chainer.datasets.ConcatenatedDataset

class chainer.datasets.ConcatenatedDataset(*datasets)[source]

Dataset which concatenates some base datasets.

This dataset wraps some base datasets and works as a concatenated dataset. For example, if a base dataset with 10 samples and another base dataset with 20 samples are given, this dataset works as a dataset which has 30 samples.

Parameters

datasets – The underlying datasets. Each dataset has to support __len__() and __getitem__().

Methods

__getitem__(index)[source]

Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the get_example() method by default, but it may be overridden by the implementation to, for example, improve the slicing performance.

Parameters

index (int, slice, list or numpy.ndarray) – An index of an example or indexes of examples.

Returns

If index is int, returns an example created by get_example. If index is either slice or one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
...     def __init__(self, values):
...         self.values = values
...     def __len__(self):
...         return len(self.values)
...     def get_example(self, i):
...         return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1]   # Access by int
1
>>> ds[1:3]  # Access by slice
[1, 2]
>>> ds[[4, 0]]  # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index]  # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]
__len__()[source]

Returns the number of data points.

get_example(i)[source]

Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters

i (int) – The index of the example.

Returns

The i-th example.

__eq__(value, /)

Return self==value.

__ne__(value, /)

Return self!=value.

__lt__(value, /)

Return self<value.

__le__(value, /)

Return self<=value.

__gt__(value, /)

Return self>value.

__ge__(value, /)

Return self>=value.