation, Release 6.5.0

• edges (list) – List of edges. Each edge consists of pair of nodes.

• variable_style (dict) – Dot node style for variable.

• function_style (dict) – Dot node style for function.

• rankdir (str) – Direction of the graph that must be TB (top to bottom), BT (bottom to
top), LR (left to right) or RL (right to left).

• remove_variable (bool) – If True, VariableNodes are removed from the result-
ing computational graph. Only FunctionNodes are shown in the output.

• show_name (bool) – If True, the name attribute of each node is added to the label of
the node. Default is True.

Note: The default behavior of ComputationalGraph has been changed from v1.23.0, so that it ouputs
the richest representation of a graph as default, namely, styles are set and names of functions and variables are
shown. To reproduce the same result as previous versions (<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.

Methods

dump(format=’dot’)
Dumps graph as a text.

Parameters

• format (str) – The graph language name of the output.

• it must be 'dot'. (Currently,) –

Returns The graph in specified format.

Return type str

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.17 Static Subgraph Optimizations: Usage

Note: This is an experimental feature and so the API might change in the future as it is developed.

4.17. Static Subgraph Optimizations: Usage 1069

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

This feature intends to improve runtime performance by optimizing the execution of the static subgraphs in a model.
When this feature is enabled, the first iteration runs as normal except that an execution trace is also collected. The
trace is then used to generate optimized code that is will be called instead of the define-by-run code starting from the
second iteration.

chainer.static_graph Decorator to mark a Chain’s __call__() as a static
sub-graph.

4.17.1 chainer.static_graph

chainer.static_graph(*args, **kwargs)
Decorator to mark a Chain’s __call__() as a static sub-graph.

This decorator marks the define-by-run code inside the __call__() method of a Chain instance as corresponding
to a static computation graph or sub-graph. Such a chain will be referred to as a ‘static chain’. This allows
various “static graph” optimizations to be performed, which can result in significant speedups for some models.

When this decorator is used, the chain’s define-by-run code executes during the first iteration as usual. However,
while the define-by-run code is executing, a trace is also performed to incrementally create a corresponding static
schedule. This static schedule will only contain the subset of the computations inside the define-by-run code
that actually needs to run every iteration. Specifically, this will contain the code inside any functions called that
were annotated with the @static_code decorator, which will include all Chainer built-in functions, as well as
any user-defined functions that use @static_code. Then, starting from the second iteration, when the static chain
is called, its static schedule code will be executed instead of its define-by-run code.

However, the user must also be careful of the following: - The user is responsible for applying this decorator
correctly. The framework does not check that the define-by-run code corresponds to a static graph. The graph
can be different between training and evaluation mode (such as when dropout and/or batch normalization are
used), but should otherwise be static. - When chainer.config.enable_backprop is enabled, if a backward pass is
not performed each iteration, then the user code must call a method chain.schedule_manager.end_forward()‘on
the static chain each iteration. - Static graphs allow tradeoffs between computation and memory usage. For
example, the ‘minimize_cache_size argument will typically result in higher memory useage when set to False
because all cached schedules are retained. - When this feature is enabled, only the Chainer function and/or
link calls inside the chain’s __call__() method will be included in the static schedule by default. An other code
that the user puts in __call__(), such as a print statement or code to increment a counter for example, will
not automatically get added. We will refer to such code other than Chainer function/link calls as “side-effect”
code. Since side-effect code does not get included in the static schedule by default, this means that it will only
every execute once, during the first iteration. There is a way to force side-effect code to be included in the
static schedule, however: the user can wrapp such code inside a function that is decorated with @static_code
to ensure that it gets added to the static schedule. For an example of this, refer to the documentation. - This
feature is experimental and advanced optimizations such as kernel fusion and various memory optimizations are
not implemented yet.

Usage:

This decorator should only be applied to define-by-run code that actually corresponds to a static subgraph. Refer
to the documenation for additional details and examples of correct usage. This decorator should be applied to
each of the largest static subgraphs in the model; it can also be applied to a static subgraph that is not the largest
subgraph, but that could result in reduced performance. It is not currently allowed to mark a chain as static if
it is contained within another chain that is also marked as being static. For example, suppose a static graph A
contains a static sub-graph B. Then, only the chain corresponding to A should be marked as static and the chain
corresponding to B should not be marked as static.

The behavior of a static chain depends on the training mode flag, chainer.config.train. If it is True, then a static
chain that is called multiple times will try to use a distinct static schedule object (that is, call a distinct instance of

1070 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

a FunctionNode that implements that static schedule) on each call. The same schedule instance cannot be reused
until the forward pass has completed, which is signaled by performing a backward pass through the model. It
is therefore important that the backward pass be performed after each forward pass during training. Since this
is usually the case, most usages of static chain will not required any modifications to existing code other than
applying this decorator. However, if you would like to perform multiple forward passes during training before
performing a backward pass, then you must call chain.schedule_manager.end_forward() after the end of each
forward pass.

If test mode is active (chainer.config.train is False) then it is not necessary to inform the chain at the end of
each forward pass because in test mode, a static chain always attempts to reuse existing static schedule objects.
The same static schedule can be reused during a single forward pass, because it is not necessary to compute
gradients. It is also possible to disable static optimzations while in test mode by setting the decorator argument
force_test_define_by_run=True.

Note: If either ‘chainer.config.enable_backprop’ or ‘chainer.config.train’ is set to ‘False’, then cached static
schedules will be reused when possible to reduce memory usage.

Double-backprop: Double-backpropagation is not enabled by default. It can be enabled by supplying the
keyword argument enable_double_backprop=True to this decorator. Note: this feature has not
been tested yet.

Restrictions on input arguments and return values of a static chain: Recall that unlike a function, there is
no restrictions on the arguments to a chain. However, there currently are some restrictions when a static
chain is used. Specifically, the arguments to a static chain must consist of a variable, list or tuple. In the
case of a list or tuple, the elements are required to be an instance of variable, list, or tuple. There can be an
arbitrary number of nested lists/ tuples. No other object types are allowed. In addition, keyword arguments
are not allowed. The return value of a static chain must be a variable, list, or tuple in which each element
of the list or tuple is also a variable, list, or tuple.

This decorator can be supplied with the following optional keyword arguments. This is an experimental feature,
and the API and arguments might change

Parameters

• force_test_define_by_run (bool) – If True, disable static graph optimizations
during test mode (that is, when chainer.config.train is False). This may be needed in order
for some existing RNN links such as LSTM to work correctly, since some existing links do
not correspond to a static graph in some cases. The default is False.

• minimize_cache_size (bool) – If True, minimize the number of cached static sched-
ules in order to reduce memory usage. For example, if the mini-batch size changes or the
training mode changes, the schedules will need to be recomputed, but memory is also saved
by not retaining all cached schedules. The default value is True.

• verbosity_level (int) – Depending on the value, print additional information: 0:
Warnings only. (the default value) 1: Show only information that is collected during the
first iteration and when a new static schedule is created. 2: Detailed debugging information,
possibly showing new information every iteration.

• enable_double_backprop (bool) – If True, enable double-backprop. The default
value is False (not enabled).

Returns Wrapped __call__() method with static chain support.

4.17.2 Basic usage

To enable static graph optimizations, it is only necessary to add the chainer.static_graph() decorator to a
chain’s __call__() method. We will now show how the Chainer MNIST example can be modified to use this fea-
ture. The modified version with static subgraph optimizations is located at examples/static_graph_optimizations/mnist.

4.17. Static Subgraph Optimizations: Usage 1071

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://github.com/chainer/chainer/tree/v6.5.0/examples/static_graph_optimizations/mnist


Chainer Documentation, Release 6.5.0

The first step is to import the necessary packages:

Listing 1: train_mnist.py

25 from chainer import static_code
26 from chainer import static_graph

Since the neural network model MLP corresponds to a static graph, we can annotate it as a static graph by using the
chainer.static_graph() decorator on the chain’s __call__() method. This lets the framework know that
that the define-by-run code of the chain always creates the same graph (that is, it always performs the same sequence
of computations) each time it is called. We will refer to such a chain as a static chain in the documentation.

Listing 2: train_mnist.py

32 # Network definition
33 class MLP(chainer.Chain):
34

35 """A fully-connected neural network for digit classification.
36

37 """
38

39 def __init__(self, n_units, n_out):
40 super(MLP, self).__init__()
41 with self.init_scope():
42 # the size of the inputs to each layer will be inferred
43 self.l1 = L.Linear(None, n_units) # n_in -> n_units
44 self.l2 = L.Linear(None, n_units) # n_units -> n_units
45 self.l3 = L.Linear(None, n_out) # n_units -> n_out
46

47 @static_graph
48 def __call__(self, x):
49 h1 = F.relu(self.l1(x))
50 h2 = F.relu(self.l2(h1))
51 return self.l3(h2)

Note: If your model’s define-by-run code has any control flow operations that could cause it to potentially call
different Chainer functions/links each time it is called, then you cannot use this decorator.

Note: There are currently some restrictions on how variables can be passed into a static chain’s __call__()
method. Refer to the documentation of chainer.static_graph() for details.

Recall that the define-by-run code of a static chain’s __call__() method only actually runs during the first iteration
and is then replaced by optimized static schedule code. The current implementation only knows how to do this auto-
replacement for calls to Chainer functions and links. Any other code that the user puts in __call__() (which we
refer to as “side-effect code”) will only ever get called once by default, since the define-by-run code is only executed
during the first iteration. In order to make sure such “side effect” code actually gets called each iteration, we need
to put it inside a function or method decorated by static_code(). We expect there will rarely be a need to use
side-effect code but for completeness, an example of a model that uses it is available in the MLPSideEffect Chain
of the static graph MNIST example.

In this example, we only need to use chainer.static_graph() on the model chain, since the whole model is
static. However, in more general dynamic models, each of the largest static subgraphs (which should each be written
as a chain) should also use chainer.static_graph().

1072 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Note: Nested application of chainer.static_graph() is not allowed. That is, if a chainer.
static_graph()-decorated chain calls another chains, only the outermost chain should use the decorator.

4.17.3 Calling a static chain multiple times in the same iteration

In a general dynamic graph network, it is not possible to know in advance how many times a static chain will be
called in any particular iteration. Note that during training, it is necessary to maintain separate internal state (such
as intermediate activations) for each of these calls so that the gradients can be computed in the backward pass. So,
although the layer functions of the static schedule will be identical each time the same static chain is called, any
internal state must be distinct. It is also possible that a static chain could be called multiple times with inputs of
different shapes and/or types during the same iteration. To avoid confuction, “static schedule” will refer to both the
functions and any corresponding internal state such as activations.

If backpropagation mode is disabled (chainer.config.enable_backprop is False), it is safe for the im-
plementation to simply compute a static schedule for the first call and reuse it for subsequent calls, provided that
the cached schedule is compatible with the input shapes/types. However, during training, it is necessary to maintain
distinct internal state for each call in order to compute the gradients for the backward pass, which prevents us from
reusing the same static schedule for each of the multiple calls of a static chain in an iteration.

The current implementation handles this issues as follows. A cache of static schedules, which is intially empty, is
associated with each static chain. The size of this cache will be equal to the maximum number of times that the
static chain has been called in any previous iteration, and the cache is reset whenever certain chain configuration flags
change, such as training mode and backpropagation model. At the start of a given iteration, all cached schedules are
available for use and the number of available schedules is decremented each time the static chain is called. If the chain
is called when the cache is size zero, then its define-by-run code will execute to create a new schedule cache.

In order for such an implementation to work, each static chain must be notified when the forward pass has ended (or
when the forward pass is started) so that all cached schedules can be made available for use again. In the current
implementation, this is accomplished by calling the backward() method on a loss variable in the model. This is
expected to handle the typical use cases. However, in some models it may be necessary to perform multiple forward
passes before calling backward(). In such a case, to signel to a static chain that the forward pass (and the iteration)
has ended, call my_chain.schedule_manager.end_forward(). The schedule_manager attribute of a static
chain is an instance of a class called StaticScheduleFunction that will be available after the chain has been
called.

4.17.4 Effects on model debugging

Note that since the code in the static chain’s __call__() only runs during the first iteration, you will only be able
to debug this code as define-by-run during the first iteration. It is assumed that if the chain is actually is static, any
problems in its define-by-run code should be apparent during the first iteration and it should not be (as) necessary to
debug this code in later iterations. However, this feature does provide some functionality to help with debugging. For
example, it is possible to obtain and inspect the current static schedules. It is also possible to directly step through the
code of the static schedule if you wish (by debugging the forward() method of StaticScheduleFunction in
static_graph).

4.17.5 Limitations and future work

• Optimization switches to let the user select the trade-off between runtime performance and memory usage: The
current implementation achieves its speedups mainly by reducing the amount of Python code that needs to run,
but does not yet implement advanced optimizations for memory usage or runtime performance. Ideally, the user

4.17. Static Subgraph Optimizations: Usage 1073



Chainer Documentation, Release 6.5.0

should be able to adjust performance tuning parameters to control the trade-off between memory consumption
and runtime performance.

• Incompatibility with GRU and LSTM links: This feature requires that all input variables to a chain need to
explicitly appear in the arguments to the chain’s __call__() method. However, the GRU and LSTM links
with state maintain variable attributes of the chain for the RNN state variables. Design changes to support such
links and/or modifications to these links are being considered. These links may still be used with the current
implementation, as long as the corresponding RNN is unrolled inside of a static chain. For an example of this,
see the modified ptb example at examples/static_graph_optimizations/ptb

• Memory usage: The current implementation caches all static schedules which can lead to high memory usage
in some cases. For example, separate schedules are created when the training mode or mini-batch size changes.

• Advanced graph optimizations: Advanced optimizations such as fusion of operations is not yet implemented.

• Constraints on arguments to a static chain: The current version requires that all input variables used inside
__call__() of a static chain must either appear in the arguments of this method or be defined in the define-
by-run code. Furthermore, any variables that appear in the arguments list must appear by themselves or be
contained inside a list or tuple. Arbitrary levels of nesting are allowed.

• Model export: In the case where the complete computation graph for the model is static, it should be possible
in principle to export the static schedule in a format that can be run on other platforms and languages. One of
the other original motivations for this feature was to support exporting static Chainer models to run on C/C++
and/or optimize the static schedule execution code in Cython/C/C++. However, it seems that ONNX is now
fulfilling this purpose and there is a separate ONNX exporter already in development for Chainer. Perhaps these
two features can be merged at some point in the future.

• Double-backward support: This feature was designed to support double-backward (gradient of gradient) but it
has not been tested.

4.17.6 Examples

For additional examples that use this feature, refer to the examples in examples/static_graph_optimizations.

4.18 Static Subgraph Optimizations: Design Notes

This documentation is intended provide information on the architecture and design of the static subgraph optimizations
feature for those who are interested in contributing to its development. This documentation also describes how existing
Chainer functions can be modified to run more efficiently when static subgraph optimizations are enabled.

4.18.1 Overview of dynamic and static graph frameworks

Existing deep learning frameworks can roughly be classified as either a “static graph” or “dynamic graph” framework.
In a static graph framework, which we also call “define-and-run”, the computation graph is defined before the model
is run. This implies that the same neural network model will be used each iteration without modifications, hence the
name “static.” This allows various graph optimizations to potentially be performed to improve the runtime performance
and/or reduce memory usage. The optimized code for the computation graph is then used when the model is run.

However, in a “dynamic graph” (also called “define-by-run”) framework such as Chainer, the computation graph is
not defined before the model is run. Rather, it is constructed incrementally and automatically by the framework as
the computations of the forward pass are executed. In Chainer, the user writes code to perform the computations of
the forward pass in terms of Chainer functions, which have an API similar to an array library like NumPy. As these
functions execute, the computation graph is incrementally built so that it will be available after the last function in the
forward pass has been called. This has some advantages, such as allowing easier debugging compared to a static graph

1074 Chapter 4. API Reference

https://github.com/chainer/chainer/tree/v6.5.0/examples/static_graph_optimizations/ptb
https://github.com/chainer/chainer/tree/v6.5.0/examples/static_graph_optimizations


Chainer Documentation, Release 6.5.0

framework, since the user can step through the computations of the forward pass in a debugger. Define-by-run also
provides the flexibility to include control flow operations so that a modified or even completely different graph can be
constructed each iteration. Unfortunately, this flexibility also tends to make dynamic graph frameworks slower than
static graph frameworks. For example, in Chainer there is a performance penalty involved in dynamically constructing
the graph each iteration, since it involves creating many objects; each function call creates a new FunctionNode object
as well as creating new VariableNode and array memory allocation for each output of the function. There are also
various dynamic type checks and graph traversal that need to be performed, adding to the runtime overhead. Further,
we cannot perform some optimizations such as function/kernel fusion and in-place operations.

4.18.2 Static subgraph optimizations feature

This feature is motivated by the observation that typical deep neural networks correspond to a static computation
graph and that even those that correspond to a dynamic graph are typically mostly static. By “mostly static”, we mean
that the largest static subgraphs each tend to contain many function nodes (that is, layers) so that the total number of
function nodes in the graph tends to be much larger than the total number of largest static subgraphs. If the graph
is at least mostly static, then a naive implementation of define-by-run will result in a large amount of redundant
operations being performed each iteration to rebuild exactly the same subgraphs, perform the same dynamic type-
checking operations, etc., which can sometimes be slow in Python; it will also result in lost opportunities to perform
potential graph optimizations. A key assumption motivating this feature is that the main performance bottlenecks tend
to occur inside the largest static subgraphs. So, if we can optimize these static subgraphs, it might be fine for any
remaining framework code to remain implemented in pure Python. Although such Python code would be slow, it
could have negligible runtime overhead.

The solution proposed by this feature is to retain the existing define-by-run style for specifying the model, but to
also optionally allow the user to annotate the largest static subgraphs in a model. These “static graph” annotations
will then allow the framework to automatically replace the define-by-run code of the static subgraphs with more
performance-optimized code. The define-by-run code will still execute during the first iteration, to retain ease of
debugging. However, as this code executes, a trace of the needed computations is also collected so that optimized
static schedules can be generated for the annotated static subgraphs. Then, starting from the second iteration, this
optimized code will automatically be run in place of the original define-by-run code. Note that in the common case in
which the whole model is static, the user only needs to add a single “static graph” annotation and their code will then
run with the performance of a static graph framework, while still supporting the define-by-run coding style.

The benefit of annotating the static subgraphs in the model is that it allows the define-by-run code to be replaced
with an optimized static schedule, which can then potentially support a user-controllable trade-off between runtime
performance and memory usage. This is possible because having the full computation graph available enables various
optimizations that cannot safely or automatically be performed in define-by-run. Examples (which we have not yet
implemented; contributions from the open source community are welcomed) include sub-linear memory usage [1],
exploiting graph parallelism, operator fusion, and in-place optimizations.

The current implementation achieves its speedup by retaining only the code that is actually needed to compute the
forward pass, backward pass, and so on. This allows us to remove most of the Python interpreter overhead because the
Python code that performs dynamic operations such as allocating FunctionNode and Variable objects, checking types,
and traversing the backward graph is not included in the optimized static schedule code.

4.18.3 Adding support to existing functions

Most functions and links will not need to be modified at all in order to support this feature, since the framework
code will attempt to auto-wrap them inside a @static_code-decorated function. However, some functions might see a
performance benefit if static graph support is added manually, since it may result in less redundant code being included
in the static schedule. For example, any dynamic checking code that will return the same result every iteration does
not need to be included in the static schedule.

4.18. Static Subgraph Optimizations: Design Notes 1075



Chainer Documentation, Release 6.5.0

An existing function (that is, a subclass of FunctionNode) can be modified to support static graph optimizations as
follows. The basic idea is to wrap any code that needs to be called each iteration inside a method that is decorated with
@static_code. Note that code that should only run once, such as initializing parameters, should not be wrapped.

It is also necessary to set the _supports_static_optimizations = True class attribute. Note that this
attribute is False by default in FunctionNode.

Since the function is part of a static graph, any parameters and output arrays should ideally be statically allocated
during the first iteration (while the define-by-run code is executing) and then reused starting from the second iteration.
The @static_code-decorated functions that are called each iteration will perform the various deep learning com-
putations, writing results in-place into these static arrays. Since the results are written in-place, there is no need for
an @static_code-decorated function to explicitly return a result. Rather, any results arrays should be passed as inputs
along with any other input arguments to the function. However, it also is allowed to return dynamically allocated
arrays so that existing Chainer functions can be easily supported. The following code shows the typical pattern for
performing the forward computations in a FunctionNode:

@static_code
def static_forward(self, inputs, outputs):

# This function will get
included in the static

# schedule and called each iteration.
# Any input arrays must be passed in a list
# to the `inputs` keyword argument.
x = inputs[0]
# Any output arrays must be passed in a list
# to the `outputs` keyword argument, and must
# have already been initialized to the required
# shape. Results are written in-place into output
# arrays.
y = outputs[0]

# Read from x, write results into y in-place.
# Don't forget to zero y if necessary.
y *= 0.0 # (if necessary)
y[:] = 3.0*x # for example

def forward(self, inputs):
# Initialization/type checking code.
# (only gets called once, during first iteration)
type_check_blah(inputs)

# Allocate output array. Note that since this line
# is not wrapped using @static_code, it
# will only ever get called once, during the first
# iteration.
y = xp.empty(y_shape).astype(x.dtype)

# Call static function
# (it will get called every iteration from optimized schedule)
self.static_forward(inputs=[x], outputs=[y])
return y,

It should not be necessary to modify the backward() implementation. As of Chainer v3 when double-backward (i.e.,
grad of grad) support was added, the backward() method of FunctionNode actually calls the forward() method
of other FunctionNode‘s, and so it is only necessary that the ‘forward() functions be wrapped.

For an example of how to add support to an existing function, see the Linear function.

1076 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

4.18.4 Adding support to existing links

Most existing links will work as-is and do not need to be modified. However, if a link needs to perform computations
each iteration that are performed in code other than calling chainer functions, this code will need to be manually placed
in a @static_code-decorated function or method of the link.

If a link performs different computations depending on the training mode but is otherwise static, then it does not need
to be modified.

4.18.5 Reference

[1] Training deep nets with sublinear memory cost

4.19 Caffe Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities,
and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference
models in their Model Zoo, which can reduce training time required for a new task.

4.19.1 Import

Chainer can import the reference models and emulate the network by Link implementations. This functionality is
provided by the chainer.links.caffe.CaffeFunction class.

chainer.links.caffe.CaffeFunction Caffe emulator based on the model file of Caffe.

4.19.2 Export

Chainer can export a model from Link.

chainer.exporters.caffe.export (Experimental) Export a computational graph as Caffe
format.

chainer.exporters.caffe.export

chainer.exporters.caffe.export(model, args, directory=None, export_params=True,
graph_name=’Graph’)

(Experimental) Export a computational graph as Caffe format.

Parameters

• model (Chain) – The model object you want to export in Caffe format. It should have
__call__() method because the second argument args is directly given to the model
by the () accessor.

• args (list of ~chainer.Variable) – The arguments which are given to the
model directly.

• directory (str) – The directory used for saving the resulting Caffe model. If None,
nothing is saved to the disk.

4.19. Caffe Model Support 1077

https://arxiv.org/abs/1604.06174
http://caffe.berkeleyvision.org/
http://bvlc.eecs.berkeley.edu/
http://caffe.berkeleyvision.org/model_zoo.html
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• export_params (bool) – If True, this function exports all the parameters included in
the given model at the same time. If False, the exported Caffe model doesn’t include any
parameter values.

• graph_name (str) – A string to be used for the name field of the graph in the exported
Caffe model.

Note: Currently, this function supports networks that created by following layer functions.

• linear()

• convolution_2d()

• deconvolution_2d()

• max_pooling_2d()

• average_pooling_2d()

• batch_normalization()

• local_response_normalization()

• relu()

• leaky_relu()

• concat()

• softmax()

• reshape()

• add()

This function can export at least following networks.

• GoogLeNet

• ResNet

• VGG

And, this function use testing (evaluation) mode.

Example

>>> from chainer.exporters import caffe
>>>
>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l1 = L.Convolution2D(None, 1, 1, 1, 0)
... self.b2 = L.BatchNormalization(1)
... self.l3 = L.Linear(None, 1)
...
... def __call__(self, x):
... h = F.relu(self.l1(x))
... h = self.b2(h)
... return self.l3(h)
...

(continues on next page)

1078 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> x = chainer.Variable(np.zeros((1, 10, 10, 10), np.float32))
>>> caffe.export(Model(), [x], None, True, 'test')

4.20 Assertion and Testing

Chainer provides some facilities to make debugging easy.

4.20.1 Type checking utilities

FunctionNode uses a systematic type checking of the chainer.utils.type_check module. It enables
users to easily find bugs of forward and backward implementations. You can find examples of type checking in some
function implementations.

chainer.utils.type_check.Expr Abstract syntax tree of an expression.
chainer.utils.type_check.eval
chainer.utils.type_check.expect Evaluates and tests all given expressions.
chainer.utils.type_check.TypeInfo Type information of an input/gradient array.
chainer.utils.type_check.
TypeInfoTuple

Type information of input/gradient tuples.

chainer.utils.type_check.Variable

chainer.utils.type_check.Expr

class chainer.utils.type_check.Expr(priority)
Abstract syntax tree of an expression.

It represents an abstract syntax tree, and isn’t a value. You can get its actual value with eval() function, and
get syntax representation with the __str__() method. Each comparison operator (e.g. ==) generates a new
Expr object which represents the result of comparison between two expressions.

Example

Let x and y be instances of Expr, then

>>> x = Variable(1, 'x')
>>> y = Variable(1, 'y')
>>> c = (x == y)

is also an instance of Expr. To evaluate and get its value, call eval() method:

>>> c.eval()
True

Call str function to get a representation of the original equation:

>>> str(c)
'x == y'

You can actually compare an expression with a value:

4.20. Assertion and Testing 1079



Chainer Documentation, Release 6.5.0

>>> (x == 1).eval()
True

Note that you can’t use boolean operators such as and, as they try to cast expressions to boolean values:

>>> z = Variable(1, 'z')
>>> x == y and y == z # raises an error
Traceback (most recent call last):
RuntimeError: Don't convert Expr to bool. Please call Expr.eval method to
→˓evaluate expression.

Methods

__call__(*args)
Call self as a function.

__getitem__(key)

eval()
Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() function.

__eq__(y)

__ne__(y)

__lt__(y)

__le__(y)

__gt__(y)

__ge__(y)

__nonzero__()

__bool__()

__neg__()

__add__(y)

__radd__(y)

__sub__(y)

__rsub__(y)

__mul__(y)

__rmul__(y)

__truediv__(y)

__rtruediv__(y)

__floordiv__(y)

__rfloordiv__(y)

__pow__(y)

1080 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

chainer.utils.type_check.eval

chainer.utils.type_check.eval(exp)

chainer.utils.type_check.expect

chainer.utils.type_check.expect(*bool_exprs)
Evaluates and tests all given expressions.

This function evaluates given boolean expressions in order. When at least one expression is evaluated as False,
that means the given condition is not satisfied. You can check conditions with this function.

Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to
evaluate.

chainer.utils.type_check.TypeInfo

class chainer.utils.type_check.TypeInfo(shape, dtype)
Type information of an input/gradient array.

It contains type information of an array, such as the shape of array and the number of dimensions. This infor-
mation is independent of CPU or GPU array.

Methods

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

size

chainer.utils.type_check.TypeInfoTuple

class chainer.utils.type_check.TypeInfoTuple
Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element of this object contains type information of the
i-th input/gradient data. As each element is Expr, you can easily check its validity.

4.20. Assertion and Testing 1081



Chainer Documentation, Release 6.5.0

Methods

__getitem__()
Return self[key].

__len__()
Return len(self).

__iter__()
Implement iter(self).

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

size()
Returns an expression representing its length.

Returns An expression object representing length of the tuple.

Return type Expr

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

__add__()
Return self+value.

__mul__()
Return self*value.n

__rmul__()
Return self*value.

chainer.utils.type_check.Variable

class chainer.utils.type_check.Variable(value, name)

Methods

__call__(*args)
Call self as a function.

__getitem__(key)

1082 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

eval()
Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() function.

__eq__(y)

__ne__(y)

__lt__(y)

__le__(y)

__gt__(y)

__ge__(y)

__nonzero__()

__bool__()

__neg__()

__add__(y)

__radd__(y)

__sub__(y)

__rsub__(y)

__mul__(y)

__rmul__(y)

__truediv__(y)

__rtruediv__(y)

__floordiv__(y)

__rfloordiv__(y)

__pow__(y)

4.20.2 Gradient checking utilities

Most function implementations are numerically tested by gradient checking. This method computes numerical gradi-
ents of forward routines and compares their results with the corresponding backward routines. It enables us to make
the source of issues clear when we hit an error of gradient computations. The chainer.gradient_check module
makes it easy to implement the gradient checking.

chainer.gradient_check.
check_backward

Test backward procedure of a given function.

chainer.gradient_check.
check_double_backward

Test twice differentiation of a given procedure.

chainer.gradient_check.
numerical_grad

Computes numerical gradient by finite differences.

4.20. Assertion and Testing 1083



Chainer Documentation, Release 6.5.0

chainer.gradient_check.check_backward

chainer.gradient_check.check_backward(func, x_data, y_grad, params=(), eps=0.001, atol=1e-
05, rtol=0.0001, no_grads=None, dtype=None, de-
tect_nondifferentiable=False)

Test backward procedure of a given function.

This function automatically checks the backward-process of a given function to ensure that the computed gra-
dients are approximately correct. For example, assuming you’ve defined a FunctionNode class MyFunc,
that takes two arguments and returns one value, you can wrap it in a ordinary function and check its gradient
computations as follows:

def func(xs):
y, = MyFunc().apply(xs)
return y

x1_data = xp.array(...)
x2_data = xp.array(...)
gy_data = xp.array(...)
check_backward(func, (x1_data, x2_data), gy_data)

This function creates Variable objects with x_data and calls func with the Variables to get its result
as Variable. Then, it sets y_grad array to grad attribute of the result and calls backward method to
get gradients of the inputs. To check correctness of the gradients, the function calls numerical_grad()
to calculate numerically the gradients and compares the types of gradients with chainer.testing.
assert_allclose().

To reduce computational time, it uses directional derivative along a random vector. A function 𝑔 : R → R𝑛 is
defined as 𝑔(𝛿) = 𝑓(𝑥 + 𝛿𝑟), where 𝛿 ∈ R, 𝑟 ∈ R𝑛 is a random vector and 𝑓 is a function which you want to
test. Its gradient is

𝑔′(𝛿) = 𝑓 ′(𝑥+ 𝛿𝑟) · 𝑟.

Therefore, 𝑔′(0) = 𝑓 ′(𝑥) · 𝑟. So we can check the correctness of back propagation of 𝑓 indirectly by comparing
this equation with the gradient of 𝑔 numerically calculated and that of 𝑓 computed by backprop. If 𝑟 is chosen
from uniform distribution, we can conclude with high probability that the gradient of 𝑓 itself is correct.

If the function is non-differentiable with respect to some input objects, we can check its backprop to such
objects by no_grads argument. gradient_check computes numerical backward to inputs that correspond
to False in no_grads. It also asserts that the backprop leaves gradients None for inputs that correspond to
True in no_grads. The default of no_grads argument is the tuple of truth values whether input objects
(x1_data or/and x2_data in this example) represent integer variables.

You can simplify a test when MyFunc gets only one argument:

check_backward(func, x1_data, gy_data)

If MyFunc is a loss function which returns a zero-dimensional array, pass None to gy_data. In this case, it
sets 1 to grad attribute of the result:

check_backward(my_loss_func,
(x1_data, x2_data), None)

If MyFunc returns multiple outputs, pass all gradients for outputs as a tuple:

gy1_data = xp.array(...)
gy2_data = xp.array(...)
check_backward(func, x1_data, (gy1_data, gy2_data))

1084 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

You can also test a Link. To check gradients of parameters of the link, set a tuple of the parameters to params
arguments:

check_backward(my_link, (x1_data, x2_data), gy_data,
(my_link.W, my_link.b))

Note that params are not ndarrays, but Variabless.

Function objects are acceptable as func argument:

check_backward(lambda x1, x2: f(x1, x2),
(x1_data, x2_data), gy_data)

Note: func is called many times to get numerical gradients for all inputs. This function doesn’t work correctly
when func behaves randomly as it gets different gradients.

Parameters

• func (callable) – A function which gets Variables and returns Variables. func
must returns a tuple of Variables or one Variable. You can use a Function,
FunctionNode or a Link object or any other function satisfying the condition.

• x_data (ndarray or tuple of ndarrays) – A set of ndarrays to be passed to
func. If x_data is one ndarray object, it is treated as (x_data,).

• y_grad (ndarray or tuple of ndarrays or None) – A set of ndarrays
representing gradients of return-values of func. If y_grad is one ndarray object, it
is treated as (y_grad,). If func is a loss-function, y_grad should be set to None.

• params (Variable or tuple of ~chainder.Variable) – A set of
Variables whose gradients are checked. When func is a Link object, set its
parameters as params. If params is one Variable object, it is treated as (params,).

• eps (float) – Epsilon value to be passed to numerical_grad().

• atol (float) – Absolute tolerance to be passed to chainer.testing.
assert_allclose().

• rtol (float) – Relative tolerance to be passed to chainer.testing.
assert_allclose().

• no_grads (list of bool) – Flag to skip variable for gradient assertion. It should be
same length as x_data.

• dtype (dtype) – x_data, y_grad and params are casted to this dtype when calculat-
ing numerical gradients. Only float types and None are allowed.

• detect_nondifferentiable (bool) – If True, check for non-differentiable in-
puts is enabled. If func is non-differentiable at x_data, check_backward raises
NondifferentiableError.

See also:

numerical_grad()

4.20. Assertion and Testing 1085

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

chainer.gradient_check.check_double_backward

chainer.gradient_check.check_double_backward(func, x_data, y_grad, x_grad_grad,
params=(), params_grad_grad=(),
eps=0.001, atol=0.0001, rtol=0.001,
no_grads=None, dtype=None, de-
tect_nondifferentiable=False)

Test twice differentiation of a given procedure.

This function automatically checks if the backward procedure of func is correctly implemented for further dif-
ferentiation. It first computes the gradient of func w.r.t. its inputs in the same way as check_backward().
This function then further invokes the backward procedure against the gradient variables, starting from the initial
gradient given by x_grad_grad. It also computes the second gradient using numerical_grad(). The
resulting gradients are compared to confirm if the second-order gradients are approximately correct.

Note that this function DOES NOT check if the first-order differentiation is correct; the numerical gradient
assumes that the first-order gradient given by the usual chainer.Variable.backward() is correct. The
implementation of each differentiable function should be tested by check_backward() first, and then should
be tested by this function if neccessary.

For the details of the arguments, see check_backward(). The additional arguments x_grad_grad and
params_grad_grad are (tuples of) Variable (s) that include the initial gradient corresponding to the first-
order gradient of each input and parameter. Note that the default error tolerance atol and rtol are slightly
larger than those of check_backward() because the numerical gradients of the second order differentiation
are less accurate than those of the first order gradients.

chainer.gradient_check.numerical_grad

chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001, de-
tect_nondifferentiable=False, diff_atol=0,
diff_rtol=0.01, center_outputs=None)

Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of chainer.
functions.

By default, numerical_grad computes the gradient to the first order of eps.

Parameters

• f (callable) – Python function with no arguments that runs forward computation and
returns the result.

• inputs (tuple of arrays) – Tuple of arrays that should be treated as inputs. Each
element of them is slightly modified to realize numerical gradient by finite differences.

• grad_outputs (tuple of arrays or scalars) – Tuple of arrays or scalars that
are treated as output gradients.

• eps (float) – Epsilon value of finite differences.

• detect_nondifferentiable (bool) – False by default. If True,
numerical_grad checks whether f is differentiable at inputs. It requires eval-
uation of f at 5 points instead of 2. As a side effect, the accuracy of numerical gradient will
be increased to the third order of eps. If it turns out that f is non-differentiable at input,
numerical_grad raises NondifferentiableError.

• diff_atol (float) – Absolute tolerance of fitting error of non-differentiable point de-
tection.

1086 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float


Chainer Documentation, Release 6.5.0

• diff_rtol (float) – Tolerance of fitting error of non-differentiable point detection rel-
ative to the output values of f.

• center_outputs (tuple of arrays or None) – Only used if
detect_nondifferentiable is True. If specified, these arrays are used as
the outputs of f at inputs. Otherwise, it is calculated. It can be used to reduce the
computation if these arrays are already calculated before calling numerical_grad.

Returns Numerical gradient arrays corresponding to inputs.

Return type tuple

4.20.3 Standard Assertions

The assertions have same names as NumPy’s ones. The difference from NumPy is that they can accept both numpy.
ndarray and cupy.ndarray.

chainer.testing.assert_allclose Asserts if some corresponding element of x and y differs
too much.

chainer.testing.assert_warns

chainer.testing.assert_allclose

chainer.testing.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)
Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.

Parameters

• x – Left-hand-side array.

• y – Right-hand-side array.

• atol (float) – Absolute tolerance.

• rtol (float) – Relative tolerance.

• verbose (bool) – If True, it outputs verbose messages on error.

chainer.testing.assert_warns

chainer.testing.assert_warns(expected)

4.20.4 Function testing utilities

Utilities for testing functions.

chainer.testing.FunctionTestCase A base class for function test cases.
chainer.testing.
unary_math_function_unittest

Decorator for testing unary mathematical Chainer func-
tions.

4.20. Assertion and Testing 1087

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

chainer.testing.FunctionTestCase

class chainer.testing.FunctionTestCase(*args, **kwargs)
A base class for function test cases.

Function test cases can inherit from this class to define a set of function tests.

Required methods

Each concrete class must at least override the following three methods.

forward(self, inputs, device) Implements the target forward function. inputs is a tuple of
Variables. This method is expected to return the output Variables with the same array types as
the inputs. device is the device corresponding to the input arrays.

forward_expected(self, inputs) Implements the expectation of the target forward function.
inputs is a tuple of numpy.ndarrays. This method is expected to return the output numpy.
ndarrays.

generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

Optional methods

Additionally the concrete class can override the following methods.

before_test(self, test_name) A callback method called before each test. Typically a skip
logic is implemented by conditionally raising unittest.SkipTest. test_name is one of
'test_forward', 'test_backward', and 'test_double_backward'.

generate_grad_outputs(self, outputs_template) Returns a tuple of output gradient arrays of
type numpy.ndarray. outputs_template is a tuple of template arrays. The returned arrays are
expected to have the same shapes and dtypes as the template arrays.

generate_grad_grad_inputs(self, inputs_template) Returns a tuple of the second order in-
put gradient arrays of type numpy.ndarray. input_template is a tuple of template arrays. The
returned arrays are expected to have the same shapes and dtypes as the template arrays.

check_forward_outputs(self, outputs, expected_outputs) Implements check
logic of forward outputs. Typically additional check can be done after calling super().
check_forward_outputs. outputs and expected_outputs are tuples of arrays. In
case the check fails, FunctionTestError should be raised.

Configurable attributes

The concrete class can override the following attributes to control the behavior of the tests.

skip_forward_test (bool): Whether to skip forward computation test. False by default.

skip_backward_test (bool): Whether to skip backward computation test. False by default.

skip_double_backward_test (bool): Whether to skip double-backward computation test. False by
default.

dodge_nondifferentiable (bool): Enable non-differentiable point detection in numerical gradient cal-
culation. If the inputs returned by generate_inputs turns out to be a non-differentiable point, the test
will repeatedly resample inputs until a differentiable point will be finally sampled. False by default.

1088 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/unittest.html#unittest.SkipTest
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

contiguous (None or ‘C’): Specifies the contiguousness of incoming arrays (i.e. inputs, output gradients,
and the second order input gradients). If None, the arrays will be non-contiguous as long as possible. If
'C', the arrays will be C-contiguous. None by default.

Passive attributes

These attributes are automatically set.

test_name (str): The name of the test being run. It is one of 'test_forward', 'test_backward',
and 'test_double_backward'.

backend_config (BackendConfig): The backend configuration.

Note: This class assumes chainer.testing.inject_backend_tests() is used together. See the
example below.

Example

@chainer.testing.inject_backend_tests(
None,
[

{}, # CPU
{'use_cuda': True}, # GPU

])
class TestReLU(chainer.testing.FunctionTestCase):

# ReLU function has a non-differentiable point around zero, so
# dodge_nondifferentiable should be set to True.
dodge_nondifferentiable = True

def generate_inputs(self):
x = numpy.random.uniform(-1, 1, (2, 3)).astype(numpy.float32)
return x,

def forward(self, inputs, device):
x, = inputs
return F.relu(x),

def forward_expected(self, inputs):
x, = inputs
expected = x.copy()
expected[expected < 0] = 0
return expected,

See also:

LinkTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

4.20. Assertion and Testing 1089



Chainer Documentation, Release 6.5.0

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

• typeobj – The data type to call this function on when both values are of the same type
in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
raises self.failureException with a useful error message when the two arguments are not
equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertAlmostEquals(**kwargs)

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertDictEqual(d1, d2, msg=None)

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEquals(**kwargs)

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

1090 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

Objects that are equal automatically fail.

4.20. Assertion and Testing 1091



Chainer Documentation, Release 6.5.0

assertNotAlmostEquals(**kwargs)

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotEquals(**kwargs)

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNotRegexpMatches(**kwargs)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRaisesRegexp(**kwargs)

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertRegexpMatches(**kwargs)

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

1092 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

4.20. Assertion and Testing 1093



Chainer Documentation, Release 6.5.0

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

assert_(**kwargs)

before_test(test_name)

check_forward_outputs(outputs, expected_outputs)

countTestCases()

debug()
Run the test without collecting errors in a TestResult

defaultTestResult()

doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.

fail(msg=None)
Fail immediately, with the given message.

failIf(**kwargs)

failIfAlmostEqual(**kwargs)

failIfEqual(**kwargs)

failUnless(**kwargs)

failUnlessAlmostEqual(**kwargs)

failUnlessEqual(**kwargs)

failUnlessRaises(**kwargs)

forward(inputs, device)

forward_expected(inputs)

generate_grad_grad_inputs(inputs_template)

generate_grad_outputs(outputs_template)

generate_inputs()

id()

run(result=None)

run_test_backward(backend_config)

run_test_double_backward(backend_config)

1094 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

run_test_forward(backend_config)

setUp()
Hook method for setting up the test fixture before exercising it.

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the op-
tional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes
execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()
Hook method for deconstructing the test fixture after testing it.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

test_backward(backend_config)
Tests backward computation.

test_double_backward(backend_config)
Tests double-backward computation.

test_forward(backend_config)
Tests forward computation.

__eq__(other)
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

backend_config = None

check_backward_options = None

check_double_backward_options = None

check_forward_options = None

4.20. Assertion and Testing 1095



Chainer Documentation, Release 6.5.0

contiguous = None

dodge_nondifferentiable = False

longMessage = True

maxDiff = 640

skip_backward_test = False

skip_double_backward_test = False

skip_forward_test = False

chainer.testing.unary_math_function_unittest

chainer.testing.unary_math_function_unittest(func, func_expected=None, la-
bel_expected=None, make_data=None,
is_linear=None, forward_options=None,
backward_options=None, dou-
ble_backward_options=None)

Decorator for testing unary mathematical Chainer functions.

This decorator makes test classes test unary mathematical Chainer functions. Tested are forward and backward,
including double backward, computations on CPU and GPU across parameterized shape and dtype.

Parameters

• func (function or Function) – Chainer function to be tested by the decorated test
class. Taking Function is for backward compatibility.

• func_expected – Function used to provide expected values for testing forward compu-
tation. If not given, a corresponsing numpy function for func is implicitly picked up by its
name.

• label_expected (string) – String used to test labels of Chainer functions. If not
given, the name of func is implicitly used.

• make_data – Function to customize input and gradient data used in the tests. It takes
shape and dtype as its arguments, and returns a tuple of input, gradient and double
gradient data. By default, uniform destribution ranged [-1, 1] is used for all of them.

• is_linear – Tells the decorator that func is a linear function so that it wraps func as
a non-linear function to perform double backward test. This argument is left for backward
compatibility. Linear functions can be tested by default without specifying is_linear in
Chainer v5 or later.

• forward_options (dict) – Options to be specified as an argument of chainer.
testing.assert_allclose() function. If not given, preset tolerance values are au-
tomatically selected.

• backward_options (dict) – Options to be specified as an argument of chainer.
gradient_check.check_backward() function. If not given, preset tolerance val-
ues are automatically selected depending on dtype.

• double_backward_options (dict) – Options to be specified as an argument of
chainer.gradient_check.check_double_backward() function. If not given,
preset tolerance values are automatically selected depending on dtype.

The decorated test class tests forward, backward and double backward computations on CPU and GPU across
the following parameterize() ed parameters:

1096 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


Chainer Documentation, Release 6.5.0

• shape: rank of zero, and rank of more than zero

• dtype: numpy.float16, numpy.float32 and numpy.float64

Additionally, it tests the label of the Chainer function.

Chainer functions tested by the test class decorated with the decorator should have the following properties:

• Unary, taking one parameter and returning one value

• dtype of input and output are the same

• Elementwise operation for the supplied ndarray

Example

The following code defines a test class that tests sin() Chainer function, which takes a parameter with dtype
of float and returns a value with the same dtype.

>>> import unittest
>>> from chainer import testing
>>> from chainer import functions as F
>>>
>>> @testing.unary_math_function_unittest(F.sin)
... class TestSin(unittest.TestCase):
... pass

Because the test methods are implicitly injected to TestSin class by the decorator, it is enough to place pass
in the class definition.

To customize test data, make_data optional parameter can be used. The following is an example of testing
sqrt Chainer function, which is tested in positive value domain here instead of the default input.

>>> import numpy
>>>
>>> def make_data(shape, dtype):
... x = numpy.random.uniform(0.1, 1, shape).astype(dtype)
... gy = numpy.random.uniform(-1, 1, shape).astype(dtype)
... ggx = numpy.random.uniform(-1, 1, shape).astype(dtype)
... return x, gy, ggx
...
>>> @testing.unary_math_function_unittest(F.sqrt,
... make_data=make_data)
... class TestSqrt(unittest.TestCase):
... pass

make_data function which returns input, gradient and double gradient data generated in proper value domains
with given shape and dtype parameters is defined, then passed to the decorator’s make_data parameter.

4.20.5 Link testing utilities

Utilities for testing links.

chainer.testing.
LinkInitializersTestCase

A base class for link parameter initializer test cases.

chainer.testing.LinkTestCase A base class for link forward and backward test cases.

4.20. Assertion and Testing 1097



Chainer Documentation, Release 6.5.0

chainer.testing.LinkInitializersTestCase

class chainer.testing.LinkInitializersTestCase(*args, **kwargs)
A base class for link parameter initializer test cases.

Link test cases can inherit from this class to define a set of link tests for parameter initialization.

Required methods

Each concrete class must at least override the following methods.

generate_params(self) Returns a tuple of initializers-likes. The tuple should contain an initializer-like
for each initializer-like argument, i.e. the parameters to the link constructor. These will be passed to
create_link.

create_link(self, initializers) Returns a link. The link should be initialized with the given
initializer-likes initializers. initializers is a tuple of same length as the number of parame-
ters.

generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

forward(self, link, inputs, device) Implements the target forward function. link is a link
created by create_link and inputs is a tuple of Variables. This method is expected to return
the output Variables with the same array types as the inputs. device is the device corresponding
to the input arrays. A default implementation is provided for links that only takes the inputs defined
in generate_inputs (wrapped in Variables) and returns nothing but output Variables in its
forward computation.

get_initializers(self) Returns a tuple with the same length as the number of initializers that the con-
structor of the link accepts. Each element in the tuple is a container itself, listing all initializers-likes that
should be tested. Each initializer-like in the tuple is tested one at a time by being passed to create_link.
When the length of the tuple is greater than one (i.e. if the link accepts multiple initializers), the ones not
being tested are replaced by the ones returned by generate_params. Initializer-likes returned here should
be deterministic since test will invoke them multiple times to test the correctness.

For testing initializer arguments that can be non-initializer values such as None, one can use the
InitializerArgument, defining a pair of the link constructor argument and actual initializer-like
used by the link. This method must be implemented if skip_initializers_test is False in
which case the initializers test is executed.

Optional methods

Each concrete class may override the following methods.

before_test(self, test_name) A callback method called before each test. Typically a skip
logic is implemented by conditionally raising unittest.SkipTest. test_name is always of
'test_initializers'.

Attributes

The concrete class can override the following attributes to control the behavior of the tests.

param_names (list of str): A list of strings with all the names of the parameters that should be tested. E.g.
['gamma', 'beta'] for the batch normalization link. [] by default.

1098 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/unittest.html#unittest.SkipTest


Chainer Documentation, Release 6.5.0

contiguous (None or ‘C’): Specifies the contiguousness of incoming arrays (i.e. inputs, parameters and
gradients. If None, the arrays will be non-contiguous as long as possible. If 'C', the arrays will be
C-contiguous. None by default.

Note: This class assumes chainer.testing.inject_backend_tests() is used together. See the
example below.

Note: When implementing LinkTestCase and LinkInitializersTestCase to test both for-
ward/backward and initializers, it is often convenient to refactor out common logic in a separate class.

Example

@chainer.testing.inject_backend_tests(
None,
[

{}, # CPU
{'use_cuda': True}, # GPU

])
class TestLinear(chainer.testing.LinkInitializersTestCase):

param_names = ['W', 'b']

def generate_params(self):
initialW = numpy.random.uniform(

-1, 1, (3, 2)).astype(numpy.float32)
initial_bias = numpy.random.uniform(

-1, 1, (3,)).astype(numpy.float32)
return initialW, initial_bias

def generate_inputs(self):
x = numpy.random.uniform(

-1, 1, (1, 2)).astype(numpy.float32)
return x,

def create_link(self, initializers):
initialW, initial_bias = initializers
link = chainer.links.Linear(

2, 3, initialW=initialW, initial_bias=initial_bias)
return link

def forward(self, link, inputs, device):
x, = inputs
return link(x),

def get_initializers(self):
initialW = [initializers.Constant(1), 2]
initial_bias = [initializers.Constant(2), 3,

chainer.testing.link.InitializerArgument(None, 0)]
return initialW, initial_bias

See also:

LinkTestCase FunctionTestCase

4.20. Assertion and Testing 1099



Chainer Documentation, Release 6.5.0

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

• typeobj – The data type to call this function on when both values are of the same type
in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
raises self.failureException with a useful error message when the two arguments are not
equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertAlmostEquals(**kwargs)

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertDictEqual(d1, d2, msg=None)

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEquals(**kwargs)

assertFalse(expr, msg=None)
Check that the expression is false.

1100 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

4.20. Assertion and Testing 1101



Chainer Documentation, Release 6.5.0

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

Objects that are equal automatically fail.

assertNotAlmostEquals(**kwargs)

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotEquals(**kwargs)

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNotRegexpMatches(**kwargs)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRaisesRegexp(**kwargs)

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

1102 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

assertRegexpMatches(**kwargs)

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

4.20. Assertion and Testing 1103



Chainer Documentation, Release 6.5.0

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

assert_(**kwargs)

before_test(test_name)

check_forward_outputs(outputs, expected_outputs)

countTestCases()

create_link(initializers)

debug()
Run the test without collecting errors in a TestResult

defaultTestResult()

doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.

fail(msg=None)
Fail immediately, with the given message.

failIf(**kwargs)

failIfAlmostEqual(**kwargs)

failIfEqual(**kwargs)

failUnless(**kwargs)

failUnlessAlmostEqual(**kwargs)

failUnlessEqual(**kwargs)

failUnlessRaises(**kwargs)

forward(link, inputs, device)

generate_inputs()

generate_params()

get_initializers()

1104 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

id()

run(result=None)

setUp()
Hook method for setting up the test fixture before exercising it.

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the op-
tional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes
execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()
Hook method for deconstructing the test fixture after testing it.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

test_initializers(backend_config)
Tests that the parameters of a links are correctly initialized.

__eq__(other)
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

backend_config = None

check_initializers_options = None

contiguous = None

longMessage = True

maxDiff = 640

param_names = ()

4.20. Assertion and Testing 1105



Chainer Documentation, Release 6.5.0

chainer.testing.LinkTestCase

class chainer.testing.LinkTestCase(*args, **kwargs)
A base class for link forward and backward test cases.

Link test cases can inherit from this class to define a set of link tests for forward and backward computations.

Required methods

Each concrete class must at least override the following methods.

generate_params(self) Returns a tuple of initializers-likes. The tuple should contain an initializer-like
for each initializer-like argument, i.e. the parameters to the link constructor. These will be passed to
create_link.

create_link(self, initializers) Returns a link. The link should be initialized with the given
initializer-likes initializers. initializers is a tuple of same length as the number of parame-
ters.

generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

forward(self, link, inputs, device) Implements the target forward function. link is a link
created by create_link and inputs is a tuple of Variables. This method is expected to return
the output Variables with the same array types as the inputs. device is the device corresponding
to the input arrays. A default implementation is provided for links that only takes the inputs defined
in generate_inputs (wrapped in Variables) and returns nothing but output Variables in its
forward computation.

Optional methods

Each concrete class may override the following methods depending on the skip flags skip_forward_test
and skip_backward_test.

before_test(self, test_name) A callback method called before each test. Typically a skip
logic is implemented by conditionally raising unittest.SkipTest. test_name is one of
'test_forward' and 'test_backward'.

forward_expected(self, link, inputs) Implements the expectation of the target forward func-
tion. link is the initialized link that was used to compute the actual forward which the results of this
method will be compared against. The link is guaranteed to reside on the CPU. inputs is a tuple of
numpy.ndarrays. This method is expected to return the output numpy.ndarrays. This method
must be implemented if either skip_forward_test or skip_backward_test is False in which
case forward or backward tests are executed.

generate_grad_outputs(self, outputs_template) Returns a tuple of output gradient arrays of
type numpy.ndarray. outputs_template is a tuple of template arrays. The returned arrays are
expected to have the same shapes and dtypes as the template arrays.

check_forward_outputs(self, outputs, expected_outputs) Implements check
logic of forward outputs. Typically additional check can be done after calling super().
check_forward_outputs. outputs and expected_outputs are tuples of arrays. In
case the check fails, LinkTestError should be raised.

Attributes

The concrete class can override the following attributes to control the behavior of the tests.

1106 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/unittest.html#unittest.SkipTest
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

param_names (tuple of str): A tuple of strings with all the names of the parameters that should be tested.
E.g. ('gamma', 'beta') for the batch normalization link. () by default.

skip_forward_test (bool): Whether to skip forward computation test. False by default.

skip_backward_test (bool): Whether to skip backward computation test. False by default.

dodge_nondifferentiable (bool): Enable non-differentiable point detection in numerical gradient cal-
culation. If the data returned by generate_params, create_link and generate_inputs turns
out to be a non-differentiable point, the test will repeatedly resample those until a differentiable point will
be finally sampled. False by default.

contiguous (None or ‘C’): Specifies the contiguousness of incoming arrays (i.e. inputs, parameters and
gradients. If None, the arrays will be non-contiguous as long as possible. If 'C', the arrays will be
C-contiguous. None by default.

Note: This class assumes chainer.testing.inject_backend_tests() is used together. See the
example below.

Note: When implementing LinkTestCase and LinkInitializersTestCase to test both for-
ward/backward and initializers, it is often convenient to refactor out common logic in a separate class.

Example

@chainer.testing.inject_backend_tests(
None,
[

{}, # CPU
{'use_cuda': True}, # GPU

])
class TestLinear(chainer.testing.LinkTestCase):

param_names = ('W', 'b')

def generate_params(self):
initialW = numpy.random.uniform(

-1, 1, (3, 2)).astype(numpy.float32)
initial_bias = numpy.random.uniform(

-1, 1, (3,)).astype(numpy.float32)
return initialW, initial_bias

def generate_inputs(self):
x = numpy.random.uniform(

-1, 1, (1, 2)).astype(numpy.float32)
return x,

def create_link(self, initializers):
initialW, initial_bias = initializers
link = chainer.links.Linear(

2, 3, initialW=initialW, initial_bias=initial_bias)
return link

def forward(self, link, inputs, device):
x, = inputs

(continues on next page)

4.20. Assertion and Testing 1107



Chainer Documentation, Release 6.5.0

(continued from previous page)

return link(x),

def forward_expected(self, link, inputs):
W = link.W.array
b = link.b.array
x, = inputs
expected = x.dot(W.T) + b
return expected,

See also:

LinkInitializersTestCase FunctionTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

• typeobj – The data type to call this function on when both values are of the same type
in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
raises self.failureException with a useful error message when the two arguments are not
equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertAlmostEquals(**kwargs)

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

1108 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertDictEqual(d1, d2, msg=None)

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEquals(**kwargs)

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

4.20. Assertion and Testing 1109



Chainer Documentation, Release 6.5.0

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

Objects that are equal automatically fail.

assertNotAlmostEquals(**kwargs)

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotEquals(**kwargs)

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNotRegexpMatches(**kwargs)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

1110 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRaisesRegexp(**kwargs)

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertRegexpMatches(**kwargs)

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

4.20. Assertion and Testing 1111



Chainer Documentation, Release 6.5.0

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

assert_(**kwargs)

before_test(test_name)

check_forward_outputs(outputs, expected_outputs)

countTestCases()

create_link(initializers)

debug()
Run the test without collecting errors in a TestResult

defaultTestResult()

doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.

fail(msg=None)
Fail immediately, with the given message.

failIf(**kwargs)

failIfAlmostEqual(**kwargs)

1112 Chapter 4. API Reference



Chainer Documentation, Release 6.5.0

failIfEqual(**kwargs)

failUnless(**kwargs)

failUnlessAlmostEqual(**kwargs)

failUnlessEqual(**kwargs)

failUnlessRaises(**kwargs)

forward(link, inputs, device)

forward_expected(link, inputs)

generate_grad_outputs(outputs_template)

generate_inputs()

generate_params()

id()

run(result=None)

setUp()
Hook method for setting up the test fixture before exercising it.

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the op-
tional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes
execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()
Hook method for deconstructing the test fixture after testing it.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

test_backward(backend_config)
Tests backward computation.

test_forward(backend_config)
Tests forward computation.

__eq__(other)
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.20. Assertion and Testing 1113



Chainer Documentation, Release 6.5.0

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

backend_config = None

check_backward_options = None

check_forward_options = None

contiguous = None

dodge_nondifferentiable = False

longMessage = True

maxDiff = 640

param_names = ()

skip_backward_test = False

skip_forward_test = False

4.20.6 Serialization testing utilities

Utilities for testing serializable objects.

chainer.testing.save_and_load Saves src and loads it to dst using a de/serializer.
chainer.testing.save_and_load_hdf5 Saves src to an HDF5 file and loads it to dst.
chainer.testing.save_and_load_npz Saves src to an NPZ file and loads it to dst.

chainer.testing.save_and_load

chainer.testing.save_and_load(src, dst, filename, saver, loader)
Saves src and loads it to dst using a de/serializer.

This function simply runs a serialization and deserialization to check if the serialization code is correctly imple-
mented. The save and load are done within a temporary directory.

Parameters

• src – An object to save from.

• dst – An object to load into.

• filename (str) – File name used during the save/load.

• saver (callable) – Function that saves the source object.

• loader (callable) – Function that loads the file into the destination object.

1114 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainer.testing.save_and_load_hdf5

chainer.testing.save_and_load_hdf5(src, dst)
Saves src to an HDF5 file and loads it to dst.

This is a short cut of save_and_load() using HDF5 de/serializers.

Parameters

• src – An object to save.

• dst – An object to load to.

chainer.testing.save_and_load_npz

chainer.testing.save_and_load_npz(src, dst)
Saves src to an NPZ file and loads it to dst.

This is a short cut of save_and_load() using NPZ de/serializers.

Parameters

• src – An object to save.

• dst – An object to load to.

4.20.7 Trainer Extension Testing Utilities

Utilities for testing trainer extensions.

chainer.testing.
get_trainer_with_mock_updater

Returns a Trainer object with mock updater.

chainer.testing.get_trainer_with_mock_updater

chainer.testing.get_trainer_with_mock_updater(stop_trigger=(10, ’iteration’),
iter_per_epoch=10, extensions=None)

Returns a Trainer object with mock updater.

The returned trainer can be used for testing the trainer itself and the extensions. A mock object is used as its up-
dater. The update function set to the mock correctly increments the iteration counts ( updater.iteration),
and thus you can write a test relying on it.

Parameters

• stop_trigger – Stop trigger of the trainer.

• iter_per_epoch – The number of iterations per epoch.

• extensions – Extensions registered to the trainer.

Returns Trainer object with a mock updater.

4.20.8 Repeat decorators

These decorators have a decorated test run multiple times in a single invocation. Criteria of passing / failing of the test
changes according to the type of decorators. See the documentation of each decorator for details.

4.20. Assertion and Testing 1115



Chainer Documentation, Release 6.5.0

chainer.testing.condition.
repeat_with_success_at_least

Decorator for multiple trial of the test case.

chainer.testing.condition.repeat Decorator that imposes the test to be successful in a row.
chainer.testing.condition.retry Decorator that imposes the test to be successful at least

once.

chainer.testing.condition.repeat_with_success_at_least

chainer.testing.condition.repeat_with_success_at_least(times, min_success)
Decorator for multiple trial of the test case.

The decorated test case is launched multiple times. The case is judged as passed at least specified number of
trials. If the number of successful trials exceeds min_success, the remaining trials are skipped.

Parameters

• times (int) – The number of trials.

• min_success (int) – Threshold that the decorated test case is regarded as passed.

chainer.testing.condition.repeat

chainer.testing.condition.repeat(times)
Decorator that imposes the test to be successful in a row.

Decorated test case is launched multiple times. The case is regarded as passed only if it is successful specified
times in a row.

Note: In current implementation, this decorator grasps the failure information of each trial.

Parameters times (int) – The number of trials.

chainer.testing.condition.retry

chainer.testing.condition.retry(times)
Decorator that imposes the test to be successful at least once.

Decorated test case is launched multiple times. The case is regarded as passed if it is successful at least once.

Note: In current implementation, this decorator grasps the failure information of each trial.

Parameters times (int) – The number of trials.

4.20.9 Unit test annotation

Decorators for annotating unit tests.

1116 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainer.testing.attr.gpu Decorator to indicate that GPU is required to run the
test.

chainer.testing.attr.multi_gpu Decorator to indicate number of GPUs required to run
the test.

chainer.testing.with_requires Run a test case only when given requirements are satis-
fied.

chainer.testing.fix_random Decorator that fixes random numbers in a test.

chainer.testing.attr.gpu

chainer.testing.attr.gpu(f)
Decorator to indicate that GPU is required to run the test.

Tests can be annotated with this decorator (e.g., @gpu) to declare that one GPU is required to run.

chainer.testing.attr.multi_gpu

chainer.testing.attr.multi_gpu(gpu_num)
Decorator to indicate number of GPUs required to run the test.

Tests can be annotated with this decorator (e.g., @multi_gpu(2)) to declare number of GPUs required to
run. When running tests, if CHAINER_TEST_GPU_LIMIT environment variable is set to value greater than or
equals to 0, test cases that require GPUs more than the limit will be skipped.

chainer.testing.with_requires

chainer.testing.with_requires(*requirements)
Run a test case only when given requirements are satisfied.

Example

This test case runs only when numpy>=1.10 is installed.

>>> import unittest
>>> from chainer import testing
>>> class Test(unittest.TestCase):
... @testing.with_requires('numpy>=1.10')
... def test_for_numpy_1_10(self):
... pass

Parameters requirements – A list of string representing requirement condition to run a given
test case.

chainer.testing.fix_random

chainer.testing.fix_random()
Decorator that fixes random numbers in a test.

This decorator can be applied to either a test case class or a test method. It should not be applied within
condition.retry or condition.repeat.

4.20. Assertion and Testing 1117



Chainer Documentation, Release 6.5.0

4.20.10 Parameterized test

Decorators for making a unit test parameterized.

chainer.testing.parameterize
chainer.testing.product
chainer.testing.product_dict
chainer.testing.inject_backend_tests

chainer.testing.parameterize

chainer.testing.parameterize(*params)

chainer.testing.product

chainer.testing.product(parameter)

chainer.testing.product_dict

chainer.testing.product_dict(*parameters)

chainer.testing.inject_backend_tests

chainer.testing.inject_backend_tests(method_names, params)

1118 Chapter 4. API Reference



CHAPTER

FIVE

INSTALLATION

5.1 Recommended Environments

We recommend the following Linux distributions.

• Ubuntu 14.04 / 16.04 LTS (64-bit)

• CentOS 7 (64-bit)

Note: We are automatically testing Chainer on all the recommended environments above. We cannot guarantee
that Chainer works on other environments including Windows and macOS (especially with CUDA support), even if
Chainer may seem to be running correctly.

5.2 Requirements

You need to have the following components to use Chainer.

• Python

– Supported Versions: 2.7.6+, 3.5.1+, 3.6.0+ and 3.7.0+.

• NumPy

– Supported Versions: 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16 and 1.17 (*).

– NumPy will be installed automatically during the installation of Chainer.

Before installing Chainer, we recommend that you upgrade setuptools and pip:

$ pip install -U setuptools pip

5.2.1 Hardware Acceleration Support

You can accelerate performance of Chainer by installing the following optional components.

• NVIDIA CUDA / cuDNN

– CuPy 5.0+

– See CuPy Installation Guide for instructions.

• Intel CPU (experimental)

1119

https://www.ubuntu.com/
https://www.centos.org/
https://python.org/
http://www.numpy.org/
https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/latest/install.html


Chainer Documentation, Release 6.5.0

– iDeep 2.0.0.post3+

– See Tips and FAQs for instructions.

5.2.2 Optional Features

The following packages are optional dependencies. Chainer can be installed without them, in which case the corre-
sponding features are not available.

• Image dataset support

– pillow 2.3+

– Run pip install pillow to install.

• HDF5 serialization support

– h5py 2.5+

– Run pip install h5py to install.

• Distributed Deep Learning using ChainerMN

– CUDA-aware MPI

– mpi4py

– See ChainerMN installation guide for installation instructions.

5.3 Install Chainer

5.3.1 Using pip

We recommend to install Chainer via pip:

$ pip install chainer

Note: Any optional dependencies (including CuPy) can be added after installing Chainer. Chainer automatically
detects the available packages and enables/disables the optional features appropriately.

5.3.2 Using Tarball

The tarball of the source tree is available via pip download chainer or from the release notes page. You can
install Chainer from the tarball:

$ pip install chainer-x.x.x.tar.gz

You can also install the development version of Chainer from a cloned Git repository:

$ git clone https://github.com/chainer/chainer.git
$ cd chainer
$ pip install .

1120 Chapter 5. Installation

https://github.com/intel/ideep
https://pillow.readthedocs.io/
http://www.h5py.org/
https://mpi4py.readthedocs.io/en/stable/
https://github.com/chainer/chainer/releases


Chainer Documentation, Release 6.5.0

5.3.3 Enable CUDA/cuDNN support

In order to enable CUDA support, you have to install CuPy manually. If you also want to use cuDNN, you have
to install CuPy with cuDNN support. See CuPy’s installation guide to install CuPy. Once CuPy is correctly set up,
Chainer will automatically enable CUDA support.

You can refer to the following flags to confirm if CUDA/cuDNN support is actually available.

chainer.backends.cuda.available True if Chainer successfully imports cupy.

chainer.backends.cuda.cudnn_enabled True if cuDNN support is available.

5.3.4 Google Colaboratory

You can install Chainer and CuPy using the following snippet on Google Colaboratory:

!curl https://colab.chainer.org/install | sh -

See chainer/google-colaboratory for more details and examples.

5.4 Uninstall Chainer

Use pip to uninstall Chainer:

$ pip uninstall chainer

Note: When you upgrade Chainer, pip sometimes install the new version without removing the old one in
site-packages. In this case, pip uninstall only removes the latest one. To ensure that Chainer is com-
pletely removed, run the above command repeatedly until pip returns an error.

5.5 Upgrade Chainer

Just use pip with -U option:

$ pip install -U chainer

5.6 Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it. We recommend to use --no-cache-dir
option as pip sometimes uses cache:

$ pip uninstall chainer
$ pip install chainer --no-cache-dir

5.4. Uninstall Chainer 1121

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/latest/install.html
https://docs-cupy.chainer.org/en/stable/index.html#module-cupy
https://colab.research.google.com/
https://github.com/chainer/google-colaboratory


Chainer Documentation, Release 6.5.0

5.7 Run Chainer with Docker

We are providing the official Docker image. Use nvidia-docker command to run Chainer image with GPU. You can
login to the environment with bash, and run the Python interpreter:

$ nvidia-docker run -it chainer/chainer /bin/bash

Or run the interpreter directly:

$ nvidia-docker run -it chainer/chainer /usr/bin/python

5.8 FAQ

5.8.1 Warning message “cuDNN is not enabled” appears

You failed to build CuPy with cuDNN. If you don’t need cuDNN, ignore this message. Otherwise, retry to install
CuPy with cuDNN. pip install -vvvv option helps you. There is no need of re-installing Chainer itself. See
CuPy’s installation guide for more details.

5.8.2 CuPy always raises cupy.cuda.compiler.CompileException

See FAQ section of CuPy’s installation guide for details.

5.8.3 h5py installation failed

If the installation failed with error saying hdf5.h is not found, you need to install libhdf5 first. The way
to install it depends on your environment:

# Ubuntu 14.04/16.04
$ apt-get install libhdf5-dev

# CentOS 7
$ yum -y install epel-release
$ yum install hdf5-devel

Note that h5py is not required unless you need HDF5 serialization support.

1122 Chapter 5. Installation

https://github.com/NVIDIA/nvidia-docker
https://docs-cupy.chainer.org/en/latest/install.html
https://docs-cupy.chainer.org/en/latest/install.html


CHAPTER

SIX

CHAINERX DOCUMENTATION

Warning: This feature is still in the earliest stage of its development. The behavior and interface are subject to
change.

ChainerX is an ndarray implementation with Define-by-Run automatic differentiation capability. It roughly corre-
sponds to “NumPy/CuPy + Chainer Variable”, while some additional features follow:

• Speed: The whole ndarray and autograd implementation is written in C++, with a thin Python binding. It lowers
the overhead existing in the pure Python implementation of Chainer.

• Extensibility: The backend is pluggable so that it is much easier to add a support of new devices.

The speed is best achieved by directly using ChainerX APIs, while it also provides a compatibility layer through the
conventional chainer.Variable interface for easier adoption of ChainerX in existing projects. See ChainerX
Tutorial for more details.

6.1 Installation

ChainerX, or chainerx, can be installed as a top level Python package along with Chainer by configuring the
environment variables below.

Note: Chainer must currently be installed from source in order to include ChainerX, but this is expected to change in
the near future.

6.1.1 Environment variables

Configure the following environment variables before installing Chainer.

Environment variable Description
CHAINER_BUILD_CHAINERX 1 to build the chainerx package along with chainer. 0 to skip. Default is

0.
CHAINERX_BUILD_CUDA 1 to build chainerx with CUDA support. 0 to skip. Default is 0.
CUDNN_ROOT_DIR Path to your cuDNN installation. Required when

CHAINERX_BUILD_CUDA=1.
CHAINERX_ENABLE_BLAS 1 to make BLAS enabled. 0 to disabled. Default is 1.

1123



Chainer Documentation, Release 6.5.0

6.1.2 Installing from source

Simply run pip install --pre chainer after configuring the above environment variables.

Example

For instance, to install ChainerX without CUDA support, run the following:

$ export CHAINER_BUILD_CHAINERX=1
$ export MAKEFLAGS=-j8 # Using 8 parallel jobs.
$ pip install --pre chainer

6.1.3 CUDA support

When installing with the CUDA support, you also need to specify the cuDNN installation path since CUDA without
cuDNN is currently not supported.

To support the NumPy/CuPy fallback mechanism, currently ChainerX with the CUDA support requires CuPy to be
installed together.

Note: For ChainerX, we suggest that you do not install CuPy with a CuPy wheel (precompiled binary) package
because it contains a cuDNN library. Installation would fail if the versions of the cuDNN library contained in the
CuPy wheel package and the one specified in CUDNN_ROOT_DIR were different.

$ export CHAINER_BUILD_CHAINERX=1
$ export CHAINERX_BUILD_CUDA=1
$ export CUDNN_ROOT_DIR=path/to/cudnn
$ export MAKEFLAGS=-j8 # Using 8 parallel jobs.
$ pip install --pre cupy
$ pip install --pre chainer

6.2 ChainerX Tutorial

ChainerX, or chainerx, is meant to be a drop-in replacement for NumPy and CuPy, with additional operations
specific to neural networks. As its core is implemented in C++, you can reduce the Python overhead for both the
forward and backward passes compared to Chainer, speeding up your training and inference. This section will guide
you through the essential APIs of Chainer to utilize ChainerX, but also how to use ChainerX on its own.

6.2.1 Introduction to ChainerX

The module chainerx aims to support a NumPy compatible interface with additional operations specific to neu-
ral networks. It for instance provides chainerx.conv() for N-dimensional convolutions and chainerx.
batch_norm() for batch normalization. Additionally, and most importantly, the array in ChainerX chainerx.
ndarray , distinguishes itself from NumPy and CuPy arrays in the following two aspects.

Automatic differentiation Graph construction and backpropagation is built into the array, meaning that any function,
including the NumPy-like functions, can be backpropagated through. In Chainer terms, it is a NumPy/CuPy
array with chainer.Variable properties.

1124 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/
https://docs-cupy.chainer.org/en/stable/


Chainer Documentation, Release 6.5.0

Device agnostic Arrays can be allocated on any device belonging to any backend, in contrast to NumPy/CuPy arrays
which are implemented for specific computing platforms (i.e. CPUs/GPUs respectively).

These differences are explained more in details by the sections further down.

The array chainerx.ndarray

The following example demonstrates how you can create an array and access its most basic attributes. Note that
the APIs are identical to that of NumPy and CuPy. Other array creation routines including chainerx.ones(),
chainerx.ones_like() and chainerx.random.normal() are all listed in here.

import chainerx as chx

x = chx.array([[0, 1, 2], [3, 4, 5]], dtype=chx.float32)

x.shape # (2, 3)
x.dtype # dtype('float32')
x.size # 6
x.ndim # 2

Backends and devices

Chainer distinguishes between CPU and GPU arrays using NumPy and CuPy but ChainerX arrays may be allocated on
any device on any backend. You can specify the device during instantiation or transfer the array to a different device
after it has been created.

x = chx.array([1, 2, 3])
x.device # native:0

x = chx.array([1, 2, 3], device='cuda:0')
x.device # cuda:0

x = x.to_device('cuda:1')
x.device # cuda:1

The left-hand-side of the colon shows the name of the backend to which the device belongs. native in this case
refers to the CPU and cuda to CUDA GPUs. The integer on the right-hand-side shows the device index. Together,
they uniquely identify a physical device on which an array is allocated.

If you do not want to specify the device each time you create an array, it is possible to change the default device with
chainerx.using_device().

with chx.using_device('cuda:0')
x = chx.array([1, 2, 3])

x.device # cuda:0

Note: Currently, two backends are built into ChainerX.

1. The native backend, which is built by default.

2. The cuda backend which is optional (See installation).

This backend abstraction allows developers to implement their own backends and plug them into ChainerX to perform
computations on basically any other platform.

6.2. ChainerX Tutorial 1125



Chainer Documentation, Release 6.5.0

Array operations and backpropagation

Arrays support basic arithmetics and can be passed to functions just as you would expect. By marking an array to
require gradients with chainerx.ndarray.require_grad(), further computations involving that array will
construct a computational graph allowing backpropagation directly from the array. The following code shows how
you could implement an affine transformation and backpropgate through it to compute the gradient of the output w.r.t.
the input weight and bias.

x = chx.ones(784, dtype=chx.float32)
W = chx.random.normal(size=(784, 1000)).astype(chx.float32).require_grad()
b = chx.random.normal(size=(1000)).astype(chx.float32).require_grad()

y = x.dot(W) + b

y.grad = chx.ones_like(y) # Initial upstream gradients, i.e. `grad_outputs`.
y.backward()

assert type(W.grad) is chx.ndarray
assert type(b.grad) is chx.ndarray

Note: The code above is device agnostic, meaning that you can execute it on any backend by simply wrapping the
code with a chainerx.using_device().

6.2.2 Relation to Chainer

A chainerx.ndarray can be wrapped in a chainer.Variable and passed to any existing Chainer code.

var = ch.Variable(x) # x is a chainerx.ndarray.

# Your Chainer code...

When further applying functions to the var, the computational graph is recorded in the underlying ndarray in
C++ implementation, not in the chainer.Variable or the chainer.FunctionNode, as in the conventional
Chainer. This eliminates the heavy Python overhead of the graph construction. Similarly, calling chainer.
Variable.backward() on any resulting variable will delegate the work to C++ by calling chainerx.
ndarray.backward() spending no time in the Python world.

NumPy/CuPy fallback

As the features above require ChainerX to provide an implementation corresponding to every chainer.
FunctionNode implementation in Chainer, ChainerX utilizes a fallback mechanism while gradually extending the
support. This approach is taken because the integration with Chainer takes time and we do not want existing Chainer
users to have to make severe changes to their code bases in order to try ChainerX. The fallback logic simply casts the
chainerx.ndarrays inside the chainer.Variable to numpy.ndarrays or cupy.ndarrays (without
copy) and calls the forward and backward methods respectively.

Run your Chainer code with ChainerX

In order to utilize chainerx, you first need to transfer your model to a ChainerX device using chainer.Link.
to_device(). This is a new method that has been introduced to replace chainer.Link.to_cpu() and

1126 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ndarray.html#cupy.ndarray


Chainer Documentation, Release 6.5.0

chainer.Link.to_gpu(), extending device transfer to arbitrary devices. Similarly, you have to transfer the
data (chainer.Variables) to the same device before feeding them to the model.

Will my FunctionNode work with ChainerX?

Our expectation is that it should work because of the fallback mechanism explained above, but in practice you may
need some occasional fixes, depending on how the function was implemented. Also, you will not see any performance
improvements from the fallback (but most likely a degradation because of the additional conversions).

To support ChainerX with your chainer.FunctionNode, you need to implement chainer.FunctionNode.
forward_chainerx() with the same signature as chainer.FunctionNode.forward(), but where given
inputs are of type chainerx.ndarray . It is expected to return a tuple just like chainer.FunctionNode.
forward().

The example below shows how chainer.functions.matmul() is extended to support ChainerX. Note that
chainer.Fallback can be returned in case the function cannot be implemented using ChainerX functions. This
is also the default behavior in case the method is not implemented at all.

class MatMul(function_node.FunctionNode):

def forward_chainerx(self, x):
a, b = x
if self.transa or self.transb or self.transc:

return chainer.Fallback
if a.dtype != b.dtype:

return chainer.Fallback
if a.ndim != 2 or b.ndim != 2:

return chainer.Fallback
if self.dtype is not None and self.dtype != a.dtype:

return chainer.Fallback
return chainerx.dot(a, b), # Fast C++ implementation

6.3 Limitations

There are some non-obvious limitations in ChainerX:

• ChainerX only supports a limited set of dtypes: bool_ int8 int16 int32 int64 uint8 float32
float64.

• Operations with mixed dtypes are not supported. You need to explicitly convert dtypes using either chainerx.
astype() or F.cast().

• True division of Python, where 2/3 returns .66 rather than 0, is not supported yet. Given an ndarray a of the
dtype int32, a / a does not return an array of float64, but returns an array of int32.

• Only a limited set of Chainer functions are well tested with the ChainerX integration.

• ChainerX CUDA backend requires cuDNN. See installation for details.

• As ChainerX arrays have a computational graph in their own, some operations are prohibited for safety:

– Unless an array is free from the computational graph, in-place modification of its data is prohibited.

a = chainerx.zeros((2,), chainerx.float32)
a.require_grad() # install the computational graph on `a`.

a += 1 # ! error

6.3. Limitations 1127



Chainer Documentation, Release 6.5.0

The reason of this limitation is that, as backward operations may depend on the value of a, the backward
gradients might be unexpectedly affected if it would be altered.

You may circumvent this limitation by making a disconnected view:

# A memory-shared view of `a` which is disconnected from the computational
→˓graph of `a`.
b = a.as_grad_stopped()

b += 1

Note however that this operation is inherently dangerous. You should be super careful to ensure that that
does not affect backward computations.

Note also that we may restrict further in the future so that even in-place modification on a disconnected
view is only allowed if it is actually safe.

– If an array is wrapped with a Variable with requires_grad=True (which is default), you won’t
be able to re-assign the array:

a = chainerx.zeros((2,), chainerx.float32)
b = chainerx.zeros((2,), chainerx.float32)
var = chainer.Variable(a)

var.array = b # ! error

You may circumvent this by using in-place assignment on var.array:

var.array[:] = b

This workaround may also be dangerous just as in the previous limitation.

6.4 Reference

6.4.1 Multi-Dimensional Array (ndarray)

chainerx.ndarray Multi-dimensional array, the central data structure of
ChainerX.

chainerx.ndarray

class chainerx.ndarray(shape, dtype, device=None)
Multi-dimensional array, the central data structure of ChainerX.

This class, along with other APIs in the chainerx module, provides a subset of NumPy APIs. This class
works similar to numpy.ndarray, except for some differences including the following noticeable points:

• chainerx.ndarray has a device attribute. It indicates on which device the array is allocated.

• chainerx.ndarray supports Define-by-Run backpropagation. Once you call require_grad(),
the array starts recording the operations applied to it recursively. Gradient of the result with respect to the
original array can be computed then with the backward() method or the chainerx.backward()
function.

Parameters

1128 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


Chainer Documentation, Release 6.5.0

• shape (tuple of ints) – Shape of the new array.

• dtype – Data type.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

See also:

numpy.ndarray

Methods

__getitem__(key)
___getitem__(self, key) Returns self[key].

Note: Currently, only basic indexing is supported not advanced indexing.

__setitem__(key, value)

__len__()
Returns the length of the first axis.

all(*args, **kwargs)

any(*args, **kwargs)

argmax(axis=None)
Returns the indices of the maximum elements along a given axis.

See chainerx.argmax() for the full documentation.

as_grad_stopped(copy=False)
Creates a view or a copy of the array that stops gradient propagation.

This method behaves similar to view() and copy(), except that the gradient is not propagated through
this operation (internally, this method creates a copy or view of the array without connecting the computa-
tional graph for backprop).

Parameters copy (bool) – If True, it copies the array. Otherwise, it returns a view of the
original array.

Returns A view or a copy of the array without propagating the gradient on backprop.

Return type ndarray

astype(dtype, copy=True)
Casts each element to the specified data type.

Parameters

• dtype – Data type of the new array.

• copy (bool) – If True, this method always copies the data. Otherwise, it creates a view
of the array if possible.

Returns An array with the specified dtype.

Return type ndarray

6.4. Reference 1129

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

backward(backprop_id=None, enable_double_backprop=False)
Performs backpropagation starting from this array.

This method is equivalent to chainerx.backward([self], *args). See chainerx.
backward() for the full documentation.

cleargrad()
Clears the gradient held by this array.

clip(a_min, a_max)
Returns an array with values limited to [a_min, a_max].

See also:

chainerx.clip() for full documentation, numpy.ndarray.clip()

copy()
Creates an array and copies all the elements to it.

The copied array is allocated on the same device as self.

See also:

chainerx.copy()

dot(b)
Returns the dot product with a given array.

See chainerx.dot() for the full documentation.

fill(value)
Fills the array with a scalar value in place.

Parameters value – Scalar value with which the array will be filled.

get_grad()
Returns the gradient held by the array.

If the gradient is not available, it returns None.

is_backprop_required()
Returns True if gradient propagates through this array on backprop.

See the note on require_grad() for details.

is_grad_required()
Returns True if the gradient will be set after backprop.

See the note on require_grad() for details.

item()
Copies an element of an array to a standard Python scalar and returns it.

Returns A copy of the specified element of the array as a suitable Python scalar.

Return type z

See also:

numpy.item()

max(axis=None, keepdims=False)
Returns the maximum along a given axis.

See chainerx.amax() for the full documentation.

min(*args, **kwargs)

1130 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip


Chainer Documentation, Release 6.5.0

ravel()
Returns an array flattened into one dimension.

See also:

chainerx.ravel() for full documentation, numpy.ndarray.ravel()

require_grad()
Declares that a gradient for this array will be made available after backprop.

Once calling this method, any operations applied to this array are recorded for later backprop. After
backprop, the grad attribute holds the gradient array.

Note: ChainerX distinguishes gradient requirements and backprop requirements strictly. They are
strongly related, but different concepts as follows.

• Gradient requirement indicates that the gradient array should be made available after backprop. This
attribute is not propagated through any operations. It implicates the backprop requirement.

• Backprop requirement indicates that the gradient should be propagated through the array during back-
prop. This attribute is propagated through differentiable operations.

require_grad() sets the gradient requirement flag. If you need to extract the gradient after backprop,
you have to call require_grad() on the array even if the array is an intermediate result of differentiable
computations.

Returns self

Return type ndarray

reshape(newshape)
Creates an array with a new shape and the same data.

See chainerx.reshape() for the full documentation.

set_grad(grad)
Sets a gradient to the array.

This method overwrites the gradient with a given array.

Parameters grad (ndarray) – New gradient array.

squeeze(axis=None)
Removes size-one axes from an array.

See chainerx.squeeze() for the full documentation.

sum(axis=None, keepdims=False)
Returns the sum of an array along given axes.

See chainerx.sum() for the full documentation.

take(indices, axis)
Takes elements from the array along an axis.

See chainerx.take() for the full documentation.

to_device(device, index=None)
Transfers the array to the specified device.

Parameters

6.4. Reference 1131

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel


Chainer Documentation, Release 6.5.0

• device (Device or str) – Device to which the array is transferred, or a backend
name. If it is a backend name, index should also be specified.

• index (int) – Index of the device for the backend specified by device.

Returns An array on the target device. If the original array is already on the device, it is a view
of that. Otherwise, it is a copy of the array on the target device.

Return type ndarray

tolist()

transpose(axes=None)
Creates a view of an array with permutated axes.

See chainerx.transpose() for the full documentation.

view()
Returns a view of the array.

The returned array shares the underlying buffer, though it has a different identity as a Python object.

__eq__(other)
Computes x == y elementwise.

__ne__(other)
Computes x != y elementwise.

__lt__(other)
Computes x < y elementwise.

__le__(other)
Computes x <= y elementwise.

__gt__(other)
Computes x > y elementwise.

__ge__(other)
Computes x >= y elementwise.

__bool__()
Casts a size-one array into a bool value.

__neg__()
Computes -x elementwise.

__add__(other)
Computes x + y elementwise.

__radd__(other)
Computes y + x elementwise.

__sub__(other)
Computes x - y elementwise.

__rsub__(other)
Computes y - x elementwise.

__mul__(other)
Computes x * y elementwise.

__rmul__(other)
Computes y * x elementwise.

1132 Chapter 6. ChainerX Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

__truediv__(other)
Computes x / y elementwise.

__floordiv__()

Attributes

T
Shape-reversed view of the array.

New array is created at every access to this property. x.T is just a shorthand of x.transpose().

Type ndarray

data_ptr
Address of the underlying memory allocation.

The meaning of the address is device-dependent.

Type int

data_size
Total size of the underlying memory allocation.

Type int

device
Device on which the data exists.

Type Device

dtype
Data type of the array.

grad
Gradient held by the array.

It is None if the gradient is not available. Setter of this property overwrites the gradient.

Type ndarray

is_contiguous
True iff the array is stored in the C-contiguous order.

Type bool

itemsize
Size of each element in bytes.

Type int

nbytes
Total size of all elements in bytes.

It does not count skips between elements.

Type int

ndim
Number of dimensions.

Type int

offset
Offset of the first element from the memory allocation in bytes.

6.4. Reference 1133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Type int

shape
Lengths of axes.

Note: Currently, this property does not support setter.

Type tuple of int

size
Number of elements in the array.

Type int

strides
Strides of axes in bytes.

Type tuple of int

6.4.2 Array Operations

Array creation routines

chainerx.empty Returns an array without initializing the elements.
chainerx.empty_like Returns a new array with same shape and dtype of a

given array.
chainerx.eye Returns a 2-D array with ones on the diagonals and ze-

ros elsewhere.
chainerx.identity Returns a 2-D identity array.
chainerx.ones Returns a new array of given shape and dtype, filled with

ones.
chainerx.ones_like Returns an array of ones with same shape and dtype as

a given array.
chainerx.zeros Returns a new array of given shape and dtype, filled with

zeros.
chainerx.zeros_like Returns an array of zeros with same shape and dtype as

a given array.
chainerx.full Returns a new array of given shape and dtype, filled with

a given value.
chainerx.full_like Returns a full array with same shape and dtype as a

given array.
chainerx.array Creates an array.
chainerx.asarray Converts an object to an array.
chainerx.asanyarray Converts an object to an array.
chainerx.ascontiguousarray Returns a C-contiguous array.
chainerx.copy Creates a copy of a given array.
chainerx.frombuffer Returns a 1-D array interpretation of a buffer.
chainerx.fromfile Constructs an array from data in a text or binary file.
chainerx.fromfunction Constructs an array by executing a function over each

coordinate.
chainerx.fromiter Constructs a new 1-D array from an iterable object.

Continued on next page

1134 Chapter 6. ChainerX Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Table 2 – continued from previous page
chainerx.fromstring Constructs a new 1-D array initialized from text data in

a string.
chainerx.loadtxt Constructs an array by loading data from a text file.
chainerx.arange Returns an array with evenly spaced values within a

given interval.
chainerx.linspace Returns an array with evenly spaced numbers over a

specified interval.
chainerx.diag Returns a diagonal or a diagonal array.
chainerx.diagflat Creates a diagonal array from the flattened input.

chainerx.empty

chainerx.empty(shape, dtype, device=None)
Returns an array without initializing the elements.

Parameters

• shape (tuple of ints) – Shape of the array.

• dtype – Data type of the array.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array with elements not initialized.

Return type ndarray

See also:

numpy.empty()

chainerx.empty_like

chainerx.empty_like(a, device=None)
Returns a new array with same shape and dtype of a given array.

Parameters

• a (ndarray) – Prototype array.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array with same shape and dtype as a with elements not initialized.

Return type ndarray

Warning: If device argument is omitted, the new array is created on the default device, not the device of
the prototype array.

See also:

numpy.empty_like()

6.4. Reference 1135

https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty
https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty_like.html#numpy.empty_like


Chainer Documentation, Release 6.5.0

chainerx.eye

chainerx.eye(N, M=None, k=0, dtype=float64, device=None)
Returns a 2-D array with ones on the diagonals and zeros elsewhere.

Parameters

• N (int) – Number of rows.

• M (int) – Number of columns. M == N by default.

• k (int) – Index of the diagonal. Zero indicates the main diagonal, a positive index an upper
diagonal, and a negative index a lower diagonal.

• dtype – Data type.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns A 2-D array with given diagonals filled with ones and zeros elsewhere.

Return type ndarray

See also:

numpy.eye()

chainerx.identity

chainerx.identity(n, dtype=None, device=None)
Returns a 2-D identity array.

It is equivalent to eye(n, n, dtype).

Parameters

• n (int) – Number of rows and columns.

• dtype – Data type.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns A 2-D identity array.

Return type ndarray

See also:

numpy.identity()

chainerx.ones

chainerx.ones(shape, dtype, device=None)
Returns a new array of given shape and dtype, filled with ones.

Parameters

• shape (tuple of ints) – Shape of the array.

• dtype – Data type.

1136 Chapter 6. ChainerX Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html#numpy.eye
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.identity.html#numpy.identity


Chainer Documentation, Release 6.5.0

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array.

Return type ndarray

See also:

numpy.ones()

chainerx.ones_like

chainerx.ones_like(a, device=None)
Returns an array of ones with same shape and dtype as a given array.

Parameters

• a (ndarray) – Prototype array.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array.

Return type ndarray

Warning: If device argument is omitted, the new array is created on the default device, not the device of
the prototype array.

See also:

numpy.ones_like()

chainerx.zeros

chainerx.zeros(shape, dtype, device=None)
Returns a new array of given shape and dtype, filled with zeros.

Parameters

• shape (tuple of ints) – Shape of the array.

• dtype – Data type.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array.

Return type ndarray

See also:

numpy.zeros()

6.4. Reference 1137

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones_like.html#numpy.ones_like
https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros


Chainer Documentation, Release 6.5.0

chainerx.zeros_like

chainerx.zeros_like(a, device=None)
Returns an array of zeros with same shape and dtype as a given array.

Parameters

• a (ndarray) – Prototype array.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array.

Return type ndarray

Warning: If device argument is omitted, the new array is created on the default device, not the device of
the prototype array.

See also:

numpy.zeros_like()

chainerx.full

chainerx.full(shape, fill_value, dtype, device=None)
Returns a new array of given shape and dtype, filled with a given value.

Parameters

• shape (tuple of ints) – Shape of the array.

• dtype – Data type.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array.

Return type ndarray

See also:

numpy.full()

chainerx.full_like

chainerx.full_like(a, fill_value, dtype=None, device=None)
Returns a full array with same shape and dtype as a given array.

Parameters

• a (ndarray) – Prototype array.

• dtype – Data type.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array.

1138 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html#numpy.zeros_like
https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full


Chainer Documentation, Release 6.5.0

Return type ndarray

Warning: If device argument is omitted, the new array is created on the default device, not the device of
the prototype array.

See also:

numpy.full_like()

chainerx.array

chainerx.array(object, dtype=None, copy=True, device=None)
Creates an array.

Parameters

• object – A ndarray object or any other object that can be passed to numpy.array().

• dtype – Data type. If omitted, it’s inferred from the input.

• copy (bool) – If True, the object is always copied. Otherwise, a copy will only be made
if it is needed to satisfy any of the other requirements (dtype, device, etc.).

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns New array.

Return type ndarray

Warning: If device argument is omitted, the new array is created on the default device, not the device of
the input array.

See also:

numpy.array()

chainerx.asarray

chainerx.asarray(a, dtype=None, device=None)
Converts an object to an array.

Parameters

• a – The source object.

• dtype – Data type. If omitted, it’s inferred from the input.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns Array interpretation of a. If a is already an ndarray on the given device with matching
dtype, no copy is performed.

Return type ndarray

6.4. Reference 1139

https://docs.scipy.org/doc/numpy/reference/generated/numpy.full_like.html#numpy.full_like
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array


Chainer Documentation, Release 6.5.0

Warning: If device argument is omitted, the new array is created on the default device, not the device of
the input array.

See also:

numpy.asarray()

chainerx.asanyarray

chainerx.asanyarray(a, dtype=None, device=None)
Converts an object to an array.

This is currently equivalent to asarray(), since there are no subclasses of ndarray in ChainerX. Note that
the original numpy.asanyarray() returns the input array as is, if it is an instance of a subtype of numpy.
ndarray.

See also:

chainerx.asarray(), numpy.asanyarray()

chainerx.ascontiguousarray

chainerx.ascontiguousarray(a, dtype=None, device=None)
Returns a C-contiguous array.

Parameters

• a (ndarray) – Source array.

• dtype – Data type.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns C-contiguous array. A copy will be made only if needed.

Return type ndarray

Warning: If device argument is omitted, the new array is created on the default device, not the device of
the input array.

See also:

numpy.ascontiguousarray()

chainerx.copy

chainerx.copy(a)
Creates a copy of a given array.

Parameters a (ndarray) – Source array.

Returns A copy array on the same device as a.

Return type ndarray

1140 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.copy()

chainerx.frombuffer

chainerx.frombuffer(buffer, dtype=float, count=-1, offset=0, device=None)
Returns a 1-D array interpretation of a buffer.

The given buffer memory must be usable on the given device, otherwise, an error is raised.

Note: The native backend requires a buffer of main memory, and the cuda backend requires a buffer of
CUDA memory. No copy is performed.

Parameters

• buffer – An object that exposes the buffer interface.

• dtype – Data type of the returned array.

• count (int) – Number of items to read. -1 means all data in the buffer.

• offset (int) – Start reading the buffer from this offset (in bytes).

• device (Device) – Device of the returned array. If omitted, the default device is chosen.

Returns 1-D array interpretation of buffer.

Return type ndarray

See also:

numpy.frombuffer()

chainerx.fromfile

chainerx.fromfile(file, dtype=<class ’float’>, count=-1, sep=”, device=None)
Constructs an array from data in a text or binary file.

This is currently equivalent to numpy.fromfile() wrapped by chainerx.array(), given the device
argument.

See also:

numpy.fromfile()

chainerx.fromfunction

chainerx.fromfunction(function, shape, **kwargs)
Constructs an array by executing a function over each coordinate.

This is currently equivalent to numpy.fromfunction() wrapped by chainerx.array(), given the
device argument.

6.4. Reference 1141

https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html#numpy.copy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.frombuffer.html#numpy.frombuffer
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfile.html#numpy.fromfile
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfile.html#numpy.fromfile
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfunction.html#numpy.fromfunction


Chainer Documentation, Release 6.5.0

Note: Keywords other than dtype and device are passed to `function`.

See also:

numpy.fromfunction()

chainerx.fromiter

chainerx.fromiter(iterable, dtype, count=-1, device=None)
Constructs a new 1-D array from an iterable object.

This is currently equivalent to numpy.fromiter() wrapped by chainerx.array(), given the device
argument.

See also:

numpy.fromiter()

chainerx.fromstring

chainerx.fromstring(string, dtype=<class ’float’>, count=-1, sep=”, device=None)
Constructs a new 1-D array initialized from text data in a string.

This is currently equivalent to numpy.fromstring() wrapped by chainerx.array(), given the device
argument.

See also:

numpy.fromstring()

chainerx.loadtxt

chainerx.loadtxt(fname, dtype=<class ’float’>, comments=’#’, delimiter=None, converters=None,
skiprows=0, usecols=None, unpack=False, ndmin=0, encoding=’bytes’, de-
vice=None)

Constructs an array by loading data from a text file.

This is currently equivalent to numpy.loadtxt() wrapped by chainerx.array(), given the device
argument.

See also:

numpy.loadtxt()

chainerx.arange

chainerx.arange([start=0], stop[, step=1], dtype=None, device=None)
Returns an array with evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop). The first three arguments are mapped like
the range built-in function, i.e. start and step are optional.

Parameters

• start – Start of the interval.

1142 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfunction.html#numpy.fromfunction
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromiter.html#numpy.fromiter
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromiter.html#numpy.fromiter
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromstring.html#numpy.fromstring
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromstring.html#numpy.fromstring
https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt


Chainer Documentation, Release 6.5.0

• stop – End of the interval.

• step – Step width between each pair of consecutive values.

• dtype – Data type specifier. It is inferred from other arguments by default.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns The 1-D array of range values.

Return type ndarray

See also:

numpy.arange()

chainerx.linspace

chainerx.linspace(start, stop, num=50, endpoint=True, dtype=None, device=None)
Returns an array with evenly spaced numbers over a specified interval.

Instead of specifying the step width like chainerx.arange(), this function requires the total number of
elements specified.

Parameters

• start – Start of the interval.

• stop – End of the interval.

• num – Number of elements.

• endpoint (bool) – If True, the stop value is included as the last element. Otherwise,
the stop value is omitted.

• dtype – Data type specifier. It is inferred from the start and stop arguments by default.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns The 1-D array of ranged values.

Return type ndarray

See also:

numpy.linspace()

chainerx.diag

chainerx.diag(v, k=0, device=None)
Returns a diagonal or a diagonal array.

Parameters

• v (ndarray) – Array object.

• k (int) – Index of diagonals. Zero indicates the main diagonal, a positive value an upper
diagonal, and a negative value a lower diagonal.

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

6.4. Reference 1143

https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns If v is a 1-D array, then it returns a 2-D array with the specified diagonal filled by v. If v
is a 2-D array, then it returns the specified diagonal of v. In latter case, if v is a chainerx.
ndarray object, then its view is returned.

Return type ndarray

Note: The argument v does not support array-like objects yet.

See also:

numpy.diag()

chainerx.diagflat

chainerx.diagflat(v, k=0, device=None)
Creates a diagonal array from the flattened input.

Parameters

• v (ndarray) – Array object.

• k (int) – Index of diagonals. See chainerx.diag().

• device (Device) – Device on which the array is allocated. If omitted, the default device
is chosen.

Returns A 2-D diagonal array with the diagonal copied from v.

Return type ndarray

Note: The argument v does not support array-like objects yet.

See also:

numpy.diagflat()

Activation functions

chainerx.log_softmax The log of the softmax of input array.
chainerx.tanh Hyperbolic tangent, element-wise
chainerx.relu Rectified Linear Unit function.
chainerx.sigmoid

chainerx.log_softmax

chainerx.log_softmax(x, axis=None)
The log of the softmax of input array.

Parameters

• x (ndarray) – Input array.

• axis (None or int or tuple of ints) – Axis or axes along which a sum is per-
formed. The flattened array is used by default.

1144 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.diagflat.html#numpy.diagflat
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Returns The log of the softmax of input elements over a given axis.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

chainerx.tanh

chainerx.tanh(x)
Hyperbolic tangent, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = tanh𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.tanh

chainerx.relu

chainerx.relu(x)
Rectified Linear Unit function.

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = max(0, 𝑥).

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

chainerx.sigmoid

chainerx.sigmoid()

Array manipulation routines

chainerx.reshape Returns a reshaped array.
chainerx.ravel Returns a flattened array.
chainerx.transpose Permutes the dimensions of an array.
chainerx.broadcast_to Broadcasts an array to a given shape.
chainerx.squeeze Removes size-one axes from the shape of an array.
chainerx.asarray Converts an object to an array.

Continued on next page

6.4. Reference 1145

https://docs.scipy.org/doc/numpy/reference/generated/numpy.tanh.html#numpy.tanh


Chainer Documentation, Release 6.5.0

Table 4 – continued from previous page
chainerx.ascontiguousarray Returns a C-contiguous array.
chainerx.concatenate Joins arrays along an axis.
chainerx.stack Stacks arrays along a new axis.
chainerx.split Splits an array into multiple sub arrays along a given

axis.

chainerx.reshape

chainerx.reshape(a, newshape)
Returns a reshaped array.

Parameters

• a (ndarray) – Array to be reshaped.

• newshape (int or tuple of ints) – The new shape of the array to return. If it is
an integer, then it is treated as a tuple of length one. It should be compatible with a.size.
One of the elements can be -1, which is automatically replaced with the appropriate value
to make the shape compatible with a.size.

Returns A reshaped view of a if possible, otherwise a copy.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.reshape()

chainerx.ravel

chainerx.ravel(a)
Returns a flattened array.

It tries to return a view if possible, otherwise returns a copy.

Parameters a (ndarray) – Array to be flattened.

Returns A flattened view of a if possible, otherwise a copy.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.ravel()

chainerx.transpose

chainerx.transpose(a, axes=None)
Permutes the dimensions of an array.

1146 Chapter 6. ChainerX Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html#numpy.ravel


Chainer Documentation, Release 6.5.0

Parameters

• a (ndarray) – Array to permute the dimensions.

• axes (tuple of ints) – Permutation of the dimensions. This function reverses the
shape by default.

Returns A view of a with the dimensions permuted.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.transpose()

chainerx.broadcast_to

chainerx.broadcast_to(array, shape)
Broadcasts an array to a given shape.

Parameters

• array (ndarray) – Array to broadcast.

• shape (tuple of ints) – The shape of the desired array.

Returns Broadcasted view.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array
array.

See also:

numpy.broadcast_to()

chainerx.squeeze

chainerx.squeeze(a, axis=None)
Removes size-one axes from the shape of an array.

Parameters

• a (ndarray) – Array to be reshaped.

• axis (int or tuple of ints) – Axes to be removed. This function removes all
size-one axes by default. If one of the specified axes is not of size one, an exception is
raised.

Returns An array without (specified) size-one axes.

Return type ndarray

6.4. Reference 1147

https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.squeeze()

chainerx.concatenate

chainerx.concatenate(arrays, axis=0)
Joins arrays along an axis.

Parameters

• arrays (sequence of ndarrays) – Arrays to be joined. All of these should have the same
dimensionalities except the specified axis.

• axis (int) – The axis to join arrays along.

Returns Joined array.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in
arrays.

See also:

numpy.concatenate()

chainerx.stack

chainerx.stack(arrays, axis=0)
Stacks arrays along a new axis.

Parameters

• arrays (sequence of ndarrays) – Arrays to be stacked.

• axis (int) – Axis along which the arrays are stacked.

Returns Stacked array.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in
arrays.

See also:

numpy.stack()

1148 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html#numpy.squeeze
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html#numpy.concatenate
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.stack.html#numpy.stack


Chainer Documentation, Release 6.5.0

chainerx.split

chainerx.split(ary, indices_or_sections, axis=0)
Splits an array into multiple sub arrays along a given axis.

Parameters

• ary (ndarray) – Array to split.

• indices_or_sections (int or sequence of ints) – A value indicating how
to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is
evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on
the device memory is not allowed.

• axis (int) – Axis along which the array is split.

Returns A list of sub arrays. Each array is a partial view of the input array.

Return type list of ndarrays

Note: During backpropagation, this function propagates the gradients of the output arrays to the input array
ary.

See also:

numpy.split()

Indexing routines

chainerx.take Takes elements from an array along an axis.

chainerx.take

chainerx.take(a, indices, axis)
Takes elements from an array along an axis.

Parameters

• a (ndarray) – Source array.

• indices (ndarray) – The indices of the values to extract. When indices are out of
bounds, they are wrapped around.

• axis (int) – The axis over which to select values.

Returns Output array.

Return type ndarray()

Note: This function currently only supports indices of int64 array.

Note: This function currently does not support axis=None

6.4. Reference 1149

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html#numpy.split
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.take()

Linear algebra

chainerx.dot Returns a dot product of two arrays.

chainerx.dot

chainerx.dot(a, b)
Returns a dot product of two arrays.

For arrays with more than one axis, it computes the dot product along the last axis of a and the second-to-last
axis of b. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an
axis to take dot product over.

Parameters

• a (ndarray) – The left argument.

• b (ndarray) – The right argument.

Returns Output array.

Return type ndarray

Note: This function currently does not support N > 2 dimensional arrays.

Note: During backpropagation, this function propagates the gradient of the output array to input arrays a and
b.

See also:

numpy.dot()

Logic functions

chainerx.isinf Test element-wise for positive or negative infinity.
chainerx.isnan Test element-wise for NaN and return result as a

boolean array.
chainerx.logical_and Returns an array of x1 AND x2 element-wise.
chainerx.logical_or Returns an array of x1 OR x2 element-wise.
chainerx.logical_not Returns an array of NOT x element-wise.
chainerx.greater Returns an array of (x1 > x2) element-wise.
chainerx.greater_equal Returns an array of (x1 >= x2) element-wise.
chainerx.less Returns an array of (x1 < x2) element-wise.

Continued on next page

1150 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot


Chainer Documentation, Release 6.5.0

Table 7 – continued from previous page
chainerx.less_equal Returns an array of (x1 <= x2) element-wise.
chainerx.equal Returns an array of (x1 == x2) element-wise.
chainerx.not_equal Returns an array of (x1 != x2) element-wise.

chainerx.isinf

chainerx.isinf(x)
Test element-wise for positive or negative infinity.

Parameters x (ndarray) – Input array.

Returns True where x is positive or negative infinity, false otherwise.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.isinf

chainerx.isnan

chainerx.isnan(x)
Test element-wise for NaN and return result as a boolean array.

Parameters x (ndarray) – Input array.

Returns True where x is NaN, false otherwise

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.isnan

chainerx.logical_and

chainerx.logical_and(x1, x2)
Returns an array of x1 AND x2 element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

6.4. Reference 1151

https://docs.scipy.org/doc/numpy/reference/generated/numpy.isinf.html#numpy.isinf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html#numpy.isnan


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.logical_and

chainerx.logical_or

chainerx.logical_or(x1, x2)
Returns an array of x1 OR x2 element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.logical_or

chainerx.logical_not

chainerx.logical_not(x)
Returns an array of NOT x element-wise.

Parameters x (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.logical_not

chainerx.greater

chainerx.greater(x1, x2)
Returns an array of (x1 > x2) element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

1152 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html#numpy.logical_and
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_or.html#numpy.logical_or
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html#numpy.logical_not


Chainer Documentation, Release 6.5.0

Returns Output array of type bool.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.greater

chainerx.greater_equal

chainerx.greater_equal(x1, x2)
Returns an array of (x1 >= x2) element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.greater_equal

chainerx.less

chainerx.less(x1, x2)
Returns an array of (x1 < x2) element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.less

6.4. Reference 1153

https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater.html#numpy.greater
https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater_equal.html#numpy.greater_equal
https://docs.scipy.org/doc/numpy/reference/generated/numpy.less.html#numpy.less


Chainer Documentation, Release 6.5.0

chainerx.less_equal

chainerx.less_equal(x1, x2)
Returns an array of (x1 <= x2) element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.less_equal

chainerx.equal

chainerx.equal(x1, x2)
Returns an array of (x1 == x2) element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.equal

chainerx.not_equal

chainerx.not_equal(x1, x2)
Returns an array of (x1 != x2) element-wise.

Parameters

• x1 (ndarray) – Input array.

• x2 (ndarray) – Input array.

Returns Output array of type bool.

Return type ndarray

1154 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.less_equal.html#numpy.less_equal
https://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function does not propagate gradients.

See also:

numpy.not_equal

Mathematical functions

chainerx.negative Numerical negative, element-wise.
chainerx.add Add arguments, element-wise.
chainerx.subtract Subtract arguments, element-wise.
chainerx.multiply Multiply arguments, element-wise.
chainerx.divide Divide arguments, element-wise.
chainerx.sum Sum of array elements over a given axis.
chainerx.maximum Maximum arguments, element-wise.
chainerx.exp Numerical exponential, element-wise.
chainerx.log Natural logarithm, element-wise.
chainerx.logsumexp The log of the sum of exponentials of input array.
chainerx.log_softmax The log of the softmax of input array.
chainerx.sqrt Non-negative square-root, element-wise
chainerx.sin Sine, element-wise
chainerx.cos Cosine, element-wise
chainerx.tan Tangent, element-wise
chainerx.arcsin Inverse sine, element-wise
chainerx.arccos Trigonometric inverse cosine, element-wise
chainerx.arctan Trigonometric inverse tangent, element-wise
chainerx.tanh Hyperbolic tangent, element-wise
chainerx.square Returns the element-wise square of the input.
chainerx.clip Clips the values of an array to a given interval.
chainerx.ceil Return the ceiling of the input, element-wise..

chainerx.negative

chainerx.negative(x)
Numerical negative, element-wise.

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = −𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.negative

6.4. Reference 1155

https://docs.scipy.org/doc/numpy/reference/generated/numpy.not_equal.html#numpy.not_equal
https://docs.scipy.org/doc/numpy/reference/generated/numpy.negative.html#numpy.negative


Chainer Documentation, Release 6.5.0

chainerx.add

chainerx.add(x1, x2)
Add arguments, element-wise.

Parameters

• x1 (ndarray or scalar) – Input array.

• x2 (ndarray or scalar) – Input array.

Returns Returned array: 𝑦 = 𝑥1 + 𝑥2.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays x1
and x2.

See also:

numpy.add

chainerx.subtract

chainerx.subtract(x1, x2)
Subtract arguments, element-wise.

Parameters

• x1 (ndarray or scalar) – Input array.

• x2 (ndarray or scalar) – Input array.

Returns Returned array: 𝑦 = 𝑥1 − 𝑥2.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays x1
and x2.

See also:

numpy.subtract

chainerx.multiply

chainerx.multiply(x1, x2)
Multiply arguments, element-wise.

Parameters

• x1 (ndarray or scalar) – Input array.

• x2 (ndarray or scalar) – Input array.

Returns Returned array: 𝑦 = 𝑥1 × 𝑥2.

Return type ndarray

1156 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html#numpy.add
https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays x1
and x2.

See also:

numpy.multiply

chainerx.divide

chainerx.divide(x1, x2)
Divide arguments, element-wise.

Parameters

• x1 (ndarray or scalar) – Input array.

• x2 (ndarray or scalar) – Input array.

Returns Returned array: 𝑦 = 𝑥1

𝑥2
.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays x1
and x2.

See also:

numpy.divide

chainerx.sum

chainerx.sum(a, axis=None, keepdims=False)
Sum of array elements over a given axis.

Parameters

• a (ndarray) – Input array.

• axis (None or int or tuple of ints) – Axis or axes along which a sum is per-
formed. The flattened array is used by default.

• keepdims (bool) – If this is set to True, the reduced axes are left in the result as dimen-
sions with size one.

Returns The sum of input elements over a given axis.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.sum()

6.4. Reference 1157

https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply
https://docs.scipy.org/doc/numpy/reference/generated/numpy.divide.html#numpy.divide
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html#numpy.sum


Chainer Documentation, Release 6.5.0

chainerx.maximum

chainerx.maximum(x1, x2)
Maximum arguments, element-wise.

Parameters

• x1 (ndarray or scalar) – Input array.

• x2 (ndarray or scalar) – Input array.

Returns Returned array: 𝑦 = 𝑚𝑎𝑥({𝑥1, 𝑥2}).

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays x1
and x2.

Note: maximum of ndarray and ndarray is not supported yet.

See also:

numpy.maximum

chainerx.exp

chainerx.exp(x)
Numerical exponential, element-wise.

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = exp𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.exp

chainerx.log

chainerx.log(x)
Natural logarithm, element-wise.

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = ln𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

1158 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html#numpy.maximum
https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp


Chainer Documentation, Release 6.5.0

See also:

numpy.log

chainerx.logsumexp

chainerx.logsumexp(x, axis=None, keepdims=False)
The log of the sum of exponentials of input array.

Parameters

• x (ndarray) – Input array.

• axis (None or int or tuple of ints) – Axis or axes along which a sum is per-
formed. The flattened array is used by default.

• keepdims (bool) – If this is set to True, the reduced axes are left in the result as dimen-
sions with size one.

Returns The log of the sum of exponentials of input elements over a given axis.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

chainerx.sqrt

chainerx.sqrt(x)
Non-negative square-root, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 =
√
𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.sqrt

chainerx.sin

chainerx.sin(x)
Sine, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = sin𝑥.

Return type ndarray

6.4. Reference 1159

https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.sin

chainerx.cos

chainerx.cos(x)
Cosine, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = cos𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.cos

chainerx.tan

chainerx.tan(x)
Tangent, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = tan𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.tan

chainerx.arcsin

chainerx.arcsin(x)
Inverse sine, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = arcsin𝑥.

Return type ndarray

1160 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin
https://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos
https://docs.scipy.org/doc/numpy/reference/generated/numpy.tan.html#numpy.tan


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.arcsin

chainerx.arccos

chainerx.arccos(x)
Trigonometric inverse cosine, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = arccos𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.arccos

chainerx.arctan

chainerx.arctan(x)
Trigonometric inverse tangent, element-wise

Parameters x (ndarray) – Input array.

Returns Returned array: 𝑦 = arctan𝑥.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.arctan

chainerx.square

chainerx.square(x)
Returns the element-wise square of the input.

Parameters x (ndarray or scalar) – Input data

Returns Returned array: 𝑦 = 𝑥 * 𝑥. A scalar is returned if x is a scalar.

Return type ndarray

6.4. Reference 1161

https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html#numpy.arcsin
https://docs.scipy.org/doc/numpy/reference/generated/numpy.arccos.html#numpy.arccos
https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan.html#numpy.arctan


Chainer Documentation, Release 6.5.0

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

See also:

numpy.square

chainerx.clip

chainerx.clip(a, a_min, a_max)
Clips the values of an array to a given interval.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters

• a (ndarray) – Array containing elements to clip.

• a_min (scalar) – Maximum value.

• a_max (scalar) – Minimum value.

Returns An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

Return type ndarray

Note: The ndarray typed a_min and a_max are not supported yet.

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.clip()

chainerx.ceil

chainerx.ceil(x)
Return the ceiling of the input, element-wise..

Parameters x (ndarray) – Input array.

Returns The ceiling of each element in array.

Return type ndarray

See also:

numpy.ceil

Random sampling

1162 Chapter 6. ChainerX Documentation

https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html#numpy.square
https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html#numpy.ceil


Chainer Documentation, Release 6.5.0

chainerx.random.normal Draws random samples from a normal (Gaussian) dis-
tribution.

chainerx.random.uniform Draws samples from a uniform distribution.

chainerx.random.normal

chainerx.random.normal(*args, **kwargs, device=None)
Draws random samples from a normal (Gaussian) distribution.

This is currently equivalent to numpy.random.normal() wrapped by chainerx.array(), given the
device argument.

See also:

numpy.random.normal()

chainerx.random.uniform

chainerx.random.uniform(*args, **kwargs, device=None)
Draws samples from a uniform distribution.

This is currently equivalent to numpy.random.normal() wrapped by chainerx.array(), given the
device argument.

See also:

numpy.random.uniform()

Sorting, searching, and counting

chainerx.argmax Returns the indices of the maximum along an axis.

chainerx.argmax

chainerx.argmax(a, axis=None)
Returns the indices of the maximum along an axis.

Parameters

• a (ndarray) – Array to take the indices of the maximum of.

• axis (None or int) – Along which axis to compute the maximum. The flattened array
is used by default.

Returns The indices of the maximum of a, along the axis if specified.

Return type ndarray

See also:

numpy.argmax()

Statistics

6.4. Reference 1163

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html#numpy.argmax


Chainer Documentation, Release 6.5.0

chainerx.amax Returns the maximum of an array or the maximum
along an axis.

chainerx.amax

chainerx.amax(a, axis=None, keepdims=False)
Returns the maximum of an array or the maximum along an axis.

Note: When at least one element is NaN, the corresponding max value will be NaN.

Parameters

• a (ndarray) – Array to take the maximum.

• axis (None or int or tuple of ints) – Along which axis to take the maxi-
mum. The flattened array is used by default. If this is a tuple of ints, the maximum is
selected over multiple axes, instead of a single axis or all the axes.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns The maximum of a, along the axis if specified.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array a.

See also:

numpy.amax()

Connection

chainerx.conv N-dimensional convolution.
chainerx.conv_transpose N-dimensional transposed convolution.
chainerx.linear Linear function, or affine transformation.

chainerx.conv

chainerx.conv(x, w, b=None, stride=1, pad=0, cover_all=False)
N-dimensional convolution.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in
ConvNets. It takes three arrays: the input x, the filter weight w and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

1164 Chapter 6. ChainerX Documentation

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.amax.html#numpy.amax


Chainer Documentation, Release 6.5.0

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑙1, 𝑙2, ..., 𝑙𝑁 are the size of each axis of the output’s spatial dimensions, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

Then the conv function computes correlations between filters and patches of size (𝑘1, 𝑘2, ..., 𝑘𝑁 ) in x. Note that
correlation here is equivalent to the inner product between expanded tensors. Patches are extracted at positions
shifted by multiples of stride from the first position (-p_1, -p_2, ..., -p_N) for each spatial axis.

Let (𝑠1, 𝑠2, ..., 𝑠𝑁 ) be the stride of filter application. Then, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁 ) is determined by the
following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an addtional stride will be applied to the end part of spatial locations. In
this case, the output size is determined by the following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛 + 𝑠𝑛 − 1)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

Parameters

• x (ndarray) – Input array of shape (𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁 ).

• w (ndarray) – Weight array of shape (𝑐𝑂, 𝑐𝐼 , 𝑘1, 𝑘2, ..., 𝑘𝑁 ).

• b (None or ndarray) – One-dimensional bias array with length 𝑐𝑂 (optional).

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁 ).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁 ).
pad=p is equivalent to (p, p, ..., p).

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use cuda
backend.

Returns Output array of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁 ).

Return type ndarray

Note: In cuda backend, this function uses cuDNN implementation for its forward and backward computation.

Note: In cuda backend, this function has following limitations yet:

• The cover_all=True option is not supported yet.

• The dtype must be float32 or float64 (float16 is not supported yet.)

Note: During backpropagation, this function propagates the gradient of the output array to input arrays x, w,
and b.

See also:

chainer.functions.convolution_nd()

6.4. Reference 1165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40, 50)
>>> w = chainerx.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype(np.float32)
>>> w.shape
(1, 3, 10, 10, 10)
>>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, l1, l2, l3)
True
>>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_
→˓all=True)
>>> y.shape == (n, c_o, l1, l2, l3 + 1)
True

chainerx.conv_transpose

chainerx.conv_transpose(x, w, b=None, stride=1, pad=0, outsize=None)
N-dimensional transposed convolution.

This is an implementation of N-dimensional transposed convolution, which is previously known as deconvolu-
tion in Chainer.

It takes three arrays: the input x, the filter weight w, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

• 𝑠1, 𝑠2, ..., 𝑠𝑁 are the stride of each axis of filter application, respectively.

1166 Chapter 6. ChainerX Documentation



Chainer Documentation, Release 6.5.0

If outsize option is None, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁 ) is determined by the following equations with the
items in the above list:

𝑙𝑛 = 𝑠𝑛(𝑑𝑛 − 1) + 𝑘𝑛 − 2𝑝𝑛 (𝑛 = 1, ..., 𝑁)

If outsize option is given, the output size is determined by outsize. In this case, the outsize
(𝑙1, 𝑙2, ..., 𝑙𝑁 ) must satisfy the following equations:

𝑑𝑛 = ⌊(𝑙𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛⌋+ 1 (𝑛 = 1, ..., 𝑁)

Parameters

• x (ndarray) – Input array of shape (𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁 ).

• w (ndarray) – Weight array of shape (𝑐𝐼 , 𝑐𝑂, 𝑘1, 𝑘2, ..., 𝑘𝑁 ).

• b (None or ndarray) – One-dimensional bias array with length 𝑐𝑂 (optional).

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁 ).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁 ).
pad=p is equivalent to (p, p, ..., p).

• outsize (None or tuple of int s) – Expected output size of deconvolutional operation.
It should be a tuple of ints (𝑙1, 𝑙2, ..., 𝑙𝑁 ). Default value is None and the outsize is estimated
by input size, stride and pad.

Returns Output array of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁 ).

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to input arrays x, w,
and b.

See also:

chainer.functions.deconvolution_nd()

Example

Example1: the case when outsize is not given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> w = chainerx.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> w.shape
(3, 1, 10, 10, 10)
>>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3))

(continues on next page)

6.4. Reference 1167

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

(continued from previous page)

>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3
>>> y.shape == (n, c_o, l1, l2, l3)
True

Example2: the case when outsize is given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = chainerx.array(np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.
→˓float32))
>>> x.shape
(10, 3, 5, 10, 15)
>>> w = chainerx.array(np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.
→˓float32))
>>> w.shape
(3, 1, 10, 10, 10)
>>> b = chainerx.array(np.random.uniform(0, 1, (c_o)).astype(np.float32))
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> l1, l2, l3 = 9, 38, 87
>>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1
True
>>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1
True
>>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), pad=(p1, p2, p3),
→˓outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True

chainerx.linear

chainerx.linear(x, W, b=None, n_batch_axis=1)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It
computes

𝑌 = 𝑥𝑊⊤ + 𝑏.

Parameters

• x (ndarray) – Input array, which is a (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped array.

• W (ndarray) – Weight variable of shape (𝑀,𝑁), where (𝑁 = 𝑠n_batch_axes * ... * 𝑠𝑛).

1168 Chapter 6. ChainerX Documentation



Chainer Documentation, Release 6.5.0

• b (ndarray) – Bias variable (optional) of shape (𝑀, ).

• n_batch_axes (int) – The number of batch axes. The default is 1. The input variable
is reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output array with shape of (𝑠1, ..., 𝑠n_batch_axes,𝑀).

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to input arrays x, W
and b.

Normalization

chainerx.batch_norm Batch normalization function.
chainerx.fixed_batch_norm Batch normalization function with fixed statistics.

chainerx.batch_norm

chainerx.batch_norm(x, gamma, beta, running_mean, running_var, eps=2e-5, decay=0.9, axis=None)
Batch normalization function.

It takes the input array x and two parameter arrays gamma and beta. The parameter arrays must both have the
same size.

Parameters

• x (ndarray) – Input array.

• gamma (ndarray) – Scaling parameter of normalized data.

• beta (ndarray) – Shifting parameter of scaled normalized data.

• running_mean (ndarray) – Running average of the mean. This is a running average of
the mean over several mini-batches using the decay parameter. The function takes a previous
running average, and updates the array in-place by the new running average.

• running_var (ndarray) – Running average of the variance. This is a running average
of the variance over several mini-batches using the decay parameter. The function takes a
previous running average, and updates the array in-place by the new running average.

• eps (float) – Epsilon value for numerical stability.

• decay (float) – Decay rate of moving average. It is used during training.

• axis (int, tuple of int or None) – Axis over which normalization is per-
formed. When axis is None, the first axis is treated as the batch axis and will be reduced
during normalization.

Note: During backpropagation, this function propagates the gradient of the output array to the input arrays x,
gamma and beta.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

6.4. Reference 1169

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1502.03167


Chainer Documentation, Release 6.5.0

chainerx.fixed_batch_norm

chainerx.fixed_batch_norm(x, gamma, beta, mean, var, eps=2e-5, axis=None)
Batch normalization function with fixed statistics.

This is a variant of batch_norm(), where the mean and array statistics are given by the caller as fixed
variables.

Parameters

• x (ndarray) – Input array.

• gamma (ndarray) – Scaling parameter of normalized data.

• beta (ndarray) – Shifting parameter of scaled normalized data.

• mean (ndarray) – Shifting parameter of input.

• var (ndarray) – Square of scaling parameter of input.

• eps (float) – Epsilon value for numerical stability.

• axis (int, tuple of int or None) – Axis over which normalization is per-
formed. When axis is None, the first axis is treated as the batch axis and will be reduced
during normalization.

Note: During backpropagation, this function does not propagate gradients.

Pooling

chainerx.max_pool Spatial max pooling function.
chainerx.average_pool Spatial average pooling function.

chainerx.max_pool

chainerx.max_pool(x, ksize, stride=None, pad=0, cover_all=False)
Spatial max pooling function.

This acts similarly to conv(), but it computes the maximum of input spatial patch for each channel without
any parameter instead of computing the inner products.

Parameters

• x (ndarray) – Input array.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

1170 Chapter 6. ChainerX Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

Returns Output array.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.
This function is only differentiable up to the second order.

Note: In cuda backend, only 2 and 3 dim arrays are supported as x because cuDNN pooling supports 2 and 3
spatial dimensions.

chainerx.average_pool

chainerx.average_pool(x, ksize, stride=None, pad=0, pad_mode=’ignore’)
Spatial average pooling function.

This acts similarly to conv(), but it computes the average of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

• x (ndarray) – Input array.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

• pad_mode ({'zero', 'ignore'}) – Specifies how padded region is treated.

– ’zero’ – the values in the padded region are treated as 0

– ’ignore’ – padded region is ignored (default)

Returns Output array.

Return type ndarray

Note: During backpropagation, this function propagates the gradient of the output array to the input array x.

Note: In cuda backend, only 2 and 3 dim arrays are supported as x because cuDNN pooling supports 2 and 3
spatial dimensions.

6.4.3 Context

chainerx.Context An isolated execution environment of ChainerX.

6.4. Reference 1171

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

chainerx.Context

class chainerx.Context
An isolated execution environment of ChainerX.

In Python binding, a single context is automatically created and set as the global default context on import. Only
advanced users will have to care about contexts.

Methods

get_backend()

get_device()

make_backprop_id()

release_backprop_id()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

6.4.4 Backend and Device

ChainerX adds a level of abstraction between the higher level array operations and the lower level computations and
resource management. This abstraction is managed by the Backend and the Device classes. Native (CPU) and
CUDA backends are two concrete implementations currently provided by ChainerX but the abstraction allows you to
plug any backend into the framework.

Backend

chainerx.Backend Pluggable entity that abstracts various computing plat-
forms.

chainerx.get_backend Returns a backend specified by the name.

chainerx.Backend

class chainerx.Backend
Pluggable entity that abstracts various computing platforms.

A backend holds one or more Devices, each of which represents a physical computing unit.

1172 Chapter 6. ChainerX Documentation



Chainer Documentation, Release 6.5.0

Methods

get_device(index)
Returns a device specified by the given index.

Parameters index (int) – Device index.

Returns Device object.

Return type Device

get_device_count()
Returns the number of devices available in this backend.

Returns Number of devices.

Return type int

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

context
Context to which this backend belongs.

Returns Context object.

Return type Context

name
Backend name.

Returns Backend name.

Return type str

chainerx.get_backend

chainerx.get_backend(backend_name)
Returns a backend specified by the name.

Parameters backend_name (str) – Backend name.

Returns Backend object.

Return type Backend

6.4. Reference 1173

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

Device

chainerx.Device Represents a physical computing unit.
chainerx.get_device Returns a device specified by the arguments.
chainerx.get_default_device Returns the default device associated with the current

thread.
chainerx.set_default_device Sets the given device as the default device of the current

thread.
chainerx.using_device Creates a context manager to temporarily set the default

device.

chainerx.Device

class chainerx.Device
Represents a physical computing unit.

Methods

synchronize()
Synchronizes the device.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

backend
Backend to which this device belongs.

Returns Backend object.

Return type Backend

context
Context to which this device belongs.

Returns Context object.

Return type Context

index
Index of this device.

1174 Chapter 6. ChainerX Documentation



Chainer Documentation, Release 6.5.0

Returns Index of this device.

Return type int

name
Device name.

It is the backend name and the device index concatenated with a colon, e.g. native:0.

Returns Device name.

Return type str

chainerx.get_device

chainerx.get_device(*device)
Returns a device specified by the arguments.

If the argument is a single Device instance, it’s simply returned.

Otherwise, there are three ways to specify a device:

# Specify a backend name and a device index separately.
chainerx.get_device('native', 0)

# Specify a backend name and a device index in a single string.
chainerx.get_device('native:0')

# Specify only a backend name. In this case device index 0 is chosen.
chainerx.get_device('native')

Returns Device object.

Return type Device

chainerx.get_default_device

chainerx.get_default_device()
Returns the default device associated with the current thread.

Returns The default device.

Return type Device

See also:

• chainerx.set_default_device()

• chainerx.using_device()

chainerx.set_default_device

chainerx.set_default_device(device)
Sets the given device as the default device of the current thread.

Parameters device (Device or str) – Device object or device name to set as the default
device.

6.4. Reference 1175

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

See also:

• chainerx.get_default_device()

• chainerx.using_device()

chainerx.using_device

chainerx.using_device(device)
Creates a context manager to temporarily set the default device.

Parameters device (Device or str) – Device object or device name to set as the default
device during the context. See chainerx.Device.name for the specification of device
names.

See also:

• chainerx.get_default_device()

• chainerx.set_default_device()

6.4.5 Utilities for Backpropagation

chainerx.backward Runs backpropagation.
chainerx.no_backprop_mode Creates a context manager which temporarily disables

backpropagation.
chainerx.force_backprop_mode Creates a context manager which temporarily enables

backpropagation.
chainerx.is_backprop_required Returns whether the backpropagation is enabled in the

current thread.

chainerx.backward

chainerx.backward(outputs, *, enable_double_backprop=False)
Runs backpropagation.

On backpropagation (a.k.a. backprop), the computational graph is traversed backward starting from the output
arrays, up until the root arrays on which ndarray.require_grad() have been called.

Backpropagation uses ndarray.grad held by the output arrays as the initial gradients. You can manually
assign them before calling this function. Otherwise, they are assumed to be 1.

To enable higher order differentiation, pass enable_double_backprop=True so that you can further run
backpropagation from the resulting gradient arrays. Note that enabling it results in larger memory consumption
needed to store the gradients w.r.t intermediate arrays that are required for the second gradient computation.

Note: The whole process of backpropagation is executed in C++, except those operations whose backward
computation falls back to the corresponding Python implementation. Currently this function does not release
the GIL at all.

Parameters

1176 Chapter 6. ChainerX Documentation

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• outputs (ndarray or list of ndarrays) – Output arrays from which back-
propagation starts.

• enable_double_backprop (bool) – If True, a computational trace of the whole
backpropagation procedure is recorded to the computational graph so that one can further
do backpropagation from the resulting gradients.

See also:

• chainerx.ndarray.backward()

chainerx.no_backprop_mode

chainerx.no_backprop_mode()
Creates a context manager which temporarily disables backpropagation.

Within this context, no computational graph will be formed unless force_backprop_mode() is used.

Arrays resulting from operations enclosed with this context will be disconnected from the computational graph.
Trying to perform backpropagation from such arrays would result in an error.

x = chainerx.array([4, 3], numpy.float32)
x.require_grad()

with chainerx.no_backprop_mode():
y = 2 * x + 1

y.backward() # ! error

Benefits of no_backprop_mode include reduced CPU overhead of building computational graphs, and re-
duced consumption of device memory that would be otherwise retained for backward propagation.

See also:

• chainerx.force_backprop_mode()

• chainerx.is_backprop_required()

• chainer.no_backprop_mode()

chainerx.force_backprop_mode

chainerx.force_backprop_mode()
Creates a context manager which temporarily enables backpropagation.

This context re-enables backpropagation that is disabled by any surrounding no_backprop_mode() context.

x = chainerx.array([4, 3], numpy.float32)
x.require_grad()

with chainerx.no_backprop_mode():
with chainerx.force_backprop_mode():

y = 2 * x + 1

y.backward()
x.grad
# array([2., 2.], shape=(2,), dtype=float32, device='native:0')

6.4. Reference 1177

https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

See also:

• chainerx.no_backprop_mode()

• chainerx.is_backprop_required()

• chainer.force_backprop_mode()

chainerx.is_backprop_required

chainerx.is_backprop_required()
Returns whether the backpropagation is enabled in the current thread.

The result is affect by chainerx.no_backprop_mode() and chainerx.
force_backprop_mode().

See also:

• chainerx.no_backprop_mode()

• chainerx.force_backprop_mode()

6.5 Contribution Guide

This is a guide aimed towards contributors of ChainerX which is mostly implemented in C++. It describes how to
build the project and how to run the test suite so that you can get started contributing.

Note: Please refer to the Chainer Contribution Guide for the more general contribution guideline that is not specific
to ChainerX. E.g. how to download the source code, manage git branches, send pull requests or contribute to Chainer’s
Python code base.

Note: There is a public ChainerX Product Backlog.

6.5.1 Building the shared library

You can build the C++ ChainerX project to generate a shared library similar to any other cmake project. Run the
following command from the root of the project to generate chainerx_cc/build/chainerx/libchainerx.
so,

$ mkdir chainerx_cc/build
$ cd chainerx_cc/build
$ cmake ..
$ make

The CUDA support is enabled by, either setting CHAINERX_BUILD_CUDA=1 as an environment variable or
specifying -DCHAINERX_BUILD_CUDA=1 in cmake. When building with the CUDA support, either the
CUDNN_ROOT_DIR environment variable or -DCUDNN_ROOT_DIR is required to locate the cuDNN installation
path.

1178 Chapter 6. ChainerX Documentation

https://docs.google.com/spreadsheets/d/1daitXlRhHu7eZENFUs1cHw8o12rmA8bvudUQ0Yof8Jc


Chainer Documentation, Release 6.5.0

Note: CUDA without cuDNN is currently not supported.

Then, to install the headers and the library, run:

$ make install

You can specify the installation path using the prefix -DCMAKE_INSTALL_PREFIX=<...> in cmake.

6.5.2 Running the test suite

The test suite can be built by passing -DCHAINERX_BUILD_TEST=ON to cmake. It is not built by default. Once
built, run the suite with the following command from within the build directory.

$ cd chainerx_cc/build
$ ctest -V

6.5.3 Coding standards

The ChainerX C++ coding standard is mostly based on the Google C++ Style Guide and principles.

Formatting

ChainerX is formatted using clang-format. To fix the formatting in-place, run the following command from
chainerx_cc directory:

$ cd chainerx_cc
$ scripts/run-clang-format.sh --in-place

Lint checking

ChainerX uses the cpplint and clang-tidy for lint checking. Note that clang-tidy requires that you’ve finished running
cmake. To run cpplint, run scripts/run-cpplint.sh from chainerx_cc directory:

$ cd chainerx_cc
$ scripts/run-cpplint.sh

To run clang-tidy, run make clang-tidy from the build directory:

$ cd chainerx_cc/build
$ make clang-tidy

6.5.4 Thread sanitizer

The thread sanitizer can be used to detect thread-related bugs, such as data races. To enable the thread sanitizer, pass
-DCHAINERX_ENABLE_THREAD_SANITIZER=ON to cmake.

You can run the test with ctest -V as usual and you will get warnings if the thread sanitizer detects any issues.

CUDA runtime is known to cause a thread leak error as a false alarm. In such case, disable the thread leak detection
using environment variable TSAN_OPTIONS='report_thread_leaks=0'.

6.5. Contribution Guide 1179

https://google.github.io/styleguide/cppguide.html
https://clang.llvm.org/docs/ClangFormat.html
https://github.com/cpplint/cpplint
http://clang.llvm.org/extra/clang-tidy/


Chainer Documentation, Release 6.5.0

6.5.5 Python contributions and unit tests

To test the Python binding, run the following command at the repository root:

$ pytest

The above command runs all the tests in the repository, including Chainer and ChainerMN. To run only ChainerX
tests, specify the test directory:

$ pytest tests/chainerx_tests

Run tests with coverage:

$ pytest --cov --no-cov-on-fail --cov-fail-under=80 tests/chainerx_tests

Run tests without CUDA GPU:

$ pytest -m 'not cuda' tests/chainerx_tests

6.6 Tips and FAQs

6.6.1 Can I use ChainerX without Chainer?

Yes, it is possible. See the code samples below.

• Train an MLP with MNIST dataset (chainerx_cc/examples/mnist_py)

• Train a CNN with ImageNet dataset (chainerx_cc/examples/imagenet_py)

6.6.2 What does the C++ interface look like?

It is almost identical to the Python interface with a 1-to-1 mapping. The interface is still subject to change, but there is
an example code:

• Train an MLP with MNIST dataset in C++ (chainerx_cc/examples/mnist)

6.6.3 GPU memory consumption is too high when used with CuPy

Both ChainerX and CuPy use their own GPU memory pools, meaning that GPU memory is not efficiently utilized
(unused memory is kept without being freed by both ChainerX and CuPy). You can run your script after setting the
environment variable CHAINERX_CUDA_CUPY_SHARE_ALLOCATOR to 1 to use the experimental feature which
makes sure that both ChainerX and CuPy share the same memory pool, hence reducing your peak GPU memory-usage.
You may also invoke chainerx._cuda.cupy_share_allocator instead of setting the environment variable
for the same effect. In this case, it is recommended that you call the function prior to any GPU memory allocation.

1180 Chapter 6. ChainerX Documentation

https://github.com/chainer/chainer/tree/v6.5.0/chainerx_cc/examples/mnist_py
https://github.com/chainer/chainer/tree/v6.5.0/chainerx_cc/examples/imagenet_py
https://github.com/chainer/chainer/tree/v6.5.0/chainerx_cc/examples/mnist


CHAPTER

SEVEN

DISTRIBUTED DEEP LEARNING WITH CHAINERMN

ChainerMN enables multi-node distributed deep learning with the following features:

• Scalable — it makes full use of the latest technologies such as NVIDIA NCCL and CUDA-Aware MPI,

• Flexible — even dynamic neural networks can be trained in parallel thanks to Chainer’s flexibility, and

• Easy — minimal changes to existing user code are required.

This blog post provides our benchmark results using up to 128 GPUs.

ChainerMN can be used for both inner-node (i.e., multiple GPUs inside a node) and inter-node settings. For inter-node
settings, we highly recommend to use high-speed interconnects such as InfiniBand.

ChainerMN examples are available on GitHub. These examples are based on the examples of Chainer and the differ-
ences are highlighted.

7.1 Installation

7.1.1 Installation Guide

Requirements

ChainerMN depends on the following software libraries: CUDA-Aware MPI, NVIDIA NCCL, and a few Python
packages including CuPy and MPI4py.

Note: In Chainer v5, ChainerMN became a part of Chainer package. Installing Chainer (pip install chainer)
automatically makes ChainerMN available. Note that you still need to separately install requirements described below
to actually run code using ChainerMN.

Before upgrading from Chainer v4 to v5 or later, make sure to remove existing chainermn package (pip
uninstall chainermn).

CUDA-Aware MPI

ChainerMN relies on MPI. In particular, for efficient communication between GPUs, it uses CUDA-aware MPI. For
details about CUDA-aware MPI, see this introduction article. (If you use only the CPU mode, MPI does not need to
be CUDA-Aware. See Installation on Non-GPU Environments for more details.)

The CUDA-aware features depend on several MPI packages, which need to be configured and built properly. The
following are examples of Open MPI and MVAPICH.

1181

http://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html
https://github.com/chainer/chainer/tree/master/examples/chainermn/
https://github.com/chainer/chainer/tree/master/examples/
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/


Chainer Documentation, Release 6.5.0

Open MPI (for details, see Open MPI’s official instructions):

$ ./configure --with-cuda
$ make -j4
$ sudo make install

MVAPICH (for details, see Mvapich’s official instructions):

$ ./configure --enable-cuda
$ make -j4
$ sudo make install
$ export MV2_USE_CUDA=1 # Should be set all the time when using ChainerMN

NCCL

Note: If you are installing CuPy using wheels (i.e., pip install cupy-cudaXX where XX is the CUDA
version), you don’t have to install NCCL manually. The latest NCCL 2.x library is bundled with CuPy wheels.

See CuPy Installation Guide for the detailed steps to install CuPy.

To enable efficient intra- and inter-node GPU-to-GPU communication, we use NVIDIA Collective Communications
Library (NCCL). See NCCL’s official instructions for installation.

ChainerMN requires NCCL even if you have only one GPU per node. The only exception is when you run ChainerMN
on CPU-only environments. See Installation on Non-GPU Environments for more details.

Note: We reccomend NCCL 2 but NCCL 1 can be used. However, for NCCL 1, PureNcclCommunicator is not
supported in ChainerMN. If you use NCCL 1, please properly configure environment variables to expose NCCL both
when you install and use ChainerMN. Typical configurations should look like the following:

export NCCL_ROOT=<path to NCCL directory>
export CPATH=$NCCL_ROOT/include:$CPATH
export LD_LIBRARY_PATH=$NCCL_ROOT/lib/:$LD_LIBRARY_PATH
export LIBRARY_PATH=$NCCL_ROOT/lib/:$LIBRARY_PATH

If you change the version of NCCL installed, you have to reinstall CuPy. Because, current ChainerMN applies CuPy
to use NCCL. See CuPy official instructions for reinstalltion.

MPI4py

You can install MPI4py by:

$ pip install mpi4py

Please make be sure to properly configure environment variables so that MPI is available at installation time, because
MPI4py links to MPI library at installation time. In particular, if you have multiple MPI implementations installed in
your environment, please expose the implementation that you want to use both when you install and use ChainerMN.

As of writing, MPI4py does not support Open MPI 4.x. Please use versions from the Tested Environments section
below.

1182 Chapter 7. Distributed Deep Learning with ChainerMN

https://www.open-mpi.org/faq/?category=building#build-cuda
http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-userguide.html#x1-120004.5
https://docs-cupy.chainer.org/en/stable/install.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
http://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/index.html#downloadnccl
https://docs-cupy.chainer.org/en/stable/install.html#reinstall-cupy
https://bitbucket.org/mpi4py/mpi4py/issues/123/mpi4py-does-not-build-with-openmpi4


Chainer Documentation, Release 6.5.0

CuPy

Chainer and ChainerMN rely on CuPy to use GPUs. Please refer to CuPy Installation Guide for the detailed steps to
install CuPy.

In most cases it is recommended that you install CuPy using wheel distribution (precompiled binary) rather than source
distribution. If you are installing from source, NCCL library must be installed before installing CuPy to enable NCCL
feature in CuPy. Refer to NCCL for the installation steps of NCCL library. See Check if NCCL is enabled in CuPy, if
you want to check whether NCCL is enabled in your CuPy.

Chainer and ChainerMN can be installed without CuPy, in which case the corresponding features are not available.
See Installation on Non-GPU Environments for more details.

Tested Environments

We tested ChainerMN on all the following environments.

• OS

– Ubuntu 14.04 LTS 64bit

– Ubuntu 16.04 LTS 64bit

• Python 2.7.13, 3.5.1, 3.6.1

• MPI

– Open MPI 2.1.6, 3.0.4, 3.1.4

• MPI4py 3.0.0

• NCCL 2.3.2 2.4.2

Note: Note that the following versions of Open MPI have some bugs that might cause ChainerMN programs to hang:
3.0.[0-2] and 3.1.[0-2]. For more details, see Open MPI Issue #3972 and Chainer Issue #5740 .

Also, mpi4py does not support Open MPI 4.0.x.

Installation on Non-GPU Environments

Users who want to try ChainerMN in CPU-only environment may skip installation of CuPy. Non-GPU set up may
not be performant as GPU-enabled set up, but would be useful for testing or debugging training program in non-GPU
environment such as laptops or CI jobs.

In this case, the MPI does not have to be CUDA-aware. Only naive communicator works with the CPU mode.

7.1.2 Step-by-Step Troubleshooting

This section is a step-by-step troubleshooting guide for ChainerMN. Please follow these steps to identify and fix your
problem.

We assume that you are using Linux or another Unix-like environment.

7.1. Installation 1183

https://docs-cupy.chainer.org/en/stable/install.html
https://github.com/open-mpi/ompi/issues/3972
https://github.com/chainer/chainer/issues/5740


Chainer Documentation, Release 6.5.0

Single-node environment

Basic MPI installation

Although ChainerMN stands for “Chainer MultiNode,” it is good to start from single-node execution. First of all, you
need MPI. If MPI is correctly installed, you will see the mpicc and mpiexec commands in your PATH.

Below is an example of the output from Mvapich on Linux.:

$ which mpicc
/usr/local/bin/mpicc

$ mpicc -show
gcc -I/usr/local/include ...(snip)... -lmpi

$ which mpiexec
/usr/local/bin/mpiexec

$ mpiexec --version
HYDRA build details:
Version: 3.1.4
Release Date: Wed Sep 7 14:33:43 EDT 2016
CC: gcc
CXX: g++
F77:
F90:
Configure options: (snip)
Process Manager: pmi
Launchers available: ssh rsh fork slurm ll lsf sge manual persist
Topology libraries available: hwloc
Resource management kernels available: user slurm ll lsf sge pbs cobalt
Checkpointing libraries available:
Demux engines available: poll select

If you see any error in above commands, please go back to the CUDA-Aware MPI and check your MPI installation.

Check what MPI you are using

In CUDA-Aware MPI, we mention both of Open MPI and Mvapich. If the MPI is provided by the system administrator
and you are not really sure which MPI you are using, check the output of mpiexec –version.

• If the output contains HYDRA, then it’s MVAPICH (or possibly MPICH).

• If the output contains OpenRTE, then it’s Open MPI.

However, in such a case, you should make sure that the MPI is CUDA-aware, as mentioned below. We recommend to
build your own MPI.

Check if MPI is CUDA-aware

Your MPI must be configured as CUDA-aware. You can use the following C program to check it.

/* check_cuda_aware.c */
#include <assert.h>
#include <stdio.h>

(continues on next page)

1184 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

(continued from previous page)

#include <mpi.h>
#include <cuda_runtime.h>

#define CUDA_CALL(expr) do { \
cudaError_t err; \
err = expr; \
assert(err == cudaSuccess); \

} while(0)

int main(int argc, char **argv) {
int rank, size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int *sendbuf_d = NULL;
int *recvbuf_d = NULL;

CUDA_CALL(cudaMalloc((void**)&sendbuf_d, sizeof(int)));
CUDA_CALL(cudaMalloc((void**)&recvbuf_d, sizeof(int)));
CUDA_CALL(cudaMemcpy(sendbuf_d, &rank, sizeof(int), cudaMemcpyDefault));

MPI_Reduce(sendbuf_d, recvbuf_d, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

if (rank == 0) {
int sum = -1;
CUDA_CALL(cudaMemcpy(&sum, recvbuf_d, sizeof(int), cudaMemcpyDefault));
if (sum == (size-1) * size / 2) {
printf("OK.\n");

} else {
printf("Error.\n");

}
}

cudaFree(sendbuf_d);
cudaFree(recvbuf_d);

MPI_Finalize();
}

Save the code to a file named check_cuda_aware.c. You can compile and run it with the following command.:

$ export MPICH_CC=nvcc # if you use Mvapich
$ export OMPI_CC=nvcc # if you use Open MPI
$ $(mpicc -show check_cuda_aware.c -arch sm_53 | sed -e 's/-Wl,/-Xlinker /g' | sed -e
→˓'s/-pthread/-Xcompiler -pthread/')
$ ./a.out
OK.

If the proglam prints OK., your MPI is correctly configured.

Check mpi4py

Next, let’s check that mpi4py is correctly installed. You can use the following script to check it:

7.1. Installation 1185



Chainer Documentation, Release 6.5.0

# coding: utf-8
import os
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
if i == rank:
print("{} {}".format(os.uname()[1], i))

comm.Barrier()

Save the script into a file named check_mpi4py.py and run it. The output from the script should look like this.:

$ mpiexec -np 4 python check_mpi4py.py
host00 0
host00 1
host00 2
host00 3

The script prints hostnames and ranks (process id in MPI) from each MPI process in a sequential manner. host00 is
the host name of the machine your are running the process. If you get an output like below, it indicates something is
wrong with your installation.:

# Wrong output !
$ mpiexec -n 4 python check_mpi4py.py
host00 0
host00 0
host00 0
host00 0

A common problem is that the mpicc used to build mpi4py and mpiexec used to run the script are from different
MPI installations.

Finally, run pytest to check the single-node configuration is ready.:

$ git clone git@github.com:chainer/chainer.git
Cloning into 'chainer'...
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 168242 (delta 1), reused 2 (delta 0), pack-reused 168235
Receiving objects: 100% (168242/168242), 41.15 MiB | 1.65 MiB/s, done.
Resolving deltas: 100% (123696/123696), done.
Checking connectivity... done.
$ cd chainer/
$ pytest tests/chainermn_tests/
......S.S...S.S...S.S...S.S.........SS
----------------------------------------------------------------------
Ran 38 tests in 63.083s

OK (SKIP=10)

1186 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

Check if NCCL is enabled in CuPy

CuPy requires NCCL to be enabled. You can check it with the following command.:

$ python -c 'from cupy.cuda import nccl'

If you get an output like below, NCCL is not enabled in CuPy. Please check the installation guide of CuPy.:

Traceback (most recent call last):

File "<string>", line 1, in <module>

ImportError: cannot import name 'nccl'

Multi-node environment

Check SSH connection and environment variables

To use ChainerMN on multiple hosts, you need to connect to computing hosts, including the one you are currently
logged into, via ssh without password authentication (and preferably without username).:

$ ssh host00 'hostname'
host00 # without hitting the password

$ ssh host01 'hostname'
host01 # without hitting the password

...

You may get a message like this:

The authenticity of host 'host01 (xxx.xxx.xxx.xxx)' can't be established.
ECDSA key fingerprint is SHA256:haGUMcCeC5A8lGh1lpjpwL5dF4xCglZArhhxxxxxxxxx.
Are you sure you want to continue connecting (yes/no)?

This message appears when you log in a host for the first time. Just type yes and the message won’t appear again. You
need to repeat this process on all computing hosts.

Also, you need to pay attention to the environment variables on remote hosts. The MPI runtime connects to the remote
hosts in non-interactive mode, and environment variables may differ from your interactive login sessions.:

$ ssh host00 'env' | grep LD_LIBRARY_PATH
# Check the values and compare it to the local value.

$ ssh host01 'env' | grep LD_LIBRARY_PATH
# Check the values and compare it to the local value.

...

In particular, check the following variables, which are critical to executing MPI programs:

• PATH

• LD_LIBRARY_PATH

• MV2_USE_CUDA (if you use MVAPICH)

• MV2_SMP_USE_CMA (if you use MVAPICH)

7.1. Installation 1187



Chainer Documentation, Release 6.5.0

Besides, you need to make sure the same mpiexec binary is used to run MPI programs.:

$ ssh host00 'which mpiexec'
/usr/local/bin/mpiexec

$ ssh host01 'which mpiexec'
/usr/local/bin/mpiexec

All the commands should give the same mpiexec binary path.

Program files and data

When you run MPI programs, all hosts must have the same Python binary and script files in the same path. First, check
that the python binary and version are identical among hosts. Be careful if you are using pyenv or Anaconda.:

$ ssh host00 'which python; python --version'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

$ ssh host01 'which python'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

...

Also, the script file (and possibly data files) must be in the same path on each host.

$ ls yourscript.py # in the current directory
yourscript.py

$ ssh host00 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

$ ssh host01 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

...

If you are using NFS, everything should be okay. If not, you need to transfer all the necessary files manually.

In particular, when you run the ImageNet example in ChainerMN repository, all data files must be available on all
computing hosts.

hostfile

The next step is to create a hostfile. A hostfile is a list of hosts on which MPI processes run.:

$ vi hostfile
$ cat hostfile
host00
host01
host02
host03

Then, you can run your MPI program using the hostfile. To check if the MPI processes run over multiple hosts, save
the following script to a file and run it via mpiexec:

1188 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

# print_rank.py
import os

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
if i == rank:
print("{} {}".format(os.uname()[1], i))

comm.Barrier()

If you get an output like below, it is working correctly.:

$ mpiexec -n 4 --hostfile hostfile python print_rank.py
host00 0
host01 1
host02 2
host03 3

If you have multiple GPUs, you may want to run multiple processes on each host. You can modify hostfile and specify
the number of processes to run on each host.:

# If you are using Mvapich:
$ cat hostfile
host00:4
host01:4
host02:4
host03:4

# If you are using Open MPI
$ cat hostfile
host00 cpu=4
host01 cpu=4
host02 cpu=4
host03 cpu=4

With this hostfile, try running mpiexec again.:

$ mpiexec -n 8 --hostfile hostfile python print_rank.py
host00 0
host00 1
host00 2
host00 3
host01 4
host01 5
host01 6
host01 7

You will find that the first 4 processes run on host00 and the latter 4 on host01.

You can also specify computing hosts and resource mapping/binding using command line options of mpiexec. Please
refer to the MPI manual for the more advanced use of mpiexec command.

7.1. Installation 1189



Chainer Documentation, Release 6.5.0

If you get runtime error:

If you get the following error messages, please check the specified section of the troubleshooting or installation guide.

[hostxxx:mpi_rank_0][MPIDI_CH3I_SMP_init] CMA is not available. Set MV2_SMP_USE_CMA=0
→˓to disable CMA.
[cli_0]: aborting job:
Fatal error in PMPI_Init_thread:
Other MPI error, error stack:
MPIR_Init_thread(514)....:
MPID_Init(365)...........: channel initialization failed
MPIDI_CH3_Init(404)......:
MPIDI_CH3I_SMP_Init(2132): process_vm_readv: Operation not permitted

===================================================================================
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20327 RUNNING AT hostxxx
= EXIT CODE: 1
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===================================================================================

-> Check the value of MV2_SMP_USE_CMA (see CUDA-Aware MPI and Check SSH connection and environment
variables).

[hostxx:mpi_rank_0][error_sighandler] Caught error: Segmentation fault (signal 11)

===================================================================================
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20643 RUNNING AT hostxx
= EXIT CODE: 11
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===================================================================================
YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation fault (signal 11)
This typically refers to a problem with your application.
Please see the FAQ page for debugging suggestions

-> Check the value of MV2_USE_CUDA (see CUDA-Aware MPI and Check SSH connection and environment vari-
ables)

7.2 Tutorial

7.2.1 Overview

Data Parallelism

ChainerMN employs the data parallel approach for distributed training. In the data parallel approach, each worker has
a model copy, and computes a gradient against a batch. Then, the workers collaborate to update the model using the
gradients of all workers.

1190 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

Training Iterations

What ChainerMN does for distributed training is actually quite simple. Let us look at what we do in each iteration.
The following figure illustrates an iteration of standard training using Chainer (without ChainerMN). It consists of
three steps: forward, backward and optimize.

When using ChainerMN, an additional step all-reduce is inserted after the backward step. In this step, workers commu-
nicate to obtain the averaged gradient over gradients of all workers. Then, the aggregated gradient is used to improve
the model in the optimization step.

MPI

ChainerMN is built on MPI. MPI invokes our training script in the SPMD (single program, multiple data) way.
ChainerMN is designed to create a process on each GPU. For example, let us suppose you have two nodes with

7.2. Tutorial 1191



Chainer Documentation, Release 6.5.0

four GPUs each, and want to run train_imagenet.py. Then, you will invoke eight Python processes running
train_imagenet.py by using mpiexec or mpirun.

7.2.2 Step 1: Communicators and Optimizers

In the following, we explain how to modify your code using Chainer to enable distributed training with ChainerMN.
We take Chainer’s MNIST example and modify it in a step-by-step manner to see the standard way of using Chain-
erMN.

Creating a Communicator

We first need to create a communicator. A communicator is in charge of communication between workers. A commu-
nicator can be created as follows:

comm = chainermn.create_communicator()

Workers in a node have to use different GPUs. For this purpose, intra_rank property of communicators is useful.
Each worker in a node is assigned a unique intra_rank starting from zero. Therefore, it is often convenient to use
the intra_rank-th GPU.

The following line of code is found in the original MNIST example:

chainer.cuda.get_device_from_id(args.gpu).use()

which we modify as follows:

device = comm.intra_rank
chainer.cuda.get_device_from_id(device).use()

Creating a Multi-Node Optimizer

This is the most important step. We need to insert the communication right after backprop and right before optimiza-
tion. In ChainerMN, it is done by creating a multi-node optimizer.

Method create_multi_node_optimizer receives a standard Chainer optimizer, and it returns a new optimizer.
The returned optimizer is called multi-node optimizer. It behaves exactly same as the supplied original standard
optimizer (e.g., you can add hooks such as WeightDecay), except that it communicates model parameters and
gradients properly in a multi-node setting.

The following is the code line found in the original MNIST example:

optimizer = chainer.optimizers.Adam()

To obtain a multi-node optimizer, we modify that part as follows:

optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(), comm)

Run

With the above two changes, your script is ready for distributed training. Invoke your script with mpiexec or mpirun
(see your MPI’s manual for details). The following is an example of executing the training with four processes at
localhost:

1192 Chapter 7. Distributed Deep Learning with ChainerMN

https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist.py


Chainer Documentation, Release 6.5.0

$ mpiexec -n 4 python train_mnist.py

In the non-GPU mode, you may see a warning like shown below, but this message is harmless, and you can ignore it
for now

Warning: using naive communicator because only naive supports CPU-only execution

If you have multiple GPUs on the localhost, 4 for example, you may also want to try:

$ mpiexec -n 4 python train_mnist.py --gpu

Multi-node execution

If you can successfully run the multi-process version of the MNIST example, you are almost ready for multi-node
execution. The simplest way is to specify the --host argument to the mpiexec command. Let’s suppose you have
two GPU-equipped computing nodes: host00 and host01, each of which has 4 GPUs, and so you have 8 GPUs in
total:

$ mpiexec -n 8 -host host00,host01 python train_mnist.py

The script should print similar results to the previous intra-node execution.

Copying datasets

In the MNIST example, the rank 0 process reads the entire portion of the dataset and scatters it to other processes. In
some applications, such as the ImageNet ChainerMN example, however, only the pathes to each data file are scattered
and each process reads the actual data files. In such cases, all datasets must be readable on all computing nodes in the
same location. You don’t need to worry about this if you use NFS (Network File System) or any other similar data
synchronizing system. Otherwise, you need to manually copy data files between nodes using scp or rsync.

If you have trouble

If you have any trouble running the sample programs in your environment, go to the Step-by-Step Troubleshooting
page and follow the steps to check your environment and configuration.

Next Steps

With only the above two changes distributed training is already performed. Thus, the model parameters are updated
by using gradients that are aggregated over all the workers. However, this MNIST example still has a few areas in
need of improvment. In the next page, we will see how to address the following problems:

• Training period is wrong; ‘one epoch’ is not one epoch.

• Evaluation is not parallelized.

• Status outputs to stdout are repeated and annoying.

7.2.3 Step 2: Datasets and Evaluators

Following from the previous step, we continue to explain general steps to modify your code for ChainerMN through
the MNIST example. All of the steps below are optional, although useful for many cases.

7.2. Tutorial 1193



Chainer Documentation, Release 6.5.0

Scattering Datasets

If you want to keep the definition of ‘one epoch’ correct, we need to scatter the dataset to all workers.

For this purpose, ChainerMN provides a method scatter_dataset. It scatters the dataset of worker 0 (i.e., the
worker whose comm.rank is 0) to all workers. The given dataset of other workers are ignored. The dataset is split
into sub datasets of almost equal sizes and scattered to the workers. To create a sub dataset, chainer.datasets.
SubDataset is used.

The following line of code from the original MNIST example loads the dataset:

train, test = chainer.datasets.get_mnist()

We modify it as follows. Only worker 0 loads the dataset, and then it is scattered to all the workers:

if comm.rank == 0:
train, test = chainer.datasets.get_mnist()

else:
train, test = None, None

train = chainermn.scatter_dataset(train, comm)
test = chainermn.scatter_dataset(test, comm)

Creating A Multi-Node Evaluator

This step is also an optional step, but useful when validation is taking a considerable amount of time. In this case, you
can also parallelize the validation by using multi-node evaluators.

Similarly to multi-node optimizers, you can create a multi-node evaluator from a standard evaluator by using method
create_multi_node_evaluator. It behaves exactly the same as the given original evaluator except that it
reports the average of results over all workers.

The following line from the original MNIST example adds an evaluator extension to the trainer::
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))

To create and use a multi-node evaluator, we modify that part as follows:

evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, comm)
trainer.extend(evaluator)

Suppressing Unnecessary Extensions

Some of extensions should be invoked only by one of the workers. For example, if the PrintReport extension is
invoked by all of the workers, many redundant lines will appear in your console. Therefore, it is convenient to register
these extensions only at workers of rank zero as follows:

if comm.rank == 0:
trainer.extend(extensions.DumpGraph('main/loss'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(

['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

trainer.extend(extensions.ProgressBar())

1194 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

7.2.4 Tips and FAQs

Using MultiprocessIterator

If you are using MultiprocessIterator and communication goes through InfiniBand, you would proba-
bly face crashing problems. This is because MultiprocessIterator creates child processes by the fork
system call, which has incompatibilities with the design of MPI and InfiniBand. To cope with this issue, use
multiprocessing.set_start_method to start child processes, with a process explicitly forked right after,
before communicator is created as follows:

multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
p.join()

communicator = chainermn.create_communicator(...)

Either forkserver mode or spawn mode should work. See our ImageNet example script for working sample code
of MultiprocessIterator and forkserver. Unfortunately, multiprocessing.set_start_method
is only available in Python 3.4+.

Using Your Own Evaluator

Method create_multi_node_evaluator can also be used for customized evaluator classes that inherit from
chainer.training.extensions.Evaluator. Specifically, it wraps the evaluate method and returns the
averaged values over all workers. Please also refer to our ImageNet example, where a customized evaluator is used.

Using MPI4py Communicator

ChainerMN is based on MPI4py. For advanced users (e.g., those who want to parallelize preprocessing, create custom
extension, etc.), we encourage you to make use of MPI4py communicators. Let comm be a ChainerMN communicator,
then you can obtain MPI4py communicator by comm.mpi_comm. Please refer to MPI4py API reference.

Using FP16

FP16 (16-bit half precision floating point values) is supported in pure_nccl of a ChainerMN communicator.

MPI process hangs after an unhandled Python exception.

An MPI runtime is expected to kill all of its child processes if one of them exits abnormally or without calling
MPI_Finalize(). However, when a Python program runs on mpi4py, the MPI runtime often fails to detect the process
failure, and the rest of the processes hang infinitely. It is especially problematic when you run your ChainerMN
program on a cloud environment, in which you are charged on time basis.

This tiny program demonstrates the issue (note that it is not specific to ChainerMN).:

# test.py
def func():
import mpi4py.MPI
mpi_comm = mpi4py.MPI.COMM_WORLD
if mpi_comm.rank == 0:
raise ValueError('failure!')

(continues on next page)

7.2. Tutorial 1195

https://www.open-mpi.org/faq/?category=tuning#fork-warning
http://pythonhosted.org/mpi4py/apiref/mpi4py.MPI.Comm-class.html


Chainer Documentation, Release 6.5.0

(continued from previous page)

mpi4py.MPI.COMM_WORLD.Barrier()

if __name__ == '__main__':
func()

# mpiexec -n 2 python test.py

mpi4py offers a solution to force all processes to abort if an uncaught exception occurs..

$ mpiexec -n 2 python -m mpi4py yourscript.py ...

This also works well with ChainerMN. See here for more details.

If you cannot apply the solution (i.e. you don’t have a control of how Python interpreter is invoked), you can inject the
following code snippet into your script file

import sys

# === begin code snippet
_old_hook = sys.excepthook

# Global error handler
def global_except_hook(exctype, value, traceback):

import sys
try:

import mpi4py.MPI

$ mpiexec -n 2 -x CHAINERMN_FORCE_ABORT_ON_EXCEPTION=1 python yourscript.py ...

Alternatively, you can explicitly call chainermn.global_except_hook.add_hook() from your code.:

import chainermn

chainermn.global_except_hook.add_hook()

The handler hooks uncaught exceptions and call MPI_Abort() to ensure that all process are terminated.

You can choose any of these solutions depending on your environment and restrictions.

NOTE: These techniques are effective only for unhandled Python exceptions. If your program crashes due to lower-
level issues such as SIGSEGV, the MPI process may still hang.

7.3 Model Parallel

7.3.1 Overview

Model Parallelism

Even though ChainerMN mainly supports the data parallel approach for distributed training, it also has experimental
APIs for the model parallel approach. The model parallel approach splits a given model into subcomponents loaded
on several processes. This approach is useful in cases where

• large mini-batch or high-resolusion is needed.

• the model is too huge to run on a single process.

1196 Chapter 7. Distributed Deep Learning with ChainerMN

http://mpi4py.readthedocs.io/en/stable/mpi4py.run.html


Chainer Documentation, Release 6.5.0

• the mixture of experts are trained.

Philosophy

ChainerMN takes the following three approaches to realize the model parallelism.

1. Communication as Function

ChainerMN provides several special functions for communications such as chainermn.functions.bcast and
chainermn.functions.alltoall, which wraps raw MPI communications. Users define communications be-
tween processes as Chainer function calls in the model definitions. This enables highly flexible communication pat-
terns. Moreover, parameter updates in backward propagation are automatically invoked through backward defined
in those functions for communications.

2. Synchronous Model Parallel

ChainerMN restricts itself to synchronous SGD. Though the asynchronous counterpart seems to be more compu-
tationally efficient, asynchronous SGD often suffer from the stale gradients problem and results in difficulty while
debugging. ChainerMN’s synchronous communication model makes SGD simpler.

3. Single-Program-Multiple-Data (SPMD)

In principle, ChainerMN supports single-program-multiple-data (SPMD), which means the same program is invoked
and different data are used on each process.

Synchronous model-parallelism suits well with MPI programming style and SPMD model.

7.3. Model Parallel 1197



Chainer Documentation, Release 6.5.0

1198 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

References

• More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

• Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer

• AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks

• Deep Mixture of Experts via Shallow Embedding

• Mesh-TensorFlow: Deep Learning for Supercomputers

• GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

7.3.2 Model Parallel on ChainerMN

Step 1: Communicators

To perform multi-node communications, a communicator is needed. Basic usages are the same with the case of the
data parallel, see Step 1: Communicators and Optimizers:

comm = chainermn.create_communicator()

If you want to define collective communications among limited number of processes later, it is useful to split the
communicator:

subcomm = comm.split(comm.rank % 2, comm.rank)

For further detail about the communicator split, please refer to MPI tutorial.

7.3. Model Parallel 1199

https://papers.nips.cc/paper/4894-more-effective-distributed-ml-via-a-stale-synchronous-parallel-parameter-server.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1705.09786.pdf
https://arxiv.org/pdf/1806.01531.pdf
https://papers.nips.cc/paper/8242-mesh-tensorflow-deep-learning-for-supercomputers.pdf
https://arxiv.org/pdf/1811.06965.pdf
http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/


Chainer Documentation, Release 6.5.0

Step 2: Datasets and Iterators

In model parallel training, all processes belong to at least one of the following dataset input patterns.

1. model inputs come from datasets, and each process takes different mini-batches

2. model inputs come from datasets, and several processes share the same mini-batches

3. model inputs come from other processes

1. scatter_dataset

For the first case, you may use scatter_dataset as is introduced in Step 2: Datasets and Evaluators.

2. multi node iterator

For the second case, iterator need to be modified, where create_multi_node_iterator is useful:

train, test = chainer.datasets.get_mnist()
train_iter = chainermn.iterators.create_multi_node_iterator(

chainer.iterators.SerialIterator(train, batchsize), comm)
test_iter = chainermn.iterators.create_multi_node_iterator(

chainer.iterators.SerialIterator(test, batchsize), comm)

The resulting iterators return the same mini-batches among processes specified by the communicator.

3. empty dataset

For the last case, you may use create_empty_dataset, which returns a dataset with the same number of empty
tuples as the original dataset:

train, test = chainer.datasets.get_mnist()
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

1200 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

This input pattern appears in the subsequent examples such as Example 1: Simple MLP. Note that datasets are required
in Chainer’s updater API. The empty dataset can be used as a dummy dataset.

Step 3: Define Communications

ChainerMN supports most of the MPI communications as Chainer functions, including point-to-point and collective
communications. To know usages of each communication, please refer to API Reference.

Example 1: Point-to-point Communication

This is an example to use point-to-point communications:

def __call__(self, x):
h = f(x)
h = chainermn.functions.send(x, comm, rank=1)
return h

The communication target is specified by rank parameter. Note that the return value of send is often not negligible.
Please refer to Note: Define-by-Run and Model Parallelism.

Example 2: Collective Communication

Here is another example to use collective communications:

def __call__(self, x):
h = f(x)
h = chainermn.functions.allgather(comm, h)
h = F.stack(h, axis=0)
h = F.average(h, axis=0)
return h

This pattern often appears in the averaging ensemble training.

7.3. Model Parallel 1201



Chainer Documentation, Release 6.5.0

Note: Define-by-Run and Model Parallelism

In model-parallel training, a model on each process may become non-connected computational graph. Let’s take a
look at an example.

Naive implementation of a model on process #0 could be:

class Model_0(chainer.Chain):
def __call__(self, x):

# first component
z = f(x)
chainermn.functions.send(z, comm, rank=1)

# second component
z = chainermn.functions.recv(comm, rank=1)
y = h(z)

return y

One may notice that there is no connection between the first and second components of computational graph. As we
rely on defined-by-run framework, we cannot build a backward path from the second component to the first component.
In order to build the backward path, a dummy variable, which we call delegate_variable, is needed.

The variable 𝜑 in the above figure is delegate_variable, which is a return value of send and passed to an
argument of recv:

class Model_0(chainer.Chain):
def __call__(self, x):

# first component

(continues on next page)

1202 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

7.3. Model Parallel 1203



Chainer Documentation, Release 6.5.0

1204 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

(continued from previous page)

z = f(x)
phi = chainermn.functions.send(z, comm, rank=1)

# second component
z = chainermn.functions.recv(comm, rank=1, delegate_variable=phi)
y = h(z)

return y

class Model_1(chainer.Chain):
def __call__(self, _):

z = chainermn.functions.recv(comm, rank=0)
z = g(z)
phi = chainermn.functions.send(z, comm, rank=0)
return phi

Model_1 also need to return a delegate variable 𝜑 to backtrack its computational graph to compute gradients. Thus,
the backward computation is guaranteed. Otherwise, backward computation will cause deadlock.

Note: Delegate Variable and Pseudo Connect

As we just see above, delegate variables must be appropriately handled to avoid potential deadlock. However, there
are still some pathological cases. Let’s consider to send variables twice.

Here, we must guarantee that backward tracking can find two send, but we can only return one delegate variable from
each model. pseudo_connect is a special function to combine one delegate variable to another variable.

7.3. Model Parallel 1205



Chainer Documentation, Release 6.5.0

In the above case, the returned variable 𝜓 from pseudo_connect behaves as if it is 𝜑2, while its backward
backtracks both 𝜑1 and 𝜑2:

class Model_0(chainer.Chain):
def __call__(self, x):

z1, z2 = f(x)
phi1 = chainermn.functions.send(z1, comm, rank=1)
phi2 = chainermn.functions.send(z2, comm, rank=1)
psi = chainermn.functions.pseudo_connect(phi1, phi2)
return psi

class Model_1(chainer.Chain):
def __call__(self, _):

z1 = chainermn.functions.recv(comm, rank=0)
z2 = chainermn.functions.recv(comm, rank=0)
y = g(z1, z2)
return y

7.3.3 Example 1: Simple MLP

Here is the first example of model parallel, a simple MLP separated on two processes.

First, let’s create a ChainerMN communicator:

if args.gpu:
comm = chainermn.create_communicator('hierarchical')

(continues on next page)

1206 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

7.3. Model Parallel 1207



Chainer Documentation, Release 6.5.0

(continued from previous page)

device = comm.intra_rank
else:

comm = chainermn.create_communicator('naive')
device = -1

As we saw in Model Parallel on ChainerMN, one naive implementation would be to use the point-to-point communi-
cation such as send and recv:

class MLP0(chainer.Chain):
def __init__(self, comm, n_out):

super(MLP0SubA, self).__init__(
l1=L.Linear(784, n_out))

def __call__(self, x):
h0 = F.relu(self.l1(x))
phi = chainermn.functions.send(h0, self.comm, rank=1)
# Note: do not forget to pass delegate variable
y = chainermn.functions.recv(self.comm, rank=1, delegate_variable=phi)
return y

class MLP1(chainer.Chain):
def __init__(self, n_units, n_out):

super(MLP1Sub, self).__init__(
l2=L.Linear(None, n_units),
l3=L.Linear(None, n_out))

def __call__(self, _):
h0 = chainermn.functions.recv(self.comm, rank=0)
h1 = F.relu(self.l2(h0))
return chainermn.functions.send(self.l3(h1), self.comm, rank=0)

One should note that

• MLP0: delegate variable is indispensable which is passed from send to recv.

• MLP1: the return value from send must be returned in __call__, which is used to track back the computa-
tional graph.

On each process, different models are trained:

if comm.rank == 0:
model = L.Classifier(MLP0(comm, 100))

elif comm.rank == 1:
model = MLP1(comm, 100, 10)

Since MLP1 receives its inputs from MLP0 over the point-to-point communication, let’s use empty_dataset instead
of the usual dataset:

# Iterate dataset only on worker 0.
train, test = chainer.datasets.get_mnist()
if comm.rank == 1:

train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

Now we can run a model parallel architecture.

There is an alternative API to define the same model without explicitly defining communication paths:

1208 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

class MLP0SubA(chainer.Chain):
def __init__(self, comm, n_out):

super(MLP0SubA, self).__init__(
l1=L.Linear(784, n_out))

def __call__(self, x):
return F.relu(self.l1(x))

class MLP0SubB(chainer.Chain):
def __init__(self, comm):

super(MLP0SubB, self).__init__()

def __call__(self, y):
return y

class MLP0(chainermn.MultiNodeChainList):
# Model on worker 0.
def __init__(self, comm, n_out):

super(MLP0, self).__init__(comm=comm)
self.add_link(MLP0SubA(comm, n_out), rank_in=None, rank_out=1)
self.add_link(MLP0SubB(comm), rank_in=1, rank_out=None)

class MLP1Sub(chainer.Chain):
def __init__(self, n_units, n_out):

super(MLP1Sub, self).__init__(
l2=L.Linear(None, n_units),
l3=L.Linear(None, n_out))

def __call__(self, h0):
h1 = F.relu(self.l2(h0))
return self.l3(h1)

class MLP1(chainermn.MultiNodeChainList):
# Model on worker 1.
def __init__(self, comm, n_units, n_out):

super(MLP1, self).__init__(comm=comm)
self.add_link(MLP1Sub(n_units, n_out), rank_in=0, rank_out=0)

MultiNodeChainList enables to define a multi model architecture, by adding non-connected component with
add_link. Two arguments rank_in and rank_out specifies from which process the added link receives their
inputs, and to which process it sends their outputs.

Although it may seems that there is no necessity to parallelize MLP with this size, it can be useful to train a MLP with
many layers and parameters so that the entire model cannot be loaded on a single GPU. The entire training code is
available here.

7.3.4 Example 2: seq2seq

This example shows how to parallelize models that involves RNN.

Above figure depicts a typical encoder-decoder model, where the model is split up to encoder and decoder, both
running respectively in two processes. When f or g are large models that consume huge memory such as CNN,
model parallelism like this would be useful. In the forward computation, the encoder invokes send function to send
its context vectors, and the decoder invokes recv to receive them. The backward computation must be built by
pseudo_connect. As this communication pattern is very popular in RNNs, MultiNodeNStepRNN is a ready-
made utility link for this pattern. It can replace this complicated communication pattern.

7.3. Model Parallel 1209

https://github.com/chainer/chainer/blob/master/examples/chainermn/mnist/train_mnist_model_parallel.py


Chainer Documentation, Release 6.5.0

1210 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

MultiNodeNStepRNN can be created by create_multi_node_n_step_rnn:

rnn = chainermn.links.create_multi_node_n_step_rnn(
L.NStepLSTM(n_layers, n_units, n_units, 0.1),
comm, rank_in=None, rank_out=1)

where comm is a ChainerMN communicator (see Step 1: Communicators).

The overall model definition can be written as follows:

class Encoder(chainer.Chain):

def __init__(self, comm, n_layers, n_units):
super(Encoder, self).__init__(

# Corresponding decoder LSTM will be invoked on process 1.
mn_encoder=chainermn.links.create_multi_node_n_step_rnn(

L.NStepLSTM(n_layers, n_units, n_units, 0.1),
comm, rank_in=None, rank_out=1

),
)
self.comm = comm
self.n_layers = n_layers
self.n_units = n_units

def __call__(self, *xs):
exs = f(xs)
c, h, _, phi = self.mn_encoder(exs)
return phi

class Decoder(chainer.Chain):

def __init__(self, comm, n_layers, n_units):
super(Decoder, self).__init__(

# Corresponding encoder LSTM will be invoked on process 0.
mn_decoder=chainermn.links.create_multi_node_n_step_rnn(

L.NStepLSTM(n_layers, n_units, n_units, 0.1),
comm, rank_in=0, rank_out=None),

)
self.comm = comm
self.n_layers = n_layers
self.n_units = n_units

def __call__(self, *ys):
c, h, os, _ = self.mn_decoder(ys)
# compute loss (omitted)

An example code with a training script is available here.

7.3.5 Example 3: Channel-wise Parallel Convolution

This is an example to parallelize CNN in channel-wise manner. This parallelization is useful with large batch size, or
with high resolution images.

The basic strategy is

1. to pick channels that each process is responsible for

2. to apply convolution, and

7.3. Model Parallel 1211

https://github.com/chainer/chainer/blob/master/examples/chainermn/seq2seq/seq2seq_mp1.py


Chainer Documentation, Release 6.5.0

3. to use allgather to combine outputs of all channels into a single tensor

on each process. Parallel convolution model implementation could be like this:

class ParallelConvolution2D(chainer.links.Convolution2D):
def __init__(self, comm, in_channels, out_channels, *args, **kwargs):

self.comm = comm
self.in_channels = in_channels
self.out_channels = out_channels
super(ParallelConvolution2D, self).__init__(

self._in_channel_size, self._out_channel_size, *args, **kwargs)

def __call__(self, x):
x = x[:, self._channel_indices, :, :]
y = super(ParallelConvolution2D, self).__call__(x)
ys = chainermn.functions.allgather(self.comm, y)
return F.concat(ys, axis=1)

def _channel_size(self, n_channel):
# Return the size of the corresponding channels.
n_proc = self.comm.size
i_proc = self.comm.rank
return n_channel // n_proc + (1 if i_proc < n_channel % n_proc else 0)

@property
def _in_channel_size(self):

return self._channel_size(self.in_channels)

@property
def _out_channel_size(self):

(continues on next page)

1212 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

(continued from previous page)

return self._channel_size(self.out_channels)

@property
def _channel_indices(self):

# Return the indices of the corresponding channel.
indices = np.arange(self.in_channels)
indices = indices[indices % self.comm.size == 0] + self.comm.rank
return [i for i in indices if i < self.in_channels]

where comm is a ChainerMN communicator (see Step 1: Communicators).

ParallelConvolution2D can simply replace with the original Convolution2D. For the first convolution
layer, all processes must input the same images to the model. MultiNodeIterator distributes the same batches
to all processes every iteration:

if comm.rank != 0:
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

train_iter = chainermn.iterators.create_multi_node_iterator(
chainer.iterators.SerialIterator(train, args.batchsize), comm)

test_iter = chainermn.iterators.create_multi_node_iterator(
chainer.iterators.SerialIterator(test, args.batchsize,

repeat=False, shuffle=False),
comm)

An example code with a training script for VGG16 parallelization is available here.

7.3.6 Example 4: Ensemble

Ensemble is a training technique to obtain better classification performance by combining multiple base classifiers.
Averaging ensemble is one of the simplest examples of ensemble, which takes average of all classifier outputs in the
test phase. Model parallelism and collective communications can effectively help to implement it.

The following wrapper makes model parallel averaging ensemble easier:

class Averaging(chainer.Chain):
def __init__(self, comm, block):

super(Averaging, self).__init__()
self.comm = comm
with self.init_scope():

self.block = block

def __call__(self, x):
y = self.block(x)

if not chainer.config.train:
y = chainermn.functions.allgather(self.comm, y)
y = F.stack(y, axis=0)
y = F.average(y, axis=0)

return y

Then, any links wrapped by Averaging are ready to be parallelized and averaged:

7.3. Model Parallel 1213

https://github.com/chainer/chainer/blob/master/examples/chainermn/parallel_convolution/


Chainer Documentation, Release 6.5.0

class Model(chainer.Chain):
def __init__(self, comm):

super(Model, self).__init__()
self.comm = comm
with self.init_scope():

self.l1 = L.Linear(d0, d1)
self.l2 = L.Linear(d1, d2)
self.l3 = Averaging(self.comm, L.Linear(d2, d3))

def __call__(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
y = F.relu(self.l3(h))
return y

From the perspective of model inputs/outputs, the averaged model is compatible with the original model. Thus, we
only need to replace the last layer with the averaged layer.

In averaging ensemble, each base classifier is trained independently and ensembled in the test phase. This can be
implemented by using MultiNodeIterator only for the test iterator:

# train = (training dataset)
# test = (test dataset)

if comm.rank != 0:
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

(continues on next page)

1214 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

(continued from previous page)

train_iter = chainer.iterators.SerialIterator(train, batchsize)
test_iter = chainermn.iterators.create_multi_node_iterator(

chainer.iterators.SerialIterator(test, batchsize,
repeat=False, shuffle=False),

comm)

7.4 API Reference

7.4.1 Communicators

chainermn.create_communicator(communicator_name=’pure_nccl’, mpi_comm=None, allre-
duce_grad_dtype=None, batched_copy=False)

Create a ChainerMN communicator.

Different communicators provide different approaches of communication, so they have different performance
charasteristics. The default communicator hierarchical is expected to generally perform well on a va-
riety of environments, so one need not to change communicators in most cases. However, choosing proper
communicator may give better performance. The following communicators are available.

Name CPU GPU NCCL Recommended Use Cases
pure_nccl OK Required (>=

v2)
pure_nccl is recommended when NCCL2 is available in
the environment.

hierarchical OK Required Each node has a single NIC or HCA
two_dimensional OK Required Each node has multiple NICs or HCAs
single_node OK Required Single node with multiple GPUs
flat OK N/A
naive OK OK Testing on CPU mode

pure_nccl communicator supports multiple data types, FP32 and FP16, in gradient exchange. The commu-
nication data type is determined based on chainer.global_config.dtype and allreduce_grad_dtype. When allre-
duce_grad_dtype is the default value None, FP32 is used when chainer.global_config.dtype is numpy.float32 and
FP16 otherwise. allreduce_grad_dtype parameter, which is either numpy.float16 or numpy.float32, overwrites
the chainer.global_config.dtype.

The table blow summarizes the data type selection in gradient exchange.

allreduce_grad_dtype
global_config.dtype None numpy.float16 numpy.float32
chainer.mixed16 FP16 FP16 FP32
numpy.float16 FP16 FP16 FP32
numpy.float32 FP32 FP16 FP32

Other communicator, including flat and hierarchical, support only float32 communication, no matter what the
model is. This is due to MPI’s limited support of float16.

Parameters

• communicator_name – The name of communicator (naive, flat, hierarchical,
two_dimensional, pure_nccl, or single_node)

• mpi_comm – MPI4py communicator

7.4. API Reference 1215



Chainer Documentation, Release 6.5.0

• allreduce_grad_dtype – Data type of gradient used in All-Reduce. If None, the
dtype of a model is used.

Returns ChainerMN communicator that implements methods defined in chainermn.
CommunicatorBase

class chainermn.CommunicatorBase
Interface definition of all communicators.

All communicators that have compatible set of methods with this class is supposed to work in ChainerMN’s
parallel computation implementation. The methods are named after MPI functions, such as bcast() came
from MPI_Bcast().

There are two types of methods: one that treats Python objects have _obj suffix. The other has methods without
any suffix and it handles ndarray and arrays filled with scaler values. So the number of methods would be

[send, recv, bcast, gather, allreduce] * [ '_obj', '']

(with single exception alltoall, allreduce_grad, split and bcast_data so far). Also methods are
supposed to be written in this order. All those methods must be implemented in its implementation class, or
otherwise it cannot be instantiated in runtime.

Note: As most implementation of _obj-sufficed methods involves Python object pickling and unpickling,
there is an implicit size limit.

TODO(kuenishi): as of now no implementation class actually has allreduce method.

abstract allgather(x)
A primitive of inter-process all-gather communication.

This method tries to invoke all-gather communication within the communicator. All processes in the
communicator are expected to invoke allgather(). This method relies on mpi4py fast communication
optimized for numpy arrays, as well as send() and recv().

Note that this method can only handle the same shapes of data over all processes, and cannot handle tuple
data.

Parameters x (numpy/cupy array) – Array to be gathered.

Returns Received arrays.

Return type ys (tuple of numpy/cupy array)

abstract allreduce(data)
Allreduce operation among processes

Processes one of several aggregation operations using all data from all processes and returns the result of
the aggregation to all processes.

TODO(kuenishi): add op argument once we find a use case for operations other than ‘SUM’.

Parameters data (ndarray) – the data to aggregate among all nodes.

Returns Sum of all data from all processes.

abstract allreduce_grad(model)
Works as same as allreduce_obj but for Chainer model gradients

Note: this only supports SUM same as allreduce_obj.

1216 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

abstract allreduce_obj(obj)
Apply a reduce operation to all objects and spread the result.

For example of integers and summation, equivalent local code is:

>>> from functools import reduce
>>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
15

The only operation currently supported is summation.

TODO(kuenishi): support other operations such as ‘MAX’, ‘MIN’ and ‘PROD’ with op argument once
we need any of them.

Parameters obj – An arbitrary object to apply reduce operation. Must have corresponding
operation method e.g. __plus__().

Returns The result of the operation applied to all objects.

abstract alltoall(xs)
All-to-all implementation for ndarray

Parameters xs (tuple of numpy/cupy array) –

Returns Received arrays. The length of tuple equals to the communicator size.

Return type ys (tuple of numpy/cupy array)

abstract bcast(data, max_buf_len=None, root=0)
Broadcasts an ndarray from root process to all processes

Parameters

• data (numpy/cupy array) – for root process, the data to broadcast. For non-root
processes, this argument is ignored.

• max_buf_len (int) – Length of send buffer.

• root (int) – the process who has the data to broadcast.

Returns The data sent from root process

Return type ys (numpy/cupy array)

abstract bcast_data(model)
Broadcast Chainer model parameter data

abstract bcast_obj(obj, max_buf_len=None, root=0)
Broadcasts an arbitrary object from root to all non-root processes.

Parameters

• obj – arbitrary object to broadcast to all other non-root processes. Will be ignored at all
non-root processes.

• max_buf_len (int) – max length of the send buffer

• root (int) – rank of the root processes who sends an object

Returns an object sent from the root process.

abstract gather(data, root=0)
Gathers an ndarray from all processes to root process

Parameters

7.4. API Reference 1217

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• data (ndarray, or scaler) – for root process this is ignored. For For non-root
processes, the data to send to root process.

• root (int) – rank of the process who receives the data.

Returns For root process, the ndarray sent from non-root processes. For non-root processes,
what?

abstract gather_obj(obj, root=0)
Gathers arbitrary objects from all non-root processes to root process.

Parameters

• obj – arbtrary object to send to root process. Root process will receive this argument
included in returned list.

• root (int) – rank of the root node who receives all objects.

Returns A list of objects sent from all processes.

TODO(kuenishi): make sure the ordering of objects in the returned list.

property inter_rank
The rank of this node in the cluster.

property inter_size
Number of nodes that participates the cluster.

property intra_rank
Intra rank (process id in the machine) of this process.

property rank
Rank (process id in the cluster) of this process in integer.

abstract recv(source, tag)
Receives an ndarray from source.

To receive the message, sender must send the data.

Parameters

• source (int) – Rank of the source process

• tag (int) – The tag to specifically receive the message

Returns The data sent from source process

abstract recv_obj(source, tag)
Receives an arbitrary Python object from source process with a tag.

Parameters

• source (int) – Rank number of sender process, to selectively receive the object.

• tag – tag to identify the message.

Returns an object sent from the source by send_obj.

abstract send(data, dest, tag)
Sends an ndarray to destination

Receiver must invoke recv() to wait for the message.

Parameters

• data – data to be sent (tuple, list or raw numpy/cupy array)

• dest (int) – Rank of the destination process

1218 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• tag (int) – The tag to identify the message

abstract send_obj(obj, dest, tag)
Sends an arbitrary Python object to destination with a tag.

Parameters

• obj – Arbitrary object to send to receiver.

• dest (int) – Rank number of receiver process (destination).

• tag – tag to identify the message.

property size
Number of processes of the cluster.

abstract split(color, key)
A function anologous to MPI_Comm_Split .

This method splits the inter MPI commnicator and return a wrapped ChainerMN communicator.

Parameters

• color (int) – Index of new group. The process with the same color will be assigned to
the same group.

• key (int) – Control of rank assignment. The process will be assigned a rank in the new
group ordered by the value of key. If you do not care of the rank, you can just simply
specify the original rank.

Returns CommunicatorBase

7.4.2 Optimizers and Evaluators

chainermn.create_multi_node_optimizer(actual_optimizer, communicator, dou-
ble_buffering=False, zero_fill=True)

Create a multi node optimizer from a Chainer optimizer.

Parameters

• actual_optimizer – Chainer optimizer (e.g., chainer.optimizers.Adam).

• communicator – ChainerMN communicator.

• double_buffering – If True, all-reduce and other processing (such as forward and
backward) are overlapped using double buffering. There are cases where accuracy is af-
fected because the gradients of the previous iteration are used for update. This flag is sup-
ported by PureNcclCommunicator only.

• zero_fill – A knob to control whether to fill gradients of initialized and unused Link
(which is None internally) with zero-valued array, because the all gradients must be an array
among processes for performing all-reduce, which might be an array or None after backward
computation. Gradients of uninitialized Link are skipped. If it is False, gradients of unused
Link are just skipped.

Returns The multi node optimizer based on actual_optimizer.

chainermn.create_multi_node_evaluator(actual_evaluator, communicator)
Create a multi node evaluator from a normal evaluator.

Actually this method patches the evaluator to work in multi node environment. This method adds several hidden
attributes starting with _mn_ prefix.

Parameters

7.4. API Reference 1219

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• actual_evaluator – evaluator to be patched (e.g., chainer.training.
extensions.Evaluator)

• communicator – ChainerMN communicator

Returns The multi-node patched actual_evaluator.

Note: After patched, original evaluator does not work correctly in non-MPI environment.

7.4.3 Dataset Utilities

chainermn.scatter_dataset(dataset, comm, root=0, shuffle=False, seed=None,
max_buf_len=268435456)

Scatter the given dataset to the workers in the communicator.

The dataset of worker root (i.e., the worker whose comm.rank is root) is scattered to all workers. The given
dataset of other workers are ignored. The dataset is split to sub datasets of almost equal sizes and scattered to
workers. To create a sub dataset, chainer.datasets.SubDataset is used.

Parameters

• dataset – A dataset (e.g., list, numpy.ndarray, chainer.datasets.
TupleDataset, . . . ).

• comm – ChainerMN communicator or MPI4py communicator.

• shuffle (bool) – If True, the order of examples is shuffled before being scattered.

• root (int) – The root process of the scatter operation.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer being
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

• max_buf_len (int) – Max buffer size to be used at broadcasting binaries. Must not be
larger than 2147483647.

Returns Scattered dataset.

chainermn.datasets.create_empty_dataset(dataset)
Creates an empty dataset for models with no inputs and outputs.

This function generates an empty dataset, i.e., __getitem__() only returns None. Its dataset is compatible
with the original one. Such datasets used for models which do not take any inputs, neither return any outputs.
We expect models, e.g., whose forward() is starting with chainermn.functions.recv() and ending
with chainermn.functions.send().

Parameters dataset – Dataset to convert.

Returns Dataset consists of only patterns in the original one.

Return type TransformDataset

7.4.4 Links

class chainermn.MultiNodeChainList(comm)
Combining multiple non-connected components of computational graph.

1220 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

This class combines each chainer.Chain, which represents one of the non-connected component in com-
puational graph. In __call__(), the returned object of chainer.Chain (which represents pointer) are
passed to the next chainer.Chain, in order to retain the computational graph connected and make backprop
work properly.

Users add each chainer.Chain by add_link() method. Each chain is invoked in forward computation
according to the order they are added, and in backward computation according to the reversed order.

Example (basic usage)

This is a simple example of the model which sends its outputs to rank=1 machine:

import chainer
import chainer.functions as F
import chainermn

class SimpleModelSub(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(SimpleModelSub, self).__init__(

l1=L.Linear(n_in, n_hidden),
l2=L.Linear(n_hidden, n_out))

def __call__(self, x):
h1 = F.relu(self.l1(x))
return self.l2(h1)

class SimpleModel(chainermn.MultiNodeChainList):

def __init__(self, comm, n_in, n_hidden, n_out):
super(SimpleModel, self).__init__(comm)
self.add_link(

SimpleModelSub(n_in, n_hidden, n_out),
rank_in=None,
rank_out=1)

Example (split MLP on 2 processes)

This is the other example of two models interacting each other:

import chainer
import chainer.functions as F
import chainermn

class MLP(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(MLP, self).__init__(

l1=L.Linear(n_in, n_hidden),
l2=L.Linear(n_hidden, n_hidden),
l3=L.Linear(n_hidden, n_out))

def __call__(self, x):

(continues on next page)

7.4. API Reference 1221



Chainer Documentation, Release 6.5.0

(continued from previous page)

h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

class Model0(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(Model0, self).__init__(comm)
self.add_link(

MLP(10000, 5000, 2000),
rank_in=None,
rank_out=1)

self.add_link(
MLP(100, 50, 10),
rank_in=1,
rank_out=None)

class Model1(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(Model1, self).__init__(comm)
self.add_link(MLP(2000, 500, 100), rank_in=0, rank_out=0)

Model0 is expected to be on rank=0, and Model1 is expected to be on rank=1. The first MLP in Model0
will send its outputs to Model1, then MLP in Model1 will receive it and send its outputs to the second MLP in
Model0.

Example (sending tuples)

This is the example for sending a tuple:

import chainer
import chainer.functions as F
import chainermn

class NN0(chainer.Chain):
def __call__(self, x):

y0 = some_calculation_nn0_0(x)
y1 = some_calculation_nn1_1(x)
return y0, y1

class NN1(chainer.Chain):
def __call__(self, y):

y0, y1 = y # unpack tuple from NN0
return some_calculation_nn1(y0, y1)

class Model_on_Process_0(chainermn.MultiNodeChainList):
def __init__(self, comm):

super(Model_on_Process_0, self).__init__(comm=comm)
self.add_link(NN0(), rank_in=None, rank_out=1)

class Model_on_Process_1(chainermn.MultiNodeChainList):
def __init__(self, comm):

(continues on next page)

1222 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

(continued from previous page)

super(Model_on_Process_1, self).__init__(comm=comm)
self.add_link(NN1(), rank_in=0, rank_out=None)

In this example, Model_on_Process_0 sends two elemental tuple (y0, y1) (returned by NN0.
__call__) to Model_on_Process_1, which can be unpacked as shown in NN1.__call__.

Parameters comm (chainermn.communicators._base.CommunicatorBase) – Chain-
erMN communicator.

add_link(link, rank_in=None, rank_out=None)
Register one connected link with its inout rank.

Parameters

• link (chainer.Link) – The link object to be registered.

• rank_in (int, list, or None) – Ranks from which it receives data. If None is
specified, the model does not receive from any machines.

• rank_out (int, list, or None) – Ranks to which it sends data. If None is spec-
ified, the model will not send to any machine.

class chainermn.links.MultiNodeBatchNormalization(size, comm, decay=0.9,
eps=2e-05, dtype=None,
use_gamma=True, use_beta=True,
initial_gamma=None, ini-
tial_beta=None, communica-
tion_backend=’auto’)

Batch normalization layer that can use the whole batch stats.

When using chainer.link.BatchNormalization, batch mean and std are computed independently for the local
batch in each worker. When local batch size is too small, training is unstable due to unreliable batch stats.

In contrast, when using this MultiNodeBatchNormalization, workers communicate to conduct ‘correct’ batch
normalization (e.g., obtaining mean and std for the whole global batch).

This link works only with Chainer >= 2.0.0.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• comm (ChainerMN communicator) – communicator to share the batch stats.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

• use_gamma (bool) – If True, use scaling parameter. Otherwise, use unit(1) which makes
no effect.

• use_beta (bool) – If True, use shifting parameter. Otherwise, use unit(0) which makes
no effect.

• communication_backend (str) – mpi, nccl or auto. It is used to determine com-
munication backend. If auto, use the best communication backend for each communicator.

7.4. API Reference 1223

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

chainermn.links.create_mnbn_model(link, comm, communication_backend=’auto’)
Create a link object with MultiNodeBatchNormalization.

Returns a copy of link, where BatchNormalization is replaced by MultiNodeBatchNormalization.

Parameters

• link – Link object

• comm – ChainerMN communicator

• communication_backend (str) – mpi, nccl or auto. It is used to determine com-
munication backend of MultiNodeBatchNormalization. If auto, use the best communica-
tion backend for each communicator.

Returns Link object where BatchNormalization is replaced by MultiNodeBatchNormalization.

7.4.5 Functions

chainermn.functions.send(x, communicator, rank, tag=0)
Send elements to target process.

This function returns a dummy variable only holding the computational graph. If backward() is invoked by
this dummy variable, it will try to receive gradients from the target process and send them back to the parent
nodes.

Parameters

• x (Variable) – Variable holding a matrix which you would like to send.

• communicator (chainer.communicators.CommunicatorBase) – Chain-
erMN communicator.

• rank (int) – Target process specifier.

• tag (int) – Optional message ID (MPI feature).

Returns A dummy variable with no actual data, only holding the computational graph. Please refer
chainermn.functions.pseudo_connect for detail.

Return type Variable

chainermn.functions.recv(communicator, rank, delegate_variable=None, tag=0,
force_tuple=False)

Receive elements from target process.

This function returns data received from target process. If backward() is invoked, it will try to send gradients
to the target process. The received array will be on the current CUDA device if the corresponding send()
is invoked with arrays on GPU. Please be aware that the current CUDA device is intended one. (https://
docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Note: If you define non-connected computational graph on one process, you have to use
delegate_variable to specify the output of previous computational graph component. Otherwise
backward() does not work well. Please refer chainermn.functions.pseudo_connect for detail.

Parameters

• communicator (chainer.communicators.CommunicatorBase) – Chain-
erMN communicator.

• rank (int) – Target process specifier.

1224 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Chainer Documentation, Release 6.5.0

• delegate_variable (chainer.Variable) – Pointer to the other non-connected
component.

• tag (int) – Optional message ID (MPI feature).

• force_tuple (bool) – If False (the default) a Variable will be returned when the
number of outputs is one. Otherwise, this method returns a tuple even when the number of
outputs is one.

Returns Data received from target process. If backward() is invoked by this variable, it will send
gradients to the target process.

Return type Variable

chainermn.functions.pseudo_connect(delegate_variable, *actual_variables)
Connect independent connected graph component.

This function is implemented to return received arguments directly, except the first delegate_variable.
In backward computation, it returns received gradients directly, adding a zero grad corresponding to
delegate_variable. The detail of delegate_variable is described in the following notes.

Note: In model-parallel framework, models on each process might have many non-connected components.
Here we call a given graph non-connected when multiple inter-process communications are needed for its com-
putation. For example, consider the following example:

class ConnectedGraph(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(ConnectedGraph, self).__init__(comm)
self.add_link(ConnectedGraphSub(), rank_in=3, rank_out=1)

This model receives inputs from rank=3 process and sends its outputs to rank=1 process. The entire graph
can be seen as one connected component ConnectedGraphSub. Please refer the documentation of
MultiNodeChainList for detail.

On the other hand, see the next example:

class NonConnectedGraph(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(NonConnectedGraph, self).__init__(comm)
self.add_link(NonConnectedGraphSubA(), rank_in=3, rank_out=1)
self.add_link(NonConnectedGraphSubB(), rank_in=1, rank_out=2)

This model consists of two components: at first, NonConnectedGraphSubA receives inputs from rank=3
process and sends its outputs to rank=1 process, and then NonConnectedGraphSubB receives inputs from
rank=1 process and sends its outputs to rank=2 process. Here multiple inter-process communications are in-
voked between NonConnectedGraphSubA and NonConnectedGraphSubB, so it is regarded as non-
connected.

Such kind of non-connected models can be problematic in backward computation. Chainer traces back the
computational graph from the output variable, however naive implementation of chainermn.functions.
recv does not take any inputs rather receives inputs by MPI_Recv, where backward path vanishes.

To prevent this, dummy variables what we call delegate_variable are used. In principle, chainermn.
functions.send does not return any outputs because it sends data to the other process by MPI_Send.
However, chainermn.functions.send returns a dummy / empty variable in our implementation, which
is called delegate_variable. This variable does not hold any data, just used for retaining backward
computation path. We can guarantee the backward computation just by putting delegate_variable to

7.4. API Reference 1225

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool


Chainer Documentation, Release 6.5.0

the next chainermn.functions.recv (chainermn.functions.recv has an optional argument to
receive delegate_variable).

Note: In some cases the intermediate graph component returns model outputs. See the next example:

class NonConnectedGraph2(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(NonConnectedGraph2, self).__init__(comm)
self.add_link(NonConnectedGraphSubA(), rank_in=1, rank_out=None)
self.add_link(NonConnectedGraphSubB(), rank_in=None, rank_out=1)

This model first receives inputs from rank=1 process and make model outputs (specified by rank_out=None)
in NonConnectedGraphSubA. Then using model inputs (specified by rank_in=None),
NonConnectedGraphSubB sends its outputs to rank=1 process. Since MultiNodeChainList.
__call__ returns outputs of the last component (in this case, outputs of NonConnectedGraphSubB),
naive implementation cannot output the returned value of NonConnectedGraphSubA as the model outputs.
In this case, pseudo_connect should be used.

pseudo_connect takes two arguments. The first one delegate_variable is what we explained in above
note. In this case, returned value of NonConnectedGraphSubB corresponds to delegate_variable.
The second one actual_variables is “what we want delegate_variable to imitate”. In
NonConnectedGraph2, we obtain returned value of NonConnectedGraphSubB as the model outputs,
but what we actually want is returned value of NonConnectedGraphSubA. At the same time we want to
trace back this resulted variable in backward computation. Using pseudo_connect, we can make a vari-
able whose data is the same as the returned value of NonConnectedGraphSubA, and which traces back
NonConnectedGraphSubB first.

pseudo_connect should also be used in some pathological cases, for example, where multiple
chainermn.functions.send occurs sequentially.

Parameters

• delegate_variable (chainer.Variable) – Pointer to the previous non-connected
graph component.

• actual_variables (tuple of chainer.Variable) – Actual values which
delegate_variable imitate.

Returns A variable with the given values combined with delegating variable.

Return type tuple of chainer.Variable

chainermn.functions.bcast(comm, x, root=0)
Differentiable broadcast communication between workers.

This function invokes broadcast communications among processes specified by the communicator. Backward
will be invoked as well as the ordinary chainer functions, where gradients are gathered to the root process and
summed up.

The received array will be on the current CUDA device if x on the invoking process is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

1226 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

• x (chainer.Variable) – Variable to be sent.

Returns Broadcasted variable.

Return type y (chainer.Variable)

chainermn.functions.gather(comm, x, root=0)
Differentiable gather communication between workers.

This function invokes gather communications among processes specified by the communicator. Backward will
be invoked as well as the ordinary chainer functions, where gradients are scattered from the root process to each
slave.

The received array will be on the current CUDA device if x on the root process is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• x (chainer.Variable) – Variable to be sent.

Returns Gathered variables. None for slaves.

Return type ys (chainer.Variable)

chainermn.functions.scatter(comm, xs, root=0)
Differentiable scatter communication between workers.

This function invokes scatter communications among processes specified by the communicator. Backward will
be invoked as well as the ordinary chainer functions, where gradients are gathered to the root process.

The received array will be on the current CUDA device if xs on the root process is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• xs (list of chainer.Variable) – Variables to be scattered for master process.
None for slave process.

Returns Scattered variable.

Return type y (chainer.Variable)

chainermn.functions.alltoall(comm, xs)
Differentiable all-to-all communication between workers.

This function invokes all-to-all communications among processes specified by the communicator. Backward
will be invoked as well as the ordinary chainer functions, just passing input gradients back. Unlike point-
to-point communication such as chainermn.functions.send and chainermn.functions.recv,
users need not to care about delegate variables, since backward() will not be invoked until all gradients from
output direction arrive. Please refer to chainermn.functions.pseudo_connect about the detail of
delegate variables.

The received array will be on the current CUDA device on the invoking process if xs is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

7.4. API Reference 1227



Chainer Documentation, Release 6.5.0

• xs (list of chainer.Variables) – Variables to send.

Returns Received variables.

Return type ys (list of chainer.Variables)

chainermn.functions.allgather(comm, x)
Differentiable all-gather communication between workers.

This function invokes gather communications among processes specified by the communicator. Backward will
be invoked as well as the ordinary chainer functions, where gradients are reduced to each process.

The received array will be on the current CUDA device on the invoking process if x is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• x (chainer.Variables) – Variables to send.

Returns Received variables.

Return type ys (list of chainer.Variables)

7.4.6 Iterators

chainermn.iterators.create_multi_node_iterator(actual_iterator, communicator,
rank_master=0)

Create a multi node iterator from a Chainer iterator.

This iterator shares the same batches on multiple processes, simply broadcasting batches from master process
to slave processes in each iteration. Master process obtains batches from actual_iterator, which you can
specify any Chainer iterator (e.g. chainer.iterators.SerialIterator).

Here is an example situation. When we train a sequence-to-sequence model, where the encoder and the decoder
is located on two different processes, we want to share the same batches on each process, thus inputs for the
encoder and output teacher signals for the decoder become consistent.

In order to use the multi node iterator, first create the iterator from Chainer iterator and ChainerMN communi-
cator:

iterator = chainermn.iterators.create_multi_node_iterator(
chainer.iterators.SerialIterator(

dataset, batch_size, shuffle=True),
communicator)

Then you can use it as the ordinary Chainer iterator:

updater = chainer.training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater)
trainer.run()

Since this iterator shares batches through network in each iteration, communication might be large. If you
train your model-parallel network on extremely large dataset, you can also consider to use chainermn.
iterators.create_synchronized_iterator.

Current multi node iterator supports numpy.float32 or tuple of numpy.float32 as the data type of the batch
element.

1228 Chapter 7. Distributed Deep Learning with ChainerMN



Chainer Documentation, Release 6.5.0

Note: create_multi_node_iterator and serialize of created iterators must be called at the same
time by master and slaves, unless it falls into deadlock because they synchronize internal states of iterators.

Parameters

• actual_iterator – Chainer iterator (chainer.iterators.SerialIterator
and chainer.iterators.MultiprocessIterator are supported).

• communicator – ChainerMN communicator.

• rank_master – process rank to be master.

Returns The master-slave iterator based on actual_iterator.

chainermn.iterators.create_synchronized_iterator(actual_iterator, communicator)
Create a synchronized iterator from a Chainer iterator.

This iterator shares the same batches on multiple processes, using the same random number generators to main-
tain the order of batch shuffling same.

Here is an example situation. When we train a sequence-to-sequence model, where the encoder and the decoder
is located on two different processes, we want to share the same batches on each process, thus inputs for the
encoder and output teacher signals for the decoder become consistent.

In order to use the synchronized iterator, first create the iterator from Chainer iterator and ChainerMN commu-
nicator:

iterator = chainermn.iterators.create_synchronized_iterator(
chainer.iterators.SerialIterator(

dataset, batch_size, shuffle=True),
communicator)

Then you can use it as the ordinary Chainer iterator:

updater = chainer.training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater)
trainer.run()

The resulting iterator shares the same shuffling order among processes in the specified communicator.

Parameters

• actual_iterator – Chainer iterator (e.g., chainer.iterators.
SerialIterator).

• communicator – ChainerMN communicator.

Returns The synchronized iterator based on actual_iterator.

7.4.7 Trainer extensions

class chainermn.extensions.AllreducePersistent(model, comm)
Chainer extension to averagize persistents over workers.

When called, this extension invokes all-reduce communication among workers to compute averages of persistent
variables in the model. Persistent variables are updated to the averages. Currently, we ignore integer persistent
variables, and only float persistent variables are handled.

7.4. API Reference 1229



Chainer Documentation, Release 6.5.0

This extension is mainly to improve the running mean and variance of BatchNormalization by increasing the
effective number of examples. We do not need to call this frequently; call just before storing or evaluating the
model.

Parameters

• model (chainer.link.Link) – Target link object.

• comm (ChainerMN communicator) – communicator to compute averages.

chainermn.create_multi_node_checkpointer(name, comm, cp_interval=5, gc_interval=5,
path=None)

Create multi-node checkpointer object

Generational snapshot extension to allow fault tolerance; It keeps several old snapshots to rollback synchronized
snapshot at each MPI process. Snapshot files are identified as ‘<name>.<rank>.<iteration>’.

• <name> . . . identifier of the run where snapshot is kept for

• <rank> . . . which process owned the model

• <iteration> . . . number of iteration.

This extension keeps several files for each execution and allows users to resume the whole job at the latest
snapshots of each MPI process, and the iteration where all snapshots agrees.

As this object is a usual Chainer extension, users can just create this object and pass to the trainer as an extension:

checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
trainer.extend(checkpointer, trigger=(25, 'iteration'))

To run recovery at startup, before first iteration, run

checkpointer.maybe_load(trainer, optimizer)

before trainer.run() . If nothing is recovered (i.e. no snapshot found), trainer.updater.
iteration will remain 0 . Otherwise it will have the value of snapshot and the training will resume from
that iteration. optimizer is optional but this will let multi node optimizer avoid initial broadcast when all
snapshot data among nodes are all in sync.

Note: Make sure that checkpointer.maybe_load is called after all extensions with states, such as
ExponentialShift, set to the trainer.

After training finished without errors all those temporary checkpoints will be cleaned up at all nodes.

Another example to use checkpointer without trainer would be:

checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
checkpointer.maybe_load(obj_you_want_to_snap, optimizer)

while True: ## Training loop
...
updater.update()
...
checkpointer.save(obj_you_want_to_snap) # Make a checkpoint

Parameters

• name (str) – unique id of the run

• comm – communicater in ChainerMN

1230 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/stdtypes.html#str


Chainer Documentation, Release 6.5.0

• cp_interval (int) – minimum number of checkpoints to preserve

• gc_interval (int) – interval to collect non-preserved checkpoints

7.4.8 Configurations

Environmental Variables

CHAINERMN_FORCE_ABORT_ON_EXCEPTIONS If this variable is set to a non-empty value, ChainerMN installs a
global hook to Python’s sys.excepthook to call MPI_Abort() when an unhandled exception occurs. See MPI
process hangs after an unhandled Python exception.

ChainerMN issue #236 may also help to understand the problem.

Execution Control

chainermn.global_except_hook.add_hook()
Add a global hook function that captures all unhandled exceptions.

The function calls MPI_Abort() to force all processes abort. It is useful when you run your training script on a
cloud platform.

7.4. API Reference 1231

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://github.com/chainer/chainermn/issues/236


Chainer Documentation, Release 6.5.0

1232 Chapter 7. Distributed Deep Learning with ChainerMN



CHAPTER

EIGHT

API COMPATIBILITY POLICY

This documentation explains the design policy on compatibilities of Chainer APIs. Development team should follow
this policy on deciding to add, extend, and change APIs and their behaviors.

This documentation is written for both users and developers. Users can decide the level of dependencies on Chainer’s
implementations in their codes based on this document. Developers should read through this documentation before
creating pull requests that contain changes on the interface. Note that this documentation may contain ambiguities on
the level of supported compatibilities.

8.1 Versioning and Backward Compatibility

The versioning of Chainer follows the PEP 440 and a part of Semantic versioning. See Contribution Guide for details
of versioning.

The backward compatibility is kept for revision updates and minor updates, which are applied to the stable version.
A major update from the latest release candidate basically keeps the backward compatibility, although it is not
guaranteed. Any pre-releases may break the backward compatibility.

8.2 Breaking the Compatibility

We sometimes need to break the backward compatibility to improve the framework design and to support new kinds
of machine learning methods. Such a change is only made into pre-releases (alpha, beta, and release candidate) and
sometimes into the major update.

A change that breaks the compatibility affects user codes. We try to lower the cost of adapting your code to the newer
version. The following list shows an example of what we can do to reduce the cost (Note: this is not a promise; what
kind of actions we can take depends on the situation).

• When an argument is removed from an existing API, passing the argument to the updated API will emit an error
with a special error message. The error message tells you how to fix your code.

• When a function or a class is removed, we make the current stable version emit a deprecation warning. Note that
the deprecation warning is not printed by default in Python. You have to manually turn on the deprecation
warning by warnings.simplefilter('always', DeprecationWarning).

• When a definition of a link is changed, we try to enable it to deserialize a model dumped with an older version of
Chainer. In most cases, we cannot guarantee that a model serialized with a newer version of Chainer is loadable
by an older version of Chainer.

1233

https://www.python.org/dev/peps/pep-0440/
https://semver.org/


Chainer Documentation, Release 6.5.0

8.3 Experimental APIs

Thanks to many contributors, we have introduced many new features to Chainer.

However, we have sometimes released new features only to later notice that their APIs are not appropriate. In par-
ticular, we sometimes know that the API is likely to be modified in the near future because we do not have enough
knowledge about how well the current design fits to the real usages. The objective of experimental APIs is to declare
that the APIs are likely to be updated in the near future so that users can decide if they can(not) use them.

Any newly added API can be marked as experimental. Any API that is not experimental is called stable in this
document.

Note: Undocumented behaviors are not considered as APIs, so they can be changed at any time (even in a revision
update). The treatment of undocumented behaviors are described in Undocumented behaviors section.

When users use experimental APIs for the first time, warnings are raised once for each experimental API, unless users
explicitly disable the emission of the warnings in advance.

See the documentation of chainer.utils.experimental() to know how developers mark APIs as experi-
mental and how users enable or disable the warnings practically.

Note: It is up to developers if APIs should be annotated as experimental or not. We recommend to make the APIs
experimental if they implement large modules or make a decision from several design choices.

8.4 Supported Backward Compatibility

This section defines backward compatibilities that revision updates must maintain.

8.4.1 Documented Interface

Chainer has the official API documentation. Many applications can be written based on the documented features.
We support backward compatibilities of documented features. In other words, codes only based on the documented
features run correctly with revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes
outside of the documented APIs should have one or more underscores at the prefix of their names.

Note: Although it is not stated as a rule, we also try to keep the compatibility for any interface that looks like a stable
feature. For example, if the name of a symbol (function, class, method, attribute, etc.) is not prefixed by an underscore
and the API is not experimental, the API should be kept over revision updates even if it is not documented.

8.4.2 Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined. Undocumented behaviors are not
guaranteed to be stable between different revision versions.

Even revision updates may contain changes to undefined behaviors. One of the typical examples is a bug fix. Another
example is an improvement on implementation, which may change the internal object structures not shown in the

1234 Chapter 8. API Compatibility Policy



Chainer Documentation, Release 6.5.0

documentation. As a consequence, even revision updates do not support compatibility of pickling, unless the full
layout of pickled objects is clearly documented.

8.4.3 Documentation Error

Compatibility is basically determined based on the documentation, although it sometimes contains errors. It may make
the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the
documentation errors in any updates that may break the compatibility in regard to the documentation.

Note: Developers should not fix the documentation and implementation of the same functionality at the same time
in revision updates as a “bug fix” unless the bug is so critical that no users are expected to be using the old version
correctly.

8.4.4 Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other. It does not break the user codes, except the
codes depend on how the attributes and properties are implemented.

8.4.5 Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values. It does not
break the user codes, except the codes depend on how the methods and callable attributes are implemented.

8.4.6 Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception
is raised in the future revision versions with correct usages that the documentation allows.

On the other hand, warnings may be added at any revision updates for any APIs. It means revision updates do not keep
backward compatibility of warnings.

8.5 Model Format Compatibility

Links and chains serialized by official serializers that Chainer provides are correctly loaded with the future versions.
They might not be correctly loaded with Chainer of the lower versions.

Note: Current serialization APIs do not support versioning. It prevents us from introducing changes in the layout of
objects that support serialization. We are discussing versioning in serialization APIs.

8.6 Installation Compatibility

The installation process is another concern of compatibilities.

Any changes on the set of dependent libraries that force modifications on the existing environments should be done in
pre-releases and major updates. Such changes include following cases:

8.5. Model Format Compatibility 1235



Chainer Documentation, Release 6.5.0

• dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

• adding new mandatory dependencies (e.g. adding h5py to setup_requires)

Note: We sometimes have to narrow the supported versions due to bugs in the specific versions of libraries. In such
a case, we may drop the support of those versions even in revision updates unless a workaround is found for the issue.

1236 Chapter 8. API Compatibility Policy



CHAPTER

NINE

CONTRIBUTION GUIDE

This is a guide for all contributions to Chainer. The development of Chainer is running on the official repository at
GitHub. Anyone that wants to register an issue or to send a pull request should read through this document.

9.1 Classification of Contributions

There are several ways to contribute to Chainer community:

1. Registering an issue

2. Sending a pull request (PR)

3. Sending a question/reply to StackOverflow (with chainer tag) or Chainer User Group

4. Open-sourcing an external example

5. Writing a post about Chainer

This documentation mainly focuses on 1 and 2, though other contributions are also appreciated.

9.2 Development Cycle

This section explains the development process of Chainer. Before contributing to Chainer, it is strongly recommended
that you understand the development cycle.

9.2.1 Versioning

The versioning of Chainer follows PEP 440 and a part of Semantic versioning. The version number consists of three
or four parts: X.Y.Zw where X denotes the major version, Y denotes the minor version, Z denotes the revision
number, and the optional w denotes the prelease suffix. While the major, minor, and revision numbers follow the rule
of semantic versioning, the pre-release suffix follows PEP 440 so that the version string is much friendly with Python
eco-system.

Note that a major update basically does not contain compatibility-breaking changes from the last release can-
didate (RC). This is not a strict rule, though; if there is a critical API bug that we have to fix for the major version, we
may add breaking changes to the major version up.

As for the backward compatibility, see API Compatibility Policy.

1237

https://github.com/chainer/chainer
https://github.com/chainer/chainer
https://stackoverflow.com/
https://groups.google.com/forum/#!forum/chainer
https://www.python.org/dev/peps/pep-0440/
https://semver.org/


Chainer Documentation, Release 6.5.0

9.2.2 Release Cycle

We develop two tracks of versions at the same time. The first one is the track of stable versions, which is a series of
revision updates for the latest major version. The second one is the track of development versions, which is a series
of pre-releases for the upcoming major version.

Consider that X.0.0 is the latest major version and Y.0.0, Z.0.0 are the succeeding major versions. Then, the
timeline of the updates is depicted by the following table.

Date ver X ver Y ver Z
0 weeks X.0.0rc1 – –
4 weeks X.0.0 Y.0.0a1 –
8 weeks X.1.0* Y.0.0b1 –
12 weeks X.2.0* Y.0.0rc1 –
16 weeks – Y.0.0 Z.0.0a1

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of X.0.0rc1. In particular, each revision/minor
release is made four weeks after the previous one of the same major version, and the pre-release of the upcoming major
version is made at the same time. Whether these releases are revision or minor is determined based on the contents of
each update.

Note that there are only three stable releases for the versions X.x.x. During the parallel development of Y.0.0 and
Z.0.0a1, the version Y is treated as an almost-stable version and Z is treated as a development version.

If there is a critical bug found in X.x.x after stopping the development of version X, we may release a hot-fix for this
version at any time.

We create a milestone for each upcoming release at GitHub. The GitHub milestone is basically used for collecting the
issues and PRs resolved in the release.

9.2.3 Git Branches

The master branch is used to develop pre-release versions. It means that alpha, beta, and RC updates are devel-
oped at the master branch. This branch contains the most up-to-date source tree that includes features newly added
after the latest major version.

The stable version is developed at the individual branch named as vN where “N” reflects the version number (we call
it a versioned branch). For example, v3.0.0, v3.0.1, and v3.0.2 will be developed at the v3 branch.

Notes for contributors: When you send a pull request, you basically have to send it to the master branch. If the
change can also be applied to the stable version, a core team member will apply the same change to the stable version
so that the change is also included in the next revision update.

If the change is only applicable to the stable version and not to the master branch, please send it to the versioned
branch. We basically only accept changes to the latest versioned branch (where the stable version is developed) unless
the fix is critical.

If you want to make a new feature of the master branch available in the current stable version, please send a backport
PR to the stable version (the latest vN branch). See the next section for details.

Note: a change that can be applied to both branches should be sent to the master branch. Each release of the stable
version is also merged to the development version so that the change is also reflected to the next major version.

1238 Chapter 9. Contribution Guide



Chainer Documentation, Release 6.5.0

9.2.4 Feature Backport PRs

We basically do not backport any new features of the development version to the stable versions. If you desire
to include the feature to the current stable version and you can work on the backport work, we welcome such a
contribution. In such a case, you have to send a backport PR to the latest vN branch. Note that we do not accept any
feature backport PRs to older versions because we are not running quality assurance workflows (e.g. CI) for
older versions so that we cannot ensure that the PR is correctly ported.

There are some rules on sending a backport PR.

• Start the PR title from the prefix [backport].

• Clarify the original PR number in the PR description (something like “This is a backport of #XXXX”).

• (optional) Write to the PR description the motivation of backporting the feature to the stable version.

Please follow these rules when you create a feature backport PR.

Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are usually
backported by core dev members. It is also appreciated to make such a backport PR by any contributors, though, so
that the overall development proceeds more smoothly!

9.3 Issues and Pull Requests

In this section, we explain how to file issues and send pull requests (PRs).

9.3.1 Issue/PR Labels

Issues and PRs are labeled by the following tags:

• Bug: bug reports (issues) and bug fixes (PRs)

• Enhancement: implementation improvements without breaking the interface

• Feature: feature requests (issues) and their implementations (PRs)

• NoCompat: disrupts backward compatibility

• Test: test fixes and updates

• Document: documentation fixes and improvements

• Example: fixes and improvements on the examples

• Install: fixes installation script

• Contribution-Welcome: issues that we request for contribution (only issues are categorized to this)

• Other: other issues and PRs

Multiple tags might be labeled to one issue/PR. Note that revision releases cannot include PRs in Feature and
NoCompat categories.

9.3.2 How to File an Issue

On registering an issue, write precise explanations on how you want Chainer to be. Bug reports must include necessary
and sufficient conditions to reproduce the bugs. Feature requests must include what you want to do (and why you
want to do, if needed) with Chainer. You can contain your thoughts on how to realize it into the feature requests,
though what part is most important for discussions.

9.3. Issues and Pull Requests 1239



Chainer Documentation, Release 6.5.0

Warning: If you have a question on usages of Chainer, it is highly recommended that you send a post to Stack-
Overflow or Chainer User Group instead of the issue tracker. The issue tracker is not a place to share knowledge
on practices. We may suggest these places and immediately close how-to question issues.

9.3.3 How to Send a Pull Request

If you can write code to fix an issue, we encourage to send a PR.

First of all, before starting to write any code, do not forget to confirm the following points.

• Read through the Coding Guidelines and Unit Testing.

• Check the appropriate branch that you should send the PR following Git Branches. If you do not have any idea
about selecting a branch, please choose the master branch.

In particular, check the branch before writing any code. The current source tree of the chosen branch is the starting
point of your change.

After writing your code (including unit tests and hopefully documentations!), send a PR on GitHub. You have to
write a precise explanation of what and how you fix; it is the first documentation of your code that developers read,
which is a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI for Linux and Mac OS X, and on AppVeyor for Windows.
Your PR needs to pass at least the test for Linux on Travis CI. After the automatic test passes, some of the core
developers will start reviewing your code. Note that this automatic PR test only includes CPU tests.

Note: We are also running continuous integration with GPU tests for the master branch and the versioned branch
of the latest major version. Since this service is currently running on our internal server, we do not use it for automatic
PR tests to keep the server secure.

If you are planning to add a new feature or modify existing APIs, it is recommended that you open an issue and
discuss the design first. The design discussion needs lower cost for the core developers than code review. Following
the consequences of the discussions, you can send a PR that is smoothly reviewed in a shorter time.

Even if your code is not complete, you can send a pull request as a work-in-progress PR by putting the [WIP] prefix
to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join the
discussion about how to proceed the PR. WIP PR is also useful to have discussions based on a concrete code.

9.4 Coding Guidelines

Note: Coding guidelines are updated at v3.0. Those who have contributed to older versions should read the guidelines
again.

We use PEP 8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

You can use autopep8 and flake8 commands to check your code.

In order to avoid confusion from using different tool versions, we pin the versions of those tools. Install them with the
following command (from within the top directory of Chainer repository):

$ pip install -e '.[stylecheck]'

1240 Chapter 9. Contribution Guide

https://stackoverflow.com/
https://stackoverflow.com/
https://groups.google.com/forum/#!forum/chainer
https://travis-ci.org/chainer/chainer/
https://ci.appveyor.com/project/chainer/chainer
https://www.python.org/dev/peps/pep-0008/
https://docs.openstack.org/developer/hacking/


Chainer Documentation, Release 6.5.0

And check your code with:

$ autopep8 path/to/your/code.py
$ flake8 path/to/your/code.py

The autopep8 supports automatically correct Python code to conform to the PEP 8 style guide:

$ autopep8 --in-place path/to/your/code.py

The flake8 command lets you know the part of your code not obeying our style guidelines. Before sending a pull
request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect. It does not check some of the style guidelines. Here is a (not-complete)
list of the rules that flake8 cannot check.

• Relative imports are prohibited. [H304]

• Importing non-module symbols is prohibited.

• Import statements must be organized into three parts: standard libraries, third-party libraries, and internal im-
ports. [H306]

In addition, we restrict the usage of shortcut aliases in any global-scope code. In particular, you cannot use shortcut
aliases to designate a parent class in global-scope class definitions. When you want to make a class inheriting another
class defined in another module, you have to spell out the full module name instead of importing a module that provides
an alias.

For example, the following code is not allowed.

import chainer

class MyLink(chainer.Link): ...

Instead, import chainer.link and use that.

import chainer.link

class MyLink(chainer.link.Link): ...

If you feel the code too verbose, you can also use from import or import as.

from chainer import link

class MyLink(link.Link): ...

Note: From v3.0, we allow shortcut aliases used inside of functions and methods that are not called from any global
scope code. For example, you can write chainer.Variable instead of chainer.variable.Variable
inside of functions and methods. Use of such aliases is prohibited in the past for avoiding confusing errors related to
cyclic dependencies; we relaxed the rule so that the library code looks similar to user code.

When you use such shortcut aliases, please be careful with cyclic imports. One of the typical pitfalls is a way to
import chainer.functions. An import like import chainer.functions as F within modules under
chainer.functions does not work. An import like from chainer import functions works well with
Python 3, but does not with Python 2. We recommend that you use import chainer.functions and spell out
like chainer.functions.foo in your methods.

Once you send a pull request, your coding style is automatically checked by Travis-CI. The reviewing process starts
after the check passes.

9.4. Coding Guidelines 1241

https://travis-ci.org/chainer/chainer/


Chainer Documentation, Release 6.5.0

9.5 Unit Testing

Testing is one of the most important part of your code. You must write test cases and verify your implementation by
following our testing guide.

Note that we are using pytest and mock package for testing, so install them before writing your code:

$ pip install pytest mock

9.5.1 How to Run Tests

You can run unit tests simply by running python -m pytest command at the repository root:

$ python -m pytest

or specify the test script that you want to run:

$ python -m pytest path/to/your/test.py

You can also run all unit tests under a specified directory:

$ python -m pytest tests/chainer_tests/<directory name>

It requires CUDA and cuDNN by default. In order to run unit tests that do not require CUDA and cuDNN, use
CHAINER_TEST_GPU_LIMIT=0 environment variable and -m='not cudnn' option:

$ export CHAINER_TEST_GPU_LIMIT=0
$ python -m pytest path/to/your/test.py -m='not cudnn'

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify
the number of available GPUs to CHAINER_TEST_GPU_LIMIT. For example, if you have only one GPU, launch
pytest by the following command to skip multi-GPU tests:

$ export CHAINER_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py

Some tests spend too much time. If you want to skip such tests, pass -m='not slow' option to the command:

$ python -m pytest path/to/your/test.py -m='not slow'

If you modify the code related to existing unit tests, you must run appropriate commands and confirm that the tests
pass.

9.5.2 Test File and Directory Naming Conventions

Tests are put into the tests/chainer_tests directory. In order to enable test runner to find test scripts correctly, we are
using special naming convention for the test subdirectories and the test scripts.

• The name of each subdirectory of tests must end with the _tests suffix.

• The name of each test script must start with the test_ prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence
to the tested module is clear. For example, if you want to write a test for a module chainer.x.y.z, the test script
must be located at tests/chainer_tests/x_tests/y_tests/test_z.py.

1242 Chapter 9. Contribution Guide

https://github.com/chainer/chainer/tree/v6.5.0/tests/chainer_tests


Chainer Documentation, Release 6.5.0

9.5.3 How to Write Tests

There are many examples of unit tests under the tests directory, so reading some of them is a good and recommended
way to learn how to write tests for Chainer. They simply use the unittest package of the standard library, while
some tests are using utilities from chainer.testing.

In addition to the Coding Guidelines mentioned above, the following rules are applied to the test code:

• All test classes must inherit from unittest.TestCase.

• Use unittest features to write tests, except for the following cases:

– Use assert statement instead of self.assert* methods (e.g., write assert x == 1 instead of
self.assertEqual(x, 1)).

– Use with pytest.raises(...): instead of with self.assertRaises(...):.

Note: We are incrementally applying the above style. Some existing tests may be using the old style (self.
assertRaises, etc.), but all newly written tests should follow the above style.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability. Test functions that
require CUDA must be tagged by chainer.testing.attr.gpu decorator:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.gpu
def test_my_gpu_func(self):

...

The functions tagged by the gpu decorator are skipped if CHAINER_TEST_GPU_LIMIT=0 environment variable is
set. We also have the chainer.testing.attr.cudnn decorator to let pytest know that the test depends on
cuDNN. The test functions decorated by cudnn are skipped if -m='not cudnn' is given.

The test functions decorated by gpu must not depend on multiple GPUs. In order to write tests for multiple GPUs,
use chainer.testing.attr.multi_gpu() decorator instead:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.multi_gpu(2) # specify the number of required GPUs here
def test_my_two_gpu_func(self):

...

If your test requires too much time, add chainer.testing.attr.slow decorator. The test functions decorated
by slow are skipped if -m='not slow' is given:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

(continues on next page)

9.5. Unit Testing 1243

https://github.com/chainer/chainer/tree/v6.5.0/tests
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#module-unittest


Chainer Documentation, Release 6.5.0

(continued from previous page)

@attr.slow
def test_my_slow_func(self):

...

Note: If you want to specify more than two attributes, use and operator like -m='not cudnn and not slow'.
See detail in the documentation of pytest.

Once you send a pull request, your code is automatically tested by Travis-CI except for tests annotated with ‘‘gpu‘‘,
‘‘multi_gpu‘‘ and ‘‘slow‘‘. Since Travis-CI does not support CUDA, we cannot check your CUDA-related code
automatically. The reviewing process starts after the test passes. Note that reviewers will test your code without the
option to check CUDA-related code.

Note: Some of numerically unstable tests might cause errors irrelevant to your changes. In such a case, we ignore the
failures and go on to the review process, so do not worry about it!

9.6 Documentation

When adding a new feature to the framework, you also need to document it in the reference. For example, if you are
adding a new function under chainer.functions, you need to add it to the Functions page.

Note: If you are unsure about how to fix the documentation, you can submit a pull request without doing so.
Reviewers will help you fix the documentation appropriately.

The documentation source is stored under docs directory and written in reStructuredText format.

To build the documentation, you need to install Sphinx:

$ pip install sphinx sphinx_rtd_theme

Note: Docstrings (documentation comments in the source code) are collected from the installed Chainer module. If
you have edited docstrings in checked-out source files and want to see those changes reflected in the generated html,
Chainer must be installed in develop mode to see those changes reflected in the generated documentation. To do this
use pip install -e . from the the top of the Chainer directory.

Then you can build the documentation in HTML format locally:

$ cd docs
$ make html

HTML files are generated under build/html directory. Open index.html with the browser and see if it is
rendered as expected.

1244 Chapter 9. Contribution Guide

https://docs.pytest.org/en/latest/example/markers.html
https://travis-ci.org/chainer/chainer/
https://github.com/chainer/chainer/tree/master/docs
http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
http://www.sphinx-doc.org/


CHAPTER

TEN

TIPS AND FAQS

10.1 It takes too long time to compile a computational graph. Can I
skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels. CuPy compiles kernels on demand to make
kernels optimized to the number of dimensions and element types of input arguments. Pre-compilation is not available,
because we have to compile an exponential number of kernels to support all CuPy functionalities. This restriction is
unavoidable because Python cannot call CUDA/C++ template functions in generic way. Note that every framework
using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as
cutorch) and Chainer is whether a kernel is compiled at installation or at the first use.

These compilations should run only at the first use of the kernels. The compiled binaries are cached to the $(HOME)/
.cupy/kernel_cache directory by default. If you see that compilations run every time you run the same script,
then the caching is failed. Please check that the directory is kept as is between multiple executions of the script. If your
home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel caching directory
by setting the CUPY_CACHE_DIR environment variable to an appropriate path. See CuPy Overview for more details.

10.2 MNIST example does not converge in CPU mode on Mac OS X

Note: Mac OS X is not an officially supported OS.

Many users have reported that MNIST example does not work correctly when using vecLib as NumPy backend on
Mac OS X. vecLib is the default BLAS library installed on Mac OS X.

We recommend using other BLAS libraries such as OpenBLAS.

To use an alternative BLAS library, it is necessary to reinstall NumPy. Here are instructions to install NumPy with
OpenBLAS using Conda.

$ conda install -c conda-forge numpy

Otherwise, to install NumPy without Conda, you may need to install NumPy from source.

Use Homebrew to install OpenBLAS.

$ brew install openblas

Uninstall existing NumPy installation

1245

https://docs-cupy.chainer.org/en/stable/overview.html
http://www.openblas.net/
https://conda.io/docs/user-guide/install/index.html
https://brew.sh/


Chainer Documentation, Release 6.5.0

$ pip uninstall numpy

You’ll to create a file called .numpy-site.cfg in your home (~/) directory with the following:

[openblas]
libraries = openblas
library_dirs = /usr/local/opt/openblas/lib
include_dirs = /usr/local/opt/openblas/include

Install NumPy from the source code

pip install --no-binary :all: numpy

Confirm NumPy has been installed with OpenBLAS by running this command:

$ python -c "import numpy; print(numpy.show_config())"

You should see the following information:

blas_mkl_info:
NOT AVAILABLE

blis_info:
NOT AVAILABLE

openblas_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = c
define_macros = [('HAVE_CBLAS', None)]
runtime_library_dirs = ['/usr/local/opt/openblas/lib']

...

Once this is done, you should be able to import chainer without OpenBLAS errors.

For details of this problem, see issue #704.

10.3 How do I fix InvalidType error?

Chainer raises an InvalidType exception when invalid inputs are given to Functions. If you got InvalidType,
generally you need to check if dtype and/or shape of inputs are valid for the function.

Here are some examples of InvalidType errors:

import chainer.functions as F
import numpy as np

x = np.arange(10) - 5
F.relu(x)

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: ReLU (Forward)

Expect: in_types[0].dtype.kind == f
Actual: i != f

1246 Chapter 10. Tips and FAQs

https://github.com/chainer/chainer/issues/704


Chainer Documentation, Release 6.5.0

In this case, kind of in_types[0] (which means the first input to the function, x) is expected to be f (floating-
point), whereas the input was i (signed integer). You need to cast the input appropriately before passing to the function
(e.g., x.astype(np.float32)).

import chainer.functions as F
import numpy as np

x = np.ones((4, 4))
y = np.ones((3, 3))
F.concat([x, y])

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Concat (Forward)

Expect: in_types[0].shape[0] == in_types[1].shape[0]
Actual: 4 != 3

In this case, the function expects that x.shape[0] is equal to y.shape[0], but actually it was 4 and 3, respec-
tively.

See Type Checks for the detailed behavior of type checking system in Chainer.

10.4 How do I accelerate my model using Chainer Backend for Intel
Architecture?

Follow these steps to utilize Chainer Backend for Intel Architecture in your model.

10.4.1 Install Chainer Backend for Intel Architecture

The following environments are recommended by Chainer Backend for Intel Architecture.

• Ubuntu 14.04 / 16.04 LTS (64-bit) and CentOS 7 (64-bit)

• Python 2.7.6+, 3.5.2+, and 3.6.0+

On recommended systems, you can install Chainer Backend for Intel Architecture wheel (binary distribution) by:

$ pip install 'ideep4py<2.1'

Note: ideep4py v1.0.x is incompatible with v2.0.x, and is not supported in Chainer v5.0 or later.

10.4.2 Enable Chainer Backend for Intel Architecture Configuration

Currently Chainer Backend for Intel Architecture is disabled by default because it is an experimental feature. You need
to manually enable it by changing chainer.config.use_ideep configuration to 'auto'. See Configuring
Chainer for details.

The easiest way to change the configuration is to set environment variable as follows:

10.4. How do I accelerate my model using Chainer Backend for Intel Architecture? 1247

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.kind.html#numpy.dtype.kind
https://github.com/intel/ideep


Chainer Documentation, Release 6.5.0

export CHAINER_USE_IDEEP="auto"

You can also use chainer.using_config() to change the configuration.

x = np.ones((3, 3), dtype='f')
with chainer.using_config('use_ideep', 'auto'):

y = chainer.functions.relu(x)
print(type(y.data))

<class 'ideep4py.mdarray'>

10.4.3 Convert Your Model to Chainer Backend for Intel Architecture

You need to call model.to_intel64() (in the same way you call model.to_gpu() to transfer your link to
GPU) to convert the link to Chainer Backend for Intel Architecture.

10.4.4 Run Your Model

Now your model is accelerated by Chainer Backend for Intel Architecture!

Please note that not all functions and optimizers support Chainer Backend for Intel Architecture acceleration. Also
note that Chainer Backend for Intel Architecture will not be used depending on the shape and data type of the input
data.

10.5 My training process gets stuck when using MultiprocessIterator

When you are using OpenCV somewhere in your code and the MultiprocessIterator is used in the training
code, the training loop may get stuck at some point. In such situation, there are several workarounds to prevent the
process got stuck.

1. Set the environment variable as follows: OMP_NUM_THREADS=1

2. Add cv2.setNumThreads(0) right after import cv2 in your training script.

3. Use MultithreadIterator instead of MultiprocessIterator.

This problem is originally reported here: A training loop got stuck in a certain condition with multi-processing updater
and opencv for Chainer and the discussion on related problems is still going here: OpenCV + Python multiprocessing
breaks on OSX.

1248 Chapter 10. Tips and FAQs

https://github.com/chainer/chainer/issues/2903
https://github.com/chainer/chainer/issues/2903
https://github.com/opencv/opencv/issues/5150
https://github.com/opencv/opencv/issues/5150


CHAPTER

ELEVEN

PERFORMANCE BEST PRACTICES

This guide explains some tips and advice for maximizing the performance of Chainer.

11.1 Use the Latest Version

It is generally recommended that you use the latest version of Chainer and its dependent libraries (CUDA, cuDNN,
iDeep, etc.). Some of the new features and performance optimizations introduced in newer versions of dependent
libraries may not be available in older versions of Chainer. Also, Chainer itself is incrementally being improved to
provide better performance.

If you are using Chainer v4 or later, you can check the version configuration by:

chainer.print_runtime_info()

Chainer: 4.0.0
NumPy: 1.14.3
CuPy:

CuPy Version : 4.0.0
CUDA Root : /usr/local/cuda
CUDA Build Version : 9000
CUDA Driver Version : 9000
CUDA Runtime Version : 9000
cuDNN Build Version : 7100
cuDNN Version : 7100
NCCL Build Version : 2102

Generally, the Chainer team is maintaining the API between minor updates (e.g., v4.0 to v4.1) so that users can upgrade
Chainer without modifying their code (see API Compatibility Policy for our policy). As for major updates, please refer
to the Upgrade Guide to understand what should be done for migration.

11.2 Enable Hardware Accelerations

11.2.1 Using GPU

In most cases, running on GPU will give you better performance than on CPU. When using GPU, also make sure to
install cuDNN, which is a library to accelerate deep neural network computations.

Note: You don’t have to manually install cuDNN if you are using CuPy wheels, which includes the latest version of
cuDNN. Check the output of chainer.print_runtime_info(); if you see the cuDNN version number, it is

1249

https://docs-cupy.chainer.org/en/latest/install.html#install-cupy-from-source


Chainer Documentation, Release 6.5.0

installed properly and will be used by Chainer automatically.

Note: If you wish, you can manually disable use of cuDNN using chainer.config.use_cudnn configuration
option. See Configuring Chainer for details.

11.2.2 Using CPU

If you are running Chainer on CPU, you can use iDeep to utilize vector instructions of CPU. See Tips and FAQs for
steps to run your model with iDeep.

You can also improve performance by building NumPy linked to Intel MKL. See Numpy/Scipy with Intel® MKL and
Intel® Compilers for the detailed instructions.

Note: If you installed numpy package using Anaconda, you may already have MKL-linked NumPy. Check the output
of numpy.show_config() to see what linear algebra library is linked.

Note: Use of iDeep and MKL-linked NumPy are orthogonal. You can use both of them at once to maximize the
performance.

11.3 Migrate Data Preprocessing Code from NumPy to CuPy

If you are preprocessing your dataset or running data augmentation using NumPy, you may be able to use CuPy as a
substitution to improve performance.

Note: It is not always efficient to use CuPy instead of NumPy, especially when the computation is not very heavy, or
it cannot be done in batch.

11.4 Avoid Data Transfer

If you are using GPU, be aware of data transfer between CPU and GPU. For example, printing chainer.
Variable on GPU (e.g., for debugging) will cause memory transfer from GPU to CPU, which will incur syn-
chronization overhead.

You can use NVIDIA Visual Profiler to diagnose this kind of issue.

11.5 Optimize cuDNN Convolution

11.5.1 Workspace Size

Some convolution algorithms in cuDNN use additional GPU memory as a temporary buffer. This is called
“workspace,” and users can adjust the upper limit of its size. By increasing the limit of workspace size, cuDNN
may be able to use better (i.e., memory consuming but faster) algorithm.

1250 Chapter 11. Performance Best Practices

https://github.com/intel/ideep
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl
https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl
https://anaconda.org/anaconda/numpy
https://docs.nvidia.com/cuda/profiler-users-guide/


Chainer Documentation, Release 6.5.0

The default size (in bytes) is:

>>> chainer.backends.cuda.get_max_workspace_size()
8388608

and can be adjusted using chainer.backends.cuda.set_max_workspace_size().

Maximum required workspace size may vary depending on various conditions such as GPU hardware and batch size
of inputs.

11.5.2 Auto-Tuner

Some convolution algorithms in cuDNN support the auto-tuner feature that finds the fastest convolution algorithm for
given inputs. You can turn on this feature by setting autotune configuration to True.

See Configuring Chainer for detailed descriptions.

Note: Auto-tuner tries to find the best algorithm for every first observation of the input shape combination. Therefore,
the first batch will become slower when auto-tuner is enabled. The result of auto-tuner is cached on memory so that
it can be reused for data with the same input shape combination. In other words, algorithm selected in the first batch
will be reused for the second and later batches, as long as the input shape combination is the same.

If you set autotune configuration to False, the default convolution algorithm will always be selected, regardless
of the previous auto-tuner results.

Note: Auto-tuner always use the maximum workspace size.

11.6 Fine-Tune Configuration

There are some Chainer configuration values that affect performance. Although the default values work well in most
cases, you can adjust the following configurations for better performance.

• enable_backprop

If you are running your model for inference (i.e., you don’t have to use back propagation because you are
not training the model), you can set this configuration to False to improve performance and reduce memory
consumption.

• type_check

By default, Chainer checks the integrity between input data and functions. This makes possible to display
friendly message when, for example, data with invalid dtype or shape is given to a function. By setting this
configuration to False, you can let Chainer skip such check to improve performance. It is recommended that
you turn off the check only for well-tested code and input data.

See Configuring Chainer for detailed descriptions.

11.7 Load Datasets Concurrently

If loading process of your dataset is I/O-bound or CPU-bound, consider using chainer.iterators.
MultithreadIterator or chainer.iterators.MultiprocessIterator to load dataset concurrently

11.6. Fine-Tune Configuration 1251



Chainer Documentation, Release 6.5.0

using multiple threads or processes, instead of chainer.iterators.SerialIterator which works in a sin-
gle thread in a single process.

11.8 Use Multiple GPUs

You can utilize multiple GPUs to make the training process faster.

For data parallelism, you can use chainer.training.updaters.ParallelUpdater or chainer.
training.updaters.MultiprocessParallelUpdater instead of chainer.training.updaters.
StandardUpdater. For model parallelism, you need to manually transfer each chainer.Link in your model
to each device.

See Using GPU(s) in Chainer for the working examples of each case.

11.9 Use Multiple Nodes

You can scale-out the training process of your Chainer model to multiple-node cluster by using ChainerMN module
which enables distributed deep learning.

1252 Chapter 11. Performance Best Practices



CHAPTER

TWELVE

UPGRADE GUIDE

This is a list of changes introduced in each release that users should be aware of when migrating from older versions.
Most changes are carefully designed not to break existing code; however changes that may possibly break them are
highlighted with a box.

12.1 Chainer v6

12.1.1 Dropping Python 3.4

Starting from Chainer v6, Python 3.4 will no longer be supported as it reaches its end-of-life (EOL) and Python 3.5.1
will become the minimum Python 3 version supported by Chainer. Please upgrade the Python version if you are using
Python 3.4 to any version listed under Installation.

12.1.2 CuPy Needs To Be Manually Updated

Prior to Chainer v6, CuPy is automatically updated to the appropriate version when updating Chainer (i.e., pip
install -U chainer updates CuPy package). In Chainer v6, Chainer does not perform this automatic update.
You need to manually update CuPy package when updating Chainer package.

This is because the automatic update made users difficult to switch between CuPy packages (e.g. cupy-cuda90 and
cupy-cuda92 etc). See #5425 for details.

12.1.3 Deprecation Notice on Communicators and Old NCCL versions

Chainer v6 only supports NCCL 2.3 and newer versions. Old NCCL versions are to be deprecated and will be removed
in future versions. As of old NCCL deprecation, several communicators built for them are to be deprecated as well:

• hierarchical

• two_dimensional

• single_node

They will be removed in future versions. Also, default communicator changed to pure_nccl from hierarchical.

12.1.4 CuPy v6

Chainer v6 requires CuPy v6 if you need GPU support. Please see the Upgrade Guide for CuPy v6 for details.

1253

https://github.com/chainer/chainer/pull/5425
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v6


Chainer Documentation, Release 6.5.0

12.2 Chainer v5

12.2.1 ChainerMN Became Part of Chainer

ChainerMN, which enables multi-node distributed deep learning using Chainer, has been merged to Chainer v5.

Prior to Chainer v4, ChainerMN was provided as a separate chainermn package. In Chainer v5, ChainerMN
now became a part of Chainer; ChainerMN will be installed just by installing chainer package. If you are using
chainermn package, make sure to remove it by pip uninstall chainermn before upgrading to Chainer v5
or later.

For documentation of ChainerMN, see Distributed Deep Learning with ChainerMN.

12.2.2 Use forward Instead of __call__ in Links

Prior to Chainer v5, __call__ method is used to define the behavior of Link. In Chainer v5, forward method
has been introduced, and is now recommended that you use it instead of __call__. The base class (Link) provides
__call__ method implementation that invokes forward method defined in the subclass; the only thing you need
to do is to rename the method name (replace def __call__(...) with def forward(...)).

For backward compatibility, you can still use __call__ to define your own link. However, new features introduced
in Chainer v5 (e.g., LinkHook) may not be available for such links.

12.2.3 FunctionNode Classes are Hidden from chainer.functions

Prior to Chainer v5, FunctionNode classes (e.g., chainer.functions.MaxPooling2D) are exposed under
chainer.functions. In Chainer v5, these classes are hidden from chainer.functions. Use the equivalent
wrapper functions listed in Functions (e.g., chainer.functions.max_pooling_2d()) instead.

Some wrapper functions now provide options to access internal states to avoid directly using FunctionNode classes.

• chainer.functions.max_pooling_2d(): return_indices

• chainer.functions.max_pooling_nd(): return_indices

• chainer.functions.dropout(): mask, return_mask

• chainer.functions.gaussian(): eps, return_eps

For example, suppose your existing code needs to access MaxPooling2D.indexes to later perform upsampling:

p = F.MaxPooling2D(2, 2)
h = p.apply((x,))[0]
...
y = F.upsampling_2d(h, p.indexes, ksize=2)

The above code may raise this error in Chainer v5:

AttributeError: module 'chainer.functions' has no attribute 'MaxPooling2D'

You can rewrite the above code using return_indices option of chainer.functions.
max_pooling_2d():

h, indices = F.max_pooling_2d(x, 2, 2, return_indices=True)
...
y = F.upsampling_2d(h, indices, ksize=2)

1254 Chapter 12. Upgrade Guide



Chainer Documentation, Release 6.5.0

12.2.4 Persistent Values are Copied in Link.copyparams

chainer.Link.copyparams() is a method to copy all parameters of the link to another link. This method can
be used, for example, to copy parameters between two chains that partially share the same network structure to reuse
pretrained weights.

Prior to Chainer v5, only parameters are copied between links. In Chainer v5, in addition to parameters, persistent
values (see Serializers – saving and loading for details) are also copied between links. This is especially beneficial
when copying parameters of BatchNormalization, as it uses persistent values to record running statistics.

You can skip copying persistent values by passing newly introduced copy_persistent=False option to
copyparams() so that it behaves as in Chainer v4.

12.2.5 Updaters Automatically Call Optimizer.new_epoch

This change should affect only a minority of users (who call new_epoch() while using a trainer, or who implement
their own Updater class).

Optimizers provide new_epoch() method, which can be used to change the behavior of optimizers depending on
the current epoch number. Prior to Chainer v5, this method was expected to be called by users. In Chainer v5, updaters
have been changed to call new_epoch() automatically. If you have been calling new_epoch() method manually
while using a trainer (or an updater), you may need any of the following fixes:

• Pass auto_new_epoch=False to the constructor of the updater (e.g., StandardUpdater) to stop
new_epoch() from being called automatically by the updater.

• Avoid calling new_epoch() method manually.

If you implement your own Updater class, you may need to update your code to automatically call new_epoch()
(you can refer to the changes introduced in #4608 to understand how to fix your updater).

12.2.6 Extending the Backend Namespace

In addition to chainer.backends, we introduced chainer.backend. This subpackage contains utility func-
tions that span several backends. For instance, it includes chainer.backend.get_array_module() which
used to be defined in chainer.backends.cuda.get_array_module(). Both can be used but the latter will
be deprecated.

12.2.7 get_device_from_array Returns Actual Device for Empty Arrays

Prior to Chainer v5, chainer.backends.cuda.get_device_from_array() returned chainer.
backends.cuda.DummyDeviceType if the array is empty. In Chainer v5, it has been changed to return the
actual cupy.cuda.Device object:

>>> x = cupy.array([])
>>> chainer.backends.cuda.get_device_from_array(x)
<CUDA Device 0>

12.2.8 Update of Docker Images

Chainer official Docker images (see Installation for details) are now updated to use CUDA 9.2 and cuDNN 7.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

12.2. Chainer v5 1255

https://github.com/chainer/chainer/pull/4608
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements


Chainer Documentation, Release 6.5.0

12.2.9 CuPy v5

Chainer v5 requires CuPy v5 if you need GPU support. Please see the Upgrade Guide for CuPy v5 for details.

12.3 Chainer v4

12.3.1 Introduction of Backend Namespace

We introduced chainer.backends subpackage for future support of various backend libraries other than NumPy
and CuPy. By this change, chainer.cuda module is now moved to chainer.backends.cuda.

This does not break the existing code; you can safely continue to use chainer.cuda (e.g., from chainer
import cuda) but it is now encouraged to use from chainer.backends import cuda instead.

12.3.2 Namespace Changes for Updaters

chainer.training.StandardUpdater and chainer.training.ParallelUpdater are now
moved to chainer.training.updaters.StandardUpdater and chainer.training.updaters.
ParallelUpdater respectively, to align with the namespace convention of other subpackages. See the discussion
in #2982 for more details.

This change does not break the existing code; you can safely continue to use updater classes directly under chainer.
training but it is now encouraged to use chainer.training.updaters instead.

12.3.3 Namespace Changes for Optimizer Hooks

Optimizer hook functions are moved from chainer.optimizer.* to chainer.optimizer_hooks.

*. For example, chainer.optimizer.WeightDecay is now located chainer.optimizer_hooks.
WeightDecay .

If the existing code is using hooks directly under chainer.optimizer, DeprecationWarning will be shown.
You are now encouraged to use chainer.optimizer_hooks instead.

12.3.4 Prohibition of Mixed Use of Arrays on Different Devices in Function Argu-
ments

Argument validation of functions is now strictened to check device consistency of argument variables to provide better
error messages to users. Suppose the following code:

v1 = chainer.Variable(np.arange(10, dtype=np.float32)) # CPU
v2 = chainer.Variable(cupy.arange(10, dtype=cupy.float32)) # GPU

# The line below raises an exception, because arguments are on different device.
F.maximum(v1, v2)

Prior to v4, the above code raises an exception like ValueError: object __array__ method not
producing an array, which was difficult to understand. In v4, the error message would become TypeError:
incompatible array types are mixed in the forward input (Maximum). This kind of error
usually occurs by mistake (for example, not performing to_gpu for some variables).

1256 Chapter 12. Upgrade Guide

https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v5
https://github.com/chainer/chainer/pull/2982


Chainer Documentation, Release 6.5.0

Attention: As the argument validation is strictened, call of functions intentionally mixing NumPy/CuPy arrays in
arguments will not work in Chainer v4. Please transfer all arrays to the same device before calling functions.

12.3.5 References to Function Nodes Not Retained in TimerHook and CupyMemo-
ryProfilerHook

To reduce memory consumption, references to the function nodes will no longer be retained in the chainer.
function_hooks.CupyMemoryProfileHook and chainer.function_hooks.TimerHook. See the
discussion in #4300 for more details.

Attention: The existing code using function nodes retained in call_history attribute of these hooks will
not work. The first element of call_history became the name of the function, instead of the function node
instance itself. You can define your own function hook if you need to access the function node instances.

12.3.6 Update of Docker Images

Chainer official Docker images (see Installation for details) are now updated to use CUDA 8.0 and cuDNN 6.0. This
change was introduced because CUDA 7.5 does not support NVIDIA Pascal GPUs.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

12.3.7 CuPy v4

Chainer v4 requires CuPy v4 if you need GPU support. Please see the Upgrade Guide for CuPy v4 for details.

12.4 Chainer v3

12.4.1 Introduction of New-style Functions

This release introduces new-style functions (classes inheriting from FunctionNode) that support double backward
(gradient of gradient). See the Release Note for v3.0.0 for the usage of this feature.

Many of Functions are already migrated to new-style, although some of functions are still old-style (classes inheriting
from Function). We are going to migrate more old-style functions to new-style in upcoming minor releases.

This does not break the existing code. Old-style functions (classes inheriting from Function) are still supported in
v3 and future versions of Chainer.

If you are going to write new functions, it is encouraged to use FunctionNode to support double backward.

Attention: Users relying on undocumented function APIs (directly instantiating old-style classes) may experi-
ence an error like TypeError: 'SomeFunction' object is not callable after upgrading to v3.
Please use the function APIs documented in Functions.

12.4. Chainer v3 1257

https://github.com/chainer/chainer/pull/4300
https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v4
https://github.com/chainer/chainer/releases/tag/v3.0.0


Chainer Documentation, Release 6.5.0

12.4.2 Changed Behavior of matmul Function

The behavior of chainer.functions.matmul() has been changed to behave like the corresponding NumPy
function (numpy.matmul()). See the discussion in #2426 for more details.

Attention: The existing code using chainer.functions.matmul() may require modification to work
with Chainer v3.

Also note that chainer.functions.batch_matmul() is now deprecated by this change. You can rewrite it
using chainer.functions.matmul().

12.4.3 Removed use_cudnn Argument in spatial_transformer_grid and spa-
tial_transformer_sampler Functions

use_cudnn argument has been removed from chainer.functions.spatial_transformer_grid() and
chainer.functions.spatial_transformer_sampler(). See the discussion in #2955 for more details.

Attention: The existing code using use_cudnn argument of chainer.
functions.spatial_transformer_grid() and chainer.functions.
spatial_transformer_sampler() require modification to work with Chainer v3. Please use the
configuration context (e.g., with chainer.using_config('use_cudnn', 'auto'):) to enable or
disable use of cuDNN. See Configuring Chainer for details.

12.4.4 CuPy v2

Chainer v3 requires CuPy v2 if you need GPU support. Please see the Upgrade Guide for CuPy v2 for details.

12.5 Chainer v2

See Upgrade Guide from v1 to v2 for the changes introduced in Chainer v2.

12.5.1 Upgrade Guide from v1 to v2

This documentation provides detailed information of differences between Chainer v1 and v2. You will know by
reading it which part of your code is required (or recommended) to be fixed when you upgrade Chainer from v1 to v2.

• CuPy

– CuPy has been separated from Chainer into a separate package

• Global configurations

– Training mode is configured by a thread-local flag

– Configurations are added and replace some of existing global flags

• Variable

1258 Chapter 12. Upgrade Guide

https://github.com/chainer/chainer/pull/2426
https://github.com/chainer/chainer/pull/2955
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v2


Chainer Documentation, Release 6.5.0

– Volatile flag is removed

– Variable is not a part of a computational graph anymore

– Parameter has to be an instance of Parameter class

– Small changes to Variable

• Function

– The force_tuple option of split_axis is True by default

– Type check APIs are updated to enable lazy building of the error messages

– Methods to release unneeded arrays are added

• Link/Chain/ChainList

– wscale option is removed from links

– bias option is removed from links

– The bias vector is enabled by default in N-dimensional convolution links

– init_weight function is removed

– The order of arguments of GRU is changed

– The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

– The interfaces of GRU and LSTM are aligned

– Aliases of links in chainer.functions are removed

– Parameter link is removed

– New-style parameter registration APIs are added to Link

– New-style child link registration APIs are added to Chain

– The input-size placeholder of links are made optional

• Optimizer

– Deprecated methods of Optimizer are removed

– GradientMethod uses Link.cleargrads instead of Link.zerograds by default

– GradientMethod is redesigned to allow parameter-specific update rules

• Serializer

– None is serializable

• Trainer and Extension

– Updater and Evaluator pass raw data arrays to the loss function

– trigger option is removed from snapshot and snapshot_object

– Extension.invoke_before_training is removed

– The dump_graph extension dumps the valid graph only at its first invocation

• Reporter

– When a variable is reported, the variable is copied with the graph purged

• Other utilities

12.5. Chainer v2 1259



Chainer Documentation, Release 6.5.0

– Some obsolete classes and functions are removed

CuPy

CuPy has been separated from Chainer into a separate package

CuPy, which was originally a part of Chainer, has been separated into a different Python package since Chainer v2. It
changes the way to set up Chainer with CUDA support. In particular, you have to separately install cupy package to
enable CUDA support. See Installation for the recommended installation steps.

Fortunately, there is no need of updating your source code to catch up with this change.

Global configurations

Training mode is configured by a thread-local flag

In Chainer v2, the concept of training mode is added. It is represented by a thread-local flag chainer.config.
train, which is a part of the unified configuration. When chainer.config.train is True, functions of
Chainer run in the training mode, and otherwise they run in the test mode. For example, BatchNormalization
and dropout() behave differently in each mode.

In Chainer v1, such a behavior was configured by the train or test argument of each function. This train/test
argument has been removed in Chainer v2. If your code is using the train or test argument, you have to update
it. In most cases, what you have to do is just removing the train / test argument from any function calls.

Example

Consider the following model definition and the code to call it in test mode written for Chainer v1.

# Chainer v1
import chainer.functions as F

class MyModel(chainer.Link):
...

def __call__(self, x, train=True):
return f(F.dropout(x, train=train))

m = MyModel(...)
y = m(x, train=False)

In Chainer v2, it should be updated into the following code:

# Chainer v2
import chainer.functions as F

class MyModel(chainer.Link):
...

def __call__(self, x):
return f(F.dropout(x))

m = MyModel(...)

(continues on next page)

1260 Chapter 12. Upgrade Guide

https://docs-cupy.chainer.org/en/stable/index.html#module-cupy


Chainer Documentation, Release 6.5.0

(continued from previous page)

with chainer.using_config('train', False):
y = m(x)

Configurations are added and replace some of existing global flags

There are many global settings moved to the unified configuration other than the training mode. Following is the
complete list of the configuration entries that have corresponding features in Chainer v1.

chainer.config.cudnn_deterministic It is corresponding to the deterministic argument of some
convolution functions in Chainer v1. This argument has been removed since Chainer v2. If you are using this
argument, you have to use the chainer.config.cudnn_deterministic flag to change the behavior of
the convolution functions.

chainer.config.debug It is corresponding to the debug mode in Chainer v1, which was configured by
set_debug() and extracted by is_debug(). These functions are also available in Chainer v2, so you
basically do not need to update the code related to the debug mode.

chainer.config.enable_backprop It is corresponding to the backprop mode in Chainer v1. The functions
no_backprop_mode() and force_backprop_mode() are still available in Chainer v2, which auto-
matically turns on/off the enable_backprop flag. One important difference from Chainer v1 is that the
volatile flag is removed from Variable. Therefore, there are more situations that you need to modify
the enable_backprop flag.

chainer.config.keep_graph_on_report This flag configures whether or not to keep the computational
graph alive for a reported variable. In Chainer v2, when a Variable object is reported by report(), a copy
of the variable isolated from the computational graph is created and stored by default. Setting True to this flag,
you can change this behavior and then the original Variable object is stored as is. See When a variable is
reported, the variable is copied with the graph purged for the details.

chainer.config.train It is corresponding to the train or test argument of some functions in Chainer v1.
This argument has been removed since Chainer v2. If you are using this argument, you have to use the
chainer.config.train flag instead. See Training mode is configured by a thread-local flag for more
details.

chainer.config.type_check It is corresponding to the Function.type_check_enable flag. If your
code touches this flag, you have to use chainer.config.type_check instead. Note that the environment
variable CHAINER_TYPE_CHECK is still available in Chainer v2, so if you are only using the environment
variable, there is no need of updating your code.

chainer.config.use_cudnn It is corresponding to the use_cudnn argument of many functions that have
cuDNN implementations. This argument has been removed since Chainer v2. If you are using this argument,
you have to use the chainer.config.use_cudnn flag instead. Note that this flag is ternary, not binary.
See Configuring Chainer for more details.

These configurations can be modified in two ways.

• Simply substituting a new value to an entry, like chainer.config.train = False.

• Using the chainer.using_config context manager. It can be used with the with statement of Python as
follows:

with chainer.using_config('train', False):
do something # this code runs with chainer.config.train == False

It recovers the original configuration after quitting the with block.

12.5. Chainer v2 1261



Chainer Documentation, Release 6.5.0

The chainer.config manages the thread-local configuration. You can also set the global configuration by mod-
ifying chainer.global_config. Note that the global configuration is used only if the entry of the thread-local
configuration is not explicitly set up.

Variable

Volatile flag is removed

The Variable.volatile flag has been removed since Chainer v2.

Instead, the configuration chainer.config.enable_backprop can be used to enable/disable the automatic
differentiation feature. If it is True, Chainer always creates a computational graph on the forward propagation,
which corresponds to passing non-volatile variables in Chainer v1. Otherwise, Chainer does not create a graph, which
corresponds to passing volatile variables in Chainer v1. The biggest difference is that enable_backprop is a
thread-local flag, whereas volatile was a flag local to each Variable object. Note that enable_backprop
flag has already existed in Chainer v1, which took effect only if all the inputs to the function have volatile ==
'auto'.

The chainer.config.enable_backprop flag can be modified directly or by using using_config(). See
Configuring Chainer for details. There is also a convenience function, no_backprop_mode(), to turn off the flag.

If you are using the Variable.volatile flag, you have to stop setting this flag (it will not take effect), and set the
enable_backprop flag instead.

Example

Let model be your model, and consider the following code that calls it in volatile mode.

# Chainer v1
x_data = ... # ndarray
x = chainer.Variable(x_data, volatile=True)
y = model(x)

In Chainer v2, it should be updated as follows.

# Chainer v2
x_data = ... # ndarray
x = chainer.Variable(x_data)
with chainer.no_backprop_mode():

y = model(x)

Variable is not a part of a computational graph anymore

The Variable class has been separated into two distinct classes, the Variable class and the VariableNode
class, since Chainer v2. Every Variable object owns its own VariableNode object. A computational graph
consists of Function objects and VariableNode objects. When one applies a Function to a Variable, the
VariableNode object of the variable is extracted and set to one of the inputs of the function.

Note that the underlying data array of the variable is still held by the Variable object. It allows each Function
implementation to release unneeded arrays from the computational graph, resulting in greatly reduced memory con-
sumption.

1262 Chapter 12. Upgrade Guide



Chainer Documentation, Release 6.5.0

This change does not affect most users’ code. If you are directly traversing the computational graph by yourself or
modifying the graph ad-hoc, you may have to update your code. In most cases, it is enough to just change Variable
into VariableNode in the code traversing the computational graph.

Parameter has to be an instance of Parameter class

Chainer v2 has a subclass of Variable called Parameter. This class has an interface convenient on setting up a
parameter variable registered to Link.

You basically do not need to update your code because Link.add_param() creates a Parameter object in
Chainer v2. There is a new recommended way of registering parameters to a link in Chainer v2, though. See here for
the recommended way of parameter registration.

Small changes to Variable

There are some changes on the interface and specification of methods.

• len(variable) returns the length of the first axis of the underlying array in Chainer v2. This is equivalent
to len(variable.data). It is different from the behavior of Chainer v1, in which len returned the total
number of elements in the underlying array.

• repr(variable) returns a NumPy-like text representation of the underlying array in Chainer v2. In Chainer
v1, it just returns a string that shows the name of the variable.

Function

The force_tuple option of split_axis is True by default

In Chainer v2, the force_tuple argument of functions.split_axis() is set to True by default. Therefore,
it always returns a tuple regardless of the number of sections made after the split. It was False by default in Chainer
v1.

Type check APIs are updated to enable lazy building of the error messages

In Chainer v2, the type check APIs are updated so that the overhead of checking types is greatly reduced. In order to
achieve the overhead reduction, some APIs are changed.

If you have custom Function implementations that do type checking, you have to update your code. The follow-
ing list shows which part has to be updated.

• Use utils.type_check.eval() instead of Expr.eval.

• Use utils.type_check.make_variable() to create a utils.type_check.Variable object in-
stead of directly constructing it by yourself.

• Stop using .name attribute of any expression.

Background of this change: In Chainer v1, the type checking APIs build an abstract syntax tree (AST) based on each
expression that tests some condition. The AST is used to emit a kind error message. However, building an AST
requires constructions of many Python objects, which adds large Python overheads. In Chainer v2, the Function.
type_check_forward() method is called once or twice. At the first call, the type checking APIs run in light-
weight mode, where it does not build an AST and just checks the condition. The second call is made only if there is a
test that fails, where it builds an AST. This change makes the ordinary path of running the type checking much faster,
while keeping the kind error messages.

12.5. Chainer v2 1263



Chainer Documentation, Release 6.5.0

Methods to release unneeded arrays are added

As is written above, Chainer v2 introduced a new mechanism to reduce the memory consumption of each Function
implementation. In many cases, a Function implementation does not need some input arrays in its backward
computation. A new method called Function.retain_inputs() can be used to specify which input arrays are
actually needed. This method must not be called from the outside of Function.forward().

Example

For example, consider the following simple addition function.

class AddFunction(chainer.Function):
def forward(self, inputs):

return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
return grad_outputs[0], grad_outputs[0]

It can be seen that the backward computation of this function does not use any of the inputs. Then, specifying an
empty tuple of indexes to retain_inputs() will reduce the memory overhead.

class AddFunction(chainer.Function):
def forward(self, inputs):

self.retain_inputs(()) # does not retain both inputs
return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
return grad_outputs[0], grad_outputs[0]

In some cases, the function can (or have to) use the output arrays instead of the inputs in its backward computation.
In Chainer v1, we have written code that store the output arrays to attributes of the Function object and reuse them
in the backward() method. In Chainer v2, it is recommended that you use Function.retain_outputs()
to declare which outputs are required in the backward computation. The retained output arrays can be accessed via
Function.output_data.

Note: The existing Function implementations that store the output arrays to its attributes will run correctly in
Chainer v2. There is no any memory overhead right now. It is recommended that you use retain_outputs(),
though, so that we can incorporate more memory optimization in the future.

Example

For example, consider the following simple implementation of the tanh function.

class TanhFunction(chainer.Function):
def forward(self, inputs):

xp = chainer.cuda.get_array_module(inputs[0])
self.y = xp.tanh(inputs[0])
return self.y,

def backward(self, inputs, grad_outputs):
one = self.y.dtype.type(1) # avoid type promotion
return grad_outputs[0] * (one - self.y * self.y),

We can use retain_outputs() instead of preserving the output array by ourselves as follows.

1264 Chapter 12. Upgrade Guide



Chainer Documentation, Release 6.5.0

class TanhFunction(chainer.Function):
def forward(self, inputs):

self.retain_outputs((0,))
xp = chainer.cuda.get_array_module(inputs[0])
return xp.tanh(inputs[0]),

def backward(self, inputs, grad_outputs):
y = self.output_data[0]
one = y.dtype.type(1) # avoid type promotion
return grad_outputs[0] * (one - y * y)

Link/Chain/ChainList

wscale option is removed from links

The wscale option has been removed from links since Chainer v2. If you are using wscale option, you have to
update your code. The recommended way is to explicitly set the initializer.

Example

Consider the case of adding a Linear link with the weight initialized by 0.5x of the default initialization.

# Chainer v1
linear = chainer.links.Linear(10, 5, wscale=0.5)

Note that the default initializer of the weight matrix of Linear is a normal distribution of the standard deviation
1/
√
𝑓𝑎𝑛𝑖𝑛. Therefore, it can be fixed as follows.

# Chainer v2
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.Normal(0.5 / math.
→˓sqrt(10)))

Or, by using the fact that initializers.HeNormal provides the initialization with a normal distribution of the
standard deviation 𝑠𝑐𝑎𝑙𝑒 *

√︀
2/𝑓𝑎𝑛𝑖𝑛, the following code is also equivalent to the original.

# Chainer v2, using HeNormal
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.HeNormal(0.5 /
→˓math.sqrt(2))

bias option is removed from links

In Chainer v2, the bias option is removed from the following links: Linear, Convolution2D,
Deconvolution2D, and DilatedConvolution2D. The effect of this argument was duplicated with the
initial_bias option. Use initial_bias instead.

The bias vector is enabled by default in N-dimensional convolution links

In Chainer v2, the bias parameter is enabled by default in ConvolutionND and DeconvolutionND. It was
unintentionally disabled by default in Chainer v1.

12.5. Chainer v2 1265



Chainer Documentation, Release 6.5.0

If you are using ConvolutionND or DeconvolutionND without specifying the initial_bias argument, you
have to fix your code. If you want to keep the old behavior (i.e., no bias vector is created by the link), pass
nobias=True to the link at the construction. Otherwise it will automatically create a bias vector.

init_weight function is removed

The chainer.initializers.init_weight function that was used on weight initialization has been removed
since Chainer v2.

You have to update your code if you are using init_weight. In most cases, the update is simple: pass an
initializer to Parameter.

Example

Consider the following code that initializes a weight matrix randomly and a bias vector by zero.

# Chainer v1
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__(

W=(10, 5),
b=(5,),

)
chainer.initializers.init_weight(self.W, chainer.initializers.Normal(0.05))
self.b.data.fill(0)

...

This code should be fixed as follows (see the next topic for the use of Parameter).

# Chainer v2
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__()
self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
self.b = chainer.Parameter(0, (5,))

...

The order of arguments of GRU is changed

In Chainer v2, the first two arguments of GRU is the input size and the output size. It was reversed in Chainer v1,
causing an inconsistent interface compared to other links including LSTM . If you are using GRU , you have to update
your code. The update is done by simply flipping the first two arguments.

Example

Consider the following code that creates a GRU link.

# Chainer v1
gru = chainer.links.GRU(20, 10)

It should be fixed into the following code.

1266 Chapter 12. Upgrade Guide



Chainer Documentation, Release 6.5.0

# Chainer v2
gru = chainer.links.GRU(10, 20)

Note that if you were omitting the output size, the code works as is because GRU supports the omitted input size.

# Chainer v1/v2
gru = chainer.links.GRU(20)

The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

In Chainer v2, the default forget bias value of LSTM and StatelessLSTM links is changed to 1. This change is
based on the paper reporting that using a large forget bias improves the training performance. The new behavior is
also consistent with the implementation of BasicLSTMCell in TensorFlow.

It will improve the most use cases of LSTMs, although this change would break the reproducibility of the existing
experiments. If you want to keep the same initialization procedure, you have to update your code. The change is
simple: pass forget_bias_init=0 to LSTM and StatelessLSTM .

The interfaces of GRU and LSTM are aligned

In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with the naming convention of
LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points the stateful
links. If you are using StatelessGRU for stateless version, whose implementation is identical to chainer.
linksGRU in v1.

Aliases of links in chainer.functions are removed

For the compatibility reason, there were some links that have aliases in the chainer.functions module. These
aliases are removed in Chainer v2. Use chainer.links instead.

Parameter link is removed

The chainer.links.Parameter link is removed in Chainer v2. This link existed in Chainer v1 only for the
backward compatibility. Use chainer.Parameter instead (for the new Parameter class, see Parameter has to
be an instance of Parameter class).

New-style parameter registration APIs are added to Link

In Chainer v2, Link.init_scope()method returns a context manager that automatically registers a Parameter
object to the link at setting it to an attribute. If you are using IDE like PyCharm, it is recommended that you use this
new-style parameter registration so that IDEs can easily detect the existence of the parameter as an attribute. It is also
a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering parameters are still valid.

Example

12.5. Chainer v2 1267

http://proceedings.mlr.press/v37/jozefowicz15.pdf
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py#L138


Chainer Documentation, Release 6.5.0

For example, the following link initialization code

# Chainer v1
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__(

W=(10, 5),
b=(5,),

)
chainer.initializers.Normal(0.05)(self.W.data)
self.b.data.fill(0)

...

is recommended to be updated as follows.

# Chainer v2
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
self.b = chainer.Parameter(0, (5,)) # initialize by zero

...

Note: To keep a Parameter object as an attribute without registration, you can set the attribute without using the
with self.init_scope(): block.

New-style child link registration APIs are added to Chain

Like Parameter, a Link object is also automatically registered to a Chain object by substitution to an attribute
within a init_scope() scope. If you are using IDE like PyCharm, it is recommended that you use the new-style
child link registration so that IDEs can easily detect the existence of the child link as an attribute. It is also a good
practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering child links are still valid.

Example

For example, the following chain initialization code

# Chainer v1
class MyMLP(chainer.Chain):

def __init__(self):
super(MyMLP, self).__init__(

layer1=L.Linear(None, 20),
layer2=L.Linear(None, 30),

)
...

is recommended to be updated as follows.

1268 Chapter 12. Upgrade Guide



Chainer Documentation, Release 6.5.0

# Chainer v2
class MyMLP(chainer.Chain):

def __init__(self):
super(MyMLP, self).__init__()
with self.init_scope():

self.layer1 = L.Linear(20)
self.layer2 = L.Linear(30)

Note that this example also demonstrates the use of new APIs with the omitted input size, explained below.

Note: To keep a Link object as an attribute without registration, you can set the attribute without using the with
self.init_scope(): block.

The input-size placeholder of links are made optional

In Chainer v2, the input size of many links, including Linear and Convolution2D, is made optional. In Chainer
v1, we had to use None as the placeholder to specify that the input size should be determined at the first iteration. The
placeholder can also be used in Chainer v2, although it is easier to just omit the input size.

See the previous item for the example of omitting the input size of Linear. The following links currently support
the omitted input size.

• Convolution2D

• Deconvolution2D

• DilatedConvolution2D

• Linear

• LSTM

• MLPConvolution2D

• StatelessLSTM

Optimizer

Deprecated methods of Optimizer are removed

The following methods are removed from Optimizer. These methods have been already deprecated in the past
versions. If you are using these methods, you have to update your code.

• zero_grads: use Link.zerograds() instead.

• compute_grads_norm: you can compute the gradient norm by iterating the list of parameters by Link.
params().

• clip_grads: use GradientClipping instead.

• weight_decay: use WeightDecay instead.

• accumulate_grads: use Link.addgrads() instead.

12.5. Chainer v2 1269



Chainer Documentation, Release 6.5.0

GradientMethod uses Link.cleargrads instead of Link.zerograds by default

In Chainer v2, GradientMethod clears the gradient before running backprop by Link.cleargrads(). It
means that the gradient of each parameter is initialized by None instead of a zero array. Note that all the optimizer
implementations provided by Chainer are subclasses of GradientMethod, and therefore this change affects all of
them.

In most cases, you do not need to update your code. If your code relies on the zeroing initialization, you
have to fix your code to explicitly initialize the gradient by zero, or to pass False to GradientMethod.
use_cleargrads().

GradientMethod is redesigned to allow parameter-specific update rules

In Chainer v2, the new class UpdateRule is used to define an update rule specific to each Parameter object. The
UpdateRule is set to each Parameter object, and is used at each update step. This object implements an update
formula using the data and gradient arrays.

Each UpdateRule object has enabled flag, which configures if the update rule should be applied to that parameter
on update. By setting the flag to False, you can freeze the parameter. There is also a convenient method Link.
enable_update() and Link.disable_update(), which configure the flag of each parameter under the link
hierarchy. In other frameworks, a similar feature is called layer freezing. In Chainer v2, this is officially supported by
these methods.

Each UpdateRule object can also hold its own hook functions similar to Optimizer. The built-in hook functions
except for GradientClipping can also be used as a hook function of UpdateRule.

In most cases, you do not have to update your code because each optimizer automatically sets up an appropriate
UpdaterRule object to each parameter.

If you are using a custom gradient-based optimizer implementation, you need to update the implementation.
The following list shows what you have to do.

• Write a subclass of UpdateRule that implements the update rule.

• Rewrite your GradientMethod implementation. The new implementation only has to set up the update rule
for each parameter in the target link.

You can see live examples in the optimizer implementations provided by Chainer.

Serializer

None is serializable

In Chainer v2, all serializers start supporting None value to be serialized and deserialized. Users’ code can rely on
this feature, i.e., it can serialize and deserialize None value with any given serializer. This change only affects your
code if it provides its own serializer implementations.

Trainer and Extension

Updater and Evaluator pass raw data arrays to the loss function

In Chainer v2, Updater and Evaluator pass raw data arrays to the loss function without wrapping them with
Variable. You might need to update your code so that the loss function (in most cases, the model’s __call__
) accepts raw arrays.

1270 Chapter 12. Upgrade Guide

https://github.com/chainer/chainer/tree/master/chainer/optimizers


Chainer Documentation, Release 6.5.0

Note that raw arrays can be directly passed to any Function; they are automatically wrapped by Variable. For
example, if the input is directly passed to a Function object (or any function under chainer.functions), you
do not need to update the code.

Example

Consider the following code that obtains the shape of the input via Variable.data.

# Chainer v1
class MyLink(chainer.Link):

def __call__(self, x):
shape = x.data.shape # valid if x is Variable, invalid if x is ndarray
...

It should be updated so that the link also accepts a raw array as the input. In this case, we have Variable.shape
which is equivalent to data.shape, so you can simply write as follows.

# Chainer v2
class MyLink(chainer.Link):

def __call__(self, x):
shape = x.shape # valid regardless of x being Variable or ndarray
...

trigger option is removed from snapshot and snapshot_object

In Chainer v2, the trigger option is removed from the snapshot() and snapshot_object() extensions.
The effect of the option was duplicated with the trigger option of Trainer.extend. If you are passing the
trigger argument to these extensions, you have to update your code. The update can be done by passing the
value to the corresponding Trainer.extend.

Example

Assume that trainer is an instance of Trainer, and consider that you were adding a snapshot() extension as
follows.

# Chainer v1
trainer.extend(chainer.training.extensions.snapshot(trigger=(1000, 'iteration')))

It should be updated as follows (note that this code also works with Chainer v1).

# Chainer v1/v2
trainer.extend(chainer.training.extensions.snapshot(), trigger=(1000, 'iteration'))

Extension.invoke_before_training is removed

In Chainer v2, The attribute invoke_before_training of Extension is removed. Instead, the Extension.
initialize method is added. This method is called by Trainer.run before entering the training loop.

In Chainer v1, the extension is just called before entering the training loop when invoke_before_training
is True. If you have a custom extension that has invoke_before_training=True , you have to update
the code. What you have to do is to remove the invoke_before_training flag and override initialize()

12.5. Chainer v2 1271



Chainer Documentation, Release 6.5.0

method. If you are using the make_extension() decorator, you can set the initialize function by passing
the initializer argument to make_extension().

The dump_graph extension dumps the valid graph only at its first invocation

In Chainer v2, the dump_graph() extension dumps the valid computational graph only at its first invocation. If
you want to dump the graph more than once, you have to fix the code. The easiest fix is setting the chainer.
config.keep_graph_on_report flag to True. Note that this fix will cancel the improvement on the memory
consumption made in Chainer v2. More memory-efficient fix is to dump the graph without using an extension, e.g. by
customizing the loss function or the updater.

Here is the background of this change. In Chainer v2, the Reporter copies reported variables with purging the com-
putational graph by default. On the other hand, the dump_graph() extension requires the computational graph
reachable from the reported variable. In order to make the graph available, the dump_graph() extension turns on
the chainer.config.keep_graph_on_report flag at its initializer (i.e., it turns on the graph before entering
the training loop). Since we also wanted to achieve the memory efficiency, the dump_graph() extension turns off
the flag after dumping the graph at its first invocation (strictly speaking, it recovers the original value). As a result,
the computational graph is not available from the second invocation.

Since the dump_graph() recovers the original flag value at its invocation, you can keep the graph dumped more
than once by changing the original flag value.

Reporter

When a variable is reported, the variable is copied with the graph purged

In Chainer v2, when a Variable object is reported using report() function (or directly using Reporter), a
copy of the variable is made without preserving the computational graph. If your code depends on the reachability
of the computational graph from the reported variable, you have to update your code. The easiest way to
update your code is setting chainer.config.keep_graph_on_report to True, then Chainer will keep the
computational graph reachable from the reported variable.

The possible examples that are affected by this change are as follows (not exhaustive).

• A custom extension that runs backprop from a reported variable. It is definitely an example of assuming the
reachability of the computational graph from the reported variable.

• An extension that visualizes the computational graph from a reported variable. If you are writing such an exten-
sion by yourself, you have to turn on the keep_graph_on_report flag. The dump_graph() extension is
another example, for which see the above item for the details.

This change is made for the memory performance reason; with this change, the memory used by the computational
graph for training is immediately released before invoking extensions. Therefore, changing the behavior by over-
writing chainer.config.keep_graph_on_report may increase the memory consumption. It may cause an
out-of-memory error if the computational graph of the loss function consumes almost all the memory available in your
environment and there is an extension that uses a certain amount of memory (e.g. Evaluator).

Other utilities

Some obsolete classes and functions are removed

The following classes and functions are removed in Chainer v2.

• chainer.Flag

1272 Chapter 12. Upgrade Guide



Chainer Documentation, Release 6.5.0

• chainer.FunctionSet (Use Chain or ChainList instead)

• chainer.cuda.init (It did nothing except for calling check_cuda_available())

• chainer.cuda.empty (Use cupy.empty())

• chainer.cuda.empty_like (Use cupy.empty_like())

• chainer.cuda.full (Use cupy.full())

• chainer.cuda.full_like (Use cupy.full_like())

• chainer.cuda.ones (Use cupy.ones())

• chainer.cuda.ones_like (Use cupy.ones_like())

• chainer.cuda.zeros (Use cupy.zeros())

• chainer.cuda.zeros_like (Use cupy.zeros_like())

12.5. Chainer v2 1273

https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.empty.html#cupy.empty
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.empty_like.html#cupy.empty_like
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.full.html#cupy.full
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.full_like.html#cupy.full_like
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ones.html#cupy.ones
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.ones_like.html#cupy.ones_like
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.zeros.html#cupy.zeros
https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.zeros_like.html#cupy.zeros_like


Chainer Documentation, Release 6.5.0

1274 Chapter 12. Upgrade Guide



CHAPTER

THIRTEEN

LICENSE

Copyright (c) 2015 Preferred Infrastructure, Inc.

Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1275



Chainer Documentation, Release 6.5.0

1276 Chapter 13. License



CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• modindex

• search

1277



Chainer Documentation, Release 6.5.0

1278 Chapter 14. Indices and tables



BIBLIOGRAPHY

[LeCun98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11), 2278–2324, 1998.

[Simonyan14] Simonyan, K. and Zisserman, A., Very Deep Convolutional Networks for Large-Scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[He16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition.
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

[Graves2006] Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber, Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

[Graves2012] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks

1279

ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
https://www.cs.toronto.edu/~graves/preprint.pdf


Chainer Documentation, Release 6.5.0

1280 Bibliography



PYTHON MODULE INDEX

c
chainer, 1026
chainer.backend, 1030
chainer.backends.cuda, 1039
chainer.backends.intel64, 1044
chainer.computational_graph, 1066
chainer.dataset, 973
chainer.datasets, 981
chainer.distributions, 776
chainer.exporters, 1077
chainer.function_hooks, 300
chainer.functions, 150
chainer.gradient_check, 1083
chainer.initializers, 892
chainer.iterators, 1009
chainer.link_hooks, 769
chainer.links, 311
chainer.links.caffe, 1077
chainer.optimizers, 843
chainer.serializers, 1019
chainer.testing, 1087
chainer.training, 904
chainer.training.extensions.snapshot_writers,

904
chainer.utils, 1233
chainer.utils.type_check, 1079
chainermn, 1190
chainerx, 1134

1281



Chainer Documentation, Release 6.5.0

1282 Python Module Index



INDEX

Symbols
__abs__() (chainer.Parameter method), 144
__abs__() (chainer.Variable method), 136
__add__() (chainer.Parameter method), 144
__add__() (chainer.Sequential method), 769
__add__() (chainer.Variable method), 136
__add__() (chainer.utils.type_check.Expr method),

1080
__add__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__add__() (chainer.utils.type_check.Variable method),

1083
__add__() (chainerx.ndarray method), 1132
__bool__() (chainer.Parameter method), 144
__bool__() (chainer.Variable method), 136
__bool__() (chainer.utils.type_check.Expr method),

1080
__bool__() (chainer.utils.type_check.Variable

method), 1083
__bool__() (chainerx.ndarray method), 1132
__call__() (chainer.AbstractSerializer method), 1028
__call__() (chainer.Chain method), 749
__call__() (chainer.ChainList method), 755
__call__() (chainer.Deserializer method), 1029
__call__() (chainer.Function method), 284
__call__() (chainer.FunctionAdapter method), 288
__call__() (chainer.FunctionNode method), 294
__call__() (chainer.Initializer method), 892
__call__() (chainer.Link method), 742
__call__() (chainer.Sequential method), 762
__call__() (chainer.Serializer method), 1026
__call__() (chainer.dataset.ConcatWithAsyncTransfer

method), 979
__call__() (chainer.initializers.Constant method),

894
__call__() (chainer.initializers.GlorotNormal

method), 898
__call__() (chainer.initializers.GlorotUniform

method), 902
__call__() (chainer.initializers.HeNormal method),

899
__call__() (chainer.initializers.HeUniform method),

903
__call__() (chainer.initializers.Identity method), 893
__call__() (chainer.initializers.LeCunNormal

method), 897
__call__() (chainer.initializers.LeCunUniform

method), 901
__call__() (chainer.initializers.NaN method), 896
__call__() (chainer.initializers.Normal method), 897
__call__() (chainer.initializers.One method), 895
__call__() (chainer.initializers.Orthogonal method),

900
__call__() (chainer.initializers.Uniform method),

901
__call__() (chainer.initializers.Zero method), 894
__call__() (chainer.iterators.OrderSampler method),

1017
__call__() (chainer.iterators.ShuffleOrderSampler

method), 1018
__call__() (chainer.links.BatchNormalization

method), 584
__call__() (chainer.links.BatchRenormalization

method), 590
__call__() (chainer.links.Bias method), 313
__call__() (chainer.links.Bilinear method), 319
__call__() (chainer.links.BinaryHierarchicalSoftmax

method), 616
__call__() (chainer.links.BlackOut method), 622
__call__() (chainer.links.CRF1d method), 628
__call__() (chainer.links.ChildSumTreeLSTM

method), 325
__call__() (chainer.links.Classifier method), 667
__call__() (chainer.links.Convolution1D method),

331
__call__() (chainer.links.Convolution2D method),

338
__call__() (chainer.links.Convolution3D method),

344
__call__() (chainer.links.ConvolutionND method),

352
__call__() (chainer.links.Deconvolution1D method),

357
__call__() (chainer.links.Deconvolution2D method),

1283



Chainer Documentation, Release 6.5.0

365
__call__() (chainer.links.Deconvolution3D method),

370
__call__() (chainer.links.DeconvolutionND method),

377
__call__() (chainer.links.DecorrelatedBatchNormalization

method), 597
__call__() (chainer.links.DeformableConvolution2D

method), 384
__call__() (chainer.links.DepthwiseConvolution2D

method), 390
__call__() (chainer.links.DilatedConvolution2D

method), 397
__call__() (chainer.links.EmbedID method), 404
__call__() (chainer.links.GRU method), 409
__call__() (chainer.links.GoogLeNet method), 689
__call__() (chainer.links.GroupNormalization

method), 604
__call__() (chainer.links.Highway method), 416
__call__() (chainer.links.Inception method), 422
__call__() (chainer.links.InceptionBN method), 428
__call__() (chainer.links.LSTM method), 448
__call__() (chainer.links.LayerNormalization

method), 610
__call__() (chainer.links.Linear method), 435
__call__() (chainer.links.LocalConvolution2D

method), 442
__call__() (chainer.links.MLPConvolution2D

method), 455
__call__() (chainer.links.Maxout method), 654
__call__() (chainer.links.NStepBiGRU method), 468
__call__() (chainer.links.NStepBiLSTM method),

475
__call__() (chainer.links.NStepBiRNNReLU

method), 482
__call__() (chainer.links.NStepBiRNNTanh method),

489
__call__() (chainer.links.NStepGRU method), 496
__call__() (chainer.links.NStepLSTM method), 503
__call__() (chainer.links.NStepRNNReLU method),

510
__call__() (chainer.links.NStepRNNTanh method),

517
__call__() (chainer.links.NaryTreeLSTM method),

462
__call__() (chainer.links.NegativeSampling method),

660
__call__() (chainer.links.PReLU method), 641
__call__() (chainer.links.Parameter method), 524
__call__() (chainer.links.ResNet101Layers method),

712
__call__() (chainer.links.ResNet152Layers method),

720
__call__() (chainer.links.ResNet50Layers method),

705
__call__() (chainer.links.Scale method), 530
__call__() (chainer.links.SimplifiedDropconnect

method), 634
__call__() (chainer.links.StatefulGRU method), 537
__call__() (chainer.links.StatefulMGU method), 550
__call__() (chainer.links.StatefulPeepholeLSTM

method), 562
__call__() (chainer.links.StatefulZoneoutLSTM

method), 568
__call__() (chainer.links.StatelessGRU method), 544
__call__() (chainer.links.StatelessLSTM method),

575
__call__() (chainer.links.StatelessMGU method),

555
__call__() (chainer.links.Swish method), 648
__call__() (chainer.links.TheanoFunction method),

728
__call__() (chainer.links.VGG16Layers method),

674
__call__() (chainer.links.VGG19Layers method),

681
__call__() (chainer.links.caffe.CaffeFunction

method), 735
__call__() (chainer.links.model.vision.resnet.ResNetLayers

method), 697
__call__() (chainer.optimizer_hooks.GradientClipping

method), 887
__call__() (chainer.optimizer_hooks.GradientHardClipping

method), 888
__call__() (chainer.optimizer_hooks.GradientLARS

method), 891
__call__() (chainer.optimizer_hooks.GradientNoise

method), 889
__call__() (chainer.optimizer_hooks.Lasso method),

886
__call__() (chainer.optimizer_hooks.WeightDecay

method), 885
__call__() (chainer.serializers.DictionarySerializer

method), 1020
__call__() (chainer.serializers.HDF5Deserializer

method), 1024
__call__() (chainer.serializers.HDF5Serializer

method), 1023
__call__() (chainer.serializers.NpzDeserializer

method), 1021
__call__() (chainer.testing.FunctionTestCase

method), 1089
__call__() (chainer.testing.LinkInitializersTestCase

method), 1100
__call__() (chainer.testing.LinkTestCase method),

1108
__call__() (chainer.training.Extension method), 924
__call__() (chainer.training.extensions.DumpGraph

1284 Index



Chainer Documentation, Release 6.5.0

method), 960
__call__() (chainer.training.extensions.Evaluator

method), 927
__call__() (chainer.training.extensions.ExponentialShift

method), 936
__call__() (chainer.training.extensions.FailOnNonNumber

method), 931
__call__() (chainer.training.extensions.InverseShift

method), 938
__call__() (chainer.training.extensions.LinearShift

method), 940
__call__() (chainer.training.extensions.LogReport

method), 953
__call__() (chainer.training.extensions.MicroAverage

method), 930
__call__() (chainer.training.extensions.MultistepShift

method), 942
__call__() (chainer.training.extensions.ParameterStatistics

method), 933
__call__() (chainer.training.extensions.PlotReport

method), 955
__call__() (chainer.training.extensions.PolynomialShift

method), 943
__call__() (chainer.training.extensions.PrintReport

method), 949
__call__() (chainer.training.extensions.ProgressBar

method), 951
__call__() (chainer.training.extensions.StepShift

method), 947
__call__() (chainer.training.extensions.VariableStatisticsPlot

method), 958
__call__() (chainer.training.extensions.WarmupShift

method), 945
__call__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 911
__call__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 907
__call__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
__call__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 905
__call__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
__call__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 906
__call__() (chainer.training.extensions.snapshot_writers.Writer

method), 904
__call__() (chainer.training.extensions.unchain_variables

method), 964
__call__() (chainer.training.triggers.BestValueTrigger

method), 967
__call__() (chainer.training.triggers.EarlyStoppingTrigger

method), 968
__call__() (chainer.training.triggers.IntervalTrigger

method), 968
__call__() (chainer.training.triggers.ManualScheduleTrigger

method), 969
__call__() (chainer.training.triggers.MaxValueTrigger

method), 970
__call__() (chainer.training.triggers.MinValueTrigger

method), 971
__call__() (chainer.training.triggers.OnceTrigger

method), 972
__call__() (chainer.training.triggers.TimeTrigger

method), 973
__call__() (chainer.utils.type_check.Expr method),

1080
__call__() (chainer.utils.type_check.Variable

method), 1082
__copy__() (chainer.Parameter method), 141
__copy__() (chainer.Variable method), 133
__copy__() (chainer.distributions.MultivariateNormal

method), 819
__copy__() (chainer.iterators.MultiprocessIterator

method), 1013
__div__() (chainer.Parameter method), 145
__div__() (chainer.Variable method), 137
__enter__() (chainer.FunctionHook method), 310
__enter__() (chainer.LinkHook method), 775
__enter__() (chainer.Reporter method), 1050
__enter__() (chainer.backend.ChainerxDevice

method), 1038
__enter__() (chainer.backend.CpuDevice method),

1035
__enter__() (chainer.backend.Device method), 1030
__enter__() (chainer.backend.GpuDevice method),

1036
__enter__() (chainer.backend.Intel64Device

method), 1037
__enter__() (chainer.dataset.Iterator method), 976
__enter__() (chainer.datasets.PickleDataset

method), 1001
__enter__() (chainer.datasets.PickleDatasetWriter

method), 1003
__enter__() (chainer.function_hooks.CUDAProfileHook

method), 301
__enter__() (chainer.function_hooks.CupyMemoryProfileHook

method), 302
__enter__() (chainer.function_hooks.PrintHook

method), 305
__enter__() (chainer.function_hooks.TimerHook

method), 307
__enter__() (chainer.iterators.DaliIterator method),

1016
__enter__() (chainer.iterators.MultiprocessIterator

method), 1013
__enter__() (chainer.iterators.MultithreadIterator

method), 1014

Index 1285



Chainer Documentation, Release 6.5.0

__enter__() (chainer.iterators.SerialIterator
method), 1010

__enter__() (chainer.link_hooks.SpectralNormalization
method), 771

__enter__() (chainer.link_hooks.TimerHook
method), 773

__eq__() (chainer.AbstractSerializer method), 1028
__eq__() (chainer.Chain method), 754
__eq__() (chainer.ChainList method), 760
__eq__() (chainer.Deserializer method), 1029
__eq__() (chainer.DeviceResident method), 1033
__eq__() (chainer.DictSummary method), 1053
__eq__() (chainer.Distribution method), 841
__eq__() (chainer.Function method), 286
__eq__() (chainer.FunctionAdapter method), 291
__eq__() (chainer.FunctionHook method), 311
__eq__() (chainer.FunctionNode method), 297
__eq__() (chainer.GradientMethod method), 884
__eq__() (chainer.Initializer method), 892
__eq__() (chainer.Link method), 747
__eq__() (chainer.LinkHook method), 776
__eq__() (chainer.Optimizer method), 878
__eq__() (chainer.Parameter method), 144
__eq__() (chainer.Reporter method), 1050
__eq__() (chainer.Sequential method), 768
__eq__() (chainer.Serializer method), 1027
__eq__() (chainer.Summary method), 1052
__eq__() (chainer.UpdateRule method), 881
__eq__() (chainer.Variable method), 135
__eq__() (chainer.backend.ChainerxDevice method),

1039
__eq__() (chainer.backend.CpuDevice method), 1035
__eq__() (chainer.backend.Device method), 1030
__eq__() (chainer.backend.GpuDevice method), 1036
__eq__() (chainer.backend.Intel64Device method),

1037
__eq__() (chainer.computational_graph.ComputationalGraph

method), 1069
__eq__() (chainer.configuration.GlobalConfig

method), 1062
__eq__() (chainer.configuration.LocalConfig method),

1063
__eq__() (chainer.dataset.ConcatWithAsyncTransfer

method), 979
__eq__() (chainer.dataset.DatasetMixin method), 975
__eq__() (chainer.dataset.Iterator method), 976
__eq__() (chainer.datasets.ConcatenatedDataset

method), 985
__eq__() (chainer.datasets.DictDataset method), 982
__eq__() (chainer.datasets.ImageDataset method),

992
__eq__() (chainer.datasets.LabeledImageDataset

method), 997

__eq__() (chainer.datasets.LabeledZippedImageDataset
method), 998

__eq__() (chainer.datasets.MultiZippedImageDataset
method), 995

__eq__() (chainer.datasets.PickleDataset method),
1002

__eq__() (chainer.datasets.PickleDatasetWriter
method), 1003

__eq__() (chainer.datasets.SubDataset method), 986
__eq__() (chainer.datasets.TextDataset method), 1001
__eq__() (chainer.datasets.TransformDataset

method), 990
__eq__() (chainer.datasets.TupleDataset method), 983
__eq__() (chainer.datasets.ZippedImageDataset

method), 993
__eq__() (chainer.device_resident.DeviceResidentsVisitor

method), 1034
__eq__() (chainer.distributions.Bernoulli method),

779
__eq__() (chainer.distributions.Beta method), 782
__eq__() (chainer.distributions.Categorical method),

785
__eq__() (chainer.distributions.Cauchy method), 788
__eq__() (chainer.distributions.Chisquare method),

792
__eq__() (chainer.distributions.Dirichlet method), 795
__eq__() (chainer.distributions.Exponential method),

798
__eq__() (chainer.distributions.Gamma method), 801
__eq__() (chainer.distributions.Geometric method),

804
__eq__() (chainer.distributions.Gumbel method), 807
__eq__() (chainer.distributions.Independent method),

810
__eq__() (chainer.distributions.Laplace method), 814
__eq__() (chainer.distributions.LogNormal method),

817
__eq__() (chainer.distributions.MultivariateNormal

method), 820
__eq__() (chainer.distributions.Normal method), 823
__eq__() (chainer.distributions.OneHotCategorical

method), 826
__eq__() (chainer.distributions.Pareto method), 830
__eq__() (chainer.distributions.Poisson method), 833
__eq__() (chainer.distributions.Uniform method), 836
__eq__() (chainer.function_hooks.CUDAProfileHook

method), 301
__eq__() (chainer.function_hooks.CupyMemoryProfileHook

method), 304
__eq__() (chainer.function_hooks.PrintHook method),

306
__eq__() (chainer.function_hooks.TimerHook

method), 308
__eq__() (chainer.initializers.Constant method), 894

1286 Index



Chainer Documentation, Release 6.5.0

__eq__() (chainer.initializers.GlorotNormal method),
898

__eq__() (chainer.initializers.GlorotUniform method),
902

__eq__() (chainer.initializers.HeNormal method), 899
__eq__() (chainer.initializers.HeUniform method),

903
__eq__() (chainer.initializers.Identity method), 893
__eq__() (chainer.initializers.LeCunNormal method),

897
__eq__() (chainer.initializers.LeCunUniform method),

901
__eq__() (chainer.initializers.NaN method), 896
__eq__() (chainer.initializers.Normal method), 897
__eq__() (chainer.initializers.One method), 895
__eq__() (chainer.initializers.Orthogonal method),

900
__eq__() (chainer.initializers.Uniform method), 901
__eq__() (chainer.initializers.Zero method), 894
__eq__() (chainer.iterators.DaliIterator method),

1016
__eq__() (chainer.iterators.MultiprocessIterator

method), 1013
__eq__() (chainer.iterators.MultithreadIterator

method), 1015
__eq__() (chainer.iterators.OrderSampler method),

1017
__eq__() (chainer.iterators.SerialIterator method),

1011
__eq__() (chainer.iterators.ShuffleOrderSampler

method), 1018
__eq__() (chainer.link_hooks.SpectralNormalization

method), 772
__eq__() (chainer.link_hooks.TimerHook method),

773
__eq__() (chainer.links.BatchNormalization method),

589
__eq__() (chainer.links.BatchRenormalization

method), 595
__eq__() (chainer.links.Bias method), 317
__eq__() (chainer.links.Bilinear method), 324
__eq__() (chainer.links.BinaryHierarchicalSoftmax

method), 621
__eq__() (chainer.links.BlackOut method), 627
__eq__() (chainer.links.CRF1d method), 633
__eq__() (chainer.links.ChildSumTreeLSTM method),

330
__eq__() (chainer.links.Classifier method), 672
__eq__() (chainer.links.Convolution1D method), 336
__eq__() (chainer.links.Convolution2D method), 343
__eq__() (chainer.links.Convolution3D method), 349
__eq__() (chainer.links.ConvolutionND method), 356
__eq__() (chainer.links.Deconvolution1D method),

362

__eq__() (chainer.links.Deconvolution2D method),
369

__eq__() (chainer.links.Deconvolution3D method),
375

__eq__() (chainer.links.DeconvolutionND method),
382

__eq__() (chainer.links.DecorrelatedBatchNormalization
method), 602

__eq__() (chainer.links.DeformableConvolution2D
method), 389

__eq__() (chainer.links.DepthwiseConvolution2D
method), 395

__eq__() (chainer.links.DilatedConvolution2D
method), 402

__eq__() (chainer.links.EmbedID method), 408
__eq__() (chainer.links.GRU method), 414
__eq__() (chainer.links.GoogLeNet method), 695
__eq__() (chainer.links.GroupNormalization method),

608
__eq__() (chainer.links.Highway method), 421
__eq__() (chainer.links.Inception method), 427
__eq__() (chainer.links.InceptionBN method), 433
__eq__() (chainer.links.LSTM method), 454
__eq__() (chainer.links.LayerNormalization method),

615
__eq__() (chainer.links.Linear method), 440
__eq__() (chainer.links.LocalConvolution2D method),

446
__eq__() (chainer.links.MLPConvolution2D method),

460
__eq__() (chainer.links.Maxout method), 659
__eq__() (chainer.links.NStepBiGRU method), 474
__eq__() (chainer.links.NStepBiLSTM method), 481
__eq__() (chainer.links.NStepBiRNNReLU method),

488
__eq__() (chainer.links.NStepBiRNNTanh method),

495
__eq__() (chainer.links.NStepGRU method), 502
__eq__() (chainer.links.NStepLSTM method), 509
__eq__() (chainer.links.NStepRNNReLU method), 516
__eq__() (chainer.links.NStepRNNTanh method), 523
__eq__() (chainer.links.NaryTreeLSTM method), 467
__eq__() (chainer.links.NegativeSampling method),

665
__eq__() (chainer.links.PReLU method), 646
__eq__() (chainer.links.Parameter method), 529
__eq__() (chainer.links.ResNet101Layers method),

718
__eq__() (chainer.links.ResNet152Layers method),

725
__eq__() (chainer.links.ResNet50Layers method), 711
__eq__() (chainer.links.Scale method), 535
__eq__() (chainer.links.SimplifiedDropconnect

method), 639

Index 1287



Chainer Documentation, Release 6.5.0

__eq__() (chainer.links.StatefulGRU method), 542
__eq__() (chainer.links.StatefulMGU method), 554
__eq__() (chainer.links.StatefulPeepholeLSTM

method), 567
__eq__() (chainer.links.StatefulZoneoutLSTM

method), 573
__eq__() (chainer.links.StatelessGRU method), 549
__eq__() (chainer.links.StatelessLSTM method), 580
__eq__() (chainer.links.StatelessMGU method), 560
__eq__() (chainer.links.Swish method), 652
__eq__() (chainer.links.TheanoFunction method), 733
__eq__() (chainer.links.VGG16Layers method), 680
__eq__() (chainer.links.VGG19Layers method), 687
__eq__() (chainer.links.caffe.CaffeFunction method),

740
__eq__() (chainer.links.model.vision.resnet.ResNetLayers

method), 703
__eq__() (chainer.optimizer.Hyperparameter method),

881
__eq__() (chainer.optimizer_hooks.GradientClipping

method), 887
__eq__() (chainer.optimizer_hooks.GradientHardClipping

method), 888
__eq__() (chainer.optimizer_hooks.GradientLARS

method), 891
__eq__() (chainer.optimizer_hooks.GradientNoise

method), 889
__eq__() (chainer.optimizer_hooks.Lasso method),

886
__eq__() (chainer.optimizer_hooks.WeightDecay

method), 885
__eq__() (chainer.optimizers.AdaDelta method), 845
__eq__() (chainer.optimizers.AdaGrad method), 848
__eq__() (chainer.optimizers.Adam method), 851
__eq__() (chainer.optimizers.CorrectedMomentumSGD

method), 855
__eq__() (chainer.optimizers.MSVAG method), 863
__eq__() (chainer.optimizers.MomentumSGD

method), 858
__eq__() (chainer.optimizers.NesterovAG method),

861
__eq__() (chainer.optimizers.RMSprop method), 866
__eq__() (chainer.optimizers.RMSpropGraves

method), 869
__eq__() (chainer.optimizers.SGD method), 872
__eq__() (chainer.optimizers.SMORMS3 method), 875
__eq__() (chainer.serializers.DictionarySerializer

method), 1020
__eq__() (chainer.serializers.HDF5Deserializer

method), 1025
__eq__() (chainer.serializers.HDF5Serializer

method), 1024
__eq__() (chainer.serializers.NpzDeserializer

method), 1022

__eq__() (chainer.testing.FunctionTestCase method),
1095

__eq__() (chainer.testing.LinkInitializersTestCase
method), 1105

__eq__() (chainer.testing.LinkTestCase method), 1113
__eq__() (chainer.training.Extension method), 924
__eq__() (chainer.training.Trainer method), 914
__eq__() (chainer.training.Updater method), 916
__eq__() (chainer.training.extensions.DumpGraph

method), 961
__eq__() (chainer.training.extensions.Evaluator

method), 928
__eq__() (chainer.training.extensions.ExponentialShift

method), 937
__eq__() (chainer.training.extensions.FailOnNonNumber

method), 932
__eq__() (chainer.training.extensions.InverseShift

method), 939
__eq__() (chainer.training.extensions.LinearShift

method), 941
__eq__() (chainer.training.extensions.LogReport

method), 954
__eq__() (chainer.training.extensions.MicroAverage

method), 930
__eq__() (chainer.training.extensions.MultistepShift

method), 942
__eq__() (chainer.training.extensions.ParameterStatistics

method), 934
__eq__() (chainer.training.extensions.PlotReport

method), 956
__eq__() (chainer.training.extensions.PolynomialShift

method), 944
__eq__() (chainer.training.extensions.PrintReport

method), 950
__eq__() (chainer.training.extensions.ProgressBar

method), 951
__eq__() (chainer.training.extensions.StepShift

method), 948
__eq__() (chainer.training.extensions.VariableStatisticsPlot

method), 958
__eq__() (chainer.training.extensions.WarmupShift

method), 946
__eq__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 911
__eq__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 908
__eq__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
__eq__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 905
__eq__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
__eq__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 907

1288 Index



Chainer Documentation, Release 6.5.0

__eq__() (chainer.training.extensions.snapshot_writers.Writer
method), 905

__eq__() (chainer.training.extensions.unchain_variables
method), 965

__eq__() (chainer.training.triggers.BestValueTrigger
method), 967

__eq__() (chainer.training.triggers.EarlyStoppingTrigger
method), 968

__eq__() (chainer.training.triggers.IntervalTrigger
method), 969

__eq__() (chainer.training.triggers.ManualScheduleTrigger
method), 970

__eq__() (chainer.training.triggers.MaxValueTrigger
method), 970

__eq__() (chainer.training.triggers.MinValueTrigger
method), 971

__eq__() (chainer.training.triggers.OnceTrigger
method), 972

__eq__() (chainer.training.triggers.TimeTrigger
method), 973

__eq__() (chainer.training.updaters.MultiprocessParallelUpdater
method), 922

__eq__() (chainer.training.updaters.ParallelUpdater
method), 920

__eq__() (chainer.training.updaters.StandardUpdater
method), 918

__eq__() (chainer.utils.CooMatrix method), 1055
__eq__() (chainer.utils.WalkerAlias method), 1048
__eq__() (chainer.utils.type_check.Expr method),

1080
__eq__() (chainer.utils.type_check.TypeInfo method),

1081
__eq__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__eq__() (chainer.utils.type_check.Variable method),

1083
__eq__() (chainer.variable.VariableNode method),

149
__eq__() (chainerx.Backend method), 1173
__eq__() (chainerx.Context method), 1172
__eq__() (chainerx.Device method), 1174
__eq__() (chainerx.ndarray method), 1132
__exit__() (chainer.FunctionHook method), 310
__exit__() (chainer.LinkHook method), 775
__exit__() (chainer.Reporter method), 1050
__exit__() (chainer.backend.ChainerxDevice

method), 1038
__exit__() (chainer.backend.CpuDevice method),

1035
__exit__() (chainer.backend.Device method), 1030
__exit__() (chainer.backend.GpuDevice method),

1036
__exit__() (chainer.backend.Intel64Device method),

1037

__exit__() (chainer.dataset.Iterator method), 976
__exit__() (chainer.datasets.PickleDataset method),

1001
__exit__() (chainer.datasets.PickleDatasetWriter

method), 1003
__exit__() (chainer.function_hooks.CUDAProfileHook

method), 301
__exit__() (chainer.function_hooks.CupyMemoryProfileHook

method), 302
__exit__() (chainer.function_hooks.PrintHook

method), 305
__exit__() (chainer.function_hooks.TimerHook

method), 307
__exit__() (chainer.iterators.DaliIterator method),

1016
__exit__() (chainer.iterators.MultiprocessIterator

method), 1013
__exit__() (chainer.iterators.MultithreadIterator

method), 1014
__exit__() (chainer.iterators.SerialIterator method),

1010
__exit__() (chainer.link_hooks.SpectralNormalization

method), 771
__exit__() (chainer.link_hooks.TimerHook method),

773
__floordiv__() (chainer.Parameter method), 145
__floordiv__() (chainer.Variable method), 137
__floordiv__() (chainer.utils.type_check.Expr

method), 1080
__floordiv__() (chainer.utils.type_check.Variable

method), 1083
__floordiv__() (chainerx.ndarray method), 1133
__ge__() (chainer.AbstractSerializer method), 1028
__ge__() (chainer.Chain method), 754
__ge__() (chainer.ChainList method), 760
__ge__() (chainer.Deserializer method), 1029
__ge__() (chainer.DeviceResident method), 1033
__ge__() (chainer.DictSummary method), 1054
__ge__() (chainer.Distribution method), 842
__ge__() (chainer.Function method), 287
__ge__() (chainer.FunctionAdapter method), 292
__ge__() (chainer.FunctionHook method), 311
__ge__() (chainer.FunctionNode method), 298
__ge__() (chainer.GradientMethod method), 884
__ge__() (chainer.Initializer method), 892
__ge__() (chainer.Link method), 747
__ge__() (chainer.LinkHook method), 776
__ge__() (chainer.Optimizer method), 878
__ge__() (chainer.Parameter method), 144
__ge__() (chainer.Reporter method), 1051
__ge__() (chainer.Sequential method), 769
__ge__() (chainer.Serializer method), 1027
__ge__() (chainer.Summary method), 1053
__ge__() (chainer.UpdateRule method), 881

Index 1289



Chainer Documentation, Release 6.5.0

__ge__() (chainer.Variable method), 136
__ge__() (chainer.backend.ChainerxDevice method),

1039
__ge__() (chainer.backend.CpuDevice method), 1036
__ge__() (chainer.backend.Device method), 1031
__ge__() (chainer.backend.GpuDevice method), 1037
__ge__() (chainer.backend.Intel64Device method),

1038
__ge__() (chainer.computational_graph.ComputationalGraph

method), 1069
__ge__() (chainer.configuration.GlobalConfig

method), 1062
__ge__() (chainer.configuration.LocalConfig method),

1063
__ge__() (chainer.dataset.ConcatWithAsyncTransfer

method), 979
__ge__() (chainer.dataset.DatasetMixin method), 975
__ge__() (chainer.dataset.Iterator method), 976
__ge__() (chainer.datasets.ConcatenatedDataset

method), 985
__ge__() (chainer.datasets.DictDataset method), 982
__ge__() (chainer.datasets.ImageDataset method),

992
__ge__() (chainer.datasets.LabeledImageDataset

method), 997
__ge__() (chainer.datasets.LabeledZippedImageDataset

method), 999
__ge__() (chainer.datasets.MultiZippedImageDataset

method), 995
__ge__() (chainer.datasets.PickleDataset method),

1003
__ge__() (chainer.datasets.PickleDatasetWriter

method), 1003
__ge__() (chainer.datasets.SubDataset method), 987
__ge__() (chainer.datasets.TextDataset method), 1001
__ge__() (chainer.datasets.TransformDataset

method), 990
__ge__() (chainer.datasets.TupleDataset method), 983
__ge__() (chainer.datasets.ZippedImageDataset

method), 994
__ge__() (chainer.device_resident.DeviceResidentsVisitor

method), 1034
__ge__() (chainer.distributions.Bernoulli method),

779
__ge__() (chainer.distributions.Beta method), 782
__ge__() (chainer.distributions.Categorical method),

785
__ge__() (chainer.distributions.Cauchy method), 789
__ge__() (chainer.distributions.Chisquare method),

792
__ge__() (chainer.distributions.Dirichlet method), 795
__ge__() (chainer.distributions.Exponential method),

798
__ge__() (chainer.distributions.Gamma method), 801

__ge__() (chainer.distributions.Geometric method),
804

__ge__() (chainer.distributions.Gumbel method), 807
__ge__() (chainer.distributions.Independent method),

810
__ge__() (chainer.distributions.Laplace method), 814
__ge__() (chainer.distributions.LogNormal method),

817
__ge__() (chainer.distributions.MultivariateNormal

method), 820
__ge__() (chainer.distributions.Normal method), 824
__ge__() (chainer.distributions.OneHotCategorical

method), 827
__ge__() (chainer.distributions.Pareto method), 830
__ge__() (chainer.distributions.Poisson method), 833
__ge__() (chainer.distributions.Uniform method), 836
__ge__() (chainer.function_hooks.CUDAProfileHook

method), 302
__ge__() (chainer.function_hooks.CupyMemoryProfileHook

method), 304
__ge__() (chainer.function_hooks.PrintHook method),

306
__ge__() (chainer.function_hooks.TimerHook

method), 308
__ge__() (chainer.initializers.Constant method), 894
__ge__() (chainer.initializers.GlorotNormal method),

898
__ge__() (chainer.initializers.GlorotUniform method),

902
__ge__() (chainer.initializers.HeNormal method), 899
__ge__() (chainer.initializers.HeUniform method),

903
__ge__() (chainer.initializers.Identity method), 893
__ge__() (chainer.initializers.LeCunNormal method),

898
__ge__() (chainer.initializers.LeCunUniform method),

902
__ge__() (chainer.initializers.NaN method), 896
__ge__() (chainer.initializers.Normal method), 897
__ge__() (chainer.initializers.One method), 895
__ge__() (chainer.initializers.Orthogonal method),

900
__ge__() (chainer.initializers.Uniform method), 901
__ge__() (chainer.initializers.Zero method), 895
__ge__() (chainer.iterators.DaliIterator method),

1017
__ge__() (chainer.iterators.MultiprocessIterator

method), 1014
__ge__() (chainer.iterators.MultithreadIterator

method), 1015
__ge__() (chainer.iterators.OrderSampler method),

1018
__ge__() (chainer.iterators.SerialIterator method),

1011

1290 Index



Chainer Documentation, Release 6.5.0

__ge__() (chainer.iterators.ShuffleOrderSampler
method), 1019

__ge__() (chainer.link_hooks.SpectralNormalization
method), 772

__ge__() (chainer.link_hooks.TimerHook method),
774

__ge__() (chainer.links.BatchNormalization method),
589

__ge__() (chainer.links.BatchRenormalization
method), 596

__ge__() (chainer.links.Bias method), 318
__ge__() (chainer.links.Bilinear method), 324
__ge__() (chainer.links.BinaryHierarchicalSoftmax

method), 621
__ge__() (chainer.links.BlackOut method), 627
__ge__() (chainer.links.CRF1d method), 633
__ge__() (chainer.links.ChildSumTreeLSTM method),

330
__ge__() (chainer.links.Classifier method), 672
__ge__() (chainer.links.Convolution1D method), 336
__ge__() (chainer.links.Convolution2D method), 343
__ge__() (chainer.links.Convolution3D method), 349
__ge__() (chainer.links.ConvolutionND method), 356
__ge__() (chainer.links.Deconvolution1D method),

362
__ge__() (chainer.links.Deconvolution2D method),

369
__ge__() (chainer.links.Deconvolution3D method),

375
__ge__() (chainer.links.DeconvolutionND method),

382
__ge__() (chainer.links.DecorrelatedBatchNormalization

method), 602
__ge__() (chainer.links.DeformableConvolution2D

method), 389
__ge__() (chainer.links.DepthwiseConvolution2D

method), 395
__ge__() (chainer.links.DilatedConvolution2D

method), 402
__ge__() (chainer.links.EmbedID method), 409
__ge__() (chainer.links.GRU method), 414
__ge__() (chainer.links.GoogLeNet method), 695
__ge__() (chainer.links.GroupNormalization method),

609
__ge__() (chainer.links.Highway method), 421
__ge__() (chainer.links.Inception method), 427
__ge__() (chainer.links.InceptionBN method), 433
__ge__() (chainer.links.LSTM method), 454
__ge__() (chainer.links.LayerNormalization method),

615
__ge__() (chainer.links.Linear method), 440
__ge__() (chainer.links.LocalConvolution2D method),

446
__ge__() (chainer.links.MLPConvolution2D method),

461
__ge__() (chainer.links.Maxout method), 659
__ge__() (chainer.links.NStepBiGRU method), 474
__ge__() (chainer.links.NStepBiLSTM method), 481
__ge__() (chainer.links.NStepBiRNNReLU method),

488
__ge__() (chainer.links.NStepBiRNNTanh method),

495
__ge__() (chainer.links.NStepGRU method), 502
__ge__() (chainer.links.NStepLSTM method), 509
__ge__() (chainer.links.NStepRNNReLU method), 516
__ge__() (chainer.links.NStepRNNTanh method), 523
__ge__() (chainer.links.NaryTreeLSTM method), 467
__ge__() (chainer.links.NegativeSampling method),

665
__ge__() (chainer.links.PReLU method), 646
__ge__() (chainer.links.Parameter method), 529
__ge__() (chainer.links.ResNet101Layers method),

718
__ge__() (chainer.links.ResNet152Layers method),

726
__ge__() (chainer.links.ResNet50Layers method), 711
__ge__() (chainer.links.Scale method), 535
__ge__() (chainer.links.SimplifiedDropconnect

method), 640
__ge__() (chainer.links.StatefulGRU method), 542
__ge__() (chainer.links.StatefulMGU method), 555
__ge__() (chainer.links.StatefulPeepholeLSTM

method), 567
__ge__() (chainer.links.StatefulZoneoutLSTM

method), 573
__ge__() (chainer.links.StatelessGRU method), 549
__ge__() (chainer.links.StatelessLSTM method), 580
__ge__() (chainer.links.StatelessMGU method), 560
__ge__() (chainer.links.Swish method), 653
__ge__() (chainer.links.TheanoFunction method), 733
__ge__() (chainer.links.VGG16Layers method), 680
__ge__() (chainer.links.VGG19Layers method), 687
__ge__() (chainer.links.caffe.CaffeFunction method),

740
__ge__() (chainer.links.model.vision.resnet.ResNetLayers

method), 703
__ge__() (chainer.optimizer.Hyperparameter method),

882
__ge__() (chainer.optimizer_hooks.GradientClipping

method), 887
__ge__() (chainer.optimizer_hooks.GradientHardClipping

method), 888
__ge__() (chainer.optimizer_hooks.GradientLARS

method), 891
__ge__() (chainer.optimizer_hooks.GradientNoise

method), 890
__ge__() (chainer.optimizer_hooks.Lasso method),

887

Index 1291



Chainer Documentation, Release 6.5.0

__ge__() (chainer.optimizer_hooks.WeightDecay
method), 886

__ge__() (chainer.optimizers.AdaDelta method), 846
__ge__() (chainer.optimizers.AdaGrad method), 848
__ge__() (chainer.optimizers.Adam method), 852
__ge__() (chainer.optimizers.CorrectedMomentumSGD

method), 855
__ge__() (chainer.optimizers.MSVAG method), 864
__ge__() (chainer.optimizers.MomentumSGD

method), 858
__ge__() (chainer.optimizers.NesterovAG method),

861
__ge__() (chainer.optimizers.RMSprop method), 867
__ge__() (chainer.optimizers.RMSpropGraves

method), 870
__ge__() (chainer.optimizers.SGD method), 872
__ge__() (chainer.optimizers.SMORMS3 method), 875
__ge__() (chainer.serializers.DictionarySerializer

method), 1020
__ge__() (chainer.serializers.HDF5Deserializer

method), 1025
__ge__() (chainer.serializers.HDF5Serializer

method), 1024
__ge__() (chainer.serializers.NpzDeserializer

method), 1022
__ge__() (chainer.testing.FunctionTestCase method),

1095
__ge__() (chainer.testing.LinkInitializersTestCase

method), 1105
__ge__() (chainer.testing.LinkTestCase method), 1114
__ge__() (chainer.training.Extension method), 925
__ge__() (chainer.training.Trainer method), 914
__ge__() (chainer.training.Updater method), 916
__ge__() (chainer.training.extensions.DumpGraph

method), 961
__ge__() (chainer.training.extensions.Evaluator

method), 928
__ge__() (chainer.training.extensions.ExponentialShift

method), 937
__ge__() (chainer.training.extensions.FailOnNonNumber

method), 932
__ge__() (chainer.training.extensions.InverseShift

method), 939
__ge__() (chainer.training.extensions.LinearShift

method), 941
__ge__() (chainer.training.extensions.LogReport

method), 954
__ge__() (chainer.training.extensions.MicroAverage

method), 930
__ge__() (chainer.training.extensions.MultistepShift

method), 943
__ge__() (chainer.training.extensions.ParameterStatistics

method), 935
__ge__() (chainer.training.extensions.PlotReport

method), 956
__ge__() (chainer.training.extensions.PolynomialShift

method), 944
__ge__() (chainer.training.extensions.PrintReport

method), 950
__ge__() (chainer.training.extensions.ProgressBar

method), 952
__ge__() (chainer.training.extensions.StepShift

method), 948
__ge__() (chainer.training.extensions.VariableStatisticsPlot

method), 959
__ge__() (chainer.training.extensions.WarmupShift

method), 946
__ge__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 911
__ge__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 908
__ge__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
__ge__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 906
__ge__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
__ge__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 907
__ge__() (chainer.training.extensions.snapshot_writers.Writer

method), 905
__ge__() (chainer.training.extensions.unchain_variables

method), 965
__ge__() (chainer.training.triggers.BestValueTrigger

method), 967
__ge__() (chainer.training.triggers.EarlyStoppingTrigger

method), 968
__ge__() (chainer.training.triggers.IntervalTrigger

method), 969
__ge__() (chainer.training.triggers.ManualScheduleTrigger

method), 970
__ge__() (chainer.training.triggers.MaxValueTrigger

method), 971
__ge__() (chainer.training.triggers.MinValueTrigger

method), 971
__ge__() (chainer.training.triggers.OnceTrigger

method), 972
__ge__() (chainer.training.triggers.TimeTrigger

method), 973
__ge__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
__ge__() (chainer.training.updaters.ParallelUpdater

method), 920
__ge__() (chainer.training.updaters.StandardUpdater

method), 918
__ge__() (chainer.utils.CooMatrix method), 1055
__ge__() (chainer.utils.WalkerAlias method), 1048
__ge__() (chainer.utils.type_check.Expr method),

1292 Index



Chainer Documentation, Release 6.5.0

1080
__ge__() (chainer.utils.type_check.TypeInfo method),

1081
__ge__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__ge__() (chainer.utils.type_check.Variable method),

1083
__ge__() (chainer.variable.VariableNode method),

149
__ge__() (chainerx.Backend method), 1173
__ge__() (chainerx.Context method), 1172
__ge__() (chainerx.Device method), 1174
__ge__() (chainerx.ndarray method), 1132
__getitem__() (chainer.AbstractSerializer method),

1028
__getitem__() (chainer.Chain method), 749
__getitem__() (chainer.ChainList method), 755
__getitem__() (chainer.Deserializer method), 1029
__getitem__() (chainer.Parameter method), 140
__getitem__() (chainer.Sequential method), 762
__getitem__() (chainer.Serializer method), 1027
__getitem__() (chainer.Variable method), 132
__getitem__() (chainer.dataset.DatasetMixin

method), 974
__getitem__() (chainer.datasets.ConcatenatedDataset

method), 984
__getitem__() (chainer.datasets.DictDataset

method), 982
__getitem__() (chainer.datasets.ImageDataset

method), 991
__getitem__() (chainer.datasets.LabeledImageDataset

method), 996
__getitem__() (chainer.datasets.LabeledZippedImageDataset

method), 998
__getitem__() (chainer.datasets.MultiZippedImageDataset

method), 994
__getitem__() (chainer.datasets.PickleDataset

method), 1001
__getitem__() (chainer.datasets.SubDataset

method), 986
__getitem__() (chainer.datasets.TextDataset

method), 1000
__getitem__() (chainer.datasets.TransformDataset

method), 989
__getitem__() (chainer.datasets.TupleDataset

method), 983
__getitem__() (chainer.datasets.ZippedImageDataset

method), 993
__getitem__() (chainer.links.ChildSumTreeLSTM

method), 325
__getitem__() (chainer.links.Classifier method), 667
__getitem__() (chainer.links.DeformableConvolution2D

method), 384
__getitem__() (chainer.links.GRU method), 409

__getitem__() (chainer.links.GoogLeNet method),
689

__getitem__() (chainer.links.Highway method), 416
__getitem__() (chainer.links.Inception method), 422
__getitem__() (chainer.links.InceptionBN method),

428
__getitem__() (chainer.links.LSTM method), 448
__getitem__() (chainer.links.MLPConvolution2D

method), 455
__getitem__() (chainer.links.Maxout method), 654
__getitem__() (chainer.links.NStepBiGRU method),

468
__getitem__() (chainer.links.NStepBiLSTM

method), 475
__getitem__() (chainer.links.NStepBiRNNReLU

method), 482
__getitem__() (chainer.links.NStepBiRNNTanh

method), 489
__getitem__() (chainer.links.NStepGRU method),

496
__getitem__() (chainer.links.NStepLSTM method),

503
__getitem__() (chainer.links.NStepRNNReLU

method), 510
__getitem__() (chainer.links.NStepRNNTanh

method), 517
__getitem__() (chainer.links.NaryTreeLSTM

method), 462
__getitem__() (chainer.links.ResNet101Layers

method), 712
__getitem__() (chainer.links.ResNet152Layers

method), 720
__getitem__() (chainer.links.ResNet50Layers

method), 705
__getitem__() (chainer.links.Scale method), 530
__getitem__() (chainer.links.StatefulGRU method),

537
__getitem__() (chainer.links.StatefulMGU method),

550
__getitem__() (chainer.links.StatefulPeepholeLSTM

method), 562
__getitem__() (chainer.links.StatefulZoneoutLSTM

method), 568
__getitem__() (chainer.links.StatelessGRU method),

544
__getitem__() (chainer.links.StatelessLSTM

method), 575
__getitem__() (chainer.links.StatelessMGU

method), 555
__getitem__() (chainer.links.VGG16Layers

method), 674
__getitem__() (chainer.links.VGG19Layers

method), 681
__getitem__() (chainer.links.caffe.CaffeFunction

Index 1293



Chainer Documentation, Release 6.5.0

method), 735
__getitem__() (chainer.links.model.vision.resnet.ResNetLayers

method), 697
__getitem__() (chainer.serializers.DictionarySerializer

method), 1020
__getitem__() (chainer.serializers.HDF5Deserializer

method), 1025
__getitem__() (chainer.serializers.HDF5Serializer

method), 1024
__getitem__() (chainer.serializers.NpzDeserializer

method), 1021
__getitem__() (chainer.utils.type_check.Expr

method), 1080
__getitem__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__getitem__() (chainer.utils.type_check.Variable

method), 1082
__getitem__() (chainerx.ndarray method), 1129
__gt__() (chainer.AbstractSerializer method), 1028
__gt__() (chainer.Chain method), 754
__gt__() (chainer.ChainList method), 760
__gt__() (chainer.Deserializer method), 1029
__gt__() (chainer.DeviceResident method), 1033
__gt__() (chainer.DictSummary method), 1054
__gt__() (chainer.Distribution method), 842
__gt__() (chainer.Function method), 287
__gt__() (chainer.FunctionAdapter method), 291
__gt__() (chainer.FunctionHook method), 311
__gt__() (chainer.FunctionNode method), 297
__gt__() (chainer.GradientMethod method), 884
__gt__() (chainer.Initializer method), 892
__gt__() (chainer.Link method), 747
__gt__() (chainer.LinkHook method), 776
__gt__() (chainer.Optimizer method), 878
__gt__() (chainer.Parameter method), 144
__gt__() (chainer.Reporter method), 1051
__gt__() (chainer.Sequential method), 769
__gt__() (chainer.Serializer method), 1027
__gt__() (chainer.Summary method), 1053
__gt__() (chainer.UpdateRule method), 881
__gt__() (chainer.Variable method), 136
__gt__() (chainer.backend.ChainerxDevice method),

1039
__gt__() (chainer.backend.CpuDevice method), 1036
__gt__() (chainer.backend.Device method), 1031
__gt__() (chainer.backend.GpuDevice method), 1037
__gt__() (chainer.backend.Intel64Device method),

1038
__gt__() (chainer.computational_graph.ComputationalGraph

method), 1069
__gt__() (chainer.configuration.GlobalConfig

method), 1062
__gt__() (chainer.configuration.LocalConfig method),

1063

__gt__() (chainer.dataset.ConcatWithAsyncTransfer
method), 979

__gt__() (chainer.dataset.DatasetMixin method), 975
__gt__() (chainer.dataset.Iterator method), 976
__gt__() (chainer.datasets.ConcatenatedDataset

method), 985
__gt__() (chainer.datasets.DictDataset method), 982
__gt__() (chainer.datasets.ImageDataset method),

992
__gt__() (chainer.datasets.LabeledImageDataset

method), 997
__gt__() (chainer.datasets.LabeledZippedImageDataset

method), 999
__gt__() (chainer.datasets.MultiZippedImageDataset

method), 995
__gt__() (chainer.datasets.PickleDataset method),

1003
__gt__() (chainer.datasets.PickleDatasetWriter

method), 1003
__gt__() (chainer.datasets.SubDataset method), 987
__gt__() (chainer.datasets.TextDataset method), 1001
__gt__() (chainer.datasets.TransformDataset

method), 990
__gt__() (chainer.datasets.TupleDataset method), 983
__gt__() (chainer.datasets.ZippedImageDataset

method), 994
__gt__() (chainer.device_resident.DeviceResidentsVisitor

method), 1034
__gt__() (chainer.distributions.Bernoulli method),

779
__gt__() (chainer.distributions.Beta method), 782
__gt__() (chainer.distributions.Categorical method),

785
__gt__() (chainer.distributions.Cauchy method), 789
__gt__() (chainer.distributions.Chisquare method),

792
__gt__() (chainer.distributions.Dirichlet method), 795
__gt__() (chainer.distributions.Exponential method),

798
__gt__() (chainer.distributions.Gamma method), 801
__gt__() (chainer.distributions.Geometric method),

804
__gt__() (chainer.distributions.Gumbel method), 807
__gt__() (chainer.distributions.Independent method),

810
__gt__() (chainer.distributions.Laplace method), 814
__gt__() (chainer.distributions.LogNormal method),

817
__gt__() (chainer.distributions.MultivariateNormal

method), 820
__gt__() (chainer.distributions.Normal method), 824
__gt__() (chainer.distributions.OneHotCategorical

method), 827
__gt__() (chainer.distributions.Pareto method), 830

1294 Index



Chainer Documentation, Release 6.5.0

__gt__() (chainer.distributions.Poisson method), 833
__gt__() (chainer.distributions.Uniform method), 836
__gt__() (chainer.function_hooks.CUDAProfileHook

method), 302
__gt__() (chainer.function_hooks.CupyMemoryProfileHook

method), 304
__gt__() (chainer.function_hooks.PrintHook method),

306
__gt__() (chainer.function_hooks.TimerHook

method), 308
__gt__() (chainer.initializers.Constant method), 894
__gt__() (chainer.initializers.GlorotNormal method),

898
__gt__() (chainer.initializers.GlorotUniform method),

902
__gt__() (chainer.initializers.HeNormal method), 899
__gt__() (chainer.initializers.HeUniform method),

903
__gt__() (chainer.initializers.Identity method), 893
__gt__() (chainer.initializers.LeCunNormal method),

898
__gt__() (chainer.initializers.LeCunUniform method),

902
__gt__() (chainer.initializers.NaN method), 896
__gt__() (chainer.initializers.Normal method), 897
__gt__() (chainer.initializers.One method), 895
__gt__() (chainer.initializers.Orthogonal method),

900
__gt__() (chainer.initializers.Uniform method), 901
__gt__() (chainer.initializers.Zero method), 895
__gt__() (chainer.iterators.DaliIterator method),

1017
__gt__() (chainer.iterators.MultiprocessIterator

method), 1013
__gt__() (chainer.iterators.MultithreadIterator

method), 1015
__gt__() (chainer.iterators.OrderSampler method),

1018
__gt__() (chainer.iterators.SerialIterator method),

1011
__gt__() (chainer.iterators.ShuffleOrderSampler

method), 1019
__gt__() (chainer.link_hooks.SpectralNormalization

method), 772
__gt__() (chainer.link_hooks.TimerHook method),

774
__gt__() (chainer.links.BatchNormalization method),

589
__gt__() (chainer.links.BatchRenormalization

method), 595
__gt__() (chainer.links.Bias method), 318
__gt__() (chainer.links.Bilinear method), 324
__gt__() (chainer.links.BinaryHierarchicalSoftmax

method), 621

__gt__() (chainer.links.BlackOut method), 627
__gt__() (chainer.links.CRF1d method), 633
__gt__() (chainer.links.ChildSumTreeLSTM method),

330
__gt__() (chainer.links.Classifier method), 672
__gt__() (chainer.links.Convolution1D method), 336
__gt__() (chainer.links.Convolution2D method), 343
__gt__() (chainer.links.Convolution3D method), 349
__gt__() (chainer.links.ConvolutionND method), 356
__gt__() (chainer.links.Deconvolution1D method),

362
__gt__() (chainer.links.Deconvolution2D method),

369
__gt__() (chainer.links.Deconvolution3D method),

375
__gt__() (chainer.links.DeconvolutionND method),

382
__gt__() (chainer.links.DecorrelatedBatchNormalization

method), 602
__gt__() (chainer.links.DeformableConvolution2D

method), 389
__gt__() (chainer.links.DepthwiseConvolution2D

method), 395
__gt__() (chainer.links.DilatedConvolution2D

method), 402
__gt__() (chainer.links.EmbedID method), 408
__gt__() (chainer.links.GRU method), 414
__gt__() (chainer.links.GoogLeNet method), 695
__gt__() (chainer.links.GroupNormalization method),

608
__gt__() (chainer.links.Highway method), 421
__gt__() (chainer.links.Inception method), 427
__gt__() (chainer.links.InceptionBN method), 433
__gt__() (chainer.links.LSTM method), 454
__gt__() (chainer.links.LayerNormalization method),

615
__gt__() (chainer.links.Linear method), 440
__gt__() (chainer.links.LocalConvolution2D method),

446
__gt__() (chainer.links.MLPConvolution2D method),

461
__gt__() (chainer.links.Maxout method), 659
__gt__() (chainer.links.NStepBiGRU method), 474
__gt__() (chainer.links.NStepBiLSTM method), 481
__gt__() (chainer.links.NStepBiRNNReLU method),

488
__gt__() (chainer.links.NStepBiRNNTanh method),

495
__gt__() (chainer.links.NStepGRU method), 502
__gt__() (chainer.links.NStepLSTM method), 509
__gt__() (chainer.links.NStepRNNReLU method), 516
__gt__() (chainer.links.NStepRNNTanh method), 523
__gt__() (chainer.links.NaryTreeLSTM method), 467
__gt__() (chainer.links.NegativeSampling method),

Index 1295



Chainer Documentation, Release 6.5.0

665
__gt__() (chainer.links.PReLU method), 646
__gt__() (chainer.links.Parameter method), 529
__gt__() (chainer.links.ResNet101Layers method),

718
__gt__() (chainer.links.ResNet152Layers method),

726
__gt__() (chainer.links.ResNet50Layers method), 711
__gt__() (chainer.links.Scale method), 535
__gt__() (chainer.links.SimplifiedDropconnect

method), 639
__gt__() (chainer.links.StatefulGRU method), 542
__gt__() (chainer.links.StatefulMGU method), 555
__gt__() (chainer.links.StatefulPeepholeLSTM

method), 567
__gt__() (chainer.links.StatefulZoneoutLSTM

method), 573
__gt__() (chainer.links.StatelessGRU method), 549
__gt__() (chainer.links.StatelessLSTM method), 580
__gt__() (chainer.links.StatelessMGU method), 560
__gt__() (chainer.links.Swish method), 653
__gt__() (chainer.links.TheanoFunction method), 733
__gt__() (chainer.links.VGG16Layers method), 680
__gt__() (chainer.links.VGG19Layers method), 687
__gt__() (chainer.links.caffe.CaffeFunction method),

740
__gt__() (chainer.links.model.vision.resnet.ResNetLayers

method), 703
__gt__() (chainer.optimizer.Hyperparameter method),

882
__gt__() (chainer.optimizer_hooks.GradientClipping

method), 887
__gt__() (chainer.optimizer_hooks.GradientHardClipping

method), 888
__gt__() (chainer.optimizer_hooks.GradientLARS

method), 891
__gt__() (chainer.optimizer_hooks.GradientNoise

method), 890
__gt__() (chainer.optimizer_hooks.Lasso method),

887
__gt__() (chainer.optimizer_hooks.WeightDecay

method), 886
__gt__() (chainer.optimizers.AdaDelta method), 846
__gt__() (chainer.optimizers.AdaGrad method), 848
__gt__() (chainer.optimizers.Adam method), 852
__gt__() (chainer.optimizers.CorrectedMomentumSGD

method), 855
__gt__() (chainer.optimizers.MSVAG method), 864
__gt__() (chainer.optimizers.MomentumSGD

method), 858
__gt__() (chainer.optimizers.NesterovAG method),

861
__gt__() (chainer.optimizers.RMSprop method), 867
__gt__() (chainer.optimizers.RMSpropGraves

method), 870
__gt__() (chainer.optimizers.SGD method), 872
__gt__() (chainer.optimizers.SMORMS3 method), 875
__gt__() (chainer.serializers.DictionarySerializer

method), 1020
__gt__() (chainer.serializers.HDF5Deserializer

method), 1025
__gt__() (chainer.serializers.HDF5Serializer

method), 1024
__gt__() (chainer.serializers.NpzDeserializer

method), 1022
__gt__() (chainer.testing.FunctionTestCase method),

1095
__gt__() (chainer.testing.LinkInitializersTestCase

method), 1105
__gt__() (chainer.testing.LinkTestCase method), 1113
__gt__() (chainer.training.Extension method), 925
__gt__() (chainer.training.Trainer method), 914
__gt__() (chainer.training.Updater method), 916
__gt__() (chainer.training.extensions.DumpGraph

method), 961
__gt__() (chainer.training.extensions.Evaluator

method), 928
__gt__() (chainer.training.extensions.ExponentialShift

method), 937
__gt__() (chainer.training.extensions.FailOnNonNumber

method), 932
__gt__() (chainer.training.extensions.InverseShift

method), 939
__gt__() (chainer.training.extensions.LinearShift

method), 941
__gt__() (chainer.training.extensions.LogReport

method), 954
__gt__() (chainer.training.extensions.MicroAverage

method), 930
__gt__() (chainer.training.extensions.MultistepShift

method), 943
__gt__() (chainer.training.extensions.ParameterStatistics

method), 935
__gt__() (chainer.training.extensions.PlotReport

method), 956
__gt__() (chainer.training.extensions.PolynomialShift

method), 944
__gt__() (chainer.training.extensions.PrintReport

method), 950
__gt__() (chainer.training.extensions.ProgressBar

method), 952
__gt__() (chainer.training.extensions.StepShift

method), 948
__gt__() (chainer.training.extensions.VariableStatisticsPlot

method), 959
__gt__() (chainer.training.extensions.WarmupShift

method), 946
__gt__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

1296 Index



Chainer Documentation, Release 6.5.0

method), 911
__gt__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 908
__gt__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
__gt__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 906
__gt__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
__gt__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 907
__gt__() (chainer.training.extensions.snapshot_writers.Writer

method), 905
__gt__() (chainer.training.extensions.unchain_variables

method), 965
__gt__() (chainer.training.triggers.BestValueTrigger

method), 967
__gt__() (chainer.training.triggers.EarlyStoppingTrigger

method), 968
__gt__() (chainer.training.triggers.IntervalTrigger

method), 969
__gt__() (chainer.training.triggers.ManualScheduleTrigger

method), 970
__gt__() (chainer.training.triggers.MaxValueTrigger

method), 971
__gt__() (chainer.training.triggers.MinValueTrigger

method), 971
__gt__() (chainer.training.triggers.OnceTrigger

method), 972
__gt__() (chainer.training.triggers.TimeTrigger

method), 973
__gt__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
__gt__() (chainer.training.updaters.ParallelUpdater

method), 920
__gt__() (chainer.training.updaters.StandardUpdater

method), 918
__gt__() (chainer.utils.CooMatrix method), 1055
__gt__() (chainer.utils.WalkerAlias method), 1048
__gt__() (chainer.utils.type_check.Expr method),

1080
__gt__() (chainer.utils.type_check.TypeInfo method),

1081
__gt__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__gt__() (chainer.utils.type_check.Variable method),

1083
__gt__() (chainer.variable.VariableNode method),

149
__gt__() (chainerx.Backend method), 1173
__gt__() (chainerx.Context method), 1172
__gt__() (chainerx.Device method), 1174
__gt__() (chainerx.ndarray method), 1132
__iter__() (chainer.ChainList method), 755

__iter__() (chainer.Sequential method), 763
__iter__() (chainer.dataset.Iterator method), 976
__iter__() (chainer.iterators.DaliIterator method),

1016
__iter__() (chainer.iterators.MultiprocessIterator

method), 1013
__iter__() (chainer.iterators.MultithreadIterator

method), 1015
__iter__() (chainer.iterators.SerialIterator method),

1011
__iter__() (chainer.links.MLPConvolution2D

method), 455
__iter__() (chainer.links.NStepBiGRU method), 468
__iter__() (chainer.links.NStepBiLSTM method),

475
__iter__() (chainer.links.NStepBiRNNReLU

method), 482
__iter__() (chainer.links.NStepBiRNNTanh method),

489
__iter__() (chainer.links.NStepGRU method), 496
__iter__() (chainer.links.NStepLSTM method), 503
__iter__() (chainer.links.NStepRNNReLU method),

510
__iter__() (chainer.links.NStepRNNTanh method),

517
__iter__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__le__() (chainer.AbstractSerializer method), 1028
__le__() (chainer.Chain method), 754
__le__() (chainer.ChainList method), 760
__le__() (chainer.Deserializer method), 1029
__le__() (chainer.DeviceResident method), 1033
__le__() (chainer.DictSummary method), 1054
__le__() (chainer.Distribution method), 842
__le__() (chainer.Function method), 287
__le__() (chainer.FunctionAdapter method), 291
__le__() (chainer.FunctionHook method), 311
__le__() (chainer.FunctionNode method), 297
__le__() (chainer.GradientMethod method), 884
__le__() (chainer.Initializer method), 892
__le__() (chainer.Link method), 747
__le__() (chainer.LinkHook method), 776
__le__() (chainer.Optimizer method), 878
__le__() (chainer.Parameter method), 144
__le__() (chainer.Reporter method), 1051
__le__() (chainer.Sequential method), 769
__le__() (chainer.Serializer method), 1027
__le__() (chainer.Summary method), 1053
__le__() (chainer.UpdateRule method), 881
__le__() (chainer.Variable method), 135
__le__() (chainer.backend.ChainerxDevice method),

1039
__le__() (chainer.backend.CpuDevice method), 1035
__le__() (chainer.backend.Device method), 1031

Index 1297



Chainer Documentation, Release 6.5.0

__le__() (chainer.backend.GpuDevice method), 1037
__le__() (chainer.backend.Intel64Device method),

1038
__le__() (chainer.computational_graph.ComputationalGraph

method), 1069
__le__() (chainer.configuration.GlobalConfig

method), 1062
__le__() (chainer.configuration.LocalConfig method),

1063
__le__() (chainer.dataset.ConcatWithAsyncTransfer

method), 979
__le__() (chainer.dataset.DatasetMixin method), 975
__le__() (chainer.dataset.Iterator method), 976
__le__() (chainer.datasets.ConcatenatedDataset

method), 985
__le__() (chainer.datasets.DictDataset method), 982
__le__() (chainer.datasets.ImageDataset method),

992
__le__() (chainer.datasets.LabeledImageDataset

method), 997
__le__() (chainer.datasets.LabeledZippedImageDataset

method), 999
__le__() (chainer.datasets.MultiZippedImageDataset

method), 995
__le__() (chainer.datasets.PickleDataset method),

1002
__le__() (chainer.datasets.PickleDatasetWriter

method), 1003
__le__() (chainer.datasets.SubDataset method), 987
__le__() (chainer.datasets.TextDataset method), 1001
__le__() (chainer.datasets.TransformDataset

method), 990
__le__() (chainer.datasets.TupleDataset method), 983
__le__() (chainer.datasets.ZippedImageDataset

method), 994
__le__() (chainer.device_resident.DeviceResidentsVisitor

method), 1034
__le__() (chainer.distributions.Bernoulli method),

779
__le__() (chainer.distributions.Beta method), 782
__le__() (chainer.distributions.Categorical method),

785
__le__() (chainer.distributions.Cauchy method), 789
__le__() (chainer.distributions.Chisquare method),

792
__le__() (chainer.distributions.Dirichlet method), 795
__le__() (chainer.distributions.Exponential method),

798
__le__() (chainer.distributions.Gamma method), 801
__le__() (chainer.distributions.Geometric method),

804
__le__() (chainer.distributions.Gumbel method), 807
__le__() (chainer.distributions.Independent method),

810

__le__() (chainer.distributions.Laplace method), 814
__le__() (chainer.distributions.LogNormal method),

817
__le__() (chainer.distributions.MultivariateNormal

method), 820
__le__() (chainer.distributions.Normal method), 824
__le__() (chainer.distributions.OneHotCategorical

method), 827
__le__() (chainer.distributions.Pareto method), 830
__le__() (chainer.distributions.Poisson method), 833
__le__() (chainer.distributions.Uniform method), 836
__le__() (chainer.function_hooks.CUDAProfileHook

method), 302
__le__() (chainer.function_hooks.CupyMemoryProfileHook

method), 304
__le__() (chainer.function_hooks.PrintHook method),

306
__le__() (chainer.function_hooks.TimerHook

method), 308
__le__() (chainer.initializers.Constant method), 894
__le__() (chainer.initializers.GlorotNormal method),

898
__le__() (chainer.initializers.GlorotUniform method),

902
__le__() (chainer.initializers.HeNormal method), 899
__le__() (chainer.initializers.HeUniform method),

903
__le__() (chainer.initializers.Identity method), 893
__le__() (chainer.initializers.LeCunNormal method),

898
__le__() (chainer.initializers.LeCunUniform method),

902
__le__() (chainer.initializers.NaN method), 896
__le__() (chainer.initializers.Normal method), 897
__le__() (chainer.initializers.One method), 895
__le__() (chainer.initializers.Orthogonal method),

900
__le__() (chainer.initializers.Uniform method), 901
__le__() (chainer.initializers.Zero method), 895
__le__() (chainer.iterators.DaliIterator method),

1017
__le__() (chainer.iterators.MultiprocessIterator

method), 1013
__le__() (chainer.iterators.MultithreadIterator

method), 1015
__le__() (chainer.iterators.OrderSampler method),

1018
__le__() (chainer.iterators.SerialIterator method),

1011
__le__() (chainer.iterators.ShuffleOrderSampler

method), 1019
__le__() (chainer.link_hooks.SpectralNormalization

method), 772
__le__() (chainer.link_hooks.TimerHook method),

1298 Index



Chainer Documentation, Release 6.5.0

774
__le__() (chainer.links.BatchNormalization method),

589
__le__() (chainer.links.BatchRenormalization

method), 595
__le__() (chainer.links.Bias method), 317
__le__() (chainer.links.Bilinear method), 324
__le__() (chainer.links.BinaryHierarchicalSoftmax

method), 621
__le__() (chainer.links.BlackOut method), 627
__le__() (chainer.links.CRF1d method), 633
__le__() (chainer.links.ChildSumTreeLSTM method),

330
__le__() (chainer.links.Classifier method), 672
__le__() (chainer.links.Convolution1D method), 336
__le__() (chainer.links.Convolution2D method), 343
__le__() (chainer.links.Convolution3D method), 349
__le__() (chainer.links.ConvolutionND method), 356
__le__() (chainer.links.Deconvolution1D method),

362
__le__() (chainer.links.Deconvolution2D method),

369
__le__() (chainer.links.Deconvolution3D method),

375
__le__() (chainer.links.DeconvolutionND method),

382
__le__() (chainer.links.DecorrelatedBatchNormalization

method), 602
__le__() (chainer.links.DeformableConvolution2D

method), 389
__le__() (chainer.links.DepthwiseConvolution2D

method), 395
__le__() (chainer.links.DilatedConvolution2D

method), 402
__le__() (chainer.links.EmbedID method), 408
__le__() (chainer.links.GRU method), 414
__le__() (chainer.links.GoogLeNet method), 695
__le__() (chainer.links.GroupNormalization method),

608
__le__() (chainer.links.Highway method), 421
__le__() (chainer.links.Inception method), 427
__le__() (chainer.links.InceptionBN method), 433
__le__() (chainer.links.LSTM method), 454
__le__() (chainer.links.LayerNormalization method),

615
__le__() (chainer.links.Linear method), 440
__le__() (chainer.links.LocalConvolution2D method),

446
__le__() (chainer.links.MLPConvolution2D method),

461
__le__() (chainer.links.Maxout method), 659
__le__() (chainer.links.NStepBiGRU method), 474
__le__() (chainer.links.NStepBiLSTM method), 481
__le__() (chainer.links.NStepBiRNNReLU method),

488
__le__() (chainer.links.NStepBiRNNTanh method),

495
__le__() (chainer.links.NStepGRU method), 502
__le__() (chainer.links.NStepLSTM method), 509
__le__() (chainer.links.NStepRNNReLU method), 516
__le__() (chainer.links.NStepRNNTanh method), 523
__le__() (chainer.links.NaryTreeLSTM method), 467
__le__() (chainer.links.NegativeSampling method),

665
__le__() (chainer.links.PReLU method), 646
__le__() (chainer.links.Parameter method), 529
__le__() (chainer.links.ResNet101Layers method),

718
__le__() (chainer.links.ResNet152Layers method),

726
__le__() (chainer.links.ResNet50Layers method), 711
__le__() (chainer.links.Scale method), 535
__le__() (chainer.links.SimplifiedDropconnect

method), 639
__le__() (chainer.links.StatefulGRU method), 542
__le__() (chainer.links.StatefulMGU method), 555
__le__() (chainer.links.StatefulPeepholeLSTM

method), 567
__le__() (chainer.links.StatefulZoneoutLSTM

method), 573
__le__() (chainer.links.StatelessGRU method), 549
__le__() (chainer.links.StatelessLSTM method), 580
__le__() (chainer.links.StatelessMGU method), 560
__le__() (chainer.links.Swish method), 653
__le__() (chainer.links.TheanoFunction method), 733
__le__() (chainer.links.VGG16Layers method), 680
__le__() (chainer.links.VGG19Layers method), 687
__le__() (chainer.links.caffe.CaffeFunction method),

740
__le__() (chainer.links.model.vision.resnet.ResNetLayers

method), 703
__le__() (chainer.optimizer.Hyperparameter method),

882
__le__() (chainer.optimizer_hooks.GradientClipping

method), 887
__le__() (chainer.optimizer_hooks.GradientHardClipping

method), 888
__le__() (chainer.optimizer_hooks.GradientLARS

method), 891
__le__() (chainer.optimizer_hooks.GradientNoise

method), 889
__le__() (chainer.optimizer_hooks.Lasso method),

887
__le__() (chainer.optimizer_hooks.WeightDecay

method), 886
__le__() (chainer.optimizers.AdaDelta method), 846
__le__() (chainer.optimizers.AdaGrad method), 848
__le__() (chainer.optimizers.Adam method), 852

Index 1299



Chainer Documentation, Release 6.5.0

__le__() (chainer.optimizers.CorrectedMomentumSGD
method), 855

__le__() (chainer.optimizers.MSVAG method), 864
__le__() (chainer.optimizers.MomentumSGD

method), 858
__le__() (chainer.optimizers.NesterovAG method),

861
__le__() (chainer.optimizers.RMSprop method), 867
__le__() (chainer.optimizers.RMSpropGraves

method), 870
__le__() (chainer.optimizers.SGD method), 872
__le__() (chainer.optimizers.SMORMS3 method), 875
__le__() (chainer.serializers.DictionarySerializer

method), 1020
__le__() (chainer.serializers.HDF5Deserializer

method), 1025
__le__() (chainer.serializers.HDF5Serializer

method), 1024
__le__() (chainer.serializers.NpzDeserializer

method), 1022
__le__() (chainer.testing.FunctionTestCase method),

1095
__le__() (chainer.testing.LinkInitializersTestCase

method), 1105
__le__() (chainer.testing.LinkTestCase method), 1113
__le__() (chainer.training.Extension method), 924
__le__() (chainer.training.Trainer method), 914
__le__() (chainer.training.Updater method), 916
__le__() (chainer.training.extensions.DumpGraph

method), 961
__le__() (chainer.training.extensions.Evaluator

method), 928
__le__() (chainer.training.extensions.ExponentialShift

method), 937
__le__() (chainer.training.extensions.FailOnNonNumber

method), 932
__le__() (chainer.training.extensions.InverseShift

method), 939
__le__() (chainer.training.extensions.LinearShift

method), 941
__le__() (chainer.training.extensions.LogReport

method), 954
__le__() (chainer.training.extensions.MicroAverage

method), 930
__le__() (chainer.training.extensions.MultistepShift

method), 942
__le__() (chainer.training.extensions.ParameterStatistics

method), 935
__le__() (chainer.training.extensions.PlotReport

method), 956
__le__() (chainer.training.extensions.PolynomialShift

method), 944
__le__() (chainer.training.extensions.PrintReport

method), 950

__le__() (chainer.training.extensions.ProgressBar
method), 952

__le__() (chainer.training.extensions.StepShift
method), 948

__le__() (chainer.training.extensions.VariableStatisticsPlot
method), 959

__le__() (chainer.training.extensions.WarmupShift
method), 946

__le__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 911

__le__() (chainer.training.extensions.snapshot_writers.ProcessWriter
method), 908

__le__() (chainer.training.extensions.snapshot_writers.QueueWriter
method), 909

__le__() (chainer.training.extensions.snapshot_writers.SimpleWriter
method), 906

__le__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 910

__le__() (chainer.training.extensions.snapshot_writers.ThreadWriter
method), 907

__le__() (chainer.training.extensions.snapshot_writers.Writer
method), 905

__le__() (chainer.training.extensions.unchain_variables
method), 965

__le__() (chainer.training.triggers.BestValueTrigger
method), 967

__le__() (chainer.training.triggers.EarlyStoppingTrigger
method), 968

__le__() (chainer.training.triggers.IntervalTrigger
method), 969

__le__() (chainer.training.triggers.ManualScheduleTrigger
method), 970

__le__() (chainer.training.triggers.MaxValueTrigger
method), 971

__le__() (chainer.training.triggers.MinValueTrigger
method), 971

__le__() (chainer.training.triggers.OnceTrigger
method), 972

__le__() (chainer.training.triggers.TimeTrigger
method), 973

__le__() (chainer.training.updaters.MultiprocessParallelUpdater
method), 922

__le__() (chainer.training.updaters.ParallelUpdater
method), 920

__le__() (chainer.training.updaters.StandardUpdater
method), 918

__le__() (chainer.utils.CooMatrix method), 1055
__le__() (chainer.utils.WalkerAlias method), 1048
__le__() (chainer.utils.type_check.Expr method),

1080
__le__() (chainer.utils.type_check.TypeInfo method),

1081
__le__() (chainer.utils.type_check.TypeInfoTuple

method), 1082

1300 Index



Chainer Documentation, Release 6.5.0

__le__() (chainer.utils.type_check.Variable method),
1083

__le__() (chainer.variable.VariableNode method),
149

__le__() (chainerx.Backend method), 1173
__le__() (chainerx.Context method), 1172
__le__() (chainerx.Device method), 1174
__le__() (chainerx.ndarray method), 1132
__len__() (chainer.ChainList method), 755
__len__() (chainer.Parameter method), 141
__len__() (chainer.Sequential method), 763
__len__() (chainer.Variable method), 133
__len__() (chainer.dataset.DatasetMixin method),

974
__len__() (chainer.datasets.ConcatenatedDataset

method), 984
__len__() (chainer.datasets.DictDataset method), 982
__len__() (chainer.datasets.ImageDataset method),

992
__len__() (chainer.datasets.LabeledImageDataset

method), 997
__len__() (chainer.datasets.LabeledZippedImageDataset

method), 998
__len__() (chainer.datasets.MultiZippedImageDataset

method), 995
__len__() (chainer.datasets.PickleDataset method),

1002
__len__() (chainer.datasets.SubDataset method), 986
__len__() (chainer.datasets.TextDataset method),

1000
__len__() (chainer.datasets.TransformDataset

method), 990
__len__() (chainer.datasets.TupleDataset method),

983
__len__() (chainer.datasets.ZippedImageDataset

method), 993
__len__() (chainer.links.MLPConvolution2D

method), 455
__len__() (chainer.links.NStepBiGRU method), 468
__len__() (chainer.links.NStepBiLSTM method), 475
__len__() (chainer.links.NStepBiRNNReLU method),

482
__len__() (chainer.links.NStepBiRNNTanh method),

489
__len__() (chainer.links.NStepGRU method), 496
__len__() (chainer.links.NStepLSTM method), 503
__len__() (chainer.links.NStepRNNReLU method),

510
__len__() (chainer.links.NStepRNNTanh method), 517
__len__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__len__() (chainerx.ndarray method), 1129
__lt__() (chainer.AbstractSerializer method), 1028
__lt__() (chainer.Chain method), 754

__lt__() (chainer.ChainList method), 760
__lt__() (chainer.Deserializer method), 1029
__lt__() (chainer.DeviceResident method), 1033
__lt__() (chainer.DictSummary method), 1054
__lt__() (chainer.Distribution method), 842
__lt__() (chainer.Function method), 287
__lt__() (chainer.FunctionAdapter method), 291
__lt__() (chainer.FunctionHook method), 311
__lt__() (chainer.FunctionNode method), 297
__lt__() (chainer.GradientMethod method), 884
__lt__() (chainer.Initializer method), 892
__lt__() (chainer.Link method), 747
__lt__() (chainer.LinkHook method), 776
__lt__() (chainer.Optimizer method), 878
__lt__() (chainer.Parameter method), 144
__lt__() (chainer.Reporter method), 1051
__lt__() (chainer.Sequential method), 769
__lt__() (chainer.Serializer method), 1027
__lt__() (chainer.Summary method), 1053
__lt__() (chainer.UpdateRule method), 881
__lt__() (chainer.Variable method), 135
__lt__() (chainer.backend.ChainerxDevice method),

1039
__lt__() (chainer.backend.CpuDevice method), 1035
__lt__() (chainer.backend.Device method), 1031
__lt__() (chainer.backend.GpuDevice method), 1037
__lt__() (chainer.backend.Intel64Device method),

1038
__lt__() (chainer.computational_graph.ComputationalGraph

method), 1069
__lt__() (chainer.configuration.GlobalConfig

method), 1062
__lt__() (chainer.configuration.LocalConfig method),

1063
__lt__() (chainer.dataset.ConcatWithAsyncTransfer

method), 979
__lt__() (chainer.dataset.DatasetMixin method), 975
__lt__() (chainer.dataset.Iterator method), 976
__lt__() (chainer.datasets.ConcatenatedDataset

method), 985
__lt__() (chainer.datasets.DictDataset method), 982
__lt__() (chainer.datasets.ImageDataset method),

992
__lt__() (chainer.datasets.LabeledImageDataset

method), 997
__lt__() (chainer.datasets.LabeledZippedImageDataset

method), 999
__lt__() (chainer.datasets.MultiZippedImageDataset

method), 995
__lt__() (chainer.datasets.PickleDataset method),

1002
__lt__() (chainer.datasets.PickleDatasetWriter

method), 1003
__lt__() (chainer.datasets.SubDataset method), 987

Index 1301



Chainer Documentation, Release 6.5.0

__lt__() (chainer.datasets.TextDataset method), 1001
__lt__() (chainer.datasets.TransformDataset

method), 990
__lt__() (chainer.datasets.TupleDataset method), 983
__lt__() (chainer.datasets.ZippedImageDataset

method), 994
__lt__() (chainer.device_resident.DeviceResidentsVisitor

method), 1034
__lt__() (chainer.distributions.Bernoulli method),

779
__lt__() (chainer.distributions.Beta method), 782
__lt__() (chainer.distributions.Categorical method),

785
__lt__() (chainer.distributions.Cauchy method), 789
__lt__() (chainer.distributions.Chisquare method),

792
__lt__() (chainer.distributions.Dirichlet method), 795
__lt__() (chainer.distributions.Exponential method),

798
__lt__() (chainer.distributions.Gamma method), 801
__lt__() (chainer.distributions.Geometric method),

804
__lt__() (chainer.distributions.Gumbel method), 807
__lt__() (chainer.distributions.Independent method),

810
__lt__() (chainer.distributions.Laplace method), 814
__lt__() (chainer.distributions.LogNormal method),

817
__lt__() (chainer.distributions.MultivariateNormal

method), 820
__lt__() (chainer.distributions.Normal method), 824
__lt__() (chainer.distributions.OneHotCategorical

method), 826
__lt__() (chainer.distributions.Pareto method), 830
__lt__() (chainer.distributions.Poisson method), 833
__lt__() (chainer.distributions.Uniform method), 836
__lt__() (chainer.function_hooks.CUDAProfileHook

method), 302
__lt__() (chainer.function_hooks.CupyMemoryProfileHook

method), 304
__lt__() (chainer.function_hooks.PrintHook method),

306
__lt__() (chainer.function_hooks.TimerHook

method), 308
__lt__() (chainer.initializers.Constant method), 894
__lt__() (chainer.initializers.GlorotNormal method),

898
__lt__() (chainer.initializers.GlorotUniform method),

902
__lt__() (chainer.initializers.HeNormal method), 899
__lt__() (chainer.initializers.HeUniform method),

903
__lt__() (chainer.initializers.Identity method), 893
__lt__() (chainer.initializers.LeCunNormal method),

897
__lt__() (chainer.initializers.LeCunUniform method),

901
__lt__() (chainer.initializers.NaN method), 896
__lt__() (chainer.initializers.Normal method), 897
__lt__() (chainer.initializers.One method), 895
__lt__() (chainer.initializers.Orthogonal method),

900
__lt__() (chainer.initializers.Uniform method), 901
__lt__() (chainer.initializers.Zero method), 895
__lt__() (chainer.iterators.DaliIterator method),

1016
__lt__() (chainer.iterators.MultiprocessIterator

method), 1013
__lt__() (chainer.iterators.MultithreadIterator

method), 1015
__lt__() (chainer.iterators.OrderSampler method),

1018
__lt__() (chainer.iterators.SerialIterator method),

1011
__lt__() (chainer.iterators.ShuffleOrderSampler

method), 1018
__lt__() (chainer.link_hooks.SpectralNormalization

method), 772
__lt__() (chainer.link_hooks.TimerHook method),

774
__lt__() (chainer.links.BatchNormalization method),

589
__lt__() (chainer.links.BatchRenormalization

method), 595
__lt__() (chainer.links.Bias method), 317
__lt__() (chainer.links.Bilinear method), 324
__lt__() (chainer.links.BinaryHierarchicalSoftmax

method), 621
__lt__() (chainer.links.BlackOut method), 627
__lt__() (chainer.links.CRF1d method), 633
__lt__() (chainer.links.ChildSumTreeLSTM method),

330
__lt__() (chainer.links.Classifier method), 672
__lt__() (chainer.links.Convolution1D method), 336
__lt__() (chainer.links.Convolution2D method), 343
__lt__() (chainer.links.Convolution3D method), 349
__lt__() (chainer.links.ConvolutionND method), 356
__lt__() (chainer.links.Deconvolution1D method),

362
__lt__() (chainer.links.Deconvolution2D method),

369
__lt__() (chainer.links.Deconvolution3D method),

375
__lt__() (chainer.links.DeconvolutionND method),

382
__lt__() (chainer.links.DecorrelatedBatchNormalization

method), 602
__lt__() (chainer.links.DeformableConvolution2D

1302 Index



Chainer Documentation, Release 6.5.0

method), 389
__lt__() (chainer.links.DepthwiseConvolution2D

method), 395
__lt__() (chainer.links.DilatedConvolution2D

method), 402
__lt__() (chainer.links.EmbedID method), 408
__lt__() (chainer.links.GRU method), 414
__lt__() (chainer.links.GoogLeNet method), 695
__lt__() (chainer.links.GroupNormalization method),

608
__lt__() (chainer.links.Highway method), 421
__lt__() (chainer.links.Inception method), 427
__lt__() (chainer.links.InceptionBN method), 433
__lt__() (chainer.links.LSTM method), 454
__lt__() (chainer.links.LayerNormalization method),

615
__lt__() (chainer.links.Linear method), 440
__lt__() (chainer.links.LocalConvolution2D method),

446
__lt__() (chainer.links.MLPConvolution2D method),

461
__lt__() (chainer.links.Maxout method), 659
__lt__() (chainer.links.NStepBiGRU method), 474
__lt__() (chainer.links.NStepBiLSTM method), 481
__lt__() (chainer.links.NStepBiRNNReLU method),

488
__lt__() (chainer.links.NStepBiRNNTanh method),

495
__lt__() (chainer.links.NStepGRU method), 502
__lt__() (chainer.links.NStepLSTM method), 509
__lt__() (chainer.links.NStepRNNReLU method), 516
__lt__() (chainer.links.NStepRNNTanh method), 523
__lt__() (chainer.links.NaryTreeLSTM method), 467
__lt__() (chainer.links.NegativeSampling method),

665
__lt__() (chainer.links.PReLU method), 646
__lt__() (chainer.links.Parameter method), 529
__lt__() (chainer.links.ResNet101Layers method),

718
__lt__() (chainer.links.ResNet152Layers method),

726
__lt__() (chainer.links.ResNet50Layers method), 711
__lt__() (chainer.links.Scale method), 535
__lt__() (chainer.links.SimplifiedDropconnect

method), 639
__lt__() (chainer.links.StatefulGRU method), 542
__lt__() (chainer.links.StatefulMGU method), 555
__lt__() (chainer.links.StatefulPeepholeLSTM

method), 567
__lt__() (chainer.links.StatefulZoneoutLSTM

method), 573
__lt__() (chainer.links.StatelessGRU method), 549
__lt__() (chainer.links.StatelessLSTM method), 580
__lt__() (chainer.links.StatelessMGU method), 560

__lt__() (chainer.links.Swish method), 652
__lt__() (chainer.links.TheanoFunction method), 733
__lt__() (chainer.links.VGG16Layers method), 680
__lt__() (chainer.links.VGG19Layers method), 687
__lt__() (chainer.links.caffe.CaffeFunction method),

740
__lt__() (chainer.links.model.vision.resnet.ResNetLayers

method), 703
__lt__() (chainer.optimizer.Hyperparameter method),

882
__lt__() (chainer.optimizer_hooks.GradientClipping

method), 887
__lt__() (chainer.optimizer_hooks.GradientHardClipping

method), 888
__lt__() (chainer.optimizer_hooks.GradientLARS

method), 891
__lt__() (chainer.optimizer_hooks.GradientNoise

method), 889
__lt__() (chainer.optimizer_hooks.Lasso method),

886
__lt__() (chainer.optimizer_hooks.WeightDecay

method), 886
__lt__() (chainer.optimizers.AdaDelta method), 846
__lt__() (chainer.optimizers.AdaGrad method), 848
__lt__() (chainer.optimizers.Adam method), 852
__lt__() (chainer.optimizers.CorrectedMomentumSGD

method), 855
__lt__() (chainer.optimizers.MSVAG method), 864
__lt__() (chainer.optimizers.MomentumSGD

method), 858
__lt__() (chainer.optimizers.NesterovAG method),

861
__lt__() (chainer.optimizers.RMSprop method), 867
__lt__() (chainer.optimizers.RMSpropGraves

method), 870
__lt__() (chainer.optimizers.SGD method), 872
__lt__() (chainer.optimizers.SMORMS3 method), 875
__lt__() (chainer.serializers.DictionarySerializer

method), 1020
__lt__() (chainer.serializers.HDF5Deserializer

method), 1025
__lt__() (chainer.serializers.HDF5Serializer

method), 1024
__lt__() (chainer.serializers.NpzDeserializer

method), 1022
__lt__() (chainer.testing.FunctionTestCase method),

1095
__lt__() (chainer.testing.LinkInitializersTestCase

method), 1105
__lt__() (chainer.testing.LinkTestCase method), 1113
__lt__() (chainer.training.Extension method), 924
__lt__() (chainer.training.Trainer method), 914
__lt__() (chainer.training.Updater method), 916
__lt__() (chainer.training.extensions.DumpGraph

Index 1303



Chainer Documentation, Release 6.5.0

method), 961
__lt__() (chainer.training.extensions.Evaluator

method), 928
__lt__() (chainer.training.extensions.ExponentialShift

method), 937
__lt__() (chainer.training.extensions.FailOnNonNumber

method), 932
__lt__() (chainer.training.extensions.InverseShift

method), 939
__lt__() (chainer.training.extensions.LinearShift

method), 941
__lt__() (chainer.training.extensions.LogReport

method), 954
__lt__() (chainer.training.extensions.MicroAverage

method), 930
__lt__() (chainer.training.extensions.MultistepShift

method), 942
__lt__() (chainer.training.extensions.ParameterStatistics

method), 934
__lt__() (chainer.training.extensions.PlotReport

method), 956
__lt__() (chainer.training.extensions.PolynomialShift

method), 944
__lt__() (chainer.training.extensions.PrintReport

method), 950
__lt__() (chainer.training.extensions.ProgressBar

method), 952
__lt__() (chainer.training.extensions.StepShift

method), 948
__lt__() (chainer.training.extensions.VariableStatisticsPlot

method), 958
__lt__() (chainer.training.extensions.WarmupShift

method), 946
__lt__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 911
__lt__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 908
__lt__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
__lt__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 906
__lt__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
__lt__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 907
__lt__() (chainer.training.extensions.snapshot_writers.Writer

method), 905
__lt__() (chainer.training.extensions.unchain_variables

method), 965
__lt__() (chainer.training.triggers.BestValueTrigger

method), 967
__lt__() (chainer.training.triggers.EarlyStoppingTrigger

method), 968
__lt__() (chainer.training.triggers.IntervalTrigger

method), 969
__lt__() (chainer.training.triggers.ManualScheduleTrigger

method), 970
__lt__() (chainer.training.triggers.MaxValueTrigger

method), 970
__lt__() (chainer.training.triggers.MinValueTrigger

method), 971
__lt__() (chainer.training.triggers.OnceTrigger

method), 972
__lt__() (chainer.training.triggers.TimeTrigger

method), 973
__lt__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
__lt__() (chainer.training.updaters.ParallelUpdater

method), 920
__lt__() (chainer.training.updaters.StandardUpdater

method), 918
__lt__() (chainer.utils.CooMatrix method), 1055
__lt__() (chainer.utils.WalkerAlias method), 1048
__lt__() (chainer.utils.type_check.Expr method),

1080
__lt__() (chainer.utils.type_check.TypeInfo method),

1081
__lt__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__lt__() (chainer.utils.type_check.Variable method),

1083
__lt__() (chainer.variable.VariableNode method),

149
__lt__() (chainerx.Backend method), 1173
__lt__() (chainerx.Context method), 1172
__lt__() (chainerx.Device method), 1174
__lt__() (chainerx.ndarray method), 1132
__matmul__() (chainer.Parameter method), 146
__matmul__() (chainer.Variable method), 137
__mul__() (chainer.Parameter method), 145
__mul__() (chainer.Variable method), 136
__mul__() (chainer.utils.type_check.Expr method),

1080
__mul__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__mul__() (chainer.utils.type_check.Variable method),

1083
__mul__() (chainerx.ndarray method), 1132
__ne__() (chainer.AbstractSerializer method), 1028
__ne__() (chainer.Chain method), 754
__ne__() (chainer.ChainList method), 760
__ne__() (chainer.Deserializer method), 1029
__ne__() (chainer.DeviceResident method), 1033
__ne__() (chainer.DictSummary method), 1053
__ne__() (chainer.Distribution method), 842
__ne__() (chainer.Function method), 286
__ne__() (chainer.FunctionAdapter method), 291
__ne__() (chainer.FunctionHook method), 311

1304 Index



Chainer Documentation, Release 6.5.0

__ne__() (chainer.FunctionNode method), 297
__ne__() (chainer.GradientMethod method), 884
__ne__() (chainer.Initializer method), 892
__ne__() (chainer.Link method), 747
__ne__() (chainer.LinkHook method), 776
__ne__() (chainer.Optimizer method), 878
__ne__() (chainer.Parameter method), 144
__ne__() (chainer.Reporter method), 1050
__ne__() (chainer.Sequential method), 768
__ne__() (chainer.Serializer method), 1027
__ne__() (chainer.Summary method), 1053
__ne__() (chainer.UpdateRule method), 881
__ne__() (chainer.Variable method), 135
__ne__() (chainer.backend.ChainerxDevice method),

1039
__ne__() (chainer.backend.CpuDevice method), 1035
__ne__() (chainer.backend.Device method), 1031
__ne__() (chainer.backend.GpuDevice method), 1036
__ne__() (chainer.backend.Intel64Device method),

1038
__ne__() (chainer.computational_graph.ComputationalGraph

method), 1069
__ne__() (chainer.configuration.GlobalConfig

method), 1062
__ne__() (chainer.configuration.LocalConfig method),

1063
__ne__() (chainer.dataset.ConcatWithAsyncTransfer

method), 979
__ne__() (chainer.dataset.DatasetMixin method), 975
__ne__() (chainer.dataset.Iterator method), 976
__ne__() (chainer.datasets.ConcatenatedDataset

method), 985
__ne__() (chainer.datasets.DictDataset method), 982
__ne__() (chainer.datasets.ImageDataset method),

992
__ne__() (chainer.datasets.LabeledImageDataset

method), 997
__ne__() (chainer.datasets.LabeledZippedImageDataset

method), 999
__ne__() (chainer.datasets.MultiZippedImageDataset

method), 995
__ne__() (chainer.datasets.PickleDataset method),

1002
__ne__() (chainer.datasets.PickleDatasetWriter

method), 1003
__ne__() (chainer.datasets.SubDataset method), 987
__ne__() (chainer.datasets.TextDataset method), 1001
__ne__() (chainer.datasets.TransformDataset

method), 990
__ne__() (chainer.datasets.TupleDataset method), 983
__ne__() (chainer.datasets.ZippedImageDataset

method), 993
__ne__() (chainer.device_resident.DeviceResidentsVisitor

method), 1034

__ne__() (chainer.distributions.Bernoulli method),
779

__ne__() (chainer.distributions.Beta method), 782
__ne__() (chainer.distributions.Categorical method),

785
__ne__() (chainer.distributions.Cauchy method), 789
__ne__() (chainer.distributions.Chisquare method),

792
__ne__() (chainer.distributions.Dirichlet method), 795
__ne__() (chainer.distributions.Exponential method),

798
__ne__() (chainer.distributions.Gamma method), 801
__ne__() (chainer.distributions.Geometric method),

804
__ne__() (chainer.distributions.Gumbel method), 807
__ne__() (chainer.distributions.Independent method),

810
__ne__() (chainer.distributions.Laplace method), 814
__ne__() (chainer.distributions.LogNormal method),

817
__ne__() (chainer.distributions.MultivariateNormal

method), 820
__ne__() (chainer.distributions.Normal method), 823
__ne__() (chainer.distributions.OneHotCategorical

method), 826
__ne__() (chainer.distributions.Pareto method), 830
__ne__() (chainer.distributions.Poisson method), 833
__ne__() (chainer.distributions.Uniform method), 836
__ne__() (chainer.function_hooks.CUDAProfileHook

method), 301
__ne__() (chainer.function_hooks.CupyMemoryProfileHook

method), 304
__ne__() (chainer.function_hooks.PrintHook method),

306
__ne__() (chainer.function_hooks.TimerHook

method), 308
__ne__() (chainer.initializers.Constant method), 894
__ne__() (chainer.initializers.GlorotNormal method),

898
__ne__() (chainer.initializers.GlorotUniform method),

902
__ne__() (chainer.initializers.HeNormal method), 899
__ne__() (chainer.initializers.HeUniform method),

903
__ne__() (chainer.initializers.Identity method), 893
__ne__() (chainer.initializers.LeCunNormal method),

897
__ne__() (chainer.initializers.LeCunUniform method),

901
__ne__() (chainer.initializers.NaN method), 896
__ne__() (chainer.initializers.Normal method), 897
__ne__() (chainer.initializers.One method), 895
__ne__() (chainer.initializers.Orthogonal method),

900

Index 1305



Chainer Documentation, Release 6.5.0

__ne__() (chainer.initializers.Uniform method), 901
__ne__() (chainer.initializers.Zero method), 894
__ne__() (chainer.iterators.DaliIterator method),

1016
__ne__() (chainer.iterators.MultiprocessIterator

method), 1013
__ne__() (chainer.iterators.MultithreadIterator

method), 1015
__ne__() (chainer.iterators.OrderSampler method),

1018
__ne__() (chainer.iterators.SerialIterator method),

1011
__ne__() (chainer.iterators.ShuffleOrderSampler

method), 1018
__ne__() (chainer.link_hooks.SpectralNormalization

method), 772
__ne__() (chainer.link_hooks.TimerHook method),

774
__ne__() (chainer.links.BatchNormalization method),

589
__ne__() (chainer.links.BatchRenormalization

method), 595
__ne__() (chainer.links.Bias method), 317
__ne__() (chainer.links.Bilinear method), 324
__ne__() (chainer.links.BinaryHierarchicalSoftmax

method), 621
__ne__() (chainer.links.BlackOut method), 627
__ne__() (chainer.links.CRF1d method), 633
__ne__() (chainer.links.ChildSumTreeLSTM method),

330
__ne__() (chainer.links.Classifier method), 672
__ne__() (chainer.links.Convolution1D method), 336
__ne__() (chainer.links.Convolution2D method), 343
__ne__() (chainer.links.Convolution3D method), 349
__ne__() (chainer.links.ConvolutionND method), 356
__ne__() (chainer.links.Deconvolution1D method),

362
__ne__() (chainer.links.Deconvolution2D method),

369
__ne__() (chainer.links.Deconvolution3D method),

375
__ne__() (chainer.links.DeconvolutionND method),

382
__ne__() (chainer.links.DecorrelatedBatchNormalization

method), 602
__ne__() (chainer.links.DeformableConvolution2D

method), 389
__ne__() (chainer.links.DepthwiseConvolution2D

method), 395
__ne__() (chainer.links.DilatedConvolution2D

method), 402
__ne__() (chainer.links.EmbedID method), 408
__ne__() (chainer.links.GRU method), 414
__ne__() (chainer.links.GoogLeNet method), 695

__ne__() (chainer.links.GroupNormalization method),
608

__ne__() (chainer.links.Highway method), 421
__ne__() (chainer.links.Inception method), 427
__ne__() (chainer.links.InceptionBN method), 433
__ne__() (chainer.links.LSTM method), 454
__ne__() (chainer.links.LayerNormalization method),

615
__ne__() (chainer.links.Linear method), 440
__ne__() (chainer.links.LocalConvolution2D method),

446
__ne__() (chainer.links.MLPConvolution2D method),

460
__ne__() (chainer.links.Maxout method), 659
__ne__() (chainer.links.NStepBiGRU method), 474
__ne__() (chainer.links.NStepBiLSTM method), 481
__ne__() (chainer.links.NStepBiRNNReLU method),

488
__ne__() (chainer.links.NStepBiRNNTanh method),

495
__ne__() (chainer.links.NStepGRU method), 502
__ne__() (chainer.links.NStepLSTM method), 509
__ne__() (chainer.links.NStepRNNReLU method), 516
__ne__() (chainer.links.NStepRNNTanh method), 523
__ne__() (chainer.links.NaryTreeLSTM method), 467
__ne__() (chainer.links.NegativeSampling method),

665
__ne__() (chainer.links.PReLU method), 646
__ne__() (chainer.links.Parameter method), 529
__ne__() (chainer.links.ResNet101Layers method),

718
__ne__() (chainer.links.ResNet152Layers method),

725
__ne__() (chainer.links.ResNet50Layers method), 711
__ne__() (chainer.links.Scale method), 535
__ne__() (chainer.links.SimplifiedDropconnect

method), 639
__ne__() (chainer.links.StatefulGRU method), 542
__ne__() (chainer.links.StatefulMGU method), 555
__ne__() (chainer.links.StatefulPeepholeLSTM

method), 567
__ne__() (chainer.links.StatefulZoneoutLSTM

method), 573
__ne__() (chainer.links.StatelessGRU method), 549
__ne__() (chainer.links.StatelessLSTM method), 580
__ne__() (chainer.links.StatelessMGU method), 560
__ne__() (chainer.links.Swish method), 652
__ne__() (chainer.links.TheanoFunction method), 733
__ne__() (chainer.links.VGG16Layers method), 680
__ne__() (chainer.links.VGG19Layers method), 687
__ne__() (chainer.links.caffe.CaffeFunction method),

740
__ne__() (chainer.links.model.vision.resnet.ResNetLayers

method), 703

1306 Index



Chainer Documentation, Release 6.5.0

__ne__() (chainer.optimizer.Hyperparameter method),
881

__ne__() (chainer.optimizer_hooks.GradientClipping
method), 887

__ne__() (chainer.optimizer_hooks.GradientHardClipping
method), 888

__ne__() (chainer.optimizer_hooks.GradientLARS
method), 891

__ne__() (chainer.optimizer_hooks.GradientNoise
method), 889

__ne__() (chainer.optimizer_hooks.Lasso method),
886

__ne__() (chainer.optimizer_hooks.WeightDecay
method), 886

__ne__() (chainer.optimizers.AdaDelta method), 846
__ne__() (chainer.optimizers.AdaGrad method), 848
__ne__() (chainer.optimizers.Adam method), 852
__ne__() (chainer.optimizers.CorrectedMomentumSGD

method), 855
__ne__() (chainer.optimizers.MSVAG method), 864
__ne__() (chainer.optimizers.MomentumSGD

method), 858
__ne__() (chainer.optimizers.NesterovAG method),

861
__ne__() (chainer.optimizers.RMSprop method), 867
__ne__() (chainer.optimizers.RMSpropGraves

method), 870
__ne__() (chainer.optimizers.SGD method), 872
__ne__() (chainer.optimizers.SMORMS3 method), 875
__ne__() (chainer.serializers.DictionarySerializer

method), 1020
__ne__() (chainer.serializers.HDF5Deserializer

method), 1025
__ne__() (chainer.serializers.HDF5Serializer

method), 1024
__ne__() (chainer.serializers.NpzDeserializer

method), 1022
__ne__() (chainer.testing.FunctionTestCase method),

1095
__ne__() (chainer.testing.LinkInitializersTestCase

method), 1105
__ne__() (chainer.testing.LinkTestCase method), 1113
__ne__() (chainer.training.Extension method), 924
__ne__() (chainer.training.Trainer method), 914
__ne__() (chainer.training.Updater method), 916
__ne__() (chainer.training.extensions.DumpGraph

method), 961
__ne__() (chainer.training.extensions.Evaluator

method), 928
__ne__() (chainer.training.extensions.ExponentialShift

method), 937
__ne__() (chainer.training.extensions.FailOnNonNumber

method), 932
__ne__() (chainer.training.extensions.InverseShift

method), 939
__ne__() (chainer.training.extensions.LinearShift

method), 941
__ne__() (chainer.training.extensions.LogReport

method), 954
__ne__() (chainer.training.extensions.MicroAverage

method), 930
__ne__() (chainer.training.extensions.MultistepShift

method), 942
__ne__() (chainer.training.extensions.ParameterStatistics

method), 934
__ne__() (chainer.training.extensions.PlotReport

method), 956
__ne__() (chainer.training.extensions.PolynomialShift

method), 944
__ne__() (chainer.training.extensions.PrintReport

method), 950
__ne__() (chainer.training.extensions.ProgressBar

method), 952
__ne__() (chainer.training.extensions.StepShift

method), 948
__ne__() (chainer.training.extensions.VariableStatisticsPlot

method), 958
__ne__() (chainer.training.extensions.WarmupShift

method), 946
__ne__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 911
__ne__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 908
__ne__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
__ne__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 906
__ne__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
__ne__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 907
__ne__() (chainer.training.extensions.snapshot_writers.Writer

method), 905
__ne__() (chainer.training.extensions.unchain_variables

method), 965
__ne__() (chainer.training.triggers.BestValueTrigger

method), 967
__ne__() (chainer.training.triggers.EarlyStoppingTrigger

method), 968
__ne__() (chainer.training.triggers.IntervalTrigger

method), 969
__ne__() (chainer.training.triggers.ManualScheduleTrigger

method), 970
__ne__() (chainer.training.triggers.MaxValueTrigger

method), 970
__ne__() (chainer.training.triggers.MinValueTrigger

method), 971
__ne__() (chainer.training.triggers.OnceTrigger

Index 1307



Chainer Documentation, Release 6.5.0

method), 972
__ne__() (chainer.training.triggers.TimeTrigger

method), 973
__ne__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
__ne__() (chainer.training.updaters.ParallelUpdater

method), 920
__ne__() (chainer.training.updaters.StandardUpdater

method), 918
__ne__() (chainer.utils.CooMatrix method), 1055
__ne__() (chainer.utils.WalkerAlias method), 1048
__ne__() (chainer.utils.type_check.Expr method),

1080
__ne__() (chainer.utils.type_check.TypeInfo method),

1081
__ne__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__ne__() (chainer.utils.type_check.Variable method),

1083
__ne__() (chainer.variable.VariableNode method),

149
__ne__() (chainerx.Backend method), 1173
__ne__() (chainerx.Context method), 1172
__ne__() (chainerx.Device method), 1174
__ne__() (chainerx.ndarray method), 1132
__neg__() (chainer.Parameter method), 144
__neg__() (chainer.Variable method), 136
__neg__() (chainer.utils.type_check.Expr method),

1080
__neg__() (chainer.utils.type_check.Variable method),

1083
__neg__() (chainerx.ndarray method), 1132
__next__() (chainer.dataset.Iterator method), 976
__next__() (chainer.iterators.DaliIterator method),

1016
__next__() (chainer.iterators.MultiprocessIterator

method), 1013
__next__() (chainer.iterators.MultithreadIterator

method), 1014
__next__() (chainer.iterators.SerialIterator method),

1010
__nonzero__() (chainer.Parameter method), 144
__nonzero__() (chainer.Variable method), 136
__nonzero__() (chainer.utils.type_check.Expr

method), 1080
__nonzero__() (chainer.utils.type_check.Variable

method), 1083
__pow__() (chainer.Parameter method), 146
__pow__() (chainer.Variable method), 137
__pow__() (chainer.utils.type_check.Expr method),

1080
__pow__() (chainer.utils.type_check.Variable method),

1083
__radd__() (chainer.Parameter method), 144

__radd__() (chainer.Variable method), 136
__radd__() (chainer.utils.type_check.Expr method),

1080
__radd__() (chainer.utils.type_check.Variable

method), 1083
__radd__() (chainerx.ndarray method), 1132
__rdiv__() (chainer.Parameter method), 145
__rdiv__() (chainer.Variable method), 137
__rfloordiv__() (chainer.Parameter method), 145
__rfloordiv__() (chainer.Variable method), 137
__rfloordiv__() (chainer.utils.type_check.Expr

method), 1080
__rfloordiv__() (chainer.utils.type_check.Variable

method), 1083
__rmatmul__() (chainer.Parameter method), 146
__rmatmul__() (chainer.Variable method), 137
__rmul__() (chainer.Parameter method), 145
__rmul__() (chainer.Variable method), 136
__rmul__() (chainer.utils.type_check.Expr method),

1080
__rmul__() (chainer.utils.type_check.TypeInfoTuple

method), 1082
__rmul__() (chainer.utils.type_check.Variable

method), 1083
__rmul__() (chainerx.ndarray method), 1132
__rpow__() (chainer.Parameter method), 146
__rpow__() (chainer.Variable method), 137
__rsub__() (chainer.Parameter method), 145
__rsub__() (chainer.Variable method), 136
__rsub__() (chainer.utils.type_check.Expr method),

1080
__rsub__() (chainer.utils.type_check.Variable

method), 1083
__rsub__() (chainerx.ndarray method), 1132
__rtruediv__() (chainer.Parameter method), 145
__rtruediv__() (chainer.Variable method), 137
__rtruediv__() (chainer.utils.type_check.Expr

method), 1080
__rtruediv__() (chainer.utils.type_check.Variable

method), 1083
__setitem__() (chainer.ChainList method), 755
__setitem__() (chainer.Sequential method), 763
__setitem__() (chainer.links.MLPConvolution2D

method), 455
__setitem__() (chainer.links.NStepBiGRU method),

468
__setitem__() (chainer.links.NStepBiLSTM

method), 475
__setitem__() (chainer.links.NStepBiRNNReLU

method), 482
__setitem__() (chainer.links.NStepBiRNNTanh

method), 489
__setitem__() (chainer.links.NStepGRU method),

496

1308 Index



Chainer Documentation, Release 6.5.0

__setitem__() (chainer.links.NStepLSTM method),
503

__setitem__() (chainer.links.NStepRNNReLU
method), 510

__setitem__() (chainer.links.NStepRNNTanh
method), 517

__setitem__() (chainerx.ndarray method), 1129
__sub__() (chainer.Parameter method), 144
__sub__() (chainer.Variable method), 136
__sub__() (chainer.utils.type_check.Expr method),

1080
__sub__() (chainer.utils.type_check.Variable method),

1083
__sub__() (chainerx.ndarray method), 1132
__truediv__() (chainer.Parameter method), 145
__truediv__() (chainer.Variable method), 137
__truediv__() (chainer.utils.type_check.Expr

method), 1080
__truediv__() (chainer.utils.type_check.Variable

method), 1083
__truediv__() (chainerx.ndarray method), 1132

A
a (chainer.distributions.Beta attribute), 782
absolute() (in module chainer.functions), 242
absolute_error() (in module chainer.functions),

225
AbstractSerializer (class in chainer), 1027
accuracy() (in module chainer.functions), 221
adabound (chainer.optimizers.Adam attribute), 852
AdaDelta (class in chainer.optimizers), 843
AdaGrad (class in chainer.optimizers), 846
Adam (class in chainer.optimizers), 849
add() (chainer.DictSummary method), 1053
add() (chainer.Summary method), 1052
add() (in module chainer.functions), 151
add() (in module chainerx), 1156
add_hook() (chainer.Chain method), 749
add_hook() (chainer.ChainList method), 755
add_hook() (chainer.Function method), 284
add_hook() (chainer.FunctionAdapter method), 288
add_hook() (chainer.FunctionNode method), 294
add_hook() (chainer.GradientMethod method), 882
add_hook() (chainer.Link method), 742
add_hook() (chainer.links.BatchNormalization

method), 584
add_hook() (chainer.links.BatchRenormalization

method), 590
add_hook() (chainer.links.Bias method), 313
add_hook() (chainer.links.Bilinear method), 319
add_hook() (chainer.links.BinaryHierarchicalSoftmax

method), 616
add_hook() (chainer.links.BlackOut method), 622

add_hook() (chainer.links.caffe.CaffeFunction
method), 735

add_hook() (chainer.links.ChildSumTreeLSTM
method), 325

add_hook() (chainer.links.Classifier method), 667
add_hook() (chainer.links.Convolution1D method),

331
add_hook() (chainer.links.Convolution2D method),

338
add_hook() (chainer.links.Convolution3D method),

344
add_hook() (chainer.links.ConvolutionND method),

352
add_hook() (chainer.links.CRF1d method), 628
add_hook() (chainer.links.Deconvolution1D method),

357
add_hook() (chainer.links.Deconvolution2D method),

365
add_hook() (chainer.links.Deconvolution3D method),

370
add_hook() (chainer.links.DeconvolutionND method),

377
add_hook() (chainer.links.DecorrelatedBatchNormalization

method), 597
add_hook() (chainer.links.DeformableConvolution2D

method), 384
add_hook() (chainer.links.DepthwiseConvolution2D

method), 390
add_hook() (chainer.links.DilatedConvolution2D

method), 397
add_hook() (chainer.links.EmbedID method), 404
add_hook() (chainer.links.GoogLeNet method), 689
add_hook() (chainer.links.GroupNormalization

method), 604
add_hook() (chainer.links.GRU method), 409
add_hook() (chainer.links.Highway method), 416
add_hook() (chainer.links.Inception method), 422
add_hook() (chainer.links.InceptionBN method), 428
add_hook() (chainer.links.LayerNormalization

method), 610
add_hook() (chainer.links.Linear method), 435
add_hook() (chainer.links.LocalConvolution2D

method), 442
add_hook() (chainer.links.LSTM method), 448
add_hook() (chainer.links.Maxout method), 654
add_hook() (chainer.links.MLPConvolution2D

method), 455
add_hook() (chainer.links.model.vision.resnet.ResNetLayers

method), 697
add_hook() (chainer.links.NaryTreeLSTM method),

462
add_hook() (chainer.links.NegativeSampling method),

660
add_hook() (chainer.links.NStepBiGRU method), 468

Index 1309



Chainer Documentation, Release 6.5.0

add_hook() (chainer.links.NStepBiLSTM method),
475

add_hook() (chainer.links.NStepBiRNNReLU
method), 483

add_hook() (chainer.links.NStepBiRNNTanh method),
489

add_hook() (chainer.links.NStepGRU method), 496
add_hook() (chainer.links.NStepLSTM method), 503
add_hook() (chainer.links.NStepRNNReLU method),

511
add_hook() (chainer.links.NStepRNNTanh method),

517
add_hook() (chainer.links.Parameter method), 524
add_hook() (chainer.links.PReLU method), 641
add_hook() (chainer.links.ResNet101Layers method),

712
add_hook() (chainer.links.ResNet152Layers method),

720
add_hook() (chainer.links.ResNet50Layers method),

705
add_hook() (chainer.links.Scale method), 530
add_hook() (chainer.links.SimplifiedDropconnect

method), 634
add_hook() (chainer.links.StatefulGRU method), 537
add_hook() (chainer.links.StatefulMGU method), 550
add_hook() (chainer.links.StatefulPeepholeLSTM

method), 562
add_hook() (chainer.links.StatefulZoneoutLSTM

method), 568
add_hook() (chainer.links.StatelessGRU method), 544
add_hook() (chainer.links.StatelessLSTM method),

575
add_hook() (chainer.links.StatelessMGU method),

556
add_hook() (chainer.links.Swish method), 648
add_hook() (chainer.links.TheanoFunction method),

728
add_hook() (chainer.links.VGG16Layers method),

674
add_hook() (chainer.links.VGG19Layers method),

681
add_hook() (chainer.Optimizer method), 876
add_hook() (chainer.optimizers.AdaDelta method),

844
add_hook() (chainer.optimizers.AdaGrad method),

846
add_hook() (chainer.optimizers.Adam method), 850
add_hook() (chainer.optimizers.CorrectedMomentumSGD

method), 853
add_hook() (chainer.optimizers.MomentumSGD

method), 856
add_hook() (chainer.optimizers.MSVAG method), 862
add_hook() (chainer.optimizers.NesterovAG method),

859

add_hook() (chainer.optimizers.RMSprop method),
865

add_hook() (chainer.optimizers.RMSpropGraves
method), 868

add_hook() (chainer.optimizers.SGD method), 870
add_hook() (chainer.optimizers.SMORMS3 method),

873
add_hook() (chainer.Sequential method), 763
add_hook() (chainer.UpdateRule method), 879
add_hook() (in module chain-

ermn.global_except_hook), 1231
add_link() (chainer.Chain method), 749
add_link() (chainer.ChainList method), 755
add_link() (chainer.links.caffe.CaffeFunction

method), 735
add_link() (chainer.links.ChildSumTreeLSTM

method), 325
add_link() (chainer.links.Classifier method), 667
add_link() (chainer.links.DeformableConvolution2D

method), 384
add_link() (chainer.links.GoogLeNet method), 689
add_link() (chainer.links.GRU method), 410
add_link() (chainer.links.Highway method), 416
add_link() (chainer.links.Inception method), 422
add_link() (chainer.links.InceptionBN method), 429
add_link() (chainer.links.LSTM method), 449
add_link() (chainer.links.Maxout method), 654
add_link() (chainer.links.MLPConvolution2D

method), 456
add_link() (chainer.links.model.vision.resnet.ResNetLayers

method), 697
add_link() (chainer.links.NaryTreeLSTM method),

462
add_link() (chainer.links.NStepBiGRU method), 469
add_link() (chainer.links.NStepBiLSTM method),

476
add_link() (chainer.links.NStepBiRNNReLU

method), 483
add_link() (chainer.links.NStepBiRNNTanh method),

490
add_link() (chainer.links.NStepGRU method), 497
add_link() (chainer.links.NStepLSTM method), 504
add_link() (chainer.links.NStepRNNReLU method),

511
add_link() (chainer.links.NStepRNNTanh method),

518
add_link() (chainer.links.ResNet101Layers method),

712
add_link() (chainer.links.ResNet152Layers method),

720
add_link() (chainer.links.ResNet50Layers method),

705
add_link() (chainer.links.Scale method), 530
add_link() (chainer.links.StatefulGRU method), 537

1310 Index



Chainer Documentation, Release 6.5.0

add_link() (chainer.links.StatefulMGU method), 550
add_link() (chainer.links.StatefulPeepholeLSTM

method), 562
add_link() (chainer.links.StatefulZoneoutLSTM

method), 568
add_link() (chainer.links.StatelessGRU method), 544
add_link() (chainer.links.StatelessLSTM method),

575
add_link() (chainer.links.StatelessMGU method),

556
add_link() (chainer.links.VGG16Layers method),

674
add_link() (chainer.links.VGG19Layers method),

681
add_link() (chainer.Sequential method), 763
add_link() (chainermn.MultiNodeChainList

method), 1223
add_observer() (chainer.Reporter method), 1050
add_observers() (chainer.Reporter method), 1050
add_param() (chainer.Chain method), 749
add_param() (chainer.ChainList method), 755
add_param() (chainer.Link method), 742
add_param() (chainer.links.BatchNormalization

method), 584
add_param() (chainer.links.BatchRenormalization

method), 591
add_param() (chainer.links.Bias method), 313
add_param() (chainer.links.Bilinear method), 319
add_param() (chainer.links.BinaryHierarchicalSoftmax

method), 616
add_param() (chainer.links.BlackOut method), 622
add_param() (chainer.links.caffe.CaffeFunction

method), 735
add_param() (chainer.links.ChildSumTreeLSTM

method), 326
add_param() (chainer.links.Classifier method), 667
add_param() (chainer.links.Convolution1D method),

331
add_param() (chainer.links.Convolution2D method),

339
add_param() (chainer.links.Convolution3D method),

344
add_param() (chainer.links.ConvolutionND method),

352
add_param() (chainer.links.CRF1d method), 628
add_param() (chainer.links.Deconvolution1D

method), 357
add_param() (chainer.links.Deconvolution2D

method), 365
add_param() (chainer.links.Deconvolution3D

method), 370
add_param() (chainer.links.DeconvolutionND

method), 378
add_param() (chainer.links.DecorrelatedBatchNormalization

method), 597
add_param() (chainer.links.DeformableConvolution2D

method), 384
add_param() (chainer.links.DepthwiseConvolution2D

method), 390
add_param() (chainer.links.DilatedConvolution2D

method), 398
add_param() (chainer.links.EmbedID method), 404
add_param() (chainer.links.GoogLeNet method), 690
add_param() (chainer.links.GroupNormalization

method), 604
add_param() (chainer.links.GRU method), 410
add_param() (chainer.links.Highway method), 416
add_param() (chainer.links.Inception method), 422
add_param() (chainer.links.InceptionBN method), 429
add_param() (chainer.links.LayerNormalization

method), 610
add_param() (chainer.links.Linear method), 435
add_param() (chainer.links.LocalConvolution2D

method), 442
add_param() (chainer.links.LSTM method), 449
add_param() (chainer.links.Maxout method), 654
add_param() (chainer.links.MLPConvolution2D

method), 456
add_param() (chainer.links.model.vision.resnet.ResNetLayers

method), 698
add_param() (chainer.links.NaryTreeLSTM method),

462
add_param() (chainer.links.NegativeSampling

method), 660
add_param() (chainer.links.NStepBiGRU method),

469
add_param() (chainer.links.NStepBiLSTM method),

476
add_param() (chainer.links.NStepBiRNNReLU

method), 483
add_param() (chainer.links.NStepBiRNNTanh

method), 490
add_param() (chainer.links.NStepGRU method), 497
add_param() (chainer.links.NStepLSTM method), 504
add_param() (chainer.links.NStepRNNReLU method),

511
add_param() (chainer.links.NStepRNNTanh method),

518
add_param() (chainer.links.Parameter method), 524
add_param() (chainer.links.PReLU method), 641
add_param() (chainer.links.ResNet101Layers

method), 713
add_param() (chainer.links.ResNet152Layers

method), 720
add_param() (chainer.links.ResNet50Layers method),

705
add_param() (chainer.links.Scale method), 530
add_param() (chainer.links.SimplifiedDropconnect

Index 1311



Chainer Documentation, Release 6.5.0

method), 635
add_param() (chainer.links.StatefulGRU method), 537
add_param() (chainer.links.StatefulMGU method),

550
add_param() (chainer.links.StatefulPeepholeLSTM

method), 562
add_param() (chainer.links.StatefulZoneoutLSTM

method), 568
add_param() (chainer.links.StatelessGRU method),

544
add_param() (chainer.links.StatelessLSTM method),

575
add_param() (chainer.links.StatelessMGU method),

556
add_param() (chainer.links.Swish method), 648
add_param() (chainer.links.TheanoFunction method),

729
add_param() (chainer.links.VGG16Layers method),

674
add_param() (chainer.links.VGG19Layers method),

682
add_param() (chainer.Sequential method), 763
add_persistent() (chainer.Chain method), 749
add_persistent() (chainer.ChainList method), 755
add_persistent() (chainer.Link method), 743
add_persistent() (chainer.links.BatchNormalization

method), 585
add_persistent() (chainer.links.BatchRenormalization

method), 591
add_persistent() (chainer.links.Bias method), 313
add_persistent() (chainer.links.Bilinear method),

319
add_persistent() (chainer.links.BinaryHierarchicalSoftmax

method), 616
add_persistent() (chainer.links.BlackOut method),

623
add_persistent() (chainer.links.caffe.CaffeFunction

method), 735
add_persistent() (chainer.links.ChildSumTreeLSTM

method), 326
add_persistent() (chainer.links.Classifier

method), 668
add_persistent() (chainer.links.Convolution1D

method), 332
add_persistent() (chainer.links.Convolution2D

method), 339
add_persistent() (chainer.links.Convolution3D

method), 345
add_persistent() (chainer.links.ConvolutionND

method), 352
add_persistent() (chainer.links.CRF1d method),

629
add_persistent() (chainer.links.Deconvolution1D

method), 358

add_persistent() (chainer.links.Deconvolution2D
method), 365

add_persistent() (chainer.links.Deconvolution3D
method), 371

add_persistent() (chainer.links.DeconvolutionND
method), 378

add_persistent() (chainer.links.DecorrelatedBatchNormalization
method), 598

add_persistent() (chainer.links.DeformableConvolution2D
method), 384

add_persistent() (chainer.links.DepthwiseConvolution2D
method), 391

add_persistent() (chainer.links.DilatedConvolution2D
method), 398

add_persistent() (chainer.links.EmbedID
method), 404

add_persistent() (chainer.links.GoogLeNet
method), 690

add_persistent() (chainer.links.GroupNormalization
method), 604

add_persistent() (chainer.links.GRU method), 410
add_persistent() (chainer.links.Highway method),

416
add_persistent() (chainer.links.Inception method),

423
add_persistent() (chainer.links.InceptionBN

method), 429
add_persistent() (chainer.links.LayerNormalization

method), 610
add_persistent() (chainer.links.Linear method),

436
add_persistent() (chainer.links.LocalConvolution2D

method), 442
add_persistent() (chainer.links.LSTM method),

449
add_persistent() (chainer.links.Maxout method),

655
add_persistent() (chainer.links.MLPConvolution2D

method), 456
add_persistent() (chainer.links.model.vision.resnet.ResNetLayers

method), 698
add_persistent() (chainer.links.NaryTreeLSTM

method), 463
add_persistent() (chainer.links.NegativeSampling

method), 661
add_persistent() (chainer.links.NStepBiGRU

method), 469
add_persistent() (chainer.links.NStepBiLSTM

method), 476
add_persistent() (chainer.links.NStepBiRNNReLU

method), 483
add_persistent() (chainer.links.NStepBiRNNTanh

method), 490
add_persistent() (chainer.links.NStepGRU

1312 Index



Chainer Documentation, Release 6.5.0

method), 497
add_persistent() (chainer.links.NStepLSTM

method), 504
add_persistent() (chainer.links.NStepRNNReLU

method), 511
add_persistent() (chainer.links.NStepRNNTanh

method), 518
add_persistent() (chainer.links.Parameter

method), 524
add_persistent() (chainer.links.PReLU method),

642
add_persistent() (chainer.links.ResNet101Layers

method), 713
add_persistent() (chainer.links.ResNet152Layers

method), 720
add_persistent() (chainer.links.ResNet50Layers

method), 705
add_persistent() (chainer.links.Scale method),

531
add_persistent() (chainer.links.SimplifiedDropconnect

method), 635
add_persistent() (chainer.links.StatefulGRU

method), 538
add_persistent() (chainer.links.StatefulMGU

method), 550
add_persistent() (chainer.links.StatefulPeepholeLSTM

method), 563
add_persistent() (chainer.links.StatefulZoneoutLSTM

method), 569
add_persistent() (chainer.links.StatelessGRU

method), 545
add_persistent() (chainer.links.StatelessLSTM

method), 576
add_persistent() (chainer.links.StatelessMGU

method), 556
add_persistent() (chainer.links.Swish method),

648
add_persistent() (chainer.links.TheanoFunction

method), 729
add_persistent() (chainer.links.VGG16Layers

method), 675
add_persistent() (chainer.links.VGG19Layers

method), 682
add_persistent() (chainer.Sequential method), 763
addCleanup() (chainer.testing.FunctionTestCase

method), 1089
addCleanup() (chainer.testing.LinkInitializersTestCase

method), 1100
addCleanup() (chainer.testing.LinkTestCase method),

1108
added() (chainer.function_hooks.CUDAProfileHook

method), 301
added() (chainer.function_hooks.CupyMemoryProfileHook

method), 302

added() (chainer.function_hooks.PrintHook method),
305

added() (chainer.function_hooks.TimerHook method),
307

added() (chainer.FunctionHook method), 310
added() (chainer.link_hooks.SpectralNormalization

method), 771
added() (chainer.link_hooks.TimerHook method), 773
added() (chainer.LinkHook method), 775
addgrad() (chainer.Parameter method), 141
addgrad() (chainer.Variable method), 133
addgrads() (chainer.Chain method), 750
addgrads() (chainer.ChainList method), 756
addgrads() (chainer.Link method), 743
addgrads() (chainer.links.BatchNormalization

method), 585
addgrads() (chainer.links.BatchRenormalization

method), 591
addgrads() (chainer.links.Bias method), 313
addgrads() (chainer.links.Bilinear method), 320
addgrads() (chainer.links.BinaryHierarchicalSoftmax

method), 617
addgrads() (chainer.links.BlackOut method), 623
addgrads() (chainer.links.caffe.CaffeFunction

method), 736
addgrads() (chainer.links.ChildSumTreeLSTM

method), 326
addgrads() (chainer.links.Classifier method), 668
addgrads() (chainer.links.Convolution1D method),

332
addgrads() (chainer.links.Convolution2D method),

339
addgrads() (chainer.links.Convolution3D method),

345
addgrads() (chainer.links.ConvolutionND method),

352
addgrads() (chainer.links.CRF1d method), 629
addgrads() (chainer.links.Deconvolution1D method),

358
addgrads() (chainer.links.Deconvolution2D method),

365
addgrads() (chainer.links.Deconvolution3D method),

371
addgrads() (chainer.links.DeconvolutionND method),

378
addgrads() (chainer.links.DecorrelatedBatchNormalization

method), 598
addgrads() (chainer.links.DeformableConvolution2D

method), 385
addgrads() (chainer.links.DepthwiseConvolution2D

method), 391
addgrads() (chainer.links.DilatedConvolution2D

method), 398
addgrads() (chainer.links.EmbedID method), 404

Index 1313



Chainer Documentation, Release 6.5.0

addgrads() (chainer.links.GoogLeNet method), 690
addgrads() (chainer.links.GroupNormalization

method), 604
addgrads() (chainer.links.GRU method), 410
addgrads() (chainer.links.Highway method), 417
addgrads() (chainer.links.Inception method), 423
addgrads() (chainer.links.InceptionBN method), 429
addgrads() (chainer.links.LayerNormalization

method), 610
addgrads() (chainer.links.Linear method), 436
addgrads() (chainer.links.LocalConvolution2D

method), 442
addgrads() (chainer.links.LSTM method), 449
addgrads() (chainer.links.Maxout method), 655
addgrads() (chainer.links.MLPConvolution2D

method), 456
addgrads() (chainer.links.model.vision.resnet.ResNetLayers

method), 698
addgrads() (chainer.links.NaryTreeLSTM method),

463
addgrads() (chainer.links.NegativeSampling method),

661
addgrads() (chainer.links.NStepBiGRU method), 469
addgrads() (chainer.links.NStepBiLSTM method),

476
addgrads() (chainer.links.NStepBiRNNReLU

method), 483
addgrads() (chainer.links.NStepBiRNNTanh method),

490
addgrads() (chainer.links.NStepGRU method), 497
addgrads() (chainer.links.NStepLSTM method), 504
addgrads() (chainer.links.NStepRNNReLU method),

511
addgrads() (chainer.links.NStepRNNTanh method),

518
addgrads() (chainer.links.Parameter method), 525
addgrads() (chainer.links.PReLU method), 642
addgrads() (chainer.links.ResNet101Layers method),

713
addgrads() (chainer.links.ResNet152Layers method),

720
addgrads() (chainer.links.ResNet50Layers method),

706
addgrads() (chainer.links.Scale method), 531
addgrads() (chainer.links.SimplifiedDropconnect

method), 635
addgrads() (chainer.links.StatefulGRU method), 538
addgrads() (chainer.links.StatefulMGU method), 551
addgrads() (chainer.links.StatefulPeepholeLSTM

method), 563
addgrads() (chainer.links.StatefulZoneoutLSTM

method), 569
addgrads() (chainer.links.StatelessGRU method), 545
addgrads() (chainer.links.StatelessLSTM method),

576
addgrads() (chainer.links.StatelessMGU method),

556
addgrads() (chainer.links.Swish method), 648
addgrads() (chainer.links.TheanoFunction method),

729
addgrads() (chainer.links.VGG16Layers method),

675
addgrads() (chainer.links.VGG19Layers method),

682
addgrads() (chainer.Sequential method), 763
addTypeEqualityFunc()

(chainer.testing.FunctionTestCase method),
1090

addTypeEqualityFunc()
(chainer.testing.LinkInitializersTestCase
method), 1100

addTypeEqualityFunc()
(chainer.testing.LinkTestCase method), 1108

all() (chainerx.ndarray method), 1129
allgather() (chainermn.CommunicatorBase

method), 1216
allgather() (in module chainermn.functions), 1228
allreduce() (chainermn.CommunicatorBase

method), 1216
allreduce_grad() (chainermn.CommunicatorBase

method), 1216
allreduce_obj() (chainermn.CommunicatorBase

method), 1216
AllreducePersistent (class in chain-

ermn.extensions), 1229
alltoall() (chainermn.CommunicatorBase method),

1217
alltoall() (in module chainermn.functions), 1227
alpha (chainer.distributions.Dirichlet attribute), 795
alpha (chainer.distributions.Pareto attribute), 830
alpha (chainer.optimizers.Adam attribute), 852
alpha (chainer.optimizers.RMSprop attribute), 867
alpha (chainer.optimizers.RMSpropGraves attribute),

870
alpha0 (chainer.distributions.Dirichlet attribute), 795
alpha_t (chainer.optimizers.Adam attribute), 852
amax() (in module chainerx), 1164
amsgrad (chainer.optimizers.Adam attribute), 852
any() (chainerx.ndarray method), 1129
append() (chainer.ChainList method), 756
append() (chainer.links.MLPConvolution2D method),

456
append() (chainer.links.NStepBiGRU method), 469
append() (chainer.links.NStepBiLSTM method), 476
append() (chainer.links.NStepBiRNNReLU method),

483
append() (chainer.links.NStepBiRNNTanh method),

490

1314 Index



Chainer Documentation, Release 6.5.0

append() (chainer.links.NStepGRU method), 497
append() (chainer.links.NStepLSTM method), 504
append() (chainer.links.NStepRNNReLU method), 511
append() (chainer.links.NStepRNNTanh method), 518
append() (chainer.Sequential method), 763
apply() (chainer.FunctionAdapter method), 288
apply() (chainer.FunctionNode method), 294
arange() (in module chainerx), 1142
arccos() (in module chainer.functions), 242
arccos() (in module chainerx), 1161
arcsin() (in module chainer.functions), 243
arcsin() (in module chainerx), 1160
arctan() (in module chainer.functions), 243
arctan() (in module chainerx), 1161
arctan2() (in module chainer.functions), 243
argmax() (chainer.links.CRF1d method), 629
argmax() (chainerx.ndarray method), 1129
argmax() (in module chainer.functions), 243
argmax() (in module chainerx), 1163
argmax_crf1d() (in module chainer.functions), 230
argmin() (in module chainer.functions), 244
array (chainer.Parameter attribute), 146
array (chainer.Variable attribute), 138
array() (in module chainerx), 1139
as_grad_stopped() (chainerx.ndarray method),

1129
as_strided() (in module chainer.functions), 168
as_variable() (in module chainer), 139
asanyarray() (in module chainerx), 1140
asarray() (in module chainerx), 1139
ascontiguousarray() (in module chainerx), 1140
assert_() (chainer.testing.FunctionTestCase method),

1094
assert_() (chainer.testing.LinkInitializersTestCase

method), 1104
assert_() (chainer.testing.LinkTestCase method),

1112
assert_allclose() (in module chainer.testing),

1087
assert_warns() (in module chainer.testing), 1087
assertAlmostEqual()

(chainer.testing.FunctionTestCase method),
1090

assertAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1100

assertAlmostEqual()
(chainer.testing.LinkTestCase method), 1108

assertAlmostEquals()
(chainer.testing.FunctionTestCase method),
1090

assertAlmostEquals()
(chainer.testing.LinkInitializersTestCase
method), 1100

assertAlmostEquals()
(chainer.testing.LinkTestCase method), 1108

assertCountEqual()
(chainer.testing.FunctionTestCase method),
1090

assertCountEqual()
(chainer.testing.LinkInitializersTestCase
method), 1100

assertCountEqual() (chainer.testing.LinkTestCase
method), 1108

assertDictContainsSubset()
(chainer.testing.FunctionTestCase method),
1090

assertDictContainsSubset()
(chainer.testing.LinkInitializersTestCase
method), 1100

assertDictContainsSubset()
(chainer.testing.LinkTestCase method), 1109

assertDictEqual()
(chainer.testing.FunctionTestCase method),
1090

assertDictEqual()
(chainer.testing.LinkInitializersTestCase
method), 1100

assertDictEqual() (chainer.testing.LinkTestCase
method), 1109

assertEqual() (chainer.testing.FunctionTestCase
method), 1090

assertEqual() (chainer.testing.LinkInitializersTestCase
method), 1100

assertEqual() (chainer.testing.LinkTestCase
method), 1109

assertEquals() (chainer.testing.FunctionTestCase
method), 1090

assertEquals() (chainer.testing.LinkInitializersTestCase
method), 1100

assertEquals() (chainer.testing.LinkTestCase
method), 1109

assertFalse() (chainer.testing.FunctionTestCase
method), 1090

assertFalse() (chainer.testing.LinkInitializersTestCase
method), 1100

assertFalse() (chainer.testing.LinkTestCase
method), 1109

assertGreater() (chainer.testing.FunctionTestCase
method), 1090

assertGreater() (chainer.testing.LinkInitializersTestCase
method), 1100

assertGreater() (chainer.testing.LinkTestCase
method), 1109

assertGreaterEqual()
(chainer.testing.FunctionTestCase method),
1090

assertGreaterEqual()

Index 1315



Chainer Documentation, Release 6.5.0

(chainer.testing.LinkInitializersTestCase
method), 1101

assertGreaterEqual()
(chainer.testing.LinkTestCase method), 1109

assertIn() (chainer.testing.FunctionTestCase
method), 1090

assertIn() (chainer.testing.LinkInitializersTestCase
method), 1101

assertIn() (chainer.testing.LinkTestCase method),
1109

assertIs() (chainer.testing.FunctionTestCase
method), 1091

assertIs() (chainer.testing.LinkInitializersTestCase
method), 1101

assertIs() (chainer.testing.LinkTestCase method),
1109

assertIsInstance()
(chainer.testing.FunctionTestCase method),
1091

assertIsInstance()
(chainer.testing.LinkInitializersTestCase
method), 1101

assertIsInstance() (chainer.testing.LinkTestCase
method), 1109

assertIsNone() (chainer.testing.FunctionTestCase
method), 1091

assertIsNone() (chainer.testing.LinkInitializersTestCase
method), 1101

assertIsNone() (chainer.testing.LinkTestCase
method), 1109

assertIsNot() (chainer.testing.FunctionTestCase
method), 1091

assertIsNot() (chainer.testing.LinkInitializersTestCase
method), 1101

assertIsNot() (chainer.testing.LinkTestCase
method), 1109

assertIsNotNone()
(chainer.testing.FunctionTestCase method),
1091

assertIsNotNone()
(chainer.testing.LinkInitializersTestCase
method), 1101

assertIsNotNone() (chainer.testing.LinkTestCase
method), 1109

assertLess() (chainer.testing.FunctionTestCase
method), 1091

assertLess() (chainer.testing.LinkInitializersTestCase
method), 1101

assertLess() (chainer.testing.LinkTestCase method),
1109

assertLessEqual()
(chainer.testing.FunctionTestCase method),
1091

assertLessEqual()

(chainer.testing.LinkInitializersTestCase
method), 1101

assertLessEqual() (chainer.testing.LinkTestCase
method), 1109

assertListEqual()
(chainer.testing.FunctionTestCase method),
1091

assertListEqual()
(chainer.testing.LinkInitializersTestCase
method), 1101

assertListEqual() (chainer.testing.LinkTestCase
method), 1109

assertLogs() (chainer.testing.FunctionTestCase
method), 1091

assertLogs() (chainer.testing.LinkInitializersTestCase
method), 1101

assertLogs() (chainer.testing.LinkTestCase method),
1109

assertMultiLineEqual()
(chainer.testing.FunctionTestCase method),
1091

assertMultiLineEqual()
(chainer.testing.LinkInitializersTestCase
method), 1101

assertMultiLineEqual()
(chainer.testing.LinkTestCase method), 1110

assertNotAlmostEqual()
(chainer.testing.FunctionTestCase method),
1091

assertNotAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1101

assertNotAlmostEqual()
(chainer.testing.LinkTestCase method), 1110

assertNotAlmostEquals()
(chainer.testing.FunctionTestCase method),
1091

assertNotAlmostEquals()
(chainer.testing.LinkInitializersTestCase
method), 1102

assertNotAlmostEquals()
(chainer.testing.LinkTestCase method), 1110

assertNotEqual() (chainer.testing.FunctionTestCase
method), 1092

assertNotEqual() (chainer.testing.LinkInitializersTestCase
method), 1102

assertNotEqual() (chainer.testing.LinkTestCase
method), 1110

assertNotEquals()
(chainer.testing.FunctionTestCase method),
1092

assertNotEquals()
(chainer.testing.LinkInitializersTestCase
method), 1102

1316 Index



Chainer Documentation, Release 6.5.0

assertNotEquals() (chainer.testing.LinkTestCase
method), 1110

assertNotIn() (chainer.testing.FunctionTestCase
method), 1092

assertNotIn() (chainer.testing.LinkInitializersTestCase
method), 1102

assertNotIn() (chainer.testing.LinkTestCase
method), 1110

assertNotIsInstance()
(chainer.testing.FunctionTestCase method),
1092

assertNotIsInstance()
(chainer.testing.LinkInitializersTestCase
method), 1102

assertNotIsInstance()
(chainer.testing.LinkTestCase method), 1110

assertNotRegex() (chainer.testing.FunctionTestCase
method), 1092

assertNotRegex() (chainer.testing.LinkInitializersTestCase
method), 1102

assertNotRegex() (chainer.testing.LinkTestCase
method), 1110

assertNotRegexpMatches()
(chainer.testing.FunctionTestCase method),
1092

assertNotRegexpMatches()
(chainer.testing.LinkInitializersTestCase
method), 1102

assertNotRegexpMatches()
(chainer.testing.LinkTestCase method), 1110

assertRaises() (chainer.testing.FunctionTestCase
method), 1092

assertRaises() (chainer.testing.LinkInitializersTestCase
method), 1102

assertRaises() (chainer.testing.LinkTestCase
method), 1110

assertRaisesRegex()
(chainer.testing.FunctionTestCase method),
1092

assertRaisesRegex()
(chainer.testing.LinkInitializersTestCase
method), 1102

assertRaisesRegex()
(chainer.testing.LinkTestCase method), 1110

assertRaisesRegexp()
(chainer.testing.FunctionTestCase method),
1092

assertRaisesRegexp()
(chainer.testing.LinkInitializersTestCase
method), 1102

assertRaisesRegexp()
(chainer.testing.LinkTestCase method), 1111

assertRegex() (chainer.testing.FunctionTestCase
method), 1092

assertRegex() (chainer.testing.LinkInitializersTestCase
method), 1102

assertRegex() (chainer.testing.LinkTestCase
method), 1111

assertRegexpMatches()
(chainer.testing.FunctionTestCase method),
1092

assertRegexpMatches()
(chainer.testing.LinkInitializersTestCase
method), 1102

assertRegexpMatches()
(chainer.testing.LinkTestCase method), 1111

assertSequenceEqual()
(chainer.testing.FunctionTestCase method),
1092

assertSequenceEqual()
(chainer.testing.LinkInitializersTestCase
method), 1103

assertSequenceEqual()
(chainer.testing.LinkTestCase method), 1111

assertSetEqual() (chainer.testing.FunctionTestCase
method), 1093

assertSetEqual() (chainer.testing.LinkInitializersTestCase
method), 1103

assertSetEqual() (chainer.testing.LinkTestCase
method), 1111

assertTrue() (chainer.testing.FunctionTestCase
method), 1093

assertTrue() (chainer.testing.LinkInitializersTestCase
method), 1103

assertTrue() (chainer.testing.LinkTestCase method),
1111

assertTupleEqual()
(chainer.testing.FunctionTestCase method),
1093

assertTupleEqual()
(chainer.testing.LinkInitializersTestCase
method), 1103

assertTupleEqual() (chainer.testing.LinkTestCase
method), 1111

assertWarns() (chainer.testing.FunctionTestCase
method), 1093

assertWarns() (chainer.testing.LinkInitializersTestCase
method), 1103

assertWarns() (chainer.testing.LinkTestCase
method), 1111

assertWarnsRegex()
(chainer.testing.FunctionTestCase method),
1093

assertWarnsRegex()
(chainer.testing.LinkInitializersTestCase
method), 1104

assertWarnsRegex() (chainer.testing.LinkTestCase
method), 1112

Index 1317



Chainer Documentation, Release 6.5.0

astype() (chainerx.ndarray method), 1129
autotune (chainer.configuration.GlobalConfig at-

tribute), 1062
available() (chainer.training.extensions.PlotReport

static method), 955
available() (chainer.training.extensions.VariableStatisticsPlot

static method), 958
available() (chainer.training.updaters.MultiprocessParallelUpdater

static method), 921
available_layers (chainer.links.GoogLeNet

attribute), 695
available_layers (chainer.links.model.vision.resnet.ResNetLayers

attribute), 703
available_layers (chainer.links.ResNet101Layers

attribute), 718
available_layers (chainer.links.ResNet152Layers

attribute), 726
available_layers (chainer.links.ResNet50Layers

attribute), 711
available_layers (chainer.links.VGG16Layers at-

tribute), 680
available_layers (chainer.links.VGG19Layers at-

tribute), 687
average() (in module chainer.functions), 244
average_pool() (in module chainerx), 1171
average_pooling_1d() (in module

chainer.functions), 272
average_pooling_2d() (in module

chainer.functions), 272
average_pooling_3d() (in module

chainer.functions), 273
average_pooling_nd() (in module

chainer.functions), 273
avg_mean (chainer.links.BatchNormalization attribute),

589
avg_mean (chainer.links.BatchRenormalization at-

tribute), 596
avg_var (chainer.links.BatchNormalization attribute),

589
avg_var (chainer.links.BatchRenormalization at-

tribute), 596

B
b (chainer.distributions.Beta attribute), 782
backend (chainerx.Device attribute), 1174
Backend (class in chainerx), 1172
backend_config (chainer.testing.FunctionTestCase

attribute), 1095
backend_config (chainer.testing.LinkInitializersTestCase

attribute), 1105
backend_config (chainer.testing.LinkTestCase at-

tribute), 1114
backward() (chainer.Function method), 284
backward() (chainer.FunctionAdapter method), 288

backward() (chainer.FunctionNode method), 294
backward() (chainer.Parameter method), 141
backward() (chainer.Variable method), 133
backward() (chainerx.ndarray method), 1129
backward() (in module chainerx), 1176
backward_accumulate()

(chainer.FunctionAdapter method), 289
backward_accumulate() (chainer.FunctionNode

method), 295
backward_cpu() (chainer.Function method), 284
backward_gpu() (chainer.Function method), 285
backward_postprocess()

(chainer.function_hooks.CUDAProfileHook
method), 301

backward_postprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 303

backward_postprocess()
(chainer.function_hooks.PrintHook method),
305

backward_postprocess()
(chainer.function_hooks.TimerHook method),
307

backward_postprocess() (chainer.FunctionHook
method), 310

backward_preprocess()
(chainer.function_hooks.CUDAProfileHook
method), 301

backward_preprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 303

backward_preprocess()
(chainer.function_hooks.PrintHook method),
305

backward_preprocess()
(chainer.function_hooks.TimerHook method),
307

backward_preprocess() (chainer.FunctionHook
method), 310

batch_det() (in module chainer.functions), 247
batch_inv() (in module chainer.functions), 244
batch_l2_norm_squared() (in module

chainer.functions), 244
batch_matmul() (in module chainer.functions), 245
batch_norm() (in module chainerx), 1169
batch_normalization() (in module

chainer.functions), 266
batch_renormalization() (in module

chainer.functions), 267
batch_shape (chainer.Distribution attribute), 842
batch_shape (chainer.distributions.Bernoulli at-

tribute), 779
batch_shape (chainer.distributions.Beta attribute),

782

1318 Index



Chainer Documentation, Release 6.5.0

batch_shape (chainer.distributions.Categorical at-
tribute), 785

batch_shape (chainer.distributions.Cauchy attribute),
789

batch_shape (chainer.distributions.Chisquare at-
tribute), 792

batch_shape (chainer.distributions.Dirichlet at-
tribute), 795

batch_shape (chainer.distributions.Exponential at-
tribute), 798

batch_shape (chainer.distributions.Gamma attribute),
801

batch_shape (chainer.distributions.Geometric at-
tribute), 804

batch_shape (chainer.distributions.Gumbel attribute),
807

batch_shape (chainer.distributions.Independent at-
tribute), 811

batch_shape (chainer.distributions.Laplace at-
tribute), 814

batch_shape (chainer.distributions.LogNormal
attribute), 817

batch_shape (chainer.distributions.MultivariateNormal
attribute), 820

batch_shape (chainer.distributions.Normal attribute),
824

batch_shape (chainer.distributions.OneHotCategorical
attribute), 827

batch_shape (chainer.distributions.Pareto attribute),
830

batch_shape (chainer.distributions.Poisson attribute),
833

batch_shape (chainer.distributions.Uniform at-
tribute), 836

batch_size (chainer.iterators.DaliIterator attribute),
1017

BatchNormalization (class in chainer.links), 581
BatchRenormalization (class in chainer.links),

590
bcast() (chainermn.CommunicatorBase method),

1217
bcast() (in module chainermn.functions), 1226
bcast_data() (chainermn.CommunicatorBase

method), 1217
bcast_obj() (chainermn.CommunicatorBase

method), 1217
before_test() (chainer.testing.FunctionTestCase

method), 1094
before_test() (chainer.testing.LinkInitializersTestCase

method), 1104
before_test() (chainer.testing.LinkTestCase

method), 1112
Bernoulli (class in chainer.distributions), 777
bernoulli_nll() (in module chainer.functions), 225

BestValueTrigger (class in
chainer.training.triggers), 966

beta (chainer.links.BatchNormalization attribute), 589
beta (chainer.links.BatchRenormalization attribute),

596
beta (chainer.optimizers.MSVAG attribute), 864
Beta (class in chainer.distributions), 780
beta1 (chainer.optimizers.Adam attribute), 852
beta2 (chainer.optimizers.Adam attribute), 852
Bias (class in chainer.links), 312
bias() (in module chainer.functions), 245
Bilinear (class in chainer.links), 318
bilinear() (in module chainer.functions), 196
binary_accuracy() (in module chainer.functions),

222
BinaryHierarchicalSoftmax (class in

chainer.links), 615
black_out() (in module chainer.functions), 226
BlackOut (class in chainer.links), 622
broadcast() (in module chainer.functions), 168
broadcast_to() (in module chainer.functions), 169
broadcast_to() (in module chainerx), 1147
build_computational_graph() (in module

chainer.computational_graph), 1067

C
cache_or_load_file() (in module

chainer.dataset), 981
cached_download() (in module chainer.dataset),

981
CaffeFunction (class in chainer.links.caffe), 734
call_for_each_param

(chainer.optimizer_hooks.GradientHardClipping
attribute), 889

call_for_each_param
(chainer.optimizer_hooks.GradientLARS
attribute), 891

call_for_each_param
(chainer.optimizer_hooks.GradientNoise
attribute), 890

call_for_each_param
(chainer.optimizer_hooks.Lasso attribute),
887

call_for_each_param
(chainer.optimizer_hooks.WeightDecay at-
tribute), 886

call_hook() (chainer.GradientMethod method), 883
call_hook() (chainer.Optimizer method), 877
call_hook() (chainer.optimizers.AdaDelta method),

844
call_hook() (chainer.optimizers.AdaGrad method),

847
call_hook() (chainer.optimizers.Adam method), 850

Index 1319



Chainer Documentation, Release 6.5.0

call_hook() (chainer.optimizers.CorrectedMomentumSGD
method), 853

call_hook() (chainer.optimizers.MomentumSGD
method), 856

call_hook() (chainer.optimizers.MSVAG method),
862

call_hook() (chainer.optimizers.NesterovAG
method), 859

call_hook() (chainer.optimizers.RMSprop method),
865

call_hook() (chainer.optimizers.RMSpropGraves
method), 868

call_hook() (chainer.optimizers.SGD method), 871
call_hook() (chainer.optimizers.SMORMS3 method),

873
call_hooks() (chainer.GradientMethod method),

883
call_hooks() (chainer.Optimizer method), 877
call_hooks() (chainer.optimizers.AdaDelta method),

844
call_hooks() (chainer.optimizers.AdaGrad method),

847
call_hooks() (chainer.optimizers.Adam method),

850
call_hooks() (chainer.optimizers.CorrectedMomentumSGD

method), 853
call_hooks() (chainer.optimizers.MomentumSGD

method), 856
call_hooks() (chainer.optimizers.MSVAG method),

862
call_hooks() (chainer.optimizers.NesterovAG

method), 859
call_hooks() (chainer.optimizers.RMSprop method),

865
call_hooks() (chainer.optimizers.RMSpropGraves

method), 868
call_hooks() (chainer.optimizers.SGD method), 871
call_hooks() (chainer.optimizers.SMORMS3

method), 873
cast() (in module chainer.functions), 169
Categorical (class in chainer.distributions), 783
Cauchy (class in chainer.distributions), 787
cdf() (chainer.Distribution method), 840
cdf() (chainer.distributions.Bernoulli method), 777
cdf() (chainer.distributions.Beta method), 780
cdf() (chainer.distributions.Categorical method), 784
cdf() (chainer.distributions.Cauchy method), 787
cdf() (chainer.distributions.Chisquare method), 790
cdf() (chainer.distributions.Dirichlet method), 793
cdf() (chainer.distributions.Exponential method), 796
cdf() (chainer.distributions.Gamma method), 799
cdf() (chainer.distributions.Geometric method), 802
cdf() (chainer.distributions.Gumbel method), 806
cdf() (chainer.distributions.Independent method), 809

cdf() (chainer.distributions.Laplace method), 812
cdf() (chainer.distributions.LogNormal method), 815
cdf() (chainer.distributions.MultivariateNormal

method), 819
cdf() (chainer.distributions.Normal method), 822
cdf() (chainer.distributions.OneHotCategorical

method), 825
cdf() (chainer.distributions.Pareto method), 828
cdf() (chainer.distributions.Poisson method), 831
cdf() (chainer.distributions.Uniform method), 834
ceil() (in module chainer.functions), 246
ceil() (in module chainerx), 1162
Chain (class in chainer), 748
chainer (module), 131, 741, 1026
chainer.backend (module), 1030
chainer.backends.cuda (module), 1039
chainer.backends.intel64 (module), 1044
chainer.computational_graph (module), 1066
chainer.dataset (module), 973
chainer.datasets (module), 981
chainer.distributions (module), 776
chainer.exporters (module), 1077
chainer.function_hooks (module), 300
chainer.functions (module), 150
chainer.gradient_check (module), 1083
chainer.initializers (module), 892
chainer.iterators (module), 1009
chainer.link_hooks (module), 769
chainer.links (module), 311
chainer.links.caffe (module), 1077
chainer.optimizers (module), 843
chainer.serializers (module), 1019
chainer.testing (module), 1087
chainer.training (module), 904
chainer.training.extensions.snapshot_writers

(module), 904
chainer.utils (module), 1233
chainer.utils.type_check (module), 1079
chainermn (module), 1181, 1190, 1196, 1215
chainerx (module), 1128, 1134, 1172, 1176
chainerx_device (chainer.FunctionAdapter at-

tribute), 292
chainerx_device (chainer.FunctionNode attribute),

298
ChainerxDevice (class in chainer.backend), 1038
ChainList (class in chainer), 754
check_backward() (in module

chainer.gradient_check), 1084
check_backward_options

(chainer.testing.FunctionTestCase attribute),
1095

check_backward_options
(chainer.testing.LinkTestCase attribute),
1114

1320 Index



Chainer Documentation, Release 6.5.0

check_double_backward() (in module
chainer.gradient_check), 1086

check_double_backward_options
(chainer.testing.FunctionTestCase attribute),
1095

check_forward_options
(chainer.testing.FunctionTestCase attribute),
1095

check_forward_options
(chainer.testing.LinkTestCase attribute),
1114

check_forward_outputs()
(chainer.testing.FunctionTestCase method),
1094

check_forward_outputs()
(chainer.testing.LinkInitializersTestCase
method), 1104

check_forward_outputs()
(chainer.testing.LinkTestCase method), 1112

check_initializers_options
(chainer.testing.LinkInitializersTestCase
attribute), 1105

check_nan_in_grads() (chainer.GradientMethod
method), 883

check_nan_in_grads() (chainer.Optimizer
method), 877

check_nan_in_grads()
(chainer.optimizers.AdaDelta method), 844

check_nan_in_grads()
(chainer.optimizers.AdaGrad method), 847

check_nan_in_grads() (chainer.optimizers.Adam
method), 850

check_nan_in_grads()
(chainer.optimizers.CorrectedMomentumSGD
method), 853

check_nan_in_grads()
(chainer.optimizers.MomentumSGD method),
856

check_nan_in_grads()
(chainer.optimizers.MSVAG method), 862

check_nan_in_grads()
(chainer.optimizers.NesterovAG method),
859

check_nan_in_grads()
(chainer.optimizers.RMSprop method), 865

check_nan_in_grads()
(chainer.optimizers.RMSpropGraves method),
868

check_nan_in_grads() (chainer.optimizers.SGD
method), 871

check_nan_in_grads()
(chainer.optimizers.SMORMS3 method),
873

check_type_forward() (chainer.Function

method), 285
check_type_forward() (chainer.FunctionAdapter

method), 289
check_type_forward() (chainer.FunctionNode

method), 295
children() (chainer.Chain method), 750
children() (chainer.ChainList method), 756
children() (chainer.Link method), 743
children() (chainer.links.BatchNormalization

method), 585
children() (chainer.links.BatchRenormalization

method), 591
children() (chainer.links.Bias method), 314
children() (chainer.links.Bilinear method), 320
children() (chainer.links.BinaryHierarchicalSoftmax

method), 617
children() (chainer.links.BlackOut method), 623
children() (chainer.links.caffe.CaffeFunction

method), 736
children() (chainer.links.ChildSumTreeLSTM

method), 326
children() (chainer.links.Classifier method), 668
children() (chainer.links.Convolution1D method),

332
children() (chainer.links.Convolution2D method),

339
children() (chainer.links.Convolution3D method),

345
children() (chainer.links.ConvolutionND method),

352
children() (chainer.links.CRF1d method), 629
children() (chainer.links.Deconvolution1D method),

358
children() (chainer.links.Deconvolution2D method),

365
children() (chainer.links.Deconvolution3D method),

371
children() (chainer.links.DeconvolutionND method),

378
children() (chainer.links.DecorrelatedBatchNormalization

method), 598
children() (chainer.links.DeformableConvolution2D

method), 385
children() (chainer.links.DepthwiseConvolution2D

method), 391
children() (chainer.links.DilatedConvolution2D

method), 398
children() (chainer.links.EmbedID method), 404
children() (chainer.links.GoogLeNet method), 690
children() (chainer.links.GroupNormalization

method), 604
children() (chainer.links.GRU method), 410
children() (chainer.links.Highway method), 417
children() (chainer.links.Inception method), 423

Index 1321



Chainer Documentation, Release 6.5.0

children() (chainer.links.InceptionBN method), 429
children() (chainer.links.LayerNormalization

method), 611
children() (chainer.links.Linear method), 436
children() (chainer.links.LocalConvolution2D

method), 442
children() (chainer.links.LSTM method), 449
children() (chainer.links.Maxout method), 655
children() (chainer.links.MLPConvolution2D

method), 456
children() (chainer.links.model.vision.resnet.ResNetLayers

method), 698
children() (chainer.links.NaryTreeLSTM method),

463
children() (chainer.links.NegativeSampling method),

661
children() (chainer.links.NStepBiGRU method), 469
children() (chainer.links.NStepBiLSTM method),

476
children() (chainer.links.NStepBiRNNReLU

method), 483
children() (chainer.links.NStepBiRNNTanh method),

490
children() (chainer.links.NStepGRU method), 497
children() (chainer.links.NStepLSTM method), 504
children() (chainer.links.NStepRNNReLU method),

511
children() (chainer.links.NStepRNNTanh method),

518
children() (chainer.links.Parameter method), 525
children() (chainer.links.PReLU method), 642
children() (chainer.links.ResNet101Layers method),

713
children() (chainer.links.ResNet152Layers method),

721
children() (chainer.links.ResNet50Layers method),

706
children() (chainer.links.Scale method), 531
children() (chainer.links.SimplifiedDropconnect

method), 635
children() (chainer.links.StatefulGRU method), 538
children() (chainer.links.StatefulMGU method), 551
children() (chainer.links.StatefulPeepholeLSTM

method), 563
children() (chainer.links.StatefulZoneoutLSTM

method), 569
children() (chainer.links.StatelessGRU method), 545
children() (chainer.links.StatelessLSTM method),

576
children() (chainer.links.StatelessMGU method),

556
children() (chainer.links.Swish method), 649
children() (chainer.links.TheanoFunction method),

729

children() (chainer.links.VGG16Layers method),
675

children() (chainer.links.VGG19Layers method),
682

children() (chainer.Sequential method), 764
ChildSumTreeLSTM (class in chainer.links), 325
Chisquare (class in chainer.distributions), 790
chx_array (chainer.Parameter attribute), 146
chx_array (chainer.Variable attribute), 138
classification_summary() (in module

chainer.functions), 223
Classifier (class in chainer.links), 666
clear() (chainer.ChainList method), 756
clear() (chainer.links.MLPConvolution2D method),

456
clear() (chainer.links.NStepBiGRU method), 469
clear() (chainer.links.NStepBiLSTM method), 476
clear() (chainer.links.NStepBiRNNReLU method),

483
clear() (chainer.links.NStepBiRNNTanh method), 490
clear() (chainer.links.NStepGRU method), 497
clear() (chainer.links.NStepLSTM method), 504
clear() (chainer.links.NStepRNNReLU method), 511
clear() (chainer.links.NStepRNNTanh method), 518
clear() (chainer.Sequential method), 764
clear_memo() (in module chainer.backends.cuda),

1043
cleargrad() (chainer.Parameter method), 142
cleargrad() (chainer.Variable method), 134
cleargrad() (chainerx.ndarray method), 1130
cleargrads() (chainer.Chain method), 750
cleargrads() (chainer.ChainList method), 756
cleargrads() (chainer.Link method), 743
cleargrads() (chainer.links.BatchNormalization

method), 585
cleargrads() (chainer.links.BatchRenormalization

method), 591
cleargrads() (chainer.links.Bias method), 314
cleargrads() (chainer.links.Bilinear method), 320
cleargrads() (chainer.links.BinaryHierarchicalSoftmax

method), 617
cleargrads() (chainer.links.BlackOut method), 623
cleargrads() (chainer.links.caffe.CaffeFunction

method), 736
cleargrads() (chainer.links.ChildSumTreeLSTM

method), 326
cleargrads() (chainer.links.Classifier method), 668
cleargrads() (chainer.links.Convolution1D method),

332
cleargrads() (chainer.links.Convolution2D method),

339
cleargrads() (chainer.links.Convolution3D method),

345

1322 Index



Chainer Documentation, Release 6.5.0

cleargrads() (chainer.links.ConvolutionND
method), 352

cleargrads() (chainer.links.CRF1d method), 629
cleargrads() (chainer.links.Deconvolution1D

method), 358
cleargrads() (chainer.links.Deconvolution2D

method), 365
cleargrads() (chainer.links.Deconvolution3D

method), 371
cleargrads() (chainer.links.DeconvolutionND

method), 378
cleargrads() (chainer.links.DecorrelatedBatchNormalization

method), 598
cleargrads() (chainer.links.DeformableConvolution2D

method), 385
cleargrads() (chainer.links.DepthwiseConvolution2D

method), 391
cleargrads() (chainer.links.DilatedConvolution2D

method), 398
cleargrads() (chainer.links.EmbedID method), 404
cleargrads() (chainer.links.GoogLeNet method),

690
cleargrads() (chainer.links.GroupNormalization

method), 604
cleargrads() (chainer.links.GRU method), 410
cleargrads() (chainer.links.Highway method), 417
cleargrads() (chainer.links.Inception method), 423
cleargrads() (chainer.links.InceptionBN method),

429
cleargrads() (chainer.links.LayerNormalization

method), 611
cleargrads() (chainer.links.Linear method), 436
cleargrads() (chainer.links.LocalConvolution2D

method), 442
cleargrads() (chainer.links.LSTM method), 449
cleargrads() (chainer.links.Maxout method), 655
cleargrads() (chainer.links.MLPConvolution2D

method), 456
cleargrads() (chainer.links.model.vision.resnet.ResNetLayers

method), 698
cleargrads() (chainer.links.NaryTreeLSTM method),

463
cleargrads() (chainer.links.NegativeSampling

method), 661
cleargrads() (chainer.links.NStepBiGRU method),

469
cleargrads() (chainer.links.NStepBiLSTM method),

476
cleargrads() (chainer.links.NStepBiRNNReLU

method), 483
cleargrads() (chainer.links.NStepBiRNNTanh

method), 490
cleargrads() (chainer.links.NStepGRU method), 497
cleargrads() (chainer.links.NStepLSTM method),

504
cleargrads() (chainer.links.NStepRNNReLU

method), 511
cleargrads() (chainer.links.NStepRNNTanh

method), 518
cleargrads() (chainer.links.Parameter method), 525
cleargrads() (chainer.links.PReLU method), 642
cleargrads() (chainer.links.ResNet101Layers

method), 713
cleargrads() (chainer.links.ResNet152Layers

method), 721
cleargrads() (chainer.links.ResNet50Layers

method), 706
cleargrads() (chainer.links.Scale method), 531
cleargrads() (chainer.links.SimplifiedDropconnect

method), 635
cleargrads() (chainer.links.StatefulGRU method),

538
cleargrads() (chainer.links.StatefulMGU method),

551
cleargrads() (chainer.links.StatefulPeepholeLSTM

method), 563
cleargrads() (chainer.links.StatefulZoneoutLSTM

method), 569
cleargrads() (chainer.links.StatelessGRU method),

545
cleargrads() (chainer.links.StatelessLSTM method),

576
cleargrads() (chainer.links.StatelessMGU method),

556
cleargrads() (chainer.links.Swish method), 649
cleargrads() (chainer.links.TheanoFunction

method), 729
cleargrads() (chainer.links.VGG16Layers method),

675
cleargrads() (chainer.links.VGG19Layers method),

682
cleargrads() (chainer.Sequential method), 764
clip() (chainerx.ndarray method), 1130
clip() (in module chainer.functions), 246
clip() (in module chainerx), 1162
clipped_relu() (in module chainer.functions), 152
close() (chainer.datasets.PickleDataset method), 1002
close() (chainer.datasets.PickleDatasetWriter

method), 1003
close() (chainer.datasets.TextDataset method), 1000
CommunicatorBase (class in chainermn), 1216
ComputationalGraph (class in

chainer.computational_graph), 1068
compute_accuracy (chainer.links.Classifier at-

tribute), 672
compute_mean() (chainer.DictSummary method),

1053
compute_mean() (chainer.Summary method), 1052

Index 1323



Chainer Documentation, Release 6.5.0

concat() (in module chainer.functions), 170
concat_examples() (in module chainer.dataset),

977
concatenate() (in module chainerx), 1148
ConcatenatedDataset (class in chainer.datasets),

984
ConcatWithAsyncTransfer (class in

chainer.dataset), 979
config (in module chainer), 1061
connect_trainer() (chainer.training.Updater

method), 915
connect_trainer()

(chainer.training.updaters.MultiprocessParallelUpdater
method), 921

connect_trainer()
(chainer.training.updaters.ParallelUpdater
method), 919

connect_trainer()
(chainer.training.updaters.StandardUpdater
method), 917

connectionist_temporal_classification()
(in module chainer.functions), 226

Constant (class in chainer.initializers), 893
consume() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 911
consume() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
consume() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
context (chainerx.Backend attribute), 1173
context (chainerx.Device attribute), 1174
Context (class in chainerx), 1172
contiguous (chainer.testing.FunctionTestCase at-

tribute), 1095
contiguous (chainer.testing.LinkInitializersTestCase

attribute), 1105
contiguous (chainer.testing.LinkTestCase attribute),

1114
contrastive() (in module chainer.functions), 227
conv() (in module chainerx), 1164
conv_transpose() (in module chainerx), 1166
convert_caffemodel_to_npz()

(chainer.links.GoogLeNet class method),
690

convert_caffemodel_to_npz()
(chainer.links.model.vision.resnet.ResNetLayers
class method), 698

convert_caffemodel_to_npz()
(chainer.links.ResNet101Layers class method),
713

convert_caffemodel_to_npz()
(chainer.links.ResNet152Layers class method),
721

convert_caffemodel_to_npz()

(chainer.links.ResNet50Layers class method),
706

convert_caffemodel_to_npz()
(chainer.links.VGG16Layers class method),
675

convert_caffemodel_to_npz()
(chainer.links.VGG19Layers class method),
682

converter() (in module chainer.dataset), 977
Convolution1D (class in chainer.links), 331
Convolution2D (class in chainer.links), 337
Convolution3D (class in chainer.links), 344
convolution_1d() (in module chainer.functions),

197
convolution_2d() (in module chainer.functions),

197
convolution_3d() (in module chainer.functions),

199
convolution_nd() (in module chainer.functions),

199
ConvolutionND (class in chainer.links), 350
CooMatrix (class in chainer.utils), 1054
copy() (chainer.Chain method), 750
copy() (chainer.ChainList method), 756
copy() (chainer.Link method), 743
copy() (chainer.links.BatchNormalization method), 585
copy() (chainer.links.BatchRenormalization method),

591
copy() (chainer.links.Bias method), 314
copy() (chainer.links.Bilinear method), 320
copy() (chainer.links.BinaryHierarchicalSoftmax

method), 617
copy() (chainer.links.BlackOut method), 623
copy() (chainer.links.caffe.CaffeFunction method), 736
copy() (chainer.links.ChildSumTreeLSTM method),

326
copy() (chainer.links.Classifier method), 668
copy() (chainer.links.Convolution1D method), 332
copy() (chainer.links.Convolution2D method), 339
copy() (chainer.links.Convolution3D method), 345
copy() (chainer.links.ConvolutionND method), 352
copy() (chainer.links.CRF1d method), 629
copy() (chainer.links.Deconvolution1D method), 358
copy() (chainer.links.Deconvolution2D method), 366
copy() (chainer.links.Deconvolution3D method), 371
copy() (chainer.links.DeconvolutionND method), 378
copy() (chainer.links.DecorrelatedBatchNormalization

method), 598
copy() (chainer.links.DeformableConvolution2D

method), 385
copy() (chainer.links.DepthwiseConvolution2D

method), 391
copy() (chainer.links.DilatedConvolution2D method),

398

1324 Index



Chainer Documentation, Release 6.5.0

copy() (chainer.links.EmbedID method), 405
copy() (chainer.links.GoogLeNet method), 690
copy() (chainer.links.GroupNormalization method),

604
copy() (chainer.links.GRU method), 410
copy() (chainer.links.Highway method), 417
copy() (chainer.links.Inception method), 423
copy() (chainer.links.InceptionBN method), 429
copy() (chainer.links.LayerNormalization method),

611
copy() (chainer.links.Linear method), 436
copy() (chainer.links.LocalConvolution2D method),

442
copy() (chainer.links.LSTM method), 450
copy() (chainer.links.Maxout method), 655
copy() (chainer.links.MLPConvolution2D method),

457
copy() (chainer.links.model.vision.resnet.ResNetLayers

method), 698
copy() (chainer.links.NaryTreeLSTM method), 463
copy() (chainer.links.NegativeSampling method), 661
copy() (chainer.links.NStepBiGRU method), 469
copy() (chainer.links.NStepBiLSTM method), 476
copy() (chainer.links.NStepBiRNNReLU method), 484
copy() (chainer.links.NStepBiRNNTanh method), 490
copy() (chainer.links.NStepGRU method), 497
copy() (chainer.links.NStepLSTM method), 504
copy() (chainer.links.NStepRNNReLU method), 512
copy() (chainer.links.NStepRNNTanh method), 518
copy() (chainer.links.Parameter method), 525
copy() (chainer.links.PReLU method), 642
copy() (chainer.links.ResNet101Layers method), 713
copy() (chainer.links.ResNet152Layers method), 721
copy() (chainer.links.ResNet50Layers method), 706
copy() (chainer.links.Scale method), 531
copy() (chainer.links.SimplifiedDropconnect method),

635
copy() (chainer.links.StatefulGRU method), 538
copy() (chainer.links.StatefulMGU method), 551
copy() (chainer.links.StatefulPeepholeLSTM method),

563
copy() (chainer.links.StatefulZoneoutLSTM method),

569
copy() (chainer.links.StatelessGRU method), 545
copy() (chainer.links.StatelessLSTM method), 576
copy() (chainer.links.StatelessMGU method), 557
copy() (chainer.links.Swish method), 649
copy() (chainer.links.TheanoFunction method), 729
copy() (chainer.links.VGG16Layers method), 675
copy() (chainer.links.VGG19Layers method), 682
copy() (chainer.Sequential method), 764
copy() (chainerx.ndarray method), 1130
copy() (in module chainer.backends.cuda), 1041
copy() (in module chainer.functions), 171

copy() (in module chainerx), 1140
copydata() (chainer.Parameter method), 142
copydata() (chainer.Variable method), 134
copyparams() (chainer.Chain method), 750
copyparams() (chainer.ChainList method), 756
copyparams() (chainer.Link method), 743
copyparams() (chainer.links.BatchNormalization

method), 585
copyparams() (chainer.links.BatchRenormalization

method), 592
copyparams() (chainer.links.Bias method), 314
copyparams() (chainer.links.Bilinear method), 320
copyparams() (chainer.links.BinaryHierarchicalSoftmax

method), 617
copyparams() (chainer.links.BlackOut method), 623
copyparams() (chainer.links.caffe.CaffeFunction

method), 736
copyparams() (chainer.links.ChildSumTreeLSTM

method), 327
copyparams() (chainer.links.Classifier method), 668
copyparams() (chainer.links.Convolution1D method),

332
copyparams() (chainer.links.Convolution2D method),

340
copyparams() (chainer.links.Convolution3D method),

345
copyparams() (chainer.links.ConvolutionND

method), 353
copyparams() (chainer.links.CRF1d method), 630
copyparams() (chainer.links.Deconvolution1D

method), 359
copyparams() (chainer.links.Deconvolution2D

method), 366
copyparams() (chainer.links.Deconvolution3D

method), 372
copyparams() (chainer.links.DeconvolutionND

method), 379
copyparams() (chainer.links.DecorrelatedBatchNormalization

method), 598
copyparams() (chainer.links.DeformableConvolution2D

method), 385
copyparams() (chainer.links.DepthwiseConvolution2D

method), 391
copyparams() (chainer.links.DilatedConvolution2D

method), 399
copyparams() (chainer.links.EmbedID method), 405
copyparams() (chainer.links.GoogLeNet method),

691
copyparams() (chainer.links.GroupNormalization

method), 605
copyparams() (chainer.links.GRU method), 411
copyparams() (chainer.links.Highway method), 417
copyparams() (chainer.links.Inception method), 423
copyparams() (chainer.links.InceptionBN method),

Index 1325



Chainer Documentation, Release 6.5.0

430
copyparams() (chainer.links.LayerNormalization

method), 611
copyparams() (chainer.links.Linear method), 437
copyparams() (chainer.links.LocalConvolution2D

method), 443
copyparams() (chainer.links.LSTM method), 450
copyparams() (chainer.links.Maxout method), 655
copyparams() (chainer.links.MLPConvolution2D

method), 457
copyparams() (chainer.links.model.vision.resnet.ResNetLayers

method), 699
copyparams() (chainer.links.NaryTreeLSTM method),

463
copyparams() (chainer.links.NegativeSampling

method), 661
copyparams() (chainer.links.NStepBiGRU method),

470
copyparams() (chainer.links.NStepBiLSTM method),

477
copyparams() (chainer.links.NStepBiRNNReLU

method), 484
copyparams() (chainer.links.NStepBiRNNTanh

method), 491
copyparams() (chainer.links.NStepGRU method), 498
copyparams() (chainer.links.NStepLSTM method),

505
copyparams() (chainer.links.NStepRNNReLU

method), 512
copyparams() (chainer.links.NStepRNNTanh

method), 519
copyparams() (chainer.links.Parameter method), 525
copyparams() (chainer.links.PReLU method), 642
copyparams() (chainer.links.ResNet101Layers

method), 714
copyparams() (chainer.links.ResNet152Layers

method), 721
copyparams() (chainer.links.ResNet50Layers

method), 706
copyparams() (chainer.links.Scale method), 531
copyparams() (chainer.links.SimplifiedDropconnect

method), 636
copyparams() (chainer.links.StatefulGRU method),

539
copyparams() (chainer.links.StatefulMGU method),

551
copyparams() (chainer.links.StatefulPeepholeLSTM

method), 563
copyparams() (chainer.links.StatefulZoneoutLSTM

method), 569
copyparams() (chainer.links.StatelessGRU method),

545
copyparams() (chainer.links.StatelessLSTM method),

576

copyparams() (chainer.links.StatelessMGU method),
557

copyparams() (chainer.links.Swish method), 649
copyparams() (chainer.links.TheanoFunction

method), 730
copyparams() (chainer.links.VGG16Layers method),

676
copyparams() (chainer.links.VGG19Layers method),

683
copyparams() (chainer.Sequential method), 764
copyto() (in module chainer.backend), 1034
CorrectedMomentumSGD (class in

chainer.optimizers), 853
cos() (in module chainer.functions), 246
cos() (in module chainerx), 1160
cosh() (in module chainer.functions), 246
count() (chainer.ChainList method), 756
count() (chainer.links.MLPConvolution2D method),

457
count() (chainer.links.NStepBiGRU method), 470
count() (chainer.links.NStepBiLSTM method), 477
count() (chainer.links.NStepBiRNNReLU method),

484
count() (chainer.links.NStepBiRNNTanh method), 491
count() (chainer.links.NStepGRU method), 498
count() (chainer.links.NStepLSTM method), 505
count() (chainer.links.NStepRNNReLU method), 512
count() (chainer.links.NStepRNNTanh method), 519
count() (chainer.Sequential method), 764
count() (chainer.utils.type_check.TypeInfoTuple

method), 1082
count_by_layer_type() (chainer.Sequential

method), 764
count_params() (chainer.Chain method), 751
count_params() (chainer.ChainList method), 756
count_params() (chainer.Link method), 744
count_params() (chainer.links.BatchNormalization

method), 586
count_params() (chainer.links.BatchRenormalization

method), 592
count_params() (chainer.links.Bias method), 314
count_params() (chainer.links.Bilinear method), 320
count_params() (chainer.links.BinaryHierarchicalSoftmax

method), 618
count_params() (chainer.links.BlackOut method),

624
count_params() (chainer.links.caffe.CaffeFunction

method), 736
count_params() (chainer.links.ChildSumTreeLSTM

method), 327
count_params() (chainer.links.Classifier method),

669
count_params() (chainer.links.Convolution1D

method), 333

1326 Index



Chainer Documentation, Release 6.5.0

count_params() (chainer.links.Convolution2D
method), 340

count_params() (chainer.links.Convolution3D
method), 346

count_params() (chainer.links.ConvolutionND
method), 353

count_params() (chainer.links.CRF1d method), 630
count_params() (chainer.links.Deconvolution1D

method), 359
count_params() (chainer.links.Deconvolution2D

method), 366
count_params() (chainer.links.Deconvolution3D

method), 372
count_params() (chainer.links.DeconvolutionND

method), 379
count_params() (chainer.links.DecorrelatedBatchNormalization

method), 599
count_params() (chainer.links.DeformableConvolution2D

method), 385
count_params() (chainer.links.DepthwiseConvolution2D

method), 392
count_params() (chainer.links.DilatedConvolution2D

method), 399
count_params() (chainer.links.EmbedID method),

405
count_params() (chainer.links.GoogLeNet method),

691
count_params() (chainer.links.GroupNormalization

method), 605
count_params() (chainer.links.GRU method), 411
count_params() (chainer.links.Highway method),

417
count_params() (chainer.links.Inception method),

424
count_params() (chainer.links.InceptionBN

method), 430
count_params() (chainer.links.LayerNormalization

method), 611
count_params() (chainer.links.Linear method), 437
count_params() (chainer.links.LocalConvolution2D

method), 443
count_params() (chainer.links.LSTM method), 450
count_params() (chainer.links.Maxout method), 656
count_params() (chainer.links.MLPConvolution2D

method), 457
count_params() (chainer.links.model.vision.resnet.ResNetLayers

method), 699
count_params() (chainer.links.NaryTreeLSTM

method), 464
count_params() (chainer.links.NegativeSampling

method), 662
count_params() (chainer.links.NStepBiGRU

method), 470
count_params() (chainer.links.NStepBiLSTM

method), 477
count_params() (chainer.links.NStepBiRNNReLU

method), 484
count_params() (chainer.links.NStepBiRNNTanh

method), 491
count_params() (chainer.links.NStepGRU method),

498
count_params() (chainer.links.NStepLSTM method),

505
count_params() (chainer.links.NStepRNNReLU

method), 512
count_params() (chainer.links.NStepRNNTanh

method), 519
count_params() (chainer.links.Parameter method),

525
count_params() (chainer.links.PReLU method), 643
count_params() (chainer.links.ResNet101Layers

method), 714
count_params() (chainer.links.ResNet152Layers

method), 722
count_params() (chainer.links.ResNet50Layers

method), 707
count_params() (chainer.links.Scale method), 532
count_params() (chainer.links.SimplifiedDropconnect

method), 636
count_params() (chainer.links.StatefulGRU

method), 539
count_params() (chainer.links.StatefulMGU

method), 551
count_params() (chainer.links.StatefulPeepholeLSTM

method), 564
count_params() (chainer.links.StatefulZoneoutLSTM

method), 570
count_params() (chainer.links.StatelessGRU

method), 546
count_params() (chainer.links.StatelessLSTM

method), 577
count_params() (chainer.links.StatelessMGU

method), 557
count_params() (chainer.links.Swish method), 649
count_params() (chainer.links.TheanoFunction

method), 730
count_params() (chainer.links.VGG16Layers

method), 676
count_params() (chainer.links.VGG19Layers

method), 683
count_params() (chainer.Sequential method), 764
countTestCases() (chainer.testing.FunctionTestCase

method), 1094
countTestCases() (chainer.testing.LinkInitializersTestCase

method), 1104
countTestCases() (chainer.testing.LinkTestCase

method), 1112
covariance (chainer.Distribution attribute), 842

Index 1327



Chainer Documentation, Release 6.5.0

covariance (chainer.distributions.Bernoulli attribute),
779

covariance (chainer.distributions.Beta attribute), 782
covariance (chainer.distributions.Categorical at-

tribute), 786
covariance (chainer.distributions.Cauchy attribute),

789
covariance (chainer.distributions.Chisquare at-

tribute), 792
covariance (chainer.distributions.Dirichlet attribute),

795
covariance (chainer.distributions.Exponential at-

tribute), 798
covariance (chainer.distributions.Gamma attribute),

801
covariance (chainer.distributions.Geometric at-

tribute), 804
covariance (chainer.distributions.Gumbel attribute),

808
covariance (chainer.distributions.Independent at-

tribute), 811
covariance (chainer.distributions.Laplace attribute),

814
covariance (chainer.distributions.LogNormal at-

tribute), 817
covariance (chainer.distributions.MultivariateNormal

attribute), 821
covariance (chainer.distributions.Normal attribute),

824
covariance (chainer.distributions.OneHotCategorical

attribute), 827
covariance (chainer.distributions.Pareto attribute),

830
covariance (chainer.distributions.Poisson attribute),

833
covariance (chainer.distributions.Uniform attribute),

836
CpuDevice (class in chainer.backend), 1035
create_communicator() (in module chainermn),

1215
create_consumer()

(chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 911

create_consumer()
(chainer.training.extensions.snapshot_writers.QueueWriter
method), 909

create_consumer()
(chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 910

create_context() (chainer.backend.ChainerxDevice
method), 1038

create_context() (chainer.backend.CpuDevice
method), 1035

create_context() (chainer.backend.Device

method), 1030
create_context() (chainer.backend.GpuDevice

method), 1036
create_context() (chainer.backend.Intel64Device

method), 1037
create_empty_dataset() (in module chain-

ermn.datasets), 1220
create_huffman_tree()

(chainer.links.BinaryHierarchicalSoftmax
static method), 618

create_link() (chainer.testing.LinkInitializersTestCase
method), 1104

create_link() (chainer.testing.LinkTestCase
method), 1112

create_mnbn_model() (in module chain-
ermn.links), 1223

create_multi_node_checkpointer() (in mod-
ule chainermn), 1230

create_multi_node_evaluator() (in module
chainermn), 1219

create_multi_node_iterator() (in module
chainermn.iterators), 1228

create_multi_node_optimizer() (in module
chainermn), 1219

create_queue() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 911

create_queue() (chainer.training.extensions.snapshot_writers.QueueWriter
method), 909

create_queue() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 910

create_synchronized_iterator() (in module
chainermn.iterators), 1229

create_task() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 911

create_task() (chainer.training.extensions.snapshot_writers.QueueWriter
method), 909

create_task() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 910

create_update_rule() (chainer.GradientMethod
method), 883

create_update_rule()
(chainer.optimizers.AdaDelta method), 844

create_update_rule()
(chainer.optimizers.AdaGrad method), 847

create_update_rule() (chainer.optimizers.Adam
method), 850

create_update_rule()
(chainer.optimizers.CorrectedMomentumSGD
method), 853

create_update_rule()
(chainer.optimizers.MomentumSGD method),
856

create_update_rule()
(chainer.optimizers.MSVAG method), 862

1328 Index



Chainer Documentation, Release 6.5.0

create_update_rule()
(chainer.optimizers.NesterovAG method),
859

create_update_rule()
(chainer.optimizers.RMSprop method), 865

create_update_rule()
(chainer.optimizers.RMSpropGraves method),
868

create_update_rule() (chainer.optimizers.SGD
method), 871

create_update_rule()
(chainer.optimizers.SMORMS3 method),
873

create_worker() (chainer.training.extensions.snapshot_writers.ProcessWriter
method), 907

create_worker() (chainer.training.extensions.snapshot_writers.ThreadWriter
method), 906

creator (chainer.Parameter attribute), 146
creator (chainer.Variable attribute), 138
creator (chainer.variable.VariableNode attribute), 149
creator_node (chainer.Parameter attribute), 146
creator_node (chainer.Variable attribute), 138
creator_node (chainer.variable.VariableNode at-

tribute), 150
crelu() (in module chainer.functions), 152
CRF1d (class in chainer.links), 628
crf1d() (in module chainer.functions), 228
cross_covariance() (in module chainer.functions),

230
cross_entropy() (in module chainer), 837
CUDAProfileHook (class in chainer.function_hooks),

300
cudnn_deterministic

(chainer.configuration.GlobalConfig attribute),
1062

cudnn_fast_batch_normalization
(chainer.configuration.GlobalConfig attribute),
1062

cumprod() (in module chainer.functions), 247
cumsum() (in module chainer.functions), 247
CupyMemoryProfileHook (class in

chainer.function_hooks), 302
current_position (chainer.iterators.MultiprocessIterator

attribute), 1014
current_position (chainer.iterators.MultithreadIterator

attribute), 1015
current_position (chainer.iterators.SerialIterator

attribute), 1011

D
d (chainer.distributions.MultivariateNormal attribute),

821
DaliIterator (class in chainer.iterators), 1016
data (chainer.Parameter attribute), 147

data (chainer.Variable attribute), 138
data (chainer.variable.VariableNode attribute), 150
data_ptr (chainerx.ndarray attribute), 1133
data_size (chainerx.ndarray attribute), 1133
DatasetMixin (class in chainer.dataset), 974
debug (chainer.configuration.GlobalConfig attribute),

1062
debug() (chainer.testing.FunctionTestCase method),

1094
debug() (chainer.testing.LinkInitializersTestCase

method), 1104
debug() (chainer.testing.LinkTestCase method), 1112
debug_print() (chainer.Parameter method), 142
debug_print() (chainer.Variable method), 134
Deconvolution1D (class in chainer.links), 357
Deconvolution2D (class in chainer.links), 363
Deconvolution3D (class in chainer.links), 370
deconvolution_1d() (in module chainer.functions),

201
deconvolution_2d() (in module chainer.functions),

201
deconvolution_3d() (in module chainer.functions),

203
deconvolution_nd() (in module chainer.functions),

203
DeconvolutionND (class in chainer.links), 376
decorrelated_batch_normalization() (in

module chainer.functions), 268
DecorrelatedBatchNormalization (class in

chainer.links), 596
decov() (in module chainer.functions), 231
default_name (chainer.training.Extension attribute),

925
default_name (chainer.training.extensions.DumpGraph

attribute), 961
default_name (chainer.training.extensions.Evaluator

attribute), 929
default_name (chainer.training.extensions.ExponentialShift

attribute), 937
default_name (chainer.training.extensions.FailOnNonNumber

attribute), 932
default_name (chainer.training.extensions.InverseShift

attribute), 939
default_name (chainer.training.extensions.LinearShift

attribute), 941
default_name (chainer.training.extensions.LogReport

attribute), 954
default_name (chainer.training.extensions.MicroAverage

attribute), 931
default_name (chainer.training.extensions.MultistepShift

attribute), 943
default_name (chainer.training.extensions.ParameterStatistics

attribute), 935
default_name (chainer.training.extensions.PlotReport

Index 1329



Chainer Documentation, Release 6.5.0

attribute), 956
default_name (chainer.training.extensions.PolynomialShift

attribute), 945
default_name (chainer.training.extensions.PrintReport

attribute), 950
default_name (chainer.training.extensions.ProgressBar

attribute), 952
default_name (chainer.training.extensions.StepShift

attribute), 948
default_name (chainer.training.extensions.unchain_variables

attribute), 965
default_name (chainer.training.extensions.VariableStatisticsPlot

attribute), 959
default_name (chainer.training.extensions.WarmupShift

attribute), 946
default_statistics

(chainer.training.extensions.ParameterStatistics
attribute), 935

defaultTestResult()
(chainer.testing.FunctionTestCase method),
1094

defaultTestResult()
(chainer.testing.LinkInitializersTestCase
method), 1104

defaultTestResult()
(chainer.testing.LinkTestCase method), 1112

deformable_convolution_2d_sampler() (in
module chainer.functions), 206

DeformableConvolution2D (class in
chainer.links), 383

delete_hook() (chainer.Chain method), 751
delete_hook() (chainer.ChainList method), 756
delete_hook() (chainer.Function method), 285
delete_hook() (chainer.FunctionAdapter method),

289
delete_hook() (chainer.FunctionNode method), 295
delete_hook() (chainer.Link method), 744
delete_hook() (chainer.links.BatchNormalization

method), 586
delete_hook() (chainer.links.BatchRenormalization

method), 592
delete_hook() (chainer.links.Bias method), 314
delete_hook() (chainer.links.Bilinear method), 321
delete_hook() (chainer.links.BinaryHierarchicalSoftmax

method), 618
delete_hook() (chainer.links.BlackOut method), 624
delete_hook() (chainer.links.caffe.CaffeFunction

method), 737
delete_hook() (chainer.links.ChildSumTreeLSTM

method), 327
delete_hook() (chainer.links.Classifier method), 669
delete_hook() (chainer.links.Convolution1D

method), 333
delete_hook() (chainer.links.Convolution2D

method), 340
delete_hook() (chainer.links.Convolution3D

method), 346
delete_hook() (chainer.links.ConvolutionND

method), 353
delete_hook() (chainer.links.CRF1d method), 630
delete_hook() (chainer.links.Deconvolution1D

method), 359
delete_hook() (chainer.links.Deconvolution2D

method), 366
delete_hook() (chainer.links.Deconvolution3D

method), 372
delete_hook() (chainer.links.DeconvolutionND

method), 379
delete_hook() (chainer.links.DecorrelatedBatchNormalization

method), 599
delete_hook() (chainer.links.DeformableConvolution2D

method), 386
delete_hook() (chainer.links.DepthwiseConvolution2D

method), 392
delete_hook() (chainer.links.DilatedConvolution2D

method), 399
delete_hook() (chainer.links.EmbedID method), 405
delete_hook() (chainer.links.GoogLeNet method),

691
delete_hook() (chainer.links.GroupNormalization

method), 605
delete_hook() (chainer.links.GRU method), 411
delete_hook() (chainer.links.Highway method), 418
delete_hook() (chainer.links.Inception method), 424
delete_hook() (chainer.links.InceptionBN method),

430
delete_hook() (chainer.links.LayerNormalization

method), 612
delete_hook() (chainer.links.Linear method), 437
delete_hook() (chainer.links.LocalConvolution2D

method), 443
delete_hook() (chainer.links.LSTM method), 450
delete_hook() (chainer.links.Maxout method), 656
delete_hook() (chainer.links.MLPConvolution2D

method), 457
delete_hook() (chainer.links.model.vision.resnet.ResNetLayers

method), 699
delete_hook() (chainer.links.NaryTreeLSTM

method), 464
delete_hook() (chainer.links.NegativeSampling

method), 662
delete_hook() (chainer.links.NStepBiGRU method),

470
delete_hook() (chainer.links.NStepBiLSTM

method), 477
delete_hook() (chainer.links.NStepBiRNNReLU

method), 484
delete_hook() (chainer.links.NStepBiRNNTanh

1330 Index



Chainer Documentation, Release 6.5.0

method), 491
delete_hook() (chainer.links.NStepGRU method),

498
delete_hook() (chainer.links.NStepLSTM method),

505
delete_hook() (chainer.links.NStepRNNReLU

method), 512
delete_hook() (chainer.links.NStepRNNTanh

method), 519
delete_hook() (chainer.links.Parameter method),

526
delete_hook() (chainer.links.PReLU method), 643
delete_hook() (chainer.links.ResNet101Layers

method), 714
delete_hook() (chainer.links.ResNet152Layers

method), 722
delete_hook() (chainer.links.ResNet50Layers

method), 707
delete_hook() (chainer.links.Scale method), 532
delete_hook() (chainer.links.SimplifiedDropconnect

method), 636
delete_hook() (chainer.links.StatefulGRU method),

539
delete_hook() (chainer.links.StatefulMGU method),

552
delete_hook() (chainer.links.StatefulPeepholeLSTM

method), 564
delete_hook() (chainer.links.StatefulZoneoutLSTM

method), 570
delete_hook() (chainer.links.StatelessGRU method),

546
delete_hook() (chainer.links.StatelessLSTM

method), 577
delete_hook() (chainer.links.StatelessMGU

method), 557
delete_hook() (chainer.links.Swish method), 649
delete_hook() (chainer.links.TheanoFunction

method), 730
delete_hook() (chainer.links.VGG16Layers

method), 676
delete_hook() (chainer.links.VGG19Layers

method), 683
delete_hook() (chainer.Sequential method), 764
deleted() (chainer.function_hooks.CUDAProfileHook

method), 301
deleted() (chainer.function_hooks.CupyMemoryProfileHook

method), 303
deleted() (chainer.function_hooks.PrintHook

method), 305
deleted() (chainer.function_hooks.TimerHook

method), 307
deleted() (chainer.FunctionHook method), 310
deleted() (chainer.link_hooks.SpectralNormalization

method), 771

deleted() (chainer.link_hooks.TimerHook method),
773

deleted() (chainer.LinkHook method), 775
depth2space() (in module chainer.functions), 171
depthwise_convolution_2d() (in module

chainer.functions), 205
DepthwiseConvolution2D (class in chainer.links),

389
Deserializer (class in chainer), 1028
det() (in module chainer.functions), 247
device (chainer.Chain attribute), 754
device (chainer.ChainList attribute), 760
device (chainer.DeviceResident attribute), 1034
device (chainer.Link attribute), 747
device (chainer.links.BatchNormalization attribute),

589
device (chainer.links.BatchRenormalization attribute),

596
device (chainer.links.Bias attribute), 318
device (chainer.links.Bilinear attribute), 324
device (chainer.links.BinaryHierarchicalSoftmax at-

tribute), 621
device (chainer.links.BlackOut attribute), 627
device (chainer.links.caffe.CaffeFunction attribute),

740
device (chainer.links.ChildSumTreeLSTM attribute),

330
device (chainer.links.Classifier attribute), 672
device (chainer.links.Convolution1D attribute), 336
device (chainer.links.Convolution2D attribute), 343
device (chainer.links.Convolution3D attribute), 349
device (chainer.links.ConvolutionND attribute), 357
device (chainer.links.CRF1d attribute), 633
device (chainer.links.Deconvolution1D attribute), 362
device (chainer.links.Deconvolution2D attribute), 370
device (chainer.links.Deconvolution3D attribute), 375
device (chainer.links.DeconvolutionND attribute), 382
device (chainer.links.DecorrelatedBatchNormalization

attribute), 602
device (chainer.links.DeformableConvolution2D at-

tribute), 389
device (chainer.links.DepthwiseConvolution2D at-

tribute), 395
device (chainer.links.DilatedConvolution2D attribute),

402
device (chainer.links.EmbedID attribute), 409
device (chainer.links.GoogLeNet attribute), 695
device (chainer.links.GroupNormalization attribute),

609
device (chainer.links.GRU attribute), 415
device (chainer.links.Highway attribute), 421
device (chainer.links.Inception attribute), 427
device (chainer.links.InceptionBN attribute), 433

Index 1331



Chainer Documentation, Release 6.5.0

device (chainer.links.LayerNormalization attribute),
615

device (chainer.links.Linear attribute), 440
device (chainer.links.LocalConvolution2D attribute),

447
device (chainer.links.LSTM attribute), 454
device (chainer.links.Maxout attribute), 659
device (chainer.links.MLPConvolution2D attribute),

461
device (chainer.links.model.vision.resnet.ResNetLayers

attribute), 703
device (chainer.links.NaryTreeLSTM attribute), 467
device (chainer.links.NegativeSampling attribute), 665
device (chainer.links.NStepBiGRU attribute), 474
device (chainer.links.NStepBiLSTM attribute), 481
device (chainer.links.NStepBiRNNReLU attribute), 488
device (chainer.links.NStepBiRNNTanh attribute), 495
device (chainer.links.NStepGRU attribute), 502
device (chainer.links.NStepLSTM attribute), 509
device (chainer.links.NStepRNNReLU attribute), 516
device (chainer.links.NStepRNNTanh attribute), 523
device (chainer.links.Parameter attribute), 529
device (chainer.links.PReLU attribute), 646
device (chainer.links.ResNet101Layers attribute), 718
device (chainer.links.ResNet152Layers attribute), 726
device (chainer.links.ResNet50Layers attribute), 711
device (chainer.links.Scale attribute), 535
device (chainer.links.SimplifiedDropconnect attribute),

640
device (chainer.links.StatefulGRU attribute), 542
device (chainer.links.StatefulMGU attribute), 555
device (chainer.links.StatefulPeepholeLSTM attribute),

567
device (chainer.links.StatefulZoneoutLSTM attribute),

573
device (chainer.links.StatelessGRU attribute), 549
device (chainer.links.StatelessLSTM attribute), 580
device (chainer.links.StatelessMGU attribute), 561
device (chainer.links.Swish attribute), 653
device (chainer.links.TheanoFunction attribute), 733
device (chainer.links.VGG16Layers attribute), 680
device (chainer.links.VGG19Layers attribute), 687
device (chainer.Parameter attribute), 147
device (chainer.Sequential attribute), 769
device (chainer.utils.WalkerAlias attribute), 1048
device (chainer.Variable attribute), 138
device (chainerx.ndarray attribute), 1133
Device (class in chainer.backend), 1030
Device (class in chainerx), 1174
device_resident_accept() (chainer.Chain

method), 751
device_resident_accept() (chainer.ChainList

method), 757

device_resident_accept()
(chainer.DeviceResident method), 1032

device_resident_accept() (chainer.Link
method), 744

device_resident_accept()
(chainer.links.BatchNormalization method),
586

device_resident_accept()
(chainer.links.BatchRenormalization method),
592

device_resident_accept() (chainer.links.Bias
method), 314

device_resident_accept()
(chainer.links.Bilinear method), 321

device_resident_accept()
(chainer.links.BinaryHierarchicalSoftmax
method), 618

device_resident_accept()
(chainer.links.BlackOut method), 624

device_resident_accept()
(chainer.links.caffe.CaffeFunction method),
737

device_resident_accept()
(chainer.links.ChildSumTreeLSTM method),
327

device_resident_accept()
(chainer.links.Classifier method), 669

device_resident_accept()
(chainer.links.Convolution1D method), 333

device_resident_accept()
(chainer.links.Convolution2D method), 340

device_resident_accept()
(chainer.links.Convolution3D method), 346

device_resident_accept()
(chainer.links.ConvolutionND method), 353

device_resident_accept()
(chainer.links.CRF1d method), 630

device_resident_accept()
(chainer.links.Deconvolution1D method),
359

device_resident_accept()
(chainer.links.Deconvolution2D method),
366

device_resident_accept()
(chainer.links.Deconvolution3D method),
372

device_resident_accept()
(chainer.links.DeconvolutionND method),
379

device_resident_accept()
(chainer.links.DecorrelatedBatchNormalization
method), 599

device_resident_accept()
(chainer.links.DeformableConvolution2D

1332 Index



Chainer Documentation, Release 6.5.0

method), 386
device_resident_accept()

(chainer.links.DepthwiseConvolution2D
method), 392

device_resident_accept()
(chainer.links.DilatedConvolution2D method),
399

device_resident_accept()
(chainer.links.EmbedID method), 405

device_resident_accept()
(chainer.links.GoogLeNet method), 691

device_resident_accept()
(chainer.links.GroupNormalization method),
605

device_resident_accept() (chainer.links.GRU
method), 411

device_resident_accept()
(chainer.links.Highway method), 418

device_resident_accept()
(chainer.links.Inception method), 424

device_resident_accept()
(chainer.links.InceptionBN method), 430

device_resident_accept()
(chainer.links.LayerNormalization method),
612

device_resident_accept() (chainer.links.Linear
method), 437

device_resident_accept()
(chainer.links.LocalConvolution2D method),
443

device_resident_accept() (chainer.links.LSTM
method), 450

device_resident_accept()
(chainer.links.Maxout method), 656

device_resident_accept()
(chainer.links.MLPConvolution2D method),
457

device_resident_accept()
(chainer.links.model.vision.resnet.ResNetLayers
method), 699

device_resident_accept()
(chainer.links.NaryTreeLSTM method), 464

device_resident_accept()
(chainer.links.NegativeSampling method),
662

device_resident_accept()
(chainer.links.NStepBiGRU method), 470

device_resident_accept()
(chainer.links.NStepBiLSTM method), 477

device_resident_accept()
(chainer.links.NStepBiRNNReLU method),
484

device_resident_accept()
(chainer.links.NStepBiRNNTanh method),

491
device_resident_accept()

(chainer.links.NStepGRU method), 498
device_resident_accept()

(chainer.links.NStepLSTM method), 505
device_resident_accept()

(chainer.links.NStepRNNReLU method),
512

device_resident_accept()
(chainer.links.NStepRNNTanh method), 519

device_resident_accept()
(chainer.links.Parameter method), 526

device_resident_accept()
(chainer.links.PReLU method), 643

device_resident_accept()
(chainer.links.ResNet101Layers method),
714

device_resident_accept()
(chainer.links.ResNet152Layers method),
722

device_resident_accept()
(chainer.links.ResNet50Layers method),
707

device_resident_accept() (chainer.links.Scale
method), 532

device_resident_accept()
(chainer.links.SimplifiedDropconnect method),
636

device_resident_accept()
(chainer.links.StatefulGRU method), 539

device_resident_accept()
(chainer.links.StatefulMGU method), 552

device_resident_accept()
(chainer.links.StatefulPeepholeLSTM method),
564

device_resident_accept()
(chainer.links.StatefulZoneoutLSTM method),
570

device_resident_accept()
(chainer.links.StatelessGRU method), 546

device_resident_accept()
(chainer.links.StatelessLSTM method), 577

device_resident_accept()
(chainer.links.StatelessMGU method), 557

device_resident_accept() (chainer.links.Swish
method), 650

device_resident_accept()
(chainer.links.TheanoFunction method),
730

device_resident_accept()
(chainer.links.VGG16Layers method), 676

device_resident_accept()
(chainer.links.VGG19Layers method), 683

device_resident_accept() (chainer.Sequential

Index 1333



Chainer Documentation, Release 6.5.0

method), 764
device_resident_accept()

(chainer.utils.WalkerAlias method), 1047
DeviceResident (class in chainer), 1032
DeviceResidentsVisitor (class in

chainer.device_resident), 1034
diag() (in module chainerx), 1143
diagflat() (in module chainerx), 1144
diagonal() (in module chainer.functions), 172
DictDataset (class in chainer.datasets), 982
DictionarySerializer (class in

chainer.serializers), 1019
DictSummary (class in chainer), 1053
digamma() (in module chainer.functions), 248
dilated_convolution_2d() (in module

chainer.functions), 207
DilatedConvolution2D (class in chainer.links),

396
Dirichlet (class in chainer.distributions), 793
disable_update() (chainer.Chain method), 751
disable_update() (chainer.ChainList method), 757
disable_update() (chainer.Link method), 744
disable_update() (chainer.links.BatchNormalization

method), 586
disable_update() (chainer.links.BatchRenormalization

method), 592
disable_update() (chainer.links.Bias method), 315
disable_update() (chainer.links.Bilinear method),

321
disable_update() (chainer.links.BinaryHierarchicalSoftmax

method), 618
disable_update() (chainer.links.BlackOut method),

624
disable_update() (chainer.links.caffe.CaffeFunction

method), 737
disable_update() (chainer.links.ChildSumTreeLSTM

method), 327
disable_update() (chainer.links.Classifier

method), 669
disable_update() (chainer.links.Convolution1D

method), 333
disable_update() (chainer.links.Convolution2D

method), 340
disable_update() (chainer.links.Convolution3D

method), 346
disable_update() (chainer.links.ConvolutionND

method), 353
disable_update() (chainer.links.CRF1d method),

630
disable_update() (chainer.links.Deconvolution1D

method), 359
disable_update() (chainer.links.Deconvolution2D

method), 367
disable_update() (chainer.links.Deconvolution3D

method), 372
disable_update() (chainer.links.DeconvolutionND

method), 379
disable_update() (chainer.links.DecorrelatedBatchNormalization

method), 599
disable_update() (chainer.links.DeformableConvolution2D

method), 386
disable_update() (chainer.links.DepthwiseConvolution2D

method), 392
disable_update() (chainer.links.DilatedConvolution2D

method), 399
disable_update() (chainer.links.EmbedID

method), 406
disable_update() (chainer.links.GoogLeNet

method), 691
disable_update() (chainer.links.GroupNormalization

method), 605
disable_update() (chainer.links.GRU method), 411
disable_update() (chainer.links.Highway method),

418
disable_update() (chainer.links.Inception method),

424
disable_update() (chainer.links.InceptionBN

method), 430
disable_update() (chainer.links.LayerNormalization

method), 612
disable_update() (chainer.links.Linear method),

437
disable_update() (chainer.links.LocalConvolution2D

method), 443
disable_update() (chainer.links.LSTM method),

451
disable_update() (chainer.links.Maxout method),

656
disable_update() (chainer.links.MLPConvolution2D

method), 457
disable_update() (chainer.links.model.vision.resnet.ResNetLayers

method), 699
disable_update() (chainer.links.NaryTreeLSTM

method), 464
disable_update() (chainer.links.NegativeSampling

method), 662
disable_update() (chainer.links.NStepBiGRU

method), 470
disable_update() (chainer.links.NStepBiLSTM

method), 477
disable_update() (chainer.links.NStepBiRNNReLU

method), 484
disable_update() (chainer.links.NStepBiRNNTanh

method), 491
disable_update() (chainer.links.NStepGRU

method), 498
disable_update() (chainer.links.NStepLSTM

method), 505

1334 Index



Chainer Documentation, Release 6.5.0

disable_update() (chainer.links.NStepRNNReLU
method), 512

disable_update() (chainer.links.NStepRNNTanh
method), 519

disable_update() (chainer.links.Parameter
method), 526

disable_update() (chainer.links.PReLU method),
643

disable_update() (chainer.links.ResNet101Layers
method), 714

disable_update() (chainer.links.ResNet152Layers
method), 722

disable_update() (chainer.links.ResNet50Layers
method), 707

disable_update() (chainer.links.Scale method),
532

disable_update() (chainer.links.SimplifiedDropconnect
method), 636

disable_update() (chainer.links.StatefulGRU
method), 539

disable_update() (chainer.links.StatefulMGU
method), 552

disable_update() (chainer.links.StatefulPeepholeLSTM
method), 564

disable_update() (chainer.links.StatefulZoneoutLSTM
method), 570

disable_update() (chainer.links.StatelessGRU
method), 546

disable_update() (chainer.links.StatelessLSTM
method), 577

disable_update() (chainer.links.StatelessMGU
method), 558

disable_update() (chainer.links.Swish method),
650

disable_update() (chainer.links.TheanoFunction
method), 730

disable_update() (chainer.links.VGG16Layers
method), 676

disable_update() (chainer.links.VGG19Layers
method), 683

disable_update() (chainer.Sequential method), 765
discriminative_margin_based_clustering_loss()

(in module chainer.functions), 231
distribution (chainer.distributions.Independent at-

tribute), 811
Distribution (class in chainer), 839
divide() (in module chainerx), 1157
doCleanups() (chainer.testing.FunctionTestCase

method), 1094
doCleanups() (chainer.testing.LinkInitializersTestCase

method), 1104
doCleanups() (chainer.testing.LinkTestCase method),

1112
dodge_nondifferentiable

(chainer.testing.FunctionTestCase attribute),
1096

dodge_nondifferentiable
(chainer.testing.LinkTestCase attribute),
1114

dot() (chainerx.ndarray method), 1130
dot() (in module chainerx), 1150
dropout() (in module chainer.functions), 263
dstack() (in module chainer.functions), 173
dtype (chainer.configuration.GlobalConfig attribute),

1062
dtype (chainer.Parameter attribute), 147
dtype (chainer.Variable attribute), 138
dtype (chainerx.ndarray attribute), 1133
dump() (chainer.computational_graph.ComputationalGraph

method), 1069
DumpGraph (class in chainer.training.extensions), 959
DumpGraph(), 61

E
EarlyStoppingTrigger (class in

chainer.training.triggers), 967
einsum() (in module chainer.functions), 248
elapsed_time (chainer.training.Trainer attribute),

915
elementwise() (in module chainer.backends.cuda),

1043
elu() (in module chainer.functions), 153
embed_id() (in module chainer.functions), 208
EmbedID (class in chainer.links), 403
empty() (in module chainerx), 1135
empty_like() (in module chainerx), 1135
enable_backprop (chainer.configuration.GlobalConfig

attribute), 1062
enable_update() (chainer.Chain method), 751
enable_update() (chainer.ChainList method), 757
enable_update() (chainer.Link method), 744
enable_update() (chainer.links.BatchNormalization

method), 586
enable_update() (chainer.links.BatchRenormalization

method), 592
enable_update() (chainer.links.Bias method), 315
enable_update() (chainer.links.Bilinear method),

321
enable_update() (chainer.links.BinaryHierarchicalSoftmax

method), 618
enable_update() (chainer.links.BlackOut method),

624
enable_update() (chainer.links.caffe.CaffeFunction

method), 737
enable_update() (chainer.links.ChildSumTreeLSTM

method), 327
enable_update() (chainer.links.Classifier method),

669

Index 1335



Chainer Documentation, Release 6.5.0

enable_update() (chainer.links.Convolution1D
method), 333

enable_update() (chainer.links.Convolution2D
method), 340

enable_update() (chainer.links.Convolution3D
method), 346

enable_update() (chainer.links.ConvolutionND
method), 354

enable_update() (chainer.links.CRF1d method),
630

enable_update() (chainer.links.Deconvolution1D
method), 359

enable_update() (chainer.links.Deconvolution2D
method), 367

enable_update() (chainer.links.Deconvolution3D
method), 372

enable_update() (chainer.links.DeconvolutionND
method), 379

enable_update() (chainer.links.DecorrelatedBatchNormalization
method), 599

enable_update() (chainer.links.DeformableConvolution2D
method), 386

enable_update() (chainer.links.DepthwiseConvolution2D
method), 392

enable_update() (chainer.links.DilatedConvolution2D
method), 399

enable_update() (chainer.links.EmbedID method),
406

enable_update() (chainer.links.GoogLeNet
method), 691

enable_update() (chainer.links.GroupNormalization
method), 606

enable_update() (chainer.links.GRU method), 411
enable_update() (chainer.links.Highway method),

418
enable_update() (chainer.links.Inception method),

424
enable_update() (chainer.links.InceptionBN

method), 431
enable_update() (chainer.links.LayerNormalization

method), 612
enable_update() (chainer.links.Linear method), 437
enable_update() (chainer.links.LocalConvolution2D

method), 444
enable_update() (chainer.links.LSTM method), 451
enable_update() (chainer.links.Maxout method),

656
enable_update() (chainer.links.MLPConvolution2D

method), 457
enable_update() (chainer.links.model.vision.resnet.ResNetLayers

method), 700
enable_update() (chainer.links.NaryTreeLSTM

method), 464
enable_update() (chainer.links.NegativeSampling

method), 662
enable_update() (chainer.links.NStepBiGRU

method), 470
enable_update() (chainer.links.NStepBiLSTM

method), 477
enable_update() (chainer.links.NStepBiRNNReLU

method), 484
enable_update() (chainer.links.NStepBiRNNTanh

method), 491
enable_update() (chainer.links.NStepGRU

method), 498
enable_update() (chainer.links.NStepLSTM

method), 505
enable_update() (chainer.links.NStepRNNReLU

method), 512
enable_update() (chainer.links.NStepRNNTanh

method), 519
enable_update() (chainer.links.Parameter method),

526
enable_update() (chainer.links.PReLU method),

643
enable_update() (chainer.links.ResNet101Layers

method), 715
enable_update() (chainer.links.ResNet152Layers

method), 722
enable_update() (chainer.links.ResNet50Layers

method), 707
enable_update() (chainer.links.Scale method), 532
enable_update() (chainer.links.SimplifiedDropconnect

method), 636
enable_update() (chainer.links.StatefulGRU

method), 539
enable_update() (chainer.links.StatefulMGU

method), 552
enable_update() (chainer.links.StatefulPeepholeLSTM

method), 564
enable_update() (chainer.links.StatefulZoneoutLSTM

method), 570
enable_update() (chainer.links.StatelessGRU

method), 546
enable_update() (chainer.links.StatelessLSTM

method), 577
enable_update() (chainer.links.StatelessMGU

method), 558
enable_update() (chainer.links.Swish method), 650
enable_update() (chainer.links.TheanoFunction

method), 730
enable_update() (chainer.links.VGG16Layers

method), 676
enable_update() (chainer.links.VGG19Layers

method), 683
enable_update() (chainer.Sequential method), 765
entropy (chainer.Distribution attribute), 842
entropy (chainer.distributions.Bernoulli attribute), 779

1336 Index



Chainer Documentation, Release 6.5.0

entropy (chainer.distributions.Beta attribute), 782
entropy (chainer.distributions.Categorical attribute),

786
entropy (chainer.distributions.Cauchy attribute), 789
entropy (chainer.distributions.Chisquare attribute),

792
entropy (chainer.distributions.Dirichlet attribute), 795
entropy (chainer.distributions.Exponential attribute),

798
entropy (chainer.distributions.Gamma attribute), 801
entropy (chainer.distributions.Geometric attribute),

804
entropy (chainer.distributions.Gumbel attribute), 808
entropy (chainer.distributions.Independent attribute),

811
entropy (chainer.distributions.Laplace attribute), 814
entropy (chainer.distributions.LogNormal attribute),

817
entropy (chainer.distributions.MultivariateNormal at-

tribute), 821
entropy (chainer.distributions.Normal attribute), 824
entropy (chainer.distributions.OneHotCategorical at-

tribute), 827
entropy (chainer.distributions.Pareto attribute), 830
entropy (chainer.distributions.Poisson attribute), 833
entropy (chainer.distributions.Uniform attribute), 836
environment variable

LD_LIBRARY_PATH, 1187
MV2_SMP_USE_CMA, 1187, 1190
MV2_USE_CUDA, 1187, 1190
PATH, 1187

epoch (chainer.GradientMethod attribute), 885
epoch (chainer.iterators.MultiprocessIterator attribute),

1014
epoch (chainer.iterators.MultithreadIterator attribute),

1015
epoch (chainer.iterators.SerialIterator attribute), 1011
epoch (chainer.Optimizer attribute), 878
epoch (chainer.optimizers.AdaDelta attribute), 846
epoch (chainer.optimizers.AdaGrad attribute), 849
epoch (chainer.optimizers.Adam attribute), 852
epoch (chainer.optimizers.CorrectedMomentumSGD at-

tribute), 855
epoch (chainer.optimizers.MomentumSGD attribute),

858
epoch (chainer.optimizers.MSVAG attribute), 864
epoch (chainer.optimizers.NesterovAG attribute), 861
epoch (chainer.optimizers.RMSprop attribute), 867
epoch (chainer.optimizers.RMSpropGraves attribute),

870
epoch (chainer.optimizers.SGD attribute), 873
epoch (chainer.optimizers.SMORMS3 attribute), 875
epoch (chainer.training.updaters.MultiprocessParallelUpdater

attribute), 922

epoch (chainer.training.updaters.ParallelUpdater at-
tribute), 920

epoch (chainer.training.updaters.StandardUpdater at-
tribute), 918

epoch_detail (chainer.iterators.DaliIterator at-
tribute), 1017

epoch_detail (chainer.iterators.MultiprocessIterator
attribute), 1014

epoch_detail (chainer.iterators.MultithreadIterator
attribute), 1015

epoch_detail (chainer.iterators.SerialIterator
attribute), 1011

epoch_detail (chainer.training.updaters.MultiprocessParallelUpdater
attribute), 922

epoch_detail (chainer.training.updaters.ParallelUpdater
attribute), 920

epoch_detail (chainer.training.updaters.StandardUpdater
attribute), 918

eps (chainer.optimizers.AdaDelta attribute), 846
eps (chainer.optimizers.AdaGrad attribute), 849
eps (chainer.optimizers.Adam attribute), 852
eps (chainer.optimizers.RMSprop attribute), 867
eps (chainer.optimizers.RMSpropGraves attribute), 870
eps (chainer.optimizers.SMORMS3 attribute), 875
eps_inside_sqrt (chainer.optimizers.RMSprop at-

tribute), 867
equal() (in module chainerx), 1154
erf() (in module chainer.functions), 249
erfc() (in module chainer.functions), 249
erfcinv() (in module chainer.functions), 249
erfcx() (in module chainer.functions), 249
erfinv() (in module chainer.functions), 250
eta (chainer.optimizers.Adam attribute), 852
eta (chainer.optimizers.MSVAG attribute), 864
eval() (chainer.utils.type_check.Expr method), 1080
eval() (chainer.utils.type_check.Variable method),

1082
eval() (in module chainer.utils.type_check), 1081
evaluate() (chainer.training.extensions.Evaluator

method), 927
Evaluator, 62
Evaluator (class in chainer.training.extensions), 926
event_shape (chainer.Distribution attribute), 842
event_shape (chainer.distributions.Bernoulli at-

tribute), 779
event_shape (chainer.distributions.Beta attribute),

782
event_shape (chainer.distributions.Categorical at-

tribute), 786
event_shape (chainer.distributions.Cauchy attribute),

789
event_shape (chainer.distributions.Chisquare at-

tribute), 792

Index 1337



Chainer Documentation, Release 6.5.0

event_shape (chainer.distributions.Dirichlet at-
tribute), 795

event_shape (chainer.distributions.Exponential at-
tribute), 798

event_shape (chainer.distributions.Gamma attribute),
801

event_shape (chainer.distributions.Geometric at-
tribute), 805

event_shape (chainer.distributions.Gumbel attribute),
808

event_shape (chainer.distributions.Independent at-
tribute), 811

event_shape (chainer.distributions.Laplace at-
tribute), 814

event_shape (chainer.distributions.LogNormal
attribute), 817

event_shape (chainer.distributions.MultivariateNormal
attribute), 821

event_shape (chainer.distributions.Normal attribute),
824

event_shape (chainer.distributions.OneHotCategorical
attribute), 827

event_shape (chainer.distributions.Pareto attribute),
830

event_shape (chainer.distributions.Poisson attribute),
833

event_shape (chainer.distributions.Uniform at-
tribute), 836

exp() (in module chainer.functions), 250
exp() (in module chainerx), 1158
expand_dims() (in module chainer.functions), 174
expect() (in module chainer.utils.type_check), 1081
experimental() (in module chainer.utils), 1056
expm1() (in module chainer.functions), 250
Exponential (class in chainer.distributions), 796
ExponentialShift (class in

chainer.training.extensions), 936
export() (in module chainer.exporters.caffe), 1077
Expr (class in chainer.utils.type_check), 1079
extend() (chainer.ChainList method), 757
extend() (chainer.links.MLPConvolution2D method),

457
extend() (chainer.links.NStepBiGRU method), 470
extend() (chainer.links.NStepBiLSTM method), 477
extend() (chainer.links.NStepBiRNNReLU method),

484
extend() (chainer.links.NStepBiRNNTanh method),

491
extend() (chainer.links.NStepGRU method), 498
extend() (chainer.links.NStepLSTM method), 505
extend() (chainer.links.NStepRNNReLU method), 512
extend() (chainer.links.NStepRNNTanh method), 519
extend() (chainer.Sequential method), 765
extend() (chainer.training.Trainer method), 914

Extension (class in chainer.training), 923
extract() (chainer.links.GoogLeNet method), 692
extract() (chainer.links.model.vision.resnet.ResNetLayers

method), 700
extract() (chainer.links.ResNet101Layers method),

715
extract() (chainer.links.ResNet152Layers method),

722
extract() (chainer.links.ResNet50Layers method),

707
extract() (chainer.links.VGG16Layers method), 676
extract() (chainer.links.VGG19Layers method), 684
eye() (in module chainerx), 1136

F
f1_score() (in module chainer.functions), 223
fail() (chainer.testing.FunctionTestCase method),

1094
fail() (chainer.testing.LinkInitializersTestCase

method), 1104
fail() (chainer.testing.LinkTestCase method), 1112
failIf() (chainer.testing.FunctionTestCase method),

1094
failIf() (chainer.testing.LinkInitializersTestCase

method), 1104
failIf() (chainer.testing.LinkTestCase method), 1112
failIfAlmostEqual()

(chainer.testing.FunctionTestCase method),
1094

failIfAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1104

failIfAlmostEqual()
(chainer.testing.LinkTestCase method), 1112

failIfEqual() (chainer.testing.FunctionTestCase
method), 1094

failIfEqual() (chainer.testing.LinkInitializersTestCase
method), 1104

failIfEqual() (chainer.testing.LinkTestCase
method), 1112

FailOnNonNumber (class in
chainer.training.extensions), 931

failUnless() (chainer.testing.FunctionTestCase
method), 1094

failUnless() (chainer.testing.LinkInitializersTestCase
method), 1104

failUnless() (chainer.testing.LinkTestCase method),
1113

failUnlessAlmostEqual()
(chainer.testing.FunctionTestCase method),
1094

failUnlessAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1104

1338 Index



Chainer Documentation, Release 6.5.0

failUnlessAlmostEqual()
(chainer.testing.LinkTestCase method), 1113

failUnlessEqual()
(chainer.testing.FunctionTestCase method),
1094

failUnlessEqual()
(chainer.testing.LinkInitializersTestCase
method), 1104

failUnlessEqual() (chainer.testing.LinkTestCase
method), 1113

failUnlessRaises()
(chainer.testing.FunctionTestCase method),
1094

failUnlessRaises()
(chainer.testing.LinkInitializersTestCase
method), 1104

failUnlessRaises() (chainer.testing.LinkTestCase
method), 1113

fallback_device (chainer.backend.ChainerxDevice
attribute), 1039

fft() (in module chainer.functions), 250
fill() (chainerx.ndarray method), 1130
fill_value (chainer.initializers.Constant attribute),

894
fill_value (chainer.initializers.NaN attribute), 896
fill_value (chainer.initializers.One attribute), 895
fill_value (chainer.initializers.Zero attribute), 895
final_lr (chainer.optimizers.Adam attribute), 852
finalize() (chainer.dataset.Iterator method), 976
finalize() (chainer.iterators.DaliIterator method),

1016
finalize() (chainer.iterators.MultiprocessIterator

method), 1013
finalize() (chainer.iterators.MultithreadIterator

method), 1015
finalize() (chainer.iterators.SerialIterator method),

1011
finalize() (chainer.training.Extension method), 924
finalize() (chainer.training.extensions.DumpGraph

method), 960
finalize() (chainer.training.extensions.Evaluator

method), 927
finalize() (chainer.training.extensions.ExponentialShift

method), 936
finalize() (chainer.training.extensions.FailOnNonNumber

method), 931
finalize() (chainer.training.extensions.InverseShift

method), 938
finalize() (chainer.training.extensions.LinearShift

method), 940
finalize() (chainer.training.extensions.LogReport

method), 953
finalize() (chainer.training.extensions.MicroAverage

method), 930

finalize() (chainer.training.extensions.MultistepShift
method), 942

finalize() (chainer.training.extensions.ParameterStatistics
method), 934

finalize() (chainer.training.extensions.PlotReport
method), 955

finalize() (chainer.training.extensions.PolynomialShift
method), 944

finalize() (chainer.training.extensions.PrintReport
method), 949

finalize() (chainer.training.extensions.ProgressBar
method), 951

finalize() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 911

finalize() (chainer.training.extensions.snapshot_writers.ProcessWriter
method), 908

finalize() (chainer.training.extensions.snapshot_writers.QueueWriter
method), 909

finalize() (chainer.training.extensions.snapshot_writers.SimpleWriter
method), 905

finalize() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 910

finalize() (chainer.training.extensions.snapshot_writers.ThreadWriter
method), 907

finalize() (chainer.training.extensions.snapshot_writers.Writer
method), 904

finalize() (chainer.training.extensions.StepShift
method), 947

finalize() (chainer.training.extensions.unchain_variables
method), 964

finalize() (chainer.training.extensions.VariableStatisticsPlot
method), 958

finalize() (chainer.training.extensions.WarmupShift
method), 945

finalize() (chainer.training.Updater method), 915
finalize() (chainer.training.updaters.MultiprocessParallelUpdater

method), 921
finalize() (chainer.training.updaters.ParallelUpdater

method), 919
finalize() (chainer.training.updaters.StandardUpdater

method), 917
finished (chainer.training.triggers.OnceTrigger at-

tribute), 972
fix() (in module chainer.functions), 251
fix_random() (in module chainer.testing), 1117
fixed_batch_norm() (in module chainerx), 1170
fixed_batch_normalization() (in module

chainer.functions), 268
fixed_batch_renormalization() (in module

chainer.functions), 269
fixed_decorrelated_batch_normalization()

(in module chainer.functions), 269
flatten() (chainer.Sequential method), 765
flatten() (in module chainer.functions), 175

Index 1339



Chainer Documentation, Release 6.5.0

flip() (in module chainer.functions), 175
fliplr() (in module chainer.functions), 176
flipud() (in module chainer.functions), 176
floor() (in module chainer.functions), 251
flush() (chainer.datasets.PickleDatasetWriter

method), 1003
fmod() (in module chainer.functions), 251
force_backprop_mode() (in module chainer), 298
force_backprop_mode() (in module chainerx),

1177
forget() (in module chainer.functions), 282
forward() (chainer.Function method), 285
forward() (chainer.FunctionAdapter method), 290
forward() (chainer.FunctionNode method), 296
forward() (chainer.links.BatchNormalization

method), 586
forward() (chainer.links.BatchRenormalization

method), 592
forward() (chainer.links.Bias method), 315
forward() (chainer.links.Bilinear method), 321
forward() (chainer.links.BinaryHierarchicalSoftmax

method), 618
forward() (chainer.links.BlackOut method), 624
forward() (chainer.links.caffe.CaffeFunction method),

737
forward() (chainer.links.ChildSumTreeLSTM

method), 327
forward() (chainer.links.Classifier method), 669
forward() (chainer.links.Convolution1D method), 333
forward() (chainer.links.Convolution2D method), 340
forward() (chainer.links.Convolution3D method), 346
forward() (chainer.links.ConvolutionND method), 354
forward() (chainer.links.CRF1d method), 630
forward() (chainer.links.Deconvolution1D method),

359
forward() (chainer.links.Deconvolution2D method),

367
forward() (chainer.links.Deconvolution3D method),

372
forward() (chainer.links.DeconvolutionND method),

379
forward() (chainer.links.DecorrelatedBatchNormalization

method), 599
forward() (chainer.links.DeformableConvolution2D

method), 386
forward() (chainer.links.DepthwiseConvolution2D

method), 392
forward() (chainer.links.DilatedConvolution2D

method), 399
forward() (chainer.links.EmbedID method), 406
forward() (chainer.links.GoogLeNet method), 692
forward() (chainer.links.GroupNormalization

method), 606
forward() (chainer.links.GRU method), 412

forward() (chainer.links.Highway method), 418
forward() (chainer.links.Inception method), 424
forward() (chainer.links.InceptionBN method), 431
forward() (chainer.links.LayerNormalization

method), 612
forward() (chainer.links.Linear method), 437
forward() (chainer.links.LocalConvolution2D

method), 444
forward() (chainer.links.LSTM method), 451
forward() (chainer.links.Maxout method), 656
forward() (chainer.links.MLPConvolution2D

method), 457
forward() (chainer.links.model.vision.resnet.ResNetLayers

method), 700
forward() (chainer.links.NaryTreeLSTM method), 464
forward() (chainer.links.NegativeSampling method),

662
forward() (chainer.links.NStepBiGRU method), 470
forward() (chainer.links.NStepBiLSTM method), 477
forward() (chainer.links.NStepBiRNNReLU method),

484
forward() (chainer.links.NStepBiRNNTanh method),

491
forward() (chainer.links.NStepGRU method), 498
forward() (chainer.links.NStepLSTM method), 505
forward() (chainer.links.NStepRNNReLU method),

512
forward() (chainer.links.NStepRNNTanh method), 519
forward() (chainer.links.Parameter method), 526
forward() (chainer.links.PReLU method), 643
forward() (chainer.links.ResNet101Layers method),

715
forward() (chainer.links.ResNet152Layers method),

723
forward() (chainer.links.ResNet50Layers method),

708
forward() (chainer.links.Scale method), 532
forward() (chainer.links.SimplifiedDropconnect

method), 636
forward() (chainer.links.StatefulGRU method), 539
forward() (chainer.links.StatefulMGU method), 552
forward() (chainer.links.StatefulPeepholeLSTM

method), 564
forward() (chainer.links.StatefulZoneoutLSTM

method), 570
forward() (chainer.links.StatelessGRU method), 546
forward() (chainer.links.StatelessLSTM method), 577
forward() (chainer.links.StatelessMGU method), 558
forward() (chainer.links.Swish method), 650
forward() (chainer.links.TheanoFunction method),

730
forward() (chainer.links.VGG16Layers method), 677
forward() (chainer.links.VGG19Layers method), 684
forward() (chainer.Sequential method), 765

1340 Index



Chainer Documentation, Release 6.5.0

forward() (chainer.testing.FunctionTestCase method),
1094

forward() (chainer.testing.LinkInitializersTestCase
method), 1104

forward() (chainer.testing.LinkTestCase method),
1113

forward_chainerx() (chainer.FunctionAdapter
method), 290

forward_chainerx() (chainer.FunctionNode
method), 296

forward_cpu() (chainer.Function method), 285
forward_cpu() (chainer.FunctionAdapter method),

290
forward_cpu() (chainer.FunctionNode method), 296
forward_expected()

(chainer.testing.FunctionTestCase method),
1094

forward_expected() (chainer.testing.LinkTestCase
method), 1113

forward_gpu() (chainer.Function method), 286
forward_gpu() (chainer.FunctionAdapter method),

290
forward_gpu() (chainer.FunctionNode method), 296
forward_postprocess()

(chainer.function_hooks.CUDAProfileHook
method), 301

forward_postprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 303

forward_postprocess()
(chainer.function_hooks.PrintHook method),
305

forward_postprocess()
(chainer.function_hooks.TimerHook method),
307

forward_postprocess() (chainer.FunctionHook
method), 310

forward_postprocess()
(chainer.link_hooks.SpectralNormalization
method), 771

forward_postprocess()
(chainer.link_hooks.TimerHook method),
773

forward_postprocess() (chainer.LinkHook
method), 775

forward_preprocess()
(chainer.function_hooks.CUDAProfileHook
method), 301

forward_preprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 303

forward_preprocess()
(chainer.function_hooks.PrintHook method),
306

forward_preprocess()
(chainer.function_hooks.TimerHook method),
307

forward_preprocess() (chainer.FunctionHook
method), 311

forward_preprocess()
(chainer.link_hooks.SpectralNormalization
method), 771

forward_preprocess()
(chainer.link_hooks.TimerHook method),
773

forward_preprocess() (chainer.LinkHook
method), 776

from_array() (chainer.backend.ChainerxDevice
static method), 1038

from_array() (chainer.backend.CpuDevice static
method), 1035

from_array() (chainer.backend.GpuDevice static
method), 1036

from_array() (chainer.backend.Intel64Device static
method), 1037

from_chx() (chainer.Chain method), 751
from_chx() (chainer.ChainList method), 757
from_chx() (chainer.DeviceResident method), 1033
from_chx() (chainer.Link method), 744
from_chx() (chainer.links.BatchNormalization

method), 586
from_chx() (chainer.links.BatchRenormalization

method), 593
from_chx() (chainer.links.Bias method), 315
from_chx() (chainer.links.Bilinear method), 321
from_chx() (chainer.links.BinaryHierarchicalSoftmax

method), 618
from_chx() (chainer.links.BlackOut method), 624
from_chx() (chainer.links.caffe.CaffeFunction

method), 737
from_chx() (chainer.links.ChildSumTreeLSTM

method), 328
from_chx() (chainer.links.Classifier method), 670
from_chx() (chainer.links.Convolution1D method),

333
from_chx() (chainer.links.Convolution2D method),

341
from_chx() (chainer.links.Convolution3D method),

346
from_chx() (chainer.links.ConvolutionND method),

354
from_chx() (chainer.links.CRF1d method), 630
from_chx() (chainer.links.Deconvolution1D method),

359
from_chx() (chainer.links.Deconvolution2D method),

367
from_chx() (chainer.links.Deconvolution3D method),

372

Index 1341



Chainer Documentation, Release 6.5.0

from_chx() (chainer.links.DeconvolutionND method),
380

from_chx() (chainer.links.DecorrelatedBatchNormalization
method), 599

from_chx() (chainer.links.DeformableConvolution2D
method), 386

from_chx() (chainer.links.DepthwiseConvolution2D
method), 392

from_chx() (chainer.links.DilatedConvolution2D
method), 400

from_chx() (chainer.links.EmbedID method), 406
from_chx() (chainer.links.GoogLeNet method), 692
from_chx() (chainer.links.GroupNormalization

method), 606
from_chx() (chainer.links.GRU method), 412
from_chx() (chainer.links.Highway method), 418
from_chx() (chainer.links.Inception method), 424
from_chx() (chainer.links.InceptionBN method), 431
from_chx() (chainer.links.LayerNormalization

method), 612
from_chx() (chainer.links.Linear method), 437
from_chx() (chainer.links.LocalConvolution2D

method), 444
from_chx() (chainer.links.LSTM method), 451
from_chx() (chainer.links.Maxout method), 656
from_chx() (chainer.links.MLPConvolution2D

method), 458
from_chx() (chainer.links.model.vision.resnet.ResNetLayers

method), 700
from_chx() (chainer.links.NaryTreeLSTM method),

464
from_chx() (chainer.links.NegativeSampling method),

663
from_chx() (chainer.links.NStepBiGRU method), 471
from_chx() (chainer.links.NStepBiLSTM method),

478
from_chx() (chainer.links.NStepBiRNNReLU

method), 485
from_chx() (chainer.links.NStepBiRNNTanh method),

492
from_chx() (chainer.links.NStepGRU method), 499
from_chx() (chainer.links.NStepLSTM method), 506
from_chx() (chainer.links.NStepRNNReLU method),

513
from_chx() (chainer.links.NStepRNNTanh method),

520
from_chx() (chainer.links.Parameter method), 526
from_chx() (chainer.links.PReLU method), 643
from_chx() (chainer.links.ResNet101Layers method),

715
from_chx() (chainer.links.ResNet152Layers method),

723
from_chx() (chainer.links.ResNet50Layers method),

708

from_chx() (chainer.links.Scale method), 532
from_chx() (chainer.links.SimplifiedDropconnect

method), 637
from_chx() (chainer.links.StatefulGRU method), 539
from_chx() (chainer.links.StatefulMGU method), 552
from_chx() (chainer.links.StatefulPeepholeLSTM

method), 564
from_chx() (chainer.links.StatefulZoneoutLSTM

method), 570
from_chx() (chainer.links.StatelessGRU method), 546
from_chx() (chainer.links.StatelessLSTM method),

577
from_chx() (chainer.links.StatelessMGU method),

558
from_chx() (chainer.links.Swish method), 650
from_chx() (chainer.links.TheanoFunction method),

731
from_chx() (chainer.links.VGG16Layers method),

677
from_chx() (chainer.links.VGG19Layers method),

684
from_chx() (chainer.Parameter method), 142
from_chx() (chainer.Sequential method), 765
from_chx() (chainer.utils.WalkerAlias method), 1047
from_chx() (chainer.Variable method), 134
from_chx() (in module chainer.backend), 1045
from_device_id() (chainer.backend.GpuDevice

static method), 1036
from_fallback_device()

(chainer.backend.ChainerxDevice static
method), 1038

frombuffer() (in module chainerx), 1141
fromfile() (in module chainerx), 1141
fromfunction() (in module chainerx), 1141
fromiter() (in module chainerx), 1142
fromstring() (in module chainerx), 1142
full() (in module chainerx), 1138
full_like() (in module chainerx), 1138
function (chainer.FunctionAdapter attribute), 292
Function (class in chainer), 283
FunctionAdapter (class in chainer), 287
FunctionHook (class in chainer), 308
FunctionNode (class in chainer), 292
functions (chainer.links.GoogLeNet attribute), 695
functions (chainer.links.model.vision.resnet.ResNetLayers

attribute), 703
functions (chainer.links.ResNet101Layers attribute),

718
functions (chainer.links.ResNet152Layers attribute),

726
functions (chainer.links.ResNet50Layers attribute),

711
functions (chainer.links.VGG16Layers attribute), 680
functions (chainer.links.VGG19Layers attribute), 687

1342 Index



Chainer Documentation, Release 6.5.0

FunctionTestCase (class in chainer.testing), 1088

G
gamma (chainer.links.BatchNormalization attribute), 590
gamma (chainer.links.BatchRenormalization attribute),

596
gamma (chainer.optimizers.Adam attribute), 852
Gamma (class in chainer.distributions), 799
gather() (chainermn.CommunicatorBase method),

1217
gather() (in module chainermn.functions), 1227
gather_obj() (chainermn.CommunicatorBase

method), 1218
gaussian() (in module chainer.functions), 263
gaussian_kl_divergence() (in module

chainer.functions), 232
gaussian_nll() (in module chainer.functions), 233
generate_array() (in module chainer.initializers),

903
generate_grad_grad_inputs()

(chainer.testing.FunctionTestCase method),
1094

generate_grad_outputs()
(chainer.testing.FunctionTestCase method),
1094

generate_grad_outputs()
(chainer.testing.LinkTestCase method), 1113

generate_inputs()
(chainer.testing.FunctionTestCase method),
1094

generate_inputs()
(chainer.testing.LinkInitializersTestCase
method), 1104

generate_inputs() (chainer.testing.LinkTestCase
method), 1113

generate_params()
(chainer.testing.LinkInitializersTestCase
method), 1104

generate_params() (chainer.testing.LinkTestCase
method), 1113

Geometric (class in chainer.distributions), 802
get_all_iterators()

(chainer.training.extensions.Evaluator
method), 927

get_all_optimizers() (chainer.training.Updater
method), 915

get_all_optimizers()
(chainer.training.updaters.MultiprocessParallelUpdater
method), 921

get_all_optimizers()
(chainer.training.updaters.ParallelUpdater
method), 920

get_all_optimizers()
(chainer.training.updaters.StandardUpdater

method), 917
get_all_targets()

(chainer.training.extensions.Evaluator
method), 928

get_array_module() (in module chainer.backend),
1032

get_array_module() (in module
chainer.backends.cuda), 1044

get_backend() (chainerx.Context method), 1172
get_backend() (in module chainerx), 1173
get_cifar10() (in module chainer.datasets), 1007
get_cifar100() (in module chainer.datasets), 1007
get_conv_outsize() (in module chainer.utils),

1045
get_cross_validation_datasets() (in mod-

ule chainer.datasets), 988
get_cross_validation_datasets_random()

(in module chainer.datasets), 988
get_current_reporter() (in module chainer),

1051
get_dataset_root() (in module chainer.dataset),

980
get_deconv_outsize() (in module chainer.utils),

1046
get_default_device() (in module chainerx), 1175
get_device() (chainerx.Backend method), 1173
get_device() (chainerx.Context method), 1172
get_device() (in module chainer), 1031
get_device() (in module chainer.backends.cuda),

1040
get_device() (in module chainerx), 1175
get_device_count() (chainerx.Backend method),

1173
get_device_from_array() (in module

chainer.backend), 1032
get_device_from_array() (in module

chainer.backends.cuda), 1041
get_device_from_id() (in module

chainer.backends.cuda), 1040
get_dict() (chainer.optimizer.Hyperparameter

method), 881
get_dtype() (in module chainer), 1064
get_example() (chainer.dataset.DatasetMixin

method), 975
get_example() (chainer.datasets.ConcatenatedDataset

method), 984
get_example() (chainer.datasets.ImageDataset

method), 992
get_example() (chainer.datasets.LabeledImageDataset

method), 997
get_example() (chainer.datasets.LabeledZippedImageDataset

method), 998
get_example() (chainer.datasets.MultiZippedImageDataset

method), 995

Index 1343



Chainer Documentation, Release 6.5.0

get_example() (chainer.datasets.PickleDataset
method), 1002

get_example() (chainer.datasets.SubDataset
method), 986

get_example() (chainer.datasets.TextDataset
method), 1000

get_example() (chainer.datasets.TransformDataset
method), 990

get_example() (chainer.datasets.ZippedImageDataset
method), 993

get_extension() (chainer.training.Trainer method),
914

get_fashion_mnist() (in module
chainer.datasets), 1006

get_fashion_mnist_labels() (in module
chainer.datasets), 1006

get_grad() (chainerx.ndarray method), 1130
get_initializers()

(chainer.testing.LinkInitializersTestCase
method), 1104

get_item() (in module chainer.functions), 176
get_iterator() (chainer.training.extensions.Evaluator

method), 928
get_iterator() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
get_iterator() (chainer.training.updaters.ParallelUpdater

method), 920
get_iterator() (chainer.training.updaters.StandardUpdater

method), 918
get_kuzushiji_mnist() (in module

chainer.datasets), 1005
get_kuzushiji_mnist_labels() (in module

chainer.datasets), 1006
get_max_workspace_size() (in module

chainer.backends.cuda), 1044
get_mnist() (in module chainer.datasets), 1005
get_optimizer() (chainer.training.Updater

method), 916
get_optimizer() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
get_optimizer() (chainer.training.updaters.ParallelUpdater

method), 920
get_optimizer() (chainer.training.updaters.StandardUpdater

method), 918
get_ptb_words() (in module chainer.datasets), 1008
get_ptb_words_vocabulary() (in module

chainer.datasets), 1008
get_retained_inputs()

(chainer.FunctionAdapter method), 290
get_retained_inputs() (chainer.FunctionNode

method), 296
get_retained_outputs()

(chainer.FunctionAdapter method), 290
get_retained_outputs() (chainer.FunctionNode

method), 296
get_svhn() (in module chainer.datasets), 1008
get_target() (chainer.training.extensions.Evaluator

method), 928
get_trainer_with_mock_updater() (in mod-

ule chainer.testing), 1115
get_training_length()

(chainer.training.triggers.EarlyStoppingTrigger
method), 968

get_training_length()
(chainer.training.triggers.IntervalTrigger
method), 969

get_trigger() (in module chainer.training), 966
get_variable() (chainer.variable.VariableNode

method), 148
get_variable_or_none()

(chainer.variable.VariableNode method),
148

global_config (in module chainer), 1061
GlobalConfig (class in chainer.configuration), 1062
GlorotNormal (class in chainer.initializers), 898
GlorotUniform (class in chainer.initializers), 902
GoogLeNet (class in chainer.links), 689
gpu() (in module chainer.testing.attr), 1117
GpuDevice (class in chainer.backend), 1036
grad (chainer.Parameter attribute), 147
grad (chainer.Variable attribute), 138
grad (chainer.variable.VariableNode attribute), 150
grad (chainerx.ndarray attribute), 1133
grad() (in module chainer), 299
grad_var (chainer.Parameter attribute), 147
grad_var (chainer.Variable attribute), 139
grad_var (chainer.variable.VariableNode attribute),

150
GradientClipping (class in

chainer.optimizer_hooks), 887
GradientHardClipping (class in

chainer.optimizer_hooks), 888
GradientLARS (class in chainer.optimizer_hooks), 890
GradientMethod (class in chainer), 882
GradientNoise (class in chainer.optimizer_hooks),

889
greater() (in module chainerx), 1152
greater_equal() (in module chainerx), 1153
group_normalization() (in module

chainer.functions), 269
GroupNormalization (class in chainer.links), 603
GRU (class in chainer.links), 409
Gumbel (class in chainer.distributions), 805
gumbel_softmax() (in module chainer.functions),

264

H
hard_sigmoid() (in module chainer.functions), 154

1344 Index



Chainer Documentation, Release 6.5.0

HDF5Deserializer (class in chainer.serializers),
1024

HDF5Serializer (class in chainer.serializers), 1023
HeNormal (class in chainer.initializers), 899
HeUniform (class in chainer.initializers), 902
high (chainer.distributions.Uniform attribute), 837
Highway (class in chainer.links), 415
hinge() (in module chainer.functions), 233
hstack() (in module chainer.functions), 177
huber_loss() (in module chainer.functions), 234
Hyperparameter (class in chainer.optimizer), 881

I
icdf() (chainer.Distribution method), 840
icdf() (chainer.distributions.Bernoulli method), 777
icdf() (chainer.distributions.Beta method), 780
icdf() (chainer.distributions.Categorical method), 784
icdf() (chainer.distributions.Cauchy method), 787
icdf() (chainer.distributions.Chisquare method), 790
icdf() (chainer.distributions.Dirichlet method), 793
icdf() (chainer.distributions.Exponential method), 796
icdf() (chainer.distributions.Gamma method), 799
icdf() (chainer.distributions.Geometric method), 802
icdf() (chainer.distributions.Gumbel method), 806
icdf() (chainer.distributions.Independent method), 809
icdf() (chainer.distributions.Laplace method), 812
icdf() (chainer.distributions.LogNormal method), 815
icdf() (chainer.distributions.MultivariateNormal

method), 819
icdf() (chainer.distributions.Normal method), 822
icdf() (chainer.distributions.OneHotCategorical

method), 825
icdf() (chainer.distributions.Pareto method), 828
icdf() (chainer.distributions.Poisson method), 831
icdf() (chainer.distributions.Uniform method), 834
id() (chainer.testing.FunctionTestCase method), 1094
id() (chainer.testing.LinkInitializersTestCase method),

1104
id() (chainer.testing.LinkTestCase method), 1113
Identity (class in chainer.initializers), 893
identity() (in module chainer.functions), 251
identity() (in module chainerx), 1136
ifft() (in module chainer.functions), 251
ignore_label (chainer.links.EmbedID attribute), 409
im2col() (in module chainer.functions), 178
ImageDataset (class in chainer.datasets), 991
in_recomputing (chainer.configuration.GlobalConfig

attribute), 1062
Inception (class in chainer.links), 421
InceptionBN (class in chainer.links), 428
Independent (class in chainer.distributions), 808
index (chainerx.Device attribute), 1174
index() (chainer.ChainList method), 757

index() (chainer.links.MLPConvolution2D method),
458

index() (chainer.links.NStepBiGRU method), 471
index() (chainer.links.NStepBiLSTM method), 478
index() (chainer.links.NStepBiRNNReLU method),

485
index() (chainer.links.NStepBiRNNTanh method), 492
index() (chainer.links.NStepGRU method), 499
index() (chainer.links.NStepLSTM method), 506
index() (chainer.links.NStepRNNReLU method), 513
index() (chainer.links.NStepRNNTanh method), 520
index() (chainer.Sequential method), 765
index() (chainer.utils.type_check.TypeInfoTuple

method), 1082
init_hx() (chainer.links.NStepBiGRU method), 471
init_hx() (chainer.links.NStepBiLSTM method), 478
init_hx() (chainer.links.NStepBiRNNReLU method),

485
init_hx() (chainer.links.NStepBiRNNTanh method),

492
init_hx() (chainer.links.NStepGRU method), 499
init_hx() (chainer.links.NStepLSTM method), 506
init_hx() (chainer.links.NStepRNNReLU method),

513
init_hx() (chainer.links.NStepRNNTanh method), 520
init_scope() (chainer.Chain method), 751
init_scope() (chainer.ChainList method), 757
init_scope() (chainer.Link method), 744
init_scope() (chainer.links.BatchNormalization

method), 587
init_scope() (chainer.links.BatchRenormalization

method), 593
init_scope() (chainer.links.Bias method), 315
init_scope() (chainer.links.Bilinear method), 321
init_scope() (chainer.links.BinaryHierarchicalSoftmax

method), 618
init_scope() (chainer.links.BlackOut method), 624
init_scope() (chainer.links.caffe.CaffeFunction

method), 737
init_scope() (chainer.links.ChildSumTreeLSTM

method), 328
init_scope() (chainer.links.Classifier method), 670
init_scope() (chainer.links.Convolution1D method),

333
init_scope() (chainer.links.Convolution2D method),

341
init_scope() (chainer.links.Convolution3D method),

346
init_scope() (chainer.links.ConvolutionND

method), 354
init_scope() (chainer.links.CRF1d method), 630
init_scope() (chainer.links.Deconvolution1D

method), 359
init_scope() (chainer.links.Deconvolution2D

Index 1345



Chainer Documentation, Release 6.5.0

method), 367
init_scope() (chainer.links.Deconvolution3D

method), 372
init_scope() (chainer.links.DeconvolutionND

method), 380
init_scope() (chainer.links.DecorrelatedBatchNormalization

method), 599
init_scope() (chainer.links.DeformableConvolution2D

method), 386
init_scope() (chainer.links.DepthwiseConvolution2D

method), 392
init_scope() (chainer.links.DilatedConvolution2D

method), 400
init_scope() (chainer.links.EmbedID method), 406
init_scope() (chainer.links.GoogLeNet method),

692
init_scope() (chainer.links.GroupNormalization

method), 606
init_scope() (chainer.links.GRU method), 412
init_scope() (chainer.links.Highway method), 418
init_scope() (chainer.links.Inception method), 424
init_scope() (chainer.links.InceptionBN method),

431
init_scope() (chainer.links.LayerNormalization

method), 612
init_scope() (chainer.links.Linear method), 437
init_scope() (chainer.links.LocalConvolution2D

method), 444
init_scope() (chainer.links.LSTM method), 451
init_scope() (chainer.links.Maxout method), 656
init_scope() (chainer.links.MLPConvolution2D

method), 458
init_scope() (chainer.links.model.vision.resnet.ResNetLayers

method), 700
init_scope() (chainer.links.NaryTreeLSTM method),

464
init_scope() (chainer.links.NegativeSampling

method), 663
init_scope() (chainer.links.NStepBiGRU method),

471
init_scope() (chainer.links.NStepBiLSTM method),

478
init_scope() (chainer.links.NStepBiRNNReLU

method), 485
init_scope() (chainer.links.NStepBiRNNTanh

method), 492
init_scope() (chainer.links.NStepGRU method), 499
init_scope() (chainer.links.NStepLSTM method),

506
init_scope() (chainer.links.NStepRNNReLU

method), 513
init_scope() (chainer.links.NStepRNNTanh

method), 520
init_scope() (chainer.links.Parameter method), 526

init_scope() (chainer.links.PReLU method), 643
init_scope() (chainer.links.ResNet101Layers

method), 715
init_scope() (chainer.links.ResNet152Layers

method), 723
init_scope() (chainer.links.ResNet50Layers

method), 708
init_scope() (chainer.links.Scale method), 532
init_scope() (chainer.links.SimplifiedDropconnect

method), 637
init_scope() (chainer.links.StatefulGRU method),

539
init_scope() (chainer.links.StatefulMGU method),

552
init_scope() (chainer.links.StatefulPeepholeLSTM

method), 564
init_scope() (chainer.links.StatefulZoneoutLSTM

method), 570
init_scope() (chainer.links.StatelessGRU method),

546
init_scope() (chainer.links.StatelessLSTM method),

577
init_scope() (chainer.links.StatelessMGU method),

558
init_scope() (chainer.links.Swish method), 650
init_scope() (chainer.links.TheanoFunction

method), 731
init_scope() (chainer.links.VGG16Layers method),

677
init_scope() (chainer.links.VGG19Layers method),

684
init_scope() (chainer.Sequential method), 766
init_state() (chainer.UpdateRule method), 879
initialize() (chainer.Parameter method), 142
initialize() (chainer.training.Extension method),

924
initialize() (chainer.training.extensions.DumpGraph

method), 960
initialize() (chainer.training.extensions.Evaluator

method), 928
initialize() (chainer.training.extensions.ExponentialShift

method), 936
initialize() (chainer.training.extensions.FailOnNonNumber

method), 931
initialize() (chainer.training.extensions.InverseShift

method), 938
initialize() (chainer.training.extensions.LinearShift

method), 940
initialize() (chainer.training.extensions.LogReport

method), 953
initialize() (chainer.training.extensions.MicroAverage

method), 930
initialize() (chainer.training.extensions.MultistepShift

method), 942

1346 Index



Chainer Documentation, Release 6.5.0

initialize() (chainer.training.extensions.ParameterStatistics
method), 934

initialize() (chainer.training.extensions.PlotReport
method), 955

initialize() (chainer.training.extensions.PolynomialShift
method), 944

initialize() (chainer.training.extensions.PrintReport
method), 949

initialize() (chainer.training.extensions.ProgressBar
method), 951

initialize() (chainer.training.extensions.StepShift
method), 947

initialize() (chainer.training.extensions.unchain_variables
method), 964

initialize() (chainer.training.extensions.VariableStatisticsPlot
method), 958

initialize() (chainer.training.extensions.WarmupShift
method), 945

initializer (chainer.Parameter attribute), 147
Initializer (class in chainer), 892
inject_backend_tests() (in module

chainer.testing), 1118
inputs (chainer.Function attribute), 287
inputs (chainer.FunctionAdapter attribute), 292
inputs (chainer.FunctionNode attribute), 298
insert() (chainer.ChainList method), 757
insert() (chainer.links.MLPConvolution2D method),

458
insert() (chainer.links.NStepBiGRU method), 471
insert() (chainer.links.NStepBiLSTM method), 478
insert() (chainer.links.NStepBiRNNReLU method),

485
insert() (chainer.links.NStepBiRNNTanh method),

492
insert() (chainer.links.NStepGRU method), 499
insert() (chainer.links.NStepLSTM method), 506
insert() (chainer.links.NStepRNNReLU method), 513
insert() (chainer.links.NStepRNNTanh method), 520
insert() (chainer.Sequential method), 766
Intel64Device (class in chainer.backend), 1037
inter_rank() (chainermn.CommunicatorBase prop-

erty), 1218
inter_size() (chainermn.CommunicatorBase prop-

erty), 1218
IntervalTrigger (class in

chainer.training.triggers), 968
intra_rank() (chainermn.CommunicatorBase prop-

erty), 1218
inv() (in module chainer.functions), 252
InverseShift (class in chainer.training.extensions),

938
invoke_before_training

(chainer.training.extensions.PolynomialShift
attribute), 945

is_backprop_required() (chainerx.ndarray
method), 1130

is_backprop_required() (in module chainerx),
1178

is_contiguous (chainerx.ndarray attribute), 1133
is_debug() (in module chainer), 1066
is_grad_required() (chainerx.ndarray method),

1130
is_ideep_available() (in module

chainer.backends.intel64), 1045
is_new_epoch (chainer.iterators.MultiprocessIterator

attribute), 1014
is_new_epoch (chainer.iterators.MultithreadIterator

attribute), 1015
is_new_epoch (chainer.iterators.SerialIterator

attribute), 1011
is_new_epoch (chainer.training.updaters.MultiprocessParallelUpdater

attribute), 922
is_new_epoch (chainer.training.updaters.ParallelUpdater

attribute), 920
is_new_epoch (chainer.training.updaters.StandardUpdater

attribute), 918
is_safe_to_update() (chainer.GradientMethod

method), 883
is_safe_to_update() (chainer.Optimizer method),

877
is_safe_to_update()

(chainer.optimizers.AdaDelta method), 844
is_safe_to_update()

(chainer.optimizers.AdaGrad method), 847
is_safe_to_update() (chainer.optimizers.Adam

method), 850
is_safe_to_update()

(chainer.optimizers.CorrectedMomentumSGD
method), 854

is_safe_to_update()
(chainer.optimizers.MomentumSGD method),
856

is_safe_to_update() (chainer.optimizers.MSVAG
method), 862

is_safe_to_update()
(chainer.optimizers.NesterovAG method),
859

is_safe_to_update()
(chainer.optimizers.RMSprop method), 865

is_safe_to_update()
(chainer.optimizers.RMSpropGraves method),
868

is_safe_to_update() (chainer.optimizers.SGD
method), 871

is_safe_to_update()
(chainer.optimizers.SMORMS3 method),
874

isinf() (in module chainerx), 1151

Index 1347



Chainer Documentation, Release 6.5.0

isnan() (in module chainerx), 1151
item() (chainer.Parameter method), 142
item() (chainer.Variable method), 134
item() (chainerx.ndarray method), 1130
itemsize (chainerx.ndarray attribute), 1133
Iterator (class in chainer.dataset), 975

K
k (chainer.distributions.Chisquare attribute), 792
k (chainer.distributions.Gamma attribute), 801
keep_graph_on_report

(chainer.configuration.GlobalConfig attribute),
1062

kl_divergence() (in module chainer), 838

L
label (chainer.Function attribute), 287
label (chainer.FunctionAdapter attribute), 292
label (chainer.FunctionNode attribute), 298
label (chainer.Parameter attribute), 147
label (chainer.Variable attribute), 139
label (chainer.variable.VariableNode attribute), 150
LabeledImageDataset (class in chainer.datasets),

995
LabeledZippedImageDataset (class in

chainer.datasets), 997
lam (chainer.distributions.Exponential attribute), 798
lam (chainer.distributions.Poisson attribute), 833
Laplace (class in chainer.distributions), 812
Lasso (class in chainer.optimizer_hooks), 886
layer_normalization() (in module

chainer.functions), 270
LayerNormalization (class in chainer.links), 609
lazy_grad_sum (chainer.configuration.GlobalConfig

attribute), 1062
lazy_grad_sum (chainer.FunctionAdapter attribute),

292
lazy_grad_sum (chainer.FunctionNode attribute),

298
LD_LIBRARY_PATH, 1187
leaky_relu() (in module chainer.functions), 154
LeCunNormal (class in chainer.initializers), 897
LeCunUniform (class in chainer.initializers), 901
less() (in module chainerx), 1153
less_equal() (in module chainerx), 1154
lgamma() (in module chainer.functions), 252
Linear (class in chainer.links), 434
linear() (in module chainer.functions), 209
linear() (in module chainerx), 1168
linear_interpolate() (in module

chainer.functions), 252
LinearShift (class in chainer.training.extensions),

939
Link (class in chainer), 741

LinkHook (class in chainer), 774
LinkInitializersTestCase (class in

chainer.testing), 1098
links() (chainer.Chain method), 751
links() (chainer.ChainList method), 757
links() (chainer.Link method), 745
links() (chainer.links.BatchNormalization method),

587
links() (chainer.links.BatchRenormalization method),

593
links() (chainer.links.Bias method), 315
links() (chainer.links.Bilinear method), 322
links() (chainer.links.BinaryHierarchicalSoftmax

method), 619
links() (chainer.links.BlackOut method), 625
links() (chainer.links.caffe.CaffeFunction method),

738
links() (chainer.links.ChildSumTreeLSTM method),

328
links() (chainer.links.Classifier method), 670
links() (chainer.links.Convolution1D method), 334
links() (chainer.links.Convolution2D method), 341
links() (chainer.links.Convolution3D method), 347
links() (chainer.links.ConvolutionND method), 354
links() (chainer.links.CRF1d method), 631
links() (chainer.links.Deconvolution1D method), 360
links() (chainer.links.Deconvolution2D method), 367
links() (chainer.links.Deconvolution3D method), 373
links() (chainer.links.DeconvolutionND method), 380
links() (chainer.links.DecorrelatedBatchNormalization

method), 600
links() (chainer.links.DeformableConvolution2D

method), 386
links() (chainer.links.DepthwiseConvolution2D

method), 393
links() (chainer.links.DilatedConvolution2D method),

400
links() (chainer.links.EmbedID method), 406
links() (chainer.links.GoogLeNet method), 693
links() (chainer.links.GroupNormalization method),

606
links() (chainer.links.GRU method), 412
links() (chainer.links.Highway method), 418
links() (chainer.links.Inception method), 425
links() (chainer.links.InceptionBN method), 431
links() (chainer.links.LayerNormalization method),

612
links() (chainer.links.Linear method), 438
links() (chainer.links.LocalConvolution2D method),

444
links() (chainer.links.LSTM method), 451
links() (chainer.links.Maxout method), 657
links() (chainer.links.MLPConvolution2D method),

458

1348 Index



Chainer Documentation, Release 6.5.0

links() (chainer.links.model.vision.resnet.ResNetLayers
method), 701

links() (chainer.links.NaryTreeLSTM method), 465
links() (chainer.links.NegativeSampling method), 663
links() (chainer.links.NStepBiGRU method), 471
links() (chainer.links.NStepBiLSTM method), 479
links() (chainer.links.NStepBiRNNReLU method),

486
links() (chainer.links.NStepBiRNNTanh method), 492
links() (chainer.links.NStepGRU method), 499
links() (chainer.links.NStepLSTM method), 507
links() (chainer.links.NStepRNNReLU method), 514
links() (chainer.links.NStepRNNTanh method), 520
links() (chainer.links.Parameter method), 526
links() (chainer.links.PReLU method), 644
links() (chainer.links.ResNet101Layers method), 716
links() (chainer.links.ResNet152Layers method), 723
links() (chainer.links.ResNet50Layers method), 708
links() (chainer.links.Scale method), 533
links() (chainer.links.SimplifiedDropconnect method),

637
links() (chainer.links.StatefulGRU method), 540
links() (chainer.links.StatefulMGU method), 552
links() (chainer.links.StatefulPeepholeLSTM method),

565
links() (chainer.links.StatefulZoneoutLSTM method),

571
links() (chainer.links.StatelessGRU method), 547
links() (chainer.links.StatelessLSTM method), 578
links() (chainer.links.StatelessMGU method), 558
links() (chainer.links.Swish method), 650
links() (chainer.links.TheanoFunction method), 731
links() (chainer.links.VGG16Layers method), 678
links() (chainer.links.VGG19Layers method), 685
links() (chainer.Sequential method), 766
LinkTestCase (class in chainer.testing), 1106
linspace() (in module chainerx), 1143
load() (chainer.Deserializer method), 1029
load() (chainer.serializers.HDF5Deserializer method),

1025
load() (chainer.serializers.NpzDeserializer method),

1021
load_hdf5() (in module chainer.serializers), 1026
load_npz() (in module chainer.serializers), 1022
loadtxt() (in module chainerx), 1142
loc (chainer.distributions.Cauchy attribute), 789
loc (chainer.distributions.Gumbel attribute), 808
loc (chainer.distributions.Laplace attribute), 814
loc (chainer.distributions.MultivariateNormal at-

tribute), 821
loc (chainer.distributions.Normal attribute), 824
loc (chainer.distributions.Uniform attribute), 837
local_convolution_2d() (in module

chainer.functions), 210

local_function_hooks (chainer.Function at-
tribute), 287

local_function_hooks (chainer.FunctionAdapter
attribute), 292

local_function_hooks (chainer.FunctionNode at-
tribute), 298

local_link_hooks (chainer.Chain attribute), 754
local_link_hooks (chainer.ChainList attribute),

760
local_link_hooks (chainer.Link attribute), 747
local_link_hooks (chainer.links.BatchNormalization

attribute), 590
local_link_hooks (chainer.links.BatchRenormalization

attribute), 596
local_link_hooks (chainer.links.Bias attribute),

318
local_link_hooks (chainer.links.Bilinear attribute),

324
local_link_hooks (chainer.links.BinaryHierarchicalSoftmax

attribute), 621
local_link_hooks (chainer.links.BlackOut at-

tribute), 627
local_link_hooks (chainer.links.caffe.CaffeFunction

attribute), 740
local_link_hooks (chainer.links.ChildSumTreeLSTM

attribute), 330
local_link_hooks (chainer.links.Classifier at-

tribute), 672
local_link_hooks (chainer.links.Convolution1D at-

tribute), 336
local_link_hooks (chainer.links.Convolution2D at-

tribute), 343
local_link_hooks (chainer.links.Convolution3D at-

tribute), 349
local_link_hooks (chainer.links.ConvolutionND

attribute), 357
local_link_hooks (chainer.links.CRF1d attribute),

633
local_link_hooks (chainer.links.Deconvolution1D

attribute), 362
local_link_hooks (chainer.links.Deconvolution2D

attribute), 370
local_link_hooks (chainer.links.Deconvolution3D

attribute), 375
local_link_hooks (chainer.links.DeconvolutionND

attribute), 382
local_link_hooks (chainer.links.DecorrelatedBatchNormalization

attribute), 602
local_link_hooks (chainer.links.DeformableConvolution2D

attribute), 389
local_link_hooks (chainer.links.DepthwiseConvolution2D

attribute), 395
local_link_hooks (chainer.links.DilatedConvolution2D

attribute), 402

Index 1349



Chainer Documentation, Release 6.5.0

local_link_hooks (chainer.links.EmbedID at-
tribute), 409

local_link_hooks (chainer.links.GoogLeNet
attribute), 695

local_link_hooks (chainer.links.GroupNormalization
attribute), 609

local_link_hooks (chainer.links.GRU attribute),
415

local_link_hooks (chainer.links.Highway at-
tribute), 421

local_link_hooks (chainer.links.Inception at-
tribute), 427

local_link_hooks (chainer.links.InceptionBN at-
tribute), 433

local_link_hooks (chainer.links.LayerNormalization
attribute), 615

local_link_hooks (chainer.links.Linear attribute),
440

local_link_hooks (chainer.links.LocalConvolution2D
attribute), 447

local_link_hooks (chainer.links.LSTM attribute),
454

local_link_hooks (chainer.links.Maxout attribute),
659

local_link_hooks (chainer.links.MLPConvolution2D
attribute), 461

local_link_hooks (chainer.links.model.vision.resnet.ResNetLayers
attribute), 703

local_link_hooks (chainer.links.NaryTreeLSTM at-
tribute), 467

local_link_hooks (chainer.links.NegativeSampling
attribute), 665

local_link_hooks (chainer.links.NStepBiGRU at-
tribute), 474

local_link_hooks (chainer.links.NStepBiLSTM at-
tribute), 481

local_link_hooks (chainer.links.NStepBiRNNReLU
attribute), 488

local_link_hooks (chainer.links.NStepBiRNNTanh
attribute), 495

local_link_hooks (chainer.links.NStepGRU at-
tribute), 502

local_link_hooks (chainer.links.NStepLSTM at-
tribute), 509

local_link_hooks (chainer.links.NStepRNNReLU
attribute), 516

local_link_hooks (chainer.links.NStepRNNTanh
attribute), 523

local_link_hooks (chainer.links.Parameter at-
tribute), 529

local_link_hooks (chainer.links.PReLU attribute),
646

local_link_hooks (chainer.links.ResNet101Layers
attribute), 718

local_link_hooks (chainer.links.ResNet152Layers
attribute), 726

local_link_hooks (chainer.links.ResNet50Layers
attribute), 711

local_link_hooks (chainer.links.Scale attribute),
535

local_link_hooks (chainer.links.SimplifiedDropconnect
attribute), 640

local_link_hooks (chainer.links.StatefulGRU at-
tribute), 542

local_link_hooks (chainer.links.StatefulMGU at-
tribute), 555

local_link_hooks (chainer.links.StatefulPeepholeLSTM
attribute), 567

local_link_hooks (chainer.links.StatefulZoneoutLSTM
attribute), 573

local_link_hooks (chainer.links.StatelessGRU at-
tribute), 549

local_link_hooks (chainer.links.StatelessLSTM at-
tribute), 580

local_link_hooks (chainer.links.StatelessMGU at-
tribute), 561

local_link_hooks (chainer.links.Swish attribute),
653

local_link_hooks (chainer.links.TheanoFunction
attribute), 733

local_link_hooks (chainer.links.VGG16Layers at-
tribute), 680

local_link_hooks (chainer.links.VGG19Layers at-
tribute), 687

local_link_hooks (chainer.Sequential attribute),
769

local_response_normalization() (in module
chainer.functions), 270

LocalConfig (class in chainer.configuration), 1063
LocalConvolution2D (class in chainer.links), 441
log (chainer.training.extensions.LogReport attribute),

954
log() (in module chainer.functions), 253
log() (in module chainerx), 1158
log10() (in module chainer.functions), 253
log1p() (in module chainer.functions), 253
log2() (in module chainer.functions), 253
log_cdf() (chainer.Distribution method), 840
log_cdf() (chainer.distributions.Bernoulli method),

777
log_cdf() (chainer.distributions.Beta method), 781
log_cdf() (chainer.distributions.Categorical method),

784
log_cdf() (chainer.distributions.Cauchy method), 787
log_cdf() (chainer.distributions.Chisquare method),

790
log_cdf() (chainer.distributions.Dirichlet method),

793

1350 Index



Chainer Documentation, Release 6.5.0

log_cdf() (chainer.distributions.Exponential method),
796

log_cdf() (chainer.distributions.Gamma method),
800

log_cdf() (chainer.distributions.Geometric method),
803

log_cdf() (chainer.distributions.Gumbel method),
806

log_cdf() (chainer.distributions.Independent
method), 809

log_cdf() (chainer.distributions.Laplace method),
813

log_cdf() (chainer.distributions.LogNormal method),
816

log_cdf() (chainer.distributions.MultivariateNormal
method), 819

log_cdf() (chainer.distributions.Normal method), 822
log_cdf() (chainer.distributions.OneHotCategorical

method), 825
log_cdf() (chainer.distributions.Pareto method), 828
log_cdf() (chainer.distributions.Poisson method), 831
log_cdf() (chainer.distributions.Uniform method),

835
log_ndtr() (in module chainer.functions), 253
log_p (chainer.distributions.Categorical attribute), 786
log_p (chainer.distributions.OneHotCategorical at-

tribute), 827
log_prob() (chainer.Distribution method), 840
log_prob() (chainer.distributions.Bernoulli method),

778
log_prob() (chainer.distributions.Beta method), 781
log_prob() (chainer.distributions.Categorical

method), 784
log_prob() (chainer.distributions.Cauchy method),

787
log_prob() (chainer.distributions.Chisquare method),

790
log_prob() (chainer.distributions.Dirichlet method),

794
log_prob() (chainer.distributions.Exponential

method), 797
log_prob() (chainer.distributions.Gamma method),

800
log_prob() (chainer.distributions.Geometric method),

803
log_prob() (chainer.distributions.Gumbel method),

806
log_prob() (chainer.distributions.Independent

method), 809
log_prob() (chainer.distributions.Laplace method),

813
log_prob() (chainer.distributions.LogNormal

method), 816
log_prob() (chainer.distributions.MultivariateNormal

method), 819
log_prob() (chainer.distributions.Normal method),

822
log_prob() (chainer.distributions.OneHotCategorical

method), 825
log_prob() (chainer.distributions.Pareto method),

828
log_prob() (chainer.distributions.Poisson method),

832
log_prob() (chainer.distributions.Uniform method),

835
log_scale (chainer.distributions.Normal attribute),

824
log_softmax() (in module chainer.functions), 155
log_softmax() (in module chainerx), 1144
log_survival_function() (chainer.Distribution

method), 841
log_survival_function()

(chainer.distributions.Bernoulli method),
778

log_survival_function()
(chainer.distributions.Beta method), 781

log_survival_function()
(chainer.distributions.Categorical method),
784

log_survival_function()
(chainer.distributions.Cauchy method), 788

log_survival_function()
(chainer.distributions.Chisquare method),
791

log_survival_function()
(chainer.distributions.Dirichlet method),
794

log_survival_function()
(chainer.distributions.Exponential method),
797

log_survival_function()
(chainer.distributions.Gamma method), 800

log_survival_function()
(chainer.distributions.Geometric method),
803

log_survival_function()
(chainer.distributions.Gumbel method), 806

log_survival_function()
(chainer.distributions.Independent method),
809

log_survival_function()
(chainer.distributions.Laplace method), 813

log_survival_function()
(chainer.distributions.LogNormal method),
816

log_survival_function()
(chainer.distributions.MultivariateNormal
method), 819

Index 1351



Chainer Documentation, Release 6.5.0

log_survival_function()
(chainer.distributions.Normal method), 822

log_survival_function()
(chainer.distributions.OneHotCategorical
method), 825

log_survival_function()
(chainer.distributions.Pareto method), 829

log_survival_function()
(chainer.distributions.Poisson method), 832

log_survival_function()
(chainer.distributions.Uniform method),
835

logical_and() (in module chainerx), 1151
logical_not() (in module chainerx), 1152
logical_or() (in module chainerx), 1152
logit (chainer.distributions.Bernoulli attribute), 779
LogNormal (class in chainer.distributions), 815
LogReport, 61
LogReport (class in chainer.training.extensions), 952
logsumexp() (in module chainer.functions), 254
logsumexp() (in module chainerx), 1159
longMessage (chainer.testing.FunctionTestCase at-

tribute), 1096
longMessage (chainer.testing.LinkInitializersTestCase

attribute), 1105
longMessage (chainer.testing.LinkTestCase attribute),

1114
loss_scaling() (chainer.GradientMethod method),

883
loss_scaling() (chainer.Optimizer method), 877
loss_scaling() (chainer.optimizers.AdaDelta

method), 844
loss_scaling() (chainer.optimizers.AdaGrad

method), 847
loss_scaling() (chainer.optimizers.Adam method),

850
loss_scaling() (chainer.optimizers.CorrectedMomentumSGD

method), 854
loss_scaling() (chainer.optimizers.MomentumSGD

method), 856
loss_scaling() (chainer.optimizers.MSVAG

method), 862
loss_scaling() (chainer.optimizers.NesterovAG

method), 859
loss_scaling() (chainer.optimizers.RMSprop

method), 865
loss_scaling() (chainer.optimizers.RMSpropGraves

method), 868
loss_scaling() (chainer.optimizers.SGD method),

871
loss_scaling() (chainer.optimizers.SMORMS3

method), 874
low (chainer.distributions.Uniform attribute), 837
lr (chainer.optimizers.AdaGrad attribute), 849

lr (chainer.optimizers.Adam attribute), 852
lr (chainer.optimizers.CorrectedMomentumSGD at-

tribute), 855
lr (chainer.optimizers.MomentumSGD attribute), 858
lr (chainer.optimizers.MSVAG attribute), 864
lr (chainer.optimizers.NesterovAG attribute), 861
lr (chainer.optimizers.RMSprop attribute), 867
lr (chainer.optimizers.RMSpropGraves attribute), 870
lr (chainer.optimizers.SGD attribute), 873
lr (chainer.optimizers.SMORMS3 attribute), 875
LSTM (class in chainer.links), 447
lstm() (in module chainer.functions), 156

M
make_backprop_id() (chainerx.Context method),

1172
make_extension() (in module chainer.training), 925
make_statistics() (chainer.DictSummary

method), 1053
make_statistics() (chainer.Summary method),

1052
ManualScheduleTrigger (class in

chainer.training.triggers), 969
matmul() (in module chainer.functions), 254
max() (chainerx.ndarray method), 1130
max() (in module chainer.functions), 255
max_pool() (in module chainerx), 1170
max_pooling_1d() (in module chainer.functions),

273
max_pooling_2d() (in module chainer.functions),

274
max_pooling_3d() (in module chainer.functions),

274
max_pooling_nd() (in module chainer.functions),

275
maxDiff (chainer.testing.FunctionTestCase attribute),

1096
maxDiff (chainer.testing.LinkInitializersTestCase at-

tribute), 1105
maxDiff (chainer.testing.LinkTestCase attribute), 1114
maximum() (in module chainer.functions), 255
maximum() (in module chainerx), 1158
Maxout (class in chainer.links), 653
maxout() (in module chainer.functions), 157
MaxValueTrigger (class in

chainer.training.triggers), 970
mean (chainer.Distribution attribute), 842
mean (chainer.distributions.Bernoulli attribute), 779
mean (chainer.distributions.Beta attribute), 783
mean (chainer.distributions.Categorical attribute), 786
mean (chainer.distributions.Cauchy attribute), 789
mean (chainer.distributions.Chisquare attribute), 792
mean (chainer.distributions.Dirichlet attribute), 795
mean (chainer.distributions.Exponential attribute), 798

1352 Index



Chainer Documentation, Release 6.5.0

mean (chainer.distributions.Gamma attribute), 802
mean (chainer.distributions.Geometric attribute), 805
mean (chainer.distributions.Gumbel attribute), 808
mean (chainer.distributions.Independent attribute), 811
mean (chainer.distributions.Laplace attribute), 815
mean (chainer.distributions.LogNormal attribute), 817
mean (chainer.distributions.MultivariateNormal at-

tribute), 821
mean (chainer.distributions.Normal attribute), 824
mean (chainer.distributions.OneHotCategorical at-

tribute), 827
mean (chainer.distributions.Pareto attribute), 830
mean (chainer.distributions.Poisson attribute), 833
mean (chainer.distributions.Uniform attribute), 837
mean() (in module chainer.functions), 255
mean_absolute_error() (in module

chainer.functions), 235
mean_squared_error() (in module

chainer.functions), 236
memoize() (in module chainer.backends.cuda), 1043
MicroAverage (class in chainer.training.extensions),

929
min() (chainerx.ndarray method), 1130
min() (in module chainer.functions), 256
minimum() (in module chainer.functions), 256
MinValueTrigger (class in

chainer.training.triggers), 971
mixed16 (in module chainer), 1064
MLPConvolution2D (class in chainer.links), 454
mode (chainer.Distribution attribute), 842
mode (chainer.distributions.Bernoulli attribute), 779
mode (chainer.distributions.Beta attribute), 783
mode (chainer.distributions.Categorical attribute), 786
mode (chainer.distributions.Cauchy attribute), 789
mode (chainer.distributions.Chisquare attribute), 792
mode (chainer.distributions.Dirichlet attribute), 795
mode (chainer.distributions.Exponential attribute), 798
mode (chainer.distributions.Gamma attribute), 802
mode (chainer.distributions.Geometric attribute), 805
mode (chainer.distributions.Gumbel attribute), 808
mode (chainer.distributions.Independent attribute), 811
mode (chainer.distributions.Laplace attribute), 815
mode (chainer.distributions.LogNormal attribute), 818
mode (chainer.distributions.MultivariateNormal at-

tribute), 821
mode (chainer.distributions.Normal attribute), 824
mode (chainer.distributions.OneHotCategorical at-

tribute), 827
mode (chainer.distributions.Pareto attribute), 830
mode (chainer.distributions.Poisson attribute), 833
mode (chainer.distributions.Uniform attribute), 837
momentum (chainer.optimizers.CorrectedMomentumSGD

attribute), 855

momentum (chainer.optimizers.MomentumSGD at-
tribute), 858

momentum (chainer.optimizers.NesterovAG attribute),
861

momentum (chainer.optimizers.RMSpropGraves at-
tribute), 870

MomentumSGD (class in chainer.optimizers), 856
moveaxis() (in module chainer.functions), 179
MSVAG (class in chainer.optimizers), 861
mu (chainer.distributions.LogNormal attribute), 818
multi_gpu() (in module chainer.testing.attr), 1117
MultiNodeBatchNormalization (class in chain-

ermn.links), 1223
MultiNodeChainList (class in chainermn), 1220
multiply() (in module chainerx), 1156
MultiprocessIterator (class in chainer.iterators),

1012
MultiprocessParallelUpdater (class in

chainer.training.updaters), 921
MultistepShift (class in

chainer.training.extensions), 941
MultithreadIterator (class in chainer.iterators),

1014
MultivariateNormal (class in

chainer.distributions), 818
MultiZippedImageDataset (class in

chainer.datasets), 994
MV2_SMP_USE_CMA, 1187, 1190
MV2_USE_CUDA, 1187, 1190

N
n_cells (chainer.links.NStepBiGRU attribute), 474
n_cells (chainer.links.NStepBiLSTM attribute), 481
n_cells (chainer.links.NStepBiRNNReLU attribute),

488
n_cells (chainer.links.NStepBiRNNTanh attribute),

495
n_cells (chainer.links.NStepGRU attribute), 502
n_cells (chainer.links.NStepLSTM attribute), 509
n_cells (chainer.links.NStepRNNReLU attribute), 516
n_cells (chainer.links.NStepRNNTanh attribute), 523
n_step_bigru() (in module chainer.functions), 211
n_step_bilstm() (in module chainer.functions), 212
n_step_birnn() (in module chainer.functions), 215
n_step_gru() (in module chainer.functions), 216
n_step_lstm() (in module chainer.functions), 217
n_step_rnn() (in module chainer.functions), 219
n_weights (chainer.links.NStepBiGRU attribute), 474
n_weights (chainer.links.NStepBiLSTM attribute), 481
n_weights (chainer.links.NStepBiRNNReLU at-

tribute), 488
n_weights (chainer.links.NStepBiRNNTanh attribute),

495
n_weights (chainer.links.NStepGRU attribute), 502

Index 1353



Chainer Documentation, Release 6.5.0

n_weights (chainer.links.NStepLSTM attribute), 509
n_weights (chainer.links.NStepRNNReLU attribute),

516
n_weights (chainer.links.NStepRNNTanh attribute),

523
name (chainer.function_hooks.CUDAProfileHook at-

tribute), 302
name (chainer.function_hooks.CupyMemoryProfileHook

attribute), 304
name (chainer.function_hooks.PrintHook attribute), 306
name (chainer.function_hooks.TimerHook attribute), 308
name (chainer.FunctionHook attribute), 311
name (chainer.link_hooks.SpectralNormalization at-

tribute), 772
name (chainer.link_hooks.TimerHook attribute), 774
name (chainer.LinkHook attribute), 776
name (chainer.optimizer_hooks.GradientClipping

attribute), 888
name (chainer.optimizer_hooks.GradientHardClipping

attribute), 889
name (chainer.optimizer_hooks.GradientLARS at-

tribute), 891
name (chainer.optimizer_hooks.GradientNoise at-

tribute), 890
name (chainer.optimizer_hooks.Lasso attribute), 887
name (chainer.optimizer_hooks.WeightDecay attribute),

886
name (chainer.Parameter attribute), 147
name (chainer.training.Extension attribute), 925
name (chainer.training.extensions.DumpGraph at-

tribute), 961
name (chainer.training.extensions.Evaluator attribute),

929
name (chainer.training.extensions.ExponentialShift at-

tribute), 937
name (chainer.training.extensions.FailOnNonNumber at-

tribute), 932
name (chainer.training.extensions.InverseShift attribute),

939
name (chainer.training.extensions.LinearShift attribute),

941
name (chainer.training.extensions.LogReport attribute),

954
name (chainer.training.extensions.MicroAverage at-

tribute), 931
name (chainer.training.extensions.MultistepShift at-

tribute), 943
name (chainer.training.extensions.ParameterStatistics

attribute), 935
name (chainer.training.extensions.PlotReport attribute),

956
name (chainer.training.extensions.PolynomialShift at-

tribute), 945
name (chainer.training.extensions.PrintReport attribute),

950
name (chainer.training.extensions.ProgressBar at-

tribute), 952
name (chainer.training.extensions.StepShift attribute),

948
name (chainer.training.extensions.unchain_variables at-

tribute), 965
name (chainer.training.extensions.VariableStatisticsPlot

attribute), 959
name (chainer.training.extensions.WarmupShift at-

tribute), 946
name (chainer.Variable attribute), 139
name (chainerx.Backend attribute), 1173
name (chainerx.Device attribute), 1175
namedlinks() (chainer.Chain method), 752
namedlinks() (chainer.ChainList method), 758
namedlinks() (chainer.Link method), 745
namedlinks() (chainer.links.BatchNormalization

method), 587
namedlinks() (chainer.links.BatchRenormalization

method), 593
namedlinks() (chainer.links.Bias method), 315
namedlinks() (chainer.links.Bilinear method), 322
namedlinks() (chainer.links.BinaryHierarchicalSoftmax

method), 619
namedlinks() (chainer.links.BlackOut method), 625
namedlinks() (chainer.links.caffe.CaffeFunction

method), 738
namedlinks() (chainer.links.ChildSumTreeLSTM

method), 328
namedlinks() (chainer.links.Classifier method), 670
namedlinks() (chainer.links.Convolution1D method),

334
namedlinks() (chainer.links.Convolution2D method),

341
namedlinks() (chainer.links.Convolution3D method),

347
namedlinks() (chainer.links.ConvolutionND

method), 354
namedlinks() (chainer.links.CRF1d method), 631
namedlinks() (chainer.links.Deconvolution1D

method), 360
namedlinks() (chainer.links.Deconvolution2D

method), 367
namedlinks() (chainer.links.Deconvolution3D

method), 373
namedlinks() (chainer.links.DeconvolutionND

method), 380
namedlinks() (chainer.links.DecorrelatedBatchNormalization

method), 600
namedlinks() (chainer.links.DeformableConvolution2D

method), 387
namedlinks() (chainer.links.DepthwiseConvolution2D

method), 393

1354 Index



Chainer Documentation, Release 6.5.0

namedlinks() (chainer.links.DilatedConvolution2D
method), 400

namedlinks() (chainer.links.EmbedID method), 406
namedlinks() (chainer.links.GoogLeNet method),

693
namedlinks() (chainer.links.GroupNormalization

method), 606
namedlinks() (chainer.links.GRU method), 412
namedlinks() (chainer.links.Highway method), 419
namedlinks() (chainer.links.Inception method), 425
namedlinks() (chainer.links.InceptionBN method),

431
namedlinks() (chainer.links.LayerNormalization

method), 613
namedlinks() (chainer.links.Linear method), 438
namedlinks() (chainer.links.LocalConvolution2D

method), 444
namedlinks() (chainer.links.LSTM method), 451
namedlinks() (chainer.links.Maxout method), 657
namedlinks() (chainer.links.MLPConvolution2D

method), 458
namedlinks() (chainer.links.model.vision.resnet.ResNetLayers

method), 701
namedlinks() (chainer.links.NaryTreeLSTM method),

465
namedlinks() (chainer.links.NegativeSampling

method), 663
namedlinks() (chainer.links.NStepBiGRU method),

472
namedlinks() (chainer.links.NStepBiLSTM method),

479
namedlinks() (chainer.links.NStepBiRNNReLU

method), 486
namedlinks() (chainer.links.NStepBiRNNTanh

method), 493
namedlinks() (chainer.links.NStepGRU method), 500
namedlinks() (chainer.links.NStepLSTM method),

507
namedlinks() (chainer.links.NStepRNNReLU

method), 514
namedlinks() (chainer.links.NStepRNNTanh

method), 521
namedlinks() (chainer.links.Parameter method), 527
namedlinks() (chainer.links.PReLU method), 644
namedlinks() (chainer.links.ResNet101Layers

method), 716
namedlinks() (chainer.links.ResNet152Layers

method), 723
namedlinks() (chainer.links.ResNet50Layers

method), 708
namedlinks() (chainer.links.Scale method), 533
namedlinks() (chainer.links.SimplifiedDropconnect

method), 637
namedlinks() (chainer.links.StatefulGRU method),

540
namedlinks() (chainer.links.StatefulMGU method),

552
namedlinks() (chainer.links.StatefulPeepholeLSTM

method), 565
namedlinks() (chainer.links.StatefulZoneoutLSTM

method), 571
namedlinks() (chainer.links.StatelessGRU method),

547
namedlinks() (chainer.links.StatelessLSTM method),

578
namedlinks() (chainer.links.StatelessMGU method),

558
namedlinks() (chainer.links.Swish method), 650
namedlinks() (chainer.links.TheanoFunction

method), 731
namedlinks() (chainer.links.VGG16Layers method),

678
namedlinks() (chainer.links.VGG19Layers method),

685
namedlinks() (chainer.Sequential method), 766
namedparams() (chainer.Chain method), 752
namedparams() (chainer.ChainList method), 758
namedparams() (chainer.Link method), 745
namedparams() (chainer.links.BatchNormalization

method), 587
namedparams() (chainer.links.BatchRenormalization

method), 593
namedparams() (chainer.links.Bias method), 315
namedparams() (chainer.links.Bilinear method), 322
namedparams() (chainer.links.BinaryHierarchicalSoftmax

method), 619
namedparams() (chainer.links.BlackOut method), 625
namedparams() (chainer.links.caffe.CaffeFunction

method), 738
namedparams() (chainer.links.ChildSumTreeLSTM

method), 328
namedparams() (chainer.links.Classifier method), 670
namedparams() (chainer.links.Convolution1D

method), 334
namedparams() (chainer.links.Convolution2D

method), 341
namedparams() (chainer.links.Convolution3D

method), 347
namedparams() (chainer.links.ConvolutionND

method), 354
namedparams() (chainer.links.CRF1d method), 631
namedparams() (chainer.links.Deconvolution1D

method), 360
namedparams() (chainer.links.Deconvolution2D

method), 367
namedparams() (chainer.links.Deconvolution3D

method), 373
namedparams() (chainer.links.DeconvolutionND

Index 1355



Chainer Documentation, Release 6.5.0

method), 380
namedparams() (chainer.links.DecorrelatedBatchNormalization

method), 600
namedparams() (chainer.links.DeformableConvolution2D

method), 387
namedparams() (chainer.links.DepthwiseConvolution2D

method), 393
namedparams() (chainer.links.DilatedConvolution2D

method), 400
namedparams() (chainer.links.EmbedID method), 406
namedparams() (chainer.links.GoogLeNet method),

693
namedparams() (chainer.links.GroupNormalization

method), 606
namedparams() (chainer.links.GRU method), 412
namedparams() (chainer.links.Highway method), 419
namedparams() (chainer.links.Inception method), 425
namedparams() (chainer.links.InceptionBN method),

431
namedparams() (chainer.links.LayerNormalization

method), 613
namedparams() (chainer.links.Linear method), 438
namedparams() (chainer.links.LocalConvolution2D

method), 444
namedparams() (chainer.links.LSTM method), 451
namedparams() (chainer.links.Maxout method), 657
namedparams() (chainer.links.MLPConvolution2D

method), 458
namedparams() (chainer.links.model.vision.resnet.ResNetLayers

method), 701
namedparams() (chainer.links.NaryTreeLSTM

method), 465
namedparams() (chainer.links.NegativeSampling

method), 663
namedparams() (chainer.links.NStepBiGRU method),

472
namedparams() (chainer.links.NStepBiLSTM

method), 479
namedparams() (chainer.links.NStepBiRNNReLU

method), 486
namedparams() (chainer.links.NStepBiRNNTanh

method), 493
namedparams() (chainer.links.NStepGRU method),

500
namedparams() (chainer.links.NStepLSTM method),

507
namedparams() (chainer.links.NStepRNNReLU

method), 514
namedparams() (chainer.links.NStepRNNTanh

method), 521
namedparams() (chainer.links.Parameter method),

527
namedparams() (chainer.links.PReLU method), 644
namedparams() (chainer.links.ResNet101Layers

method), 716
namedparams() (chainer.links.ResNet152Layers

method), 723
namedparams() (chainer.links.ResNet50Layers

method), 709
namedparams() (chainer.links.Scale method), 533
namedparams() (chainer.links.SimplifiedDropconnect

method), 637
namedparams() (chainer.links.StatefulGRU method),

540
namedparams() (chainer.links.StatefulMGU method),

553
namedparams() (chainer.links.StatefulPeepholeLSTM

method), 565
namedparams() (chainer.links.StatefulZoneoutLSTM

method), 571
namedparams() (chainer.links.StatelessGRU method),

547
namedparams() (chainer.links.StatelessLSTM

method), 578
namedparams() (chainer.links.StatelessMGU

method), 558
namedparams() (chainer.links.Swish method), 651
namedparams() (chainer.links.TheanoFunction

method), 731
namedparams() (chainer.links.VGG16Layers

method), 678
namedparams() (chainer.links.VGG19Layers

method), 685
namedparams() (chainer.Sequential method), 766
NaN (class in chainer.initializers), 896
NaryTreeLSTM (class in chainer.links), 461
nbytes (chainerx.ndarray attribute), 1133
ndarray (class in chainerx), 1128
ndim (chainer.Parameter attribute), 147
ndim (chainer.Variable attribute), 139
ndim (chainerx.ndarray attribute), 1133
ndtr() (in module chainer.functions), 256
ndtri() (in module chainer.functions), 256
negative() (in module chainerx), 1155
negative_sampling() (in module

chainer.functions), 236
NegativeSampling (class in chainer.links), 660
NesterovAG (class in chainer.optimizers), 858
new_epoch() (chainer.GradientMethod method), 883
new_epoch() (chainer.Optimizer method), 877
new_epoch() (chainer.optimizers.AdaDelta method),

844
new_epoch() (chainer.optimizers.AdaGrad method),

847
new_epoch() (chainer.optimizers.Adam method), 850
new_epoch() (chainer.optimizers.CorrectedMomentumSGD

method), 854
new_epoch() (chainer.optimizers.MomentumSGD

1356 Index



Chainer Documentation, Release 6.5.0

method), 857
new_epoch() (chainer.optimizers.MSVAG method),

862
new_epoch() (chainer.optimizers.NesterovAG

method), 859
new_epoch() (chainer.optimizers.RMSprop method),

865
new_epoch() (chainer.optimizers.RMSpropGraves

method), 868
new_epoch() (chainer.optimizers.SGD method), 871
new_epoch() (chainer.optimizers.SMORMS3 method),

874
next() (chainer.dataset.Iterator method), 976
next() (chainer.iterators.DaliIterator method), 1016
next() (chainer.iterators.MultiprocessIterator

method), 1013
next() (chainer.iterators.MultithreadIterator method),

1015
next() (chainer.iterators.SerialIterator method), 1011
no_backprop_mode() (in module chainer), 299
no_backprop_mode() (in module chainerx), 1177
node (chainer.Function attribute), 287
node (chainer.Parameter attribute), 147
node (chainer.Variable attribute), 139
Normal (class in chainer.distributions), 822
Normal (class in chainer.initializers), 896
normal() (in module chainerx.random), 1163
normalize() (in module chainer.functions), 271
normalize_weight()

(chainer.link_hooks.SpectralNormalization
method), 771

not_equal() (in module chainerx), 1154
NpzDeserializer (class in chainer.serializers), 1021
NStepBiGRU (class in chainer.links), 468
NStepBiLSTM (class in chainer.links), 475
NStepBiRNNReLU (class in chainer.links), 482
NStepBiRNNTanh (class in chainer.links), 489
NStepGRU (class in chainer.links), 496
NStepLSTM (class in chainer.links), 503
NStepRNNReLU (class in chainer.links), 510
NStepRNNTanh (class in chainer.links), 517
numerical_grad() (in module

chainer.gradient_check), 1086

O
observe_lr() (in module

chainer.training.extensions), 935
observe_value() (in module

chainer.training.extensions), 935
offset (chainerx.ndarray attribute), 1133
on_error() (chainer.training.Extension method), 924
on_error() (chainer.training.extensions.DumpGraph

method), 960

on_error() (chainer.training.extensions.Evaluator
method), 928

on_error() (chainer.training.extensions.ExponentialShift
method), 937

on_error() (chainer.training.extensions.FailOnNonNumber
method), 931

on_error() (chainer.training.extensions.InverseShift
method), 939

on_error() (chainer.training.extensions.LinearShift
method), 940

on_error() (chainer.training.extensions.LogReport
method), 953

on_error() (chainer.training.extensions.MicroAverage
method), 930

on_error() (chainer.training.extensions.MultistepShift
method), 942

on_error() (chainer.training.extensions.ParameterStatistics
method), 934

on_error() (chainer.training.extensions.PlotReport
method), 956

on_error() (chainer.training.extensions.PolynomialShift
method), 944

on_error() (chainer.training.extensions.PrintReport
method), 950

on_error() (chainer.training.extensions.ProgressBar
method), 951

on_error() (chainer.training.extensions.StepShift
method), 947

on_error() (chainer.training.extensions.unchain_variables
method), 964

on_error() (chainer.training.extensions.VariableStatisticsPlot
method), 958

on_error() (chainer.training.extensions.WarmupShift
method), 946

OnceTrigger (class in chainer.training.triggers), 972
One (class in chainer.initializers), 895
OneHotCategorical (class in chainer.distributions),

825
ones() (in module chainerx), 1136
ones_like() (in module chainerx), 1137
open_pickle_dataset() (in module

chainer.datasets), 1003
open_pickle_dataset_writer() (in module

chainer.datasets), 1004
Optimizer (class in chainer), 876
OrderSampler (class in chainer.iterators), 1017
Orthogonal (class in chainer.initializers), 899
output_data (chainer.Function attribute), 287
output_data (chainer.FunctionAdapter attribute),

292
output_data (chainer.FunctionNode attribute), 298
outputs (chainer.Function attribute), 287
outputs (chainer.FunctionAdapter attribute), 292
outputs (chainer.FunctionNode attribute), 298

Index 1357



Chainer Documentation, Release 6.5.0

P
p (chainer.distributions.Bernoulli attribute), 780
p (chainer.distributions.Categorical attribute), 786
p (chainer.distributions.Geometric attribute), 805
p (chainer.distributions.OneHotCategorical attribute),

827
pad() (in module chainer.functions), 179
pad_sequence() (in module chainer.functions), 180
ParallelUpdater (class in

chainer.training.updaters), 919
param_names (chainer.testing.LinkInitializersTestCase

attribute), 1105
param_names (chainer.testing.LinkTestCase attribute),

1114
Parameter (class in chainer), 139
Parameter (class in chainer.links), 524
parameterize() (in module chainer.testing), 1118
ParameterStatistics (class in

chainer.training.extensions), 933
params (chainer.Distribution attribute), 842
params (chainer.distributions.Bernoulli attribute), 780
params (chainer.distributions.Beta attribute), 783
params (chainer.distributions.Categorical attribute),

786
params (chainer.distributions.Cauchy attribute), 789
params (chainer.distributions.Chisquare attribute), 792
params (chainer.distributions.Dirichlet attribute), 796
params (chainer.distributions.Exponential attribute),

799
params (chainer.distributions.Gamma attribute), 802
params (chainer.distributions.Geometric attribute), 805
params (chainer.distributions.Gumbel attribute), 808
params (chainer.distributions.Independent attribute),

811
params (chainer.distributions.Laplace attribute), 815
params (chainer.distributions.LogNormal attribute),

818
params (chainer.distributions.MultivariateNormal at-

tribute), 821
params (chainer.distributions.Normal attribute), 824
params (chainer.distributions.OneHotCategorical at-

tribute), 827
params (chainer.distributions.Pareto attribute), 830
params (chainer.distributions.Poisson attribute), 834
params (chainer.distributions.Uniform attribute), 837
params() (chainer.Chain method), 752
params() (chainer.ChainList method), 758
params() (chainer.Link method), 745
params() (chainer.links.BatchNormalization method),

587
params() (chainer.links.BatchRenormalization

method), 593
params() (chainer.links.Bias method), 316
params() (chainer.links.Bilinear method), 322

params() (chainer.links.BinaryHierarchicalSoftmax
method), 619

params() (chainer.links.BlackOut method), 625
params() (chainer.links.caffe.CaffeFunction method),

738
params() (chainer.links.ChildSumTreeLSTM method),

328
params() (chainer.links.Classifier method), 670
params() (chainer.links.Convolution1D method), 334
params() (chainer.links.Convolution2D method), 341
params() (chainer.links.Convolution3D method), 347
params() (chainer.links.ConvolutionND method), 354
params() (chainer.links.CRF1d method), 631
params() (chainer.links.Deconvolution1D method),

360
params() (chainer.links.Deconvolution2D method),

367
params() (chainer.links.Deconvolution3D method),

373
params() (chainer.links.DeconvolutionND method),

380
params() (chainer.links.DecorrelatedBatchNormalization

method), 600
params() (chainer.links.DeformableConvolution2D

method), 387
params() (chainer.links.DepthwiseConvolution2D

method), 393
params() (chainer.links.DilatedConvolution2D

method), 400
params() (chainer.links.EmbedID method), 407
params() (chainer.links.GoogLeNet method), 693
params() (chainer.links.GroupNormalization method),

607
params() (chainer.links.GRU method), 412
params() (chainer.links.Highway method), 419
params() (chainer.links.Inception method), 425
params() (chainer.links.InceptionBN method), 431
params() (chainer.links.LayerNormalization method),

613
params() (chainer.links.Linear method), 438
params() (chainer.links.LocalConvolution2D method),

444
params() (chainer.links.LSTM method), 452
params() (chainer.links.Maxout method), 657
params() (chainer.links.MLPConvolution2D method),

459
params() (chainer.links.model.vision.resnet.ResNetLayers

method), 701
params() (chainer.links.NaryTreeLSTM method), 465
params() (chainer.links.NegativeSampling method),

663
params() (chainer.links.NStepBiGRU method), 472
params() (chainer.links.NStepBiLSTM method), 479
params() (chainer.links.NStepBiRNNReLU method),

1358 Index



Chainer Documentation, Release 6.5.0

486
params() (chainer.links.NStepBiRNNTanh method),

493
params() (chainer.links.NStepGRU method), 500
params() (chainer.links.NStepLSTM method), 507
params() (chainer.links.NStepRNNReLU method), 514
params() (chainer.links.NStepRNNTanh method), 521
params() (chainer.links.Parameter method), 527
params() (chainer.links.PReLU method), 644
params() (chainer.links.ResNet101Layers method),

716
params() (chainer.links.ResNet152Layers method),

723
params() (chainer.links.ResNet50Layers method), 709
params() (chainer.links.Scale method), 533
params() (chainer.links.SimplifiedDropconnect

method), 638
params() (chainer.links.StatefulGRU method), 540
params() (chainer.links.StatefulMGU method), 553
params() (chainer.links.StatefulPeepholeLSTM

method), 565
params() (chainer.links.StatefulZoneoutLSTM

method), 571
params() (chainer.links.StatelessGRU method), 547
params() (chainer.links.StatelessLSTM method), 578
params() (chainer.links.StatelessMGU method), 558
params() (chainer.links.Swish method), 651
params() (chainer.links.TheanoFunction method), 731
params() (chainer.links.VGG16Layers method), 678
params() (chainer.links.VGG19Layers method), 685
params() (chainer.Sequential method), 766
parent (chainer.optimizer.Hyperparameter attribute),

882
Pareto (class in chainer.distributions), 828
PATH, 1187
permutate() (in module chainer.functions), 180
perplexity() (chainer.Distribution method), 841
perplexity() (chainer.distributions.Bernoulli

method), 778
perplexity() (chainer.distributions.Beta method),

781
perplexity() (chainer.distributions.Categorical

method), 784
perplexity() (chainer.distributions.Cauchy method),

788
perplexity() (chainer.distributions.Chisquare

method), 791
perplexity() (chainer.distributions.Dirichlet

method), 794
perplexity() (chainer.distributions.Exponential

method), 797
perplexity() (chainer.distributions.Gamma

method), 800
perplexity() (chainer.distributions.Geometric

method), 803
perplexity() (chainer.distributions.Gumbel

method), 806
perplexity() (chainer.distributions.Independent

method), 809
perplexity() (chainer.distributions.Laplace

method), 813
perplexity() (chainer.distributions.LogNormal

method), 816
perplexity() (chainer.distributions.MultivariateNormal

method), 819
perplexity() (chainer.distributions.Normal

method), 823
perplexity() (chainer.distributions.OneHotCategorical

method), 826
perplexity() (chainer.distributions.Pareto method),

829
perplexity() (chainer.distributions.Poisson

method), 832
perplexity() (chainer.distributions.Uniform

method), 835
PickleDataset (class in chainer.datasets), 1001
PickleDatasetWriter (class in chainer.datasets),

1003
PlotReport, 62
PlotReport (class in chainer.training.extensions), 954
Poisson (class in chainer.distributions), 831
polygamma() (in module chainer.functions), 257
PolynomialShift (class in

chainer.training.extensions), 943
pop() (chainer.ChainList method), 758
pop() (chainer.links.MLPConvolution2D method), 459
pop() (chainer.links.NStepBiGRU method), 472
pop() (chainer.links.NStepBiLSTM method), 479
pop() (chainer.links.NStepBiRNNReLU method), 486
pop() (chainer.links.NStepBiRNNTanh method), 493
pop() (chainer.links.NStepGRU method), 500
pop() (chainer.links.NStepLSTM method), 507
pop() (chainer.links.NStepRNNReLU method), 514
pop() (chainer.links.NStepRNNTanh method), 521
pop() (chainer.Sequential method), 767
precision() (in module chainer.functions), 223
predict() (chainer.links.GoogLeNet method), 693
predict() (chainer.links.model.vision.resnet.ResNetLayers

method), 701
predict() (chainer.links.ResNet101Layers method),

716
predict() (chainer.links.ResNet152Layers method),

724
predict() (chainer.links.ResNet50Layers method),

709
predict() (chainer.links.VGG16Layers method), 678
predict() (chainer.links.VGG19Layers method), 685
PReLU (class in chainer.links), 640

Index 1359



Chainer Documentation, Release 6.5.0

prelu() (in module chainer.functions), 158
prepare() (in module

chainer.links.model.vision.googlenet), 696
prepare() (in module

chainer.links.model.vision.resnet), 726
prepare() (in module chainer.links.model.vision.vgg),

688
previous_epoch_detail

(chainer.iterators.DaliIterator attribute),
1017

previous_epoch_detail
(chainer.iterators.MultiprocessIterator at-
tribute), 1014

previous_epoch_detail
(chainer.iterators.MultithreadIterator at-
tribute), 1015

previous_epoch_detail
(chainer.iterators.SerialIterator attribute),
1011

previous_epoch_detail
(chainer.training.updaters.MultiprocessParallelUpdater
attribute), 922

previous_epoch_detail
(chainer.training.updaters.ParallelUpdater
attribute), 921

previous_epoch_detail
(chainer.training.updaters.StandardUpdater
attribute), 918

print_report() (chainer.function_hooks.CupyMemoryProfileHook
method), 303

print_report() (chainer.function_hooks.TimerHook
method), 308

print_report() (chainer.link_hooks.TimerHook
method), 773

print_runtime_info() (in module chainer), 1048
printable_specs (chainer.Chain attribute), 754
printable_specs (chainer.ChainList attribute), 760
printable_specs (chainer.Link attribute), 747
printable_specs (chainer.links.BatchNormalization

attribute), 590
printable_specs (chainer.links.BatchRenormalization

attribute), 596
printable_specs (chainer.links.Bias attribute), 318
printable_specs (chainer.links.Bilinear attribute),

324
printable_specs (chainer.links.BinaryHierarchicalSoftmax

attribute), 621
printable_specs (chainer.links.BlackOut attribute),

627
printable_specs (chainer.links.caffe.CaffeFunction

attribute), 740
printable_specs (chainer.links.ChildSumTreeLSTM

attribute), 331
printable_specs (chainer.links.Classifier attribute),

673
printable_specs (chainer.links.Convolution1D at-

tribute), 336
printable_specs (chainer.links.Convolution2D at-

tribute), 344
printable_specs (chainer.links.Convolution3D at-

tribute), 349
printable_specs (chainer.links.ConvolutionND at-

tribute), 357
printable_specs (chainer.links.CRF1d attribute),

633
printable_specs (chainer.links.Deconvolution1D

attribute), 362
printable_specs (chainer.links.Deconvolution2D

attribute), 370
printable_specs (chainer.links.Deconvolution3D

attribute), 375
printable_specs (chainer.links.DeconvolutionND

attribute), 382
printable_specs (chainer.links.DecorrelatedBatchNormalization

attribute), 603
printable_specs (chainer.links.DeformableConvolution2D

attribute), 389
printable_specs (chainer.links.DepthwiseConvolution2D

attribute), 395
printable_specs (chainer.links.DilatedConvolution2D

attribute), 402
printable_specs (chainer.links.EmbedID attribute),

409
printable_specs (chainer.links.GoogLeNet at-

tribute), 696
printable_specs (chainer.links.GroupNormalization

attribute), 609
printable_specs (chainer.links.GRU attribute), 415
printable_specs (chainer.links.Highway attribute),

421
printable_specs (chainer.links.Inception attribute),

427
printable_specs (chainer.links.InceptionBN at-

tribute), 434
printable_specs (chainer.links.LayerNormalization

attribute), 615
printable_specs (chainer.links.Linear attribute),

440
printable_specs (chainer.links.LocalConvolution2D

attribute), 447
printable_specs (chainer.links.LSTM attribute),

454
printable_specs (chainer.links.Maxout attribute),

659
printable_specs (chainer.links.MLPConvolution2D

attribute), 461
printable_specs (chainer.links.model.vision.resnet.ResNetLayers

attribute), 704

1360 Index



Chainer Documentation, Release 6.5.0

printable_specs (chainer.links.NaryTreeLSTM at-
tribute), 467

printable_specs (chainer.links.NegativeSampling
attribute), 665

printable_specs (chainer.links.NStepBiGRU
attribute), 474

printable_specs (chainer.links.NStepBiLSTM at-
tribute), 481

printable_specs (chainer.links.NStepBiRNNReLU
attribute), 488

printable_specs (chainer.links.NStepBiRNNTanh
attribute), 495

printable_specs (chainer.links.NStepGRU at-
tribute), 502

printable_specs (chainer.links.NStepLSTM at-
tribute), 509

printable_specs (chainer.links.NStepRNNReLU at-
tribute), 516

printable_specs (chainer.links.NStepRNNTanh at-
tribute), 523

printable_specs (chainer.links.Parameter at-
tribute), 529

printable_specs (chainer.links.PReLU attribute),
646

printable_specs (chainer.links.ResNet101Layers
attribute), 719

printable_specs (chainer.links.ResNet152Layers
attribute), 726

printable_specs (chainer.links.ResNet50Layers at-
tribute), 711

printable_specs (chainer.links.Scale attribute), 535
printable_specs (chainer.links.SimplifiedDropconnect

attribute), 640
printable_specs (chainer.links.StatefulGRU at-

tribute), 542
printable_specs (chainer.links.StatefulMGU

attribute), 555
printable_specs (chainer.links.StatefulPeepholeLSTM

attribute), 567
printable_specs (chainer.links.StatefulZoneoutLSTM

attribute), 574
printable_specs (chainer.links.StatelessGRU at-

tribute), 549
printable_specs (chainer.links.StatelessLSTM at-

tribute), 580
printable_specs (chainer.links.StatelessMGU at-

tribute), 561
printable_specs (chainer.links.Swish attribute),

653
printable_specs (chainer.links.TheanoFunction at-

tribute), 733
printable_specs (chainer.links.VGG16Layers at-

tribute), 680
printable_specs (chainer.links.VGG19Layers at-

tribute), 688
printable_specs (chainer.Sequential attribute), 769
PrintHook (class in chainer.function_hooks), 304
PrintReport, 62
PrintReport (class in chainer.training.extensions),

949
priority (chainer.training.Extension attribute), 925
priority (chainer.training.extensions.DumpGraph at-

tribute), 961
priority (chainer.training.extensions.Evaluator at-

tribute), 929
priority (chainer.training.extensions.ExponentialShift

attribute), 937
priority (chainer.training.extensions.FailOnNonNumber

attribute), 932
priority (chainer.training.extensions.InverseShift at-

tribute), 939
priority (chainer.training.extensions.LinearShift at-

tribute), 941
priority (chainer.training.extensions.LogReport at-

tribute), 954
priority (chainer.training.extensions.MicroAverage

attribute), 931
priority (chainer.training.extensions.MultistepShift

attribute), 943
priority (chainer.training.extensions.ParameterStatistics

attribute), 935
priority (chainer.training.extensions.PlotReport at-

tribute), 956
priority (chainer.training.extensions.PolynomialShift

attribute), 945
priority (chainer.training.extensions.PrintReport at-

tribute), 950
priority (chainer.training.extensions.ProgressBar at-

tribute), 952
priority (chainer.training.extensions.StepShift at-

tribute), 948
priority (chainer.training.extensions.unchain_variables

attribute), 965
priority (chainer.training.extensions.VariableStatisticsPlot

attribute), 959
priority (chainer.training.extensions.WarmupShift at-

tribute), 946
prob() (chainer.Distribution method), 841
prob() (chainer.distributions.Bernoulli method), 778
prob() (chainer.distributions.Beta method), 781
prob() (chainer.distributions.Categorical method), 784
prob() (chainer.distributions.Cauchy method), 788
prob() (chainer.distributions.Chisquare method), 791
prob() (chainer.distributions.Dirichlet method), 794
prob() (chainer.distributions.Exponential method), 797
prob() (chainer.distributions.Gamma method), 800
prob() (chainer.distributions.Geometric method), 803
prob() (chainer.distributions.Gumbel method), 806

Index 1361



Chainer Documentation, Release 6.5.0

prob() (chainer.distributions.Independent method), 810
prob() (chainer.distributions.Laplace method), 813
prob() (chainer.distributions.LogNormal method), 816
prob() (chainer.distributions.MultivariateNormal

method), 819
prob() (chainer.distributions.Normal method), 823
prob() (chainer.distributions.OneHotCategorical

method), 826
prob() (chainer.distributions.Pareto method), 829
prob() (chainer.distributions.Poisson method), 832
prob() (chainer.distributions.Uniform method), 835
ProcessQueueWriter (class in

chainer.training.extensions.snapshot_writers),
910

ProcessWriter (class in
chainer.training.extensions.snapshot_writers),
907

prod() (in module chainer.functions), 257
product() (in module chainer.testing), 1118
product_dict() (in module chainer.testing), 1118
ProgressBar (class in chainer.training.extensions),

950
pseudo_connect() (in module chainermn.functions),

1225

Q
QueueWriter (class in

chainer.training.extensions.snapshot_writers),
908

R
r2_score() (in module chainer.functions), 223
rank (chainer.Function attribute), 287
rank (chainer.FunctionAdapter attribute), 292
rank (chainer.FunctionNode attribute), 298
rank (chainer.Parameter attribute), 147
rank (chainer.Variable attribute), 139
rank (chainer.variable.VariableNode attribute), 150
rank() (chainermn.CommunicatorBase property), 1218
ravel() (chainerx.ndarray method), 1130
ravel() (in module chainerx), 1146
raw() (in module chainer.backends.cuda), 1043
reallocate_cleared_grads()

(chainer.GradientMethod method), 883
reallocate_cleared_grads()

(chainer.optimizers.AdaDelta method), 844
reallocate_cleared_grads()

(chainer.optimizers.AdaGrad method), 847
reallocate_cleared_grads()

(chainer.optimizers.Adam method), 850
reallocate_cleared_grads()

(chainer.optimizers.CorrectedMomentumSGD
method), 854

reallocate_cleared_grads()
(chainer.optimizers.MomentumSGD method),
857

reallocate_cleared_grads()
(chainer.optimizers.MSVAG method), 862

reallocate_cleared_grads()
(chainer.optimizers.NesterovAG method),
859

reallocate_cleared_grads()
(chainer.optimizers.RMSprop method), 865

reallocate_cleared_grads()
(chainer.optimizers.RMSpropGraves method),
868

reallocate_cleared_grads()
(chainer.optimizers.SGD method), 871

reallocate_cleared_grads()
(chainer.optimizers.SMORMS3 method),
874

recall() (in module chainer.functions), 224
recv() (chainermn.CommunicatorBase method), 1218
recv() (in module chainermn.functions), 1224
recv_obj() (chainermn.CommunicatorBase method),

1218
reduce() (in module chainer.backends.cuda), 1043
register_kl() (in module chainer), 838
register_persistent() (chainer.Chain method),

752
register_persistent() (chainer.ChainList

method), 758
register_persistent() (chainer.Link method),

745
register_persistent()

(chainer.links.BatchNormalization method),
587

register_persistent()
(chainer.links.BatchRenormalization method),
594

register_persistent() (chainer.links.Bias
method), 316

register_persistent() (chainer.links.Bilinear
method), 322

register_persistent()
(chainer.links.BinaryHierarchicalSoftmax
method), 619

register_persistent() (chainer.links.BlackOut
method), 625

register_persistent()
(chainer.links.caffe.CaffeFunction method),
738

register_persistent()
(chainer.links.ChildSumTreeLSTM method),
328

register_persistent() (chainer.links.Classifier
method), 670

1362 Index



Chainer Documentation, Release 6.5.0

register_persistent()
(chainer.links.Convolution1D method), 334

register_persistent()
(chainer.links.Convolution2D method), 341

register_persistent()
(chainer.links.Convolution3D method), 347

register_persistent()
(chainer.links.ConvolutionND method), 355

register_persistent() (chainer.links.CRF1d
method), 631

register_persistent()
(chainer.links.Deconvolution1D method),
360

register_persistent()
(chainer.links.Deconvolution2D method),
368

register_persistent()
(chainer.links.Deconvolution3D method),
373

register_persistent()
(chainer.links.DeconvolutionND method),
380

register_persistent()
(chainer.links.DecorrelatedBatchNormalization
method), 600

register_persistent()
(chainer.links.DeformableConvolution2D
method), 387

register_persistent()
(chainer.links.DepthwiseConvolution2D
method), 393

register_persistent()
(chainer.links.DilatedConvolution2D method),
400

register_persistent() (chainer.links.EmbedID
method), 407

register_persistent()
(chainer.links.GoogLeNet method), 693

register_persistent()
(chainer.links.GroupNormalization method),
607

register_persistent() (chainer.links.GRU
method), 412

register_persistent() (chainer.links.Highway
method), 419

register_persistent() (chainer.links.Inception
method), 425

register_persistent()
(chainer.links.InceptionBN method), 431

register_persistent()
(chainer.links.LayerNormalization method),
613

register_persistent() (chainer.links.Linear
method), 438

register_persistent()
(chainer.links.LocalConvolution2D method),
445

register_persistent() (chainer.links.LSTM
method), 452

register_persistent() (chainer.links.Maxout
method), 657

register_persistent()
(chainer.links.MLPConvolution2D method),
459

register_persistent()
(chainer.links.model.vision.resnet.ResNetLayers
method), 701

register_persistent()
(chainer.links.NaryTreeLSTM method), 465

register_persistent()
(chainer.links.NegativeSampling method),
663

register_persistent()
(chainer.links.NStepBiGRU method), 472

register_persistent()
(chainer.links.NStepBiLSTM method), 479

register_persistent()
(chainer.links.NStepBiRNNReLU method),
486

register_persistent()
(chainer.links.NStepBiRNNTanh method),
493

register_persistent() (chainer.links.NStepGRU
method), 500

register_persistent()
(chainer.links.NStepLSTM method), 507

register_persistent()
(chainer.links.NStepRNNReLU method),
514

register_persistent()
(chainer.links.NStepRNNTanh method), 521

register_persistent() (chainer.links.Parameter
method), 527

register_persistent() (chainer.links.PReLU
method), 644

register_persistent()
(chainer.links.ResNet101Layers method),
716

register_persistent()
(chainer.links.ResNet152Layers method),
724

register_persistent()
(chainer.links.ResNet50Layers method),
709

register_persistent() (chainer.links.Scale
method), 533

register_persistent()
(chainer.links.SimplifiedDropconnect method),

Index 1363



Chainer Documentation, Release 6.5.0

638
register_persistent()

(chainer.links.StatefulGRU method), 540
register_persistent()

(chainer.links.StatefulMGU method), 553
register_persistent()

(chainer.links.StatefulPeepholeLSTM method),
565

register_persistent()
(chainer.links.StatefulZoneoutLSTM method),
571

register_persistent()
(chainer.links.StatelessGRU method), 547

register_persistent()
(chainer.links.StatelessLSTM method), 578

register_persistent()
(chainer.links.StatelessMGU method), 559

register_persistent() (chainer.links.Swish
method), 651

register_persistent()
(chainer.links.TheanoFunction method),
731

register_persistent()
(chainer.links.VGG16Layers method), 678

register_persistent()
(chainer.links.VGG19Layers method), 685

register_persistent() (chainer.Sequential
method), 767

register_statistics()
(chainer.training.extensions.ParameterStatistics
method), 934

reinterpreted_batch_ndims
(chainer.distributions.Independent attribute),
811

release_backprop_id() (chainerx.Context
method), 1172

relu() (in module chainer.functions), 160
relu() (in module chainerx), 1145
relu6() (in module chainer.functions), 160
remove() (chainer.ChainList method), 758
remove() (chainer.links.MLPConvolution2D method),

459
remove() (chainer.links.NStepBiGRU method), 472
remove() (chainer.links.NStepBiLSTM method), 479
remove() (chainer.links.NStepBiRNNReLU method),

486
remove() (chainer.links.NStepBiRNNTanh method),

493
remove() (chainer.links.NStepGRU method), 500
remove() (chainer.links.NStepLSTM method), 507
remove() (chainer.links.NStepRNNReLU method), 514
remove() (chainer.links.NStepRNNTanh method), 521
remove() (chainer.Sequential method), 767
remove_by_layer_type() (chainer.Sequential

method), 767
remove_hook() (chainer.GradientMethod method),

883
remove_hook() (chainer.Optimizer method), 877
remove_hook() (chainer.optimizers.AdaDelta

method), 845
remove_hook() (chainer.optimizers.AdaGrad

method), 847
remove_hook() (chainer.optimizers.Adam method),

851
remove_hook() (chainer.optimizers.CorrectedMomentumSGD

method), 854
remove_hook() (chainer.optimizers.MomentumSGD

method), 857
remove_hook() (chainer.optimizers.MSVAG method),

863
remove_hook() (chainer.optimizers.NesterovAG

method), 860
remove_hook() (chainer.optimizers.RMSprop

method), 866
remove_hook() (chainer.optimizers.RMSpropGraves

method), 869
remove_hook() (chainer.optimizers.SGD method),

871
remove_hook() (chainer.optimizers.SMORMS3

method), 874
remove_hook() (chainer.UpdateRule method), 880
repeat (chainer.iterators.DaliIterator attribute), 1017
repeat (chainer.iterators.MultithreadIterator at-

tribute), 1015
repeat (chainer.iterators.SerialIterator attribute), 1011
repeat() (chainer.Chain method), 752
repeat() (chainer.ChainList method), 758
repeat() (chainer.Link method), 745
repeat() (chainer.links.BatchNormalization method),

588
repeat() (chainer.links.BatchRenormalization

method), 594
repeat() (chainer.links.Bias method), 316
repeat() (chainer.links.Bilinear method), 322
repeat() (chainer.links.BinaryHierarchicalSoftmax

method), 619
repeat() (chainer.links.BlackOut method), 625
repeat() (chainer.links.caffe.CaffeFunction method),

738
repeat() (chainer.links.ChildSumTreeLSTM method),

329
repeat() (chainer.links.Classifier method), 671
repeat() (chainer.links.Convolution1D method), 334
repeat() (chainer.links.Convolution2D method), 342
repeat() (chainer.links.Convolution3D method), 347
repeat() (chainer.links.ConvolutionND method), 355
repeat() (chainer.links.CRF1d method), 631
repeat() (chainer.links.Deconvolution1D method),

1364 Index



Chainer Documentation, Release 6.5.0

360
repeat() (chainer.links.Deconvolution2D method),

368
repeat() (chainer.links.Deconvolution3D method),

373
repeat() (chainer.links.DeconvolutionND method),

381
repeat() (chainer.links.DecorrelatedBatchNormalization

method), 600
repeat() (chainer.links.DeformableConvolution2D

method), 387
repeat() (chainer.links.DepthwiseConvolution2D

method), 393
repeat() (chainer.links.DilatedConvolution2D

method), 401
repeat() (chainer.links.EmbedID method), 407
repeat() (chainer.links.GoogLeNet method), 694
repeat() (chainer.links.GroupNormalization method),

607
repeat() (chainer.links.GRU method), 413
repeat() (chainer.links.Highway method), 419
repeat() (chainer.links.Inception method), 425
repeat() (chainer.links.InceptionBN method), 432
repeat() (chainer.links.LayerNormalization method),

613
repeat() (chainer.links.Linear method), 438
repeat() (chainer.links.LocalConvolution2D method),

445
repeat() (chainer.links.LSTM method), 452
repeat() (chainer.links.Maxout method), 657
repeat() (chainer.links.MLPConvolution2D method),

459
repeat() (chainer.links.model.vision.resnet.ResNetLayers

method), 702
repeat() (chainer.links.NaryTreeLSTM method), 465
repeat() (chainer.links.NegativeSampling method),

664
repeat() (chainer.links.NStepBiGRU method), 472
repeat() (chainer.links.NStepBiLSTM method), 479
repeat() (chainer.links.NStepBiRNNReLU method),

486
repeat() (chainer.links.NStepBiRNNTanh method),

493
repeat() (chainer.links.NStepGRU method), 500
repeat() (chainer.links.NStepLSTM method), 507
repeat() (chainer.links.NStepRNNReLU method), 514
repeat() (chainer.links.NStepRNNTanh method), 521
repeat() (chainer.links.Parameter method), 527
repeat() (chainer.links.PReLU method), 644
repeat() (chainer.links.ResNet101Layers method),

717
repeat() (chainer.links.ResNet152Layers method),

724
repeat() (chainer.links.ResNet50Layers method), 709

repeat() (chainer.links.Scale method), 533
repeat() (chainer.links.SimplifiedDropconnect

method), 638
repeat() (chainer.links.StatefulGRU method), 540
repeat() (chainer.links.StatefulMGU method), 553
repeat() (chainer.links.StatefulPeepholeLSTM

method), 565
repeat() (chainer.links.StatefulZoneoutLSTM

method), 571
repeat() (chainer.links.StatelessGRU method), 547
repeat() (chainer.links.StatelessLSTM method), 578
repeat() (chainer.links.StatelessMGU method), 559
repeat() (chainer.links.Swish method), 651
repeat() (chainer.links.TheanoFunction method), 732
repeat() (chainer.links.VGG16Layers method), 678
repeat() (chainer.links.VGG19Layers method), 686
repeat() (chainer.Sequential method), 767
repeat() (in module chainer.functions), 181
repeat() (in module chainer.testing.condition), 1116
repeat_with_success_at_least() (in module

chainer.testing.condition), 1116
report() (chainer.Reporter method), 1050
report() (in module chainer), 1051
report_key_template

(chainer.training.extensions.ParameterStatistics
attribute), 935

report_scope() (in module chainer), 1052
Reporter (class in chainer), 1049
require_grad() (chainerx.ndarray method), 1131
requires_grad (chainer.Parameter attribute), 147
requires_grad (chainer.Variable attribute), 139
requires_grad (chainer.variable.VariableNode at-

tribute), 150
reset() (chainer.iterators.DaliIterator method), 1016
reset() (chainer.iterators.MultiprocessIterator

method), 1013
reset() (chainer.iterators.MultithreadIterator

method), 1015
reset() (chainer.iterators.SerialIterator method),

1011
reset_state() (chainer.links.GRU method), 413
reset_state() (chainer.links.LSTM method), 453
reset_state() (chainer.links.StatefulGRU method),

541
reset_state() (chainer.links.StatefulMGU method),

554
reset_state() (chainer.links.StatefulPeepholeLSTM

method), 566
reset_state() (chainer.links.StatefulZoneoutLSTM

method), 572
reshape() (chainer.Parameter method), 142
reshape() (chainer.Variable method), 134
reshape() (chainerx.ndarray method), 1131
reshape() (in module chainer.functions), 182

Index 1365



Chainer Documentation, Release 6.5.0

reshape() (in module chainerx), 1146
reshape_W() (chainer.link_hooks.SpectralNormalization

method), 772
resize_images() (in module chainer.functions), 183
ResNet101Layers (class in chainer.links), 712
ResNet152Layers (class in chainer.links), 719
ResNet50Layers (class in chainer.links), 704
ResNetLayers (class in

chainer.links.model.vision.resnet), 697
retain_data() (chainer.Parameter method), 142
retain_data() (chainer.Variable method), 134
retain_data() (chainer.variable.VariableNode

method), 148
retain_inputs() (chainer.Function method), 286
retain_inputs() (chainer.FunctionAdapter

method), 291
retain_inputs() (chainer.FunctionNode method),

297
retain_outputs() (chainer.Function method), 286
retain_outputs() (chainer.FunctionAdapter

method), 291
retain_outputs() (chainer.FunctionNode method),

297
retry() (in module chainer.testing.condition), 1116
reverse() (chainer.ChainList method), 759
reverse() (chainer.links.MLPConvolution2D

method), 460
reverse() (chainer.links.NStepBiGRU method), 473
reverse() (chainer.links.NStepBiLSTM method), 480
reverse() (chainer.links.NStepBiRNNReLU method),

487
reverse() (chainer.links.NStepBiRNNTanh method),

494
reverse() (chainer.links.NStepGRU method), 501
reverse() (chainer.links.NStepLSTM method), 508
reverse() (chainer.links.NStepRNNReLU method),

515
reverse() (chainer.links.NStepRNNTanh method), 522
reverse() (chainer.Sequential method), 768
rho (chainer.optimizers.AdaDelta attribute), 846
RMSprop (class in chainer.optimizers), 864
RMSpropGraves (class in chainer.optimizers), 867
rnn() (chainer.links.NStepBiGRU method), 473
rnn() (chainer.links.NStepBiLSTM method), 480
rnn() (chainer.links.NStepBiRNNReLU method), 487
rnn() (chainer.links.NStepBiRNNTanh method), 494
rnn() (chainer.links.NStepGRU method), 501
rnn() (chainer.links.NStepLSTM method), 508
rnn() (chainer.links.NStepRNNReLU method), 515
rnn() (chainer.links.NStepRNNTanh method), 522
roi_average_align_2d() (in module

chainer.functions), 275
roi_average_pooling_2d() (in module

chainer.functions), 276

roi_max_align_2d() (in module chainer.functions),
276

roi_max_pooling_2d() (in module
chainer.functions), 277

roi_pooling_2d() (in module chainer.functions),
277

rollaxis() (in module chainer.functions), 183
rrelu() (in module chainer.functions), 159
rsqrt() (in module chainer.functions), 257
run() (chainer.testing.FunctionTestCase method), 1094
run() (chainer.testing.LinkInitializersTestCase

method), 1105
run() (chainer.testing.LinkTestCase method), 1113
run() (chainer.training.Trainer method), 914
run_test_backward()

(chainer.testing.FunctionTestCase method),
1094

run_test_double_backward()
(chainer.testing.FunctionTestCase method),
1094

run_test_forward()
(chainer.testing.FunctionTestCase method),
1094

S
sample() (chainer.Distribution method), 841
sample() (chainer.distributions.Bernoulli method),

778
sample() (chainer.distributions.Beta method), 781
sample() (chainer.distributions.Categorical method),

785
sample() (chainer.distributions.Cauchy method), 788
sample() (chainer.distributions.Chisquare method),

791
sample() (chainer.distributions.Dirichlet method), 794
sample() (chainer.distributions.Exponential method),

797
sample() (chainer.distributions.Gamma method), 800
sample() (chainer.distributions.Geometric method),

803
sample() (chainer.distributions.Gumbel method), 807
sample() (chainer.distributions.Independent method),

810
sample() (chainer.distributions.Laplace method), 813
sample() (chainer.distributions.LogNormal method),

816
sample() (chainer.distributions.MultivariateNormal

method), 820
sample() (chainer.distributions.Normal method), 823
sample() (chainer.distributions.OneHotCategorical

method), 826
sample() (chainer.distributions.Pareto method), 829
sample() (chainer.distributions.Poisson method), 832
sample() (chainer.distributions.Uniform method), 835

1366 Index



Chainer Documentation, Release 6.5.0

sample() (chainer.utils.WalkerAlias method), 1047
sample_data (chainer.links.BlackOut attribute), 627
sample_gpu() (chainer.utils.WalkerAlias method),

1047
sample_n() (chainer.Distribution method), 841
sample_n() (chainer.distributions.Bernoulli method),

778
sample_n() (chainer.distributions.Beta method), 782
sample_n() (chainer.distributions.Categorical

method), 785
sample_n() (chainer.distributions.Cauchy method),

788
sample_n() (chainer.distributions.Chisquare method),

791
sample_n() (chainer.distributions.Dirichlet method),

794
sample_n() (chainer.distributions.Exponential

method), 797
sample_n() (chainer.distributions.Gamma method),

800
sample_n() (chainer.distributions.Geometric method),

804
sample_n() (chainer.distributions.Gumbel method),

807
sample_n() (chainer.distributions.Independent

method), 810
sample_n() (chainer.distributions.Laplace method),

813
sample_n() (chainer.distributions.LogNormal

method), 816
sample_n() (chainer.distributions.MultivariateNormal

method), 820
sample_n() (chainer.distributions.Normal method),

823
sample_n() (chainer.distributions.OneHotCategorical

method), 826
sample_n() (chainer.distributions.Pareto method),

829
sample_n() (chainer.distributions.Poisson method),

832
sample_n() (chainer.distributions.Uniform method),

836
sample_xp() (chainer.utils.WalkerAlias method),

1047
save() (chainer.Serializer method), 1027
save() (chainer.serializers.DictionarySerializer

method), 1020
save() (chainer.serializers.HDF5Serializer method),

1024
save() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 911
save() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 908
save() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 909
save() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 905
save() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 910
save() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 907
save() (chainer.training.extensions.snapshot_writers.Writer

method), 904
save_and_load() (in module chainer.testing), 1114
save_and_load_hdf5() (in module

chainer.testing), 1115
save_and_load_npz() (in module chainer.testing),

1115
save_hdf5() (in module chainer.serializers), 1025
save_npz() (in module chainer.serializers), 1022
save_plot_using_module()

(chainer.training.extensions.VariableStatisticsPlot
method), 958

scale (chainer.distributions.Cauchy attribute), 789
scale (chainer.distributions.Gumbel attribute), 808
scale (chainer.distributions.Laplace attribute), 815
scale (chainer.distributions.Normal attribute), 824
scale (chainer.distributions.Pareto attribute), 830
scale (chainer.distributions.Uniform attribute), 837
Scale (class in chainer.links), 529
scale() (in module chainer.functions), 258
scale_tril (chainer.distributions.MultivariateNormal

attribute), 821
scatter() (in module chainermn.functions), 1227
scatter_add() (in module chainer.functions), 183
scatter_dataset() (in module chainermn), 1220
schedule_func (chainer.configuration.GlobalConfig

attribute), 1062
scope() (chainer.Reporter method), 1050
select_item() (in module chainer.functions), 184
selu() (in module chainer.functions), 161
send() (chainer.backend.ChainerxDevice method),

1038
send() (chainer.backend.CpuDevice method), 1035
send() (chainer.backend.Device method), 1030
send() (chainer.backend.GpuDevice method), 1036
send() (chainer.backend.Intel64Device method), 1037
send() (chainermn.CommunicatorBase method), 1218
send() (in module chainermn.functions), 1224
send_array() (chainer.backend.ChainerxDevice

method), 1039
send_array() (chainer.backend.CpuDevice method),

1035
send_array() (chainer.backend.GpuDevice method),

1036
send_array() (chainer.backend.Intel64Device

method), 1037
send_obj() (chainermn.CommunicatorBase method),

Index 1367



Chainer Documentation, Release 6.5.0

1219
separate() (in module chainer.functions), 185
Sequential (class in chainer), 761
SerialIterator (class in chainer.iterators), 1010
serialize() (chainer.Chain method), 753
serialize() (chainer.ChainList method), 759
serialize() (chainer.dataset.Iterator method), 976
serialize() (chainer.DictSummary method), 1053
serialize() (chainer.GradientMethod method), 883
serialize() (chainer.iterators.DaliIterator method),

1016
serialize() (chainer.iterators.MultiprocessIterator

method), 1013
serialize() (chainer.iterators.MultithreadIterator

method), 1015
serialize() (chainer.iterators.SerialIterator

method), 1011
serialize() (chainer.Link method), 746
serialize() (chainer.links.BatchNormalization

method), 588
serialize() (chainer.links.BatchRenormalization

method), 594
serialize() (chainer.links.Bias method), 317
serialize() (chainer.links.Bilinear method), 323
serialize() (chainer.links.BinaryHierarchicalSoftmax

method), 620
serialize() (chainer.links.BlackOut method), 626
serialize() (chainer.links.caffe.CaffeFunction

method), 739
serialize() (chainer.links.ChildSumTreeLSTM

method), 329
serialize() (chainer.links.Classifier method), 671
serialize() (chainer.links.Convolution1D method),

335
serialize() (chainer.links.Convolution2D method),

342
serialize() (chainer.links.Convolution3D method),

348
serialize() (chainer.links.ConvolutionND method),

355
serialize() (chainer.links.CRF1d method), 632
serialize() (chainer.links.Deconvolution1D

method), 361
serialize() (chainer.links.Deconvolution2D

method), 368
serialize() (chainer.links.Deconvolution3D

method), 374
serialize() (chainer.links.DeconvolutionND

method), 381
serialize() (chainer.links.DecorrelatedBatchNormalization

method), 601
serialize() (chainer.links.DeformableConvolution2D

method), 388
serialize() (chainer.links.DepthwiseConvolution2D

method), 394
serialize() (chainer.links.DilatedConvolution2D

method), 401
serialize() (chainer.links.EmbedID method), 408
serialize() (chainer.links.GoogLeNet method), 694
serialize() (chainer.links.GroupNormalization

method), 608
serialize() (chainer.links.GRU method), 413
serialize() (chainer.links.Highway method), 420
serialize() (chainer.links.Inception method), 426
serialize() (chainer.links.InceptionBN method), 432
serialize() (chainer.links.LayerNormalization

method), 614
serialize() (chainer.links.Linear method), 439
serialize() (chainer.links.LocalConvolution2D

method), 445
serialize() (chainer.links.LSTM method), 453
serialize() (chainer.links.Maxout method), 658
serialize() (chainer.links.MLPConvolution2D

method), 460
serialize() (chainer.links.model.vision.resnet.ResNetLayers

method), 702
serialize() (chainer.links.NaryTreeLSTM method),

466
serialize() (chainer.links.NegativeSampling

method), 664
serialize() (chainer.links.NStepBiGRU method),

473
serialize() (chainer.links.NStepBiLSTM method),

480
serialize() (chainer.links.NStepBiRNNReLU

method), 487
serialize() (chainer.links.NStepBiRNNTanh

method), 494
serialize() (chainer.links.NStepGRU method), 501
serialize() (chainer.links.NStepLSTM method), 508
serialize() (chainer.links.NStepRNNReLU method),

515
serialize() (chainer.links.NStepRNNTanh method),

522
serialize() (chainer.links.Parameter method), 528
serialize() (chainer.links.PReLU method), 645
serialize() (chainer.links.ResNet101Layers

method), 717
serialize() (chainer.links.ResNet152Layers

method), 725
serialize() (chainer.links.ResNet50Layers method),

710
serialize() (chainer.links.Scale method), 534
serialize() (chainer.links.SimplifiedDropconnect

method), 639
serialize() (chainer.links.StatefulGRU method), 541
serialize() (chainer.links.StatefulMGU method),

554

1368 Index



Chainer Documentation, Release 6.5.0

serialize() (chainer.links.StatefulPeepholeLSTM
method), 566

serialize() (chainer.links.StatefulZoneoutLSTM
method), 572

serialize() (chainer.links.StatelessGRU method),
548

serialize() (chainer.links.StatelessLSTM method),
579

serialize() (chainer.links.StatelessMGU method),
559

serialize() (chainer.links.Swish method), 652
serialize() (chainer.links.TheanoFunction method),

732
serialize() (chainer.links.VGG16Layers method),

679
serialize() (chainer.links.VGG19Layers method),

686
serialize() (chainer.Optimizer method), 877
serialize() (chainer.optimizers.AdaDelta method),

845
serialize() (chainer.optimizers.AdaGrad method),

847
serialize() (chainer.optimizers.Adam method), 851
serialize() (chainer.optimizers.CorrectedMomentumSGD

method), 854
serialize() (chainer.optimizers.MomentumSGD

method), 857
serialize() (chainer.optimizers.MSVAG method),

863
serialize() (chainer.optimizers.NesterovAG

method), 860
serialize() (chainer.optimizers.RMSprop method),

866
serialize() (chainer.optimizers.RMSpropGraves

method), 869
serialize() (chainer.optimizers.SGD method), 871
serialize() (chainer.optimizers.SMORMS3 method),

874
serialize() (chainer.Sequential method), 768
serialize() (chainer.Summary method), 1052
serialize() (chainer.training.Extension method),

924
serialize() (chainer.training.extensions.DumpGraph

method), 960
serialize() (chainer.training.extensions.Evaluator

method), 928
serialize() (chainer.training.extensions.ExponentialShift

method), 937
serialize() (chainer.training.extensions.FailOnNonNumber

method), 932
serialize() (chainer.training.extensions.InverseShift

method), 939
serialize() (chainer.training.extensions.LinearShift

method), 940

serialize() (chainer.training.extensions.LogReport
method), 953

serialize() (chainer.training.extensions.MicroAverage
method), 930

serialize() (chainer.training.extensions.MultistepShift
method), 942

serialize() (chainer.training.extensions.ParameterStatistics
method), 934

serialize() (chainer.training.extensions.PlotReport
method), 956

serialize() (chainer.training.extensions.PolynomialShift
method), 944

serialize() (chainer.training.extensions.PrintReport
method), 950

serialize() (chainer.training.extensions.ProgressBar
method), 951

serialize() (chainer.training.extensions.StepShift
method), 948

serialize() (chainer.training.extensions.unchain_variables
method), 965

serialize() (chainer.training.extensions.VariableStatisticsPlot
method), 958

serialize() (chainer.training.extensions.WarmupShift
method), 946

serialize() (chainer.training.Trainer method), 914
serialize() (chainer.training.triggers.BestValueTrigger

method), 967
serialize() (chainer.training.triggers.IntervalTrigger

method), 969
serialize() (chainer.training.triggers.ManualScheduleTrigger

method), 970
serialize() (chainer.training.triggers.MaxValueTrigger

method), 970
serialize() (chainer.training.triggers.MinValueTrigger

method), 971
serialize() (chainer.training.triggers.OnceTrigger

method), 972
serialize() (chainer.training.triggers.TimeTrigger

method), 973
serialize() (chainer.training.Updater method), 916
serialize() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
serialize() (chainer.training.updaters.ParallelUpdater

method), 920
serialize() (chainer.training.updaters.StandardUpdater

method), 918
serialize() (chainer.UpdateRule method), 880
Serializer (class in chainer), 1026
set_creator() (chainer.Parameter method), 143
set_creator() (chainer.Variable method), 134
set_creator() (chainer.variable.VariableNode

method), 148
set_creator_node() (chainer.Parameter method),

143

Index 1369



Chainer Documentation, Release 6.5.0

set_creator_node() (chainer.Variable method),
134

set_creator_node()
(chainer.variable.VariableNode method),
149

set_dataset_root() (in module chainer.dataset),
980

set_debug() (in module chainer), 1066
set_default_device() (in module chainerx), 1175
set_grad() (chainerx.ndarray method), 1131
set_loss_scale() (chainer.GradientMethod

method), 884
set_loss_scale() (chainer.Optimizer method), 877
set_loss_scale() (chainer.optimizers.AdaDelta

method), 845
set_loss_scale() (chainer.optimizers.AdaGrad

method), 848
set_loss_scale() (chainer.optimizers.Adam

method), 851
set_loss_scale() (chainer.optimizers.CorrectedMomentumSGD

method), 854
set_loss_scale() (chainer.optimizers.MomentumSGD

method), 857
set_loss_scale() (chainer.optimizers.MSVAG

method), 863
set_loss_scale() (chainer.optimizers.NesterovAG

method), 860
set_loss_scale() (chainer.optimizers.RMSprop

method), 866
set_loss_scale() (chainer.optimizers.RMSpropGraves

method), 869
set_loss_scale() (chainer.optimizers.SGD

method), 872
set_loss_scale() (chainer.optimizers.SMORMS3

method), 874
set_max_workspace_size() (in module

chainer.backends.cuda), 1044
set_state() (chainer.links.GRU method), 413
set_state() (chainer.links.LSTM method), 453
set_state() (chainer.links.StatefulGRU method), 541
set_state() (chainer.links.StatefulMGU method),

554
set_state() (chainer.links.StatefulZoneoutLSTM

method), 572
setup() (chainer.GradientMethod method), 884
setup() (chainer.Optimizer method), 877
setup() (chainer.optimizers.AdaDelta method), 845
setup() (chainer.optimizers.AdaGrad method), 848
setup() (chainer.optimizers.Adam method), 851
setup() (chainer.optimizers.CorrectedMomentumSGD

method), 854
setup() (chainer.optimizers.MomentumSGD method),

857
setup() (chainer.optimizers.MSVAG method), 863

setup() (chainer.optimizers.NesterovAG method), 860
setup() (chainer.optimizers.RMSprop method), 866
setup() (chainer.optimizers.RMSpropGraves method),

869
setup() (chainer.optimizers.SGD method), 872
setup() (chainer.optimizers.SMORMS3 method), 874
setUp() (chainer.testing.FunctionTestCase method),

1095
setUp() (chainer.testing.LinkInitializersTestCase

method), 1105
setUp() (chainer.testing.LinkTestCase method), 1113
setup_workers() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
setUpClass() (chainer.testing.FunctionTestCase

class method), 1095
setUpClass() (chainer.testing.LinkInitializersTestCase

class method), 1105
setUpClass() (chainer.testing.LinkTestCase class

method), 1113
SGD (class in chainer.optimizers), 870
shape (chainer.Parameter attribute), 147
shape (chainer.Variable attribute), 139
shape (chainerx.ndarray attribute), 1134
shift() (in module chainer.functions), 220
shortDescription()

(chainer.testing.FunctionTestCase method),
1095

shortDescription()
(chainer.testing.LinkInitializersTestCase
method), 1105

shortDescription() (chainer.testing.LinkTestCase
method), 1113

show() (chainer.configuration.GlobalConfig method),
1062

show() (chainer.configuration.LocalConfig method),
1063

ShuffleOrderSampler (class in chainer.iterators),
1018

sigma (chainer.distributions.LogNormal attribute), 818
sigmoid() (in module chainer.functions), 161
sigmoid() (in module chainerx), 1145
sigmoid_cross_entropy() (in module

chainer.functions), 237
sign() (in module chainer.functions), 259
SimpleWriter (class in

chainer.training.extensions.snapshot_writers),
905

simplified_dropconnect() (in module
chainer.functions), 264

SimplifiedDropconnect (class in chainer.links),
634

sin() (in module chainer.functions), 258
sin() (in module chainerx), 1159
sinh() (in module chainer.functions), 258

1370 Index



Chainer Documentation, Release 6.5.0

size (chainer.Parameter attribute), 147
size (chainer.utils.type_check.TypeInfo attribute), 1081
size (chainer.Variable attribute), 139
size (chainerx.ndarray attribute), 1134
size() (chainer.utils.type_check.TypeInfoTuple

method), 1082
size() (chainermn.CommunicatorBase property), 1219
skip_backward_test

(chainer.testing.FunctionTestCase attribute),
1096

skip_backward_test (chainer.testing.LinkTestCase
attribute), 1114

skip_double_backward_test
(chainer.testing.FunctionTestCase attribute),
1096

skip_forward_test
(chainer.testing.FunctionTestCase attribute),
1096

skip_forward_test (chainer.testing.LinkTestCase
attribute), 1114

skipTest() (chainer.testing.FunctionTestCase
method), 1095

skipTest() (chainer.testing.LinkInitializersTestCase
method), 1105

skipTest() (chainer.testing.LinkTestCase method),
1113

slstm() (in module chainer.functions), 162
SMORMS3 (class in chainer.optimizers), 873
snapshot(), 61
snapshot() (in module chainer.training.extensions),

961
snapshot_object(), 61
snapshot_object() (in module

chainer.training.extensions), 963
softmax() (in module chainer.functions), 163
softmax_cross_entropy() (in module

chainer.functions), 238
softplus() (in module chainer.functions), 164
space2depth() (in module chainer.functions), 185
sparse_matmul() (in module chainer.functions), 259
spatial_pyramid_pooling_2d() (in module

chainer.functions), 278
spatial_transformer_grid() (in module

chainer.functions), 186
spatial_transformer_sampler() (in module

chainer.functions), 187
SpectralNormalization (class in

chainer.link_hooks), 770
split() (chainermn.CommunicatorBase method),

1219
split() (in module chainerx), 1149
split_axis() (in module chainer.functions), 188
split_dataset() (in module chainer.datasets), 987
split_dataset_random() (in module

chainer.datasets), 987
sqrt() (in module chainer.functions), 260
sqrt() (in module chainerx), 1159
square() (in module chainer.functions), 260
square() (in module chainerx), 1161
squared_difference() (in module

chainer.functions), 260
squared_error() (in module chainer.functions), 239
squeeze() (chainerx.ndarray method), 1131
squeeze() (in module chainer.functions), 188
squeeze() (in module chainerx), 1147
stack (chainer.Function attribute), 287
stack (chainer.FunctionAdapter attribute), 292
stack (chainer.FunctionNode attribute), 298
stack() (in module chainer.functions), 189
stack() (in module chainerx), 1148
StandardUpdater (class in

chainer.training.updaters), 916
start_finetuning()

(chainer.links.BatchNormalization method),
588

start_finetuning()
(chainer.links.BatchRenormalization method),
595

start_finetuning()
(chainer.links.DecorrelatedBatchNormalization
method), 601

state (chainer.UpdateRule attribute), 881
StatefulGRU (class in chainer.links), 536
StatefulMGU (class in chainer.links), 550
StatefulPeepholeLSTM (class in chainer.links),

561
StatefulZoneoutLSTM (class in chainer.links), 568
StatelessGRU (class in chainer.links), 543
StatelessLSTM (class in chainer.links), 574
StatelessMGU (class in chainer.links), 555
static_graph() (in module chainer), 1070
stddev (chainer.Distribution attribute), 843
stddev (chainer.distributions.Bernoulli attribute), 780
stddev (chainer.distributions.Beta attribute), 783
stddev (chainer.distributions.Categorical attribute),

786
stddev (chainer.distributions.Cauchy attribute), 789
stddev (chainer.distributions.Chisquare attribute), 793
stddev (chainer.distributions.Dirichlet attribute), 796
stddev (chainer.distributions.Exponential attribute),

799
stddev (chainer.distributions.Gamma attribute), 802
stddev (chainer.distributions.Geometric attribute), 805
stddev (chainer.distributions.Gumbel attribute), 808
stddev (chainer.distributions.Independent attribute),

811
stddev (chainer.distributions.Laplace attribute), 815

Index 1371



Chainer Documentation, Release 6.5.0

stddev (chainer.distributions.LogNormal attribute),
818

stddev (chainer.distributions.MultivariateNormal at-
tribute), 821

stddev (chainer.distributions.Normal attribute), 824
stddev (chainer.distributions.OneHotCategorical at-

tribute), 827
stddev (chainer.distributions.Pareto attribute), 830
stddev (chainer.distributions.Poisson attribute), 834
stddev (chainer.distributions.Uniform attribute), 837
StepShift (class in chainer.training.extensions), 947
strides (chainerx.ndarray attribute), 1134
SubDataset (class in chainer.datasets), 985
subTest() (chainer.testing.FunctionTestCase method),

1095
subTest() (chainer.testing.LinkInitializersTestCase

method), 1105
subTest() (chainer.testing.LinkTestCase method),

1113
subtract() (in module chainerx), 1156
sum() (chainerx.ndarray method), 1131
sum() (in module chainer.functions), 260
sum() (in module chainerx), 1157
sum_to() (in module chainer.functions), 261
Summary (class in chainer), 1052
summary() (chainer.function_hooks.CupyMemoryProfileHook

method), 303
summary() (chainer.function_hooks.TimerHook

method), 308
summary() (chainer.link_hooks.TimerHook method),

773
summary() (chainer.Parameter method), 143
summary() (chainer.Variable method), 134
support (chainer.Distribution attribute), 843
support (chainer.distributions.Bernoulli attribute), 780
support (chainer.distributions.Beta attribute), 783
support (chainer.distributions.Categorical attribute),

786
support (chainer.distributions.Cauchy attribute), 790
support (chainer.distributions.Chisquare attribute),

793
support (chainer.distributions.Dirichlet attribute), 796
support (chainer.distributions.Exponential attribute),

799
support (chainer.distributions.Gamma attribute), 802
support (chainer.distributions.Geometric attribute),

805
support (chainer.distributions.Gumbel attribute), 808
support (chainer.distributions.Independent attribute),

812
support (chainer.distributions.Laplace attribute), 815
support (chainer.distributions.LogNormal attribute),

818

support (chainer.distributions.MultivariateNormal at-
tribute), 821

support (chainer.distributions.Normal attribute), 824
support (chainer.distributions.OneHotCategorical at-

tribute), 828
support (chainer.distributions.Pareto attribute), 831
support (chainer.distributions.Poisson attribute), 834
support (chainer.distributions.Uniform attribute), 837
supported_array_types

(chainer.backend.ChainerxDevice attribute),
1039

supported_array_types
(chainer.backend.CpuDevice attribute), 1036

supported_array_types (chainer.backend.Device
attribute), 1031

supported_array_types
(chainer.backend.GpuDevice attribute), 1037

supported_array_types
(chainer.backend.Intel64Device attribute),
1038

survival_function() (chainer.Distribution
method), 841

survival_function()
(chainer.distributions.Bernoulli method),
779

survival_function() (chainer.distributions.Beta
method), 782

survival_function()
(chainer.distributions.Categorical method),
785

survival_function()
(chainer.distributions.Cauchy method), 788

survival_function()
(chainer.distributions.Chisquare method),
791

survival_function()
(chainer.distributions.Dirichlet method),
795

survival_function()
(chainer.distributions.Exponential method),
798

survival_function()
(chainer.distributions.Gamma method), 801

survival_function()
(chainer.distributions.Geometric method),
804

survival_function()
(chainer.distributions.Gumbel method), 807

survival_function()
(chainer.distributions.Independent method),
810

survival_function()
(chainer.distributions.Laplace method), 814

survival_function()

1372 Index



Chainer Documentation, Release 6.5.0

(chainer.distributions.LogNormal method),
817

survival_function()
(chainer.distributions.MultivariateNormal
method), 820

survival_function()
(chainer.distributions.Normal method), 823

survival_function()
(chainer.distributions.OneHotCategorical
method), 826

survival_function()
(chainer.distributions.Pareto method), 829

survival_function()
(chainer.distributions.Poisson method), 832

survival_function()
(chainer.distributions.Uniform method),
836

swapaxes() (in module chainer.functions), 190
Swish (class in chainer.links), 647
swish() (in module chainer.functions), 164
synchronize() (chainerx.Device method), 1174

T
t (chainer.GradientMethod attribute), 885
t (chainer.Optimizer attribute), 878
t (chainer.optimizers.AdaDelta attribute), 846
t (chainer.optimizers.AdaGrad attribute), 849
t (chainer.optimizers.Adam attribute), 852
t (chainer.optimizers.CorrectedMomentumSGD at-

tribute), 855
t (chainer.optimizers.MomentumSGD attribute), 858
t (chainer.optimizers.MSVAG attribute), 864
t (chainer.optimizers.NesterovAG attribute), 861
t (chainer.optimizers.RMSprop attribute), 867
t (chainer.optimizers.RMSpropGraves attribute), 870
t (chainer.optimizers.SGD attribute), 873
t (chainer.optimizers.SMORMS3 attribute), 875
T (chainer.Parameter attribute), 146
T (chainer.Variable attribute), 138
T (chainerx.ndarray attribute), 1133
table (chainer.function_hooks.TimerHook attribute),

308
table (chainer.link_hooks.TimerHook attribute), 774
take() (chainerx.ndarray method), 1131
take() (in module chainerx), 1149
tan() (in module chainer.functions), 262
tan() (in module chainerx), 1160
tanh() (in module chainer.functions), 165
tanh() (in module chainerx), 1145
target (chainer.GradientMethod attribute), 885
target (chainer.Optimizer attribute), 878
target (chainer.optimizers.AdaDelta attribute), 846
target (chainer.optimizers.AdaGrad attribute), 849
target (chainer.optimizers.Adam attribute), 852

target (chainer.optimizers.CorrectedMomentumSGD
attribute), 855

target (chainer.optimizers.MomentumSGD attribute),
858

target (chainer.optimizers.MSVAG attribute), 864
target (chainer.optimizers.NesterovAG attribute), 861
target (chainer.optimizers.RMSprop attribute), 867
target (chainer.optimizers.RMSpropGraves attribute),

870
target (chainer.optimizers.SGD attribute), 873
target (chainer.optimizers.SMORMS3 attribute), 876
tearDown() (chainer.testing.FunctionTestCase

method), 1095
tearDown() (chainer.testing.LinkInitializersTestCase

method), 1105
tearDown() (chainer.testing.LinkTestCase method),

1113
tearDownClass() (chainer.testing.FunctionTestCase

class method), 1095
tearDownClass() (chainer.testing.LinkInitializersTestCase

class method), 1105
tearDownClass() (chainer.testing.LinkTestCase

class method), 1113
tensordot() (in module chainer.functions), 262
test_backward() (chainer.testing.FunctionTestCase

method), 1095
test_backward() (chainer.testing.LinkTestCase

method), 1113
test_double_backward()

(chainer.testing.FunctionTestCase method),
1095

test_forward() (chainer.testing.FunctionTestCase
method), 1095

test_forward() (chainer.testing.LinkTestCase
method), 1113

test_initializers()
(chainer.testing.LinkInitializersTestCase
method), 1105

TextDataset (class in chainer.datasets), 999
TheanoFunction (class in chainer.links), 728
theta (chainer.distributions.Gamma attribute), 802
ThreadQueueWriter (class in

chainer.training.extensions.snapshot_writers),
909

ThreadWriter (class in
chainer.training.extensions.snapshot_writers),
906

tile() (in module chainer.functions), 191
TimerHook (class in chainer.function_hooks), 306
TimerHook (class in chainer.link_hooks), 772
TimeTrigger (class in chainer.training.triggers), 972
timing (chainer.optimizer_hooks.GradientClipping at-

tribute), 888
timing (chainer.optimizer_hooks.GradientHardClipping

Index 1373



Chainer Documentation, Release 6.5.0

attribute), 889
timing (chainer.optimizer_hooks.GradientLARS

attribute), 891
timing (chainer.optimizer_hooks.GradientNoise

attribute), 890
timing (chainer.optimizer_hooks.Lasso attribute), 887
timing (chainer.optimizer_hooks.WeightDecay at-

tribute), 886
to_chx() (chainer.Chain method), 753
to_chx() (chainer.ChainList method), 759
to_chx() (chainer.DeviceResident method), 1033
to_chx() (chainer.Link method), 746
to_chx() (chainer.links.BatchNormalization method),

588
to_chx() (chainer.links.BatchRenormalization

method), 595
to_chx() (chainer.links.Bias method), 317
to_chx() (chainer.links.Bilinear method), 323
to_chx() (chainer.links.BinaryHierarchicalSoftmax

method), 620
to_chx() (chainer.links.BlackOut method), 626
to_chx() (chainer.links.caffe.CaffeFunction method),

739
to_chx() (chainer.links.ChildSumTreeLSTM method),

329
to_chx() (chainer.links.Classifier method), 671
to_chx() (chainer.links.Convolution1D method), 335
to_chx() (chainer.links.Convolution2D method), 342
to_chx() (chainer.links.Convolution3D method), 348
to_chx() (chainer.links.ConvolutionND method), 356
to_chx() (chainer.links.CRF1d method), 632
to_chx() (chainer.links.Deconvolution1D method),

361
to_chx() (chainer.links.Deconvolution2D method),

369
to_chx() (chainer.links.Deconvolution3D method),

374
to_chx() (chainer.links.DeconvolutionND method),

381
to_chx() (chainer.links.DecorrelatedBatchNormalization

method), 601
to_chx() (chainer.links.DeformableConvolution2D

method), 388
to_chx() (chainer.links.DepthwiseConvolution2D

method), 394
to_chx() (chainer.links.DilatedConvolution2D

method), 401
to_chx() (chainer.links.EmbedID method), 408
to_chx() (chainer.links.GoogLeNet method), 694
to_chx() (chainer.links.GroupNormalization method),

608
to_chx() (chainer.links.GRU method), 413
to_chx() (chainer.links.Highway method), 420
to_chx() (chainer.links.Inception method), 426

to_chx() (chainer.links.InceptionBN method), 432
to_chx() (chainer.links.LayerNormalization method),

614
to_chx() (chainer.links.Linear method), 439
to_chx() (chainer.links.LocalConvolution2D method),

446
to_chx() (chainer.links.LSTM method), 453
to_chx() (chainer.links.Maxout method), 658
to_chx() (chainer.links.MLPConvolution2D method),

460
to_chx() (chainer.links.model.vision.resnet.ResNetLayers

method), 702
to_chx() (chainer.links.NaryTreeLSTM method), 466
to_chx() (chainer.links.NegativeSampling method),

664
to_chx() (chainer.links.NStepBiGRU method), 473
to_chx() (chainer.links.NStepBiLSTM method), 480
to_chx() (chainer.links.NStepBiRNNReLU method),

487
to_chx() (chainer.links.NStepBiRNNTanh method),

494
to_chx() (chainer.links.NStepGRU method), 501
to_chx() (chainer.links.NStepLSTM method), 508
to_chx() (chainer.links.NStepRNNReLU method), 515
to_chx() (chainer.links.NStepRNNTanh method), 522
to_chx() (chainer.links.Parameter method), 528
to_chx() (chainer.links.PReLU method), 645
to_chx() (chainer.links.ResNet101Layers method),

717
to_chx() (chainer.links.ResNet152Layers method),

725
to_chx() (chainer.links.ResNet50Layers method), 710
to_chx() (chainer.links.Scale method), 534
to_chx() (chainer.links.SimplifiedDropconnect

method), 639
to_chx() (chainer.links.StatefulGRU method), 541
to_chx() (chainer.links.StatefulMGU method), 554
to_chx() (chainer.links.StatefulPeepholeLSTM

method), 566
to_chx() (chainer.links.StatefulZoneoutLSTM

method), 572
to_chx() (chainer.links.StatelessGRU method), 548
to_chx() (chainer.links.StatelessLSTM method), 579
to_chx() (chainer.links.StatelessMGU method), 560
to_chx() (chainer.links.Swish method), 652
to_chx() (chainer.links.TheanoFunction method), 732
to_chx() (chainer.links.VGG16Layers method), 679
to_chx() (chainer.links.VGG19Layers method), 686
to_chx() (chainer.Parameter method), 143
to_chx() (chainer.Sequential method), 768
to_chx() (chainer.utils.WalkerAlias method), 1047
to_chx() (chainer.Variable method), 134
to_chx() (in module chainer.backend), 1045
to_coo() (in module chainer.utils), 1055

1374 Index



Chainer Documentation, Release 6.5.0

to_cpu() (chainer.Chain method), 753
to_cpu() (chainer.ChainList method), 759
to_cpu() (chainer.DeviceResident method), 1033
to_cpu() (chainer.Link method), 746
to_cpu() (chainer.links.BatchNormalization method),

589
to_cpu() (chainer.links.BatchRenormalization

method), 595
to_cpu() (chainer.links.Bias method), 317
to_cpu() (chainer.links.Bilinear method), 323
to_cpu() (chainer.links.BinaryHierarchicalSoftmax

method), 620
to_cpu() (chainer.links.BlackOut method), 626
to_cpu() (chainer.links.caffe.CaffeFunction method),

739
to_cpu() (chainer.links.ChildSumTreeLSTM method),

330
to_cpu() (chainer.links.Classifier method), 672
to_cpu() (chainer.links.Convolution1D method), 335
to_cpu() (chainer.links.Convolution2D method), 343
to_cpu() (chainer.links.Convolution3D method), 348
to_cpu() (chainer.links.ConvolutionND method), 356
to_cpu() (chainer.links.CRF1d method), 632
to_cpu() (chainer.links.Deconvolution1D method),

361
to_cpu() (chainer.links.Deconvolution2D method),

369
to_cpu() (chainer.links.Deconvolution3D method),

374
to_cpu() (chainer.links.DeconvolutionND method),

381
to_cpu() (chainer.links.DecorrelatedBatchNormalization

method), 601
to_cpu() (chainer.links.DeformableConvolution2D

method), 388
to_cpu() (chainer.links.DepthwiseConvolution2D

method), 394
to_cpu() (chainer.links.DilatedConvolution2D

method), 401
to_cpu() (chainer.links.EmbedID method), 408
to_cpu() (chainer.links.GoogLeNet method), 694
to_cpu() (chainer.links.GroupNormalization method),

608
to_cpu() (chainer.links.GRU method), 414
to_cpu() (chainer.links.Highway method), 420
to_cpu() (chainer.links.Inception method), 426
to_cpu() (chainer.links.InceptionBN method), 433
to_cpu() (chainer.links.LayerNormalization method),

614
to_cpu() (chainer.links.Linear method), 439
to_cpu() (chainer.links.LocalConvolution2D method),

446
to_cpu() (chainer.links.LSTM method), 453
to_cpu() (chainer.links.Maxout method), 658

to_cpu() (chainer.links.MLPConvolution2D method),
460

to_cpu() (chainer.links.model.vision.resnet.ResNetLayers
method), 703

to_cpu() (chainer.links.NaryTreeLSTM method), 466
to_cpu() (chainer.links.NegativeSampling method),

664
to_cpu() (chainer.links.NStepBiGRU method), 473
to_cpu() (chainer.links.NStepBiLSTM method), 480
to_cpu() (chainer.links.NStepBiRNNReLU method),

487
to_cpu() (chainer.links.NStepBiRNNTanh method),

494
to_cpu() (chainer.links.NStepGRU method), 501
to_cpu() (chainer.links.NStepLSTM method), 508
to_cpu() (chainer.links.NStepRNNReLU method), 515
to_cpu() (chainer.links.NStepRNNTanh method), 522
to_cpu() (chainer.links.Parameter method), 528
to_cpu() (chainer.links.PReLU method), 645
to_cpu() (chainer.links.ResNet101Layers method),

718
to_cpu() (chainer.links.ResNet152Layers method),

725
to_cpu() (chainer.links.ResNet50Layers method), 710
to_cpu() (chainer.links.Scale method), 534
to_cpu() (chainer.links.SimplifiedDropconnect

method), 639
to_cpu() (chainer.links.StatefulGRU method), 541
to_cpu() (chainer.links.StatefulMGU method), 554
to_cpu() (chainer.links.StatefulPeepholeLSTM

method), 566
to_cpu() (chainer.links.StatefulZoneoutLSTM

method), 572
to_cpu() (chainer.links.StatelessGRU method), 548
to_cpu() (chainer.links.StatelessLSTM method), 579
to_cpu() (chainer.links.StatelessMGU method), 560
to_cpu() (chainer.links.Swish method), 652
to_cpu() (chainer.links.TheanoFunction method), 732
to_cpu() (chainer.links.VGG16Layers method), 679
to_cpu() (chainer.links.VGG19Layers method), 687
to_cpu() (chainer.Parameter method), 143
to_cpu() (chainer.Sequential method), 768
to_cpu() (chainer.utils.WalkerAlias method), 1047
to_cpu() (chainer.Variable method), 135
to_cpu() (in module chainer.backends.cuda), 1042
to_dense() (chainer.utils.CooMatrix method), 1055
to_device() (chainer.Chain method), 753
to_device() (chainer.ChainList method), 759
to_device() (chainer.DeviceResident method), 1033
to_device() (chainer.Link method), 746
to_device() (chainer.links.BatchNormalization

method), 589
to_device() (chainer.links.BatchRenormalization

method), 595

Index 1375



Chainer Documentation, Release 6.5.0

to_device() (chainer.links.Bias method), 317
to_device() (chainer.links.Bilinear method), 323
to_device() (chainer.links.BinaryHierarchicalSoftmax

method), 620
to_device() (chainer.links.BlackOut method), 626
to_device() (chainer.links.caffe.CaffeFunction

method), 739
to_device() (chainer.links.ChildSumTreeLSTM

method), 330
to_device() (chainer.links.Classifier method), 672
to_device() (chainer.links.Convolution1D method),

335
to_device() (chainer.links.Convolution2D method),

343
to_device() (chainer.links.Convolution3D method),

348
to_device() (chainer.links.ConvolutionND method),

356
to_device() (chainer.links.CRF1d method), 632
to_device() (chainer.links.Deconvolution1D

method), 361
to_device() (chainer.links.Deconvolution2D

method), 369
to_device() (chainer.links.Deconvolution3D

method), 374
to_device() (chainer.links.DeconvolutionND

method), 382
to_device() (chainer.links.DecorrelatedBatchNormalization

method), 602
to_device() (chainer.links.DeformableConvolution2D

method), 388
to_device() (chainer.links.DepthwiseConvolution2D

method), 394
to_device() (chainer.links.DilatedConvolution2D

method), 402
to_device() (chainer.links.EmbedID method), 408
to_device() (chainer.links.GoogLeNet method), 695
to_device() (chainer.links.GroupNormalization

method), 608
to_device() (chainer.links.GRU method), 414
to_device() (chainer.links.Highway method), 420
to_device() (chainer.links.Inception method), 426
to_device() (chainer.links.InceptionBN method), 433
to_device() (chainer.links.LayerNormalization

method), 614
to_device() (chainer.links.Linear method), 439
to_device() (chainer.links.LocalConvolution2D

method), 446
to_device() (chainer.links.LSTM method), 453
to_device() (chainer.links.Maxout method), 658
to_device() (chainer.links.MLPConvolution2D

method), 460
to_device() (chainer.links.model.vision.resnet.ResNetLayers

method), 703

to_device() (chainer.links.NaryTreeLSTM method),
466

to_device() (chainer.links.NegativeSampling
method), 665

to_device() (chainer.links.NStepBiGRU method),
473

to_device() (chainer.links.NStepBiLSTM method),
480

to_device() (chainer.links.NStepBiRNNReLU
method), 487

to_device() (chainer.links.NStepBiRNNTanh
method), 494

to_device() (chainer.links.NStepGRU method), 501
to_device() (chainer.links.NStepLSTM method), 508
to_device() (chainer.links.NStepRNNReLU method),

515
to_device() (chainer.links.NStepRNNTanh method),

522
to_device() (chainer.links.Parameter method), 528
to_device() (chainer.links.PReLU method), 645
to_device() (chainer.links.ResNet101Layers

method), 718
to_device() (chainer.links.ResNet152Layers

method), 725
to_device() (chainer.links.ResNet50Layers method),

710
to_device() (chainer.links.Scale method), 534
to_device() (chainer.links.SimplifiedDropconnect

method), 639
to_device() (chainer.links.StatefulGRU method), 541
to_device() (chainer.links.StatefulMGU method),

554
to_device() (chainer.links.StatefulPeepholeLSTM

method), 566
to_device() (chainer.links.StatefulZoneoutLSTM

method), 573
to_device() (chainer.links.StatelessGRU method),

548
to_device() (chainer.links.StatelessLSTM method),

579
to_device() (chainer.links.StatelessMGU method),

560
to_device() (chainer.links.Swish method), 652
to_device() (chainer.links.TheanoFunction method),

733
to_device() (chainer.links.VGG16Layers method),

679
to_device() (chainer.links.VGG19Layers method),

687
to_device() (chainer.Parameter method), 143
to_device() (chainer.Sequential method), 768
to_device() (chainer.utils.WalkerAlias method),

1047
to_device() (chainer.Variable method), 135

1376 Index



Chainer Documentation, Release 6.5.0

to_device() (chainerx.ndarray method), 1131
to_device() (in module chainer.dataset), 980
to_gpu() (chainer.Chain method), 753
to_gpu() (chainer.ChainList method), 759
to_gpu() (chainer.DeviceResident method), 1033
to_gpu() (chainer.Link method), 747
to_gpu() (chainer.links.BatchNormalization method),

589
to_gpu() (chainer.links.BatchRenormalization

method), 595
to_gpu() (chainer.links.Bias method), 317
to_gpu() (chainer.links.Bilinear method), 323
to_gpu() (chainer.links.BinaryHierarchicalSoftmax

method), 621
to_gpu() (chainer.links.BlackOut method), 627
to_gpu() (chainer.links.caffe.CaffeFunction method),

740
to_gpu() (chainer.links.ChildSumTreeLSTM method),

330
to_gpu() (chainer.links.Classifier method), 672
to_gpu() (chainer.links.Convolution1D method), 336
to_gpu() (chainer.links.Convolution2D method), 343
to_gpu() (chainer.links.Convolution3D method), 349
to_gpu() (chainer.links.ConvolutionND method), 356
to_gpu() (chainer.links.CRF1d method), 633
to_gpu() (chainer.links.Deconvolution1D method),

362
to_gpu() (chainer.links.Deconvolution2D method),

369
to_gpu() (chainer.links.Deconvolution3D method),

375
to_gpu() (chainer.links.DeconvolutionND method),

382
to_gpu() (chainer.links.DecorrelatedBatchNormalization

method), 602
to_gpu() (chainer.links.DeformableConvolution2D

method), 388
to_gpu() (chainer.links.DepthwiseConvolution2D

method), 395
to_gpu() (chainer.links.DilatedConvolution2D

method), 402
to_gpu() (chainer.links.EmbedID method), 408
to_gpu() (chainer.links.GoogLeNet method), 695
to_gpu() (chainer.links.GroupNormalization method),

608
to_gpu() (chainer.links.GRU method), 414
to_gpu() (chainer.links.Highway method), 420
to_gpu() (chainer.links.Inception method), 427
to_gpu() (chainer.links.InceptionBN method), 433
to_gpu() (chainer.links.LayerNormalization method),

614
to_gpu() (chainer.links.Linear method), 440
to_gpu() (chainer.links.LocalConvolution2D method),

446

to_gpu() (chainer.links.LSTM method), 453
to_gpu() (chainer.links.Maxout method), 659
to_gpu() (chainer.links.MLPConvolution2D method),

460
to_gpu() (chainer.links.model.vision.resnet.ResNetLayers

method), 703
to_gpu() (chainer.links.NaryTreeLSTM method), 467
to_gpu() (chainer.links.NegativeSampling method),

665
to_gpu() (chainer.links.NStepBiGRU method), 473
to_gpu() (chainer.links.NStepBiLSTM method), 481
to_gpu() (chainer.links.NStepBiRNNReLU method),

488
to_gpu() (chainer.links.NStepBiRNNTanh method),

494
to_gpu() (chainer.links.NStepGRU method), 501
to_gpu() (chainer.links.NStepLSTM method), 509
to_gpu() (chainer.links.NStepRNNReLU method), 516
to_gpu() (chainer.links.NStepRNNTanh method), 522
to_gpu() (chainer.links.Parameter method), 528
to_gpu() (chainer.links.PReLU method), 646
to_gpu() (chainer.links.ResNet101Layers method),

718
to_gpu() (chainer.links.ResNet152Layers method),

725
to_gpu() (chainer.links.ResNet50Layers method), 710
to_gpu() (chainer.links.Scale method), 535
to_gpu() (chainer.links.SimplifiedDropconnect

method), 639
to_gpu() (chainer.links.StatefulGRU method), 542
to_gpu() (chainer.links.StatefulMGU method), 554
to_gpu() (chainer.links.StatefulPeepholeLSTM

method), 567
to_gpu() (chainer.links.StatefulZoneoutLSTM

method), 573
to_gpu() (chainer.links.StatelessGRU method), 548
to_gpu() (chainer.links.StatelessLSTM method), 580
to_gpu() (chainer.links.StatelessMGU method), 560
to_gpu() (chainer.links.Swish method), 652
to_gpu() (chainer.links.TheanoFunction method), 733
to_gpu() (chainer.links.VGG16Layers method), 680
to_gpu() (chainer.links.VGG19Layers method), 687
to_gpu() (chainer.Parameter method), 143
to_gpu() (chainer.Sequential method), 768
to_gpu() (chainer.utils.WalkerAlias method), 1047
to_gpu() (chainer.Variable method), 135
to_gpu() (in module chainer.backends.cuda), 1042
to_intel64() (chainer.Chain method), 753
to_intel64() (chainer.ChainList method), 760
to_intel64() (chainer.DeviceResident method),

1033
to_intel64() (chainer.Link method), 747
to_intel64() (chainer.links.BatchNormalization

method), 589

Index 1377



Chainer Documentation, Release 6.5.0

to_intel64() (chainer.links.BatchRenormalization
method), 595

to_intel64() (chainer.links.Bias method), 317
to_intel64() (chainer.links.Bilinear method), 324
to_intel64() (chainer.links.BinaryHierarchicalSoftmax

method), 621
to_intel64() (chainer.links.BlackOut method), 627
to_intel64() (chainer.links.caffe.CaffeFunction

method), 740
to_intel64() (chainer.links.ChildSumTreeLSTM

method), 330
to_intel64() (chainer.links.Classifier method), 672
to_intel64() (chainer.links.Convolution1D method),

336
to_intel64() (chainer.links.Convolution2D method),

343
to_intel64() (chainer.links.Convolution3D method),

349
to_intel64() (chainer.links.ConvolutionND

method), 356
to_intel64() (chainer.links.CRF1d method), 633
to_intel64() (chainer.links.Deconvolution1D

method), 362
to_intel64() (chainer.links.Deconvolution2D

method), 369
to_intel64() (chainer.links.Deconvolution3D

method), 375
to_intel64() (chainer.links.DeconvolutionND

method), 382
to_intel64() (chainer.links.DecorrelatedBatchNormalization

method), 602
to_intel64() (chainer.links.DeformableConvolution2D

method), 388
to_intel64() (chainer.links.DepthwiseConvolution2D

method), 395
to_intel64() (chainer.links.DilatedConvolution2D

method), 402
to_intel64() (chainer.links.EmbedID method), 408
to_intel64() (chainer.links.GoogLeNet method),

695
to_intel64() (chainer.links.GroupNormalization

method), 608
to_intel64() (chainer.links.GRU method), 414
to_intel64() (chainer.links.Highway method), 420
to_intel64() (chainer.links.Inception method), 427
to_intel64() (chainer.links.InceptionBN method),

433
to_intel64() (chainer.links.LayerNormalization

method), 614
to_intel64() (chainer.links.Linear method), 440
to_intel64() (chainer.links.LocalConvolution2D

method), 446
to_intel64() (chainer.links.LSTM method), 453
to_intel64() (chainer.links.Maxout method), 659

to_intel64() (chainer.links.MLPConvolution2D
method), 460

to_intel64() (chainer.links.model.vision.resnet.ResNetLayers
method), 703

to_intel64() (chainer.links.NaryTreeLSTM method),
467

to_intel64() (chainer.links.NegativeSampling
method), 665

to_intel64() (chainer.links.NStepBiGRU method),
474

to_intel64() (chainer.links.NStepBiLSTM method),
481

to_intel64() (chainer.links.NStepBiRNNReLU
method), 488

to_intel64() (chainer.links.NStepBiRNNTanh
method), 495

to_intel64() (chainer.links.NStepGRU method), 502
to_intel64() (chainer.links.NStepLSTM method),

509
to_intel64() (chainer.links.NStepRNNReLU

method), 516
to_intel64() (chainer.links.NStepRNNTanh

method), 523
to_intel64() (chainer.links.Parameter method), 528
to_intel64() (chainer.links.PReLU method), 646
to_intel64() (chainer.links.ResNet101Layers

method), 718
to_intel64() (chainer.links.ResNet152Layers

method), 725
to_intel64() (chainer.links.ResNet50Layers

method), 711
to_intel64() (chainer.links.Scale method), 535
to_intel64() (chainer.links.SimplifiedDropconnect

method), 639
to_intel64() (chainer.links.StatefulGRU method),

542
to_intel64() (chainer.links.StatefulMGU method),

554
to_intel64() (chainer.links.StatefulPeepholeLSTM

method), 567
to_intel64() (chainer.links.StatefulZoneoutLSTM

method), 573
to_intel64() (chainer.links.StatelessGRU method),

549
to_intel64() (chainer.links.StatelessLSTM method),

580
to_intel64() (chainer.links.StatelessMGU method),

560
to_intel64() (chainer.links.Swish method), 652
to_intel64() (chainer.links.TheanoFunction

method), 733
to_intel64() (chainer.links.VGG16Layers method),

680
to_intel64() (chainer.links.VGG19Layers method),

1378 Index



Chainer Documentation, Release 6.5.0

687
to_intel64() (chainer.Parameter method), 143
to_intel64() (chainer.Sequential method), 768
to_intel64() (chainer.utils.WalkerAlias method),

1048
to_intel64() (chainer.Variable method), 135
tolist() (chainerx.ndarray method), 1132
total_acquired_bytes()

(chainer.function_hooks.CupyMemoryProfileHook
method), 304

total_time() (chainer.function_hooks.TimerHook
method), 308

total_time() (chainer.link_hooks.TimerHook
method), 773

total_used_bytes()
(chainer.function_hooks.CupyMemoryProfileHook
method), 304

train (chainer.configuration.GlobalConfig attribute),
1062

Trainer (class in chainer.training), 912
TransformDataset (class in chainer.datasets), 989
transpose() (chainer.Parameter method), 143
transpose() (chainer.Variable method), 135
transpose() (chainerx.ndarray method), 1132
transpose() (in module chainer.functions), 192
transpose() (in module chainerx), 1146
transpose_sequence() (in module

chainer.functions), 193
tree_lstm() (in module chainer.functions), 165
trigger (chainer.training.Extension attribute), 925
trigger (chainer.training.extensions.Evaluator at-

tribute), 929
trigger (chainer.training.extensions.ExponentialShift

attribute), 937
trigger (chainer.training.extensions.FailOnNonNumber

attribute), 932
trigger (chainer.training.extensions.InverseShift at-

tribute), 939
trigger (chainer.training.extensions.LinearShift

attribute), 941
trigger (chainer.training.extensions.LogReport at-

tribute), 954
trigger (chainer.training.extensions.MicroAverage at-

tribute), 931
trigger (chainer.training.extensions.MultistepShift at-

tribute), 943
trigger (chainer.training.extensions.ParameterStatistics

attribute), 935
trigger (chainer.training.extensions.PlotReport

attribute), 956
trigger (chainer.training.extensions.PolynomialShift

attribute), 945
trigger (chainer.training.extensions.PrintReport at-

tribute), 950

trigger (chainer.training.extensions.ProgressBar at-
tribute), 952

trigger (chainer.training.extensions.StepShift at-
tribute), 948

trigger (chainer.training.extensions.VariableStatisticsPlot
attribute), 959

trigger (chainer.training.extensions.WarmupShift at-
tribute), 946

trigger() (chainer.training.extensions.DumpGraph
method), 961

trigger() (chainer.training.extensions.unchain_variables
method), 965

triplet() (in module chainer.functions), 240
TupleDataset (class in chainer.datasets), 983
type_check (chainer.configuration.GlobalConfig at-

tribute), 1062
TypeInfo (class in chainer.utils.type_check), 1081
TypeInfoTuple (class in chainer.utils.type_check),

1081

U
unary_math_function_unittest() (in module

chainer.testing), 1096
unchain() (chainer.Function method), 286
unchain() (chainer.FunctionAdapter method), 291
unchain() (chainer.FunctionNode method), 297
unchain() (chainer.Parameter method), 143
unchain() (chainer.Variable method), 135
unchain() (chainer.variable.VariableNode method),

149
unchain_backward() (chainer.Parameter method),

143
unchain_backward() (chainer.Variable method),

135
unchain_variables (class in

chainer.training.extensions), 964
Uniform (class in chainer.distributions), 834
Uniform (class in chainer.initializers), 900
uniform() (in module chainerx.random), 1163
unpooling_1d() (in module chainer.functions), 279
unpooling_2d() (in module chainer.functions), 279
unpooling_3d() (in module chainer.functions), 279
unpooling_nd() (in module chainer.functions), 280
update() (chainer.GradientMethod method), 884
update() (chainer.Optimizer method), 878
update() (chainer.optimizers.AdaDelta method), 845
update() (chainer.optimizers.AdaGrad method), 848
update() (chainer.optimizers.Adam method), 851
update() (chainer.optimizers.CorrectedMomentumSGD

method), 855
update() (chainer.optimizers.MomentumSGD

method), 857
update() (chainer.optimizers.MSVAG method), 863

Index 1379



Chainer Documentation, Release 6.5.0

update() (chainer.optimizers.NesterovAG method),
860

update() (chainer.optimizers.RMSprop method), 866
update() (chainer.optimizers.RMSpropGraves

method), 869
update() (chainer.optimizers.SGD method), 872
update() (chainer.optimizers.SMORMS3 method), 875
update() (chainer.Parameter method), 143
update() (chainer.training.Updater method), 916
update() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
update() (chainer.training.updaters.ParallelUpdater

method), 920
update() (chainer.training.updaters.StandardUpdater

method), 918
update() (chainer.UpdateRule method), 880
update_core() (chainer.training.updaters.MultiprocessParallelUpdater

method), 922
update_core() (chainer.training.updaters.ParallelUpdater

method), 920
update_core() (chainer.training.updaters.StandardUpdater

method), 918
update_core() (chainer.UpdateRule method), 880
update_core_chainerx() (chainer.UpdateRule

method), 880
update_core_cpu() (chainer.UpdateRule method),

880
update_core_gpu() (chainer.UpdateRule method),

880
update_enabled (chainer.Chain attribute), 754
update_enabled (chainer.ChainList attribute), 760
update_enabled (chainer.Link attribute), 747
update_enabled (chainer.links.BatchNormalization

attribute), 590
update_enabled (chainer.links.BatchRenormalization

attribute), 596
update_enabled (chainer.links.Bias attribute), 318
update_enabled (chainer.links.Bilinear attribute),

324
update_enabled (chainer.links.BinaryHierarchicalSoftmax

attribute), 621
update_enabled (chainer.links.BlackOut attribute),

627
update_enabled (chainer.links.caffe.CaffeFunction

attribute), 740
update_enabled (chainer.links.ChildSumTreeLSTM

attribute), 331
update_enabled (chainer.links.Classifier attribute),

673
update_enabled (chainer.links.Convolution1D at-

tribute), 336
update_enabled (chainer.links.Convolution2D at-

tribute), 344
update_enabled (chainer.links.Convolution3D at-

tribute), 349
update_enabled (chainer.links.ConvolutionND at-

tribute), 357
update_enabled (chainer.links.CRF1d attribute),

633
update_enabled (chainer.links.Deconvolution1D at-

tribute), 362
update_enabled (chainer.links.Deconvolution2D at-

tribute), 370
update_enabled (chainer.links.Deconvolution3D at-

tribute), 375
update_enabled (chainer.links.DeconvolutionND at-

tribute), 383
update_enabled (chainer.links.DecorrelatedBatchNormalization

attribute), 603
update_enabled (chainer.links.DeformableConvolution2D

attribute), 389
update_enabled (chainer.links.DepthwiseConvolution2D

attribute), 395
update_enabled (chainer.links.DilatedConvolution2D

attribute), 403
update_enabled (chainer.links.EmbedID attribute),

409
update_enabled (chainer.links.GoogLeNet at-

tribute), 696
update_enabled (chainer.links.GroupNormalization

attribute), 609
update_enabled (chainer.links.GRU attribute), 415
update_enabled (chainer.links.Highway attribute),

421
update_enabled (chainer.links.Inception attribute),

427
update_enabled (chainer.links.InceptionBN at-

tribute), 434
update_enabled (chainer.links.LayerNormalization

attribute), 615
update_enabled (chainer.links.Linear attribute), 440
update_enabled (chainer.links.LocalConvolution2D

attribute), 447
update_enabled (chainer.links.LSTM attribute), 454
update_enabled (chainer.links.Maxout attribute),

659
update_enabled (chainer.links.MLPConvolution2D

attribute), 461
update_enabled (chainer.links.model.vision.resnet.ResNetLayers

attribute), 704
update_enabled (chainer.links.NaryTreeLSTM at-

tribute), 467
update_enabled (chainer.links.NegativeSampling at-

tribute), 666
update_enabled (chainer.links.NStepBiGRU at-

tribute), 474
update_enabled (chainer.links.NStepBiLSTM at-

tribute), 482

1380 Index



Chainer Documentation, Release 6.5.0

update_enabled (chainer.links.NStepBiRNNReLU
attribute), 489

update_enabled (chainer.links.NStepBiRNNTanh at-
tribute), 495

update_enabled (chainer.links.NStepGRU attribute),
502

update_enabled (chainer.links.NStepLSTM at-
tribute), 510

update_enabled (chainer.links.NStepRNNReLU at-
tribute), 517

update_enabled (chainer.links.NStepRNNTanh at-
tribute), 523

update_enabled (chainer.links.Parameter attribute),
529

update_enabled (chainer.links.PReLU attribute),
646

update_enabled (chainer.links.ResNet101Layers at-
tribute), 719

update_enabled (chainer.links.ResNet152Layers at-
tribute), 726

update_enabled (chainer.links.ResNet50Layers at-
tribute), 711

update_enabled (chainer.links.Scale attribute), 535
update_enabled (chainer.links.SimplifiedDropconnect

attribute), 640
update_enabled (chainer.links.StatefulGRU at-

tribute), 542
update_enabled (chainer.links.StatefulMGU at-

tribute), 555
update_enabled (chainer.links.StatefulPeepholeLSTM

attribute), 567
update_enabled (chainer.links.StatefulZoneoutLSTM

attribute), 574
update_enabled (chainer.links.StatelessGRU at-

tribute), 549
update_enabled (chainer.links.StatelessLSTM

attribute), 580
update_enabled (chainer.links.StatelessMGU

attribute), 561
update_enabled (chainer.links.Swish attribute), 653
update_enabled (chainer.links.TheanoFunction at-

tribute), 734
update_enabled (chainer.links.VGG16Layers at-

tribute), 680
update_enabled (chainer.links.VGG19Layers at-

tribute), 688
update_enabled (chainer.Sequential attribute), 769
update_loss_scale() (chainer.GradientMethod

method), 884
update_loss_scale() (chainer.Optimizer method),

878
update_loss_scale()

(chainer.optimizers.AdaDelta method), 845
update_loss_scale()

(chainer.optimizers.AdaGrad method), 848
update_loss_scale() (chainer.optimizers.Adam

method), 851
update_loss_scale()

(chainer.optimizers.CorrectedMomentumSGD
method), 855

update_loss_scale()
(chainer.optimizers.MomentumSGD method),
858

update_loss_scale() (chainer.optimizers.MSVAG
method), 863

update_loss_scale()
(chainer.optimizers.NesterovAG method),
860

update_loss_scale()
(chainer.optimizers.RMSprop method), 866

update_loss_scale()
(chainer.optimizers.RMSpropGraves method),
869

update_loss_scale() (chainer.optimizers.SGD
method), 872

update_loss_scale()
(chainer.optimizers.SMORMS3 method),
875

Updater (class in chainer.training), 915
UpdateRule (class in chainer), 879
upsampling_2d() (in module chainer.functions), 280
use() (chainer.backend.ChainerxDevice method), 1039
use() (chainer.backend.CpuDevice method), 1035
use() (chainer.backend.Device method), 1030
use() (chainer.backend.GpuDevice method), 1036
use() (chainer.backend.Intel64Device method), 1037
use_auto_new_epoch (chainer.GradientMethod at-

tribute), 885
use_auto_new_epoch (chainer.Optimizer attribute),

878
use_auto_new_epoch (chainer.optimizers.AdaDelta

attribute), 846
use_auto_new_epoch (chainer.optimizers.AdaGrad

attribute), 849
use_auto_new_epoch (chainer.optimizers.Adam at-

tribute), 852
use_auto_new_epoch

(chainer.optimizers.CorrectedMomentumSGD
attribute), 856

use_auto_new_epoch
(chainer.optimizers.MomentumSGD attribute),
858

use_auto_new_epoch (chainer.optimizers.MSVAG
attribute), 864

use_auto_new_epoch
(chainer.optimizers.NesterovAG attribute),
861

use_auto_new_epoch (chainer.optimizers.RMSprop

Index 1381



Chainer Documentation, Release 6.5.0

attribute), 867
use_auto_new_epoch

(chainer.optimizers.RMSpropGraves attribute),
870

use_auto_new_epoch (chainer.optimizers.SGD at-
tribute), 873

use_auto_new_epoch
(chainer.optimizers.SMORMS3 attribute),
876

use_bi_direction (chainer.links.NStepBiGRU at-
tribute), 474

use_bi_direction (chainer.links.NStepBiLSTM at-
tribute), 482

use_bi_direction (chainer.links.NStepBiRNNReLU
attribute), 489

use_bi_direction (chainer.links.NStepBiRNNTanh
attribute), 495

use_bi_direction (chainer.links.NStepGRU at-
tribute), 502

use_bi_direction (chainer.links.NStepLSTM at-
tribute), 510

use_bi_direction (chainer.links.NStepRNNReLU
attribute), 517

use_bi_direction (chainer.links.NStepRNNTanh
attribute), 523

use_cleargrads() (chainer.GradientMethod
method), 884

use_cleargrads() (chainer.optimizers.AdaDelta
method), 845

use_cleargrads() (chainer.optimizers.AdaGrad
method), 848

use_cleargrads() (chainer.optimizers.Adam
method), 851

use_cleargrads() (chainer.optimizers.CorrectedMomentumSGD
method), 855

use_cleargrads() (chainer.optimizers.MomentumSGD
method), 858

use_cleargrads() (chainer.optimizers.MSVAG
method), 863

use_cleargrads() (chainer.optimizers.NesterovAG
method), 860

use_cleargrads() (chainer.optimizers.RMSprop
method), 866

use_cleargrads() (chainer.optimizers.RMSpropGraves
method), 869

use_cleargrads() (chainer.optimizers.SGD
method), 872

use_cleargrads() (chainer.optimizers.SMORMS3
method), 875

use_cudnn (chainer.configuration.GlobalConfig
attribute), 1062

use_cudnn_tensor_core
(chainer.configuration.GlobalConfig attribute),
1062

use_fp32_update() (chainer.GradientMethod
method), 884

use_fp32_update() (chainer.optimizers.AdaDelta
method), 845

use_fp32_update() (chainer.optimizers.AdaGrad
method), 848

use_fp32_update() (chainer.optimizers.Adam
method), 851

use_fp32_update()
(chainer.optimizers.CorrectedMomentumSGD
method), 855

use_fp32_update()
(chainer.optimizers.MomentumSGD method),
858

use_fp32_update() (chainer.optimizers.MSVAG
method), 863

use_fp32_update()
(chainer.optimizers.NesterovAG method),
860

use_fp32_update() (chainer.optimizers.RMSprop
method), 866

use_fp32_update()
(chainer.optimizers.RMSpropGraves method),
869

use_fp32_update() (chainer.optimizers.SGD
method), 872

use_fp32_update() (chainer.optimizers.SMORMS3
method), 875

use_fp32_update() (chainer.UpdateRule method),
880

use_gpu (chainer.utils.WalkerAlias attribute), 1048
use_ideep (chainer.configuration.GlobalConfig

attribute), 1062
using_config() (in module chainer), 1061
using_device() (in module chainer), 1031
using_device() (in module chainerx), 1176

V
Variable (class in chainer), 131
Variable (class in chainer.utils.type_check), 1082
VariableNode (class in chainer.variable), 147
VariableStatisticsPlot (class in

chainer.training.extensions), 957
variance (chainer.Distribution attribute), 843
variance (chainer.distributions.Bernoulli attribute),

780
variance (chainer.distributions.Beta attribute), 783
variance (chainer.distributions.Categorical attribute),

786
variance (chainer.distributions.Cauchy attribute), 790
variance (chainer.distributions.Chisquare attribute),

793
variance (chainer.distributions.Dirichlet attribute),

796

1382 Index



Chainer Documentation, Release 6.5.0

variance (chainer.distributions.Exponential attribute),
799

variance (chainer.distributions.Gamma attribute), 802
variance (chainer.distributions.Geometric attribute),

805
variance (chainer.distributions.Gumbel attribute), 808
variance (chainer.distributions.Independent attribute),

812
variance (chainer.distributions.Laplace attribute), 815
variance (chainer.distributions.LogNormal attribute),

818
variance (chainer.distributions.MultivariateNormal

attribute), 821
variance (chainer.distributions.Normal attribute), 825
variance (chainer.distributions.OneHotCategorical

attribute), 828
variance (chainer.distributions.Pareto attribute), 831
variance (chainer.distributions.Poisson attribute), 834
variance (chainer.distributions.Uniform attribute),

837
VGG16Layers (class in chainer.links), 674
VGG19Layers (class in chainer.links), 681
view() (chainerx.ndarray method), 1132
visit_array() (chainer.device_resident.DeviceResidentsVisitor

method), 1034
visit_device_resident()

(chainer.device_resident.DeviceResidentsVisitor
method), 1034

visit_variable() (chainer.device_resident.DeviceResidentsVisitor
method), 1034

vstack() (in module chainer.functions), 193

W
WalkerAlias (class in chainer.utils), 1046
WarmupShift (class in chainer.training.extensions),

945
warn_nondeterministic

(chainer.configuration.GlobalConfig attribute),
1062

weight_decay_rate (chainer.optimizers.Adam at-
tribute), 852

weight_decay_rate (chainer.optimizers.MSVAG at-
tribute), 864

WeightDecay (class in chainer.optimizer_hooks), 885
where() (in module chainer.functions), 194
with_requires() (in module chainer.testing), 1117
within_init_scope (chainer.Chain attribute), 754
within_init_scope (chainer.ChainList attribute),

760
within_init_scope (chainer.Link attribute), 747
within_init_scope

(chainer.links.BatchNormalization attribute),
590

within_init_scope
(chainer.links.BatchRenormalization attribute),
596

within_init_scope (chainer.links.Bias attribute),
318

within_init_scope (chainer.links.Bilinear at-
tribute), 324

within_init_scope
(chainer.links.BinaryHierarchicalSoftmax
attribute), 622

within_init_scope (chainer.links.BlackOut at-
tribute), 628

within_init_scope
(chainer.links.caffe.CaffeFunction attribute),
740

within_init_scope
(chainer.links.ChildSumTreeLSTM attribute),
331

within_init_scope (chainer.links.Classifier at-
tribute), 673

within_init_scope (chainer.links.Convolution1D
attribute), 336

within_init_scope (chainer.links.Convolution2D
attribute), 344

within_init_scope (chainer.links.Convolution3D
attribute), 349

within_init_scope (chainer.links.ConvolutionND
attribute), 357

within_init_scope (chainer.links.CRF1d at-
tribute), 633

within_init_scope
(chainer.links.Deconvolution1D attribute),
362

within_init_scope
(chainer.links.Deconvolution2D attribute),
370

within_init_scope
(chainer.links.Deconvolution3D attribute),
375

within_init_scope
(chainer.links.DeconvolutionND attribute),
383

within_init_scope
(chainer.links.DecorrelatedBatchNormalization
attribute), 603

within_init_scope
(chainer.links.DeformableConvolution2D
attribute), 389

within_init_scope
(chainer.links.DepthwiseConvolution2D at-
tribute), 395

within_init_scope
(chainer.links.DilatedConvolution2D attribute),
403

Index 1383



Chainer Documentation, Release 6.5.0

within_init_scope (chainer.links.EmbedID at-
tribute), 409

within_init_scope (chainer.links.GoogLeNet at-
tribute), 696

within_init_scope
(chainer.links.GroupNormalization attribute),
609

within_init_scope (chainer.links.GRU attribute),
415

within_init_scope (chainer.links.Highway at-
tribute), 421

within_init_scope (chainer.links.Inception at-
tribute), 427

within_init_scope (chainer.links.InceptionBN at-
tribute), 434

within_init_scope
(chainer.links.LayerNormalization attribute),
615

within_init_scope (chainer.links.Linear attribute),
441

within_init_scope
(chainer.links.LocalConvolution2D attribute),
447

within_init_scope (chainer.links.LSTM attribute),
454

within_init_scope (chainer.links.Maxout at-
tribute), 659

within_init_scope
(chainer.links.MLPConvolution2D attribute),
461

within_init_scope
(chainer.links.model.vision.resnet.ResNetLayers
attribute), 704

within_init_scope (chainer.links.NaryTreeLSTM
attribute), 468

within_init_scope
(chainer.links.NegativeSampling attribute),
666

within_init_scope (chainer.links.NStepBiGRU at-
tribute), 475

within_init_scope (chainer.links.NStepBiLSTM
attribute), 482

within_init_scope
(chainer.links.NStepBiRNNReLU attribute),
489

within_init_scope
(chainer.links.NStepBiRNNTanh attribute),
496

within_init_scope (chainer.links.NStepGRU at-
tribute), 503

within_init_scope (chainer.links.NStepLSTM at-
tribute), 510

within_init_scope (chainer.links.NStepRNNReLU
attribute), 517

within_init_scope (chainer.links.NStepRNNTanh
attribute), 524

within_init_scope (chainer.links.Parameter
attribute), 529

within_init_scope (chainer.links.PReLU at-
tribute), 646

within_init_scope
(chainer.links.ResNet101Layers attribute),
719

within_init_scope
(chainer.links.ResNet152Layers attribute),
726

within_init_scope (chainer.links.ResNet50Layers
attribute), 711

within_init_scope (chainer.links.Scale attribute),
535

within_init_scope
(chainer.links.SimplifiedDropconnect at-
tribute), 640

within_init_scope (chainer.links.StatefulGRU at-
tribute), 542

within_init_scope (chainer.links.StatefulMGU at-
tribute), 555

within_init_scope
(chainer.links.StatefulPeepholeLSTM at-
tribute), 568

within_init_scope
(chainer.links.StatefulZoneoutLSTM attribute),
574

within_init_scope (chainer.links.StatelessGRU at-
tribute), 549

within_init_scope (chainer.links.StatelessLSTM
attribute), 581

within_init_scope (chainer.links.StatelessMGU
attribute), 561

within_init_scope (chainer.links.Swish attribute),
653

within_init_scope (chainer.links.TheanoFunction
attribute), 734

within_init_scope (chainer.links.VGG16Layers
attribute), 681

within_init_scope (chainer.links.VGG19Layers
attribute), 688

within_init_scope (chainer.Sequential attribute),
769

write() (chainer.datasets.PickleDatasetWriter
method), 1003

Writer (class in chainer.training.extensions.snapshot_writers),
904

X
xp (chainer.backend.ChainerxDevice attribute), 1039
xp (chainer.backend.CpuDevice attribute), 1036
xp (chainer.backend.Device attribute), 1031

1384 Index



Chainer Documentation, Release 6.5.0

xp (chainer.backend.GpuDevice attribute), 1037
xp (chainer.backend.Intel64Device attribute), 1038
xp (chainer.Chain attribute), 754
xp (chainer.ChainList attribute), 760
xp (chainer.DeviceResident attribute), 1034
xp (chainer.Distribution attribute), 843
xp (chainer.distributions.Bernoulli attribute), 780
xp (chainer.distributions.Beta attribute), 783
xp (chainer.distributions.Categorical attribute), 786
xp (chainer.distributions.Cauchy attribute), 790
xp (chainer.distributions.Chisquare attribute), 793
xp (chainer.distributions.Dirichlet attribute), 796
xp (chainer.distributions.Exponential attribute), 799
xp (chainer.distributions.Gamma attribute), 802
xp (chainer.distributions.Geometric attribute), 805
xp (chainer.distributions.Gumbel attribute), 808
xp (chainer.distributions.Independent attribute), 812
xp (chainer.distributions.Laplace attribute), 815
xp (chainer.distributions.LogNormal attribute), 818
xp (chainer.distributions.MultivariateNormal attribute),

821
xp (chainer.distributions.Normal attribute), 825
xp (chainer.distributions.OneHotCategorical attribute),

828
xp (chainer.distributions.Pareto attribute), 831
xp (chainer.distributions.Poisson attribute), 834
xp (chainer.distributions.Uniform attribute), 837
xp (chainer.Link attribute), 748
xp (chainer.links.BatchNormalization attribute), 590
xp (chainer.links.BatchRenormalization attribute), 596
xp (chainer.links.Bias attribute), 318
xp (chainer.links.Bilinear attribute), 324
xp (chainer.links.BinaryHierarchicalSoftmax attribute),

622
xp (chainer.links.BlackOut attribute), 628
xp (chainer.links.caffe.CaffeFunction attribute), 741
xp (chainer.links.ChildSumTreeLSTM attribute), 331
xp (chainer.links.Classifier attribute), 673
xp (chainer.links.Convolution1D attribute), 337
xp (chainer.links.Convolution2D attribute), 344
xp (chainer.links.Convolution3D attribute), 350
xp (chainer.links.ConvolutionND attribute), 357
xp (chainer.links.CRF1d attribute), 634
xp (chainer.links.Deconvolution1D attribute), 363
xp (chainer.links.Deconvolution2D attribute), 370
xp (chainer.links.Deconvolution3D attribute), 376
xp (chainer.links.DeconvolutionND attribute), 383
xp (chainer.links.DecorrelatedBatchNormalization at-

tribute), 603
xp (chainer.links.DeformableConvolution2D attribute),

389
xp (chainer.links.DepthwiseConvolution2D attribute),

396
xp (chainer.links.DilatedConvolution2D attribute), 403

xp (chainer.links.EmbedID attribute), 409
xp (chainer.links.GoogLeNet attribute), 696
xp (chainer.links.GroupNormalization attribute), 609
xp (chainer.links.GRU attribute), 415
xp (chainer.links.Highway attribute), 421
xp (chainer.links.Inception attribute), 428
xp (chainer.links.InceptionBN attribute), 434
xp (chainer.links.LayerNormalization attribute), 615
xp (chainer.links.Linear attribute), 441
xp (chainer.links.LocalConvolution2D attribute), 447
xp (chainer.links.LSTM attribute), 454
xp (chainer.links.Maxout attribute), 660
xp (chainer.links.MLPConvolution2D attribute), 461
xp (chainer.links.model.vision.resnet.ResNetLayers at-

tribute), 704
xp (chainer.links.NaryTreeLSTM attribute), 468
xp (chainer.links.NegativeSampling attribute), 666
xp (chainer.links.NStepBiGRU attribute), 475
xp (chainer.links.NStepBiLSTM attribute), 482
xp (chainer.links.NStepBiRNNReLU attribute), 489
xp (chainer.links.NStepBiRNNTanh attribute), 496
xp (chainer.links.NStepGRU attribute), 503
xp (chainer.links.NStepLSTM attribute), 510
xp (chainer.links.NStepRNNReLU attribute), 517
xp (chainer.links.NStepRNNTanh attribute), 524
xp (chainer.links.Parameter attribute), 529
xp (chainer.links.PReLU attribute), 647
xp (chainer.links.ResNet101Layers attribute), 719
xp (chainer.links.ResNet152Layers attribute), 726
xp (chainer.links.ResNet50Layers attribute), 711
xp (chainer.links.Scale attribute), 536
xp (chainer.links.SimplifiedDropconnect attribute), 640
xp (chainer.links.StatefulGRU attribute), 543
xp (chainer.links.StatefulMGU attribute), 555
xp (chainer.links.StatefulPeepholeLSTM attribute), 568
xp (chainer.links.StatefulZoneoutLSTM attribute), 574
xp (chainer.links.StatelessGRU attribute), 549
xp (chainer.links.StatelessLSTM attribute), 581
xp (chainer.links.StatelessMGU attribute), 561
xp (chainer.links.Swish attribute), 653
xp (chainer.links.TheanoFunction attribute), 734
xp (chainer.links.VGG16Layers attribute), 681
xp (chainer.links.VGG19Layers attribute), 688
xp (chainer.Parameter attribute), 147
xp (chainer.Sequential attribute), 769
xp (chainer.utils.WalkerAlias attribute), 1048
xp (chainer.Variable attribute), 139

Z
Zero (class in chainer.initializers), 894
zero_grads() (chainer.links.Bilinear method), 324
zerograd() (chainer.Parameter method), 144
zerograd() (chainer.Variable method), 135
zerograds() (chainer.Chain method), 753

Index 1385



Chainer Documentation, Release 6.5.0

zerograds() (chainer.ChainList method), 760
zerograds() (chainer.Link method), 747
zerograds() (chainer.links.BatchNormalization

method), 589
zerograds() (chainer.links.BatchRenormalization

method), 595
zerograds() (chainer.links.Bias method), 317
zerograds() (chainer.links.Bilinear method), 324
zerograds() (chainer.links.BinaryHierarchicalSoftmax

method), 621
zerograds() (chainer.links.BlackOut method), 627
zerograds() (chainer.links.caffe.CaffeFunction

method), 740
zerograds() (chainer.links.ChildSumTreeLSTM

method), 330
zerograds() (chainer.links.Classifier method), 672
zerograds() (chainer.links.Convolution1D method),

336
zerograds() (chainer.links.Convolution2D method),

343
zerograds() (chainer.links.Convolution3D method),

349
zerograds() (chainer.links.ConvolutionND method),

356
zerograds() (chainer.links.CRF1d method), 633
zerograds() (chainer.links.Deconvolution1D

method), 362
zerograds() (chainer.links.Deconvolution2D

method), 369
zerograds() (chainer.links.Deconvolution3D

method), 375
zerograds() (chainer.links.DeconvolutionND

method), 382
zerograds() (chainer.links.DecorrelatedBatchNormalization

method), 602
zerograds() (chainer.links.DeformableConvolution2D

method), 388
zerograds() (chainer.links.DepthwiseConvolution2D

method), 395
zerograds() (chainer.links.DilatedConvolution2D

method), 402
zerograds() (chainer.links.EmbedID method), 408
zerograds() (chainer.links.GoogLeNet method), 695
zerograds() (chainer.links.GroupNormalization

method), 608
zerograds() (chainer.links.GRU method), 414
zerograds() (chainer.links.Highway method), 420
zerograds() (chainer.links.Inception method), 427
zerograds() (chainer.links.InceptionBN method), 433
zerograds() (chainer.links.LayerNormalization

method), 614
zerograds() (chainer.links.Linear method), 440
zerograds() (chainer.links.LocalConvolution2D

method), 446

zerograds() (chainer.links.LSTM method), 453
zerograds() (chainer.links.Maxout method), 659
zerograds() (chainer.links.MLPConvolution2D

method), 460
zerograds() (chainer.links.model.vision.resnet.ResNetLayers

method), 703
zerograds() (chainer.links.NaryTreeLSTM method),

467
zerograds() (chainer.links.NegativeSampling

method), 665
zerograds() (chainer.links.NStepBiGRU method),

474
zerograds() (chainer.links.NStepBiLSTM method),

481
zerograds() (chainer.links.NStepBiRNNReLU

method), 488
zerograds() (chainer.links.NStepBiRNNTanh

method), 495
zerograds() (chainer.links.NStepGRU method), 502
zerograds() (chainer.links.NStepLSTM method), 509
zerograds() (chainer.links.NStepRNNReLU method),

516
zerograds() (chainer.links.NStepRNNTanh method),

523
zerograds() (chainer.links.Parameter method), 528
zerograds() (chainer.links.PReLU method), 646
zerograds() (chainer.links.ResNet101Layers

method), 718
zerograds() (chainer.links.ResNet152Layers

method), 725
zerograds() (chainer.links.ResNet50Layers method),

711
zerograds() (chainer.links.Scale method), 535
zerograds() (chainer.links.SimplifiedDropconnect

method), 639
zerograds() (chainer.links.StatefulGRU method), 542
zerograds() (chainer.links.StatefulMGU method),

554
zerograds() (chainer.links.StatefulPeepholeLSTM

method), 567
zerograds() (chainer.links.StatefulZoneoutLSTM

method), 573
zerograds() (chainer.links.StatelessGRU method),

549
zerograds() (chainer.links.StatelessLSTM method),

580
zerograds() (chainer.links.StatelessMGU method),

560
zerograds() (chainer.links.Swish method), 652
zerograds() (chainer.links.TheanoFunction method),

733
zerograds() (chainer.links.VGG16Layers method),

680
zerograds() (chainer.links.VGG19Layers method),

1386 Index



Chainer Documentation, Release 6.5.0

687
zerograds() (chainer.Sequential method), 768
zeros() (in module chainerx), 1137
zeros_like() (in module chainerx), 1138
ZippedImageDataset (class in chainer.datasets),

992
zoneout() (in module chainer.functions), 265

Index 1387


	Chainer at a Glance
	Mushrooms – tasty or deadly?
	Code Breakdown
	Output

	Concepts Walkthrough
	Define-by-Run
	Variables and Derivatives
	Links
	Define your own function
	Creating Models
	Optimizer
	Trainer
	Trainer Extensions
	Using GPU(s) in Chainer
	Type Checks
	Serializers – saving and loading
	Customize your own logging

	Neural Net Examples
	MNIST using Trainer
	MNIST with a Manual Training Loop
	Convolutional Network for Visual Recognition Tasks
	DCGAN: Generate images with Deep Convolutional GAN
	Recurrent Nets and their Computational Graph
	RNN Language Models
	Word2Vec: Obtain word embeddings
	Write a Sequence to Sequence (seq2seq) Model

	API Reference
	Variable and Parameter
	Functions
	Link and Chains
	Probability Distributions
	Optimizers
	Weight Initializers
	Snapshot Writers
	Training Tools
	Datasets
	Iterator
	Serializers
	Backends and Devices
	Utilities
	Configuring Chainer
	Debug Mode
	Visualization of Computational Graph
	Static Subgraph Optimizations: Usage
	Static Subgraph Optimizations: Design Notes
	Caffe Model Support
	Assertion and Testing

	Installation
	Recommended Environments
	Requirements
	Install Chainer
	Uninstall Chainer
	Upgrade Chainer
	Reinstall Chainer
	Run Chainer with Docker
	FAQ

	ChainerX Documentation
	Installation
	ChainerX Tutorial
	Limitations
	Reference
	Contribution Guide
	Tips and FAQs

	Distributed Deep Learning with ChainerMN
	Installation
	Tutorial
	Model Parallel
	API Reference

	API Compatibility Policy
	Versioning and Backward Compatibility
	Breaking the Compatibility
	Experimental APIs
	Supported Backward Compatibility
	Model Format Compatibility
	Installation Compatibility

	Contribution Guide
	Classification of Contributions
	Development Cycle
	Issues and Pull Requests
	Coding Guidelines
	Unit Testing
	Documentation

	Tips and FAQs
	It takes too long time to compile a computational graph. Can I skip it?
	MNIST example does not converge in CPU mode on Mac OS X
	How do I fix InvalidType error?
	How do I accelerate my model using Chainer Backend for Intel Architecture?
	My training process gets stuck when using MultiprocessIterator

	Performance Best Practices
	Use the Latest Version
	Enable Hardware Accelerations
	Migrate Data Preprocessing Code from NumPy to CuPy
	Avoid Data Transfer
	Optimize cuDNN Convolution
	Fine-Tune Configuration
	Load Datasets Concurrently
	Use Multiple GPUs
	Use Multiple Nodes

	Upgrade Guide
	Chainer v6
	Chainer v5
	Chainer v4
	Chainer v3
	Chainer v2

	License
	Indices and tables
	Bibliography
	Python Module Index
	Index

